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1 Introduction

Present experimental data on B̄ → D(∗) semileptonic decays points to the possibility of
lepton flavor universality violation (LFUV) that will affect charged-current (CC) b→ cτ−ν̄τ
semileptonic transitions. The ratios RD = Γ(B̄ → Dτ−ν̄τ )/Γ(B̄ → Dµ−ν̄µ) and RD∗ =
Γ(B̄ → D∗τ−ν̄τ )/Γ(B̄ → D∗µ−ν̄µ) have been measured by the BaBar [1, 2], Belle [3–6] and
LHCb [7–10] experiments and their combined analysis by the HFLAV collaboration indicates
a 3σ tension with SM predictions [11, 12].

LFUV requires the existence of new physics (NP) beyond the Standard Model (SM) and,
if confirmed, would have a tremendous impact in particle physics. This makes the study of as
many analogous CC decays as possible timely and necessary in order to confirm or rule out
LFUV. The RJ/ψ = Γ(B̄c → J/ψτ−ν̄τ )/Γ(B̄c → J/ψµ−ν̄µ) ratio has been measured by the
LHCb collaboration [13] finding a 1.8σ discrepancy with SM results [14–26]. Another reaction
where a similar behavior was to be expected is the baryon Λb → Λc`ν̄` decay. However, in this
case, the recent measurement of the RΛc = Γ(Λb → Λcτ−ν̄τ )/Γ(Λb → Λcµ−ν̄µ) ratio by the
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LHCb collaboration [27] is in agreement, within errors, with the SM prediction [28]. In this
experiment, the τ− lepton was reconstructed using the τ− → π−π+π−(π0)ντ hadronic decay.
It is then of great interest to see whether the current RΛc experimental value is confirmed or
not using the muonic reconstruction channel. Such an analysis is under way [29].

LHCb has very recently [10] presented the first simultaneous measurement in hadron
collisions of RD∗ and RD0 , identifying the tau lepton from its the decay mode τ− → µ−ντ ν̄µ.
The measured values are RD∗ = 0.281 ± 0.018 ± 0.024 and RD0 = 0.441 ± 0.060 ± 0.066,
where the correlation between these measurements is −0.43. The result for the former ratio
supersedes the higher value previously reported in [7] and it is now in better agreement with
the SM. LHCb earlier measured RD∗ = 0.291± 0.019± 0.026± 0.013 [8, 9] using hadronic
tau decays, but a new result was reported in [30], RD∗ = 0.257 ± 0.012 ± 0.014 ± 0.012,
obtained after combining the previous results from refs. [8, 9] and a new one from a partial
Run 2 data sample [30]. The final LHCb result for RD∗ from hadronic tau decays is in closer
agreement with the SM expectation. Nevertheless combined global results for RD∗ and RD
from different experiments and detection techniques remain around 3σ away from the SM
expectation (HFLAV Winter 2023 update [31] presented in [12]).

One would also expect to see LFUV effects in B̄s → D
(∗)
s semileptonic decays which

are SU(3) analogues of the B̄ → D(∗) ones. A measurement of RDs by LHCb [12] is also
underway, making the study of these reactions timely. The theoretical analysis of NP effects
in those decays requires however knowledge of beyond-the-SM (BSM) form factors that have
not yet been determined. The HPQCD lattice QCD (LQCD) collaboration has evaluated the
SM form factors for the B̄s → Ds and B̄s → D∗s semileptonic transitions in refs. [32] and [33],
respectively. More recently, HPQCD has given updated B̄s → D∗s SM form-factors [34]. This
latter work also provides the form factors that expand the matrix elements of the NP c̄σµνb

operator for initial B̄s and final D∗s states.
On the other hand, the approximate heavy quark spin symmetry (HQSS) of QCD allows

one to construct an effective field theory (HQET) to compute these form-factors. Indeed, the
HQET expressions for them can be obtained up to next-to-leading (NLO) O(αs,ΛQCD/mc,b)
and next-to-next-to-leading (NNLO) O(αsΛQCD/mc,b,Λ2

QCD/m
2
c,b) orders from refs. [35]

and [36], respectively.1 One can use this information to fit the leading and sub-leading HQSS
Isgur-Wise (IW) functions, which describe the B̄s → D

(∗)
s form factors, to the lattice data

of refs. [32] and [34]. First, from the comparison of results to those available for B̄ → D(∗)

decays, one could in principle estimate the size of the SU(3) light-flavor breaking corrections.
Second, and more interesting, once the IW functions are known, the scalar, pseudoscalar and
tensor2 form factors that are needed, in addition to the SM ones, for an analysis of possible
NP effects on the B̄s → D

(∗)
s τ ν̄τ decays can be obtained from their HQET expressions. Thus,

we will show results for tau spin, angular and spin-angular asymmetry distributions for these
decays obtained within the SM and three different NP scenarios, and analyze the role that
different tau asymmetries in the B̄s → D

(∗)
s τ−ν̄τ decay could play, not only in establishing

the existence of NP, but also in distinguishing between different NP extensions of the SM. We

1The partial NNLO O(Λ2
QCD/m

2
c) corrections were previously studied in refs. [37, 38].

2As already mentioned, LQCD tensor form factors were computed in [34] for the B̄s → D∗s transition.
However, there is no LQCD input on the tensor matrix element in the case of the B̄s → Ds decay mode.
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will also study partially integrated angular and energy distributions of the charged particle
produced in the subsequent τ− → π−ντ , ρ

−ντ , e
−(µ−)ν̄e(µ)ντ decays. The latter differential

decay widths have a better statistics than the asymmetries themselves and they could also
help in establishing the presence of NP beyond the SM.

The B̄s → D
(∗)
s form-factors have also been studied using HQET and sum rules in [38].

In that work, additional constraints are found which allow the authors to go beyond the
assumption of SU(3) flavor symmetry, and SM lepton-flavour universality ratios are reported.
NP effects on both B̄s → Ds and B̄s → D∗s decays have been discussed in [39, 40] using
the SM LQCD form-factors computed in refs. [41] and [33], respectively. The works of
refs. [39, 40] do not consider NP tensor operators and make use of the equations of motion to
estimate the NP scalar and pseudo-scalar form-factors. The distribution of the tau-decay
products is not studied in either of the two works and hence they do not have access to the
full set of tau angular, tau spin and tau angular-spin asymmetries that can be extracted
by measuring the τ in a general polarization state. Moreover those papers do not address
the distribution of the tau-decay products. However, different angular distributions from
the decay products of the outgoing D∗s are studied in [40].

In ref. [36], the NNLO corrections were computed introducing (postulating) a supple-
mental power counting within HQET. The authors of that work claimed that the postulated
truncation leads to small, highly constrained set of second-order power corrections, compared
to the standard approach. Nevertheless, there appears a plethora of free parameters, a number
considerably larger than in the NLO case of ref. [35]. Though, it seems the scheme followed in
ref. [36] provides excellent fits to the available B̄ → D(∗) LQCD predictions and experimental
data, we have found that the NNLO parameters cannot be determined reliably from the
available B̄s → Ds and B̄s → D∗s LQCD form-factor data, given the statistical and systematic
precision with which they are currently obtained. For that reason, we will limit this work
to NLO HQET corrections, except in the case of the form factors that are protected from
O(ΛQCD/mc) corrections at zero recoil [42], for which we will include NNLO O[Λ2

QCD/m
2
c ]

terms. These form factors do not vanish in the heavy quark limit and turn out to be the best
determined in the LQCD simulations, in particular near zero recoil, making it necessary to
consider some sub-leading corrections in addition to those induced by short-distance physics.

This work is organized as follows. In section 2 we describe the fitting procedure to obtain
the IW functions, with some auxiliary details collected in the appendix. A thorough analysis
of NP effects, based on observables that can be measured by the analysis of the visible
kinematics of the subsequent hadronic τ− → π−ντ , τ

− → ρ−ντ and leptonic τ− → `−ν̄`ντ
decays, is conducted in section 3. Finally in section 4 we summarize the main findings.

2 HQET fit of the B̄s → D(∗)
s semileptonic-decay LQCD form factors

and SM distributions

In this section we will describe how we fit the LQCD form-factor data from refs. [32, 34] to
their expressions deduced from NLO HQET and derived in ref. [35]. A comparison of both
sets of form factors will be shown below in figure 3. We will also show the SM predictions
from both sets for differential decay widths and tau spin, angular and spin-angular asymmetry
distributions. Further use of HQSS will allow us to predict BSM form factors not evaluated
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in the lattice, and that are needed to test possible NP effects in B̄s → D
(∗)
s τ−ν̄τ semileptonic

decays, something we will do in the next section.

2.1 LQCD form factors

We will use the LQCD results from HPQCD for the SM form factors of the B̄s → Ds decay [32]
and the SM and tensor form factors of the B̄s → D∗s decay [34].

2.1.1 B̄s → Ds

For the B̄s → Ds semileptonic decay, the form-factor decomposition in ref. [32] is

〈Ds; ~p ′ |c̄(0)γµb(0)|B̄s; ~p 〉 = f+(q2)
[
pµ+p′µ−

M2
Bs
−M2

Ds

q2 qµ
]
+f0(q2)

M2
Bs
−M2

Ds

q2 qµ, (2.1)

with the constraint

f0(0) = f+(0). (2.2)

The form factors are parametrized as [32]

f0(q2) = 1
1− q2/M2

Bc0

2∑
n=0

ã0
nz̃

n,

f+(q2) = 1
1− q2/M2

B∗c

2∑
n=0

ã+
n

[
z̃n − (−1)n−3n

3 z̃3
]
, (2.3)

where qµ is the four-momentum transfer to the leptons and

z̃(q2) = z(q2; tth, 0), tth = (MBs +MDs)2. (2.4)

where
z(q2; tth, t0) =

√
tth − q2 −

√
tth − t0√

tth − q2 +
√
tth − t0

, (2.5)

The constraint in eq. (2.2) imposes ã0
0 = ã+

0 .
To improve the quality of our HQSS form-factor fit, we change the parametrization above

and symmetrize the range of z corresponding to 0 ≤ q2 ≤ t− where t− = (MBs −MDs)2.
Thus, we use

f0(q2) = 1
1− q2/M2

Bc0

2∑
n=0

a0
nz

n , f+(q2) = 1
1− q2/M2

B∗c

2∑
n=0

a+
n z

n, (2.6)

with
z(q2) = z(q2; tth, t0), tth = (MB +MD)2 , t0 = tth −

√
tth(tth − t−). (2.7)

The central values and errors of the new expansion coefficients, together with the corresponding
correlation matrix, are collected in table 6 of the appendix. Note that we use eq. (2.2) to fix
a+

2 for B̄s → Ds. The quality of this new expansion can be seen in figure 1 where we compare
the new parameterization with the original one in ref. [32]. The agreement is excellent.
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Figure 1. Comparison of the original SM-LQCD form factors for B̄s → Ds [32] and their description
in this work using the parametrization of eq. (2.6). Both central values and 68% confidence level (CL)
bands show excellent agreement.

2.1.2 Bs → D∗s

In this case, in ref. [34] they use the HQET basis to expand the matrix elements of the
vector, axial and tensor quark-current operators

〈D∗s ;~p ′, r|c̄(0)γµb(0)|B̄s;~p〉= i
√
MBsMD∗s hV (q2)εµνρσε∗ν(~p ′, r)v′ρvσ,

〈D∗s ;~p ′, r|c̄(0)γµγ5b(0)|B̄s;~p〉=
√
MBsMD∗s

{
hA1(q2)(ω+1)ε∗µ(~p ′, r)−hA2(q2)[ε∗µ(~p ′, r)·v]vµ

−hA3(q2)[ε∗µ(~p ′, r)·v]v′µ
}

〈D∗s ;~p ′, r|c̄(0)σµνb(0)|B̄s;~p〉=−
√
MBsMD∗s{hT1(q2)ε∗α(~p ′, r)(v+v′)β

+hT2(q2)ε∗α(~p ′, r)(v−v′)β+hT3(q2)[ε∗(~p ′, r)·v]vαv′β}εµναβ ,
(2.8)

where ε∗(~p ′, r) is the polarization vector of the final D∗s meson, v(v′) is the four-velocity of
the B̄c(D∗s) meson and ω = v · v′. The convention ε0123 = +1 is used.

In ref. [34], the above form factors include a third-degree polynomial in ω− 1, logarithms
determined from staggered chiral perturbation theory and some extra analytical dependence
on M2

π(K). The continuum-limit values can be extracted from the supplemental material
available in the source file provided in ref. [34]. Since the logarithms have a very mild
dependence on ω − 1, and in order to facilitate the further HQSS form-factor fit that we are
going to conduct, we have made a description of the lattice form factors just as a third-degree
polynomial in ω − 1. Thus, we use

hF (ω) =
3∑

n=0
aFn (ω − 1)n. (2.9)

In the appendix, we give the central values and errors of the new expansion coefficients
in tables 7 and 8 while the correlation matrix is compiled in tables 9 to 13. Again, the
quality of these new expansions can be seen in figure 2, where we compare the results of the
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Figure 2. Comparison of the original LQCD form factors for B̄s → D∗s [34] and their description in
this work using the parametrization of eq. (2.9). Both central values and 68% confidence level (CL)
bands show excellent agreement.

simpler parametrization in eq. 2.9 with the original lattice values in ref. [32]. The agreement
is once again excellent.

2.2 HQSS form factors

In HQET, for B̄s → Ds, one normally uses the following form-factor decomposition of the
transition-current matrix elements [35]

〈Ds; ~p ′ |c̄(0)γµb(0)|B̄s; ~p 〉 =
√
MBsMDs [h+(ω)(vµ + v′µ) + h−(ω)(vµ − v′µ)], (2.10)

with h± related to f+ and f0 above through

f+ = 1
2
√
MBsMDs

[(MBs +MDs)h+ − (MBs −MDs)h−]

f0 =
√
MBsMDs

[
ω + 1

MBs +MDs

h+ −
ω − 1

MBs −MDs

h−

]
. (2.11)

For B̄s → D∗s , the corresponding expressions for the vector-, axial- and tensor-current matrix
elements have already been given in eq. (2.8).

In ref. [35], all the above form factors have been computed in the effective field theory,
up to O(αs,ΛQCD/mc,b) corrections, for the analogous B̄ → D(∗) semileptonic decays. We
take advantage of this study and use the findings of ref. [35] to describe the B̄s → D

(∗)
s
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form-factors. In the infinite heavy quark mass limit the form factors are given by the leading
IW function ξ(ω) or they are zero. It is thus convenient to factor out the IW function and
define ĥi(ω) = hi(ω)/ξ(ω), which, up to O(αs,ΛQCD/mc,b) corrections, read [35]

ĥA1 = 1 + α̂sCA1 + εc

(
L̂2 − L̂5

ω − 1
ω + 1

)
+ εb

(
L̂1 − L̂4

ω − 1
ω + 1

)
,

ĥA2 = α̂sCA2 + εc(L̂3 + L̂6),
ĥA3 = 1 + α̂s(CA1 + CA3) + εc (L̂2 − L̂3 + L̂6 − L̂5) + εb (L̂1 − L̂4),
ĥV = 1 + α̂sCV1 + εc (L̂2 − L̂5) + εb (L̂1 − L̂4),

ĥT1 = 1 + α̂s

[
CT1 + ω − 1

2 (CT2 − CT3)
]

+ εcL̂2 + εbL̂1

ĥT2 = α̂s
ω + 1

2 (CT2 + CT3) + εcL̂5 − εbL̂4

ĥT3 = α̂sCT2 + εc (L̂6 − L̂3) (2.12)

ĥ+ = 1 + α̂s

[
CV1 + ω + 1

2 (CV2 + CV3)
]

+ (εc + εb)L̂1,

ĥ− = α̂s
ω + 1

2 (CV2 − CV3) + (εc − εb)L̂4. (2.13)

The terms proportional to α̂s = αs/π are perturbative corrections computed by matching
QCD to the HQET and, although dependent on ω, they are independent of the light degrees
of freedom. The different CA,V,T functions can be found in appendix A of ref. [35]. In addition,
εc,b are given by εc,b = Λ̄/(2mc,b), with Λ̄ a low energy constant (LEC) of order O(ΛQCD)
for which we take the value quoted in ref. [35]. The six ω-dependent L̂j functions can be
written in terms of just three sub-leading IW functions χ̂2,3 and η (see eq. (8) in ref. [35])
for which the following near zero-recoil (ω = 1) expansions are used3

χ̂2(ω) = χ̂2(1) + χ̂′2(1)(ω − 1), χ̂3(ω) = χ̂′3(1)(ω − 1), η(ω) = η(1) + η′(1)(ω − 1).(2.14)

Strictly speaking, Λ̄ depends on the light-quark degrees of freedom. Thus, one expects some
SU(3) breaking that will modify its value compared to that used in ref. [35] for B̄ → D(∗)

decays. By keeping it the same, we reabsorb this change into the sub-leading IW functions
which, together with the leading one, also suffer from SU(3) breaking effects.

For the leading IW function ξ we shall take the parametrization in ref. [43], where
one has that

ξ(ω) = 1− 8ρ2ẑ + (64c− 16ρ2)ẑ2 + (256c− 24ρ2 + 512d)ẑ3 (2.15)

and
ẑ(ω) =

√
ω + 1−

√
2√

ω + 1 +
√

2
. (2.16)

In addition, following ref. [43], we include the O[(ΛQCD/mc)2] corrections introduced in
ref. [44], which affect the form factors that are protected from O(ΛQCD/mc) corrections at
zero recoil. In our case, not only ĥ+ and ĥA1 but also hT1 . We shall use

ĥ+ → ĥ+ + ε2c l1(1), ĥA1 → ĥA1 + ε2c l2(1), ĥT1 → ĥT1 + ε2c l3(1) (2.17)
3In the case of χ̂3 one has that χ̂3(1) = 0 from Luke’s theorem [42].
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Figure 3. Comparison of the original LQCD form factors for B̄s → Ds [32] and B̄s → D∗s [33]
semileptonic decays and the HQET predictions after the fitting procedure described in the main text.

2.3 Fit of the SM-LQCD form factors to their HQSS/HQET expressions.

Treating the eleven HQET LECs ρ2, c, d, χ̂2(1), χ̂′2(1), χ̂′3(1), η(1), η′(1), l1(1), l2(1) and l3(1)
introduced above as free parameters, we can fit the LQCD form factors to their HQSS
expressions. We fit the thirty-three independent coefficients aFi , with F = +, 0, A1,2,3, V, T1,2,3,
that expand the LQCD form factors. The fit minimizes a χ2 function, that in a simplified
notation we can write as

χ2 =
∑
j

∑
k

(aj − fj)C−1
jk (ak − fk). (2.18)

Here, the sum is over all the expansion coefficients, for which the a′s represent their central
values, and the f ′s stand for the expressions of the corresponding expansion coefficients in
terms of the ρ2, c, d, χ̂2(1), χ̂′2(1), χ̂′3(1), η(1), η′(1), l1(1), l2(1) and l3(1) best fit LECs.
The fj terms are obtained in the following way: for the Ds case we first multiply the HQSS
form factors by the corresponding pole factors in eq. (2.6), and then we expand the result
in powers of the z variable defined in eq. (2.7). For the D∗s case, we directly expand the
HQSS form factors in powers of ω − 1. The covariance matrix C is block diagonal, built
from the separate Ds and D∗s covariance matrices compiled in tables 6 for B̄s → Ds and
tables 9 to 13 for B̄s → D∗s transitions respectively.

Since the LQCD results come from simulations on the same ensembles, with the same lat-
tice actions and the same treatment of the chiral and continuum limits, we expect correlations
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B̄s → D
(∗)
s B̄s → D

(∗)
s (unc) ε[B̄s → D

(∗)
s ] B̄ → D(∗) [43]

ρ2 1.29± 0.06 1.26± 0.07 0.07 1.32± 0.06
c 0.63± 0.24 0.53± 0.20 0.26 1.20± 0.12
d 0.15± 0.42 0.20± 0.37 0.42 −0.84± 0.17

χ̂2(1) −0.15± 0.13 −0.16± 0.11 0.13 −0.058± 0.020
χ̂′2(1) −0.15± 0.29 −0.50± 0.39 0.45 0.001± 0.020
χ̂′3(1) −0.03± 0.05 −0.04± 0.05 0.05 0.036± 0.020
η(1) 0.07± 0.12 0.13± 0.17 0.13 0.355± 0.040
η′(1) −0.81± 0.28 0.28± 0.80 1.13 −0.03± 0.11
l1(1) 0.04± 0.53 0.16± 0.53 0.54 0.14± 0.23
l2(1) −1.77± 0.30 −1.75± 0.30 0.30 −2.00± 0.30
l3(1) −2.86± 0.44 −2.91± 0.44 0.44

Table 1. Second column: mean values and uncertainties of the ρ2, c, d, χ̂2(1), χ̂′2(1), χ̂′3(1), η(1)
and η′(1) LECs obtained by fitting the B̄s → D

(∗)
s LQCD form factors from refs. [32, 34] to their

O(αs,ΛQCD/mc,b) HQET expressions given in [35]. The first three parameters determine the leading
IW function, while the last five enter in the 1/mc,b sub-leading corrections. In addition, l1(1), l2(1) and
l3(1) account for O[(ΛQCD/mc)2] contributions [44], which affect the ĥ+, ĥA1 and ĥT1 form factors,
respectively, which are protected from O(ΛQCD/mc) corrections at zero recoil. Third column: results
from the totally uncorrelated fit, where we consider only the diagonal elements of the matrix C in the
definition of the merit function of eq. (2.18). Fourth column: final total errors considered on the fitted
LECs and used in the evaluation of the uncertainty bands for derived observables. They are computed
by combining in quadrature the errors from the central fit (second column) with the magnitudes of the
differences between the mean values of the central and uncorrelated fits. Fifth column: results for the
analogous SU(3) fit carried out in ref. [43] to B̄ → D(∗) form-factor LQCD and experimental inputs.
Note a typo (global sign) in the numerical value of l2(1) given in the original table 1 of ref. [43].

ρ2 c d χ̂2(1) χ̂′2(1) χ̂′3(1) η(1) η′(1) l1(1) l2(1) l3(1)
ρ2 1.000 0.595 −0.288 −0.241 0.231 0.286 0.074 −0.063 −0.015 −0.015 −0.017
c 1.000 −0.839 −0.221 0.440 −0.057 −0.022 0.051 0.102 0.021 0.015
d 1.000 0.082 0.042 0.330 0.037 −0.050 −0.287 −0.018 −0.015
χ̂2(1) 1.000 −0.200 0.641 −0.222 −0.179 0.034 −0.009 −0.009
χ̂′2(1) 1.000 0.284 −0.054 −0.053 −0.263 0.029 0.021
χ̂′3(1) 1.000 0.007 0.001 −0.263 −0.033 −0.030
η(1) 1.000 0.211 0.125 −0.112 −0.085
η′(1) 1.000 −0.103 −0.026 −0.019
l1(1) 1.000 −0.014 −0.010
l2(1) 1.000 0.293
l3(1) 1.000

Table 2. Correlation matrix of the ρ2, c, d, χ̂2(1), χ̂′2(1), χ̂′3(1),η(1), η′(1), l1(1), l2(1) and l3(1)
bestfit parameters after fitting the LQCD form factors from refs. [32, 33] to their O(αs,ΛQCD/mc,b)
HQET expressions.
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between as well as within them. Lacking information on the former, we also tried fits with
the D∗s results taken as either fully correlated or fully anti-correlated with the Ds ones. That
is, we augmented the correlation matrix corresponding to C with off-diagonal blocks for these
two extreme cases with all entries taken to be either 1 or −1. However, the new C matrices
constructed in this way had negative eigenvalues. We also explored partially correlated
scenarios (all matrix elements of the Ds − D∗s off-diagonal blocks set to r, with |r| ≤ 1),
but we found positive definite covariance matrices only for very small correlations |r|, of the
percent order. Finally, we carried out a totally uncorrelated fit, where we considered only the
diagonal elements of the matrix C in the definition of the merit function of eq. (2.18). That
is to say, in this fit we also switched off the separate D∗s and Ds correlations. The results for
the central fitted parameters and errors are given in the second column of table 1, while the
corresponding correlation matrix appears in table 2. The fit has χ2/dof = 0.44. We see the c
and d coefficients are not determined with precision, which is probably a reflection of the large
uncertainties in the lattice B̄s → D∗s form factors at high ω values. Large uncertainties are
also seen in the parameters of the sub-leading IW functions and l1(1). The next column shows
the results from the totally uncorrelated fit (diagonal C matrix) which has χ2/dof = 0.32.
The two fits give compatible results. We take the magnitude of the differences between the
mean values of the central fit and those obtained in the uncorrelated (diagonal C matrix)
fit as a further systematic error that we will combine in quadrature with the errors from
the central fit to get our final error estimate for each of the parameters. Their values are
presented in the next-to-last column of table 1. We retain the correlation matrix from the
central fit (table 2). Using these ingredients we construct Gaussian distributions which are
then used to compute 68% confidence level bands for derived observables.

In the final column of table 1, we include table 1 of [43], which contains the results for
the analogous fit carried out in that work to B̄ → D(∗) LQCD and experimental form-factor
inputs. For the two parameters that are better determined, ρ2 and l2(1), we see small
variations, compatible with the expected SU(3) light-flavor breaking corrections (∼ 25−30%).
For the others, all of them evaluated here with sizeable uncertainties, the differences between
the central values in both fits are large. However, due to those sizable uncertainties, an
interpretation as genuine unexpectedly-large SU(3)-breaking effects is very much limited.

A comparison of the original LQCD form factors from refs. [32, 34] and the HQET
predictions after the fitting procedure just described is shown in figure 3. The LQCD
error bands are notably much wider in most cases and we see a good agreement, within
uncertainties, for all form-factors. The exception is hV for ω values below 1.15 where the
error bands hardly overlap.

In the next subsection, we show the different q2−distributions that fully determine the
semileptonic B̄s → D

(∗)
s τ−ν̄τ transitions for polarized final tau-leptons [45, 46].

2.4 Visible kinematics of the sequential Hb → Hcτ
−(π−ντ , ρ−ντ , `−ν̄`ντ )ν̄τ decays

If the spins of the Hb,c hadrons are not measured, the ideal experiment to obtain the maximum
information would be one in which both the momentum and spin (or helicity) state of the
τ lepton could be established. This is however not possible since the τ is very short-lived.
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Thus, information about the Hb → Hcτ
−ν̄τ parent decay has to be accessed via the visible

kinematics of the τ decay products.
We have considered the three τ decay channels τ− → π−ντ , ρ−ντ and `−ν̄`ντ , with

` = µ, e, that account for up to 70% of the total τ decay width. Of the τ -decay products,
only the charged particle d = π−, ρ− or `− will be observed and, in the zero τ -width limit,
one can write the differential decay width [46–49]

d3Γd
dωdξdd cos θd

= Bd
dΓSL
dω

{
F d0 (ω, ξd) + F d1 (ω, ξd) cos θd + F d2 (ω, ξd)P2(cos θd)

}
. (2.19)

As already mentioned, ω is the product of the four-velocities of the Hb and Hc hadrons,
which is related to the four-momentum transfer squared q2 through the relation q2 = M2 +
M ′2 − 2MM ′ω, with M(M ′) the mass of the Hb(Hc) hadron. In addition, ξd is the ratio
of the d charged particle and τ energies measured in the τ−ν̄τ center of mass frame (CM),
while θd is the angle made by the three-momenta of the d charged particle and the Hc final
hadron, also measured in the CM frame (for the kinematics, see for instance figure 1 of
ref. [50]). Bd is the branching ratio for the corresponding τ decay mode and P2 stands for
the Legendre polynomial of order two. In addition, dΓSL/dω accounts for the unpolarized
Hb → Hcτ

−ν̄τ decay width that can be written as [50]

dΓSL
dω

= G2
F |Vcb|2M ′3M2

24π3

√
ω2 − 1

(
1− m2

τ

q2

)2
n0(ω), (2.20)

with GF the Fermi decay constant and Vcb the corresponding Cabibbo-Kobayashi-Maskawa
matrix element. The n0(ω) function contains all the dynamical information, including possible
NP effects. Finally, the F d0,1,2(ω, ξd) functions read [46]

F d0 (ω, ξd) = Cdn(ω, ξd) + CdPL
(ω, ξd) 〈PCM

L 〉(ω),
F d1 (ω, ξd) = CdAF B

(ω, ξd)AFB(ω) + CdZL
(ω, ξd)ZL(ω) + CdPT

(ω, ξd) 〈PCM
T 〉(ω),

F d2 (ω, ξd) = CdAQ
(ω, ξd)AQ(ω) + CdZQ

(ω, ξd)ZQ(ω) + CdZ⊥(ω, ξd)Z⊥(ω). (2.21)

with Cda(ω, ξd) kinematical coefficients that are decay-mode dependent and whose expressions
can be found in appendix G of ref. [46]. The rest of the observables in eq. (2.21) represent
spin (〈PCM

L,T 〉(ω)), angular (AFB,Q(ω)) and spin-angular (ZL,Q,⊥(ω)) asymmetries of the
Hb → Hcτ ν̄τ parent decay [46]. In the absence of CP-odd contributions, these asymmetries,
together with dΓSL/dω, encode the maximal information obtainable if one could directly
analyze the polarized Hb → Hcτ ν̄τ transitions (see ref. [45] and especially eq. (3.46) of ref. [46]
and the related discussion). All the above observables (n0, 〈PCM

L,T 〉, AFB,Q and ZL,Q,⊥) are
determined by the matrix elements of the b→ c current between the initial (Hb) and final
(Hc) hadrons. After summing over hadron polarizations the hadron tensors can be expressed
in terms of Lorentz scalar structure functions, which depend on q2 or equivalently on ω, the
hadron masses and some Wilson coefficients if physics beyond the SM is considered. Lorentz,
parity and time-reversal transformations of the hadron currents and states limit their number,
as discussed in detail in ref. [51]. The discussion of subsection 2.2 of ref. [46] shows how
to get the unpolarized dΓSL/dω distribution and the tau spin, angular and spin-angular
asymmetries in terms of general structure functions which can be obtained from the matrix
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Figure 4. dΓSL/dq
2 differential decay width, divided by Γµ = Γ(B̄s → D∗sµ

−ν̄µ), and the different
tau-asymmetries introduced in eq. (2.21) for the semileptonic B̄s → D∗sτ ν̄τ decay. We compare the
results evaluated with the SM-LQCD form factors from refs. [32, 33] and with the SM-HQET form
factors obtained after the fitting procedure described in subsection 2.3.
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Figure 5. Same as figure 4 for the B̄s → Ds semileptonic decay.

– 13 –



J
H
E
P
0
1
(
2
0
2
4
)
1
6
3

elements of the relevant hadron operators. The matrix elements are in turn parametrized
in terms of form-factors. The findings of refs. [46, 51] are quite general and can be applied
not only to the SM but also to any extension of the SM based on the low-energy effective
Hamiltonian comprising the full set of dimension-6 semileptonic b → cτ ν̄τ operators with
left- and right-handed neutrino fields.

For pseudoscalar meson decay into pseudoscalar or vector mesons, the relations between
structure functions and form factors can be found in appendix B of ref. [52].

In figures 4 and 5 we show, for the B̄s → D∗s and B̄s → Ds semileptonic decays respec-
tively, the results for the SM dΓ/dq2 differential decay width and the different asymmetries,
introduced above, that can be obtained from the measurement of the visible kinematics of the
charged τ -decay product. Only the differential dΓ/dq2 distribution was shown in the original
LQCD work of ref. [32] ([34]) for B̄s → Ds (B̄s → D∗s). The tau forward-backward angular
AFB and spin 〈PCM

L 〉 asymmetries were also presented for B̄s → D∗s in ref. [33] but with
lattice form factors that have now been superseded by the new ones evaluated in ref. [34].
The rest of the observables are shown here for the very first time for the SM in figures 4 and 5
and for some extensions of the SM in the next section. As for figures 4 and 5, they have been
evaluated both with the SM-LQCD form factors from refs. [32, 33] and with the SM-HQET
form factors obtained in subsection 2.3. The two results agree within uncertainties in all cases.

All this gives us confidence in the quality of the fitted HQET IW functions so that we
can go a step further and use the relations in ref. [35] to obtain in addition the HQSS scalar
and pseudoscalar form factors of the two B̄s → D

(∗)
s semileptonic transitions and the tensor

one for the B̄s → Ds decay . Such a scheme relies on eqs. (14) and (15) of ref. [35] and it
also properly includes short-distance and 1/mc,b [O(αs,ΛQCD/mc,b)] corrections for the NP
form-factors. Using the full set of HQSS form factors we can address, in the next section,
the possibility of NP effects in these two decays.

3 New physics effects in B̄s → D(∗)
s τ−ντ semileptonic decays

Following ref. [53], to account for NP effects in a model independent way, we shall take
a phenomenological effective field theory approach in which we consider all dimension-six
b→ cτ ν̄τ semileptonic operators (see section 3.1 below). These effective low energy operators
are assumed to be generated by BSM physics that enters at a much higher energy scale.
Their strengths are governed by Wilson coefficients (WCs) that can be fitted to experimental
data. This data typically includes the RD(∗) = Γ(B → D(∗)τ−ν̄τ )/Γ(B → D(∗)µ−ν̄µ) ratios,
the tau longitudinal polarization asymmetry and the longitudinal D∗ polarization (also
measured by Belle [5, 54]), the τ forward-backward asymmetry and the upper bound for
the B̄c → τ ν̄τ decay rate [55]. There have been a large number of calculations along these
lines, for the B̄ → D(∗) [35, 43, 45, 52, 53, 56–71], B̄c → J/ψ, ηc [22, 24, 52, 72, 73], Λb →
Λc [43, 45, 51, 63, 74–87] and4 Λb → Λc(2595),Λc(2625) [79, 88, 89, 92–95] semileptonic decays.

4The isoscalar Λc(2595) and Λc(2625), with JP = 1/2− and 3/2− respectively, are promising candidates
for the lightest heavy-quark-spin doublet of negative-parity charmed-baryon resonances [88–90], although
some reservations are given in [91]. Experimental distributions for the semileptonic decay of the ground-state
bottom baryon Λb into both excited states would definitely help shed light on this issue [90].
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Here, profiting from the lattice determination of the B̄s → Ds SM form factors [32] and
the B̄s → D∗s SM and tensor form factors [34], together with the HQET study of B̄ → D(∗)

form factors in ref. [35], we have obtained all the B̄s → D
(∗)
s form factors needed for a similar

study of the B̄s → D
(∗)
s τ ν̄τ semileptonic decays. If NP is responsible for LFUV, one would

expect to see its effects in these reactions at a level similar to that found in the analogous
B̄ → D(∗) decays. In addition to the R

D
(∗)
s

= Γ(B̄ → D
(∗)
s τ ν̄τ )/Γ(B̄s → D

(∗)
s `ν̄`) ratios, we

will investigate the role that the different asymmetries presented in subsection 2.4 could
play in establishing the presence of LFUV and, if experimentally confirmed, to distinguish
between different extensions of the SM.

3.1 Hb → Hc`
−ν̄` Effective Hamiltonian

The effective low-energy Hamiltonian that we use follows ref. [68] and it includes all possible
dimension-six semileptonic b → c operators with both left-handed (L) and right-handed
(R) neutrino fields,

Heff = 4GFVcb√
2

[
(1 + CVLL)OVLL + CVRLOVRL + CSLLOSLL + CSRLOSRL + CTLLOTLL

+ CVLROVLR + CVRROVRR + CSLROSLR + CSRROSRR + CTRROTRR
]

+ h.c.. (3.1)

Here, the CXAB (X = S, V, T and A,B = L,R) are, complex in general, Wilson coefficients
that parameterize the deviations from the SM. They can be lepton and flavor dependent
although they are generally assumed to be nonzero only for the third quark and lepton
generation. The dimension six operators read

OV(L,R)L = (c̄γµbL,R)(¯̀γµν`L), OS(L,R)L = (c̄ bL,R)(¯̀ν`L), OTLL = (c̄ σµνbL)(¯̀σµνν`L),
(3.2)

OV(L,R)R = (c̄γµbL,R)(¯̀γµν`R), OS(L,R)R = (c̄ bL,R)(¯̀ν`R), OTRR = (c̄ σµνbR)(¯̀σµνν`R),
(3.3)

with ψR,L = (1 ± γ5)ψ/2. The effective Hamiltonian can be rewritten as [46]

Heff = 4GFVcb√
2

∑
χ=L,R

[
c̄(CVχ γµ + hχC

A
χ γ

µγ5)b l̄γµνlχ + c̄ (CSχ + hχC
P
χ γ5)b l̄γµνlχ

+CTχ c̄ σµν(1 + hχγ5)b l̄σµννlχ
]

(3.4)

with hL = −1, hR = +1 and

CVL = (1 + CVLL + CVRL), CAL = (1 + CVLL − CVRL),
CSL = (CSLL + CSRL), CPL = (CSLL − CSRL), CTL = CTLL,

CVR = (CVLR + CVRR), CAR = −(CVLR − CVRR),
CSR = (CSLR + CSRR), CPR = −(CSLR − CSRR), CTR = CTRR,

(3.5)

We shall compare results obtained in the SM and in three different NP extensions. The
latter correspond to the L Fit 7 of ref. [43], where only left-handed neutrino operators are
considered, the R S7a scenario of ref. [68] with only right-handed neutrino operators, and
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the left-handed neutrino L R2 leptoquark model of ref. [66], for which the two nonzero WCs
(CSLL and CTLL) are complex.5 In this latter case the effective Hamiltonian violates CP.

None of the observables dΓSL/dω, 〈PCM
L,T 〉, AFB,Q and ZL,Q,⊥ entering eqs. (2.19) and (2.21)

are sensitive to CP-symmetry breaking terms [45, 46]. Hence, we will also show results for
the L R2 leptoquark model of ref. [66] for other distributions, related to the tau polarization
component (PTT ) along an axis perpendicular to the hadron-tau plane [45], which could be
accessed if one could further measure the azimuthal angle (φd) of the charged d particle (see
figure 1 of ref. [50]). Note that in the differential distribution given in eq. (2.19) this angle
has been integrated out since measuring φd would require a full reconstruction of the tau
three-momentum. The latter can be circumvented through the analysis of distributions that
also involve the decay products of the Hc hadron. Thus, some CP-odd observables have been
presented for B̄ → D∗ and Λb → Λc decays in refs. [58, 59, 61, 71] and refs. [83, 85] respectively.

As already mentioned, we refer the reader to ref. [46], and references therein, for a
full account of our formalism.

3.2 Partially integrated sequential Hb → Hcτ
−(π−ντ , ρ−ντ , `−ν̄`ντ )ν̄τ decay

distributions

The feasibility of NP studies can be severely limited, however, by the statistical precision
in the measurement of the triple differential decay width of eq. (2.19). One can increase
statistics, at the expense of losing information in some of the observables, by integrating over
one or more of the ω, ξd and θd variables, although in this case not all observables entering in
eq. (2.21) can be extracted. In this way one can obtain the distributions [50]

d2Γd
dωdξd

= 2Bd
dΓSL
dω

{
Cdn(ω, ξd) + CdPL

(ω, ξd) 〈PCM
L 〉(ω)

}
, (3.6)

from which only dΓSL/dω and the CM τ longitudinal polarization can be extracted, or

d2Γd
dωd cos θd

= Bd
dΓSL
dω

[1
2 + F̃ d1 (ω) cos θd + F̃ d2 (ω)P2(cos θd)

]
, (3.7)

with

F̃ d1 (ω) = CdAF B
(ω)AFB(ω) + CdZL

(ω)ZL(ω) + CdPT
(ω) 〈PCM

T 〉(ω), (3.8)
F̃ d2 (ω) = CdAQ

(ω)AQ(ω) + CdZQ
(ω)ZQ(ω) + CdZ⊥(ω)Z⊥(ω), (3.9)

which retains information on dΓSL/dq
2 and six out of the seven original asymmetries. The

latter cannot, however, be extracted from the knowledge of F̃ d1 and F̃ d2 alone.
One can further integrate over ω to obtain [50]

dΓd
d cos θd

= BdΓSL
[1
2 + F̂ d1 cos θd + F̂ d2 P2(cos θd)

]
, F̂ d1,2 = 1

ΓSL

∫ ωmax

1

dΓSL
dω

F̃ d1,2(ω) dω.

(3.10)

5The numerical values that we use for these two WCs can be found at the beginning of subsection 4.2.1 of
ref. [45].
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and

dΓd
dEd

= 2Bd
∫ ωsup(Ed)

ωinf(Ed)
dω

1
γmτ

dΓSL
dω

{
Cdn(ω, ξd) + CdPL

(ω, ξd) 〈PCM
L 〉(ω)

}
, (3.11)

where γ = (q2 + m2
τ )/(2mτ

√
q2) and, in the latter case, the appropriate ω limits can be

found in ref. [50].
Although the information on the individual asymmetries is now completely lost, the

above two distributions could still be useful observables in the search for NP beyond the SM.

3.3 NP results and discussion

3.3.1 LFUV ratios, unpolarized differential decay widths and tau angular,
spin and spin-angular asymmetries

We start by showing, in table 3, the values for the semileptonic decay widths Γτ = Γ(B̄s →
D

(∗)
s τ ν̄τ ) and Γ` = Γ(B̄s → D

(∗)
s `ν̄`), with ` = e, µ, and the corresponding R

D
(∗)
s

ratios,
evaluated within the SM and the three NP extensions, L Fit 7 of ref. [43], R S7a scenario
of ref. [68] and the L R2 leptoquark model of ref. [66], considered in this study. Our results
for the SM ratios are compatible with those obtained using a dispersive matrix approach
in [96]. Both use HPQCD lattice data, but our values make use of the updated values
from [34]; we find that the agreement is closer if we base our analysis on the same HPQCD
inputs [32, 33] as used in [96].6 For the first two NP models, we clearly see the ratios deviate
from the SM prediction.7 Their central values are higher than SM ones, with the highest one
corresponding always to L Fit 7, which leads to ratios around 5σ above the SM predictions.
The results are similar to those obtained in ref. [50] for the analogous B̄ → D(∗) decays
(see table 3 of that reference). In the L R2 case, RD∗s is larger than the SM value while
RDs is lower and compatible within errors.

In figures 6 and 7 we show now the values for the n0(ω) function introduced in eq. (2.20),
which contains all the dynamical information of the dΓSL/dω differential decay width, and
the set of tau spin, angular and spin-angular asymmetries introduced in eq. (2.21). Most of
the observables allow for a clear distinction between SM and L Fit 7 results, the exception
being the CM longitudinal spin asymmetry 〈PCM

L 〉 for the B̄s → D∗s decay. In fact, these
observables also differentiate between L Fit 7 and the other two NP scenarios. With few
exceptions, notably the ZQ and Z⊥ asymmetries for the B̄s → Ds decays, the R S7a and
L R2 NP scenarios tend to agree within errors and they are closer to the SM, especially
in the case of the L R2 model.

As already mentioned, none of the observables shown so far is sensitive to CP breaking
terms. To measure those one needs to analyze the CP violating triple product asymmetries
that involve the decay of the Hc hadron [58, 59, 61, 71, 83, 85], or otherwise to be able to
fully establish the tau three-momentum. In the latter case, one has access to the 〈PCM

TT 〉(ω)
6The updated HPQCD results in [34] have been used in the dispersive matrix method for B̄ → D∗

semileptonic decays in [97], but not yet used for B̄s → D∗s .
7The LQCD results in refs. [32] and [34] are RSM

Ds
= 0.2993(46) and RSM

D∗
s

= 0.265(9), which are in excellent
agreement with the prediction quoted in table 3 obtained with the HQET parameterization of the B̄s → D

(∗)
s

form-factors.
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Figure 6. Distribution n0 from eq. (2.20) and the tau asymmetries introduced in eq. (2.21) for the
B̄s → D∗sτ ν̄τ decay. We compare the results for these observables obtained in the SM and the NP
models L Fit 7, R S7a and L R2 of refs. [43], [68] and [66], respectively. We use the HQET form-factors
derived from the LQCD form factors obtained in refs. [32, 34].
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Figure 7. Same as figure 6 but for the B̄s → Dsτ ν̄τ transition.
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Distribution

SM L Fit 7 [43] R S7a [68] L R2 [66]
Γe(µ) 0.93+0.07

−0.08

B̄s → Ds Γτ 0.27± 0.01 0.36± 0.02 0.306+0.062
−0.019 0.259+0.022

−0.015

RDs
0.295+0.015

−0.011 0.387+0.024
−0.019 0.329+0.067

−0.018 0.279+0.026
−0.015

Γe(µ) 1.91+0.13
−0.10

B̄s → D∗s Γτ 0.507+0.018
−0.015 0.605+0.025

−0.023 0.581+0.031
−0.033 0.554+0.020

−0.018

RD∗
s

0.265+0.009
−0.010 0.316+0.014

−0.015 0.304+0.016
−0.019 0.290± 0.019

Table 3. Semileptonic decay widths Γτ = Γ(B̄s → D
(∗)
s τ ν̄τ ) and Γe(µ) = Γ[B̄s → D

(∗)
s e(µ)ν̄e(µ)] (in

units of 10× |Vcb|2ps−1) and ratios R
D

(∗)
s

= Γ(B̄s → D
(∗)
s τ ν̄τ )/Γ[B̄s → D

(∗)
s e(µ)ν̄e(µ)] obtained using

the SM-HQSS form factors, the NP model L Fit 7 (R S7a) of ref. [43] ([68]), which only includes left-
(right-)handed neutrino NP operators and the L R2 leptoquark model of ref. [66]. Errors induced by
the uncertainties in the form-factors and Wilson coefficients are added in quadrature.

observable, which gives the component of the CM tau-polarization vector along an axis
perpendicular to the hadron-tau plane (see eqs. (3.14), (3.24) and (3.25) of ref. [45]). Among
the different NP extensions considered in this work, only the L R2 leptoquark model of ref. [66],
with complex Wilson coefficients, can generate a nonzero value for the 〈PCM

TT 〉(ω) distribution.
In this NP model, the two nonzero WCs CSLL and CTLL are given, at the bottom-mass scale
appropriate for the present calculation, in terms of just the value of CTLL at the 1TeV scale,
where CSLL(1 TeV) = 4CTLL(1 TeV), and the corresponding evolution matrix (see ref. [66]). The
best fit of the WCs to the B̄-meson LFUV signatures does not fix the sign of the imaginary
part of CTLL(1 TeV). Contrary to the other observables considered so far, 〈PCM

TT 〉(ω) is linear
in this imaginary part and thus its measurement would break this degeneracy. The results
for 〈PCM

TT 〉(ω), using both possible signs for Im[CTLL(1 TeV)], are shown in the upper panels
of figure 8 for the B̄s → D∗s (left) and B̄s → Ds (right) decays respectively. We see that the
absolute value of this distribution is around one order of magnitude larger for the pseudoscalar
than for the vector decay modes. An observation of a nonzero 〈PCM

TT 〉(ω) value will be a clear
indication of the existence of NP beyond the SM and CP violation.

In the bottom panel of figure 8 we show the degree of polarization of the tau

〈P 2〉(ω) = −〈P 2
L + P 2

T + P 2
TT 〉(ω) (3.12)

which is a Lorentz invariant quantity. As shown in ref. [45], this is exactly −1 for 0− → 0−

transitions, reflecting the fact that for such decays the outgoing taus are fully polarized. Thus
we only present the results for the B̄s → D∗s decay. As seen from the figure this observable,
which is sensitive to CP-odd terms in the effective Hamiltonian, discriminates very efficiently
between different NP models and the SM.

3.3.2 Distributions of charged tau decay products

In figures 9 and 10, we give the products n0(ω)F̃ d1,2(ω) (eqs. (3.8) and (3.9)) that can be
obtained from the measurement of the double differential decay width dΓd/(dω d cos θd)
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Figure 8. Upper panels: 〈PCM
TT 〉(ω) for the B̄s → D∗s (left) and B̄s → Ds (right) decays evaluated

with the L R2 leptoquark model of ref. [66]. Bottom panel: comparison of the 〈P 2〉(ω) distribution
obtained in the SM and the NP extensions L Fit 7 [43], R S7a [68] and L R2 [66].

corresponding to the B̄s → D
(∗)
s τ−(π−ντ , ρ−ντ , µ−ν̄µντ )ν̄τ sequential decays.8 In most cases,

with the main exception being the τ → ρντ decay mode for the B̄s → D∗s decay, the
predictions from the L Fit 7 model are clearly distinguishable from the ones obtained in the
SM and the other two NP scenarios. The SM and the latter two NP models give results
that agree within errors.

A similar situation is seen in figure 11, where we display the normalized [BdΓSL]−1dΓd/d
cos θd angular distribution for the B̄s → D

(∗)
s τ−(π−ντ , ρ−ντ , µ−ν̄µντ )ν̄τ sequential decays.

Again, with the exception of the ρ channel for the B̄s → D∗s decay, we see that the L Fit 7
NP scenario of ref. [43] can be distinguished from the SM and the other two NP scenarios.
This is most clearly seen for forward and backward angles of the pion and rho mesons from
the hadronic τ -decay modes in the parent B̄s → Ds semileptonic decay. As for the R S7a
scenario of ref. [68] and L R2 Fit of ref. [66], their corresponding distributions are compatible
with the SM and among themselves within errors. In fact, for the L R2 model, the central
values are very close to the SM ones. These behaviors derive from the ones seen for F̃ d12(ω) in
figures 9 and 10 and they are also seen in the corresponding F̂ d1,2 coefficients that we give
in tables 4 and 5 for the leptonic and two hadronic τ -decay channels, respectively. These
latter coefficients are obtained after integrating over ω the F̃ d1,2(ω) functions, as indicated
in eq. (3.10), and depend on the tau-decay mode. For L Fit 7, we generally find that one
coefficient, or both, is always very different from SM and other NP model values. For the

8The spin analyzing power makes the pion tau-decay mode a better candidate than the leptonic or rho
modes for the extraction of information on the spin and spin-angular asymmetries (see discussion of eq. (2.11)
of ref. [50]).

– 21 –



J
H
E
P
0
1
(
2
0
2
4
)
1
6
3

1 1.1 1.2 1.3
−0.5

−0.4

−0.3

−0.2

−0.1

0

τ → µν̄µντ

B̄s → D∗
s

ω

n
0
F̃
1

1 1.1 1.2 1.3
0

0.2

0.4

0.6

0.8

1

1.2

τ → πντ

ω

n
0
F̃
1

1 1.1 1.2 1.3
−0.1

0

0.1

0.2

0.3

0.4

0.5

τ → ρντ

ω

n
0
F̃
1

L Fit7
R S7a
L R2

SM

1 1.1 1.2 1.3
−0.02

−0.01

0

0.01

τ → µν̄µντ

ω

n
0
F̃
2

1 1.1 1.2 1.3
−0.01

0

0.01

0.02

0.03

0.04

τ → πντ

ω

n
0
F̃
2

1 1.1 1.2 1.3
−0.01

0

0.01

0.02

0.03

τ → ρντ

ω

n
0
F̃
2

Figure 9. Distributions [n0F̃
d
1 ](ω) and [n0F̃

d
2 ](ω) obtained from dΓd/(dω d cos θd) (eq. (3.7)) for the

tau hadronic and leptonic B̄s → D∗sτ
−(π−ντ , ρ−ντ , µ−ν̄µντ )ν̄τ sequential decays.
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Figure 10. Same as figure 9 for the B̄s → Dsτ
−(π−ντ , ρ−ντ , µ−ν̄µντ )ν̄τ sequential decays.

R S7a scenario, they are compatible with SM, within errors, and they are very close to
the SM ones in the L R2 case.

Finally, in figure 12, we present the results for the dimensionless distribution

F̂ d0 (Ed) = mτ

2BdΓSL

dΓd
dEd

, (3.13)

which contains all the relevant information on the dΓd/dEd energy differential decay width.
For all three tau-decay channels considered. It is normalized as

1
mτ

∫ Emin
d

Emin
d

dEdF̂
d
0 (Ed) = 1

2 , (3.14)
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F̂µ1 F̂µ2

SM −0.0608+0.0006
−0.0005 −0.0360± 0.0006

B̄s → Ds L fit 7 −0.030+0.008
−0.011 −0.0777+0.0021

−0.0005

R fit S7a −0.03+0.02
−0.04 −0.028± 0.003

L R2 −0.0579+0.0024
−0.0018 −0.0368+0.0022

−0.0013

SM −0.128+0.003
−0.002 −0.0042± 0.0010

B̄s → D∗s L Fit 7 −0.175+0.014
−0.008 −0.0001± 0.0011

R S7a −0.100+0.005
−0.016 −0.0036+0.0010

−0.0017

L R2 −0.111+0.004
−0.007 −0.0038± 0.0010

Table 4. Predictions for the angular moments F̂µ1, 2 for the B̄s → D
(∗)
s τ(µν̄µντ )ν̄τ sequential decay

evaluated in the SM and the same NP scenarios considered in table 3.

F̂π1 F̂π2 F̂ ρ1 F̂ ρ2

SM 0.5443+0.0013
−0.0015 0.0794± 0.0014 0.3247+0.0007

−0.0008 0.0428± 0.0008
B̄s → Ds L fit 7 0.16+0.11

−0.08 0.171+0.002
−0.007 0.09+0.06

−0.05 0.0918+0.0016
−0.0046

R fit S7a 0.45+0.05
−0.09 0.053+0.012

−0.007 0.285+0.015
−0.053 0.026+0.008

−0.004

L R2 0.519+0.006
−0.011 0.080+0.003

−0.005 0.310+0.003
−0.006 0.0431+0.0013

−0.0024

SM 0.258± 0.006 0.010+0.003
−0.002 0.078± 0.007 0.0055± 0.0014

B̄s → D∗s L fit 7 0.302+0.009
−0.016 0.001± 0.003 0.071+0.007

−0.006 0.0006± 0.0016
R fit S7a 0.171+0.067

−0.012 0.008+0.004
−0.002 0.040+0.035

−0.007 0.0042+0.0024
−0.0012

L R2 0.246± 0.007 0.009+0.003
−0.002 0.083+0.006

−0.007 0.0047± 0.0014

Table 5. Predictions for the angular moments F̂π,ρ1, 2 for the B̄s → D
(∗)
s τ(πντ , ρντ )ν̄τ sequential decays

evaluated in the SM and the same NP scenarios considered in table 3.
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Figure 12. F̂ d0 distribution (eq. (3.13)) for the B̄s → D
(∗)
s τ−(π−ντ , ρ−ντ , µ−ν̄µντ )ν̄τ sequential

decays.

but its energy dependence is still affected by the CM τ longitudinal polarization 〈PCM
L 〉(ω).

However, as seen in figure 12, for the B̄s → D∗s parent decay, all NP scenarios considered
are compatible with SM predictions, and among themselves, within uncertainties, while
for the B̄s → Ds, the distribution obtained from the L Fit 7 NP model of ref. [43] can be
distinguished from all other predictions.

4 Summary

We have used the results of the lattice evaluation of the SM form factors for the B̄s → Ds [32]
and the SM and tensor form factors for the B̄s → D∗s [34] semileptonic decays, together with
their NLO HQET expansions in ref. [35], to obtain in addition the scalar and pseudoscalar
form factors of both transitions and the B̄s → Ds tensor matrix element, all of them also
needed for an analysis of NP effects on both semileptonic decays. We have compared results
evaluated within the SM and three different NP extensions that have been previously used in
the study of other CC b → c transitions. We find effects similar to those obtained for the
SU(3)-analogue B̄ → D(∗) decays. We have evaluated the corresponding RDs and RD∗s ratios
which, as in the B̄ → D(∗) case, should be the easiest LFUV observable to measure. We have
also analyzed the role that different tau asymmetries in the B̄s → D

(∗)
s τ−ν̄τ decay could play,

not only in establishing the existence of NP, but also in distinguishing between different NP
extensions of the SM. We have studied partially integrated angular and energy distributions
of the charged particle produced in the subsequent τ− → π−ντ , ρ

−ντ , e
−(µ−)ν̄e(µ)ντ decays.

The latter differential decay widths have a better statistics than the asymmetries themselves
and they could also help in establishing the presence of NP beyond the SM.

If NP is responsible for LFUV it should show up in B̄s → D
(∗)
s semileptonic decays at

the same level as for the B̄ → D(∗) ones. The analysis of this transition, as well of other CC
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a0
0 a0

1 a0
2 a+

0 a+
1

0.674± 0.009 −0.238± 0.218 −0.13± 1.61 0.764± 0.018 −3.04± 0.43
a0

0 1.00 0.117 −0.074 0.567 −0.011
a0

1 1.00 −0.062 0.421 −0.030
a0

2 1.00 −0.145 0.229
a+

0 1.00 −0.726
a+

1 1.00

Table 6. Central values and errors (first row) of the a0,+
i coefficients of the new f+,0 parametrization

introduced in eq. (2.6) and their corresponding correlation matrix. Note that a+
2 is fixed through the

condition f0(0) = f+(0).

hA1 hA2 hA3 hV

a0 0.907± 0.010 −0.333± 0.129 1.14± 0.13 1.25± 0.04
a1 −1.01± 0.09 −0.066± 0.639 −0.649± 0.539 −1.51± 0.26
a2 0.379± 0.435 0.065± 0.948 −0.200± 0.853 0.507± 0.752
a3 0.275± 0.817 0.007± 0.989 −0.101± 0.961 0.373± 0.938

Table 7. Central values and errors of the aFi coefficients of the new parametrization ((ω−1) expansion)
introduced in eq. (2.9) for the hA1 , hA2 , hA3 and hV form factors.

b → c mediated decays, could then help in establishing or ruling out LFUV.
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A Mean values and covariance matrices of the aFi coefficients in eqs.
(2.6), (2.7) and (2.9)

As discussed in the main text, we have changed the parametrizations in refs. [32, 34] and
adopted new ones in order to facilitate the fitting of the form factors to their HQSS expressions.
Statistical details of the new coefficients are collected here in tables 6–13. For each entry in
the tables below, we provide three significant digits but neglect order 10−5 or smaller.
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hT1 hT2 hT3

a0 0.933± 0.015 −0.152± 0.045 −0.027± 0.149
a1 −1.09± 0.10 0.231± 0.286 0.106± 0.661
a2 0.512± 0.473 0.449± 0.892 0.019± 0.939
a3 0.138± 0.858 0.244± 0.979 0.005± 0.988

Table 8. Central values and errors of the aFi coefficients of the new parametrization ((ω−1)-expansion)
introduced in eq. (2.9) for the hT1 , hT2 and hT3 form factors.

aA1
0 aA1

1 aA1
2 aA1

3 aA2
0 aA2

1 aA2
2 aA2

3 a3
0 aA3

1 aA3
2 aA3

3

aA1
0 1.00 −0.160 0.0523 −0.0128 0.0144 −0.0177 −0.0037 −0.0008 0.0469 −0.0055 0.0039 0.0041
aA1

1 1.00 −0.6252 0.2511 −0.2650 0.1381 0.0124 0.0011 0.3039 −0.1410 −0.0879 −0.0342
aA1

2 1.00 −0.7071 0.0971 −0.1797 −0.0297 −0.0108 −0.1326 0.2761 0.0374 −0.0025
aA1

3 1.00 0.0646 −0.0750 0.0113 0.0141 −0.0550 0.0006 0.1622 0.0921
aA2

0 1.00 −0.3542 −0.0309 −0.0108 −0.8365 0.4847 −0.0390 −0.0365
aA2

1 1.00 −0.2141 −0.0479 0.1783 −0.5943 0.0635 0.0510
aA2

2 1.00 −0.0478 0.0824 −0.0981 −0.1070 −0.0465
aA2

3 1.00 0.0310 −0.0212 −0.0592 −0.0289
aA3

0 1.00 −0.5695 0.1206 0.0622
aA3

1 1.00 −0.4675 −0.1211
aA3

2 1.00 −0.1682
aA3

3 1.00

Table 9. Correlation matrix for the (w − 1)-expansion coefficients of the hA1 , hA2 and hA3 form
factors.

aV0 aV1 aV2 aV3

aV0 1.00 −0.526 0.251 0.0672
aV1 1.00 −0.720 −0.0557
aV2 1.00 −0.307
aV3 1.00

Table 10. Correlation matrix for the (w − 1)-expansion coefficients of the hV form factor.

aA1
0 aA1

1 aA1
2 aA1

3 aA2
0 aA2

1 aA2
2 aA2

3 aA3
0 aA3

1 aA3
2 aA3

3

aV0 0.0695 −0.0034 −0.0023 −0.0029 0.0187 −0.0044 −0.0054 −0.0024 −0.0022 0.0072 −0.0024 −0.0011
aV1 0.0151 0.0181 0.0034 −0.0045 0.0149 0.0137 0.0015 0.0003 −0.0120 0.0054 0.0023 0.0013
aV2 −0.0094 −0.0045 0.0107 0.0057 −0.0018 0.0137 0.0093 0.0041 −0.0043 −0.0021 0.0060 0.0031
aV3 −0.0032 −0.0022 0.0040 0.0028 −0.0017 0.0051 0.0038 0.0017 −0.0009 −0.0009 0.0023 0.0011

Table 11. Correlation matrix for the (w − 1)-expansion coefficients of hV and hA1 , hA2 and hA3

form factors.
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aT1
0 aT1

1 aT1
2 aT1

3 aT2
0 aT2

1 aT2
2 aT2

3 aT3
0 aT3

1 aT3
2 aT3

3

aT1
0 1.00 −0.230 0.0740 −0.0056 0.0593 −0.0300 0.0044 0.0025 0.0252 −0.0101 0.0030 0.0027
aT1

1 1.00 −0.633 0.208 0.0328 0.0912 −0.0629 −0.0285 0.304 −0.154 −0.0689 −0.0272
aT1

1 1.00 −0.645 −0.0483 0.0569 0.112 0.0456 −0.136 0.293 0.0586 0.0134
aT1

1 1.00 0.0025 −0.0379 0.0511 0.0306 −0.0511 0.0546 0.0738 0.0389
aT2

0 1.00 −0.471 0.130 0.0347 0.0446 −0.0400 −0.0140 −0.0051
aT2

1 1.00 −0.589 −0.0819 0.0828 0.0552 0.0017 −0.0022
aT2

1 1.00 −0.0957 −0.0427 0.135 0.0491 0.0192
aT2

1 1.00 −0.0212 0.0615 0.0239 0.0097
aT3

0 1.00 −0.573 0.0128 0.0227
aT3

1 1.00 −0.336 −0.111
aT3

1 1.00 −0.0548
aT3

1 1.00

Table 12. Correlation matrix for the (w − 1)-expansion coefficients of the hT1 , hT2 and hT3 form
factors.

aT1
0 aT1

1 aT1
2 aT1

3 aT2
0 aT2

1 aT2
2 aT2

3 aT3
0 aT3

1 aT3
2 aT3

3

aA1
0 0.289 −0.0368 0.0078 −0.0004 −0.0098 −0.0112 −0.0003 −0.0004 0.0005 −0.0001 0.0018 0.0010
aA1

1 −0.0123 0.210 −0.0882 −0.0290 0.0170 0.0175 0.0028 0.0022 0.0534 −0.0048 −0.0028 −0.0015
aA1

2 −0.0018 −0.0940 0.185 −0.0099 −0.0121 0.0043 0.0040 0.0016 −0.0047 0.0373 0.0256 0.0126
aA1

3 −0.0016 −0.0243 −0.0214 0.0842 0.0008 0.0083 −0.0120 −0.0075 −0.0006 0.0219 −0.0178 −0.0116
aA2

0 0.0095 −0.0794 0.0079 0.0066 0.0053 −0.0095 −0.0054 −0.0034 −0.189 0.0284 0.0124 0.0052
aA2

1 0.0000 0.0200 −0.0534 −0.0228 −0.0012 −0.0048 0.0113 0.0059 −0.0112 −0.110 −0.0261 −0.0079
aA2

2 −0.0019 −0.0079 0.0034 0.0051 −0.0027 −0.0012 0.0042 0.0020 0.0102 −0.0312 −0.0100 −0.0037
aA2

3 −0.0009 −0.0050 0.0040 0.0040 −0.0013 −0.0003 0.0016 0.0007 0.0052 −0.0111 −0.0041 −0.0016
aA3

0 0.0179 0.0881 −0.0170 −0.0105 0.0023 0.0100 0.0052 0.0034 0.205 −0.0254 −0.0119 −0.0050
aA3

1 0.0004 −0.0160 0.0690 0.0316 0.0011 0.0125 −0.0105 −0.0061 −0.0541 0.119 0.0260 0.0074
aA3

2 −0.0051 −0.0287 0.0593 0.0050 −0.0047 0.0051 −0.0023 −0.0018 −0.0031 0.0178 0.0131 0.0063
aA3

3 −0.0020 −0.0138 0.0270 0.0007 −0.0026 0.0020 −0.0005 −0.0005 −0.0002 0.0029 0.0054 0.0029
aV0 0.0694 −0.0022 −0.0003 −0.0009 0.0304 0.0021 −0.0006 −0.0002 0.0043 0.0132 0.0036 0.0013
aV1 0.0041 0.0141 0.0027 −0.0028 −0.0012 0.0127 −0.0025 −0.0014 −0.0106 0.0030 0.0033 0.0016
aV2 −0.0075 −0.0023 0.0091 0.0049 −0.0039 0.0018 0.0062 0.0026 0.0032 −0.0043 −0.0029 −0.0014
aV3 −0.0026 −0.0012 0.0034 0.0025 −0.0015 0.0005 0.0028 0.0012 0.0018 −0.0019 −0.0015 −0.0008

Table 13. Correlation matrix for the (w − 1)-expansion between the hT1 , hT2 and hT3 and the
hA1 , hA2 , hA3 and hV coefficients.

References

[1] BaBar collaboration, Evidence for an excess of B̄ → D(∗)τ−ν̄τ decays, Phys. Rev. Lett. 109
(2012) 101802 [arXiv:1205.5442] [INSPIRE].

[2] BaBar collaboration, Measurement of an Excess of B̄ → D(∗)τ−ν̄τ Decays and Implications for
Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].

[3] Belle collaboration, Measurement of the branching ratio of B̄ → D(∗)τ−ν̄τ relative to
B̄ → D(∗)`−ν̄` decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014
[arXiv:1507.03233] [INSPIRE].

– 27 –

https://doi.org/10.1103/PhysRevLett.109.101802
https://doi.org/10.1103/PhysRevLett.109.101802
https://arxiv.org/abs/1205.5442
https://inspirehep.net/literature/1115826
https://doi.org/10.1103/PhysRevD.88.072012
https://arxiv.org/abs/1303.0571
https://inspirehep.net/literature/1222328
https://doi.org/10.1103/PhysRevD.92.072014
https://arxiv.org/abs/1507.03233
https://inspirehep.net/literature/1382593


J
H
E
P
0
1
(
2
0
2
4
)
1
6
3

[4] Belle collaboration, Measurement of the branching ratio of B̄0 → D∗+τ−ν̄τ relative to
B̄0 → D∗+`−ν̄` decays with a semileptonic tagging method, Phys. Rev. D 94 (2016) 072007
[arXiv:1607.07923] [INSPIRE].

[5] Belle collaboration, Measurement of the τ lepton polarization and R(D∗) in the decay
B̄ → D∗τ−ν̄τ , Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].

[6] Belle collaboration, Measurement of R(D) and R(D∗) with a semileptonic tagging method,
Phys. Rev. Lett. 124 (2020) 161803 [arXiv:1910.05864] [INSPIRE].

[7] LHCb collaboration, Measurement of the ratio of branching fractions
B(B̄0 → D∗+τ−ν̄τ )/B(B̄0 → D∗+µ−ν̄µ), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115
(2015) 159901] [arXiv:1506.08614] [INSPIRE].

[8] LHCb collaboration, Measurement of the ratio of the B0 → D∗−τ+ντ and B0 → D∗−µ+νµ
branching fractions using three-prong τ -lepton decays, Phys. Rev. Lett. 120 (2018) 171802
[arXiv:1708.08856] [INSPIRE].

[9] LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the
B0 → D∗−τ+ντ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013
[arXiv:1711.02505] [INSPIRE].

[10] LHCb collaboration, Measurement of the ratios of branching fractions R(D∗) and R(D0), Phys.
Rev. Lett. 131 (2023) 111802 [arXiv:2302.02886] [INSPIRE].

[11] HFLAV collaboration, Averages of b-hadron, c-hadron, and τ -lepton properties as of 2018, Eur.
Phys. J. C 81 (2021) 226 [arXiv:1909.12524] [INSPIRE].

[12] R. Puthumanaillam, Measurement of R(D∗) with hadronic τ+ decays at
√
s = 13TeV by the

LHCb collaboration, CERN LHC Seminar, March 21 (2023), https://cds.cern.ch/record/2862148.

[13] LHCb collaboration, Measurement of the ratio of branching fractions
B(B+

c → J/ψτ+ντ )/B(B+
c → J/ψµ+νµ), Phys. Rev. Lett. 120 (2018) 121801

[arXiv:1711.05623] [INSPIRE].

[14] A.Y. Anisimov, I.M. Narodetsky, C. Semay and B. Silvestre-Brac, The Bc meson lifetime in the
light front constituent quark model, Phys. Lett. B 452 (1999) 129 [hep-ph/9812514] [INSPIRE].

[15] M.A. Ivanov, J.G. Korner and P. Santorelli, Exclusive semileptonic and nonleptonic decays of the
Bc meson, Phys. Rev. D 73 (2006) 054024 [hep-ph/0602050] [INSPIRE].

[16] E. Hernandez, J. Nieves and J.M. Verde-Velasco, Study of exclusive semileptonic and
non-leptonic decays of Bc - in a nonrelativistic quark model, Phys. Rev. D 74 (2006) 074008
[hep-ph/0607150] [INSPIRE].

[17] T. Huang and F. Zuo, Semileptonic Bc decays and charmonium distribution amplitude, Eur.
Phys. J. C 51 (2007) 833 [hep-ph/0702147] [INSPIRE].

[18] W. Wang, Y.-L. Shen and C.-D. Lu, Covariant Light-Front Approach for B(c) transition form
factors, Phys. Rev. D 79 (2009) 054012 [arXiv:0811.3748] [INSPIRE].

[19] W.-F. Wang, Y.-Y. Fan and Z.-J. Xiao, Semileptonic decays Bc → (ηc, J/Ψ)lν in the perturbative
QCD approach, Chin. Phys. C 37 (2013) 093102 [arXiv:1212.5903] [INSPIRE].

[20] R. Watanabe, New Physics effect on Bc → J/ψτν̄ in relation to the RD(∗) anomaly, Phys. Lett.
B 776 (2018) 5 [arXiv:1709.08644] [INSPIRE].

[21] A. Issadykov and M.A. Ivanov, The decays Bc → J/ψ + ¯̀ν` and Bc → J/ψ + π(K) in covariant
confined quark model, Phys. Lett. B 783 (2018) 178 [arXiv:1804.00472] [INSPIRE].

– 28 –

https://doi.org/10.1103/PhysRevD.94.072007
https://arxiv.org/abs/1607.07923
https://inspirehep.net/literature/1478188
https://doi.org/10.1103/PhysRevLett.118.211801
https://arxiv.org/abs/1612.00529
https://inspirehep.net/literature/1501479
https://doi.org/10.1103/PhysRevLett.124.161803
https://arxiv.org/abs/1910.05864
https://inspirehep.net/literature/1758794
https://doi.org/10.1103/PhysRevLett.115.111803
https://arxiv.org/abs/1506.08614
https://inspirehep.net/literature/1380182
https://doi.org/10.1103/PhysRevLett.120.171802
https://arxiv.org/abs/1708.08856
https://inspirehep.net/literature/1620479
https://doi.org/10.1103/PhysRevD.97.072013
https://arxiv.org/abs/1711.02505
https://inspirehep.net/literature/1634841
https://doi.org/10.1103/PhysRevLett.131.111802
https://doi.org/10.1103/PhysRevLett.131.111802
https://arxiv.org/abs/2302.02886
https://inspirehep.net/literature/2629770
https://doi.org/10.1140/epjc/s10052-020-8156-7
https://doi.org/10.1140/epjc/s10052-020-8156-7
https://arxiv.org/abs/1909.12524
https://inspirehep.net/literature/1757149
https://cds.cern.ch/record/2862148
https://doi.org/10.1103/PhysRevLett.120.121801
https://arxiv.org/abs/1711.05623
https://inspirehep.net/literature/1636198
https://doi.org/10.1016/S0370-2693(99)00273-7
https://arxiv.org/abs/hep-ph/9812514
https://inspirehep.net/literature/481519
https://doi.org/10.1103/PhysRevD.73.054024
https://arxiv.org/abs/hep-ph/0602050
https://inspirehep.net/literature/710033
https://doi.org/10.1103/PhysRevD.74.074008
https://arxiv.org/abs/hep-ph/0607150
https://inspirehep.net/literature/721455
https://doi.org/10.1140/epjc/s10052-007-0333-4
https://doi.org/10.1140/epjc/s10052-007-0333-4
https://arxiv.org/abs/hep-ph/0702147
https://inspirehep.net/literature/744627
https://doi.org/10.1103/PhysRevD.79.054012
https://arxiv.org/abs/0811.3748
https://inspirehep.net/literature/803317
https://doi.org/10.1088/1674-1137/37/9/093102
https://arxiv.org/abs/1212.5903
https://inspirehep.net/literature/1208722
https://doi.org/10.1016/j.physletb.2017.11.016
https://doi.org/10.1016/j.physletb.2017.11.016
https://arxiv.org/abs/1709.08644
https://inspirehep.net/literature/1625754
https://doi.org/10.1016/j.physletb.2018.06.056
https://arxiv.org/abs/1804.00472
https://inspirehep.net/literature/1665584


J
H
E
P
0
1
(
2
0
2
4
)
1
6
3

[22] C.-T. Tran, M.A. Ivanov, J.G. Körner and P. Santorelli, Implications of new physics in the
decays Bc → (J/ψ, ηc)τν, Phys. Rev. D 97 (2018) 054014 [arXiv:1801.06927] [INSPIRE].

[23] X.-Q. Hu, S.-P. Jin and Z.-J. Xiao, Semileptonic decays Bc → (ηc, J/ψ)lν̄l in the “PQCD +
Lattice” approach, Chin. Phys. C 44 (2020) 023104 [arXiv:1904.07530] [INSPIRE].

[24] D. Leljak, B. Melic and M. Patra, On lepton flavour universality in semileptonic Bc → ηc, J/ψ
decays, JHEP 05 (2019) 094 [arXiv:1901.08368] [INSPIRE].

[25] K. Azizi, Y. Sarac and H. Sundu, Lepton flavor universality violation in semileptonic tree level
weak transitions, Phys. Rev. D 99 (2019) 113004 [arXiv:1904.08267] [INSPIRE].

[26] W. Wang and R. Zhu, Model independent investigation of the RJ/ψ,ηc
and ratios of decay widths

of semileptonic Bc decays into a P-wave charmonium, Int. J. Mod. Phys. A 34 (2019) 1950195
[arXiv:1808.10830] [INSPIRE].

[27] LHCb collaboration, Observation of the decay Λ0
b → Λ+

c τ
−ντ , Phys. Rev. Lett. 128 (2022)

191803 [arXiv:2201.03497] [INSPIRE].

[28] W. Detmold, C. Lehner and S. Meinel, Λb → p`−ν̄` and Λb → Λc`−ν̄` form factors from lattice
QCD with relativistic heavy quarks, Phys. Rev. D 92 (2015) 034503 [arXiv:1503.01421]
[INSPIRE].

[29] Marco Pappagallo (LHCB deputy physics coordinator), private communication.

[30] LHCb collaboration, Test of lepton flavor universality using B0→D*-τ+ντ decays with hadronic
τ channels, Phys. Rev. D 108 (2023) 012018 [arXiv:2305.01463] [INSPIRE].

[31] HFLAV collaboration, Averages of b-hadron, c-hadron, and τ -lepton properties as of 2021, Phys.
Rev. D 107 (2023) 052008 [arXiv:2206.07501] [INSPIRE].

[32] E. McLean, C.T.H. Davies, J. Koponen and A.T. Lytle, Bs → Ds`ν Form Factors for the full q2

range from Lattice QCD with non-perturbatively normalized currents, Phys. Rev. D 101 (2020)
074513 [arXiv:1906.00701] [INSPIRE].

[33] HPQCD collaboration, Bs→Ds* form factors for the full q2 range from lattice QCD, Phys. Rev.
D 105 (2022) 094506 [arXiv:2105.11433] [INSPIRE].

[34] J. Harrison and C.T.H. Davies, B → D∗ vector, axial-vector and tensor form factors for the full
q2 range from lattice QCD, arXiv:2304.03137 [INSPIRE].

[35] F.U. Bernlochner, Z. Ligeti, M. Papucci and D.J. Robinson, Combined analysis of semileptonic
B decays to D and D∗: R(D(∗)), |Vcb|, and new physics, Phys. Rev. D 95 (2017) 115008
[Erratum ibid. 97 (2018) 059902] [arXiv:1703.05330] [INSPIRE].

[36] F.U. Bernlochner et al., Constrained second-order power corrections in HQET: R(D(*)), |Vcb|,
and new physics, Phys. Rev. D 106 (2022) 096015 [arXiv:2206.11281] [INSPIRE].

[37] M. Bordone, M. Jung and D. van Dyk, Theory determination of B̄ → D(∗)`−ν̄ form factors at
O(1/m2

c), Eur. Phys. J. C 80 (2020) 74 [arXiv:1908.09398] [INSPIRE].

[38] M. Bordone, N. Gubernari, D. van Dyk and M. Jung, Heavy-Quark expansion for B̄s → D
(∗)
s

form factors and unitarity bounds beyond the SU(3)F limit, Eur. Phys. J. C 80 (2020) 347
[arXiv:1912.09335] [INSPIRE].

[39] R. Dutta and N. Rajeev, Signature of lepton flavor universality violation in Bs → Dsτν

semileptonic decays, Phys. Rev. D 97 (2018) 095045 [arXiv:1803.03038] [INSPIRE].

[40] N. Das and R. Dutta, New physics footprints in the angular distribution of
Bs→Ds*(→Dsγ, Dsπ)τν decays, Phys. Rev. D 105 (2022) 055027 [arXiv:2110.05526]
[INSPIRE].

– 29 –

https://doi.org/10.1103/PhysRevD.97.054014
https://arxiv.org/abs/1801.06927
https://inspirehep.net/literature/1649208
https://doi.org/10.1088/1674-1137/44/2/023104
https://arxiv.org/abs/1904.07530
https://inspirehep.net/literature/1730028
https://doi.org/10.1007/JHEP05(2019)094
https://arxiv.org/abs/1901.08368
https://inspirehep.net/literature/1716582
https://doi.org/10.1103/PhysRevD.99.113004
https://arxiv.org/abs/1904.08267
https://inspirehep.net/literature/1730167
https://doi.org/10.1142/S0217751X19501951
https://arxiv.org/abs/1808.10830
https://inspirehep.net/literature/1692344
https://doi.org/10.1103/PhysRevLett.128.191803
https://doi.org/10.1103/PhysRevLett.128.191803
https://arxiv.org/abs/2201.03497
https://inspirehep.net/literature/2006977
https://doi.org/10.1103/PhysRevD.92.034503
https://arxiv.org/abs/1503.01421
https://inspirehep.net/literature/1347268
https://doi.org/10.1103/PhysRevD.108.012018
https://arxiv.org/abs/2305.01463
https://inspirehep.net/literature/2682591
https://doi.org/10.1103/PhysRevD.107.052008
https://doi.org/10.1103/PhysRevD.107.052008
https://arxiv.org/abs/2206.07501
https://inspirehep.net/literature/2100284
https://doi.org/10.1103/PhysRevD.101.074513
https://doi.org/10.1103/PhysRevD.101.074513
https://arxiv.org/abs/1906.00701
https://inspirehep.net/literature/1737717
https://doi.org/10.1103/PhysRevD.105.094506
https://doi.org/10.1103/PhysRevD.105.094506
https://arxiv.org/abs/2105.11433
https://inspirehep.net/literature/1864871
https://arxiv.org/abs/2304.03137
https://inspirehep.net/literature/2649580
https://doi.org/10.1103/PhysRevD.95.115008
https://arxiv.org/abs/1703.05330
https://inspirehep.net/literature/1517787
https://doi.org/10.1103/PhysRevD.106.096015
https://arxiv.org/abs/2206.11281
https://inspirehep.net/literature/2100046
https://doi.org/10.1140/epjc/s10052-020-7616-4
https://arxiv.org/abs/1908.09398
https://inspirehep.net/literature/1751100
https://doi.org/10.1140/epjc/s10052-020-7850-9
https://arxiv.org/abs/1912.09335
https://inspirehep.net/literature/1771939
https://doi.org/10.1103/PhysRevD.97.095045
https://arxiv.org/abs/1803.03038
https://inspirehep.net/literature/1659125
https://doi.org/10.1103/PhysRevD.105.055027
https://arxiv.org/abs/2110.05526
https://inspirehep.net/literature/1942223


J
H
E
P
0
1
(
2
0
2
4
)
1
6
3

[41] C.J. Monahan et al., Bs → Ds`ν Form Factors and the Fragmentation Fraction Ratio fs/fd,
Phys. Rev. D 95 (2017) 114506 [arXiv:1703.09728] [INSPIRE].

[42] M.E. Luke, Effects of subleading operators in the heavy quark effective theory, Phys. Lett. B 252
(1990) 447 [INSPIRE].

[43] C. Murgui, A. Peñuelas, M. Jung and A. Pich, Global fit to b→ cτν transitions, JHEP 09 (2019)
103 [arXiv:1904.09311] [INSPIRE].

[44] M. Jung and D.M. Straub, Constraining new physics in b→ c`ν transitions, JHEP 01 (2019)
009 [arXiv:1801.01112] [INSPIRE].

[45] N. Penalva, E. Hernández and J. Nieves, New physics and the tau polarization vector in b
→ cτντ decays, JHEP 06 (2021) 118 [arXiv:2103.01857] [INSPIRE].

[46] N. Penalva, E. Hernández and J. Nieves, The role of right-handed neutrinos in b → cτ (πντ , ρντ ,
µνµντ )ντ from visible final-state kinematics, JHEP 10 (2021) 122 [arXiv:2107.13406]
[INSPIRE].

[47] R. Alonso, A. Kobach and J. Martin Camalich, New physics in the kinematic distributions of
B̄ → D(∗)τ−(→ `−ν̄`ντ )ν̄τ , Phys. Rev. D 94 (2016) 094021 [arXiv:1602.07671] [INSPIRE].

[48] R. Alonso, J. Martin Camalich and S. Westhoff, Tau properties in B → Dτν from visible
final-state kinematics, Phys. Rev. D 95 (2017) 093006 [arXiv:1702.02773] [INSPIRE].

[49] P. Asadi et al., Complete framework for tau polarimetry in B → D(∗)τν decays, Phys. Rev. D
102 (2020) 095028 [arXiv:2006.16416] [INSPIRE].

[50] N. Penalva et al., Visible energy and angular distributions of the charged particle from the τ
−decay in b→ cτ (µνµντ , πντ , ρντ ) ντ reactions, JHEP 04 (2022) 026 [Erratum ibid. 03 (2023)
011] [arXiv:2201.05537] [INSPIRE].

[51] N. Penalva, E. Hernández and J. Nieves, Hadron and lepton tensors in semileptonic decays
including new physics, Phys. Rev. D 101 (2020) 113004 [arXiv:2004.08253] [INSPIRE].

[52] N. Penalva, E. Hernández and J. Nieves, B̄c → ηc, B̄c → J/ψ and B̄ → D(∗) semileptonic decays
including new physics, Phys. Rev. D 102 (2020) 096016 [arXiv:2007.12590] [INSPIRE].

[53] S. Fajfer, J.F. Kamenik and I. Nisandzic, On the B → D∗τ ν̄τ Sensitivity to New Physics, Phys.
Rev. D 85 (2012) 094025 [arXiv:1203.2654] [INSPIRE].

[54] Belle collaboration, Measurement of the D∗− polarization in the decay B0 → D∗−τ+ντ , in the
proceedings of the 10th International Workshop on the CKM Unitarity Triangle, Heidelberg,
Germany, September 17–21 (2018) [arXiv:1903.03102] [INSPIRE].

[55] R. Alonso, B. Grinstein and J. Martin Camalich, Lifetime of B−c Constrains Explanations for
Anomalies in B → D(∗)τν, Phys. Rev. Lett. 118 (2017) 081802 [arXiv:1611.06676] [INSPIRE].

[56] U. Nierste, S. Trine and S. Westhoff, Charged-Higgs effects in a new B → D tau nu differential
decay distribution, Phys. Rev. D 78 (2008) 015006 [arXiv:0801.4938] [INSPIRE].

[57] M. Tanaka and R. Watanabe, New physics in the weak interaction of B̄ → D(∗)τ ν̄, Phys. Rev. D
87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].

[58] M. Duraisamy and A. Datta, The Full B → D∗τ−ν̄τ Angular Distribution and CP violating
Triple Products, JHEP 09 (2013) 059 [arXiv:1302.7031] [INSPIRE].

[59] M. Duraisamy, P. Sharma and A. Datta, Azimuthal B → D∗τ−ν̄τ angular distribution with
tensor operators, Phys. Rev. D 90 (2014) 074013 [arXiv:1405.3719] [INSPIRE].

– 30 –

https://doi.org/10.1103/PhysRevD.95.114506
https://arxiv.org/abs/1703.09728
https://inspirehep.net/literature/1519998
https://doi.org/10.1016/0370-2693(90)90568-Q
https://doi.org/10.1016/0370-2693(90)90568-Q
https://inspirehep.net/literature/299049
https://doi.org/10.1007/JHEP09(2019)103
https://doi.org/10.1007/JHEP09(2019)103
https://arxiv.org/abs/1904.09311
https://inspirehep.net/literature/1730526
https://doi.org/10.1007/JHEP01(2019)009
https://doi.org/10.1007/JHEP01(2019)009
https://arxiv.org/abs/1801.01112
https://inspirehep.net/literature/1645917
https://doi.org/10.1007/JHEP06(2021)118
https://arxiv.org/abs/2103.01857
https://inspirehep.net/literature/1849585
https://doi.org/10.1007/JHEP10(2021)122
https://arxiv.org/abs/2107.13406
https://inspirehep.net/literature/1894565
https://doi.org/10.1103/PhysRevD.94.094021
https://arxiv.org/abs/1602.07671
https://inspirehep.net/literature/1423302
https://doi.org/10.1103/PhysRevD.95.093006
https://arxiv.org/abs/1702.02773
https://inspirehep.net/literature/1512774
https://doi.org/10.1103/PhysRevD.102.095028
https://doi.org/10.1103/PhysRevD.102.095028
https://arxiv.org/abs/2006.16416
https://inspirehep.net/literature/1804307
https://doi.org/10.1007/JHEP04(2022)026
https://arxiv.org/abs/2201.05537
https://inspirehep.net/literature/2011120
https://doi.org/10.1103/PhysRevD.101.113004
https://arxiv.org/abs/2004.08253
https://inspirehep.net/literature/1791632
https://doi.org/10.1103/PhysRevD.102.096016
https://arxiv.org/abs/2007.12590
https://inspirehep.net/literature/1808704
https://doi.org/10.1103/PhysRevD.85.094025
https://doi.org/10.1103/PhysRevD.85.094025
https://arxiv.org/abs/1203.2654
https://inspirehep.net/literature/1093648
https://arxiv.org/abs/1903.03102
https://inspirehep.net/literature/1724068
https://doi.org/10.1103/PhysRevLett.118.081802
https://arxiv.org/abs/1611.06676
https://inspirehep.net/literature/1499480
https://doi.org/10.1103/PhysRevD.78.015006
https://arxiv.org/abs/0801.4938
https://inspirehep.net/literature/778572
https://doi.org/10.1103/PhysRevD.87.034028
https://doi.org/10.1103/PhysRevD.87.034028
https://arxiv.org/abs/1212.1878
https://inspirehep.net/literature/1206631
https://doi.org/10.1007/JHEP09(2013)059
https://arxiv.org/abs/1302.7031
https://inspirehep.net/literature/1221755
https://doi.org/10.1103/PhysRevD.90.074013
https://arxiv.org/abs/1405.3719
https://inspirehep.net/literature/1296248


J
H
E
P
0
1
(
2
0
2
4
)
1
6
3

[60] D. Becirevic, S. Fajfer, I. Nisandzic and A. Tayduganov, Angular distributions of B̄ → D(∗)`ν̄`
decays and search of New Physics, Nucl. Phys. B 946 (2019) 114707 [arXiv:1602.03030]
[INSPIRE].

[61] Z. Ligeti, M. Papucci and D.J. Robinson, New Physics in the Visible Final States of
B → D(∗)τν, JHEP 01 (2017) 083 [arXiv:1610.02045] [INSPIRE].

[62] M.A. Ivanov, J.G. Körner and C.-T. Tran, Probing new physics in B̄0 → D(∗)τ−ν̄τ using the
longitudinal, transverse, and normal polarization components of the tau lepton, Phys. Rev. D 95
(2017) 036021 [arXiv:1701.02937] [INSPIRE].

[63] M. Blanke et al., Impact of polarization observables and Bc → τν on new physics explanations of
the b→ cτν anomaly, Phys. Rev. D 99 (2019) 075006 [arXiv:1811.09603] [INSPIRE].

[64] S. Bhattacharya, S. Nandi and S. Kumar Patra, b→ cτντ Decays: a catalogue to compare,
constrain, and correlate new physics effects, Eur. Phys. J. C 79 (2019) 268 [arXiv:1805.08222]
[INSPIRE].

[65] P. Colangelo and F. De Fazio, Scrutinizing B → D∗ (Dπ) `−ν` and B → D∗ (Dγ) `−ν` in search
of new physics footprints, JHEP 06 (2018) 082 [arXiv:1801.10468] [INSPIRE].

[66] R.-X. Shi et al., Revisiting the new-physics interpretation of the b→ cτν data, JHEP 12 (2019)
065 [arXiv:1905.08498] [INSPIRE].

[67] A.K. Alok, D. Kumar, S. Kumbhakar and S. Uma Sankar, Solutions to RD-RD∗ in light of Belle
2019 data, Nucl. Phys. B 953 (2020) 114957 [arXiv:1903.10486] [INSPIRE].

[68] R. Mandal, C. Murgui, A. Peñuelas and A. Pich, The role of right-handed neutrinos in b→ cτ ν̄

anomalies, JHEP 08 (2020) 022 [arXiv:2004.06726] [INSPIRE].

[69] S. Kumbhakar, Signatures of complex new physics in b→ cτ ν̄ transitions, Nucl. Phys. B 963
(2021) 115297 [arXiv:2007.08132] [INSPIRE].

[70] S. Iguro and R. Watanabe, Bayesian fit analysis to full distribution data of B→ D(∗)`ν : |Vcb|
determination and new physics constraints, JHEP 08 (2020) 006 [arXiv:2004.10208] [INSPIRE].

[71] B. Bhattacharya, A. Datta, S. Kamali and D. London, A measurable angular distribution for
B → D∗τ−vτ decays, JHEP 07 (2020) 194 [arXiv:2005.03032] [INSPIRE].

[72] R. Dutta and A. Bhol, Bc → (J/ψ, ηc)τν semileptonic decays within the standard model and
beyond, Phys. Rev. D 96 (2017) 076001 [arXiv:1701.08598] [INSPIRE].

[73] LATTICE-HPQCD collaboration, R(J/ψ) and B−c → J/ψ`−ν̄` Lepton Flavor Universality
Violating Observables from Lattice QCD, Phys. Rev. Lett. 125 (2020) 222003
[arXiv:2007.06956] [INSPIRE].

[74] R. Dutta, Λb → (Λc, p) τ ν decays within standard model and beyond, Phys. Rev. D 93 (2016)
054003 [arXiv:1512.04034] [INSPIRE].

[75] S. Shivashankara, W. Wu and A. Datta, Λb → Λcτ ν̄τ Decay in the Standard Model and with New
Physics, Phys. Rev. D 91 (2015) 115003 [arXiv:1502.07230] [INSPIRE].

[76] X.-Q. Li, Y.-D. Yang and X. Zhang, Λb → Λcτντ decay in scalar and vector leptoquark scenarios,
JHEP 02 (2017) 068 [arXiv:1611.01635] [INSPIRE].

[77] A. Datta, S. Kamali, S. Meinel and A. Rashed, Phenomenology of Λb → Λcτντ using lattice
QCD calculations, JHEP 08 (2017) 131 [arXiv:1702.02243] [INSPIRE].

[78] A. Ray, S. Sahoo and R. Mohanta, Probing new physics in semileptonic Λb decays, Phys. Rev. D
99 (2019) 015015 [arXiv:1812.08314] [INSPIRE].

– 31 –

https://doi.org/10.1016/j.nuclphysb.2019.114707
https://arxiv.org/abs/1602.03030
https://inspirehep.net/literature/1420553
https://doi.org/10.1007/JHEP01(2017)083
https://arxiv.org/abs/1610.02045
https://inspirehep.net/literature/1490656
https://doi.org/10.1103/PhysRevD.95.036021
https://doi.org/10.1103/PhysRevD.95.036021
https://arxiv.org/abs/1701.02937
https://inspirehep.net/literature/1508621
https://doi.org/10.1103/PhysRevD.99.075006
https://arxiv.org/abs/1811.09603
https://inspirehep.net/literature/1704733
https://doi.org/10.1140/epjc/s10052-019-6767-7
https://arxiv.org/abs/1805.08222
https://inspirehep.net/literature/1674317
https://doi.org/10.1007/JHEP06(2018)082
https://arxiv.org/abs/1801.10468
https://inspirehep.net/literature/1651447
https://doi.org/10.1007/JHEP12(2019)065
https://doi.org/10.1007/JHEP12(2019)065
https://arxiv.org/abs/1905.08498
https://inspirehep.net/literature/1735781
https://doi.org/10.1016/j.nuclphysb.2020.114957
https://arxiv.org/abs/1903.10486
https://inspirehep.net/literature/1726539
https://doi.org/10.1007/JHEP08(2020)022
https://arxiv.org/abs/2004.06726
https://inspirehep.net/literature/1791267
https://doi.org/10.1016/j.nuclphysb.2020.115297
https://doi.org/10.1016/j.nuclphysb.2020.115297
https://arxiv.org/abs/2007.08132
https://inspirehep.net/literature/1807493
https://doi.org/10.1007/JHEP08(2020)006
https://arxiv.org/abs/2004.10208
https://inspirehep.net/literature/1792126
https://doi.org/10.1007/JHEP07(2020)194
https://arxiv.org/abs/2005.03032
https://inspirehep.net/literature/1794719
https://doi.org/10.1103/PhysRevD.96.076001
https://arxiv.org/abs/1701.08598
https://inspirehep.net/literature/1511309
https://doi.org/10.1103/PhysRevLett.125.222003
https://arxiv.org/abs/2007.06956
https://inspirehep.net/literature/1806789
https://doi.org/10.1103/PhysRevD.93.054003
https://doi.org/10.1103/PhysRevD.93.054003
https://arxiv.org/abs/1512.04034
https://inspirehep.net/literature/1409518
https://doi.org/10.1103/PhysRevD.91.115003
https://arxiv.org/abs/1502.07230
https://inspirehep.net/literature/1346412
https://doi.org/10.1007/JHEP02(2017)068
https://arxiv.org/abs/1611.01635
https://inspirehep.net/literature/1495991
https://doi.org/10.1007/JHEP08(2017)131
https://arxiv.org/abs/1702.02243
https://inspirehep.net/literature/1512597
https://doi.org/10.1103/PhysRevD.99.015015
https://doi.org/10.1103/PhysRevD.99.015015
https://arxiv.org/abs/1812.08314
https://inspirehep.net/literature/1710392


J
H
E
P
0
1
(
2
0
2
4
)
1
6
3

[79] T. Gutsche et al., Analyzing lepton flavor universality in the decays Λb → Λ(∗)
c ( 1

2
±
, 3

2
−) + ` ν̄`,

Phys. Rev. D 98 (2018) 053003 [arXiv:1807.11300] [INSPIRE].

[80] F.U. Bernlochner, Z. Ligeti, D.J. Robinson and W.L. Sutcliffe, Precise predictions for Λb → Λc
semileptonic decays, Phys. Rev. D 99 (2019) 055008 [arXiv:1812.07593] [INSPIRE].

[81] E. Di Salvo, F. Fontanelli and Z.J. Ajaltouni, Detailed Study of the Decay Λb → Λcτ ν̄τ , Int. J.
Mod. Phys. A 33 (2018) 1850169 [arXiv:1804.05592] [INSPIRE].

[82] M. Blanke et al., Addendum to “Impact of polarization observables and Bc → τν on new physics
explanations of the b→ cτν anomaly”, arXiv:1905.08253 [DOI:10.1103/PhysRevD.100.035035]
[INSPIRE].

[83] P. Böer, A. Kokulu, J.-N. Toelstede and D. van Dyk, Angular Analysis of Λb → Λc(→ Λπ)`ν̄,
JHEP 12 (2019) 082 [arXiv:1907.12554] [INSPIRE].

[84] X.-L. Mu, Y. Li, Z.-T. Zou and B. Zhu, Investigation of effects of new physics in Λb → Λcτ ν̄τ
decay, Phys. Rev. D 100 (2019) 113004 [arXiv:1909.10769] [INSPIRE].

[85] Q.-Y. Hu, X.-Q. Li, Y.-D. Yang and D.-H. Zheng, The measurable angular distribution of
Λ0
b → Λ+

c

(
→ Λ0π+) τ− (→ π−vτ ) vτ decay, JHEP 02 (2021) 183 [arXiv:2011.05912]

[INSPIRE].

[86] N. Penalva, E. Hernández and J. Nieves, Further tests of lepton flavour universality from the
charged lepton energy distribution in b→ c semileptonic decays: The case of Λb → Λc`ν̄`, Phys.
Rev. D 100 (2019) 113007 [arXiv:1908.02328] [INSPIRE].

[87] F.U. Bernlochner, Z. Ligeti, M. Papucci and D.J. Robinson, Interpreting LHCb’s Λb → Λcτ ν̄
measurement and puzzles in semileptonic Λb decays, Phys. Rev. D 107 (2023) L011502
[arXiv:2206.11282] [INSPIRE].

[88] A.K. Leibovich and I.W. Stewart, Semileptonic Lambda(b) decay to excited Lambda(c) baryons at
order Lambda(QCD) / m(Q), Phys. Rev. D 57 (1998) 5620 [hep-ph/9711257] [INSPIRE].

[89] M. Papucci and D.J. Robinson, Form factor counting and HQET matching for new physics in
Λb→ Λc*lν, Phys. Rev. D 105 (2022) 016027 [arXiv:2105.09330] [INSPIRE].

[90] M.-L. Du, E. Hernández and J. Nieves, Is the Λc(2625)+ the heavy quark spin symmetry partner
of the Λc(2595)+?, Phys. Rev. D 106 (2022) 114020 [arXiv:2207.02109] [INSPIRE].

[91] J. Nieves and R. Pavao, Nature of the lowest-lying odd parity charmed baryon Λc(2595) and
Λc(2625) resonances, Phys. Rev. D 101 (2020) 014018 [arXiv:1907.05747] [INSPIRE].

[92] P. Böer et al., Testing lepton flavour universality in semileptonic Λb → Λ∗c decays, JHEP 06
(2018) 155 [arXiv:1801.08367] [INSPIRE].

[93] J. Nieves, R. Pavao and S. Sakai, Λb decays into Λ∗c`ν̄` and Λ∗cπ−[Λ∗c = Λc(2595) and Λc(2625)]
and heavy quark spin symmetry, Eur. Phys. J. C 79 (2019) 417 [arXiv:1903.11911] [INSPIRE].

[94] S. Meinel and G. Rendon, Λb → Λ∗c(2595, 2625)`−ν̄form factors from lattice QCD, Phys. Rev. D
103 (2021) 094516 [arXiv:2103.08775] [INSPIRE].

[95] M.-L. Du, N. Penalva, E. Hernández and J. Nieves, New physics effects on Λb→ Λc*τν¯τ
decays, Phys. Rev. D 106 (2022) 055039 [arXiv:2207.10529] [INSPIRE].

[96] G. Martinelli, M. Naviglio, S. Simula and L. Vittorio, |Vcb|, lepton flavor universality and
SU(3)F symmetry breaking in Bs→Ds(*)`ν` decays through unitarity and lattice QCD, Phys.
Rev. D 106 (2022) 093002 [arXiv:2204.05925] [INSPIRE].

[97] G. Martinelli, S. Simula and L. Vittorio, Updates on the determination of |Vcb|, R(D∗) and
|Vub|/|Vcb|, arXiv:2310.03680 [INSPIRE].

– 32 –

https://doi.org/10.1103/PhysRevD.98.053003
https://arxiv.org/abs/1807.11300
https://inspirehep.net/literature/1684336
https://doi.org/10.1103/PhysRevD.99.055008
https://arxiv.org/abs/1812.07593
https://inspirehep.net/literature/1710038
https://doi.org/10.1142/S0217751X18501695
https://doi.org/10.1142/S0217751X18501695
https://arxiv.org/abs/1804.05592
https://inspirehep.net/literature/1667901
https://arxiv.org/abs/1905.08253
https://doi.org/10.1103/PhysRevD.100.035035
https://inspirehep.net/literature/1735859
https://doi.org/10.1007/JHEP12(2019)082
https://arxiv.org/abs/1907.12554
https://inspirehep.net/literature/1746588
https://doi.org/10.1103/PhysRevD.100.113004
https://arxiv.org/abs/1909.10769
https://inspirehep.net/literature/1755653
https://doi.org/10.1007/JHEP02(2021)183
https://arxiv.org/abs/2011.05912
https://inspirehep.net/literature/1829460
https://doi.org/10.1103/PhysRevD.100.113007
https://doi.org/10.1103/PhysRevD.100.113007
https://arxiv.org/abs/1908.02328
https://inspirehep.net/literature/1748262
https://doi.org/10.1103/PhysRevD.107.L011502
https://arxiv.org/abs/2206.11282
https://inspirehep.net/literature/2100020
https://doi.org/10.1103/PhysRevD.57.5620
https://arxiv.org/abs/hep-ph/9711257
https://inspirehep.net/literature/450798
https://doi.org/10.1103/PhysRevD.105.016027
https://arxiv.org/abs/2105.09330
https://inspirehep.net/literature/1864388
https://doi.org/10.1103/PhysRevD.106.114020
https://arxiv.org/abs/2207.02109
https://inspirehep.net/literature/2616884
https://doi.org/10.1103/PhysRevD.101.014018
https://arxiv.org/abs/1907.05747
https://inspirehep.net/literature/1743745
https://doi.org/10.1007/JHEP06(2018)155
https://doi.org/10.1007/JHEP06(2018)155
https://arxiv.org/abs/1801.08367
https://inspirehep.net/literature/1650453
https://doi.org/10.1140/epjc/s10052-019-6929-7
https://arxiv.org/abs/1903.11911
https://inspirehep.net/literature/1727232
https://doi.org/10.1103/PhysRevD.103.094516
https://doi.org/10.1103/PhysRevD.103.094516
https://arxiv.org/abs/2103.08775
https://inspirehep.net/literature/1851980
https://doi.org/10.1103/PhysRevD.106.055039
https://arxiv.org/abs/2207.10529
https://inspirehep.net/literature/2156285
https://doi.org/10.1103/PhysRevD.106.093002
https://doi.org/10.1103/PhysRevD.106.093002
https://arxiv.org/abs/2204.05925
https://inspirehep.net/literature/2514325
https://arxiv.org/abs/2310.03680
https://inspirehep.net/literature/2706422

	Introduction
	HQET fit of the Bs to Ds* semileptonic-decay LQCD form factors and SM distributions
	LQCD form factors
	Bs to Ds
	Bs to D*s

	HQSS form factors
	Fit of the SM-LQCD form factors to their HQSS/HQET expressions. 
	Visible kinematics of the sequential Hb to Hc tau- (pi nu, rho nu, ell nu nu) nu decays

	New physics effects in Bs to D*s tau nu semileptonic decays
	Hb to Hc ell- bar(nu(ell)) Effective Hamiltonian
	Partially integrated sequential Hb to Hc tau (pi nu, rho nu, ell nu nu) nu decay distributions
	NP results and discussion
	LFUV ratios, unpolarized differential decay widths and tau angular, spin and spin-angular asymmetries
	Distributions of charged tau decay products


	Summary
	Mean values and covariance matrices of the ai**F coefficients in eqs. (2.6), (2.7) and (2.9)

