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1 Introduction

In this paper we calculate production and decay results of the Higgs boson in the Standard
Model Effective Field Theory (SMEFT) to O(v̄2T /Λ2(16π2)2) and O(v̄4T /Λ4).1 SMEFT
perturbations to the SM predictions of σ(GG→h), Γ(h→AA) need to be characterized to
higher orders in the effective field theory (EFT) due to the relative sensitivity that these
(SM loop induced) processes carry to SMEFT corrections, compared to other (typically
SM tree level) processes [2–4]. This introduces a relevant numerical sensitivity to the
treatment of higher order corrections and interference effects in these processes in future
(and current [5–8]) global SMEFT fits. In addition, we report results in the mΨ→ 0 limit
for subleading corrections up to dimension eight, and including one loop QCD corrections,
for Γ(h→ Ψ̄Ψ).

To develop such SMEFT results in a reproducible manner, a clear calculation scheme
needs to be adopted for perturbative (ℏ/16π2), and SMEFT operator (1/Λ) corrections.
To systematically calculate in the SMEFT, with fully defined O(v̄4T /Λ4) corrections for
the mass eigenstate fields requires a characterisation of the low n-point interactions that
define key experimental quantities (mass, mixing angles, coupling and canonically normal-
ized fields). The geoSMEFT was defined in refs. [9–12] and is a compact formalism that
accomplishes this task using field space geometry. These geometries are reflective of the
underlying field redefinition invariance present in the SMEFT. We use the geoSMEFT (see
appendix A) to define O(v̄4T /Λ4) corrections in this work.

In ref. [12], it was emphasised that the geoSMEFT — as it is a background field
independent formulation of the SMEFT expansion — encourages a class of perturbative
corrections to be calculated in a specific background field independent manner using the
Background Field Method (BFM) approach to gauge fixing. The operator and loop expan-
sions are not formally independent in SMEFT calculations — due to scheme dependence
introduced by defining conventions in leading order results. The geoSMEFT and the BFM
are, in this sense, fundamentally linked when theoretical self consistency is demanded to

1Here v̄T is the electroweak scale vacuum expectation value, including higher dimensional operator
corrections [1], and Λ is the cut off scale of the SMEFT. G is the canonically normalised gluon in the
SMEFT. A is the canonically normalized photon field in the SMEFT.

– 1 –



J
H
E
P
0
1
(
2
0
2
4
)
1
7
0

subleading order(s). The scheme dependence is unsurprising in principle, as higher order
perturbative corrections always carry a significant scheme dependence. However in the
case of the SMEFT, scheme dependence is not simply numerical. Formulated at the La-
grangian level, the SMEFT is based on the freedom to redefine the theoretical description
with operators being removed or introduced by field redefinitions (or appropriate use of
the Equations of Motion). As such, scheme dependence in the SMEFT is also associated
with operator basis dependence, and the specific parameter dependence present in a calcu-
lation. This scheme dependence is also present in the geoSMEFT, despite its background
field independence, when the field space connections, metrics, etc are expanded out to a
particular order in 1/Λ in a particular operator basis.

In this paper, we extend/replace and update results in ref. [12] by adding a class of
O(v̄2T /Λ2(16π2)2) corrections to σ(GG→h), Γ(h→AA) and Γ(h→GG).2 This upgrades
these results to include a full set of self-consistent and cross-consistent O(v̄2T /Λ2(16π2)2)
and O(v̄4T /Λ4) corrections at the observable level. We also report corrections to Γ(h→ Ψ̄Ψ)
up to dimension eight and including the leading QCD corrections in the mΨ→ 0 limit for
subleading corrections. Finally, we also update the calculation of the total Higgs width in
the SMEFT to include a full set of these corrections.

2 Framework of the calculation

Consider the perturbation due to a SMEFT operator to a dimensionless SM amplitude in
an on shell process (such as σ(GG→h) or Γ(h→AA)):

A= ⟨· · · ⟩SM+
∑
i

C
(6)
i ⟨· · · ⟩v̄2

T /Λ2+· · · (2.1)

For three-particle on shell processes, such as 1→ 2 decays or 2→ 1 production, derivative
terms O(∂2/Λ2) are trivial within the SMEFT expansion so all corrections scale with
v̄2T /Λ2. Thus, each amplitude has a series of SMEFT corrections

Σn⟨· · · ⟩v̄2n
T /Λ2n (2.2)

associated with operators in L(4+2n).

2.1 Terms retained in the calculation(s)

Due to a proliferation of superscripts and subscripts indicating the various expansions
present in these calculations, we introduce a more schematic notation. Amplitudes are
expanded as

A=
∑
i,j

⟨· · · | · · · ⟩i(v2/Λ2)j . (2.3)

2v is sometimes used to denote the vacuum expectation value in the SM, and the bare version of this
parameter is v0. The inferred vacuum expectation value will necessarily be v̄T when higher dimensional
operators are present, or v when such operator corrections are not present experimentally perturbing mea-
surements. As such, our use of v̄T and v is interchangeable in most results below.
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We generally use ∆ to indicate a loop correction while a power of δ is used to indicate
a SMEFT perturbation ∝ 1/Λ2 for more condensed notation, and to track the scaling
of cross terms in the expansions. In this work, we focus on improving the treatment of
⟨FF|h⟩0,1,2, and ⟨h|FF⟩0,1,2, where F = {G,A} compared to ref. [12]. Each of the terms
for the amplitudes in this work scale as

⟨FF|h⟩1SM ∼∆, ⟨FF|h⟩2SM ∼∆2,

⟨FF|h⟩0O(v2/Λ2)∼ δ, ⟨FF|h⟩0O(v4/Λ4)∼ δ2,

⟨FF|h⟩1O(v2/Λ2)∼ δ∆ ⟨FF|h⟩2O(v2/Λ2)∼∆2 δ,

and so on. Cross terms when the amplitude is squared scale as

⟨FF|h⟩1SM ⟨FF|h⟩1O(v2/Λ2)∝∆2δ. (2.4)

In this work, we include the corrections ⟨FF|h⟩2SM and ⟨FF|h⟩1O(v2/Λ2) as defined above.
The first term leads to corrections of the order

⟨FF|h⟩2SM ⟨FF|h⟩0O(v2/Λ2)∝∆2δ, (2.5)

which should be retained for consistency at the amplitude squared level when ⟨FF|h⟩1SM
×⟨FF|h⟩1O(v2/Λ2) terms are retained, as in ref. [13]. We retain the terms that scale as δ, ∆,
δ2, ∆2, δ∆ in the amplitude expansion in this work. Note that ∆,∆2 terms are pure SM
terms. We retain the SM cross terms of order ∆2, ∆3 in the amplitude squared. As well
as terms of order δ∆, δ∆2, δ2, δ2∆ for the SMEFT corrections in the amplitude squared.
All other higher order terms are consistently dropped.

Note that when constructing the interference term, one could choose to numerically
retain the corrections of the order

⟨FF|h⟩2SM ⟨FF|h⟩1O(v2/Λ2)∝∆3δ. (2.6)

If this choice is made to improve numerical accuracy for some Wilson coefficient dependence,
then a consistent calculation at the amplitude squared level should also retain the finite
and scheme dependent interference terms following from ϵ/ϵ cancelations that are also
generated by

⟨FF|h⟩1O(v2/Λ2)⟨FF|h⟩2SM ∝∆3δ. (2.7)

We report a series of results below retaining different classes of terms to make the numerical
impact of the different sets of corrections clear (see eq. 3.17 and eq. 3.50). Also note that
this class of terms is the same order as

⟨FF|h⟩0O(v2/Λ2)⟨FF|h⟩3SM (2.8)

corrections which are also neglected. This class of corrections is particularly sensitive to
the combination of the SMEFT counterterms and the SM counterterms in a consistent
calculation scheme. See further discussion in appendix A.2.
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3 Analytic results

To define the perturbative corrections to next to leading order (NLO), the infrared/ultra-
violet (IR/UV) divergences present in the perturbative expansions have to be canceled/sub-
tracted in some calculational scheme. Combining these results with SMEFT perturbations
requires some care. We reiterate and incorporate these results to fix notational conventions.

3.1 σ(GG → h)

We define the full amplitude for GG→h as [12]

AGGh= ⟨GG|h⟩1SM+⟨GG|h⟩2SM+⟨GG|h⟩0O(v2/Λ2)+⟨GG|h⟩1O(v2/Λ2)+⟨GG|h⟩0O(v4/Λ4)+· · ·
(3.1)

The two loop SM contributions to this amplitude are ⟨GG|h⟩2SM . The relevant results for
⟨GG|h⟩2SM are known and reported in refs. [14–20].

The first careful study of interference with ⟨GG|h⟩0O(v2/Λ2) effects was reported in ref. [2].
Results for ⟨GG|h⟩1O(v2/Λ2) are reported in many works, including refs. [21, 22], in differ-
ent calculation schemes than used here. Renormalization results to dimension eight have
started to appear in refs. [23–25] enabling O(∆δ2) results to be developed, and recently
results of this order were reported in ref. [26], also in a different scheme than used here.

One of the central points of this paper, is the need to combine input parameter extrac-
tions, and observables in a consistent calculational scheme up to O(δ2) and O(∆2δ). We
provide significant calculational details for our results to be reproducible including these
corrections.

3.1.1 ⟨GG|h⟩1
SM and ⟨GG|h⟩2

SM results for σ(G G → h)

The top quark leading contribution to the SM amplitude is expanded in perturbation theory
as [14, 17, 18, 20, 27–30]

⟨GG|h⟩1SM = iδabKab
1
v̄
(0)
T

(
− s

µ̂2

)−ϵ
(
α0
s S

ϵ µ̂−2ϵ

4π M
(0)
t,SM

)
. (3.2)

Here, a,b are the gluon colors with ϵ polarization vectors, γE is the Euler-Mascheroni
constant, and we have shifted to a MS renormalization introducing µ2→ µ̂2/S= µ̂2eγE/(4π)
where Sϵ=(4π)ϵe−ϵγE to simplify finite terms. The factor Kab is

Kab ≡ ϵa(p1)·ϵb(p2)s/2−p1 ·ϵb(p2)p2 ·ϵa(p1), (3.3)
= −⟨h|hGµνGµν |ϵaϵb⟩0/4. (3.4)

where p1,2 are the incoming gluon momenta with s=(p1+p2)2≡m2
h and Gµν is the field

strength tensor of the canonically normalized gluon field.
The normalized, leading order partonic cross section in the SM then depends on (z=

m̂2
h/s) as

σSMLO (GG→h;z)≡ σ̂SMLO (GG→h)
1−ϵ z δ(1−z) (3.5)
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where ⟨GG|h⟩0SM starts at one loop, so σSMLO (GG→h;z) scales as ∆2 and will be denoted
∆2σSMLO (GG→h;z) to emphasize this fact. Stated another way,

∆2σ̂SMLO (GG→h;z) ≡ π

4 lim
ϵ→0

∣∣∣CSMhGG∣∣∣2 , (3.6)

where CSMhGG is the Wilson coefficient of the operator hGaµνGaµν with normalization

∆CSMhGG =− α
(r)
s

v̄0T 16π

(
− s

µ̂2

)−ϵ
M

(0)
t,SM . (3.7)

The corresponding cross section in the SMEFT has a modified Wilson coefficient, given by

CSMEFT
hGG =∆CSMhGG+

C̃
(6)
HG

v̄0T
+· · · . (3.8)

An expression for M (0)
t is given in ref. [20] and is numerically3 in the mt→∞ limit [30]

∆CSM,mt→∞
hGG = − α

(r)
s

v̄0T 16π

(
m̂2
t

µ̂2

)−ϵ

M
(0),mt→∞
t,SM ,

= − α
(r)
s

v̄0T 16π

[
−4
3

(
1+π2

12 ϵ
2−ϵLm̂t+

1
2L

2
m̂t
ϵ2+O(ϵ3)

)]
, (3.9)

where Lm= log
(
m2/µ̂2

)
. The numerical term in this expression in the square brackets is

related to the function commonly defined and used in the literature A1/2(τt)=−1.37664 in
the exact top mass limit, where τt=4m̂2

t /m̂
2
h=7.59871. Similarly, ref. [30] gives the exact

higher order expressions to build up

⟨GG|h⟩2SM = iδabKab

[(
− s

µ̂2

)−ϵ α0
s S

ϵµ̂−2ϵ

4π

]2 1
v̄0T

M
(1)
t,SM , (3.10)

where ⟨GG|h⟩2SM scales as a ∆2 perturbation and

M
(1)
t,SM =MUV +MUV,m+MIR+Mfin+Mfin,s log

(
− s

µ̂2

)
. (3.11)

Each of the terms in the decomposition in eq. (3.10) given in eq. (3.11) is defined in ref. [30]
and previous literature using a variety of calculation schemes; MUV,m corresponds to UV
poles and related finite terms canceled by UV mass renormalization, MUV corresponds to
the remaining UV renormalization of the NLO result, and Mfin and Mfin,s correspond
to finite NLO terms, with the later multiplying the complete scale dependence in M

(1)
t,SM .

Finally, MIR corresponds to finite terms related to IR driven cancelations between these
NLO contributions to σ(GG→h) and σ(GG→hG). Results in the literature must be
modified into the background field method (BFM) to combine consistently with a BFM
based SMEFT calculation and counterterms (i.e. when using the geoSMEFT to define 1/Λn
corrections). We report the required modifications in the following sections.

3A factor of four has been absorbed into this expression comparing to M0
LO in ref. [20].

– 5 –



J
H
E
P
0
1
(
2
0
2
4
)
1
7
0

3.1.2 NLO finite terms

We organise the NLO contributions by defining

⟨GG|h⟩2,FSM ≡ iδab
Kab

v̄0T

[(
− s

µ̂2

)−ϵ α0
s S

ϵµ̂−2ϵ

4π

]2 (
M

(1)
t,SM−MUV −MUV,m−MIR

)
(3.12)

so that the UV and IR subtractions and cancelations, which have an intricate interplay
in these results are separately considered. The ⟨GG|h⟩1,FSM renormalized and IR subtracted
finite terms (so defined) are related to matching and running in the EFT. In the mt→∞
limit, the corresponding subset of terms is

⟨GG|h⟩2,FSM = α
(r)
s

4π

[
11+c1 ϵ+(−β0+c2 ϵ) log

(
−m̂

2
h

µ̂2

)]
⟨GG|h⟩1SM,ϵ→0, (3.13)

where β0=11Nc/3−2nF /3, Nc=3 and [30]

c1 =
[
−π

2β0
12 +28 log(z)+12ζ3−

40
3

]
, (3.14)

c2 =
[
−1
2β0 log

(−s
µ2

)
−2β0 log(z)+8

]
. (3.15)

Here log(z)= log(−s/m2
t )/2. The 11αs/4π factor in eq. (3.13) is recognised as the two

loop matching contribution to the mt→∞ effective operator [14]. This non-log term was
included in ref. [13]. The log term is an additional contribution present that is not captured
in the two loop matching contribution.4 This log dependence also is consistent with naive
expectations as the direct matching contribution at two loops needs to be augmented with
log terms due to running in the EFT. To further consistently improve these results beyond
ref. [13] we must also improve the finite terms resulting from the UV and IR subtracted
cancelation between M

(1)
t,SM and the IR contributions from the process σ(GG→hG).5

Interference of ⟨GG|h⟩0O(v2/Λ2) with ⟨GG|h⟩2,FSM leads to the contributions

∆2δσ(GG→h)F
∆2σ̂SMLO (GG→h;z)

= αs
2π (11−β0Lm̂h

) C̃
(6)
HG

v̄0T ∆CSMhGG
,

= 6 (11−β0Lm̂h
) C̃(6)

HG. (3.16)

The ϵ terms in c1, c2 interfere and generate constant finite terms in the ⟨GG|h⟩2SM
⟨GG|h⟩1O(v2/Λ2) interference with the renormalization of the leading order cross section.
These contributions are

∆3δσ(GG→h)F
∆2 σ̂SMLO (GG→h;z)

= −3β0αs
2π

(
Re[c1]+Re[c2]Lm̂h

+3π2β0
2

)
C̃

(6)
HG. (3.17)

4We thank Babis Anastasiou for confirming some typos in the literature result of ref. [30] that are
corrected for here.

5The hat superscripts have a dual meaning, indicating a input parameter for the higgs mass and the use
of MS renormalization for the renormalization scale.
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3.1.3 UV divergences

The renormaliation of the SM result has the remaining contributions

MUV +MUV,m=
(
− s

µ̂2

)−ϵ
(
Z2
mt

Zm2
h

τt
∂

∂τt

)
Z2
g ZĜ

Z
1/2
ĥ

Z
1/2
v

iδabKab
1
v̄
(r)
T

α
(r)
s

4π M
(0)
t,SM . (3.18)

The result in eq. (3.18) has one overall power of
(
−s/µ̂2

)−ϵ due to the conventional
choice in refs. [20, 30], followed here, to organize the calculation in such a way that we
factorize the complete µ dependence in M

(1)
t,SM into the terms with “fin” superscripts.

Here we have modified the notation of ref. [20] to make the mass dimensions of the
corrections clearer.6 In the SM, the non-vanishing counter terms (proportional to the QCD
coupling) are Zg,ZĜ ,Zmt — Zm2

h
does not have QCD corrections in the SM. The neglect

of Z1/2
ĥ

, Z1/2
v is trivial when only considering their lack of one loop QCD corrections,

but when considering EW corrections the use of the background field method introduces
important differences compared to alternate schemes. In the background field method, EW
corrections from Z

1/2
ĥ

, Z1/2
v exactly cancel, including finite terms — a helpful simplification.

In refs. [20, 21, 30] a MS renormalization scheme is chosen so that the mass counter
term is effectively given by

∆Zmt = −α
(r)
s

4π CF
3
ϵ
, (3.19)

with CF =(N2
c −1)/2Nc. We adopt this MS renormalization for the top quark mass in this

work. Note that in the BFM, the fermion fields are not modified and the counterterm is
the same and gauge independent. To use the results in ref. [30] we need to account for
the finite terms in the renormalization of the leading order result. The explicit form of the
finite terms due to mass renormalization is given by

MUV,m= 6
ϵ
CF

(
− s

µ̂2

)ϵ
(m0

t )2
∂

∂(m0
t )2

((m0
t )2

−s

)−ϵ

⟨GG|h⟩1SM

 (3.20)

which leads to a pure finite term, even in the mt→∞ limit, that is effectively a matching
contribution to the leading order operator C(6)

HG. The resulting correction is given by

∆2δσ(GG→h)ren,m
∆2 σ̂SMLO (G→h;z)

= 36×CF C̃(6)
HG. (3.21)

The form of Zg and ZĜ depend on the scheme and gauge chosen. In refs. [20, 21, 30],
the combination of Z2

gZĜ leads to the effective renormalization to cancel the poles in the
6⟨GG|h⟩1

SM is a function of a dimensionless ratio in the bare masses (with 0 superscripts) τ0
t =

4(m(0)
t )2/(m(0)

h )2. To make the mass dimensions of the corrections clearer and extend to the SMEFT
more easily, we choose to take a derivative with respect to τt more explicit. The correction comes about
due to Taylor expanding the perturbative corrections within Z2

mt
in the SM, which reduces to past results

for the SM, once correcting for a typo in ref. [20] in Equation 7.6, which is missing a factor of mt in the
numerator. The notation agrees in the mass dimensions with ref. [30].
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matrix element

Z2
g ZĜ

(
− s

µ̂2

)−ϵ
iδabKab

1
v̄
(r)
T

α
(r)
s

4π M
(0)
t,SM =−

[
α
(r)
s

4π

]2
β0
ϵ
(− s

µ̂2
)−ϵiδabKab

1
v̄
(r)
T

M
(0)
t,SM .

(3.22)
When considering the calculation in the mt→∞ limit, a composite operator is present. In
the unbroken phase of the theory, the operator is H†HGµνGµν . The composite operator
renormalization is performed after the gluon wavefunction renormalization is subtracted.
In ref. [21], and related works, both the gluon field and the composite operator are not
further renormalized due to the calculational scheme chosen, so this subtlety is rather
irrelevant. The full cancelation of the UV pole comes from the renormalization of the
strong coupling as a result.

In the BFM, the relationship between the QCD coupling and wavefunction renormal-
ization is µ2ϵZ2

gZĜ ≡ 1, including finite terms. On the other hand, the composite operator,
in this case, gets its own renormalization counter term [1]

ZHG=1−β0αs
4π ϵ +· · · . (3.23)

which leads to the same net subtraction of UV poles. In the BFM, this renormaliza-
tion occurs with the SM matching contribution to the composite operator interfering with
⟨GG|h⟩0O(v2/Λ2) and the CHG Wilson coefficient itself. This renormalization is given by

⟨GG|h⟩0O(v2/Λ2)→ZHG
C̃

(6)
HG

v̄T
⟨GµνGµνh⟩0. (3.24)

If the choice is also made, as in ref. [21], to normalize the operator C̃(6)
HG by factors of

(g0s)2 explicitly, then the renormalization of the composite operator can again vanish, and a
further renormalization due to the extra factor of the strong coupling is introduced, again
leading to the same net counter term being introduced. This subtlety potentially introduces
some confusion when comparing results in the literature if different normalizations, and
calculation schemes are not carefully defined.

The UV pole canceled by these counter terms also (accidentally) cancels against an
IR contribution with opposite sign. This renormalization introduces a contribution to the
cross section

∆2δσ(GG→h)ren
∆2 σ̂SMLO (G→h;z)

= −6β0
[1
ϵ
+1−Lm̂t

]
C̃

(6)
HG. (3.25)

The finite term as ϵ→ 0 comes from the ϵ dependence in the SM amplitude interfered with.

3.1.4 IR divergences

For the IR divergences, it is well known that a universal form is present in the pole structure
for a renormalized one loop amplitude for the production of a Higgs boson from two massless
gauge bosons in the SM. The [31–33] dipole subtraction scheme allows one to write M(1)

t,IR

with a universal (scheme dependent) set of IR poles as [20, 30]

M(1)
t,IR= −eϵγE

Γ(1−ϵ)

[2Nc

ϵ2
+β0
ϵ

]
M

(0)
t,SM . (3.26)
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Figure 1. QCD one loop contribution to GG→h.

in MS. The number of active flavors is Nf =5. By definition, the IR physics before heavy
states are integrated out is the same as that in the SMEFT with a fixed set of matched
Wilson coefficients. The SMEFT contains additional local contact operator corrections to
the SM interaction terms that modify the UV. In principle, the presence of higher order
local contact operators can modify the IR radiation field present compared to the SM
with a point like higgs particle, leading to further modifications of this result at higher
orders. This is the SMEFT multipole expansion, reflecting possible Higgs substructure,
see discussion in refs. [34, 35]. In practice, this does not occur in the SMEFT to the level
of precision we are interested in calculating in this paper.

The interference of the remaining NLO contributions to GG→h

iδab
Kab

v̄0T

[(
− s

µ̂2

)−ϵ α0
s S

ϵµ̂−2ϵ

4π

]2
MIR, (3.27)

with the tree level insertion of C̃(6)
HG

7 gives the subtraction scheme dependent terms

∆2δσ(GG→h)sch.
∆2 σ̂SMLO,ϵ→0(GG→h;z)

= 6
[
− 6
ϵ2

+6L+
ϵ

− 6
ϵ
−14+3π2−3L2

++6L++β0Lm̂h

]
C̃

(6)
HG.

(3.28)

Note that the IR poles are the same in the renormalization scheme used in refs. [20, 21, 30]
and in the BFM. The corresponding SMEFT expression differs from the SM in finite terms
as the ϵ expansion of M (0),mt→∞

t,SM is not squared. The log structure and constant terms
differ in the SMEFT and the SM, even though the IR pole structure is the same, as the
higher order terms in ϵ coming from the SM top sub-loop function are different.

Adding up all terms gives the NLO results from figure 1 of order ∆2δσ(GG→h)

∆2δσ(GG→h)
∆2 σ̂SMLO,ϵ→0(GG→h;z)

= 6
[
− 6
ϵ2

−β0
ϵ
+6L+

ϵ
− 6
ϵ
+β0Lm̂t+3π2+5−β0−3L2

++6L+

]
C̃

(6)
HG,

(3.29)
Here we have suppressed common factors of δ(1−z) in the numerator and denominator.

The ϵ poles eq. (3.29) are all of IR origin. These poles cancel against poles in GG→hG
in the limit that the final state gluon is soft/colinear for any local contact operator of the
form hGaµνGaµν . There are finite term differences between the SMEFT and the SM involved
in this IR cancelation.

7Here we introduced the notation L+ = Lm̂h +Lm̂t .
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Figure 2. GG→hG Required to cancel IR divergences in the two loop matrix element for GG→h.

The GG→hG amplitude squared is shown in figure 2 and is a modification of results
in ref. [14]

|A(GG→hG)|2=(4π)384α(0)
s |CSMEFT

hGG |2
(m̂8

h+s4+t4+u4)(1−2ϵ)+ 1
2ϵ(m̂4

h+s2+t2+u2)2

stu
,

(3.30)

where ChGG is the coefficient of ⟨h |G G⟩0 and s, t,u here are the usual Mandelstam variables
for this 2→ 2 process. Expanding out to the linear in C̃HG interference term

∆δ|A(GG→hG)|2

= 768πα(0)
s

v̄0T
2Re

(
∆CSMhGG
µ2ϵ

C̃HG

)
(m̂8

h+s4+t4+u4)(1−2ϵ)+ 1
2ϵ(m̂4

h+s2+t2+u2)2

stu
.

(3.31)

In the mt→∞ limit, this becomes (after renormalizing)8

∆δ|A(GG→hG)|2

=
(
Z2
mt

Zm2
h

∂

∂τt

)
Z2
g ZĜ

Z
1/2
ĥ

Z
1/2
v

ZHG
128(α(r)

s )2µ2ϵ

(v̄(r)T )2

(
1−ϵLm̂t+ϵ2

(
π2

12+
1
2L

2
m̂t

))

×
(m̂8

h+s4+t4+u4)(1−2ϵ)+ 1
2ϵ(m̂4

h+s2+t2+u2)2

stu
C̃HG.

(3.32)

Dropping higher order terms and using the BFM cancelation µ2ϵZ2
gZĜ ≡ 1 simplifies

the result. Multiplying by d dimensional phase space,

dΦ2≡
1
8πS

ϵ eϵγE
1

Γ(1−ϵ)

(1
s

)ϵ[
1− m̂2

h

s

]1−2ϵ ∫ 1

0
ω−ϵ(1−ω)−ϵdω (3.33)

8Here we are dividing by a 1/2 that we explain below.
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and performing the color averaging and polarization sums yields

σ(GG→hG)= 1
512s(1−ϵ)2 |A(GG→hG)|2dΦ2. (3.34)

Explicitly, while using the definitions in appendix C for the plus distributions we find
∆2δσ(GG→hG)IR/σ̂SMLO,ϵ→0(GG→h) is given by

6
[ 6
ϵ2

−6L+
ϵ

+6
ϵ
+3L2

+−6L+−π2+6
]
δ(1−z)C̃HG

+6
[
(12f1(z)(Lm̂h

−log(z))−11f1(z)+11z)f1(z)+11(1−z)2 z
]( 1

1−z

)
+
C̃HG

+144f21 (z)
( log(1−z)

1−z

)
+
C̃HG−72f21 (z)

[1
ϵ
+1−Lm̂t

]( 1
1−z

)
+
C̃HG. (3.35)

Here the distributions of the numerator have been included again that were suppressed
in eq. (3.29). Replacing the 1/(1−z)+ distribution in favor of the Altarelli-Parisi (AP)
splitting function via eq. (C.4) results in

6
[ 6
ϵ2

+β0
ϵ
−6L+

ϵ
+6
ϵ
+3L2

+−6L+−π2+6
]
δ(1−z)C̃HG−72f21 (z) [1−Lm̂t ]

( 1
1−z

)
+
C̃HG

+6
[
(12f1(z)(Lm̂h

−log(z))−11f1(z)+11z)f1(z)+11(1−z)2 z
]( 1

1−z

)
+
C̃HG

+144f21 (z)
( log(1−z)

1−z

)
+
C̃HG−36z pGG(z)

[1
ϵ

]
C̃HG. (3.36)

We follow the splitting functions conventions of Ellis-Stirling-Webber [36] and introduce a
counter term to remove the residual 1/ϵ

∆2δσAPDRc.t≡ 36∆2σ̂SMEFT
LO,ϵ→0 (GG→h)

[(
µ2

µ2F

)ϵ]
(4π)ϵΓ(1+ϵ)Γ(1−ϵ)

2

Γ(1−2ϵ)

[1
ϵ

]
z pGG(z)C̃HG

(3.37)
where µF is a low renormalization scale for the Altarelli-Parisi splitting function, while µ is
the higher renormalization scale introduced for renormalizing the SMEFT perturbations.
Comparing to the literature, the Altarelli-Parisi function and counter term conventions
differ between references, in particular refs. [14, 21, 36, 37]. At times, conventions/schemes
are unspecified.

The counter term is introduced proportional to the leading order SMEFT×SM inter-
ference, as it must be proportional to C̃HG. Formally, the resulting splitting function is a
SMEFT correction to the SM splitting function, since it depends on the Wilson coefficient
C̃HG. The introduction of the splitting function represents the factorization of the long
and short distance physics proportional to C̃HG. It is possible to modify the counterterm
introduced via the replacement 1/ϵ→ 1/ϵ+1−Lm̂t . This choice simplifies the final answer
obtained, removing all Lm̂t dependence. As the evaluation of the resulting perturbation of
the cross section is done in fixed order perturbation theory with µ∼mh, the scale µ in the
SMEFT AP counterterm is in the end set to a large renormalization scale. Here we forgo
this simplification of the final results, and retain an explicit factor of 1−Lm̂t .
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We also note that an alternate calculational scheme convention for dipole subtraction
to address Lm̂t dependence is used in ref. [38], based on ref. [39]. Essentially, this is a
rearrangement of Lm̂t in intermediate steps of the calculation Our use of results from
refs. [20, 30] to define the SMEFT corrections to the cross section is similar to (but distinct
from) refs. [38, 39] in intermediate steps, in that the Catani one loop IR operator multiplies
the full ϵ series with Lm̂t dependence for the SM leading order cross section. The net real
emission result is consistent with some past literature, including refs. [38, 40] once schemes
and calculational conventions are appropriately accounted for.

The final result with L+ is

6
[ 6
ϵ2

+β0
ϵ
−6L+

ϵ
+6
ϵ
+3L2

++β0(1−Lm̂t)−6L+−π2+6
]
δ(1−z)C̃HG

+6
[
(12f1(z)(Lm̂h

−log(z))−11f1(z)+11z)f1(z)+11(1−z)2 z
]( 1

1−z

)
+
C̃HG

+144f21 (z)
( log(1−z)

1−z

)
+
C̃HG+36z log

(
µ̂2

µ2F

)
pGG(z) C̃HG()

−72f21 (z) [1−Lm̂t ]
( 1
1−z

)
+
C̃HG+O(ϵ). (3.38)

3.1.5 Combined NLO C̃
(6)
HG result

Combining the virtual and real emission, the poles in ϵ and the log squared terms exactly
cancel out. The final result is quite compact

∆2δσSMEFT

∆2 σ̂SMLO,ϵ→0

1
2 C̃(6)

HG

= 12
[
π2+11

2

]
δ(1−z)−66(1−z)3+144f21 (z)

( log(1−z)
1−z

)
+

+72f21 (z) [L+−log(z)−1]
( 1
1−z

)
+
+36z pGG(z) log

(
µ̂2

µ2F

)
.

(3.39)

This expression is understood to define the numerical rescaling required to generate the
NLO result from the numerical value of the SM cross section. The limit ϵ→ 0 is thus
already taken in determining the SM result, and the distribution in z is averaged over the
parton distribution functions in the SM result.

The full NLO results are different than those reported in ref. [12] and should be un-
derstood to supersede those results. The improvements of the calculation are multifold.
The full ϵ dependence results reported in ref. [30] leads to modification of finite terms
due to cross terms in the 1/ϵ series and the top sub-loop used in the mt→∞ limit. The
calculation in ref. [12] used the two loop matching calculation onto the heavy top quark
effective operator, but this approximation to the full NLO matrix element in the mt→∞
limit cannot capture a full set of log terms (and descendent finite terms) that are numer-
ically relevant. In addition, the calculation in ref. [12] neglected the full two loop matrix
element interference with the tree level SMEFT operator insertion, only retaining a (poor)
approximation of the one loop SM amplitude for interfering with the one loop contribution
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to the QCD matrix element proportional to the operator CHG. Further, the cross section
result

∆2δσSMEFT (GG→h)∝
(
αs
4π2

)2
C̃HG, (3.40)

has two contributions. The interference of

⟨GG|h⟩2SM ×⟨GG|h⟩0
C̃HG

, (3.41)

and the interference of

⟨GG|h⟩1SM ×⟨GG|h⟩1
C̃HG

. (3.42)

In the mt→∞ limit, the leading order result for GG→h in the SM follows from the same
local contact operator that receives an additive SMEFT contribution from C̃HG. Each
contribution to the cross section can be built up with the full NLO virtual amplitude
results in ref. [30]. As the same local contact operator is present in the virtual NLO result,
and the ϵ expansion of the SM leading order sub-diagram is properly accounted for, the
two loop result “descends one loop order” in the mt→∞ limit so that

lim
mt→∞

⟨GG|h⟩2SM
C̃HG

v̄0T ∆CSMhGG
= ⟨GG|h⟩1

C̃HG
. (3.43)

Similarly,

lim
mt→∞

⟨GG|h⟩1SM ≡⟨GG|h⟩0
C̃HG

×
v̄0T ∆CSMhGG
C̃HG

. (3.44)

The rescaling differences in each of these individual expressions cancel in the interference of
the virtual terms. The real emission result is determined at the amplitude squared level in
eq. (3.31), where the same rescaling relationship is present in the mt→∞ limit. Combining
the two sets of interference terms with their corresponding real emission results leads to the
overall factor of 2 on the left hand side of eq. (3.39).9 Such relationships between results is
an example of the utility of the EFT approach. Equation (3.39) needs to be added to the
terms in appendix E taken (unchanged) from ref. [12] and reiterated here for completeness
to build up the full NLO result.

The results of ref. [12], like most SMEFT literature, report results in a mixed MS
like scheme with on-shell renormalization of αs combined with BFM calculational scheme
results. Here we calculate in a consistent fashion in the BFM, and report the first complete
calculation of this form in the literature in the SMEFT for this process (to our knowledge) in
the MS scheme. The factorization of the results into a AP splitting function still requires the
introduction of a counterterm explicitly introducing dependence on the lower µF scale in the
process. The β0 dependent log proportional to δ(1−z) is absent as the counterterms of the
background field gluon wavefunction renormalization cancels against the renormalization
of the strong coupling. This scheme dependence, and the ability to rewrite distribution
terms using eq. (C.5) should be noted when comparing results in differing schemes.

9Note that the real emission result cancels the IR divergences in both of the interference terms leading
to the 1/2 in eq. (3.32).
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3.2 Γ(h → GG)

The matrix elements for h→GG and GG→h are related by crossing symmetry. As in the
case of Higgs production, the O(α2

s) interference contributions for this decay are

⟨h|GG⟩2SM ×⟨h|GG⟩0
C̃HG

, (3.45)

and

⟨h|GG⟩1SM ×⟨h|GG⟩1
C̃HG

. (3.46)

Also analogously to GG→h, there are IR divergences cancelled by h→GGG — determined
from the same matrix elements reported in previous sections via crossing symmetry — with
additional contributions from h→Gq̄q in the soft-collinear limit.

Some contributions to this decay are unchanged from the results in ref. [12] and are
reiterated in appendix F. Here, we focus on presenting the differences compared to past
results due to the full two loop SM matrix elements now incorporated. We uniform calcula-
tion conventions in our Γ(h→GG) results with those in section 3. The two loop amplitudes
explicitly presented in ref. [30] are the key SM input, as in section 3.

The leading order results for the decay Γ(h→GG) follows from CSMEFT
hGG , with the

decay width depending on this Wilson coefficient as

ΓSMEFT (h→GG)≡ 2m̂3
h

π
|CSMEFT
hGG |2, (3.47)

leading to [28, 41]:

∆2ΓSMmt→∞(h→GG)≡ (α(r)
s )2 m̂3

h

72π3v̂2T
, ∆δΓ(h→GG)≡ α

(r)
s m̂3

h C̃HG
3π2v̂2T

.

3.2.1 Γ(h → G G) Virtual terms

We organize the NLO contributions as in the case of GG→h, defining

⟨h|GG⟩2,FSM = α
(r)
s

4π

[
11+c1 ϵ+(−β0+c2 ϵ) log

(
−m̂

2
h

µ̂2

)]
⟨h|GG⟩1SM,ϵ→0, (3.48)

leading to the contribution

∆2δΓ(h→GG)F
∆2Γ̂SMLO (h→GG)

= α
(r)
s

2π (11−β0Lm̂h
) C̃

(6)
HG

v̄0T ∆CSMhGG
,

= 6 (11−β0Lm̂h
) C̃(6)

HG. (3.49)

The ϵ terms in c1, c2 again interfere and generate constant finite terms

∆3δΓ(h→GG)F
∆2 Γ̂SMLO (h→GG)

= −3β0α(r)
s

2π

(
Re[c1]+Re[c2]Lm̂h

+3π2β0
2

)
C̃

(6)
HG. (3.50)
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The net renormalization (using MS for the top mass dependence) again introduces a con-
tribution to the cross section

∆2δΓ(h→GG)ren
∆2 Γ̂SMLO (h→GG)

= −6β0
[1
ϵ
+1−Lm̂t−Lm̂h

]
C̃

(6)
HG+36CF C̃(6)

HG, (3.51)

with an additional factor of Lm̂h
(compared to eq. (3.25)) due to the d-dimensional two

body phase space dΦ2.

3.2.2 Γ(h → G G) real emission terms

The interference of the two loop, scheme dependent terms with the tree level insertion of
C̃HG gives

∆2δΓ(h→GG)sch
∆2 Γ̂SMLO (h→GG)

= 6 C̃HG
[
− 6
ϵ2

+6(L++Lm̂h
−1)

ϵ
−6L2

m̂h
−6L2

++3L2
m̂t

]

+6 C̃HG
[
6Lm̂h

+6L++β0Lm̂h
+9π2

2 −20
]

(3.52)

Leading to a net virtual interference result

∆2δΓ(h→GG)
∆2 Γ̂SMLO (h→GG)

= 12 C̃HG
[
− 6
ϵ2

+6(L++Lm̂h
−1)−β0

ϵ
−6L2

m̂h
−6L2

++3L2
m̂t

]

+12 C̃HG
[
−β0+6Lm̂h

+(6+β0)L++
9π2
2 −1

]
. (3.53)

The real emission contributions are a combination of h→GGG in the soft limit and
h→G q̄ q in the collinear limit. The former contribution is

∆2δΓ(h→GGG)soft
∆2 Γ̂SMLO (h→GG)

= 12 C̃HG
[
6
ϵ2

+6(Lm̂t−2L++1)+11
ϵ

− 9π2
2 +119

2

]
+12 C̃HG

[
3L2

m̂t
+17Lm̂t−12Lm̂tL++12L2

+−34L+
]
, (3.54)

while the later is

∆2δΓ(h→G q̄ q)col.
∆2 Γ̂SMLO (h→GG)

= 12 C̃HG
[
−2NF

3ϵ +NF

3 (4L+−2Lm̂t−9)
]
. (3.55)

Combining all terms we find

∆2δΓ(h→GG)
∆2 Γ̂SMLO (h→GG)

= 12 C̃HG
[95
2 − 7Nf

3 −β0Lm̂h

]
. (3.56)

This result is consistent with the SM NLO result reported in refs. [40, 42, 43]. See also
refs. [38, 44].
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3.3 Γ(h → AA) two loop QCD corrections

The decay width is given by

Γ(h→AA)

≃ m̂3
h

4π |⟨h|AA⟩1SM+⟨h|AA⟩2SM+⟨h|AA⟩0O(v̄2
T /Λ2)+⟨h|AA⟩0O(v̄4

T /Λ4)+⟨h|AA⟩1O(v̄2
T /Λ2)|

2

(3.57)

All of the contributing terms except ⟨h|AA⟩2SM were defined in ref. [12]. We reiterate these
results in appendix G to make the paper self contained. For example, the leading order
result [27, 29, 45] is defined with the notation (τp=4m2

p/m̄
2
h)

⟨h|AA⟩1SM = −ĝ2 ê2

64π2 m̂W

(
A1(τW )+

∑
i

N i
cQ

2
i A1/2(τψi)

)
⟨hAµνAµν⟩0, (3.58)

The two loop QCD corrections we add in this work are reported in refs. [16, 17, 46, 47].
The QCD corrections are given by

⟨h|AA⟩2SM = −ĝ2 α̂(r) ê2

64π3 m̂W

∑
i

N i
cQ

2
i A1/2(τp)

[
CH1 (τp)+CH2 (τp) log

(
4 µ̂2
τpm̂2

h

)]
⟨hAµνAµν⟩0,

(3.59)

where

A1/2(τp)CH2 (τp)≡ 4τp [1+(1−2τp)f(τp)+τp (1−τp)df(τp)/dτp] , (3.60)

and A1/2(τp)CH1 (τp) is lengthy and directly given in ref. [17]. Note that our definition of
τp is the inverse of the definition used in ref. [17]. Numerically, we update the SM result
including these corrections, thereby retaining the corresponding ∝∆2δ interference terms

⟨h|AA⟩2SM×⟨h|AA⟩0O(v̄2
T /Λ2) (3.61)

in the expression for ΓSMEFT (h→AA)/∆2ΓSM (h→AA).

3.4 Γ(h → Ψ̄Ψ)

Defining the coupling of the Higgs to fermions with flavors p,r as

Lh,eff =−ghψ
pr
hψ̄R

p
ψL
r
+h.c. (3.62)

the decays to ψ= {u,c,d,s,b,e,µ,τ} are modified in the ∆, δ expansions as

Γ̄
(
h→ ψ̄pψp

)
=

∣∣∣∣∣gSMhψpp +δghψ
pp
+∆ghψ

pp
+δ2ghψ

ppr
+δ∆ghψ

pp
+· · ·

∣∣∣∣∣
2

8π |gSMhψ
pp

|2
Nψ
C M̄h

√
2ĜF M̂2

ψβ
3, (3.63)
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where β≡
(
1−4M̄2

ψ/M̄
2
h

)1/2
. The pole masses of quarks and leptons inferred from ex-

perimental results define input parameters M̂ψ and determine the SM Yukawa couplings
through the definition

Ŷψ = 23/4M̂ψ

√
ĜF . (3.64)

When all SM parameters are defined via a particular input parameter scheme, we denote
Γ̄→ Γ̂. Known results are

gSMhψ
pr

= δprŶψ
pr
/
√
2, (3.65)

δghψ
pr

=
Ŷψ
pr√
2

[
C

(6)
H,kin−

δG
(6)
F√
2

]
− 1√

2
C̃

∗,(6)
ψH
pr

. (3.66)

The geoSMEFT results in refs. [10, 11] lead directly to

δ2ghψ
pr

=
Ŷψ
pr√
2

[
C

(8)
H,kin−C

(6)
H,kin

δG
(6)
F√
2

+(δG
(6)
F√
2

)2− δG
(8)
F√
2

]
− 1√

2
C̃

∗,(8)
ψH
pr

− 1√
2

[
C

(6)
H,kin−

δG
(6)
F√
2

]
C̃

∗,(6)
ψH
pr

. (3.67)

Note that, in the U(3)5 limit, C̃∗,(6),(8)
ψH
pr

are proportional to Yψ
pr

. The appearance of the shift

in the measured value of the vev in muon decay, compared to the Lagrangian parameter
is δG(6)

F ,δG(8)
F . The appearance of this shift at tree level is consistent in the dependence

introduced due to the vev shift in the loop level SM decays via eq. (E.7).
For the SM decay at one loop (in QCD corrections), the results are given in ref. [48]

in the limit β→ 1 (and neglecting subleading effects further suppressed by mψ). Specifi-
cally, [48, 49]

∆ghψ
pp

⊃ gSMhψ
pp

α
(r)
s CF
8π

(
17+6log

(
µ̂2

m2
h

))
, (3.68)

δ∆ghψ
pp

⊃ ∆ghψ
pp
δghψ

pp
. (3.69)

The universal EW corrections to the vev extraction are also given by ∆ghψ
pp

⊃−gSMhψ
pp

∆GF .

∆GF is defined in eq. (D.3). This leads to the simple expression for p= r

δΓh→ψ̄ψ

Γ̂SM
h→ψ̄ψ

=1+2Re
(
δghψ

pp

)
+
2Re

(
δ2ghψ

pp

)
∆ghψ

pp

+· · · (3.70)

for the decays to ψ= {u,c,d,s,b,e,µ,τ}. Non-factorizable corrections are present in the
last term and also introduce δ∆ effects through operator mixing. These corrections are
relatively suppressed by powers of mψ.
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Input parameters Value onshell mass Ref.
m̂Z [GeV] 91.1876±0.0021 [50]
m̂W [GeV] 80.387±0.016 [51]
m̂h [GeV] 125.15±0.15 [50]

m̂t (MC/onshell) [GeV] 172.69±0.3 [50]
m̂b (msbar) [GeV] 4.18±0.03 4.92 [50, 52, 53]
m̂c (msbar)[GeV] 1.27±0.02 1.51 [50, 52, 53]

m̂d (curr.-msbar)[MeV] 4.67±0.48 [50]
m̂s (curr.-msbar)[MeV] 93.4±8.6 100 [50, 53]
m̂u (curr.-msbar)[MeV] 2.16±0.49 [50]

m̂τ (pole) [GeV] 1.77686±0.00012 [50]
m̂µ (pole) [MeV] 105.6583755±0.0000023 [50]
m̂e (pole) [MeV] 0.510−±1.5×10−10 [50]
ĜF [GeV−2] 1.166 ·10−5 [54, 55]

α̂EW 1/137.03599084(21) [50]
∇α 0.0590±0.0005 [56]
α̂s 0.1179±0.0010 [50]
mα̂
W 80.36±0.01 –

∇αm̂W 0.0576±0.0008 –

Table 1. Input parameter values used. mα̂
W is the value of mW inferred in the {α̂, m̂Z , ĜF } scheme

using the interpolation formula of refs. [56–59], while ∆αm̂W is the shift in the value of alpha due
to hadronic effects for the {m̂W , m̂Z , ĜF } scheme. The on-shell masses used for the numerical
evaluations to be consistent with past literature conventions are also listed.

4 Scheme choice and Numerics

We report numerical results for σ(GG→h), Γ(h→AA), and Γ(h→GG). As SMEFT correc-
tions are determined to higher orders in the operator and perturbative expansions, scheme
dependence becomes a more relevant issue of concern for numerical accuracy. Scheme
dependence comes in three forms in the SMEFT: operator basis dependence, perturba-
tive/renormalization scheme dependence, and input parameter dependence. There is oper-
ator basis dependence at each order in the O(1/Λ) expansion, and higher orders in O(1/Λ)
also depend on the scheme choice made at lower orders in O(1/Λ) [60]. We address this
scheme dependence by using the Warsaw basis [61], and the geoSMEFT formalism [9–11]
for higher order corrections in O(1/Λ).

For perturbative/renormalization scheme dependence, we renormalize in a mixed on
shell-MS scheme, use the BFM for gauge fixing, and a FJ tadpole scheme [62]. This
approach is consistent with the background field independence of the geoSMEFT formalism.
For numerical evaluations we use the on shell masses given in table 1.

4.1 αew and the Hadronic resonance region

A significant numerical effect, larger than some of the two loop QCD corrections added
in this work, is the treatment of the hadronic resonance region for the running of αEW (0)
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∆Rm̂W
A 0.12 ∆Rα̂ew

A 0.12 ∆Rα̂ew(0)
A 0.13

∆Gm̂W
F 0.024 ∆Gα̂ew

F 0.024 ∆Gα̂ew(0)
F 0.024

∆Rm̂W

M2
W

-0.041 ∆Rα̂ew

M2
W

-0.041 ∆Rα̂ew(0)
M2

W
-0.041

∆Rm̂W

M2
Z

-0.055 ∆Rα̂ew

M2
Z

-0.055 ∆Rα̂ew(0)
M2

Z
-0.055

∆Rm̂W
ϕ4
2 +∆v

v -0.003
∆Rα̂ew

ϕ4
2 +∆v

v -0.003
∆Rα̂ew(0)

ϕ4
2 +∆v

v -0.003
∆M m̂W

1 -0.010 ∆M α̂ew
1 -0.0096 ∆M α̂ew(0)

1 -0.0098
∆gm̂W

1 -0.014 ∆gα̂ew
1 -0.096 ∆gα̂ew(0)

1 -0.097
∆gm̂W

2 -0.0054 ∆gα̂ew
2 0.039 ∆gα̂ew(0)

2 0.033

Table 2. Numerical values of the one loop corrections to various Lagrangian parameters and matrix
element corrections in both input schemes, updated to new input parameter values in table 1.
We only report gauge independent combinations of parameters. We have chosen µ= m̂h in these
evaluations for the scale dependence associated with the one loop improvement of input parameters
and finite on shell renormalization conditions in the LSZ formula. For operator mixing effects, we
set µ=Λ.

measured in the p2→ 0 Thompson limit. As discussed in refs. [12, 63–66] this effect is
numerically significant in the SM and in the numerical coefficients of SMEFT perturbations.
Including this effect leads to the numerical difference [50]

1/αew(p2∼ m̂2
Z)= 128.951±0.009, while 1/αew(p2→ 0)=137.035999139(31). (4.1)

In Hdecay [67, 68], a modified MS subtraction scheme is used, motivated by this large
numerical effect, consistent with results developed in refs. [69, 70]. As this scheme choice is
more numerically significant compared to the size of the two loop corrections we incorporate
here to Γ(h→AA), we adjust our numerical results to this convention.

Essentially, the scheme choice used in [67–70] is to use a αew(0) input, instead of
αew(m̂Z). This choice is made to exploit that the hadronic resonance region from bound
states in QCD, preserves QED, and hence naive QED Ward identities relate the wavefunc-
tion and charge renormalization. This is the case if a suitable renormalization scheme and
gauge fixing term is used. As a result, the nonperturbative corrections from the hadronic
resonance region are not present in the SM prediction of Γ(h→AA), but are shifted to
other observables.

To uniform the SMEFT perturbations to this scheme choice [67–70], we modify our fi-
nite terms as follows. As verified in ref. [12], the finite terms of the charge and wavefunction
renormalization are related by the preserved QED Ward identity to be

∆Ze =−1
2∆ZÂ,

∆Re =−1
2∆RÂ. (4.2)

We extend ∆Re and ∆RÂ by finite terms to cancel the effect of the running through the
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hadronic resonance region. Explicitly, ∆Re is defined at one loop to be [12, 71, 72]

∆Re=
ḡ21 ḡ

2
2

(ḡ21+ḡ22)

[
7

32π2 log
(
µ2

m2
W

)
−
Nf
c Q

2
f

24π2 log
(
µ2

m̄2
f

)
+ 1
48π2

]
, (4.3)

and the charge renormalization is related to the Thompson limit measured value by

−i
[
4π α̂(q2)

q2

]
q2→0

≡ −i(e0+∆Re)2
q2

[
1+ReΣ

AA(m2
Z)

m2
Z

+∇α
]
. (4.4)

Here ∇α includes corrections form QCD bound states (see table 1) [64, 71, 73, 74] and
ΣAA(m̄2

Z) is given explicitly in ref. [12]. Now, redefining

∆Re→∆Re+e0
(
ReΣ

AA(m2
Z)

m2
Z

+∇α
)
+· · · (4.5)

numerically absorbs the effect of running through the Hadronic resonance region into the
finite renormalization of the electric charge. So long as the Ward identity derived relation
for finite terms ∆Re=−1

2∆RÂ is imposed, this leads to the cancelation of the numerical
effects of running through the hadronic resonance region in Γ(h→AA) in the (so-defined){
α(0),M̂W , ĜF

}
input scheme. For further discussion see refs. [75, 76].

The SM predictions from Hdecay are produced in the effective
{
α(0),M̂W , ĜF

}
scheme.

While the
{
M̂Z ,M̂W , ĜF

}
scheme is used in global studies [5–8] for SMEFT perturbations.

This leads to an important numerical shift in the central value of the SM prediction
compared to a

{
α(M̂Z),M̂W , ĜF

}
input scheme. This numerical difference should be noted

given that, at leading order, Γ(h→AA)∝α2
ew, and

(αα(0)ew )2=5.33×10−5, (αα(m̂Z)
ew )2=6.01×10−5, (αm̂W

ew )2=5.72×10−5. (4.6)

As the perturbations (or lack of perturbations) in Γ(h→AA) numerically is quite domi-
nant in global SMEFT fits, numerical consistency on this issue is critical for precise con-
straints. In what follows we present results in the

{
α(0),M̂W , ĜF

}
,
{
α(M̂Z),M̂W , ĜF

}
and{

M̂Z ,M̂W , ĜF
}

schemes for Γ(h→AA). Scheme dependence is minimal in the observables
σ(GG→h) and Γ(h→GG).

4.2 Uniforming quark masses

We uniform the fermion mass inputs to a common MS convention, consistent with refs. [53,
67, 68, 77]. The top mass is taken as an on shell mass, related to the MS at one loop via

M i
os,t=mi(µ)

(
1+

αs(M i
os,t)

π

(
log µ2

(mi)2+
4
3

))
. (4.7)

For the on-shell charm quark mass used for numerical evaluations, we determine this value
from the relationship [52] free of renormalons at leading order in the 1S scheme

mb−mc=3.41GeV. (4.8)
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Numerical dependence on the light quark masses is negligible. The masses used are listed
in table 1.

In the case of results reported in ref. [17] we note that, the running masses are related
to the pole mass via the convention in ref. [16]

M i
os,AA=mi(µ)

(
1+αs(mi)

π
log µ2

(mi)2

)
. (4.9)

Finally, for the lepton pole masses the relationship to the MS masses is [78]

M i
os,lep=mi(µ)

(
1+αew(mi)

π

(
1+3

4 log
µ2

(mi)2

))
. (4.10)

4.3 σ(GG → h)

To numerically evaluate σ(GG→h), we use NNPDF3.0 NLO parton distribution func-
tions [79, 80] and αs=0.118. We set all µ scales to m̂h, with the exception of scales
associated with operator mixing, following ref. [12]. For these choices, and taking the
mt→∞ limit, the NLO SM cross section for σ(GG→h),

√
s=13TeV is (for all EW input

schemes):

σ̂SM,mt→∞(GG→h)=∆2σSMmt→∞(GG→h)+∆3σSMmt→∞(GG→h)= 31.6pb, (4.11)

where the analytic expressions for the LO (∆2) and NLO (∆3) pieces are given in eq. (E.1)
and eq. (E.4) respectively.

Adding up the full set of SMEFT contributions to the inclusive σ(GG→h) cross section
and dividing by the SM result, we find:

σα̂SMEFT(GG→h)
σ̂SM,mt→∞(GG→h) ≃1+289 C̃(6)

HG

+289 C̃(6)
HG

(
C̃

(6)
H□−

1
4 C̃

(6)
HD

)
+4.68×104 (C̃(6)

HG)
2+289 C̃(8)

HG

+0.85
(
C̃

(6)
H□−

1
4 C̃

(6)
HD

)
+369 C̃(6)

HG−0.91 C̃(6)
uH−7.26Re C̃(6)

uG

−0.60δG(6)
F −4.42Re C̃(6)

uG log
(m̂2

h

Λ2

)
−0.126Re C̃(6)

dG log
(m̂2

h

Λ2

)
−0.057Re C̃(6)

dG+2.06 C̃(6)
dH , (4.12)

where coefficient δG(6)
F stands for the combination

δG
(6)
F = 1√

2

(
C̃

(3)
Hl
ee

+C̃(3)
Hl
µµ

− 1
2(C̃

′
ll

µeeµ
+C̃ ′

ll
eµµe

)
)
.

The superscript α̂ on the left hand side of the result indicates we used the α̂(mZ)
scheme, though we find the result is identical for the other two schemes, at least to the
order of accuracy presented. The right hand side of eq. (4.12) is grouped according to the
v̄T /Λ and loop order of the terms. Specifically, the first line is the O(v̄2T /Λ2) interference,
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the second line is the O(v̄4T /Λ4) contribution coming from dimension six operators squared
and the interference of dimension eight effects with the SM, and the last three lines are the
one loop times O(v2T /Λ2) contributions. Not surprisingly, the largest loop contribution is
the O(C̃HGα2

s) correction, which is split roughly evenly between the δ(1−z) term and the
z > 1 contribution.

These results are different than what was presented in ref. [12]. One cause for the
difference is that we are dividing by full NLO SM result in eq. (4.12), while in ref. [12]
we retained only a part of the O(α3

s) SM in the denominator. The difference, 31.6pb here
versus 18.15pb in ref. [12], explains the approximate halving of all the numbers multiplying
the Wilson coefficients. The other main differences is that eq. (4.12) has the complete
O(C̃HGα2

s)mt→∞ dependence, consistently calculated in the BFM with the MS scheme,
while the result in ref. [12] was incomplete and used an ad hoc combination of different
schemes.

To compare our result, the obvious candidate is SMEFT@NLO [81], a recently advanced
(NLO) SMEFT Monte Carlo operating within the MadGraph [82] framework. However,
a direct comparison of our full, analytic result with SMEFT@NLO is complicated by several
subtleties. First, the internal MadGraph classification of processes into tree versus loop-
level complicates scenarios like GG→h, where the SM and SMEFT contributions fall into
different categories. Second, the counterterm for operator C̃HG is not part of the current
SMEFT@NLO suite, so terms such as the interference between the lowest order (loop level)
SM amplitude and the NLO C̃HG amplitude (eq. (3.42)) cannot be generated.

A further comparison is potentially possible between a subset of terms in this result
and ref. [21], table 2. However, the operators in ref. [21] are, in fact, distinct from ours due
to the choice to subtract v̄2T in the operator definition. Further, the results in ref. [21] have
rescaled Wilson coefficient with factors of αs being introduced. These differences complicate
compensating for different scale and PDF choices between this work and ref. [21]. As no
result equivalent to eq. (3.39) is given in ref. [21], an analytic parton-level comparison is
not possible, so only proton level results can be compared. With these caveats in mind,
the central values do differ, though the order of magnitude of the subset of numerical
coefficients is consistent within errors and after rescaling of the coefficients to uniform
conventions. A more thorough error analysis on the PDF and scale uncertainty is beyond
this work.

4.4 Γ(h → GG)

Using inputs in table 1 and the SM result for Γ(h→GG) in the mt→∞ limit at two loop
order we have

ΓSMmt→∞(h→GG)=∆2ΓSMmt→∞(h→GG)+∆3ΓSMmt→∞(h→GG), (4.13)
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where [28, 40–43]

∆2ΓSMmt→∞(h→GG)≡ (α(r)
s )2 m̂3

h

72π3v̂2T
,

∆3ΓSMmt→∞(h→GG)≡ (α(r)
s )2 m̂3

h

72π3v̂2T

(
α
(r)
s

π

)(
95
4 − 7nF

6 −β0
2 log m̂

2
h

µ̂2

)
.

Numerically, this evaluates to 2.01+1.35=3.37×10−4GeV.
Including SMEFT contributions, we have the result

ΓSMEFT (h→GG)
Γ̂SM,mt→∞(h→GG)

≃1+ 24π
α
(r)
s

C̃
(6)
HG+

4π
α
(r)
s κhGG

(
12+ 36π

α
(r)
s

)
(C̃(6)

HG)
2 (4.14)

+ 24π
α
(r)
s κhGG

×
(
[∆GF+∆M1+∆RG ] C̃(6)

HG+
∑
i

Re C̃(6)
i ∆f (6)i

16π2

)

+ 24π
α
(r)
s

[
⟨
√
h
44
⟩O(v2/Λ2)C̃

(6)
HG+C̃

(8)
HG

]
,

where we have defined

κhGG ≡ 1+∆3ΓSMmt→∞(h→GG)/∆2ΓSMmt→∞(h→GG)≡ 1.67. (4.15)

In the mt→∞ limit, the SM QCD correction cancels against the same overall correction
for the C̃(6)

HG linear term. The rescaling of the local contact operator forms present in the
last term is also the same, leading to another cancelation of κhGG . The remaining terms
have non-factorizable corrections that are not included here, so only the SM two loop
normalization is present. See ref. [26] for recent work on these effects.

Only the second line is input parameter scheme dependent, so scheme effects on the
SMEFT perturbations are quite small. Numerically (using the same inputs and scales as
eq. (4.12)), the SMEFT result is

ΓSMEFT

Γ̂SM,mt→∞
≃1+640

[
C̃

(6)
HG

(
1+
(
C̃

(6)
H□−

1
4 C̃

(6)
HD

))
+C̃(8)

HG

]
+S1 C̃(6)

HG+6.20×104 (C̃(6)
HG)

2

+1.24
(
C̃

(6)
H□−

1
4 C̃

(6)
HD

)
−0.87δG(6)

F −1.24 C̃(6)
tH +2.73 C̃(6)

bH (4.16)

−7.86Re C̃(6)
uG−4.85Re C̃(6)

uG log
(m̂2

h

Λ2

)
−0.14Re C̃(6)

dG log
(m̂2

h

Λ2

)
−0.06Re C̃(6)

dG .

The input parameter scheme dependence of the numerical coefficients is negligible, with
the largest dependence being(

Sm̂W
1 ,S

α̂ew(m̂Z)
1 ,S

α̂ew(0)
1

)
=(−26.8,−26.6,−26.7) . (4.17)

4.5 Γ(h → AA)

For these numeric, we again use the input parameters in table 1 and the related results
in table 2. Including the two loop QCD SM results at the amplitude level in this manner
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gives the following SM h→AA partial widths for the SM with out chosen numerical input
parameters:

Γm̂W
SM (h→AA) = 1.10×10−5GeV, (4.18)

Γα̂ew(m̂Z)
SM (h→AA) = 1.16×10−5GeV, (4.19)
Γα̂ew(0)
SM (h→AA) = 1.01×10−5GeV. (4.20)

where here we retain the two loop squared contribution to the decay width. Interference
corrections of three loop order interfering with the SM one loop amplitude are the same
order, but numerically neglected in the normalization. We include the two loop QCD
interference effects with the tree level operator (leading) interference results in the SMEFT.
We neglect these two loop SM interference effects in the other interference terms. The
result is

ΓSMEFT

Γ̂SM
≃1+S1

[
f1+

(
C̃

(6)
H□−

C̃
(6)
HD

4

)
f1+f2

]
+S2 f21+S3 (C̃

(6)
HW−C̃(6)

HB)
2+S4 δG(6)

F C̃
(6)
HB

+S5 δG(6)
F C̃

(6)
HW+S6 δG(6)

F C̃
(6)
HWB+S7 C̃

(6)
HD C̃

(6)
HB+S8 C̃

(6)
HD C̃

(6)
HW+S9 C̃(6)

HD C̃
(6)
HWB

+S10 C̃(6)
HWB C̃

(6)
HB+S11 C̃

(6)
HWB C̃

(6)
HW+S12 (C̃(6)

HWB)
2+S13 C̃(6)

HB+S14 C̃
(6)
HW

+
[
S15+S16 log

(
m̂2
h

Λ2

)]
C̃

(6)
HWB+

[
S17+S18 log

(
m̂2
h

Λ2

)]
C̃

(6)
W

+
[
S19+S20 log

(
m̂2
h

Λ2

)]
ReC̃(6)

uB
33

+
[
S21+S22 log

(
m̂2
h

Λ2

)]
ReC̃(6)

uW
33

+S23ReC̃(6)
uH
33

+S24Re C̃(6)
dH
33

+S25 (C̃(6)
H□−

C̃
(6)
HD

4 )+S26 C̃(6)
HD+S27 C̃(6)

HWB+S28 δG
(6)
F .

The input scheme dependent numerical results are given in table 3. Several numerically
small corrections compared to the retained terms are neglected here. These neglected
corrections are generally further suppressed by small (SM) Yukawa couplings. Here the
short hand functions f m̂W

i ≃ f α̂ew
i for i=1,2 are approximately scheme independent,

f m̂W
1 =

[
C̃

(6)
HB+0.29 C̃(6)

HW−0.54 C̃(6)
HWB

]
, (4.21)

f m̂W
2 =

[
C̃

(8)
HB+0.29 (C̃(8)

HW+C̃(8)
HW,2)−0.54 C̃(8)

HWB

]
. (4.22)

The above result can be compared to eq. (5.6) and (5.11) of ref. [12]. The new result
fixes minor mistakes in the old result and should be taken to supersede it. In addition,
a few inputs have shifted slightly, leading to small changes in a few of the ∆M,∆R in
table 2. More significantly, we have included the two-loop squared contribution to Γ̂SM,
which increases it by O(10%).

4.6 δΓSMEF T
h,full

The total width of the SMEFT was calculated systematically in ref. [83] including all cor-
rections O(1/Λ2) interfering with SM amplitudes in the U(3)5 limit for C̃(6)

i . In this section
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

M̂W −753 1.41×105 −321 2041 586 −1093 897 721 −914 1880
α̂
(M̂Z)
ew −724 1.31×105 −320 1402 −126 −269 149 −149 95.0 297
α̂
(0)
ew −794 1.56×105 −317 1447 −105 −274 138 −138 97.0 227

S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21

M̂W 1587 −1843 −91 −26.1 52.3 1.87 −0.51 3.28 24.4 −25.6 13.1
α̂
(M̂Z)
ew −297 320 −198 31.4 −15.3 1.80 −0.55 3.25 23.9 −25.0 43.6
α̂
(0)
ew −227 317 −203 26.5 −16.9 1.95 −0.42 3.10 23.5 −24.6 45.2

S22 S23 S24 S25 S26 S27 S28

M̂W −13.7 0.51 −0.28 2 −3.49 −7.5 −3
√
2

α̂
(M̂Z)
ew −45.7 0.51 −0.28 2 0 0 −

√
2

α̂
(0)
ew −47.3 4.71 −1.14 2 0 0 −

√
2

Table 3. Numerical coefficients for SMEFT perturbations to Γ(h→AA) in three input parameter
schemes, including two loop QCD interference effects.

we discuss how this result is surprisingly robust against the leading QCD corrections. The
dependence of the total inclusive width on the L(6) Wilson coefficients of the SMEFT was
found to be [83]

δΓSMEFT
h,full

ΓSMh
≃1−1.50 C̃(6)

HB−1.21 C̃(6)
HW+1.21 C̃(6)

HWB+50.6 C̃(6)
HG

+1.83 C̃(6)
H□−0.43 C̃(6)

HD+1.17 C̃ ′(6)
ll

−7.85 Ŷu
cc
Re C̃(6)

uH−48.5 Ŷ d
bb
Re C̃(6)

dH−12.3 Ŷ ℓ
ττ

Re C̃(6)
eH

+0.002 C̃(6)
Hq,(1)+0.06 C̃(6)

Hq,(3)+0.001 C̃(6)
Hu−0.0007 C̃(6)

Hd

−0.0009 C̃(6)
Hl,(1)−2.32 C̃(6)

Hl,(3)−0.0006 C̃(6)
He,

(4.23)

using the {M̂W ,M̂Z , ĜF ,M̂h} input scheme. Here, we have pulled out the explicit Yukawa
factor from the Wilson coefficient. Using the {α̂ew,M̂Z , ĜF ,M̂h} input scheme, the result is

δΓSMEFT
h,full

ΓSMh
≃1−1.40 C̃(6)

HB−1.22 C̃(6)
HW+2.89 C̃(6)

HWB+50.6 C̃(6)
HG

+1.83 C̃(6)
H□+0.34 C̃(6)

HD+0.70 C̃ ′(6)
ll

−7.85 Ŷu
cc
Re C̃(6)

uH−48.5 Ŷ d
bb
Re C̃(6)

dH−12.3 Ŷ ℓ
ττ

Re C̃(6)
eH

+0.002 C̃(6)
Hq,(1)+0.06 C̃(6)

Hq,(3)+0.001 C̃(6)
Hu−0.0008 C̃(6)

Hd

−0.0008 C̃(6)
Hl,(1)−1.38 C̃(6)

Hl,(3)−0.0007 C̃(6)
He.

(4.24)
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In ref. [83], loop effects (outside the SM loop suppressed decays to GG, AA, ZA) were
neglected. As such, the {α̂ew(M̂Z),M̂Z , ĜF ,M̂h} and {α̂ew(0),M̂Z , ĜF ,M̂h} scheme are
identified. We have used the {α̂ew(M̂Z),M̂Z , ĜF ,M̂h} scheme.10

Numerically important loop contributions to δΓSMEFT
h,full /ΓSMh come about from decays

to b̄ b, GG and AA. QCD corrections to AA decay are small. The leading Γ(h→ b̄ b) QCD
corrections factorize and are the same as in the SM in the EFT (neglecting mψ the small
known IR mass parameters), thus they cancel in the SMEFT width expression. Therefore,
the ∆ corrections to the decay Γ(h→GG) dominate the dependence of the total width on
C̃

(6)
HG. This correction can be incorporated by adding the term

− 0.33
ΓSMh

×619 C̃(6)
HG+

0.337
ΓSMh

(640+S1) C̃(6)
HG, (4.25)

to δΓSMEF T
h,full

ΓSM
h

, where S1 refers to the quantity in eq. (4.17). Using ΓSMh =4.100MeV, this
leads to the partial QCD-improved result of the SMEFT width reported in ref. [83]

δΓSMEFT
h,full

ΓSMh
+(0.58,0.59) C̃(6)

HG, (4.26)

in the {M̂W ,M̂Z , ĜF ,M̂h},{α̂ew(0),M̂Z , ĜF ,M̂h} schemes respectively. This correction is
only partial, it neglects many other QCD correction in the partial decay width. Nevertheless
it is the leading correction for the operator C(6)

HG dependence in the total width. Due to
the numerical dominance of the decay to GG for the operator C(6)

HG in the SMEFT, this is
a relevant numerical improvement.

5 Conclusions

In this paper we have advanced the results in the geoSMEFT formulation of the SMEFT
for σ(GG→h), Γ(h→GG), Γ(h→AA), Γ(h→ ψ̄ ψ), and the total Higgs width. Previ-
ous literature [1, 10, 12, 83–86] has provided terms in the SMEFT × loop expansion of
orders O(v̄2T /Λ2),O(v̄2T /Λ2(16π2)) and O(v̄4T /Λ4). This work extends the expansion to
O(v̄2T /Λ2(16π2)2) by consistently including the interference of two-loop (NLO in QCD)
SM amplitudes with O(v̄2T /Λ2) SMEFT terms. Additionally, we have incorporated a set
of QCD loop corrections determined previously in [48, 49] into the characterization of
Γ(h→ ψ̄ ψ). Combining these updated results, we determine the leading loop correction to
the Higgs total width. We have also characterized a more consistent numerical treatment
of input parameter choices and effects, updating past numerical results.
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A SMEFT/geoSMEFT notation and conventions

The SM Lagrangian [87–89] notation is fixed to be

LSM = −1
4G

A
µνG

Aµν− 1
4W

I
µνW

Iµν− 1
4BµνB

µν+
∑
ψ

ψi /Dψ (A.1)

+(DµH)†(DµH)−λ
(
H†H− 1

2v
2
)2

−
[
H†j dYd qj+H̃†juYu qj+H†jeYe ℓj+h.c.

]
.

The chiral projectors have the convention ψL/R=PL/Rψ where PR=(1+γ5)/2, and the
gauge covariant derivative is defined with a positive sign convention

Dµ= ∂µ+ig3TAAAµ+ig2σIW I
µ/2+ig1yiBµ, (A.2)

with I = {1,2,3}, A= {1 . . .8} , σI denotes the Pauli matrices and yi the UY(1) hypercharge
generator with charge normalization yi = {1/6,2/3,−1/3,−1/2,−1,1/2} for
i= {q,u,d,ℓ,e,H}. The SMEFT Lagrangian is

LSMEFT =LSM+L(d), L(d)=
∑
i

C
(d)
i

Λd−4Q
(d)
i for d> 4. (A.3)

The SM Lagrangian notation and conventions are consistent with refs. [1, 10, 12, 61, 84–
86] with some slight variations. The operators Q(d)

i are labelled with a mass dimension
d superscript and multiply unknown Wilson coefficients C(d)

i ; while v̄T ≡
√
⟨2H†H⟩ and

C̃
(d)
i ≡C

(d)
i v̄d−4

T /Λd−4. Due to strong constraints from low energy CP violating observ-
ables [90], we restrict our study to CP even operators.

A.1 geoSMEFT

The geoSMEFT [9–11] is a organization of the physics of the SMEFT in terms of field-
space connections Gi depend on the group indices I,A of the (non-spacetime) symmetry
groups and multiplying composite operator forms fi (which include powers of DµH). The
re-organization is represented schematically by

LSMEFT =
∑
i

Gi(I,A,ϕ. . . )fi,

= 1
2hIJ(ϕ)(Dµϕ)I(Dµϕ)J− 1

4gAB(ϕ)W
A
µνWBµν− 1

4kAB(ϕ)GA,µνGB,µν+· · · . (A.4)

Our notation is such that the covariant derivative acting on the bosonic fields of the SM
in the doublet, using real scalar field coordinates, is given by [91]

(Dµϕ)I =
(
∂µδIJ−

1
2W

A,µγ̃IA,J

)
ϕJ , (A.5)
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with symmetry generators/structure constants (ϵ̃ABC , γ̃IA,J). See refs. [10, 91] for the genera-
tors/structure constants for the real scalar representation. The real scalar field co-ordinates
(ϕI) of the Higgs scalar doublet are introduced as

Ĥ(ϕ̂I)=
1√
2

[
ϕ̂2+iϕ̂1

ϕ̂4+v̄T−iϕ̂3

]
, H(ϕI)=

1√
2

[
ϕ2+iϕ1
ϕ4−iϕ3

]
. (A.6)

The field-space connections (or metrics) hIJ ,gAB,kAB are functions of ϕI and depend
on I, the indicies of the generalized canonically normalised Yang Mills (WA) or the gluon
fields (GA). The mass eigenstate fields are ΦL,AA and the mass eigenstate ghost field is
defined as cA. Explicitly, the field sets are

ϕI = {ϕ1,ϕ2,ϕ3,ϕ4}, WA= {W 1,W 2,W 3,B},
ΦL= {Φ+,Φ−,χ,H}, AA= {W+,W−,Z,A},
cA= {cW+ , cW− , cZ , cA}.

Here A = {1 · · ·8}, A,L,I = {1 · · ·4} and the EW couplings are αA= {g2,g2,g2,g1}.
The weak/mass eigenstate field and coupling transformations at all orders in the v̄T /Λ

expansion are given by

ϕJ =
√
h
JK
VKLΦL, WA,ν =√

gABUBCAC,ν ,

uA=√
gABUBC c

C , αA=√
gABUBCβ

C ,

GA,ν =
√
κGA,ν , ḡ3= g3

√
κ.

kAB(ϕ)→κ(ϕ)δAB and βC is obtained directly from αA and UBC . Note that αAWA,ν

and gA,ν3 linear terms in the covariant derivative are unchanged by these transformations
at all orders in the v̄T /Λ expansion.11

The matrices U,V are unitary rotations; i.e. orthogonal matrices whose transpose is
equal to the matrix inverse, and given by

UBC =


1√
2

1√
2 0 0

i√
2

−i√
2 0 0

0 0 cθ sθ
0 0 −sθ cθ

 , VJK =


−i√
2

i√
2 0 0

1√
2

1√
2 0 0

0 0 −1 0
0 0 0 1

 .

Here the angle is defined via the generalized Yang Mills field space metric

s2
θ̄
=

(g1
√
g44−g2

√
g34)2

g21[(
√
g34)2+(√g44)2]+g22[(

√
g33)2+(√g34)2]−2g1g2

√
g34(√g33+√

g44)
. (A.7)

11The matrix square roots of these field space connections are √
g

AB
= ⟨gAB⟩1/2. ⟨⟩ indicates a background

field expectation value. The inverses are defined via √
gAB√

g
BC

≡ δA
C . The field-space connections are

positive semi-definite matrices, with unique positive semi-definite square roots. We also use the hat notation
for the background field expectation values at times. These conventions apply to hIJ ,kAB .
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The geoSMEFT masses and couplings are consistent with ref. [1] and used (at leading
order) in SMEFTsim, see refs. [83, 85]. For completeness, the canonically normalised
(geometric) masses at O(v̄2T /Λ2) are

M̄2
W = ḡ22 v̄

2
T

4 , (A.8)

M̄2
Z = v̄2T

4 (ḡ21+ḡ22)+
1
8 v̄

2
T (ḡ21+ḡ22) C̃HD+1

2 v̄
2
T g1 g2 C̃HWB, (A.9)

m̄2
h=2λv̄2T

[
1−3 C̃H2λ +2

(
C̃H□−

C̃HD
4

)]
. (A.10)

The geometric SMEFT couplings with L(6) corrections are

ē= g1 g2√
ḡ21+ḡ22

[
1− g1 g2

ḡ21+ḡ22
C̃HWB

]
, ḡZ =

√
ḡ21+ḡ22+

g1 g2√
ḡ21+ḡ22

C̃HWB, (A.11)

g1= g1(1+C̃HB), g2= g2(1+C̃HW ) (A.12)
ḡ3= gs(1+C̃HG). (A.13)

Bowing to past notational conventions we define ϕ4=h and use the later symbol in the
bulk of this work.

Our gauge fixing is given by ref. [91] in the BFM for the SMEFT. For the EW sector
it is

LEWGF =− ĝAB2ξ GAGB, GX ≡ ∂µWX,µ−ϵ̃XCDŴC
µ WD,µ+ ξ

2 ĝ
XCϕI ĥIK γ̃

K
C,J ϕ̂

J , (A.14)

for the QCD coupling we have analogously the BFM gauge fixing term [92]

LQCDGF =− κ̂

2ξG
GA GA , GA ≡ ∂µGA,µ− ḡ3√

κ
fABC Ĝµ,B Gµ,C . (A.15)

A.2 Combining SMEFT and SM on shell renormalizations

The manner in which the ultraviolet (UV) divergences of the SMEFT combine with those
of the SM is subtle. The counterterm induced modifications in results depend on the
renormalization scheme used. The different schemes at use in the literature mean that
results cannot be casually combined without introducing inconsistent scheme dependence,
that can rise to level of the deviations being searched for and interpreted. We specify
our scheme for combining SMEFT and SM counterterms in some detail here, along with
modifications of SM results.

For UV divergences, one has to define a subtraction scheme for the SM and the SMEFT
effects. The SM is renormalized in a combined on shell/MS subtraction scheme in (d=
4−2ϵ) dimensional regularization, following [13, 71, 93, 94]. Renormalization constants

Zĥ,ZÂ,ZĜ ,Ze,Zg,Zv,Zm2
W
,Zm2

Z
,Zm2

f
,Zm2

h
, (A.16)
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are introduced for the background fields and the couplings (here a 0/r superscript means
a bare/renormalized parameter) via

ĥ0 = Z
1/2
ĥ

ĥ(r), (A.17)

Â0
µ = Z

1/2
Â Â(r)

µ , (A.18)

Ĝ0
µ = Z

1/2
Ĝ Ĝ(r)

µ , (A.19)

ē0 = Ze ē
(r)µϵ, (A.20)

ḡ03 = Zg ḡ
(r)
3 µϵ, (A.21)

v̄0T = Z1/2
v v̄

(r)
T , (A.22)

and the masses

(m̄(0)
W )2=Zm2

W
(m̄(r)

W )2, (m̄(0)
Z )2=Zm2

Z
(m̄(r)

Z )2, (A.23)

(m̄(0)
f )2=Zm2

f
(m̄(r)

f )2, (m̄(0)
h )2=Zm2

h
(m̄(r)

h )2, (A.24)

with mf is a mass of fermion field f . Here we restrict our results to renormalization factors
relevant to two loop improving σ(GG→h), Γ(h→GG) and Γ(h→AA).12 In addition
a tadpole scheme must be defined. We use an FJ tadpole scheme [62]. The one loop
correction (∆v) to the vacuum expectation value is fixed by the condition that the one
point function of the Higgs field vanishes, including the factor of ∆v. As in ref. [12],
each of the renormalization constants is expanded as Zi=1+∆Zi+· · · . Our notation is
to use ∆Zi for the divergence chosen to cancel in a MS subtraction. The notation ∆Ri is
reserved for the finite renormalization factors. Again, we generally use ∆ to indicate a loop
correction to a Lagrangian parameter while δ is used to indicate a SMEFT perturbation
∝ 1/Λn.

The full one loop renormalization of L(6) is only systematically defined and known for
the Warsaw basis [61], and is given in refs. [1, 95–98]. These renormalization results are
reported in the unbroken phase of the theory with manifest SU(2)×U(1)Y symmetry. The
counter terms map consistently to the broken phase of the theory [99–101]. This is well
known in the SM and also the case in the SMEFT. There are some differing results due to
renormalization scheme dependence in the literature.13

Mass terms in the SMEFT can compensate for powers of 1/Λ in the numerator of
divergent terms, even when dimensional regularization is used. This means that SMEFT
UV counter terms can redefine the running of the SM parameters at the one loop level.
In the case of SMEFT L(6) running, the only dimensionful parameter in the SM in the
unbroken phase that can appear in the numerator is the Higgs vacuum expectation value
v̄T , or equivalently, the Higgs mass. These “mixing down” results are given completely
in ref. [96] for the full set of i SM parameters and L(6). We denote the full set of these
renormalization factors for the i SM parameters by ∆δZSM,i.

12The CKM entries and massive gauge fields are also renormalized, see ref. [94] for details.
13In addition, there is some confusion in the literature on how the SMEFT counter terms combine with

the SM counter terms due to the effects of dimension six operators mixing down. It is instructive to compare
our discussion with refs. [21, 81, 102].
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We defined the set of SM parameters as Pi, and these parameters are renormalized in
an on shell scheme as in eqs. (A.17)–(A.24). This renormalization is denoted as

P̂
(0)
i =ZSMij P̂

(r)
j , (A.25)

and in the SM at one loop ZSMij ∝ δij for the parameters of interest in this calculation.
The leading tree level mapping of the ∆δZSMij renormalization factors to the on shell i SM
parameters is given at one loop by

P̂
(0)
i =ZSMij LSMEFT

jk P̂
(r)
k , (A.26)

where LSMEFT
jk = δij+∆δZSMij +· · · is a function of the ∆δZSMij and follows from a simple

set of linear algebra based transformations between the unbroken/broken phase SM pa-
rameters at tree level. For example, in the simple case of the Higgs mass, from ref. [96]
one has

LSMEFT
m2

h
m2

h
=
(
1+ 1

16π2ϵ
m2
h

Λ2 [CHD−2CH□] · · ·
)

(A.27)

so that in the BFM with SMEFT ξ gauge fixing [91] one has (to one loop order)

(m̄(0)
h )2 = ZSMm2

h
LSMEFT
m2

h
m2

h
(m̄(r)

h )2, (A.28)

= (m̄(r)
h )2

(
1+ (3+ξ)(ḡ21+3 ḡ22)

64π2ϵ − Y

16π2ϵ+
[CHD−2CH□]

16π2ϵ
(m̄(r)

h )2
Λ2

)
, (A.29)

with

Y =Tr
[
NcY

†
uYu+NcY

†
d Yd+Y

†
e Ye

]
. (A.30)

Our notation for Yukawa matricies is defined in appendix A.
A more involved example is the top quark. Combining an on-shell renormalization

with the SMEFT corrections

(m̄(0)
t )2 = ZSMm2

t
LSMEFT
m2

tm
2
t

(m̄(r)
t )2, (A.31)

= ZSMm2
t
(ZSMEFT

[Yu]tt[Yu]tt
)2 (m̄(r)

t )2. (A.32)

The contributions from the SMEFT only follow from the renormalized top Yukawa and
are given in eq. 4.3 of ref. [96]. SMEFT running effects on SM parameters could exist in
principal for Zv, but these corrections are related to Zĥ in the BFM. The latter does not
have ∆δZĥ corrections in the SMEFT [96], in the unbroken phase of the theory. In fact,
a stronger statement can be made about the lack of such mixing down effects for ∆δnZĥ
based on the geoSMEFT. See appendix A.3 for a short proof to this effect.

In a similar manner as to the m̄t, m̄h examples, all SMEFT corrections to the running of
the SM parameters relevant for renormalizing the one loop SM amplitudes for σ(GG→h),
Γ(h→GG) and Γ(h→AA) descend from the results in ref. [96]. The SMEFT corrections

– 31 –



J
H
E
P
0
1
(
2
0
2
4
)
1
7
0

to the SM amplitude in the background field method, and MS, of interest here are to the
gluon coupling and the top quark mass (via the top Yukawa).

The corrections in the SMEFT to these counter terms due to L(6) ∝ ḡ3 are

∆δZg = − m̄2
h

16π2 ϵ(4π)
ϵe−ϵγE

C̃
(6)
HG

Λ2 , (A.33)

Combining SMEFT and SM corrections in a consistent fashion strongly depends on the
normalization choice for the parameters introduced in L(6). If the choice is made that
C̃

(6)
HG∝ g3 then the corrections in ∆δZg shown scale as g3 and should be retained when

considering a NLO calculation restricted to QCD couplings. Alternatively if C̃(6)
HG is de-

fined with a normalization not ∝ g3, then including these corrections means improving a
calculation to include mixed terms in the SM couplings and SMEFT Wilson coefficients.
Any reasonable choice can be made in terms of what terms to include and what normal-
ization to choose, so long as consistency is maintained in the calculation. In the case of
the BFM, the corrections in ∆Zg in the SM and the SMEFT cancel against the correc-
tions introduced to the gluon field strength renormalization as the identity ZGZ

2
g =1 is

maintained for the counter terms, including finite corrections.
∆Zmt can be extended with a further correction in the SMEFT that is not due to

the gluon correction to the mass renormalization. SMEFT corrections are also present
in ∆δZSMEFT

m2
h

. if one retains terms that are expected to be sizable due to known SM
couplings (i.e. known IR physics of the SM). It is reasonable to choose to retain all of these
sets of terms via a correction Z2

mt
/Zm2

h
=1+2∆δZmt−∆δZm2

h
+· · · . In this case, we note

∆δZmt = 1
32π2 ϵ

m̄2
H

Λ2

[
3C∗

uH
tt
−CH□[Yu]tt+

1
2CHD[Yu]tt−[Yu]tt

(
C

(1)
Hq
tt

+3C(3)
Hq
tt

)

+CHu
tt
[Yu]tt−2

(
C

(1)∗
qu
tttt

+cF,3C(8)∗
qu
tttt

)
[Yu]tt+· · ·

]
, (A.34)

∆δZm2
h
= 1

16π2 ϵ
m̄2
H

Λ2 (CHD−2CH□) , (A.35)

here cF,3=4/3 and [Yu]tt is the SM top Yukawa. There are more ∆δZSMEFT
mt

terms that
we have suppressed here, as these terms multiply the known small Yukawa couplings of the
SM.

A.3 Higgs Wavefunction Renormalization ∆δn effects in geoSMEFT

Using heat kernel techniques, at one loop order, the Higgs wavefunction renormalization
and mass renormalization can be defined to subtract the divergences present in the theory.
The corresponding divergent terms can be written in this approach at one loop order
geometrically as [103, 104]

Ldiv =
1

64π2ϵ
[
−2(∇I∇JI)RIKJL(Dϕ)K(Dϕ)L−(∇I∇JI)(∇J∇II)

]
+· · · (A.36)

Here the dimensional regularization is given by d=4−2ϵ, RIKJL is the Riemann curvature
tensor for the scalar metric hIJ and I is an invariant scalar density on the scalar manifold.
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Note that

RIKJL = hIMR
M
KJL, (A.37)

= hIM
[
∂JΓMLK−∂LΓMJK+ΓMJNΓNLK−ΓMLNΓNJK

]
, (A.38)

and

ΓIJK = 1
2h

IL (hLJ,K+hLK,J−hJK,L) , (A.39)

∇I∇JI = ∂2I
∂ϕI∂ϕJ

−ΓKIJ
∂I
∂ϕK

. (A.40)

The first term in eq. (A.36) with indices I = J =K =L=4 corresponds to Higgs wavefunc-
tion renormalization in the geoSMEFT, and in particular possible effects of dimension d

higher dimensional operators mixing down modifying the Higgs wavefunction renormaliza-
tion proportional to (v2/Λ2)d−4. It is easy to verify that R4444≡ 0. As a result, this tower
of higher dimensional operator mixing down effects exactly vanish at one loop. In the
background field method, this has an important consequence. As a result of the identity(√

Zv+
∆nδmv

v̄0T

)
div

≡∆nδmZĥ, (A.41)

such corrections to the tadpole corrected vev also vanish for all n,m≥ 1. This argument is
an example of the utility of the geoSMEFT and thinking in terms of field space geometries.
Using an operator approach, at each order, two point functions and four point functions
would have to be laboriously and explicitly evaluated for divergences for each operator, at
each mass dimension in the SMEFT to draw the same conclusion.

The geoSMEFT also makes clear how the mass renormalization of the Higgs is modified
by mixing down effects, introduced to cancel the second term in eq. (A.36). All of these
effects are proportional to the Higgs mass, as this is only dimensionful scale in the unbroken
phase of the theory where the renormalization of the SM and SMEFT corrections can be
carried out [99–101].

B One Loop Functions

We define the standard function (τp=4m2
p/m̄

2
h)

A1/2(τp)=−2τp [1+(1−τp)f(τp)] , (B.1)

taking mt→∞, A1/2(τf ≫ 1)→−4
3+O(1/τf ). Similarly, we also define

A1(τp)= 2+3τp [1+(2−τp)f(τp)] , (B.2)

We also note

f(τp)=


arcsin2

√
1/τp, τp≥ 1

−1
4

[
ln 1+

√
1−τp

1−
√

1−τp
−iπ

]2
, τp< 1.

(B.3)

– 33 –



J
H
E
P
0
1
(
2
0
2
4
)
1
7
0

Also used are

I[m2]≡
∫ 1

0
dx log

(
m2−m̄2

hx(1−x)
m̄2
h

)
Jx[m2]≡

∫ 1

0
dx

xm2

m2−m̄2
hx(1−x)

, (B.4)

Iy[m2]≡
∫ 1−x

0
dy

∫ 1

0
dx

m2

m2−m2
hx(1−x−y)

. (B.5)

I,Iy,Ixx for τ ≥ 1 (while restricting our results to top loops) are

I[mp] ≡ log
(
τp
4

)
+2
√
τp−1 arctan

(
1√
τp−1

)
−2, (B.6)

Iy[mp] ≡
τp
2 arcsin2(1/√τp), (B.7)

Ixx[mp] ≡
τp√
τp−1 arctan

(
1√
τp−1

)
. (B.8)

C Endpoint regulation

Regulation of the z=1 singularity is done with

(1−z)−1−2ϵ=
( 1
1−z

)
+
−2ϵ

( log(1−z)
1−z

)
+
− 1
2ϵδ(1−z), (C.1)

with plus function definitions∫ 1

0
dx

f(x)
(x)+

=
∫ 1

0
dx
f(x)−f(0)

x
, (C.2)∫ 1

0
df(x)

(
log(x)
x

)
+

=
∫ 1

0
dx

(f(x)−f(0))log(x)
x

. (C.3)

The Altarelli-Parisi [105] splitting function is defined as

pGG(z)= 2z
(( 1

1−z

)
+
−z+ f1(z)

z2

)
+β0

6 δ(1−z). (C.4)

A common function of z is f1(z)= z2−z+1. A useful distribution identity is

2
( 1
1−z

)
+
f1(z)2≡ z pGG(z)−

β0
6 δ(1−z). (C.5)

D Common One loop results

v̂2T corresponds to an experimentally measured extraction of the vacuum expectation value

v̄T = v̂T

(
1+∆GF+

δG
(6)
F√
2

)
, (D.1)

Here

δG
(6)
F ≡ 1√

2

(
C̃

(3)
Hl
ee

+C̃(3)
Hl
µµ

− 1
2

(
C̃ ′

ll
µeeµ

+C̃ ′
ll

eµµe

))
. (D.2)
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The one loop corrections to the vev are [12]

∆GF =− v̄
2
T

4 ∆LV,LL+∆LV,LLew

2 , (D.3)

with [106, 107] giving

∆LV,LLew = −αew4π

(
π2− 25

4

)
, (D.4)

and the remaining term has been determined in ref. [72] to be14

v̄2T ∆LV,LL=
(
7m̄4

h+m̄2
h

(
2m̄2

t Nc−5
(
2m̄2

W+m̄2
Z

))
+4
(
−4m̄4

t Nc+2m̄4
W+m̄4

Z

))
16π2 m̄2

h v̄
2
T

+ 3(m̄4
h−2m̄2

h m̄
2
W )

8π2 v̄2T (m̄2
h−m̄2

W ) log
(
µ̂2

m̄2
h

)
+ m̄2

t Nc (m̄2
h−4m̄2

t )
4π2m̄2

h v̄
2
T

log
(
µ̂2

m2
t

)

+3((m̄2
h(m̄4

Z−2m̄2
W m̄

2
Z)+2m̄4

Z(m̄2
W−m̄2

Z))
8π2m̄2

hv̄
2
T (m̄2

W−m̄2
Z)

log
(
µ̂2

m̄2
Z

)
(D.5)

−3m̄2
W

(
m̄4
h

(
m̄2
W−2m̄2

Z

)
+m̄2

h

(
7m̄2

W m̄
2
Z−6m̄4

W

)
+4m̄4

W (m̄2
W−m̄2

Z)
)

8π2m̄2
hv̄

2
T (m̄2

h−m̄2
W )(m̄2

W−m̄2
Z)

log
(
µ̂2

m̄2
W

)
.

The one loop function ∆M1 is given by [108]

∆M1≡
(
∆Rh
2 +∆v

v
+(

√
3π−6)λ
16π2 + 1

16π2

(
ḡ21
4 +3ḡ22

4 +6λ
)
log
[
m̄2
h

µ̂2

])

+ 1
16π2

(
ḡ21
4 I[m̄Z ]+( ḡ

2
2
4 +λ)(I[m̄Z ]+2I[m̄W ])

)
. (D.6)

This expression is formally dependent in individual terms on a gauge fixing parameter
which cancels in the common sum of terms present in ∆M1. See refs. [108? ] for details.
We have set ξ=1 in this expression for brevity of presentation. ∆v is defined by the
condition T =0 on [108] (with ξ=1)

T = m̄2
hhv̄T

1
16π2

[
−16π2 ∆v

v̄T
+3λ

(
1+log

[
µ̂2

m̄2
h

])
+1
4 ḡ

2
2

(
1+log

[
µ̂2

m̄2
W

])
(D.7)

+1
8(ḡ

2
1+ḡ22)

(
1+log

[
µ̂2

m̄2
Z

])
−2
∑
ψ

y2ψNc

m̄2
ψ

m̄2
h

(
1+log

[
µ̂2

m̄2
ψ

])

+ ḡ
2
2
2
m̄2
W

m̄2
h

(
1+3log

[
µ̂2

m̄2
W

])
+1
4(ḡ

2
1+ḡ22)

m̄2
Z

m̄2
h

(
1+3log

[
µ̂2

m̄2
Z

])]
.

14Here we have set the evanescent scheme parameter in this result (bEvan= 1) to be consistent with naive
tree level Fierz identities used in the matching. Note the correction posted in the erratta to ref. [72] dealing
with this issue.
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The finite results for the Higgs wavefunction renormalization in the BFM are [108]

16π2∆Rh

=2λ
(
6−

√
3π−Jx[m̄2

Z ]−2Jx[m̄2
W ]
)
+2 ḡ22

((
Jx[m̄2

W ]− 1
2
) (

1− 3m̄2
W

m̄2
h

)
−I[m̄2

W ]
)

+

∑
ψ

y2ψNc−ḡ21−3ḡ22

 log
(
m̄2
h

µ̂2

)
+
(
ḡ21+ḡ22

) ((
Jx[m̄2

Z ]−
1
2
)(

1− 3m̄2
Z

m̄2
h

)
−I[m̄2

Z ]
)

+
∑
ψ

y2ψNc

(
1+
(
1+

2m̄2
ψ

m̄2
h

)
I[m̄2

ψ]−
2m̄2

ψ

m̄2
h

log
(
m̄2
ψ

m̄2
h

))
. (D.8)

We also use

∆RÂ= ḡ21 ḡ
2
2

(ḡ21+ḡ22)

− 7
16π2 log

(
µ̂2

m̄2
W

)
+
∑
ψ

Nψ
c Q

2
ψ

12π2 log
(
µ̂2

m̄2
ψ

)
− 1
24π2

 . (D.9)

This result was successfully verified comparing to the explicit calculation reported in
ref. [72]. The Ward identities in the SMEFT in the BFM [9] have been validated at
one loop [13, 92]. These identities also give

∆Ze =−1
2∆ZÂ,

∆Re =−1
2∆RÂ. (D.10)

In the {m̂W , m̂Z , ĜF } scheme one has [12]

∆g1
ĝ1

= ∆GF
2 +∆RmW m̂2

W−∆RmZ m̂
2
Z

m̂2
W−m̂2

Z

, (D.11)

∆g2
ĝ2

= ∆GF
2 +∆RmW , (D.12)

while the {α̂ew, m̂Z , ĜF } scheme defines [12]

∆g1
ĝ1

= ∆e
ê

−∆cθ
cθ̂

, (D.13)

∆g2
ĝ2

= ∆e
ê

−∆sθ
sθ̂

, (D.14)

where

∆sθ
sθ̂

=
1−s2

θ̂

2(1−2s2
θ̂
)

[∆α
α

−∆GF−2∆RMZ

]
. (D.15)

The BFM expressions for ∆RmW ,mZ are somewhat lengthy and given in the appendix
ref. [12].
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E ∆δσ(GG → h) and quadratic δ2σ(GG → h) results

Explicitly, in the mt→∞ limit, the leading results for the interference with the SM one
loop amplitude are [2, 28, 109]

∆2σ̂SM,mt→∞
LO (GG→h) ≡ π

4 lim
ϵ→0

∣∣∣∆CSM,mt→∞
hGG

∣∣∣2 ,
= (α(r)

s )2
576π v̄2T

, (E.1)

while

∆δσ̂(GG→h)[C̃(6)
HG]

∆2σ̂SM,mt→∞
LO (GG→h)

= 24π
α
(r)
s

C̃HG, (E.2)

and a contribution at δ2 order (in the mt→∞ limit) is

δ2σ̂(GG→h)[(C̃(6)
HG)2]

∆2σ̂SMLO (GG→h)
= 9

(
4π
α
(r)
s

)2

(C̃(6)
HG)

2. (E.3)

The results for these ratios reported in ref. [12] were further scaled by a correction factor
of (1+11α(r)

s /2π)−1≃ 1.21, using αs≃ 0.118 due to the inclusion of the partial NLO result
easily retaining by the two loop matching correction to the SM result. Using ref. [30] we
can improve this rough approximation (while still in the mt→∞ limit) using

∆3σSM

∆2 σ̂SMLO,ϵ→0
= α

(r)
s

4π
[
4π2+22

]
δ(1−z)+ 6α(r)

s f21 (z)
π

log
(
s

µ̂2

)( 1
1−z

)
+
−11α

(r)
s

2π (1−z)3

+3α(r)
s

π
z pGG(z) log

(
µ̂2

µ2F

)
+12α(r)

s

π
f21 (z)

( log(1−z)
1−z

)
+
. (E.4)

Here we used the AP counterterm that accounts for Lm̂t dependence

∆2δσAPDRc.t ≡ ∆2σ̂SMLO,ϵ→0(GG→h)3α
(r)
s

2π

[(
µ2

µ2F

)ϵ]

×(4π)ϵΓ(1+ϵ)Γ(1−ϵ)
2

Γ(1−2ϵ)

[1
ϵ
+1−2Lm̂t

]
z pGG(z). (E.5)

E.1 ∆δσ(GG → h)

The contributions to ⟨GG|h⟩1O(v2/Λ2) that need to be added to eq. (3.39) follow from the
following perturbations. We express these various terms as [12]

⟨GG|h⟩1O(v2
T /Λ2)=−4[∆GF+∆M1]

C̃
(6)
HG

v̂T
Kab−4

(
C̃i∆fi
16π2 v̂2T

)
v̂T Kab. (E.6)

where C̃i∆fi contains all corrections — from operator mixing and O(v̄2T /Λ2) corrections
to the SM — that are not proportional to C̃

(6)
HG. The ∆fi are [21, 110, 111] (using τp=
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4m2
p/m̄

2
h)

∆fH□ = −
∑
f

αsπA1/2(τf ), (E.7)

∆fHD = 1
4
∑
f

αsπA1/2(τf ), (E.8)

∆fδGF
= 1√

2
∑
f

αsπA1/2(τf ), (E.9)

[
Yψ′

ff

]
∆fψ′H

ff

=
∑
f

αsπA1/2(τf ). (E.10)

In practice, contributions from light fermions to the ∆fi are suppressed since A1/2(τf ≪
1)∼ τ ∼

[
Yψ′

ff

]2
, so we will only include effects from the top and bottom quarks. The dipole

operators enter at one loop [21, 110, 111], the only term which enter at O(v2T /16π2Λ2)
(again retaining only the Yt,b terms) are the L(6) operators C̃uG

tt
and C̃dG

bb
:

⟨GG|h⟩1O(v2/Λ2)⊃−
√
κḡ3

8π2 v̄T

(
∆fuG C̃uG

tt
[Y ]tt+∆fdG C̃dG

bb
[Y ]bb+h.c.

)
Kab, (E.11)

where

∆fuG =
[
−1+2 log

(
µ̂2

m̂2
h

)
+ log

( 4
τt

)]
−2Iy[m2

t ]−I[m2
t ],

∆fdG =
[
−1+2 log

(
µ̂2

m̂2
h

)
+2 log

( 4
τb

)]
−τb f(τb)−4 i

√
1−τb f1/2(τb). (E.12)

This set of ∆2δ corrections in the mt→∞ limit are [12]

∆2δσ(GG→h)
∆2 σ̂SMLO,ϵ→0(GG→h)

= 24π
α
(r)
s

[
[∆GF+∆M1] C̃(6)

HG+Re
(
C̃i∆fi
16π2

)]
δ(1−z). (E.13)

E.2 δ2σ(GG → h) geoSMEFT terms

The O(v4T /Λ4) terms are denoted as δ2 terms. There are two sets of terms of this order. One
that follows from the “self-square” or “quadratic” term of the tree level C̃HG dependence,
and a further set of terms that are obtained consistently expanding to δ2 order. In this
subsection we report the later set of terms.

For the GG→h amplitude these corrections are [12]

⟨GG|ϕ4⟩0O(v4/Λ4)= ⟨
√
h
44
⟩O(v2/Λ2)⟨GG|ϕ4⟩0O(v2/Λ2) (E.14)

+2
vT [⟨GG|ϕ4⟩0O(v2/Λ2)]2

⟨G G|ϕ4⟩0
+(⟨GG|ϕ4⟩0O(v2/Λ2))

∣∣∣
C̃

(6)
HG→C̃

(8)
HG

where ⟨
√
h
44⟩O(v2/Λ2)= C̃

(6)
H□−

1
4 C̃

(6)
HD. A term from the redefinition of v̄T in its relation to

input observables is formally present but suppressed as it cancels when the SM amplitude
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is interfered with, which is ∝ 1/v̄T . These dimension eight interference corrections in the
mt→∞ limit are [12]

∆δ2σ(GG→h)
∆2 σ̂SMLO,ϵ→0(GG→h)

= 24π
α
(r)
s

[(
⟨
√
h
44
⟩O(v2/Λ2)+2C̃(6)

HG

)
C̃

(6)
HG+C̃

(8)
HG

]
δ(1−z). (E.15)

Note that taking the “quadratic” dependence on C̃2
HG (the square of the δ correction

due to this operator) does not generate all terms dependent on C̃2
HG in the observable. See

ref. [11] for more discussion.

F ∆δΓ(h → GG) and quadratic δ2Γ(h → GG) results

The results unchanged from ref. [12] are as follows. The leading order result in the mt→∞
limit is

∆2Γ(h→GG)SM ≡ 2
π
m̂3
h lim
ϵ→∞

|∆CSM,mt→∞
hGG |2, (F.1)

leading to

∆δΓ(h→GG)
∆2Γ(h→GG)SM

≡ 24π
α
(r)
s

C̃
(6)
HG, (F.2)

and

δ2Γ(h→GG)
∆2Γ(h→GG)SM

≡ 9
(

4π
α
(r)
s

)2

(C̃(6)
HG)

2. (F.3)

F.1 ∆δΓ(h → G G)

As previously reported in ref. [12], the EW correction is identical to the case of σ(GG→h),

∆δΓ(h→GG)mt→∞
EW

∆2Γ(h→GG)SM
= 24π

αs
×
(
[∆GF+∆M1+∆RG ] C̃(6)

HG+
∑
i

Re C̃(6)
i ∆f (6)i

16π2

)
. (F.4)

In this expression we also include the BFM wavefunction renormalization finite factor of
the final state gluons

∆RG =
1

24π2
∑
f

log
(
m2
f

µ̂2

)
, (F.5)

as the C̃(6)
HG operator was not redefined to rescale it by g23. Note that in the BFM this has

the result of the ∆RG contribution not canceling against a corresponding finite term for
g23, but contributing.

F.2 δ2Γ(h → G G) geoSMEFT terms

The ∆δ2 terms for this decay that follow from the geoSMEFT and added to the naive
Quadratic terms are

∆δ2Γ(h→GG)
∆2Γ(h→GG)SM

= 24π
α
(r)
s

[(
⟨
√
h
44
⟩O(v2/Λ2)+2C̃(6)

HG

)
C̃

(6)
HG+C̃

(8)
HG

]
. (F.6)
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G ∆δΓ(h → AA) and quadratic δ2Γ(h → AA) results

We define [12]

⟨h|AA⟩1SM = −ĝ2 ê2

64π2 m̂W

(
A1(τW )+

∑
i

N i
cQ

2
i A1/2(τψi)

)
⟨hAµνAµν⟩0, (G.1)

with ψi a mass eigenstate fermion and the loop functions are reported in appendix B. For
notational convenience we define a short hand notation

AAA≡
(
A1(τW )+

∑
i

N i
cQ

2
i A1/2(τψi)

)
. (G.2)

For later convenience we define

AL(6)
AA ≡

[
ĝ22 C̃

(6)
HB+ĝ21 C̃

(6)
HW−ĝ1 ĝ2 C̃(6)

HWB

(ĝSMZ )2

]
. (G.3)

Directly one has

⟨h|AA⟩0O(v̄2/Λ2)=
AL(6)

AA
v̂T

⟨hAµνAµν⟩0, (G.4)

leading to the ∆δ contribution

∆δΓ(h→AA)
∆2ΓSM (h→AA) =−64π2 ReAAA

|AAA|2

[
C̃

(6)
HB

ĝ21
+ C̃

(6)
HW

ĝ22
− C̃

(6)
HWB

ĝ1 ĝ2

]
, (G.5)

and a δ2 contribution

δ2Γ(h→AA)
∆2ΓSM (h→AA) =

1024π4
|AAA|2

[
C̃

(6)
HB

ĝ21
+ C̃

(6)
HW

ĝ22
− C̃

(6)
HWB

ĝ1 ĝ2

]2
. (G.6)

G.1 ∆2δΓ(h → AA)

⟨h|AA⟩1O(v2
T /Λ2) = ⟨h|[C(6)

i ]|AA⟩1 ⟨hA
µνAµν⟩0
v̂T

+
(
AL(6)

AA
v̄2T

∆M1+
C̃i∆fi
16π2 v̂2T

)
v̂T ⟨hAµνAµν⟩0.

(G.7)

Here we have redefined notation slightly from ref. [12] and explicitly

⟨h|[C(6)
i ]|AA⟩1 = ê2

32π2 AAA

[
δGF√

2
− δα

α

]
+2.1 ê2

16π2
δM2

W

M̂2
W

(G.8)

+
(
∆RA+∆GF+

2ĝ1(∆g2ĝ1−∆g1ĝ2)
ĝ2 (ĝSMZ )2

)
ĝ22 C̃

(6)
HB

(ĝSMZ )2

+
(
∆RA+∆GF+

2ĝ2(∆g1ĝ2−∆g2ĝ1)
ĝ1 (ĝSMZ )2

)
ĝ21 C̃

(6)
HW

(ĝSMZ )2

−
(
∆RA+∆GF+

(ĝ21−ĝ22)(∆g2ĝ1−∆g1ĝ2)
ĝ1ĝ2(ĝSMZ )2

)
ĝ1 ĝ2 C̃

(6)
HWB

(ĝSMZ )2
.

– 40 –



J
H
E
P
0
1
(
2
0
2
4
)
1
7
0

The remaining ∆fi’s are in refs. [108, 110] in terms of the one loop functions are
ĝ1 ĝ2
ê2

∆fHWB =(
−3 ĝ22+4λ

)
log
(
m̄2
h

µ̂2

)
+(4λ−ĝ22)I[m̄2

W ]−4 ĝ22 Iy[m̄2
W ]−2 ĝ22

[
1+log

(
τW
4

)]
+ê2 (2+3τW )+6 ê2(2−τW ) Iy[m̄2

W ], (G.9)

ĝ22
ê2

∆fHW =−ĝ22

[
3τW+

(
16− 16

τW
−6τW

)
Iy[m̄2

W ]
]
, (G.10)

ĝ32
ê2

∆fW =−9 ĝ42 log
(
m̄2
h

µ̂2

)
−9 ĝ42 I[m̄2

W ]−6 ĝ42 Iy[m̄2
W ]+6 ĝ42 Ixx[m̄2

W ] (1−1/τW )−12 ĝ42,

(G.11)
ĝ1
ê2

∆feB
ss

=2Qℓ [Yℓ]ss
[
−1+2 log

(
µ̂2

m̄2
h

)
+ log

( 4
τs

)]
−2Qℓ [Yℓ]ss

[
2Iy[m2

s]+I[m2
s]
]
,

(G.12)
ĝ1
ê2

∆fuB
ss

=2NcQu [Yu]ss
[
−1+2 log

(
µ̂2

m̄2
h

)
+ log

( 4
τs

)]
−2Qu [Yu]ss

[
2Iy[m2

s]+I[m2
s]
]
,

(G.13)
ĝ1
ê2

∆fdB
ss

=2NcQd [Yd]ss
[
−1+2 log

(
µ̂2

m̄2
h

)
+ log

( 4
τs

)]
−2Qd [Yd]ss

[
2Iy[m2

s]+I[m2
s]
]
.

(G.14)

Note ĝ2∆feW
ss

→−ĝ1∆feB
ss

. In the case of up quarks ĝ2∆fuW
ss

→ ĝ1∆fuB
ss

, while in the case
of down quarks ĝ2∆fdW

ss
→−ĝ1∆fdB

ss
. Here, s= {1,2,3} sums over the flavors. The Wilson

coefficients are summed with their Hermitian conjugates, and the normalization is such
that ∆feB

ss
multiplies ReCeB

ss
. The remaining contributions proportional to the SM loop

functions are

[Ye]ss∆feH
ss

= ê2
Q2
ℓ

2 A1/2(τs),

[Yu]ss∆fuH
ss

=Nc ê
2 Q

2
u

2 A1/2(τs),

[Yd]ss∆fdH
ss

=Nc ê
2 Q

2
d

2 A1/2(τs),

∆fH□=−ê2Q
2
ℓ

2 A1/2(τp)−Nc ê
2 Q

2
u

2 A1/2(τr)−Nc ê
2 Q

2
d

2 A1/2(τs)−
1
2 ê

2A1(τW ),
(G.15)

and ∆fHD =−∆fH□/4. Here p,r,s run over 1,2,3 as flavor indices. Several of these results
have been cross checked against ref. [112].

These input parameter scheme dependent corrections perturb Γ(h→AA) as

∆2δΓ(h→AA)
∆2ΓSM (h→AA) ≃

−16π2
α̂ew |AAA|2

ReAAA

[
⟨h|[C(6)

i ]|AA⟩1+AL(6)
AA ∆M1+

C̃i∆fi
16π2

]
.(G.16)
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G.2 δ2Γ(h → AA) geoSMEFT terms

The O(v4/Λ4) terms in the full three-point function are [11]

⟨h|AA⟩0O(v4/Λ4)=⟨
√
h
44
⟩O(v2/Λ2) ⟨h|AA⟩0O(v̄2/Λ2)+2

v̄T [⟨h|AA⟩0O(v̄2/Λ2)]2

⟨hAµνAµν⟩0
(G.17)

+2⟨h|AA⟩0O(v̄2/Λ2)|C(6)
i →C

(8)
i

.

Leading to the ∆δ2 interference term

∆δ2Γ(h→AA)
∆2ΓSM (h→AA)

≃ −16π2
α̂ew |AAA|2

ReAAA

[
⟨
√
h
44
⟩O(v2/Λ2)A

L(6)
AA +2(AL(6)

AA )2+2AL(6)
AA |

C
(6)
i →C

(8)
i

]
.

(G.18)

Here we have used the short-hand notation

⟨
√
h
44
⟩O(v2/Λ2)= C̃

(6)
H□−

1
4 C̃

(6)
HD, C

(6)
HB→ 1

2C
(8)
HB, (G.19)

C
(6)
HW → 1

2
(
C

(8)
HW+C(8)

HW,2

)
, C

(6)
HWB→ 1

2C
(8)
HWB. (G.20)

H Past literature results

We have included a significant set of numerical and analytic detail in this work to aid
reproducibility. However, a complete reproduction of the numerical results requires the
following additional literature expressions:

• The two loop QCD corrections for CH1 (τp) is lengthy and directly given in ref. [17].
Specifically eq. 2.8 in this work.

• The explicit expression for δG(8)
F can be derived from appendix C, eq. C.12 in ref. [11].

• The explicit expression for C(8)
H,kin can be derived from eq. 3.10 in ref. [10].

• The one loop corrections to the W,Z masses in the BFM reported in appendix A,
eqs. A.1, A.2 in ref. [12].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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