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ABSTRACT: We consider the general form of the axion coupling to photons in the axion-
Maxwell theory. On general grounds this coupling takes the form of a monodromic function
of the axion, which we call g(a), multiplying the Chern-Pontryagin density FF of the photon.
We show that the non-linearity of g(a) is a spurion for the shift symmetry of the axion. In
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and there is a correlated mass term for the axion. Singularities in g(a) due to the fast
rearrangement of degrees of freedom are shown to have corresponding cusps and singularities
in the axion potential. We derive the general form of g(a) for the QCD axion, axions with
perturbatively broken shift symmetries and axions descending from extra dimensions. In
all cases, we show that there is a uniform general form of the monodromic function g(a)
and it is connected to the axion potential.
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1 Introduction

The axion-Maxwell Lagrangian describes the low-energy physics of one of the most compelling
new physics candidates, the axion, and its experimentally important coupling to photons.
The discovery of the axion-photon interaction will not just be a discovery of a new particle,
but can provide deep insights into the structure of the standard model. The QCD axion
elegantly explains the non-observation of CP violation in the strong sector [1-3]. Axions can
solve the cosmological puzzle of dark matter [4-6] and may appear as dark energy [7, 8]. The
axion-photon coupling can provide access to the fundamental unit of electric charge [9-12]
and test simple models of Grand Unification [13]. Axions have a strong interplay with ideas
in quantum gravity [14, 15] and string theory [16-18].

A large part of this wealth of information derives from the special nature of the axion-
photon coupling and the associated symmetries and redundancies. In this work, we derive
the general form of this coupling that is ideally suited to study the quantization of the



axion-photon coupling, the physics of axion domain walls and strings and the symmetry
structure in axion-Maxwell theory.
We argue that the general low-energy axion-Maxwell Lagrangian takes the form,

1 1 ~
LoxMax = F, F* 4 iFgauaﬁ“a —V(a)+ 9(a) F,F*. (1.1)
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For convenience we have chosen a basis where F, the fundamental period of the axion, as
well as the electromagnetic gauge coupling e are included in the kinetic term. The function
g(a) is a monodromic function, defined by the property,

gla+27m) = g(a) + 2mn. (1.2)

The integer n is the monodromic charge of the function g(a). This property of the monodromic
function arises from the discrete gauge symmetry of the axion, a — a + 27, under which
the path integral weight, €*°, is required to be invariant.

It is an extremely important fact that the monodromy of g(a) does not imply that the
perturbative coupling of the axion to photons around the CP conserving point a = 0 is
quantized. Indeed, the coupling for canonically normalized fields,

Qem

Jayy = TFQQ (a)’a=07 (1'3)

which can be an arbitrary number for a non-linear monodromic function g(a).

This resolves a small puzzle in the QCD axion coupling to photons, as was noted in [9]
and further discussed in [10]. On one hand, we usually justify the non-quantized couplings of
the axion by invoking the mixing with the pion. On the other hand, for all values of the axion
the pion remains heavy and can stay integrated out, leaving an apparent non-monodromic
function. The resolution to the non-quantization of the coupling therefore should appear
in the low-energy axion-Maxwell theory without needing to invoke the pion. Indeed, this
is achieved by a monodromic non-linear function g(a).

The form of the coupling g(a) generated by the anomaly between U(1)pq and U(1)2,
is g(a) = na. This form of g(a) is protected by the continuous shift symmetry of the axion,
which also protects the axion from getting a mass. Both the potential V' (a) and a non-linear
g(a) are therefore spurions for the axion continuous shift symmetry breaking [9, 10]. This gives
a precise sense in which the deviation from quantization of axion couplings and the generation
of a mass are linked. Thus, while the monodromy of g(a) follows from topology, the special
case of g(a) = na additionaly requires the presence of a continuous global shift symmetry.

In general we expect the size of the two spurions for the same symmetry to be commen-
surate. If the axion-photon coupling is nearly quantized, then we can express the degree
of non-quantization as

9(a) — na = zf(a), (1.4)

with 0 < z < 1 and f(a) an O(1) periodic function. The estimate for the mass of the axion is

m? ~ 20— . (1.5)



where A is the UV cutoff of the effective theory consistent with the coupling g(a) (e.g. for
the QCD axion A ~ Aqcp). We emphasize that this is a heuristic estimate and the actual
correlation may be different in specific examples. However this correlation highlights the
point that if there is an axion that is parametrically lighter than its naively expected mass,
that also corresponds to a coupling to photons that is very nearly an integer. Similarly,
if an axion coupled to photons picks up a mass it generically also picks up a non-linear
g(a) coupling to photons [10].

The general periodic function f(a) in equation (1.4) can be expanded in Fourier modes.
In some cases only the first few terms in the expansion dominate. This is simply the expected
contribution from axion-dependent perturbative corrections to non-topological quantities
like aem. However, in many cases, including the case of the QCD axion, the final form
of g(a) requires the sum over the entire Fourier tower, and it is interesting that a closed
form for g(a) can be derived.

The functional coupling g(a) elucidates many interesting physics points. As mentioned
above, it captures the correct monodromy in the axion-Maxwell Lagragian when all other
fields can be integrated out for all values of the axion. In cases where this is not possible
(e.g. when some particles become light at some value of the axion field) g(a) also captures
fast rearrangement of degrees of freedom through its singularities at isolated points. This
correlates with cusps and singularities in the axion potential at the same point, and interesting
dynamics induced on an axion domain wall.

Phenomenologically, the full non-linear form of g(a) is most relevant for scenarios where
the axion traverses an O(1) fraction of its field range. This is certainly true for axion strings
and domain walls, and sharp features or jumps in g(a) can affect axion emission from these
objects. For instance, in an electromagnetic environment, the axion emission by the Primakoff
effect will be dominated by shell regions where the axion field value is close to the jump.
Similar effects can also be true for dense axion objects, like axion miniclusters or superradiant
axion clouds surrounding rotating black holes.

The fact that in many simple models the whole Fourier tower needs to be summed
up to get the relevant g(a) highlights another interesting point. For effective field theories
involving compact fields the standard polynomial basis might not be the most convenient
basis to work in.

This paper is organised as follows. In section 2, the general properties of g(a) and the
symmetries of the axion-Maxwell Lagrangian in the presence of g(a) are discussed, together
with the connection between the mass and non-quantization of g(a). Section 3 discusses
the QCD axion and the corresponding axion-photon coupling. In section 4, the important
case of case of perturbative shift symmetry breaking is introduced and shown to share many
features of the QCD axion. The final section 5 is entirely devoted to axion potentials and
photon couplings in the presence of a tower of states.



2 Axion-Maxwell theory

In this section, we discuss the general properties and symmetries of the axion-Maxwell
Lagrangian Lax\ax in the presence of an effective axion-photon coupling g(a).
1 1

a ~
ﬁaxMax = _@FMVFMV + §F3(9ua8“a - V(G) + 1géﬂ_)2 FMVFHV . (21)

Here F, is the fundamental period of the axion, and we have normalized the gauge field
such that the electric charge of the electron is -1.

2.1 Quantization

The function g(a) is a monodromic function, defined by the property,
gla+2m) = g(a) + 2mn. (2.2)

Here n is the monodromic charge of the function g(a), which is usually taken to be an integer
in order for the path integral weight e*® to be invariant under the identification a = a + 2.

To be more precise, the quantization of the monodromy depends on the global structure
of the gauge group [19, 20]. If the smallest allowed representation has physical electric charge
eq, then the electromagnetic instanton number I = 16% [ F F is valued in qZ%. In such a
model, the monodromic charge n can take values in ¢?Z. Correspondingly, colourless magnetic
monopoles can have a physical minimum magnetic charge ¢, = 26—2 by Dirac quantization.

The quantization of the monodromic charge n can also be shown by several connected
topological arguments similar to Dirac’s argument for quantization of electric charge in
U(1) gauge theory. In a theory with a U(1) gauge field and an axion discrete gauge shift
symmetry, both magnetic monopoles and axion strings exist as twisted sectors. In quantum
field theory the cores of these objects may be singular, but in presence of gravity these

singularities will be behind a horizon.

_ 2
=
trajectory through an axion string loop [21]. For the purposes of this thought experiment, it

Consider a magnetic monopole with minimum magnetic charge g, scattering on a

does not matter if the axion has a mass or not. Along the trajectory, the monopole sees a

monodromy of the axion as g(6 +27) — g(f). Through the Witten effect, this implies that the
2

monopole electric charge shifts by Age = —425-(g(0+27) —g(0)) = —*7- By Dirac-Zwanziger

quantization of dyons Aq. € eqZ and therefore the monodromic charge n € ¢*Z.

In the remainder of this paper we shall focus on theories in which the smallest unit of
charge is that of the electron such that g(a) has integer monodromy, but we shall briefly return
to this issue when we discuss the QCD axion and the allowed standard model representations.
Results for other minimal charges can be recovered by the appropriate multiplication.

2.2 Symmetries of LaxMax

We begin by reviewing the symmetry structure of this theory (see e.g. [22-25] for further
details) in the limit of a massless axion and g(a) = a.

In fact, in the even simpler limit where the axion coupling to photon is turned off, we
have the following symmetry structure. The Maxwell theory is well-known to have two global



one-form symmetries, the electric U(l)gl) and magnetic U(l)%), under which Wilson lines

and ‘t Hooft lines transform respectively [26]. These symmetries act on the photon and the
dual photon by a shift by a closed one-form,

(1)
A U(1)e A 4 C(l), dC(l) — 0’ (23)
~ O
A U(l)m A + 6(1), dé(l) — 0 . (24)

Equivalently, non-contractible Wilson and ‘t Hooft loops transform by a U(1) phase under the
respective symmetries. In the absence of charged matter, these symmetries above are clearly
symmetries of the Maxwell Lagrangian. In the real world we know the electric symmetry to
be emergent below the electron mass, and it is strongly believed that the magnetic symmetry
will also be broken completely [27].

The massless axion Lagrangian has an ordinary global U(l)é,o()Q symmetry, the usual
continuous shift symmetry of the massless axion,

a —%a+c0 49 =9, (2.5)

as well as a two-form symmetry U(l)(2) which measures the axion winding number, under
which axion string worldsheets are charged. This symmetry is a shift symmetry of the
dual two-form field B,

(2)
YW By @ g =g, (2.6)

or equivalently a phase rotation of a non-contractible axion string worldsheet. The symmetry
structure at this level is thus,

m

U1 x UM x UM x u(1)d. (2.7)

A linear axion-photon coupling in the Lagrangian introduces mixed anomalies between the
U(l)gg and the one-form symmetries of Maxwell theory, as well as an ABJ anomaly [28, 29]
for the axion shift symmetry,

o Al
OuJpq = 162 F F* . (2.8)
Therefore, from this point of view it is somewhat mysterious which symmetry is formally
responsible for protecting the axion from getting a mass. One argument could be that if we
are working on R?, then there are no Abelian instantons and the r.h.s. does not produce any
physical effect. In particular, we can define the PQ charge on a fixed time slice,
1 ..
3. (.0 2
Q= /d x (]PQ - @6” AiajAk> . (2.9)
The charge Q defined on R? is gauge invariant, so it looks like we can rescue the shift
symmetry of the axion if we are content to work on R*.

However, this argument is a bit too quick. We cannot use the same argument for

potential UV contributions to the axion mass. The topology of spacetime seen by the Abelian



gauge field can change in the UV, both in extra-dimensional theories and 4D theories, a
simple example being the ‘t Hooft-Polyakov monopole. It will be much more useful to find a
symmetry and associated spurions that parametrize both UV and IR mass generation effects
on general manifolds. This is especially valuable for the case of axions where we expect at
least quantum gravitational effects to generate a mass.

On a general manifold there does not exist a gauge-invariant charge Q. This is most
easily seen if our spatial slice is S' x S? with magnetic flux m = % Jg2 Fb3 on the S2.
Performing a large gauge transformation A; — A; + 27 on the compact S' shifts the charge
@ by m. The operator implementing the U(1)q symmetry, exp(iaQ) with a € [0,27) is not
gauge-invariant under this transformation. A more modern viewpoint is that the introduction
of topologically non-trivial backgrounds can be captured by turning U(l)l(poc)Q into an unbroken
non-invertible symmetry [22, 25, 30]. In the cases that such background fluxes or instantons
become dynamical, the symmetry is explicitly broken and the axion is expected to get a mass.
This is the case when the axion in addition to the photon is also coupled to a non-Abelian
gauge theory or when magnetic monopoles are dynamical.

In the presence of a general effective axion-photon coupling g(a), the conservation
equation (2.8) of U(l)é,o()Q is modified to

g'(a)

Oufeq = g2 L t™ (2.10)

and no such conserved PQ charge (equation (2.9)) exists unless ¢’(a) is an integer. General

forms of ¢'(a) therefore explicitly break U(l),(poc)). It is this sense in which g(a) can parametrize

both the UV dynamical topology changes as well as other dynamical sources of U(l)g,oc)Q

breaking. The non-linearity of g(a) therefore acts as a spurion for the U(l)g)c)) shift symmetry.

2.3 General properties of g(a)

We have seen that the general non-linear function g(a) breaks the (non-invertible) axion
shift symmetry. Therefore, we expect a general connection between g(a) and the potential
for the axion V(a). Indeed, ¢'(a) ¢ Z implies a mass for the axion. Similarly, a potential
for the axion V'(a) and a quantized axion-photon coupling will flow to a non-quantized g(a)
with the same monodromy.

In the examples considered in this paper, the connection between the potential V' (a) and
axion-photon coupling g(a) is best provided by the repackaging of a positive real parameter
z € [0,00) together with the axion a into a complex quantity,

Z = ze'. (2.11)

The real and imaginary parts of powers of Z respectively contribute to the CP even potential
V(a) and CP odd effective axion-photon coupling g(a), providing the connection between the
two. The duality Z — % leaves both the potential and g(a) invariant. Such a repackaging
of the parameters in the case of instanton contributions to the axion potential z = e~ Sinst
was already noted in contributions to the superpotential in [31]. A heuristic estimate for
the axion mass for small z was provided in equation (1.5).



Common to these examples is a prototypical axion-photon coupling g(a) that can be

dZ1-Z2
) =1Im 2.12
/ Z14+2Z° ( )

where the contour C' is an arc at radius z of angular size a. The monodromic charge n can be

expressed as a contour integral,

extracted from equation (2.12) by the poles of the integrand that are included in the closed
contour at radius z. The poles for this particular function are located at Z =0 and Z = —1
with respective residues 1 and —2, giving a monodromic charge that is n = sign(1 — 2).

The effective axion-photon coupling can be extracted from equation (2.12) by performing
the contour integral over the arc C,

g(a) = 2arctan (14—2 tan 2) + 27sign(1l — 2)O(a — ), (2.13)

where © is the Heaviside function. The full profile of g(a) is plotted for several relevant
parameter values in figure 1. The function g(a) can be decomposed into a monodromic
part na and a periodic part, the latter captures the explicit breaking of the continuous
axion shift symmetry.

The feature most relevant to current experiments is the slope of the effective axion-photon
coupling around the minimum a = 0 of the potential,

1—2z
"(0) = .
9.(0) 1+ 2

Under the transformation z — %, the slope and monodromy of g(a) swap signs, which is
a reflection of the Z — 1/Z duality mentioned above.

(2.14)

There are three values of the real parameter z that are interesting. At the points
z ={0,00}, ¢’(a) € Z and the axion shift symmetry is restored. In our examples, the axion
potential also vanishes for these values of z. The function g(a) does not have a well-defined
limit as z — 1, it changes discontinuously across z = 1. In this limit, ¢’(0) = k € Z, but the
axion shift symmetry is not restored, and the monodromy is not equal to k.

Common to our examples will be the restoration of a Zs discrete symmetry at z = 1,
which has an anomaly with electromagnetism. The anomaly is captured in the low-energy
effective theory by g(a) changing discontinuously across z = 1. Furthermore, the different
profiles Zh_r>rll_ g(a) and Zlgrll+ g(a) are both discontinuous at the point a = m, describing a fast

rearrangement of degrees of freedom and restoration of a U(1) symmetry. This discontinuity
in g(a) at a = 7 is reproduced at the same point by a singularity in the potential V'(a)
or its derivatives.

3 The QCD axion

We study QCD in the two flavour approximation Ny = 2 coupled to the axion with Lagrangian

1 1 , 1 .
L= 5Fj(aa)2 1oz P P = 2?Tr (G G"™)
2
— Na =~ Ea y
YW G m) Wi+ 5T (GG + = — L F B, (3.1)



Figure 1. The effective axion-photon coupling g(a) for the prototypical example in equation (2.13)
at values z = {0.01,0.5,0.99,1.01, 2,100} showing that g(a) jumps across z = 1 and further becomes
discontinuous as z — 1% at a = 7.

where F,, is the fundamental period of the axion, E is the primordial anomaly of U(1)pq with
U(1)em and N € 3Z is the anomaly coefficient of U(1)pq with QCD.!

The condition on FE in order for the axion to have 27 periodicity depends on the chosen
subgroup I = 1, Zy, Z3 or Zg of the standard model gauge group SU(3) x SU(2) x U(1)/T" [20].
In this paper we take I' = Zg in order for the electron to have the minimum quantum of
electric charge. With this choice, a sufficient condition for axion 27 periodicity is

2N
E-==cL. (3.2)

The axion-gluon coupling explicitly breaks the PQ shift symmetry of the axion. We therefore
expect the low-energy effective axion theory to have a potential V' (a) and generate an effective
axion-photon coupling g(a). The symmetries, phases and domain walls of this theory have
been well-studied using the chiral Lagrangian [32-35] and anomaly matching [36, 37].

The mass for the axion and its coupling to photons have been calculated at high
precision [38],

2 2712
2 mﬂ'fTrN 4 aem( 5 1—2 >
= =—2(E-N-"—"N+... 3.3
Ma F? <z+i+2+ ) Yo = TF, sV N ) B

where z = % measures the isospin breaking of SU(2)y and ... denote higher order terms

in the chiral Lagrangian. Note that as is conventional we have written the coupling gq-

in the canonical basis for both axions and photons.

1—2
1+2
from the mixing with the pion. This is certainly true, but raises a minor puzzle. In the

is that it arises

The usual explanation for the irrational contribution proportional to

effective theory, we can integrate out the pion and for all values of the axion, the pion degree
of freedom is heavy and the EFT is valid. Therefore, the quantization of the monodromy
of the axion-photon coupling should be visible in the effective theory.

'Here we have used the unfortunate standard convention making N in general half-integer.



The resolution to this puzzle has been discussed in [9] and [10] and arises exactly through
the monodromic function g(a). As we will show below, the axion coupling to photons
can be packaged in this functional form, such that g(a) has integer monodromy under the
axion discrete gauge symmetry, but ¢’(0) can be irrational. We review the calculation of
the axion potential in the Chiral Lagrangian and derive the form of g(a) relevant for the
QCD axion below.

The effective Lagrangian for the photon, the QCD axion a and the pion 7°, can be
written as,
oot (9a)* + s (07°)% = V(a,7°) + (E 5N> © pEi T pF (3.4)
= — — e — s - = .
2 2 ’ 3 1672 1672 ’

with a potential V(a,7°) given by

2N 1-— 2N
V(a,7°) = f2m2 (1 —cos =2 cos 0 + “ sin 2~ sin 7r0> . (3.5)

142 2

In this basis, the two discrete gauge symmetries involving the axion and the pion are
implemented by (a,7) — (a + 27,7% + 2N7) and 7° — 7% + 27. The potential has
characteristic eigenvector directions which reverse roles when the sign of 1 — z flips, which
will be important to our discussion throughout.

We would like to study the low-energy limit of this theory. In the limit that f, < Fy,
the pion is much more massive than the axion and can be integrated out. If this can be done
consistently at every value of the axion a, then axion domain walls are completely describable
within the effective field theory. There can in general be additional domain walls (perhaps
metastable or unstable) that also involve rearrangements of heavy degrees of freedom or
new massless states appearing on the domain walls. These domain walls are not described
completely within the EFT. We show that the function g(a) captures this exact behaviour.

An axion domain wall @ — a + 27 in this particular basis of the potential (equation (3.5))
requires a pion domain wall 7° — 70 + nr with n € 2NZ. For 0 < z < 1, the most
energetically favourable domain wall is 7% — 7% — 2N7 with the 7° — 7% 4+ 2N7 domain

wall having an additional tension AT o H;j |. For 1 < z < oo, the roles of the two

domain walls are reversed.
[

For any z > 0, to first order in -, we can integrate out the pion using its equation
of motion,
oV 1— 2N X
970 =0 = 7 = —arctan (1+j tan;) —Wsign(l—z)kz::l@ (a— (2k — 1)27;\[) . (3.6)

The © Heaviside-function is obtained after inverting trigonometric functions and its strength

is such that the axion domain wall a — a + 27 has a smooth profile. Other choices for the

strength of the Heaviside-function compatible with the axion-pion discrete gauge symmetry

(below equation (3.5)) would lead to discontinuous changes in the axion profile in the EFT and

are associated with additional excitations of heavy pion degrees of freedom on the domain wall.
This yields the effective Lagrangian as,

Fc% 2 g(a) N
L= ?(Oa) —Via)+ 162 Fu, FH*, (3.7)



with

IR R 2(2Na)

Va)= fﬂmﬂ\/l a7 sin 5 ) (3.8)
(a)=FE —§N —arct (1_2‘5 Na a)_ ign(l— )2§N@< —(21{:—1)77) (3.9)
g(a a—gNa—arctan | 7——tan— wsign(1—z a o) G

k=1

We see the prototypical example of the function g(a) — it has a monodromy under axion
shift symmetry given by

2N
gla+2m) =g(a) + 2w (E e N (1 +sign(1 — z))) . (3.10)
The monodromic charge (E - % — N (1 +sign(1 — z))) € Z by equation (3.2). For the
specific choice % = %, the monodromy vanishes when 0 < z < 1 and is 2N when 2z > 1.
The slope around the axion minimum for a generic z is irrational and the axion-photon

coupling at this point is given by

aem / aem 5 1_Z >
— em 1) = E—°2N— N) . 3.11
Gary wFag( ) TF, ( 3 112 (3.11)

Note that both the potential V(a) and g(a) depend on the axion-pion mixing parameter z
and that g(a) is quantized exactly in the limit z — {0, 00} when the mass vanishes. Under
the transformation z < %, the effective potential is left unaltered and the monodromy of
g(a) changes by 2N.

In the isospin restoring limit z — 1, the potential (equation (3.5)) has an additional
Zo C SU(2)y pion parity (—1)V= symmetry that sends 7° — —7% and the tension difference

0

between the domain walls 7% — 70 & 2N7 goes to zero. The profiles and monodromies

for hHll g(a) and liH11+ g(a) differ as this Zy is broken by the Wess-Zumino-Witten term.
- z—

Addizti)nally, in the limit z — 1, the pion shift symmetry is restored at ¢ = w and the pion
becomes massless. The potential V(a) has a corresponding cusp at this point and g(a) is
discontinuous due to the massless pion jump. This cusp and the discontinuity at a = 7 is
an accidental restoration of the pion shift symmetry at a = 55 for Ny = 2 at this order in
the chiral Lagrangian and is resolved at higher orders [39].

In the next few sections, we shall see several physical systems with the same prototypical
g(a) but different potentials V(a).

4 Perturbative PQ breaking

It is very instructive to compare the breaking of the axion shift symmetry by QCD effects
to a perturbative form of shift symmetry breaking. The simplest such model is a massive
charged Dirac fermion ¥ coupled to a U(1) gauge field and an axion a coupled through a
chiral mass term, resulting in a Lagrangian of the form

L=iUPV — fUe'PV — mg V. (4.1)

This Lagrangian has an axion shift symmetry a — a+c and ¥ — ¢ *2%5 W, which is explicitly
broken by the mass term myg. We therefore expect to generate both a g(a) and V(a) and

,10,



the low-energy effective Lagrangian should be of the form equation (2.1). We shall see that
this simple model captures a lot of the features of the QCD axion.

4.1 The effective potential

In order to calculate g(a) and V'(a) in this simple model, we compute the effective action
by integrating out the massive fermion,

iSeg = Trln [1 (zlﬂ — My — feia%)} . (4.2)
This yields an effective potential for a constant axion a as
V(a) =2iTrn [82 +m% 4+ 2my f cosa + fz} . (4.3)

This is simply the Coleman-Weinberg potential following from a particle with an effective mass

4 9 (@
———si — 4.4
I, oo (2>> (4.4)

z

m(a)? =m% + 2my fcosa+ f2 = (my + f)? (1 -

where we have defined the parameter

f
= . 4.5
i= (4.5)
The Coleman-Weinberg potential V'(a) is
2 m(a)!. m(a)®
V(a) = —cim(a)” — 162 In g (4.6)

where c¢; and ¢y are renormalization scheme-dependent quantities.

This potential shares many features of the QCD axion. For instance, the potential becomes
axion independent when z — {0, 00} as this is when either f or my are zero, the latter being
the shift symmetry restoring limit in which the axion can be rotated into a F F term.

In the limit z = 1, the effective mass of the particle m(a) vanishes at the chiral symmetry
restoring point a = 7 and should not be integrated out. This is reflected by a singularity
in V" at a = .

4.2 The effective axion-photon coupling

Just as with the QCD axion, one expects to generate an effective axion-photon coupling g(a)
from shift symmetry breaking. Such terms can be calculated by first taking a derivative of
the effective action (equation (4.2)) with respect to a to obtain

0Seft Vs fetT oy [5G+ mye 4 f)
da i) —my — felar »+ m(a)?

The trace is both over spinor indices as well as the implicit momentum integrals and

(4.7)

this time we keep both a constant axion a and a constant field strength F),,, such that
(]D)2 = D? — 15, F" with 0., = %[v,,7]. By matching equation (4.7) with the same
derivative of the low-energy effective axion-Maxwell action (eq. (2.1)), we find ¢'(a).

— 11 —



Since ¢'(a) is CP even, we expand equation (4.7) to second order in F' and keep only
CP odd terms as

0Sef 1 f2+myfcosa I B
5a ——loda = 1t ( 5 (D2 1 m(a)2)’ o E,,0" Fag | - (4.8)
The trace can now be reduced by using the gamma matrix identity Tr (v°0,,005) = —id€,mas

and inserting a trace over four momenta yields

5563 d4p f?+myfcosa
|odd =2i /

T 7 (@) FF. (4.9)

The momentum integrals are convergent and rewriting in terms of the order parameter z yields

0Seft 1 22 4+ zcosa ~
FF. 4.10
da g lodd = 1672 (1 + 2zcosa + 22 ( )

Comparing this result to the effective low-energy action of the axion (equation (2.1)) allows
for the matching

2
, z“+zcosa
= . 4.11
g(a) 14+ 2zcosa + 22 ( )
Integrating this function yields the effective low energy axion-photon coupling as
(a) = 5o — arctan ({7 tan § ) ~ sign(1 ~ 5)r6(a ) (4.12)
= —q — arctan an— | —sign(l — 2)m0(a — ). .
g(a 5@ — arctan | . 5 g

The strength and sign of the © Heaviside-function are required by the continuity of the
integral of equation (4.11).

Similar to the potential, g(a) captures many features of the symmetries of the Lagrangian
in its fully summed form. For instance, in the limit z = oo or mg = 0, g(a) becomes
aFF. When z = 0, the effective coupling to photons vanishes as f = 0. Thus in both
cases g(a) becomes of the form Za when the axion becomes massless as predicted by general
symmetry arguments.

Similar to the QCD axion, in the limit z — 1, there is an apparent restoration of a
Zo symmetry that acts on the fields as

U(t, x) — AOU(t, —x) Au(t,x) = (—1)FA,(t, —x) a(t,z) — a(t,—x), (4.13)

where (—1)# = 1 if u =t and —1 otherwise. This symmetry leaves the Lagrangian invariant

in this limit up to the change of the Chern-Pontryagin density F'F'. Correspondingly, the

profiles for hm g(a) and lim+ g(a) differ and the monodromies are respectively 0 and 1.
—1- z—1

Both proﬁles of g(a) also have a discontinuous jump at the chiral symmetry restoring point

a = m where the fermion becomes massless.
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5 Axions from extra dimensions and g(a)

A class of interesting axions is those that descend from gauge theories and higher form fields
in extra dimensions. These are particularly motivated both due to the fact that they arise
generically in string compactifications as well as due to high quality global symmetry that
descends from a gauge symmetry in the bulk.

In these models, axion potentials arise from charged objects wrapping internal cycles,
which appear as instantons in the 4D theory, see e.g. [31, 40-43]. Alternatively, this potential
can be thought of as arising from the axion dependence of a KK tower of states which
undergoes spectral flow as axion a — a + 27. A similar effect arises from a tower of dyonic
states in axion-Maxwell theory [44].

In this section we bridge the relation between these two sources for the axion potential
through an instructive example. In doing so, we show that massive charged fermions with
additional compact degrees of freedom coupled to the axion generate a similar axion potential
V(a) and an effective axion-photon coupling g(a).

In appendix A, we reformulate the results of this section in terms of an effective worldline
formalism of a charged massive 4D fermion with additional compact degrees of freedom
coupled to the axion. In doing so, we derive the effective axion-Euler-Heisenberg Lagrangian
to all orders in constant a and F'.

5.1 5D instantons

We consider a U(1) gauge theory with gauge field A in 5D Euclidean space (g, = 0,,,) with
a massive charged fermion W, with the fifth dimension y compactified on a circle of radius R,

S = /d‘{r/dy [—;GZFMNFMN—\I!T (D+m)¥| . (5.1)

The axion is identified with a Wilson loop [ dyA around the compact extra dimension in
almost axial gauge as

a(z)

As(z,y) = R

(5.2)

In any theory with a compact dimension, the modes of the particle can be understood in terms
of a tower of states (KK modes). In the present theory, this leads to a description of the 5D
fermion as a tower of electrically charged massive 4D fermions with axion-dependent masses.

An alternative and more useful representation for our purposes is in terms of winding
modes of the fermion around the compact dimension. Non-local loops of the fermion around
the compact dimension appear as instanton effects in 4D, giving a mass to the axion. In
such a formulation, the axion dependence of the theory can be put into a twisted boundary
condition for the fermions [45],

U(y + 2mnR) ~ ™D W(y) (5.3)

in which we have also given the fermion additional anti-periodic boundary conditions to
align the minimum of the potential with a = 0.
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The Green’s function on the compactified space G in the presence of an axion can
similarly be decomposed as a sum over twisted flat space Green’s functions D as

[ee)
G(z,y)= Y ™™ Dp(z,y+2mnR). (5.4)
n=—00
Thus, only fermion propagators that loop around the extra dimensions are sensitive to
an axion background, and can hence generate a potential for the axion and an effective
axion-photon g(a).? This effect is suppressed by the small spacelike propagator for heavy W

—27TRm

to loop around the extra dimension z = e , such that the instanton contributions to

the axion effective action can be packaged in the complex number quantity,

Z = e ?rhimeie, (5.5)
The real and imaginary parts of powers of Z respectively contribute to the CP even potential
V(a) and CP odd effective axion-photon coupling g(a). Similar contributions were noted
to the superpotential in [31].

The equivalence between a tower of states (e.g. dyons) and instantons is exactly given
by the equivalence between the KK mode and winding modes formulation [46] (of which
equation (5.4) is a special example). The relation between the two is provided by Poisson
resummation [44],

o0

Z s (n — 2(;) = ki: e *aS(k), S(k) = /_O:o dr e 2™ 25(z) . (5.6)

n=—0oo

We proceed to calculate both the potential V(a) and effective axion-photon coupling
g(a) by evaluating the effective action (eq. (5.1)) after integrating out the massive charged
fermions in the winding mode basis. An alternative derivation of both V(a) and g(a) using
KK modes can be found in the appendix B.

5.2 Calculation of V (a)

In order to obtain an effective action for the axion and photons, we integrate out the
fermions to obtain

SerlaAl — / DYDY eSla-AY] (5.7)
This yields an effective action
Settla, A] = Sa, A] + Tr (log (=) —m)) . (5.8)

A simple way to calculate V(a) is to take a derivative of the effective action (5.8) with
respect to a constant axion a and set the photon field to zero. This yields

6Seff
da

20n flat space, integrating out 5D fermions generates a level %—Chern—Simons term. In order to still have

(27R) D —Tr(:G) . (5.9)

an axion gauge symmetry, the action therefore implicitly includes a primordial level i% Chern-Simons term,
which won’t concern us for the rest of the calculation.
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The compact Green’s function G can be expanded in terms of twisted flat space Green’s

functions as

00 ) en?ﬂ'Ras
Tr (15G) = Y ety (m;, i ) (5.10)
m

n=—oo

Multiplying top and bottom by the same factor, one arrives at

o0

n2m RO5 —m
Tr(1:G) = Y ™ Ty (me 2(;)2(? ~ )> . (5.11)

This allows us to calculate the 4D potential by equation (5.9) as

n=—oo

zn(a—l— ) zn27er5
=4 T / . 5.12
Z ° p? + (p5)? + m? (5.12)

n=—oo

Note that this average of momentum in 5D is non-zero due to the discrete nature of the
momenta. Integrating these out® yields

—=—4 Z " sin ( )/(;l::;enl%m Vprtm? (5.13)

Integrating over momenta and with respect to the axion a yields the effective potential

m? X1 9 3 3
— —n27|Rm|/_1\n
V(a) GnR)? 7;1 7T2n36 (=1)"cos (na) [ 1+ S Rmn + (277Rmn)2 . (5.14)

This potential is known as the one generated by a four-dimensional particle with a rotor degree
of freedom coupled to the axion [44] and was also discussed in various limits in [45-48]. Various
other representations of this potential are recorded in the appendices in equation (A.12)
and equation (B.2).

We see that for the 5D instantons, the spurion is parametrized by the parameter

—2mRm with the symmetry z <> % leaving the potential invariant and implementing

z=ce
the —m to m domain wall.

At the symmetric point z = 1, the 5D fermion becomes massless and the Lagrangian
has an apparent Zy (5D parity) symmetry, which is broken by the topological Chern-Simons
term. In this limit, at the point a = 7, the lightest 4D fermion in the tower becomes massless
and a 4D U(1)-chiral symmetry is restored, meaning that this fermion should not have been

integrated out. This is reflected by a singularity of V" at a = .

5.3 Calculation of g(a)

In this section, we calculate the effective axion-photon coupling resulting from a charged
massive fermion with additional compact degrees of freedom coupled to the axion. The
existence of such a g(a) was already well-known in the context of finite temperature field
theory in various dimensions see e.g. [49, 50] and references therein.

3The n = 0 term is axion independent and vanishes due to CP symmetry.
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We can calculate g(a), the effective axion-photon coupling, by taking a derivative of the
effective action (equation (5.8)) with respect to the axion, which will contain a term of the form

gl( ) O Seft
1672 FF C (2ﬁR>75a . (5.15)

The calculation of g(a) will proceed along similar lines as in section 4. We keep both a
background constant axion a and a constant background field of the zero KK mode of the
photon F,E?,) which we simply write as F},,. In these circumstances, (JD)Q =D?— %O'W,F“V.

Returning to the effective action in equation (5.9) and keeping only the relevant CP

odd terms as

5Seff

€n27rR85
( ) |odd =mi Z in(at) Tr ( W) . (516)

n=—0oo

Expanding this to second order in F', one obtains

5Ses m 0 (o en27rR<95 5
(27TR) sa |odd = ZZ n:z_:oo €Zn(a ”)Tr ’}’5m0’“uFuy0’a Fa,@ . (517)
sing the identity 'IT (v°0,,0083) = —4€,003 One arrives at
Using the identity Tr (20,004 4€40p i
S OO zn27er _
(27 R) 2| 4q = 2mi einlatm) / 5 FF. (5.18)
da oo 2+ p*+m?)

The integrals over momenta are convergent. Performing the integrals yields

5 ' I _
(27 R) ?eﬁ|odd o —sign(m) S en@tme2mlRmnl p (5.19)

n=—oo

By comparing with equation (5.15), we find that

. oo
g/(a) _ Slgr;(m) Z ein(a+7r)e—27r|Rmn| ) (520)

This sum can be explicitly calculated and yields a ¢'(a) of the form

1 sinh 2rRm
2 cosh 2rRm + cosa

d(a) = (5.21)

Integrating this with respect to a and adding a primordial :I:%—level Chern-Simons term (see
foonote 2) yields our final result for the axion-photon coupling as,

g(a) = :l:%a + arctan (1 ® tan (;)) + wsign(l — 2)O(a — ). (5.22)

+z

The strength and sign of the © Heaviside-function are required by the continuity of the
integral of equation (5.21).
In the limit R — oo, equation (5.22) reduces to the well-known result,

g(a) = ; (il + ’m|) (5.23)
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Similar to the QCD axion, there is an apparent Zo (5D parity) restoration as m — 0 or z — 1

in equation (5.1). The profiles and monodromies of lim g¢(a) and lim+ g(a) differ however
z—1— z—1

due to the gauge-parity anomaly. In the same limit z — 1, there is a jump in both profiles
of g(a) at a = 7 due to the lightest fermion in the tower becoming massless.

In the 5D theory, a domain wall describing the —m — m transition has a massless chiral
fermion on it and describes anomaly inflow consistent with our 4D analysis.

6 Discussion

We have considered the general properties of the monodromic axion-photon coupling g(a) and
the symmetries of the low-energy axion-Mawell Lagrangian in the presence of such a coupling.
We argued that the non-quantization of ¢’(a) is a spurion for the axion shift symmetry. The
connection between the axion potential and this coupling has been considered supported by
several examples including the QCD axion, perturbative shift symmetry breaking and fermions
with additional compact degrees of freedom. In all such cases, a prototypical monodromic
function g(a) was derived and could be expanded in terms of a linear monodromic function
with same monodromic charge as g(a) and a periodic function. In some cases only the first
few terms in the expansion of the periodic function dominated. However, in many simple
models the whole Fourier tower needs to be summed up to get the relevant g(a). In such
cases g(a) captured the rearrangement of heavy degrees of freedom through its singularities
at isolate points. This correlated with cusps and singularities in the axion potential.

There are a number of model building applications of this formulation. Instead of
building effective field theories (EFTs) with polynomial axion couplings, more general non-
linear couplings can arise naturally through the g(a) portal. This may have interesting
avenues for constructing more general natural potentials for axions. Phenomenologically, the
full non-linear form of g(a) is most relevant for scenarios where the axion traverses an O(1)
fraction of its field range. This is certainly true for axion strings and domain walls, and sharp
features in g(a) can affect axion emission from these objects. It can also be true for dense axion
objects, like axion miniclusters or superradiant axion clouds surrounding rotating black holes.

It will be interesting to study the effective photon coupling for mesons in the chiral
Lagrangian, e.g. for the pion g(7°) after integrating out n’. It has been shown [51] in the
context of a one-flavor QCD N that degrees of freedom rearrange on the ' — 7' + 27 domain
wall, leading to a fractional quantum hall droplet and a potential jump in g(n’). It will be
nice to see this physics captured within the effective field theory.

Lastly, several contributions to g(a) could be considered in the presence of CP-odd
sources of axion shift symmetry breaking such as magnetic monopoles (with fermions) and
non-Abelian instantons.

Note added. While this manuscript was being finalized we became aware of other studies
appearing today [52, 53] which also consider quantization of the axion-gauge couplings. The
main focus of these works is different from the non-linear coupling to photons highlighted
in this paper.
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A Axion-Euler-Heisenberg

In this appendix we connect our results back to those of a 4D worldline particle with a
compact additional degrees of freedom coupled to the axion. We do this using the Schwinger
proper time formalism and consider a fermionic particle with electrically charged translational
modes z* and a compact additional degree of freedom ¢ which is coupled to the axion a. In
doing so, we show how a potential V' (a) (equation (5.14)) and effective axion-photon coupling
g(a) (equation (5.22)) arise in such a wordline formalism. This will provide us with the low
energy effective axion Maxwell field theory to all orders in a and F' by studying the axion-
Euler-Heisenberg Lagrangian resulting from integrating out such fermions. Axial couplings
to the worldlines of particles have been studied in [54, 55]. The effective Euler-Heisenberg
Lagrangian following from loops of fermions with couplings to non compact psuedoscalar
particles has been studied in [56].

We can derive the 4D wordline formalism of a fermion with additional compact degrees
of freedom coupled to the axion by starting from the 5D effective action (5.8), repeated
here for completeness,

SoOTr(In (=P —m)) . (A1)

The presence of a psuedoscalar (the axion) implies that the Euclidean effective action has both
a real and imaginary part as the operator ) no longer has a positive definite spectrum. For
this reason, the contributions to the effective action are split into a real and imaginary part as

SO Tr(In|P+m|) +iTr (Arg (=) —m)) . (A.2)

For our purposes, this split is done by taking a derivative of the effective action (A.1) with

respect to m? as

as 1 1 1

—DO:;r| ——— | —5—Tr # . (A.3)
The first term in equation (A.3) can be reformulated using standard techniques [57, 58] in

terms of a wordline effective action for a fermion with 4 translation degrees of freedom z*
and one additional compact degree of freedom ¢ as

S D —% ; CfeST”Q/qu Jo dr (3@ —iazs) /Da:ei Jo dT(ing*m.“AM)Spin[a;,A]. (A4)
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Here we have isolated the compact fifth degree of freedom ¢ of the fermion that is coupled
to the axion and the spin factor is given by

Spin|z, A] = TrPexp {—i[y“,vl’] /Os dTFW(x(T))} . (A.5)

From the effective action it is clear that this term will generate an effective potential V (a)
for the axion a and an effective Euler-Heisenberg Lagrangian, which shall be calculated in
the next section. This effective potential was studied for loops of bosonic particles with
additional rotor degree of freedoms coupled to the axion in reference [44].

Importantly however, the second term in equation (A.3) does not vanish when an axial
coupling is present. This term generates an effective axion photon coupling. We thus see
that loops of fermionic particles with an additional compact degree of freedom g and charged
translation modes z* can generate an effective FF coupling when this additional degree
of freedom is coupled to the axion.

We now proceed to calculate both the real and imaginary contributions (eq. (A.2)) to
the effective action resulting in an effective axion-Euler-Heisenberg Lagrangian. We shall do
this calculation in terms of the KK mode decomposition with frequencies w;,, = 575 (2n + 1)
and n € Z.

The first term in equation (A.3) can be rewritten using Schwinger-proper time as

ST (21 ) _1 / " ds e [(afe 1) (A.6)
_lD + m?2 2 Jo
We proceed by splitting the covariant derivative (ID)? = (ID4)? + (1)5)? into the 4D covariant
derivative 1), and the covariant derivative over the fifth dimension )5 and have taken the
axion a and field strength F' to be constant.
The trace over the 4D covariant derivative in the presence of a constant field strength
F' can be calculated using the well-known identity in 4D [59, 60],

2 1 FF 5
T Pas| )| = T o A7
r [(w\e ]xﬂ 6472 Im cosh (s X) g [exp ( 971 )] (A7)
and the trace identity as
Tr [exp (—ZUWF’“’H =4 Recosh sX, (A.8)

with X given by

X

/1 i~
“F24 _FF. A.
2" T3 (A.9)

We can now calculate the action S by plugging these identities into equation (A.6) and
integrating with respect to m? (equation (A.3)) to obtain the well-known formula for the
Euler-Heisenberg Lagrangian. In case of a constant axion a and field strength F},, this is

e}

1 ® ds 2RecoshsX _~ 1 a \2
Lo — / —sm FF —(wn—525) s, A.10
3272 Jo s TmcoshsX = (27R) 2 (A.10)

n=—0oo
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By expanding this formula in powers of s, we can find an alternative integral representation
for the potential of the axion. Observe that to second order in s,
RecoshsX _~ 4 2

P R = 4 ZF? 2y, A1l
Im cosh s X 52 + 3 +0(s7) ( )

We recognize the first term as the vacuum energy contribution to the Euler-Heisenberg
Lagrangian. This yields an alternative integral representation for the potential of the axion
of the form

1 0 dS —sm2 0 —(wp— =2 28
V(a):@/o ?e s n;we (wn—3577) , (A.12)

and can be rewritten in terms of instanton supressed contributions using Poisson resum-
mation [44].

We now proceed to calculate the imaginary part of the effective action (equation (A.2))
by calculating the contribution of the second term in equation (A.3). In doing so, we recover
an alternative representation for g(a) and complete the axion-Euler-Heisenberg Lagrangian.

The second term in equation (A.3) can be calculated in a similar manner using Schwinger
proper time

—iTr <JD> = L /OOO ds e=5™ Ty {<x|’y5 (85 - 2276:R> em25‘$>] . (A.13)

2m _Ipz + m2 2m

This term is non-zero due to the discrete nature of the momenta of the additional degree
of freedom.

This term can now be straightforwardly calculated by again splitting the covariant
derivative and using (10,)? = D? — %O'/WFW/ and the trace identity

Tr {75exp (—;JWF“”)] = —4 ImcoshsX . (A.14)

Using this latter trace identity and our expression for the 4D propagator (equation (A.7)),
we can calculate the imaginary contribution to the effective action as

dm? = 327%m 2R

n=—oo

dc i U SO o O\ (wn—=)s
— 2m/o ds e FuF S (wn— )e( 7w o (A.15)

Performing the integral with respect to s and then the integral with respect to m, one obtains
the contribution to the effective action

. 00
LD ﬁFw,Fw, Z arctan <m> . (A.16)

a
n=—o0o Wn 2R

By taking a derivative with respect to a, we arrive at expression in equation (B.8) and thus
find another representation of g(a) as an infinite series.

The sum of equations (A.10) and (A.16) provides us with an alternative worldline
formulation resulting in an effective axion-Euler-Heisenberg Lagrangian providing us with the
effective low energy axion Maxwell theory Lagrangian to all orders in the axion and photon.
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B Kaluza-Klein calculation

In this appendix we re-derive the axion potential V' (a) (equation (5.14)) and the effective
axion coupling g(a) (equation (5.22)) for a tower of fermionic states in the Kaluza-Klein
decomposition basis. We take the fermion to satisfy anti-periodic boundary conditions such
that w, = 575 (2n + 1) in order to align the minimum of the potential with a = 0. The axion
potential for other boundary conditions can always be obtained by shifting the axion a.

B.1 The axion potential

The axion gains an effective potential from interactions with the fermion. We can calculate
this effective potential by taking the axion a to be constant,

-2 Z / d'p ln<< n—27:_lR>2—|—p2+m2>. (B.1)

n=—oo

The potential in equation (B.1) is well-known [47] and the resulting potential for the
axion is

d*p
V(a) = -2 / W In (1 + e W REp | 927 REp (g a) . (B.2)

B.2 The effective axion-photon coupling

We can calculate g(a), the effective axion-photon coupling, by taking a derivative of the
effective action (equation (5.8)) with respect to the axion, which will contain a term of the form

0Sesr

I YD pp  orR) =

1672 (B-3)

We keep both a constant axion a and constant zero KK mode of the photon F},,.
Proceeding with the calculation, from equation (5.8), we have that

5Seﬂ' 5
(2rR)—— 50 - Tr(

Dim)'

For a constant axion we can expand the denominator as

(2T R) O D —Tr (z'*y5 p—m ) . (B.5)

da D2 — LomF,, —m?

We proceed to expand the denominator to order F? as

5Seﬁ' 1 1 3 v Oéﬁ
(@2rR)— 34T‘< (D~ 7”)(ly3_7n2> oM Fuyo® Fog | (B.6)
Using the identity Tr (Y’ ou,005) = —4¢€,08 and ignoring higher order F' contributions,
we find that
6Seff 22m 1
2 . B.
(2mR) da 27TR Z / 3 (B7)

Wn, QWR) +k’2+m2)

— 21 —



Performing the momentum integral yields

) ) -~ = 1 1
SeﬂD szF Z

2 .
(2 R) da 2rR° £~ 1672 (wn — ﬁ)Q +m2

—00
The frequency sum can be done by a method of images as

1 i 1 1 sinh (27 R|m/|)

27TR ne—oo (wn ~ 5R

Plugging this into equation (B.8), one obtains

0Seft Ny sinh (2w R|m)) sign(m) PR

2R
(2mR) 5a ~ "cosh (2rRm) + cos (a) 3272

By comparing this expression with equation (B.3), we see that

sinh (27 Rm)
cosh (mRm) + cos (a) ’

g'(a) = %

which implies

g(a) = arctan <tanh (mRm) tan (;)) + wsign(m)O(a — 7).

This function has the correct %—level Chern Simons.

a )2 +m2  2|m]|cosh (2rRm) + cos (a)

(B.9)

(B.10)

(B.11)

(B.12)
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