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1 Introduction

Hydrodynamics has been an immensely successful framework for describing near-equilibrium
dissipative many-body systems, without relying on the precise intricate knowledge of their
microscopic constituents and mutual interactions. The fundamental requirement for hy-
drodynamics to apply is a separation of “microscopic” vs. “macroscopic” scales, i.e. any
characteristic spacetime scales of the microscopic theory, e.g. the mean free path or mean
free time, must be much smaller than the spacetime scales at which the system is being
probed. If so, most excitations that operate at the microscopic scales, dubbed the “fast”
degrees of freedom, decay by the time we reach the macroscopic scales. The only remaining
“slow” degrees of freedom are the collective excitations of conserved charges that are protected
by the global symmetries of the system under consideration and thus cannot decay locally.
In this hydrodynamic regime, we expect that the effective low-energy description of the
system can be universally captured by its conserved charges and the respective conservation
equations. All the intricate microscopic information about the system coalesces into the
hydrodynamic constitutive relations: how the fluxes of conserved charges are related to the
conserved densities and their derivatives.
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Like every theoretical model in physics, the validity of the assertions above crucially
depends on the type and precision of the questions being asked. Even with a clear separation
of scales, interactions between the “slow” and the ignored “fast” degrees of freedom can
add up over macroscopic scales and lead to significant and qualitative deviations from the
naive hydrodynamic predictions [1–6]. As an example, n-point retarded correlation functions
or response functions of hydrodynamic observables (i.e. conserved densities and respective
fluxes), which measure how the system responds to external perturbations, are known to
admit “long-time tails” as a consequence of stochastic interactions that are not predicted
by classical hydrodynamics [7, 8]. Furthermore, n-point symmetric correlation functions,
which measure how the system is correlated across space and time, cannot be accessed
using the classical theory of hydrodynamics at all and require a systematic effective theory
including stochastic noise.

The state-of-the-art solution to these problems is presented by the Martin-Siggia-Rose
(MSR) formalism [2], where the hydrodynamic constitutive relations are supplemented with
random stochastic noise and physical observables are computed by averaging over all possible
noise configurations sampled from a Gaussian distribution. The ambiguity in the spread of
the Gaussian distribution is fixed by invoking the fluctuation-dissipation theorem (FDT)
from thermal field theory [9]. It requires that the Fourier-space symmetric and retarded
2-point correlation functions of arbitrary observables O and O′, computed in a thermal state
with inverse temperature β0 = 1/T0, must satisfy

GS
OO′(ω, k) = 2

β0ω
ImGR

OO′(ω, k), (1.1)

where ω and ki denote the frequency and wavevector in Fourier-space. Similar FDTs also exist
for higher-point time-ordered (i.e. symmetric, retarded, and partially retarded) correlation
functions [10], which can be used to fix how the spread of the Gaussian distribution functionally
depends on the hydrodynamic fields. In recent years, a more systematic Schwinger-Keldysh
(SK) effective field theory (EFT) framework has been developed [11–16], where one can start
from symmetry principles to directly construct an effective action for stochastic hydrodynamics
and use this to obtain n-point time-ordered correlation functions of hydrodynamic observables.
In particular, the FDT requirement in eq. (1.1) and its higher-point generalisations are not
imposed by hand in this formalism, instead they are conveniently realised via a dynamical
Kubo-Martin-Schwinger (KMS) symmetry of the effective action. SK-EFT enables us to
compute stochastic, as well as classical non-linear, corrections to n-point correlation functions
perturbatively as “loop corrections” coming from non-quadratic interactions in the effective
action. As it turns out, assuming the distribution of stochastic noise to be Gaussian,1

the MSR and SK formalisms yield the same EFTs for stochastic hydrodynamics up to
redefinitions of the stochastic noise fields. We will thoroughly explore this connection during
the course of this work.

1Gaussian noise here means that every term in the effective action is at most quadratic in noise fields.
Interactions involving one or two noise fields and multiple physical hydrodynamic fields can be described by
the MSR formalism, as we illustrate in the forthcoming discussion. However, interactions involving three or
more noise fields require the full SK-EFT formalism.

– 2 –



J
H
E
P
0
1
(
2
0
2
4
)
1
6
2

In this work, we are particularly interested in the EFT framework for relativistic hy-
drodynamics. In fact, the SK-EFT formalism itself was originally developed for relativistic
hydrodynamics [17], thanks to the enormous control provided the spacetime Poincaré sym-
metries, and was only later generalised to non-relativistic contexts [18, 19]. A systematic
study of stochastic noise in relativistic hydrodynamics can help us better describe a number
of physical systems where stochastic effects are naturally pronounced. Potential applications
include relativistic heavy-ion collisions [20–23] and the putative critical point in Quantum
Chromodynamics [4, 24–26]. While developing SK-EFT for relativistic hydrodynamics, one
is forced to confront the unfortunate fact that the conventional textbook formulation of
dissipative relativistic hydrodynamics is unstable and acausal [27, 28]. In the linear regime,
stability and causality can be investigated through the linearised mode spectrum of the
theory, {ω(k)}, defined as poles of the Fourier-space retarded 2-point correlation function
GR

OO′(ω, k). We must have

Imω(k) ≤ 0,
∣∣∣∣Re ω(k)

k

∣∣∣∣ ≤ 1 , (1.2)

at real k. The first condition ensures that a small external perturbation does not cause an
exponential growth in the hydrodynamic response. It also ensures the hierarchy between
cause and effect: the retarded correlation function vanishes when the measurement precedes
the perturbation. The second condition ensures that an initial perturbation does not induce
a response faster than the speed of light. Both the conditions in eq. (1.2) are violated in
the textbook formulation of relativistic hydrodynamics, even without loop corrections, when
viewed by a boosted inertial observer.

The problems typically arise at timescales t ∼ τ∗ set by the magnitude of dissipative
transport coefficients, like conductivities and viscosities. Since hydrodynamics is only supposed
to be reliable at spacetime scales much longer than all other scales in the system, the stability
and causality issues lie well beyond the hydrodynamic regime of applicability and do not
really signal an inconsistency of the hydrodynamic framework itself, see e.g. [29]. Nonetheless,
they render the theory inadequate for any practical application that involves actually solving
a Cauchy problem for the relativistic hydrodynamic equations to determine the fluid flow. To
circumvent these issues, we need to appropriately modify the hydrodynamic equations near or
before the timescales of instabilities τ∗ in a way that the physics in the hydrodynamic regime
remains unchanged. There are two popular proposals for this in the literature: the Müller-
Israel-Stewart (MIS) formalism [30–37] and more recently the Bemfica-Disconzi-Noronha-
Kovtun (BDNK) formalism [38–41]. The MIS formalism allows the fluxes of conserved charges
to evolve independently of the respective densities, such that they relax to their hydrodynamic
values after some characteristic relaxation timescale t ∼ τ . By appropriately tuning τ ≳ τ∗,
we can mend the stability and causality issues that would otherwise appear near τ∗. Closely
related to these are the so-called “divergence-type theories” where the evolution equations
for fluxes take the form of sourced total-divergence equations [42]; see the review by [43].
On the other hand, the BDNK formalism uses clever redefinitions of hydrodynamic fields
to introduce the relaxation timescale τ into the hydrodynamic equations, so that they are
perfectly causal and stable when expressed in terms of the new variables.
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The above procedure of modifying the physics at short timescales has a natural analogue
in the language of EFTs. Physical observables in an EFT are obtained by averaging over
all off-shell field configurations with arbitrary frequencies. Any low-energy EFT, which is
not intended to describe high-energy ultraviolet (UV) phenomena, needs an appropriate
UV-regularisation prescription to handle high-frequency field configurations that lie beyond
its regime of applicability. In this sense, the MIS and BDNK formalisms outlined above can
be thought of as potential stable and causal UV-regularisations of relativistic hydrodynamics.
In the context of SK-EFTs, an important requirement for a regularisation prescription is that
the regularised n-point correlation functions must also satisfy the respective FDTs. As shown
in [44], this ensures that stochastic loop corrections do not alter the analyticity properties
of n-point correlation functions.2 In particular, provided that retarded 2-point correlation
functions have no unstable or acausal poles at tree-level (i.e. in the classical linear theory), an
FDT-compatible UV-regularisation prescription ensures that stability and causality remains
intact perturbatively at arbitrary loop orders in the SK-EFT.

The goal of this work is to develop UV-regularised SK-EFTs for relativistic hydrodynamics
that are stable and causal by construction, at least perturbatively in interactions, and realise
the dynamical KMS symmetry to ensure compatibility with FDTs. In particular, since the UV
sector of these SK-EFTs is not fixed by any global symmetry requirements, we find multiple
consistent realisations of dynamical KMS symmetry that leave the effective action invariant
simultaneously. We will first consider a toy model with single diffusive conserved current Jµ

in section 2, the MIS-like version of which is known as the Maxwell-Cattaneo (MC) model
of relativistic diffusion [46]. We will construct a stable and causal SK-EFT for relativistic
diffusion using the MSR formalism and then present a first-principle derivation of the same
using the SK formalism. In section 3, we will generalise these results to construct a stable
and causal SK-EFT for relativistic hydrodynamics based on the MIS formalism. In particular,
we shall see that the right choice of variables is quintessential for non-linearly realising the
dynamical KMS symmetry in the effective theory. Working with stress as a relaxed degree of
freedom directly, as is done in the conventional treatments of the MIS-hydrodynamics [30–34],
is not compatible with the dynamical KMS symmetry. We will end the main part of the
paper with some discussion and future directions in section 4.

As it turns out, the BDNK formalism of relativistic hydrodynamics, while appropriate
for making the classical hydrodynamic equations stable and causal beyond their regime of
applicability, does not generalise to a consistent SK-EFT.3 We comment on these issues
in section A. In the same appendix, we also compare with the recent work of [47], where
authors used a BDNK-like EFT for diffusion to compute UV-regulated one-loop stochastic
corrections to 2-point correlation functions of conserved charge. Though this EFT agrees
with 2-point FDT at tree-level, we argue that compatibility with higher-point FDTs or with
2-point FDT at loop-levels requires the dissipative coefficients, i.e. charge conductivity and
relaxation time, to be constants and not depend on the conserved charge. In section B, we

2If one wishes to use a regularisation prescription that is not compatible with FDT, such as dimensional-
regularisation or zeta-function regularisation, one is forced to add additional BRST ghost fields into the
framework to preserve the analyticity properties of n-point correlation functions [13, 45].

3We thank J. Noronha and M. Hippert for bringing these issues to our attention and for various useful
discussions in this regard.

– 4 –



J
H
E
P
0
1
(
2
0
2
4
)
1
6
2

outline a perturbative diagrammatic procedure for computing various time-ordered correlation
functions in the UV-regulated EFT for diffusion. We explicitly compute the tree-level 2- and
3-point correlation functions and investigate their consistency with FDTs. The generalisations
of this appendix to include stochastic loop corrections and extensions to the complete theory
of relativistic hydrodynamics are left for future work. Finally, in appendix C, we discuss
alternate prescriptions of dynamical KMS symmetry in the SK-EFTs for MC-diffusion and
MIS-hydrodynamics.

Notation. We work in d + 1 spacetime dimensions. The spacetime indices “µ, ν, . . .”
collectively run over the time coordinate “t” and the spatial indices “i, j, . . .”. The spacetime
indices are raised/lowered using the background spacetime metric gµν , which in flat spacetime
is given by the Minkowski metric ηµν = diag(−1, 1, 1, . . .). The frequency ω and wavevector
ki in Fourier space is collectively denoted by pµ = (−ω, ki). We will assume natural units
where the speed of light c and the Boltzmann constant kB are set to 1, however we will
keep the reduced Planck’s constant ℏ explicit.

Note added. While this paper was nearing completion, we received a preliminary draft
of [48] that offers a different perspective on the problems explored here and appears on
the same day on arXiv.

2 Maxwell-Cattaneo model of diffusion

In order to transparently highlight the conceptual aspects of our construction, let us start
with a simple diffusion model with single relativistic conserved charge. We will revisit the
Maxwell-Cattaneo (MC) model of relativistic diffusion from the perspective of the second law
of thermodynamics and review how it circumvents the issues with causality and stability that
arise in the ordinary theory of relativistic diffusion; see e.g. [46, 49]. We will explore how to
incorporate stochastic fluctuations in the theory of MC-diffusion using the MSR framework
and make our way to the associated SK-EFT. We will pay close attention to the dynamical
KMS symmetry in the EFT, which ensures the conformity of stochastic fluctuations with
FDTs. The goal of this section is to setup the groundwork for the construction of a causal
and stable EFT of charged relativistic hydrodynamics, which we will undertake in section 3.

2.1 Theory of diffusion

Consider a physical system invariant under certain internal U(1) global symmetry, with the
associated Noether conserved current Jµ satisfying the conservation equation

∂µJ
µ = 0. (2.1)

We will also find it helpful to introduce a background gauge field Aµ coupled to the current
Jµ. The conservation of Jµ means that the theory must be invariant under background
gauge transformations of the gauge field Aµ → Aµ + ∂µΛ. Given an inertial relativistic
observer with constant four-velocity uµ

0 (normalised as uµ
0u

0
µ = −1), the current Jµ can

generically be parametrised as

Jµ = nuµ
0 + J µ, (2.2)
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where n and J µ (normalised as uµ
0Jµ = 0) respectively denote the charge density and flux in

the local rest frame of the inertial observer. The charge conservation (2.1) is a scalar equation
and, given the flux J µ, can be thought of as determining the dynamics of the density n. In
the long-distance late-time regime, where all other non-conserved “fast” degrees of freedom
have relaxed, the constitutive relations for the J µ can effectively be expressed in terms of n,
Aµ, and their spacetime derivatives, known as the constitutive relations. To leading order
in derivatives, we have the well-known Fick’s law for diffusion

J µ = −σ∆µν
(
∂νµ− Fνρu

ρ
0

)
, (2.3)

where ∆µν = ηµν + uµ
0u

ν
0 is the spatial projection operator, µ(n) is the chemical potential

thermodynamically conjugate to n, σ(n) is the conductivity transport coefficient, and Fµν =
∂µAν − ∂νAµ is the external electromagnetic field.

Note that the response of charge propagation to electric fields Fµνu
ν
0 and gradients of

chemical potential ∂µµ is controlled by the same transport coefficient σ. A physical implication
of this is that the “hydrostatic equilibrium configuration” µ = µ0 + uµ

0Aµ identically solves
the diffusion equation when coupled to background gauge fields that are time-independent
in the rest frame of the inertial observer uµ

0∂µAν = 0.
The particular form of the constitutive relations can also be understood as a consequence

of the local second law of thermodynamics, i.e. there exists an entropy current Sµ whose
divergence is non-negative for all solutions of the conservation equation. To see this, let us
start with the internal energy density ϵ(s, n) as a function of the thermodynamic entropy
density s and charge density n, defining the thermodynamic equation of state of the system.
The first law of thermodynamics can be parametrised as

dϵ = T0ds+ µdn, (2.4)

which defines the chemical potential µ. The thermodynamic temperature T0 is taken to be
constant; to allow for a spacetime-varying profile of temperature, we will need to bring in
another equation for the conservation of energy; see section 3. Since we are only considering
systems with conserved charge, we take the rate of change of energy density to be given
by the associated Lorentz-power term ∂µ(ϵuµ

0 ) = JµFµνu
ν
0 . Using these, we can obtain the

expression for entropy production

∂µS
µ = − 1

T0
J µ
(
∂µµ− Fµνu

ν
0

)
≥ 0, (2.5)

where Sµ = suµ
0 − µ/T0 J µ. We require that the constitutive relations for J µ must be

such that entropy is strictly produced for all onshell configurations of µ. This allows us
to identify the constitutive relations in eq. (2.3) for an arbitrary non-negative conductivity
σ ≥ 0. Having done this, the entropy production rate is given as

∂µS
µ = 1

T0σ
JµJ µ ≥ 0. (2.6)

The utility of coupling the theory to background gauge fields Aµ is that we can use these
to obtain the response functions (retarded correlation functions) of the conserved current

– 6 –
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Jµ. With the forthcoming generalisation to hydrodynamics in mind, let us use a collective
notation for the operators O = (Jµ) and the respective sources ϕ = (Aµ). We define the
classical expectation values of operators in the presence of sources

⟨O⟩ = O
∣∣
onshell, (2.7)

formally evaluated on the solutions of the conservation equation (2.1). The retarded 2-point
retarded correlation functions can then be defined as simply

GR
OO′ = δ⟨O⟩

δϕ′

∣∣∣∣
ϕ0

, (2.8)

where ϕ0 = (Aµ = 0) denote flat equilibrium sources. We can similarly obtain the higher-point
retarded correlation functions by taking higher variations with respect to ϕ. In Fourier-space,
with four-momentum pµ = (−ω, ki), and assuming the inertial observer to be at rest uµ

0 = δµ
t ,

we find that the retarded 2-point functions of the charge density J t and the transverse flux
J i
⊥ = ki

jJ
j (where kij = δij − kikj/k

2) take the form

GR
JtJt(ω, k) = −σk2

iω −Dk2 ,

GR
Ji

⊥Jj
⊥

(ω, k) = iωσ kij , (2.9)

where D = σ/χ is the diffusion constant with χ = ∂n/∂µ being the charge susceptibility.
The response functions involving the longitudinal flux J∥ = J iki/k can be obtained using
the conservation law: −iωJ t + ikJ∥ = 0. The pole structure of the response functions yield
the mode spectrum of the theory. There is a single diffusive mode carried by the conserved
charge fluctuations, with the dispersion relations

ω = −iDk2 + . . . , (2.10)

where ellipses denote the higher-k corrections arising from the possible higher-derivative
generalisations of the diffusion model. Thermodynamic stability of the equilibrium state
requires that χ ≥ 0. Combined with the second law requirement σ ≥ 0, this implies that
D ≥ 0, ensuring the stability of the diffusive mode.

We can obtain the retarded correlation functions and mode spectrum of relativistic
diffusion in a boosted frame of reference uµ

0 = (1, vi
0)/
√

1 − v2
0 by performing a Lorentz boost

on the dispersion relations in the local rest frame, i.e.

ω → 1√
1 − v2

0

(ω − kv0 cos θ) , ki →
1√

1 − v2
0

(k cos θ − ωv0) v
0
i

v0
+ kj

(
δj

i −
v0

i v
j
0

v2
0

)
,

k2 → 1
1 − v2

0
(k cos θ − ωv0)2 + k2 sin2 θ, (2.11)

where kiv
i
0 = kv0 cos θ. In a boosted reference frame, the dispersion relations are determined

by a quadratic polynomial in ω, giving rise to an additional mode. We find a boosted
diffusive mode and a gapped mode

ω = kv0 cos θ − iDk2
√

1 − v2
0

(
1 − v2

0 cos2 θ
)

+ . . . , ω = i

√
1 − v2

0

v2
0D

+ . . . . (2.12)

– 7 –
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While the diffusive mode is still stable, disturbingly, the new gapped mode has a positive
imaginary part and hence is unstable. This is a generic feature of relativistic dissipative
hydrodynamic theories: the rest-frame dispersion relations have higher powers of k than
ω due to the presence of dissipation, whereas after a boost transformation, we generically
have as many powers of ω as k. This generates new unphysical unstable gapped modes
in the boosted frame of reference, making the theory unusable beyond the perturbative
regime. The theory also features modes propagating faster than the speed of light for large
wavevectors and small boost parameter

ω =
(

cos θ
v0

± i

√
1 − v2

0
v2

0
sin2 θ + O(1/k)

)
k, (2.13)

whose real part is clearly not bounded from above.
These are not really conceptual problems with the relativistic diffusion model itself: the

formalism is only strictly valid in the low-frequency regime. Since the unphysical modes
typically show up at scales |ω| ≳ 1/τ∗ ≡ 1/D, they lie outside the regime of applicability of the
model. However, as noted in the introduction, they do pose practical problems when solving
the Cauchy problem in a relativistic context, in particular the diffusion equation can not be
coupled to Einstein’s equations of General Relativity. To overcome these issues, one popular
solution is to introduce additional degrees of freedom in the hydrodynamic theory. The extra
degrees of freedom are gapped, so that the small-k prediction in eq. (2.10) remains untouched;
their purpose is to serve as a consistent UV regularisation of the relativistic diffusion model.

2.2 Maxwell-Cattaneo model

While setting up the model of diffusion above, we assumed that all non-conserved “fast”
degrees of freedom in the system have relaxed and thus the flux of conserved charge J µ is
entirely given in terms of the density n. We can go slightly beyond this “hydrodynamic regime”
by allowing the flux J µ to evolve independently of the density, with certain characteristic
relaxation timescale τ . The resulting theory is sometimes referred to as the Maxwell-Cattaneo
(MC) model of diffusion [46]. The inclusion of extra degrees of freedom can be thought
of as conservatively including the “slowest” gapped non-hydrodynamic modes (one each in
longitudinal and transverse sectors) into the framework. More formally, we should think
of this procedure as introducing an ultraviolet regularisation to the diffusion model at the
frequency scales 1/τ . If we tune τ ≳ τ∗, the new flux degrees of freedom will modify the
physics before/near the onset of instabilities in eq. (2.12) in frequency space, and will enable
us to construct a diffusion model that is well-behaved for all Lorentz observers [30–34].

We will construct the model of MC-diffusion using an additional vector degree of freedom
υµ (satisfying υµu

µ
0 = 0). At this point, the new degree of freedom υµ is unrelated to the flux

J µ defined in eq. (2.2). We promote the equation of state to ϵ = ϵ(s, n, υ2), so that the energy
density can now also depend on the scalar υ2 = υµυµ, and the first law of thermodynamics
in eq. (2.4) accordingly gets modified to

dϵ = T0ds+ µdn+ χυ

2 dυ2, (2.14)

which defines χυ, a new “thermodynamic” coefficient. To get some intuition about the new
term, let us look at the associated canonical free energy density Fcan = ϵ−Ts, whose variation

– 8 –
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at fixed temperature is given as dFcan = µdn + χυυ
µdυµ. The field υµ is akin to a vector

order parameter in Landau’s theory of phase transitions. Here we are studying the phase with
υµ = 0 in equilibrium, and neglecting the kinetic term for υµ, as it is irrelevant compared to
the mass term. The model essentially corresponds to model C of the Hohenberg-Halperin
classification [4],4 with a conserved scalar density n and a non-conserved vector density υµ.5

In this way of thinking, υµ is an arbitrary field we introduced in the effective theory without
inherent microscopic definition and we are free to arbitrarily redefine it to suit our needs. We
shall fix this redefinition freedom by choosing the flux J µ to be parametrised as

J µ = αυυ
µ, (2.15)

for some arbitrary coefficient αυ. We can, of course, fix αυ as well by rescaling the definition
of υµ. For example, we can choose αυ = 1 to give υµ the interpretation of flux or αυ = χυ to
give it the interpretation of the thermodynamic conjugate of flux. With the former choice,
the relation in eq. (2.14) corresponds to extended irreversible thermodynamics [50]. For now,
we will keep αυ arbitrary as it will prove to be useful later. We can obtain the dynamical
equations for υµ using the second law of thermodynamics as our guiding principle. The
entropy production equation (2.5) accordingly modifies to

∂µS
µ = −αυ

T0
υµ
(
∂µµ− Fµνu

ν
0 + χυ

αυ
uλ

0∂λυµ

)
≥ 0, (2.16)

again with Sµ = suµ
0 − µ/T0 J µ. Inspecting this equation, we can read out the constitutive

equations for υµ to be

αυυ
µ = −σ∆µν

(
∂νµ− Fνρu

ρ
0 + χυ

αυ
uλ

0∂λυν

)
. (2.17)

The net rate of entropy production is still given by eq. (2.6), however σ can now be a
function of both n and υ2. We note that the constitutive equations (2.17) are only meant to
be representative and do not characterise the most general constitutive relations within a
derivative-order scheme.6 We can eliminate υµ in favour of J µ to write down an equation
for the relaxation of flux

J µ + τ ∆µνuλ
0∂λJν = −σ∆µν

(
∂νµ− Fνρu

ρ
0

)
+ τuλ

0∂λ lnαυ J µ, (2.18)

4The free energy of model C of Hohenberg-Halperin also contains a term proportional to ∂µn∂µn, which is
second order in derivatives. Technically, we should count υµ ∼ O(∂) and thus this term is as important as
the υ2 term in the free energy. However, given that our goal is not to rigorously describe the second order
corrections to the diffusion model, but instead to probe the effects of a gapped mode, we will drop this and
other similar second-derivative terms here for simplicity.

5The additional contribution to the free energy is reminiscent of the kinetic term in fluid dynamics, with υi

playing the role of momentum density that is relaxed (i.e. not conserved), possibly due to the presence of
impurities, and 1/χυ that of mass density. The term might also be familiar from superfluid dynamics, with υi

playing the role of superfluid velocity and χυ that of the superfluid density. However, since the curl of υi is
unconstrained, this model actually corresponds to the theory of superfluidity with vortices, the presence of
which causes the superfluid velocity to relax.

6For example, noting that the flux is counted as υi ∼ O(∂) and the time-derivatives are counted as
∂t ∼ O(∂2) in the diffusion model, we can also imagine additional terms like ∂i∂tn, ∂k∂kυi, ∂k∂k∂in in the
constitutive equations, which we are going to omit here for simplicity. As we mentioned in footnote 4, we
are only interested in probing the effects of a massive mode and not rigorously describe higher-derivative
corrections to the diffusion model.
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where we have identified the relaxation time-scale τ = σχυ/α
2
υ. For larger time-scales t≫ τ ,

the description effectively reduces to the one with just the conserved hydrodynamic mode.
We should emphasise that the theory described above is more general than the original

Maxwell-Cattaneo theory of diffusion, because all coefficients µ, τ , σ, αυ can be functions
of both n and υ2 (or J 2). We can construct a simpler model where all these are taken to
be just functions of n. However, using the thermodynamic relation (2.14), we know that
∂χυ/∂n = 2∂µ/∂υ2, implying that χυ = α2

υτ/σ must be constant when µ just depends on
n. Defining the charge susceptibility χ = (∂µ/∂n)−1 and the diffusion coefficient D = σ/χ,
both generic functions of n, the constitutive relations reduce to

J µ + τ(n) ∆µνuλ
0∂λJν = −D(n) ∆µν∂νn+ σ(n)Fµρu0

ρ + σ

2
∂(τ/σ)
∂n

J µ∂ρJ ρ, (2.19)

where we have eliminated 2∂µ lnαυ = ∂µ ln(σ/τJ ) for constant χυ together with the charge
conservation equation (2.1). If we wish to get rid of the last term, as in the original
Maxwell-Cattaneo theory, we must impose a condition on the derivatives of relaxation time
τ ′(n) = (τ(n)/σ(n))σ′(n). Since the bare σ is only visible when coupling to background
sources, the constraint between τ ′(n) and σ′(n) is not relevant for the classical dynamical
equations of n in the absence of sources. Note that the constraint on σ′(n) does not constrain
D′(n) = σ′(n)/χ(n) − (σ(n)/χ(n)2)χ′(n), because it has independent functional dependence
coming from χ′(n).

We can use the variational formula in eq. (2.8) to obtain the retarded correlation functions
in the presence of the new relaxed vector degrees of freedom. For the theory (2.19), the
expressions in eq. (2.9) for the retarded correlation functions of density and transverse-flux
computed in the local rest frame modify to

GR
JtJt(ω, k) = −σk2

iω(1 − iωτ) −Dk2 ,

GR
Ji

⊥Jj
⊥

(ω, k) = iωσ

1 − iωτ
kij . (2.20)

The form of the response functions is almost identical to the ones we saw before in eq. (2.9),
but with a modified pole structure. The correlation functions involving υµ can also be
obtained via the variations with respect to Aµ using the relation in eq. (2.15). In a generically
boosted frame of reference, obtained by implementing the Fourier-space boost transformation
in eq. (2.11), we find the boosted diffusion mode and a gapped mode in the longitudinal sector

ω = kv0 cos θ − iDk2
√

1 − v2
0

(
1 − v2

0 cos2 θ
)

+ . . . , ω = −i

√
1 − v2

0

τ − v2
0D

+ . . . , (2.21a)

and another gapped mode in the transverse sector

ω = −i

√
1 − v2

0

τ
+ . . . . (2.21b)

For the gapped poles to be stable for all inertial frames of references 0 ≤ |v0| ≤ 1, we need
to bound τ from below

τ > D > 0. (2.22)
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Given the second law constraint σ ≥ 0, this also implies an inequality for thermodynamic
susceptibilities 0 < α2

υ/χυ < χ. With the stability bounds in place, the theory (2.19) is also
causal and the modes at large wavevector propagating as

ω =
(
c∞v0 cos θ ±

√
(1 − c∞)(1 − c∞v2

0 cos2 θ) + O(1/k)
)
k, (2.23a)

with
c∞ = τ −D

τ − v2
0D

. (2.23b)

Note that 0 < c∞ ≤ 1 due to the stability bounds, which implies that the speed of modes
at large wavevector is bounded from above by 1 for all θ.

2.3 Stochastic fluctuations and effective action

The Maxwell-Cattaneo diffusion model is deterministic. Even in the strict long-distance
late-time hydrodynamic regime, where the only relevant macroscopic degrees of freedom
are the conserved charges, the ignored microscopic degrees of freedom, colloquially called
“stochastic noise”, can still leave qualitatively distinct signatures through random interactions.
The standard method to include stochastic noise into classical deterministic equations was
outlined by Martin-Siggia-Rose (MSR) [2]. The starting point of this formalism is to modify
the constitutive equations for υµ with an arbitrary random noise term θµ, i.e.

αυυ
µ = −σ∆µν

(
∂νµ− Frνρu

ρ
0 + χυ

αυ
uλ

0∂λυν

)
+ θµ. (2.24)

In anticipation of our later Schwinger-Keldysh discussion, we will label the background
electromagnetic and gauge fields with a subscript “r” from this section onward. We can
imagine solving the stochastic equations (2.24) to obtain the noisy expectation values ⟨. . .⟩θ

in the presence of background fields ϕr = (Arµ) and noise fields θ = (θµ). The physical
expectation values can be obtained by performing a weighted average over arbitrary random
noise configurations

⟨. . .⟩ =
∫

Dθ ⟨. . .⟩θ exp
(
−1

4

∫
dd+1x

〈∆µν

T0σ̃

〉
θ
θµθν

)
. (2.25)

Here σ̃(n, υ2) is a new coefficient introduced to model the strength of stochastic fluctuations.
Note the ⟨. . .⟩θ around the noise strength in the above expression, which means that the
σ̃(n, υ2) also needs to be evaluated on the solutions of the equations of motion (2.24). This is
a slight generalisation of the original MSR formulation where the noise strength is taken to be
a constant and is needed for conformity with non-linear fluctuation-dissipation theorems; see
the following. In practice, we can convert the onshell objects ⟨. . .⟩θ inside the path integral
into the respective offshell versions by introducing Lagrange multipliers ψa = (φa, Vaµ)
(normalised as uµ

0Vaµ = 0) for the equations of motion, leading to

⟨. . .⟩ =
∫

DθDψr Dψa (. . .) exp
(
−1

4

∫
dd+1x

∆µν

T0σ̃
θµθν

)
× exp

(
−i
∫

dd+1xφa∂µ(nuµ
0 + αυυ

µ)
)

× exp
(
−i
∫

dd+1xVaµ

(
αυυ

µ + σ∆µν
(
∂νµ− Frνρu

ρ
0 + χυ

αυ
uλ

0∂λυν

)
− θµ

))
, (2.26)
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where ψr = (µ, υµ) collectively denote the dynamical hydrodynamic degrees of freedom. In
the limit χυ → 0, the field υµ becomes a simple Lagrange multiplier to impose Vaµ = ∂µφa,
and we recover the Schwinger-Keldysh effective action for the ordinary diffusion model
reported in [51]. To compute stochastic correlation functions of operators O = (Jµ) using
the path integral described above, it is convenient to introduce another set of background
fields ϕa = (Aaµ) and consider the Schwinger-Keldysh generating functional

Z[ϕr, ϕa] =
〈

exp
(
i

∫
dd+1xϕaO

)〉
. (2.27)

In terms of this, the retarded 2-point Green’s function given in eq. (2.8) and the symmetric
2-point Green’s function GS

OO′ = ⟨OO′⟩ − ⟨O⟩⟨O′⟩
∣∣
ϕ0

can be computed using the variational
formulae

GR
OO′ =

(
δ

δϕ′r

)(−iδ
δϕa

)
lnZ[ϕr, ϕa]

∣∣∣∣
ϕ0

,

GS
OO′ =

(−iδ
δϕ′a

)(−iδ
δϕa

)
lnZ[ϕr, ϕa]

∣∣∣∣
ϕ0

, (2.28)

and similarly for higher-point functions. To simplify the generating functional, we note
that path integral over the noise fields θµ in (2.27) is Gaussian and can be performed
analytically to yield

Z[ϕr, ϕa] =
∫

Dψr Dψa exp(iS[ψr, ψa;ϕr, ϕa]), (2.29)

where the Schwinger-Keldysh effective action is given as

S =
∫

dd+1x

[
Baµnu

µ
0 + αυ(Baµ − Vaµ)υµ

− σ V µ
a

(
∂µµ− Frµρu

ρ
0 + χυ

αυ
uλ

0∂λυµ

)
+ iT0σ̃ V

µ
a Vaµ

]
, (2.30)

and we have defined Baµ = ∂µφa +Aaµ. In the limit χυ → 0, the field υµ becomes a simple
Lagrange multiplier to impose Vaµ = Baµ and we recover the Schwinger-Keldysh effective
action for the ordinary diffusion model reported in [12].

FDT and dynamical KMS symmetry. Using this action, it is straight-forward to verify
that we recover the 2-point retarded correlation functions as given in eq. (2.20). We can
also obtain the symmetric 2-point correlation functions

GS
JtJt(ω, k) = 2k2T0σ̃

|iω(1 − iωτ) −Dk2|2
,

GS
Ji

⊥Ji
⊥

(ω, k) = 2T0σ̃

|1 − iωτ |2
, (2.31)

which are proportional to the strength of stochastic noise in the model. A characteristic
feature of finite-temperature field theories are fluctuation-dissipation theorems. They posit
that retarded and symmetric 2-point Green’s functions of any operator, when computed in a
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thermal state with global temperature T0 and velocity uµ
0 = δµ

t , must satisfy the fluctuation-
dissipation theorem (FDT) in eq. (1.1). The boosted version of eq. (1.1) can be obtained by
replacing ω with −uµ

0pµ. Applying this to the symmetric functions in eq. (2.31) fixes the
strength of noise to be given by the dissipative conductivity transport coefficient

σ̃ = σ. (2.32)

Technically, the 2-point FDT only imposes this equality in thermodynamic equilibrium at
µ = µ0 and υµ = 0. However, similar non-linear FDTs exist for higher-point functions, which
impose the relation (2.32) for arbitrary thermodynamic arguments. Of course, checking
this order-by-order for all higher-point correlation functions is a tedious exercise and it
would be great if we could realise it as a symmetry directly at the level of the effective
action. This is precisely the dynamical Kubo-Martin-Schwinger (KMS) symmetry as we
discuss in the next subsection.

To avoid getting lost into technicalities, let us already summarise the dynamical KMS
symmetry of the effective action (2.30). First, we need to identify certain discrete symmetry Θ
of the underlying microscopic theory including the time-reversal transformation T. Depending
on the physical system under consideration, this could be just the time-reversal Θ = T,
spacetime-parity Θ = PT, time-reversal with charge conjugation Θ = CT, or spacetime-parity
together with charge conjugation Θ = CPT. The eigenvalues of various fields under different
Θ symmetries is given in table 1. The KMS symmetry is defined as the invariance of the
Schwinger-Keldysh generating functional Z[ϕr, ϕa] under a transformation of the background
fields ϕr,a = (Ar,aµ) given by7

ϕr → Θϕr, ϕa → Θ (ϕa + iβµ
0 ∂µϕr) . (2.33)

Note that the auxiliary field φa appears in the effective action via the combination Baµ =
∂µφa + Aaµ, so its Θ-eigenvalue is forced upon us by the Θ-eigenvalue of the background
fields, which turns out to be opposite the Θ-eigenvalue of µ. However, there is no such
constraint for the auxiliary field Vaµ, resulting in two independent KMS prescriptions for
the dynamical fields. If we take the Θ-eigenvalue of Vaµ to be the same as υµ, we find the
“standard” prescription of KMS symmetry

µ→ Θµ, φa → Θ
(
φa + i

(
µ− µ0
T0

− βµ
0Arµ

))
,

υµ → Θυµ, Vaµ → Θ
(
Vaµ + i

T0
∆ν

µ

(
∂νµ+ uλ

0Frλν + χυ

αυ
uλ

0∂λυν

))
. (2.34)

7Given a field f(x) with Θ-eigenvalue ηΘ
f = ±1, defined for complex spacetime coordinates, its Θ-

transformation is given as Θf(x) = ηΘ
f f(Θx), where Θt = −t and Θx⃗ = ±x⃗ depends on whether Θ includes

the spatial parity operator P. For example, taking Θ = PT and f to be PT-even, we have Θf(x) = f(−x).
Another field g(x) = f(x + iV ) is an eigenfunction of Θ if and only if the vector V µ is real, with the
Θ-eigenvalue ηΘ

g = ηΘ
f . The Θ-transformation of this equation is Θg(x∗) = Θf(x∗− iV ). In particular, the

Θ-transformation of an equation also implements a complex conjugation Θ : i → −i. The C,P,T eigenvalues of
the derivatives Ft = ∂tf and Fi = ∂if are defined as (ηC

f , ηP
f ,−ηT

f ) and (ηC
f ,−ηP

f , ηT
f ) respectively. We will

define Θ∂µf(x) = ηΘ
∂µf (∂µf)(Θx); this convention is different from [17] which uses ηΘ

f instead of ηΘ
∂µf . The

benefit of this convention is that we simply have ΘFµ = Θ∂µf , unlike the conventions of [17] that require
ΘFµ = ηΘ

∂µ
Θ∂µf .
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On the other hand, if we take the Θ-eigenvalue of Vaµ to be the opposite that of υµ, its KMS
transformation has to be replaced with the “alternate” prescription

Vaµ → Θ
(
Vaµ + i

T0

αυ

σ
υµ

)
. (2.35)

It can be explicitly checked that both these prescriptions leave the effective action (2.30)
invariant. We will discuss the physical principles underlying the standard prescription in detail
in appendix 2.4, while the details of the alternate prescription can be found in appendix C.8

2.4 Schwinger-Keldysh formalism

In the previous subsection, we used the MSR formalism to phenomenologically derive the
effective action for MC-diffusion, by integrating over random noise configurations dictated
by FDT. In recent years, a more systematic SK-EFT framework has been formalised, which
can be used to derive such effective actions starting from symmetry principles [13, 15, 16].
Furthermore, while the MSR formalism is only apt for describing Gaussian stochastic noise,
the symmetry principles of the SK framework can also be used to systematically include
higher non-Gaussian stochastic interactions into the hydrodynamic framework; see e.g. [8].
In this subsection, we review the SK formalism for relativistic diffusion, with appropriate
modifications to account for the gapped MC degrees of freedom.

Dynamical fields and global symmetries. SK field theories are set-up on a closed-time
contour, with leg “1” going forward in time and leg “2” returning backward in time to the
initial state. While the conventional single-time contour from textbook quantum field theory
can only access correlation functions at zero temperature, this exotic closed-time contour
can be used to compute symmetric, retarded, and advanced correlators at finite temperature.
Each leg of the contour is equipped with its own set of degrees of freedom and background
fields. For the present case of interest, the dynamical field content is a pair of phase fields
φ1,2, with the subscripts labelling the respective legs of the contour. The theory is required
to obey independent global U(1) symmetries on the two legs, i.e.

φ1,2 → φ1,2 − Λ1,2. (2.36a)

We can gauge these symmetries by introducing a set of background gauge fields A1,2µ, with
transformation rules

A1,2µ → A1,2µ + ∂µΛ1,2. (2.36b)

8The authors in [48] arrived at the alternate prescription of KMS transformations by invoking the principle
of detailed balance in the MSR effective action. To make contact with their language, let us define δn = n(µ)−
n(µ0), δJµ = αυυµ, δn̄ = T0χφa, and δJ̄µ = T0σVaµ. Choosing Θ = PT and turning off background fields, the
alternate KMS transformations act as δn → δn, δJµ → δJµ, δn̄ → −δn̄− iδn, and δJ̄µ → −δJ̄µ − iδJµ, with
the respective right-hand sides evaluated at −xµ, where we have ignored higher-order terms in fluctuations.
These are precisely the KMS transformations obtained in [48], although we note that this simple form only
applies at linear order in fluctuations and in the absence of background fields. On the other hand, under the
standard KMS prescription, the transformation of δJ̄µ is modified to δJ̄µ → δJ̄µ + iD∆ν

µ∂νn + iτuλ
0 ∂λδJµ,

which is also a symmetry of the effective action derived in [48].
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Using these, we can define the global symmetry invariants

B1,2µ = ∂µφ1,2 +A1,2µ, (2.37)

which are manifestly invariant under the global U(1) symmetries. The theory also carries
a fixed thermal vector βµ

0 = uµ
0/T0, characterising the four-velocity and temperature of the

inertial observer with respect to which the global thermal equilibrium state is defined.
In addition, to implement the gapped degrees of freedom present in MC-diffusion, we

also need to add a pair of dynamical spatial vector fields υ1,2µ satisfying

βµ
0 υ1,2µ = 0. (2.38)

The new degrees of freedom are taken to be invariant under the pair of global U(1) symmetries.
It is useful to introduce an average-difference basis fr = (f1 + f2)/2, fa = (f1 − f2)/ℏ

for various dynamical and background fields. The average “r” combinations are understood
as the “physical” macroscopic fields, while the difference “a” combinations as the stochastic
noise associated with them. The Schwinger-Keldysh effective action S[Φr,Φa;βµ

0 ] of the
theory can be expressed in terms of the global symmetry invariants Φr,a = (Br,aµ, υr,aµ)
and the thermal vector βµ

0 .

Diagonal shift symmetry. In addition to the global symmetries above, we impose a local
diagonal shift symmetry between the two phase fields

φ1,2 → φ1,2 + λ, (2.39)

that acts uniformly on the two legs of the Schwinger-Keldysh contour. This symmetry is
required to be time-independent, i.e.

βµ
0 ∂µλ = 0, (2.40)

Among the global symmetry invariants defined above, it is easy to see that the difference
combination Baµ is invariant under the diagonal shift symmetry, while average combination
Brµ transforms as a gauge field

Brµ → Brµ + ∂µλ. (2.41)

Due to the time-independent nature of the symmetry, the time-component uµBrµ is invariant,
which is identified as the chemical potential µ in the theory of diffusion.

Schwinger-Keldysh generating functional. The fundamental object of interest in
non-equilibrium field theory is the SK generating functional Z[ϕr, ϕa], prescribed as a
functional of the two sets of background fields ϕr,a = (Ar,aµ), which can be used to compute
retarded and symmetric correlation functions of operators in the theory using the variational
formulae (2.28). In the SK-EFT formalism, the generating functional is obtained by performing
a path integral of the effective action S[Φr,Φa;βµ] over the two sets of dynamical fields
ψr,a = (φr,a, υr,aµ), as in

Z[ϕr, ϕa] =
∫

Dψr Dψa exp(iS[Φr,Φa;βµ
0 ]) (2.42)
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The generating functional is required to satisfy the following three conditions

Z[ϕr, ϕa = 0] = 1, Z[ϕr,−ϕa] = Z∗[ϕr, ϕa], ReZ[ϕr, ϕa] ≤ 0, (2.43)

arising from generic properties of quantum field theories defined on a closed-time contour.
More details regarding the underlying physics can be found in the review of [17]. These
conditions can naturally be extended to the effective action as

S[Φr,Φa = 0;βµ
0 ] = 0, S[Φr,−Φa;βµ

0 ] = −S∗[Φr,Φa;βµ
0 ], ImS[Φr,Φa;βµ

0 ] ≥ 0.
(2.44)

We can arrange S as a series in powers of Φa, in which case the three conditions mean that:
S must at least be linear in Φa, the terms with even-powers of Φa must be imaginary, and
these imaginary terms must be arranged into a quadratic form with non-negative coefficients.

Dynamical KMS symmetry. While the SK conditions (2.43) are satisfied for arbitrary
non-equilibrium field theories defined on a closed-time contour, to describe correlation
functions in a thermal state, the SK generating functional Z[ϕr, ϕa] is also required to
satisfy a discrete dynamical KMS (Kubo-Martin-Schwinger) symmetry that is responsible
for implementing the FDT (1.1) and its higher-point generalisations. Using the discrete
microscopic Θ symmetry identified at the end of the previous subsection, the KMS symmetry
is defined as a transformation of the background fields

ϕ1(x) → Θϕ1(x), ϕ2(x) → Θϕ2(x+ iℏΘβ0), (2.45)

where the Θϕ2 is evaluated on the complex spacetime arguments xµ+iℏΘβµ
0 , with βµ

0 = uµ
0/T0

being the thermal vector associated with the inertial equilibrium observer. It can be checked
that KMS is a Z2 transformation: repeating it returns to the original background field
configuration. More details can be found in textbook treatments of thermal field theory, e.g.
in [52], or in the more recent review of [17]. Since the KMS condition acts differently on the
two copies of background fields ϕ1,2, its action on the average-different fields ϕr,a is highly
non-local. However, given that the background fields are sufficiently smooth functions, we
can derive a simple expression in the classical (ℏ → 0) limit, given in eq. (2.33). This classical
version of the dynamical KMS symmetry is more relevant for classical stochastic field theories
valid at small frequencies ω ≪ T0/ℏ, where quantum effects are suppressed. At quadratic
order in background fields, this condition precisely yields the 2-point fluctuation-dissipation
theorem in eq. (1.1). Similar higher-point relations can be derived by using this symmetry
at higher non-linear orders in background fields.

In our SK-EFT for diffusion, the dynamical KMS symmetry is naturally realised on
the dynamical fields as

φ1(x) → Θφ1(x), φ2(t, x⃗) → Θφ2(x+ iℏΘβ0),
υ1µ(x) → Θυ1µ(x), υ2µ(x) → Θυ2µ(x+ iℏΘβ0). (2.46)

In the classical limit, these transformations are realised on the average-difference basis as

φr → Θφr, φa → Θ
(
φa + iβλ

0 ∂λφr

)
,

υrµ → Θυrµ, υaµ → Θ
(
υaµ + iβλ

0 ∂λυrµ

)
. (2.47)
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C P T PT CT CPT

X0, t = x0, σ0 + + − − − −
Xi, xi, σi + − + − + −

φ − + − − + +

ui + − − + − +
T + + + + + +
µ − + + + − −

κij + + + + + +
υi − − − + + −

T 00, g00 + + + + + +
T 0i, g0i + − − + − +
T ij , gij + + + + + +
J0, A0 − + + + − −
J i, Ai − − − + + −

Table 1. Action of parity (P), time-reversal (T), and charge conjugation (C) of various quantities in
classical relativistic hydrodynamics and effective field theory. Schwinger-Keldysh double copies of
various quantities in the effective theory, “1/2” or “r/a”, behave the same as their unlabelled versions.

The global symmetry invariants Φr,a and the thermal vector βµ comprising the Schwinger-
Keldysh effective action S[Φr,Φa;βµ

0 ] transform under the classical KMS symmetry as

Φr → ΘΦr, Φa → Θ
(
Φa + iβλ

0 ∂λΦr

)
, βµ

0 → Θβµ
0 . (2.48)

Given that KMS is a Z2 transformation, is also follows that Φa + iβλ
0 ∂λΦr → ΘΦa.

Effective action and hydrodynamic frames. As an example, truncating the theory
to at most quadratic order in Φa noise fields and dropping any explicit spatial derivatives,
the most general effective action for MC-diffusion is given as

S =
∫

dd+1x

[
Baµnu

µ
0 − χυυaµυ

µ
r

+ iT0 (−λuµ
0u

ν
0 + σ∆µν)Baµ

(
Baν + iβλ

0 ∂λBrν

)
+ iT0συ ∆µνυaµ

(
υaν + iβλ

0 ∂λυrν

)
+ iT0γ× ∆µν

(
Baµ

(
υaν + iβλ

0 ∂λυrν

)
+ υaµ

(
Baν + iβλ

0 ∂λBrν

) )
+ iT0γ̄× ∆µν

(
Baµ

(
υaν + iβλ

0 ∂λυrν

)
− υaµ

(
Baν + iβλ

0 ∂λBrν

) )]
, (2.49)

where we have identified µ ≡ Brt and υµ ≡ υrµ, and various coefficients n, χυ, λ, σ, συ, γ×,
and γ̄× are functions of µ and υ2. The action is manifestly invariant under the global U(1)
and spatially-local diagonal shift symmetries. It trivially obeys the first two SK conditions;
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for the third condition, we can arrange the imaginary part of the action into a sum of squares

− T0λ (uµ
0Baµ)2 + iT0σ

(
Baµ + γ×

σ
υaµ

)(
Bµ

a + γ×
σ
υµ

a

)
+ T0

(
συ −

γ2
×
σ

)
υaµυ

µ
a ≥ 0, (2.50)

leading to the inequality constraints

λ ≤ 0, σ ≥ 0, συ ≥
γ2
×
σ
. (2.51)

Finally, let us look at the dynamical KMS symmetry. Using Θ = T,PT, the terms in the first
line map to themselves (up to a coordinate flip in the integral xµ → Θxµ), with the residual
terms that sum to a total derivative and drop out from the effective action, i.e.

iβµ
0 (n∂µµ− χυυ

ν∂µυν) = ∂µ(ipβµ
0 ) , (2.52)

Here we have used the thermodynamic relations in eq. (2.14) and identified the thermodynamic
pressure p = T0s + nµ − ϵ. Since Φa and Φa + iβλ

0 ∂λΦr map to each other under KMS
transformations (up to xµ → Θxµ), the terms in the next three lines are manifestly invariant.
Finally, the final γ̄× term is disallowed by KMS for Θ = T,PT. However, for Θ = CT,CPT,
this term is allowed as long as γ̄× is an odd function of µ. Imposing the KMS symmetry with
Θ = CT,CPT also requires n to be an odd function of µ, while the remaining coefficients
χυ, λ, σ, συ, and γ× must be even functions of µ.

The SK effective action (2.49) has more parameters compared to the action (2.30) derived
using the MSR formalism, so is clearly more general. However, this is merely a manifestation
of choice of hydrodynamic frame. To see this, let us look at the vector equation of motion
obtained by varying with respect to υai; in the absence of noise fields we get

χυυ
µ = −(γ× − γ̄×)∆µν(∂νµ− Frνρu

ρ
0) − συ∆µνuλ

0∂λυν , (2.53)

where we have used uλ
0∂λBrµ = ∂µµ− Frµνu

ν
0 . On the other hand, we can find the physical

current Jµ by varying the action with respect to Aaµ; using the above equations and in
the absence of noise fields, we find

Jµ =
(
n+ λuλ

0∂λµ
)
uµ

0 − σ∆µν (∂νµ− Frνρu
ρ
0) − (γ× + γ̄×)∆µνuλ

0∂λυν

=
(
n+ λuλ

0∂λµ
)
uµ

0 + σχυ

γ× − γ̄×
υµ +

σσυ − γ2
× + γ̄2

×
γ× − γ̄×

∆µνuλ
0∂λυν . (2.54)

Reconciling this with the frame choice we made in eqs. (2.2) and (2.15), and noting that the
γ̄× term is not KMS-invariant for Θ = T,PT, we are required to set

λ = 0, συ =
γ2
×
σ
, γ× = σχυ

αυ
, γ̄× = 0. (2.55)

On the other hand, for Θ = CPT,CT, since γ̄× is an odd function of µ, requring the coefficient
of υµ

r in eq. (2.54) to be αυ for all µ ultimately yields the same constraints as above. The
final effective action is given as

S =
∫

dd+1x

[
Baµnu

µ
0 − χυυaµυ

µ
r

+ iT0σ∆µν
(
Baµ + χυ

αυ
υaµ

)(
Baν + iβλ

0 ∂λBrν + χυ

αυ

(
υaν + iβλ

0 ∂λυrν

)) ]
.

(2.56)
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This is precisely the effective action (2.30) derived using the MSR formalism, with the KMS
condition (2.32) already imposed, with the field identifications

υµ = υrµ, Vaµ = ∆ν
µBaν + χυ

αυ
υaµ. (2.57)

One can check that this results in the standard prescription of KMS symmetry given in
eq. (2.34). To realise the alternate prescription in eq. (2.35), we need to modify the SK-EFT
by imposing a diagonal shift symmetry between the vector degrees of freedom; see appendix C.

3 Müller-Israel-Stewart model of hydrodynamics

In this section, we will implement the lessons learnt from the diffusion model and setup an
EFT framework for the Müller-Israel-Stewart (MIS) theory of relativistic hydrodynamics.
Unlike the internal U(1) symmetry in the diffusion model, we will now need to account for
the spacetime Poincaré transformations in relativistic hydrodynamics. Spacetime symmetries
are highly non-linear and give rise to certain subtleties in the MIS framework, causing the
subsequent effective field theory framework to be considerably more involved. Nonetheless,
on a conceptual front, the construction here will be a straightforward generalisation of our
discussion in section 2.

3.1 Relativistic hydrodynamics

The starting point of relativistic hydrodynamics are a set of conservation equations for the
energy-momentum tensor Tµν and the charge current Jµ, associated with spacetime Poincaré
and internal U(1) symmetries, i.e.

∇µT
µν = F νρJρ,

∇µJ
µ = 0. (3.1)

We have implicitly introduced a background spacetime metric gµν coupled to the energy-
momentum tensor Tµν via the associated covariant derivative operator ∇µ. Note that
energy-momentum tensor is sourced by the Lorentz force term in the presence of background
electromagnetic field strength Fµν = 2∂[µAν]. The energy-momentum conservation equation
can be used to determine the dynamics of the energy density ϵ and fluid velocity uµ, defined
as the time-like eigenvalue and eigenvector of the energy-momentum tensor Tµνuν = −ϵ uµ

(with uµuµ = −1). This definition of ϵ and uµ is usually referred to as the “Landau frame”
in the literature, following [53]. Similarly, the charge conservation equation can be used
to determine the dynamics of the charge density n, defined via Jµuµ = −n. However, to
complete these equations, we need to specify a set of constitutive relations for the remaining
components of the Tµν and Jµ.

This is where the second law of thermodynamics comes in: we require that there
exists an entropy current Sµ, whose divergence is locally non-negative for all solutions of
the conservation equations. We start, as with the diffusion model, with the equation of
state ϵ(s, n). However, this time around, energy conservation is included within our set of
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conservation equations, so we do not need to make a separate ansatz for ∂tϵ like we did in
the diffusion model. We can parametrise the first law of thermodynamics as

dϵ = Tds+ µdn, (3.2)

where T and µ are the local thermodynamic temperature and chemical potential. Note that
the temperature is not a constant and we have allowed it to have a nontrivial spacetime
profile. Let us also parametrise the constitutive relations as

Tµν = (ϵ+ p)uµuν + p gµν + Πµν ,

Jµ = nuµ + J µ, (3.3)

where p(ϵ, n) = Ts+µn− ϵ denotes the thermodynamic pressure of the fluid and ∆µν = gµν +
uµuν is the spatial projection operator. The transverse tensor Πµν and vector J µ (satisfying
Πµνuν = J µuµ = 0 and Πµν = Πνµ) parametrise the to-be-determined information in the
stress tensor (spatial components of the energy-mometum tensor) and charge flux. The utility
of this parametrisation is that the second law statement reduces to a simple form

∇µS
µ = −Πµν∇(µβν) − J µ

(
∂µ
µ

T
+ βλFλµ

)
≥ 0, (3.4)

where βµ = uµ/T and the entropy current is given as Sµ = s uµ − µ/T J µ. A simple
entropy-conserving solution of this equation is Πµν = J µ = 0; these are nothing but the ideal
non-dissipative relativistic fluids. The leading order dissipative corrections are given as

Πµν = −ζ ∆µν∇λu
λ − 2η∆ρ⟨µ∆ν⟩σ∇ρuσ,

J µ = −σ∆µν
(
T∇ν

µ

T
+ uλFλν

)
, (3.5)

where ζ, η, σ ≥ 0 are non-negative transport coefficients identified as fluid bulk viscosity, shear
viscosity, and conductivity respectively. The angular brackets denote the symmetric transverse-
traceless combination of indices: X⟨µν⟩ = 1/2 (Xµν + Xνµ) − 1/d∆µν∆ρσXρσ. Above, we
have used the fact that ∆µν∇µβν = 1/T ∇µu

µ and ∆ρ
⟨µ∆σ

ν⟩∇ρβσ = 1/T ∆ρ
⟨µ∆σ

ν⟩∇ρuσ.
Consider the equilibrium configuration βµ = δµ

t /T0 and µ/T = (µ0 + At)/T0 in the
presence of time-independent background sources gµν(x⃗), Aµ(x⃗). It is easy to see that in
this configuration

2∇(µβν) = 1
T 0
∂tgµν = 0, ∇µ

µ

T
+ βλFλµ = 1

T0
∂tAµ = 0. (3.6)

As a consequence, entropy is identically conserved in an equilibrium configuration. It is also
easy to see that the dissipative corrections Πµν , J µ identically vanish in equilibrium and the
ideal fluid constitutive relations trivially satisfy the conservation equations. Correspondingly,
the equilibrium configuration is a trivial solution of the dissipative hydrodynamic equations.

Having set up the hydrodynamic model, we can use the variational formulae in eq. (2.8)
to compute the retarded correlation functions of the operators O = (

√
−g Tµν ,

√
−g Jµ) by

varying with respect to the associated background sources ψ = (1
2gµν , Aµ), with the flat

values ψ0 = (1
2gµν = 1

2ηµν , Aµ = 0). As an example, let us re-evaluate the 2-point retarded
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Green’s functions for the density J t and transverse flux J i
⊥ using the hydrodynamic model

in a state with equilibrium velocity uµ
0 = δµ

t , i.e.

GR
JtJt(ω, k) = − σk2

iω −Dnk2 −
n2

ϵ+pk
2

ω2 − v2
sk

2 + iωD
∥
πk2

,

GR
Ji

⊥Jj
⊥

(ω, k) =

iωσ −
n2

ϵ+p iω

iω −D⊥
π k

2

 kij , (3.7)

where we have defined

v2
s = ∂p

∂ϵ

∣∣∣∣
s/n

,
1
χ

= T∂(µ/T )
∂n

∣∣∣∣
ϵ

, Dn = σ

χ
, D⊥

π = η

ϵ+ p
, D∥

π =
ζ + 2d−1

d η

ϵ+ p
.

(3.8)

For clarity of presentation, we have taken ∂p/∂n|ϵ = 0, which causes the mode spectrum in
the charge and energy-momentum sectors to neatly decouple: in the longitudinal sector we
find the familiar charge diffusion mode and a new fluid sound mode

ω = −iDnk
2 + . . . , ω = ±vsk −

i

2D
∥
πk

2 + . . . . (3.9a)

In the transverse sector, we find the shear diffusion mode

ω = −iD⊥
π k

2 + . . . . (3.9b)

Given ζ, η, σ ≥ 0, all these modes are stable, provided that we also take χ, ϵ+ p ≥ 0. More
details on the retarded correlation functions and mode spectrum of relativistic hydrodynamics
can be found in the lecture notes of [54]. The instabilities we encountered in a boosted frame
of reference in the relativistic diffusion model near eq. (2.12) also plague dissipative relativistic
hydrodynamics. In a boosted frame of reference, obtained using the transformation (2.11),
the sound and diffusion modes above get appropriately boosted, but the dissipative terms in
the poles of eq. (3.7) also generate an unstable gapped mode in each of sound and diffusion
channels, i.e.

ω = i

√
1 − v2

0

v2
0Dn

+ . . . , ω = i

√
1 − v2

0(1 − v2
0v

2
s)

v2
0D

∥
π

+ . . . , ω = i

√
1 − v2

0

v2
0D

⊥
π

+ . . . . (3.10)

Similarly at large wavevectors, we also find a pair of acausal modes in each of sound and
diffusion channels with the dispersion relations (2.13) that propagate faster than the speed
of light. To cure these acausalities and instabilities, we will need to introduce new gapped
modes near the frequency scales of instabilities, which will be the goal of MIS-hydrodynamics
in the next subsection.

3.2 Müller-Israel-Stewart model

To construct the Müller-Israel-Stewart (MIS) model of hydrodynamics, let us introduce new
tensor κµν and vector υµ degrees of freedom (satisfying κµνu

ν = υµu
µ = 0 and κµν = κνµ)
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to allow for all the components in the energy-momentum tensor Tµν and Jµ to fluctuate
independently. The first law of thermodynamics from eq. (3.2) needs to be appropriately
modified to include the additional dependence on the scalars trκ = κµ

µ, κ2 = κµνκµν , and
υ2 = υµυµ, i.e.

dϵ = Tds+ µdn+ χS
κ

8 d(trκ)2 + χT
κ

4 d
(
κ2 − 1

d
(trκ)2

)
+ χυ

2 dυ2, (3.11)

where χS
κ, χT

κ, and χυ are new thermodynamic coefficients and d is the number of spa-
tial dimensions.9 A priori, κµν and υµ are introduced as arbitrary degrees of freedom
unrelated to Tµν and Jµ. To fix this, let us decompose the grand-canonical free-energy
density F(ϵ, n, trκ, κ2, υ2) = ϵ − Ts − µn into a fluid part −p(ϵ, n) and the remainder
−P(ϵ, n, trκ, κ2, υ2) that vanishes when both κµν and υµ are taken to zero. Having done
this, we choose the parametrisation for the constitutive relations in eq. (3.3) and choose
Πµν and J µ to be related to κµν and υµ as

Πµν = αS
κ

2 ∆µν trκ+ αT
κκ

⟨µν⟩ +
(
P∆µν + χS

κ

2 κµν trκ+ χT
κ

(
κµρκν

ρ −
1
d
κµν trκ

)
+ χυυ

µυν
)
,

J µ = αυυ
µ, (3.12)

where we have introduced arbitrary coefficients αS
κ, αT

κ, and αυ akin to our choice in eq. (2.15).
Similar to our discussion below eq. (2.15), we can always arbitrarily redefine the fields
κµν and υµ to set these coefficients to 1, which, linearly, would give them the physical
interpretation of spatial stress tensor and flux directly, or to χS

κ, χT
κ, and χυ respectively,

giving them the physical interpretation that of the respective thermodynamic conjugates. The
additional terms in the parenthesis in eq. (3.12) have been included for later compatibility
with the SK-EFT.10 For the time being, the utility of this rather non-trivial choice is that

9This setup is reminiscent of the theory of plasticity, with 1
2 κµν serving as the strain tensor, and the

coefficients χS
κ and χT

κ as the bulk and shear moduli respectively. However, note that here κµν is not required
to be given by the symmetric derivative of a displacement field, hence this setup applies to a plastic material,
not elastic, leading to a relaxed plastic stress tensor; see e.g. [55, 56]. Correspondingly, the dynamical equation
for Πµν in (3.17) that we will soon derive, correspond to the rheology equations of a Maxwell material.

10This is the so-called “thermodynamic frame”, where the conserved currents are decomposed into a
“hydrostatic part” obtained from the grand-canonical free energy density F = −p − P and an arbitrary
“non-hydrostatic part” transverse to the fluid velocity, i.e.

T µν = − 2√
−g

δ(
√
−g F)

δgµν
+ T µν

nhs, Jµ = − 1√
−g

δ(
√
−g F)

δAµ
+ Jµ

nhs. (3.13)

The variations above are evaluated at fixed βµ = uµ/T , Λβ = µ/T − βµAµ, κµν , and υµ. The fields κµν and
υµ are related to T µν

nhs and Jµ
nhs as

T µν
nhs = αS

κ

2 ∆µν tr κ + αT
κκ⟨µν⟩, Jµ

nhs = αυ υµ. (3.14)

The SK-EFT for hydrodynamics, realising the non-linear discrete KMS symmetry, naturally give rise to the
hydrodynamic equations in the thermodynamic Landau frame, as we shall review in the following.

Note that with our particular choice of thermodynamics in eq. (3.11), the thermodynamic frame agrees with
the definition of the Landau frame T µνuν = −ϵ uµ and Jµuµ = −n. However, this does not hold more generally.
In particular, as explained in [57], if we allow the thermodynamic equation of state in eq. (3.11) to also
depend on the spacetime curvature (as is the case even in non-interacting field theories), the thermodynamic

– 22 –



J
H
E
P
0
1
(
2
0
2
4
)
1
6
2

the expression for entropy production only modifies in terms of Lie derivatives of κµν and
υµ along βµ = uµ/T , denoted by £β, i.e.

∇µS
µ = −α

S
κ

4 trκ
(

2∇λβ
λ + χS

κ

αS
κ

∆ρσ£βκρσ

)
− 1

2α
T
κκ

⟨µν⟩
(

2∇µβν + χT
κ

αT
κ

£βκµν

)
− αυυ

µ
(
∂µ
µ

T
+ βλFλµ + χυ

αυ
£βυµ

)
≥ 0. (3.15)

The entropy current is again given as Sµ = s uµ − µ/T J µ. Physically, the Lie derivatives in
this expression mean that the new degrees of freedom only modify the entropy production
of relativistic hydrodynamics if they evolve in the local rest frame of the fluid. Requiring
that entropy is strictly produced for all hydrodynamic configurations immediately allows
us identify the dynamical equations for κµν and υµ, i.e.

αS
κ

2 ∆µν trκ+αT
κκ

⟨µν⟩ =−ζ∆µν
(
∇λu

λ+TχS
κ

2αS
κ

∆ρσ£βκρσ

)
−2η∆ρ⟨µ∆ν⟩σ

(
∇ρuσ +TχT

κ

2αT
κ

£βκρσ

)
,

αυυ
µ =−σ∆µν

(
T∇ν

µ

T
+uλFλν +Tχυ

αυ
£βυν

)
. (3.16)

Due to the non-linear relation in eq. (3.12), the relaxation equations for Πµν and J µ are
quite involved. At the linearised level, we find

Πµν +
(1
d
τ S

Π∆µν∆ρσ + τT
Π∆ρ⟨µ∆ν⟩σ

)
T£βΠρσ = −ζ ∆µν∇λu

λ − 2η∆ρ⟨µ∆ν⟩σ∇ρuσ + . . . ,

J µ + τJ ∆µνT£βJν = −σ∆µν
(
T∇ν

µ

T
+ uλFλν

)
+ . . . , (3.17)

where we have identified the three distinct relaxation time-scales in the scalar, tensor, and
vector sectors of the theory, i.e. τ S

Π = ζχS
κ/(αS

κ)2, τT
Π = ηχT

κ/(αT
κ)2, and τJ = σχυ/α

2
υ. More

complete expressions for conformal fluids are provided later in section 3.5.
We can use the modified theory MIS-hydrodynamics to obtain the retarded Green’s

functions of hydrodynamic observables. In practice, this amounts to replacing ζ → ζ/(1 −
iωτ S

Π), η → η/(1 − iωτT
Π), and σ → σ/(1 − iωτJ ) in the response functions we found in

eq. (3.7). Choosing τ S
Π = τT

Π = τΠ for simplicity, we are led to

GR
JtJt(ω, k) = − σk2

iω(1 − iωτJ ) −Dnk2 −
n2

ϵ+pk
2(1 − iωτΠ)

(ω2 − v2
sk

2)(1 − iωτΠ) + iωD
∥
πk2

,

GR
Ji

⊥Jj
⊥

(ω, k) =

 iωσ

1 − iωτJ
−

n2

ϵ+p iω(1 − iωτT
Π)

iω(1 − iωτΠ) −D⊥
π k

2

 kij . (3.18)

The pole structure of these correlators still admits the hydrodynamic modes presented in
eq. (3.9). We also find new gapped modes, which in a generic boosted frame of reference
take the form

ω = −i

√
1 − v2

0

τJ − v2
0Dn

+ . . . , ω = −i

√
1 − v2

0

τΠ − v2
0/(1 − v2

0v
2
s)D∥

π

+ . . . , (3.19)

frame would no longer satisfy the Landau frame condition. This means that the definition of thermodynamic
variables, such as temperature T , in the thermodynamic frame are generically different from their Landau
frame definitions.
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in the longitudinal sector and

ω = −i

√
1 − v2

0

τJ
+ . . . , ω = −i

√
1 − v2

0

τΠ − v2
0D

⊥
π

+ . . . , (3.20)

in the transverse sector. For stability of these modes, we need to take the relaxation times
to be bounded from below as

τJ ≥ Dn ≥ 0, τΠ ≥ 1
1 − v2

s

D∥
π ≥ 0, τΠ ≥ D⊥

π ≥ 0. (3.21)

More intricate bounds exist when we allow for τ S
Π ̸= τT

Π and ∂p/∂n|ϵ ̸= 0, which we will not
explore here. These bounds also ensure that the mode spectrum is causal. The potentially
acausal modes get regulated to the same form as in eq. (2.23), but with different values of
c∞ for the charge diffusion, sound, and shear diffusion sectors

c∞ = τJ −Dn

τJ − v2
0Dn

,
(1 − v2

s)τΠ −D
∥
π

(1 − v2
0v

2
s)τΠ − v2

0D
∥
π

,
τΠ −D⊥

π

τΠ − v2
0D

⊥
π

. (3.22)

In all three of these cases, one can check that 0 < c∞ ≤ 1 due to the stability bounds,
ensuring that the speeds of modes at large wavevectors remain bounded from above by 1.
Generically, given a theory of dissipative relativistic hydrodynamics, we can always setup a
theory of MIS-hydrodynamics with sufficiently large relaxation time-scales τ S

Π, τT
Π, and τJ , so

that the theory remains linearly causal and stable in all boosted frames of references.
Had we used a more traditional parametrisation of the constitutive relations in terms

of κµν and υµ, i.e. absorbed P in eq. (3.12) into the thermodynamic pressure p in eq. (3.3)
and dropped the remaining terms in the parenthesis in eq. (3.12), the Lie derivatives £β in
eqs. (3.15), (3.16) and (3.17) above would have been replaced with βµ∇µ. This would result
in a more familiar version of MIS-hydrodynamics as found in [30–37]. However, as we will
see later in appendix 3.4, the associated EFT derived using the MSR formalism would not
agree with the dynamical KMS symmetry non-linearly and thus would violate higher-point
FDTs. Note that the two choices of parametrisations only differ from each-other non-linearly
and yield the same results for mode spectrum within the regime of linearised hydrodynamics.

3.3 Stochastic fluctuations and effective action

We can follow the MSR procedure in section 2.3 to promote the MIS theory of hydrodynamics
presented above into a effective field theory. We start by introducing random noise terms
θµν
T and θµ

J in the constitutive relations (3.16) respectively, i.e.

αS
κ

2 ∆µν trκ+ αT
κκ

⟨µν⟩ = −ζ ∆µν
(
∇λu

λ + TχS
κ

2αS
κ

∆ρσ£βκρσ

)
− 2η∆ρ⟨µ∆ν⟩σ

(
∇ρuσ + TχT

κ

2αT
κ

£βκρσ

)
+ θµν

Π ,

αυυ
µ = −σ∆µν

(
T∇ν

µ

T
+ uλFλν + Tχυ

αυ
£βυν

)
+ θµ

J , (3.23)

Physical correlations are computed similar to eq. (2.25) by integrating the noisy expectation
values of operators ⟨. . .⟩θ, evaluated on the solutions of the stochastic equations in the
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presence of the background fields ϕr = (1
2grµν , Arµ) and noise fields θ = (θµν

Π , θµ
J ). The noise

configurations are sampled from the weight distribution

exp
(
−1

4

∫
dd+1x

√
−gr

[〈
∆µν∆ρσ

d2T ζ̃
+

∆ρ⟨µ∆ν⟩σ
2T η̃

〉
θ

θµν
Π θρσ

Π +
〈∆µν

T σ̃

〉
θ
θµ
J θ

ν
J

])
, (3.24)

where the new coefficients ζ̃, η̃, and σ̃ control the strength of stochastic fluctuations. Next,
similar to eq. (2.26), we can convert the noisy expectation values ⟨. . .⟩θ into offshell fields
by integrating over the hydrodynamic fields ψr = (βµ, µ, κµν , υµ) and a set of Lagrange
multipliers ψa = (Xµ

a , φa +Xµ
aArµ,

1
2Waµν , Vaµ) for the two conservation equations in eq. (3.1)

and the two sets of constitutive relations in eq. (3.23) respectively. To conveniently compute
correlation functions, we can define the Schwinger-Keldysh path integral as eq. (2.27),
by introducing “a”-type background sources ϕa = (1

2gaµν , Aaµ) to probe the operators
O = (

√
−g Tµν ,

√
−g Jµ). Finally, we can analytically perform the Gaussian path integral

over the noise fields θ = (θµν
Π , θµ

J ) and arrive at the generating functional in eq. (2.29), with
the associated effective action

S =
∫

dd+1x
√
−gr

[1
2Gaµν (ϵ uµuν −F∆µν) +Baµnu

µ

+ 1
2(Gaµν −Waµν)

(
αS

κ

2 ∆µν trκ+ αT
κκ

⟨µν⟩
)

+ (Baµ − Vaµ)αυυ
µ

+ 1
2Gaµν

(
χS

κ

2 κµν trκ+ χT
κ

(
κµρκν

ρ − 1
d
κµν trκ

)
+ χυυ

µυν
)

− 1
2ζ ∆µν∆ρσWaµν

(
∇ρuσ + TχS

κ

2αS
κ

£βκρσ

)
+ iT

4 ζ̃ ∆µν∆ρσWaµνWaρσ

− η∆ρ⟨µ∆ν⟩σWaµν

(
∇ρuσ + TχT

κ

2αT
κ

£βκρσ

)
+ iT

2 η̃∆ρ⟨µ∆ν⟩σWaµνWaρσ

− σ∆µνVaµ

(
T∇ν

µ

T
+ uλFrλν + Tχυ

αυ
£βυν

)
+ iT σ̃∆µνVaµVaν

]
, (3.25)

where Gaµν = gaµν + £Xagrµν and Baµ = Aaµ + ∂µφa + £XaArµ. In the limit χS
κ, χ

T
κ, χυ → 0,

the fields κµν and υµ become Lagrange multipliers to impose the conditions Waµν = Gaµν

and Vaµ = Baµ respectively, and we recover the effective field theory for ordinary relativistic
hydrodynamics developed in [13, 15, 16].

FDT and KMS symmetry. We can use the effective action derived above to compute the
retarded and symmetric correlation functions of relativistic MIS-hydrodynamics. Requiring
the 2-point correlation functions to satisfy FDT imposes

ζ̃ = ζ, η̃ = η, σ̃ = σ. (3.26)

As we will see in the next subsection in detail, this choice also guarantees that the effective
action realises the non-linear dynamical KMS symmetry and thus is compatible with all
higher-point FDTs as well. The KMS symmetry is realised on the background fields ϕr,a =
(1

2gr,aµν , Ar,aµ) the same as eq. (2.33). However, similar to our discussion around eq. (2.34),
the dynamical fields can realise four different prescriptions of KMS transformations depending
on the choice of Θ-eigenvalues of the auxiliary fields Waµν and Vaµ. If we take these to
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transform the same way as κµν and υµ respectively, the effective action realises the “standard”
prescription of the dynamical KMS symmetry

βµ →Θβµ, Xµ
a →Θ

(
Xµ

a +i(βµ−βµ
0 )
)
,

µ→Θµ, φa →Θ
(
φa+i

(
µ

T
−µ0

T0
−βµArµ

))
,

κµν →Θκµν , Waµν →Θ
(
Waµν + i

T

(
2∆ρ

(µ∆σ
ν)∇ρuσ +

(
1
d

χS
κ

αS
κ

∆µν∆ρσ +χT
κ

αT
κ

∆ρ
⟨µ∆σ

ν⟩

)
T£βκρσ

))
,

υµ →Θυµ, Vaµ →Θ
(
Vaµ+ i

T
∆ν

µ

(
T∂ν

µ

T
+uλFrλν + Tχυ

αυ
£βυν

))
. (3.27)

On the other hand, if Waµν and/or Vaµ transform oppositely to κµν and/or υµ, their KMS
transformations are given by the alternate prescriptions

Waµν → Θ
(
Waµν + i

T

(1
d

αS
κ

ζ
∆µν∆ρσ + αT

κ

η
∆ρ

⟨µ∆ρ
ν⟩

)
κρσ

)
, (3.28a)

and/or

Vaµ → Θ
(
Vaµ + i

T

αυ

σ
υµ

)
. (3.28b)

respectively. The derivation of these transformation rules in presented in appendices 3.4 and C.
Once again, had we used a more traditional parametrisation of the constitutive relations

in terms of κµν and υµ, as described towards the end of section 3.2, the occurrences of £β in
the effective action (3.25) would be replaced with βµ∇µ. However, as we discuss in the next
subsection, the resulting effective action cannot be made non-linearly compatible with the
dynamical KMS symmetry. In other words, the simple choice of Gaussian weight distribution
for noise configurations in eq. (3.24) would not be sufficient to guarantee agreement with
all higher-point FDTs.

3.4 Schwinger-Keldysh formalism

We will now derive the effective action (3.25) for MIS-hydrodynamics using the Schwinger-
Keldysh formalism and illustrate how it non-linearly realises the dynamical KMS symmetry.
The following discussion is a straightforward generalisation of the original construction of
SK-EFTs for relativistic hydrodynamics [13, 15, 16], extended to include the gapped MIS fields.

Fluid worldvolume, dynamical fields, and global symmetries. The presence of global
spacetime symmetries makes the effective field theory for hydrodynamics a little more subtle
than the linear diffusion model. Just like the doubled phase fields in the diffusion model on
which the internal U(1) symmetries act, the spacetime on which the spacetime symmetries act
also needs to be doubled. The elegant insight of [13, 15, 16] is to setup the effective field theory
for hydrodynamics as a sigma-model on an auxiliary “fluid worldvolume” with coordinates σα.
Dynamical fields live on the fluid worldvolume: a pair of coordinate fields Xµ

1,2(σ) defining the
two copies of spacetime and a pair of U(1) phase fields φ1,2(σ) akin to the diffusion model.

The hydrodynamic effective field theory realises the global spacetime and internal
symmetries independently on the two spacetimes. We will directly start with the gauged
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versions of these symmetries: spacetime diffeomorphisms and U(1) gauge transformations

Xµ
1,2 → X ′µ

1,2(X1,2),

φ1,2 → φ1,2 − Λ1,2(X1,2). (3.29)

with the associated background fields: a pair of background spacetime metrics g1,2µν(X1,2)
and U(1) gauge fields A1,2µ(X1,2). Background U(1) gauge transformations act on A1,2µ as

A1,2µ(X1,2) → A1,2µ(X1,2) + ∂

∂Xµ
1,2

Λ1,2(X1,2), (3.30)

whereas background diffeomorphisms act on g1,2µν and A1,2µ as usual. When coupled to a
flat background, g1,2µν = ηµν , A1,2µ = 0, these symmetries reduce the global symmetries:
spacetime Poincaré transformations and constant U(1) transformations. In practice, we
can pullback these fields onto the fluid worldvolume into objects invariant under the global
symmetries

g1,2αβ = g1,2µν(X1,2) ∂αX
µ
1,2 ∂βX

ν
1,2,

A1,2α = A1,2µ(X1,2) ∂αX
µ
1,2 + ∂αφ1,2. (3.31)

We also equip the fluid worldvolume with a fixed thermal vector βα = δα
0 /T0, which characterise

the equilibrium thermal state around which the hydrodynamic theory is being setup.
To model the additional gapped modes present in the MIS theory, we will also introduce

a pair of tensor fields κ1,2αβ(σ) and a pair vector fields υ1,2α(σ) on the fluid worldvolume.
Since we only intend to introduce new degrees of freedom corresponding to stresses and
fluxes and not for energy-momentum and charge densities, we will choose these new fields
to be transverse to the thermal vector, i.e.

βακ1,2αβ = 0, βαυ1,2α = 0. (3.32)

Both these fields are taken to be invariant under the global spacetime and U(1) symmetries.
We can define the average-difference basis fr = (f1 + f2)/2, fa = (f1 − f2)/ℏ for various

quantities, which will be useful later. Due to the non-linear nature of the theory, gr,aαβ

and Ar,aµ are non-trivially related to Xµ
r,a, φr,a, gr,aµν , Ar,aµ. For example, in the classical

limit we find

grαβ = grµν(Xr) ∂αX
µ
r ∂βX

ν
r + O(ℏ),

gaαβ =
(
gaµν(Xr) + £Xagrµν(Xr)

)
∂αX

µ
r ∂βX

ν
r + O(ℏ),

Arα = Arµ(Xr) ∂αX
µ
r + ∂αφr + O(ℏ),

Aaα =
(
Aaµ(Xr) + £XaArµ(Xr)

)
∂αX

µ
r + ∂αφa + O(ℏ), (3.33)

up to quantum corrections. The Schwinger-Keldysh effective action of the theory can be
expressed as S[Φr,Φa; βα], in terms of the global symmetry invariants Φr,a = (1

2gr,aαβ ,Ar,aα,
1
2κr,aαβ , υr,aα) and the fixed thermal vector βα, integrated over the fluid worldvolume co-
ordinates σα.

– 27 –



J
H
E
P
0
1
(
2
0
2
4
)
1
6
2

Fluid worldvolume symmetries. We also impose local diffeomorphisms σ′α(σ) and U(1)
gauge transformations λ(σ) of the fluid worldvolume acting on the dynamical fields as

Xµ
1,2(σ) → X ′µ

1,2(σ′(σ)) = Xµ
1,2(σ),

ϕ1,2(σ) → ϕ′1,2(σ′(σ)) = ϕ1,2(σ) + λ(σ). (3.34)

The MIS fields κ1,2αβ and υ1,2α are taken to invariant under worldvolume U(1) gauge transfor-
mations and transform as appropriately ranked tensors under worldvolume diffeomorphisms.
These transformations are taken to be time-independent, satisfying

ββ∂βσ
′α(σ) = ββ , βα∂αλ(σ) = 0. (3.35)

One consequence of this is that all global symmetry invariants in eq. (3.31) are invariant under
worldvolume gauge transformations, except the spatial components of βαArα, similar to the
diffusion model. Worldvolume diffeomorphisms act on all global symmetry invariants as usual.

Physical spacetime formulation. The fluid worldvolume picture of the hydrodynamic
effective field theory with two copies of spacetimes is theoretically neat and appealing.
However, for practical purposes, it is more transparent to move to a single physical spacetime
formulation, defined via xµ = Xµ

r (σ). We can use pullbacks with respect to this map to
define objects that are invariant under the fluid worldvolume diffeomorphis.

Grµν = ∂σα

∂xµ

∂σβ

∂xν
grαβ = grµν + O(ℏ),

Gaµν = ∂σα

∂xµ

∂σβ

∂xν
gaαβ = gaµν + £Xagrµν + O(ℏ),

Brµ = ∂σα

∂xµ
Arα = Arµ + ∂µφr + O(ℏ),

Baµ = ∂σα

∂xµ
Aaα = Aaµ + ∂µφa + £XaArµ + O(ℏ), (3.36)

together with the MIS fields

κr,aµν = ∂σα

∂xµ

∂σβ

∂xν
κrαβ , υr,aµ = ∂σα

∂xµ
υr,aα. (3.37)

Similarly, we can define the physical spacetime thermal vector by pushing forward the fluid
worldvolume thermal vector

βµ(x) = βα ∂xµ

∂σα(x) = 1
T0

∂xµ

∂σ0(x) , (3.38)

which can be used to define the fluid velocity and temperature as βµ = uµ/T . The fluid
velocity is normalised as uµuνGrµν = −1. The fluid worldvolume gauge transformations
become the diagonal shift symmetry on the physical spacetime, acting on Brµ as

Brµ → Brµ + ∂µλ, βµ∂µλ = 0. (3.39)

The temporal components of Brµ can be used to define the chemical potential via
µ

T
= βµBrµ + µ0

T0
, (3.40)
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which are invariant under the diagonal shift symmetry. The compromise for going to the
physical spacetime formulation is that a diagonal part of the global physical spacetime
symmetries becomes non-manifest

xµ → x′µ(x), (3.41)

which acts on various fields on the physical spacetime as expected according to their
tensor structure. In the physical spacetime formulation, the Schwinger-Keldysh effec-
tive action can be expressed as S[Φr,Φa;βµ], in terms of the global symmetry invariants
Φr,a = (1

2Gr,aµν , Br,aµ,
1
2κr,aµν , υr,aµ) and the thermal vector βµ. Note that, unlike the

diffusion model, the thermal vector βµ here is no longer a constant.

Schwinger-Keldysh generating functional. The Schwinger-Keldysh generating func-
tional for hydrodynamics can be defined using the effective action as

Z[ϕr, ϕa] =
∫

Dψr Dψa exp(iS[Φr,Φa;βµ]), (3.42)

where the path integral is performed over the set of dynamical fields ψr,a = (Xµ
r,a, φr,a, κr,aµν ,

υr,aµ) and depends on the background fields ϕr,a = (1
2gr,aµν , Ar,aµ). The generating functional

is required to satisfy the conditions in eq. (2.43), which translate in terms of the effective
action as

S[Φr,Φa = 0;βµ] = 0, S[Φr,−Φa;βµ] = −S∗[Φr,Φa;βµ], ImS[Φr,Φa;βµ] ≥ 0.
(3.43)

Dynamical KMS symmetry. The Schwinger-Keldysh generating functional is required
to satisfy the dynamical KMS symmetry given by its action on the background fields in
eq. (2.45), or the one in eq. (2.33) in the classical limit. The action of KMS symmetry on
the dynamical fields is naturally defined on the fluid worldvolume as

Xµ
1 (σ) → ΘXµ

1 (σ), Xµ
2 (σ) → ΘXµ

2 (σ + iℏΘβ) − iℏΘβµ
0 ,

φ1(σ) → Θφ1(σ), φ2(σ) → Θφ2(σ + iℏΘβ),
κ1αβ(σ) → Θκ1αβ(σ), κ2αβ(σ) → Θκ2αβ(σ + iℏΘβ),
υ1α(σ) → ΘυJ1α(σ), υ2α(σ) → Θυ2α(σ + iℏΘβ). (3.44)

The extra constant contribution in the transformation Xµ
2 is taken so that KMS symmetry

preserve the equilibrium configuration Xµ
1,2(σ) = δµ

ασ
α, φ1,2(σ) = 0. In the physical spacetime

formulation in the classical limit, these give rise to

βµ → Θβµ, Xµ
a → Θ (Xµ

a + i(βµ − βµ
0 )) ,

φr → Θφr, φa → Θ (φa + i£βφr) ,
κrµν → Θκrµν , κaµν → Θ (κaµν + i£βκrµν) ,
υrµ → Θυrµ, υaµ → Θ (υaµ + i£βυrµ) . (3.45)

These transformation properties induce the following dynamical KMS transformation on
the building blocks of the effective action

Φr → ΘΦr, Φa → Θ (Φa + i£βΦr) , βµ → Θβµ, (3.46)

which is the appropriate generalisation of the transformations (2.48) from the diffusion model.
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Hydrodynamic effective action. Truncating the theory to at most quadratic order in Φa

fields and dropping any explicit spatial derivatives, the most general hydrodynamic effective
action for MIS-hydrodynamics model is given as

S =
∫

dd+1x
√
−gr

[1
2Gaµν (ϵ uµuν −F∆µν) +Baµnu

µ

− 1
2κaµν

(
χS

κ

2 ∆µν trκr + χT
κκ

⟨µν⟩
r

)
− χυυaµυ

µ
r

+ 1
2Gaµν

(
χS

κ

2 κµν
r trκr + χT

κ

(
κµρ

r κν
rρ −

1
d
κµν

r trκr

)
+ χυυ

µ
r υ

ν
r

)
+ iT

4 ζ ∆µν∆ρσ
(
Gaµν + χS

κ

αS
κ

κaµν

)(
Gaρσ + i£βgrρσ + χS

κ

αS
κ

(κaρσ + i£βκrρσ)
)

+ iT

2 η∆ρ⟨µ∆ν⟩σ
(
Gaµν + χT

κ

αT
κ

κaµν

)(
Gaρσ + i£βgrρσ + χT

κ

αT
κ

(κaρσ + i£βκrρσ)
)

+ iTσ∆µν
(
Baµ + χυ

αυ
υaµ

)(
Baν + iδBAν + χυ

αυ
(υaν + i£βυrν)

)]
, (3.47)

where we have already imposed the hydrodynamic frame conditions as given in eq. (3.12)
for clarity. The action is manifestly invariant under the spacetime global symmetries and
worldvolume gauge symmetries. It also trivially obeys the first two Schwinger-Keldysh
conditions, while the third one requires

ζ ≥ 0, η ≥ 0, σ ≥ 0. (3.48)

Using Θ = T or PT, the terms in the first three lines map to themselves (up to a coordinate
flip in the integral xµ → Θxµ), with the residual terms that sum to a total derivative and
drop out from the effective action, i.e.

i
√
−gr

[
1
2 (ϵ uµuν −F∆µν) £βGrµν + nuµ£βBrµ − 1

2

(
χS

κ

2 ∆µν trκ+ χT
κκ

⟨µν⟩
)

£βκµν

− χυυ
µ£βυµ + 1

2

(
χS

κ

2 κµν trκ+ χT
κ

(
κµρκν

ρ − 1
d
κµν trκ

)
+ χυυ

µυν
)

£βGrµν

]

= i
√
−gr

(
−F∇µβ

µ + s£βT + n£βµ− χS
κ

8 £β(trκ)2 − χT
κ

4 £β

(
κ2 − 1

d
(trκ)2

)
− χυ

2 £βυ
2
)
,

= −∂µ
(√

−gr iβ
µ F

)
. (3.49)

We have identified κµν ≡ κrµν and υµ ≡ υrµ and used the thermodynamic relations (3.11). On
account of eq. (3.46), the last three lines in the effective action are individually KMS-invariant.
If Θ = CPT or CT, we will also need to require n to be an odd function of µ, while all
other coefficients are even functions of µ.

This action is precisely the one we derived in eq. (3.25), with the KMS conditions (3.26)
already implemented, as we can see by performing the following field redefinition

κµν = κrµν , υµ = υrµ,

Waµν = ∆ρ
µ∆σ

νGaρσ +
(1
d

χS
κ

αS
κ

∆µν∆ρσ + χT
κ

αT
κ

∆ρ
⟨µ∆σ

ν⟩

)
κaρσ, Vaµ = ∆ν

µBaν + χυ

αυ
υaµ. (3.50)
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While making the identification, it is also useful to note that ∂µ(µ/T ) + βλFrλµ = £βBrµ.
This results in the standard prescription of KMS symmetry given in eq. (3.27). To realise
the alternate prescriptions in eq. (3.28), we need to modify the SK-EFT by imposing a
diagonal shift symmetries between the vector and tensor degrees of freedom respectively;
see appendix C.

Note that the dynamical KMS transformation of Φa = (1
2Gr,aµν , Br,aµ,

1
2κr,aµν , υr,aµ)

fields in eq. (3.46) involves a Lie derivative £β along the thermal vector βµ, which forces the
occurrences of £β in the dissipative terms in the last three lines of the effective action (3.49).
In particular, if £βκrµν and £βυrµ were replaced with βλ∇λκrµν and βλ∇λυrµ, these terms
would no longer be non-linearly compatible with the dynamical KMS symmetry. This ties
back to our comments towards the ends of sections 3.2 and 3.3, that the right choice of
definitions of κµν and υµ in the classical hydrodynamic equations is crucial for compatibility
of the EFT with the dynamical KMS symmetry and thus guarantee the agreement with
all higher-point FDT requirements.

3.5 Conformal hydrodynamics

The Müller-Israel-Stewart framework of relativistic hydrodynamics hugely simplifies in the
conformal limit and was considered in the holographic model of [36]. Conformal symmetry
is defined as the invariance of the hydrodynamic equations under a conformal rescaling of
background metric, i.e.

gµν → Ω2gµν , Aµ → Aµ, (3.51)

for arbitrary function Ω(x). The hydrodynamic conservation equations (3.1) are left invariant
under this transformation, provided that the conserved currents scale as

Tµν → Ω−d−3 Tµν , Jµ → Ω−d−1Jµ, (3.52)

and the energy-momentum tensor is traceless

Tµ
µ = 0. (3.53)

Conformal transformations are realised on the hydrodynamic fields as

uµ → Ω−1uµ, T → Ω−1T, µ→ Ω−1µ, κµν → κµν , υµ → υµ. (3.54)

Note that we are free to choose the conformal weight of the fields κµν and υµ. However,
had we rescaled these fields to fix αS

κ, αT
κ, and αυ introduced in eqs. (2.15) and (3.12) to a

particular value, the conformal weight of these fields would also be fixed by the conformal
weights of the conserved currents. By scaling arguments, we can obtain the conformal weights
of various coefficients in the hydrodynamic model

ϵ→ Ω−d−1ϵ, p→ Ω−d−1p, n→ Ω−dn, s→ Ω−ds,

χS
κ → Ω−d+3χS

κ, χT
κ → Ω−d+3χT

κ, χυ → Ω−d+1χυ,

αS
κ → Ω−d+1αS

κ, αT
κ → Ω−d+1αT

κ, αυ → Ω−d+1αυ,

ζ → Ω−dζ, η → Ω−dη, σ → Ω−d+2σ. (3.55)
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Plugging these into the thermodynamic relation (3.11), we are led to the conformality
constraints between thermodynamic coefficients

ϵ = d p, dP + χS
κ

2 (trκ)2 + χT
κ

(
κ2 − 1

d
(trκ)2

)
+ χυυ

2 = 0. (3.56)

Furthermore, requiring the constitutive relations in eq. (3.16) to transform homogeneously
under non-constant conformal transformations, forces us to fix

ζ = 0 =⇒ trκ = 0. (3.57)

These conditions together ensure that Tµ
µ = 0. The final constitutive relations are given as

Tµν = ϵ

(
uµuν + 1

d
∆µν

)
+ Πµν ,

Jµ = nuµ + J µ, (3.58)

together with the non-linear relations between Πµν , J µ and κµν , υµ, i.e.

Πµν = αT
κκ

µν + χT
κ

(
κµρκν

ρ −
1
d

∆µνκ2
)

+ χυ

(
υµυν − 1

d
∆µνυ2

)
,

J µ = αυυ
µ. (3.59)

The dynamical equations for κµν and υµ take the form

αT
κκ

µν = −2η∆ρ⟨µ∆ν⟩σ
(
∇ρuσ + TχT

κ

2αT
κ

£βκρσ

)
,

αυυ
µ = −σ∆µν

(
T∇ν

µ

T
+ uλFλν + Tχυ

αυ
£βυν

)
. (3.60)

We can also obtain the relaxation equations for the dissipative stress tensor and flux.
To this end, let us take a simple ansatz for αT

κ = cT
κϵ

(d−1)/(d+1) and αυ = cυϵ
(d−1)/(d+1), for

constants cT
κ and cυ. With this choice, we find

Πµν = −2η∆ρ⟨µ∆ν⟩σ∇ρuσ − τT
Π ∆ρ⟨µ∆ν⟩σ

(
T£βΠρσ + d− 1

d
Πρσ∇λu

λ
)

+ τT
Π
η

(
ΠµρΠν

ρ −
1
d

∆µνΠ2
)

+ τJ
σ

(
J µJ ν − 1

d
∆µνJ 2

)
+ O(∂3),

J µ = −σ∆µν
(
T∇ν

µ

T
+ uλFλν

)
− τJ ∆µν

(
T£βJν + d− 1

d
Jν∇λu

λ
)

+ O(∂3), (3.61)

where we have ignored 3- and higher-derivative corrections. We have also used the leading
order energy conservation equation £βϵ+(ϵ+p)/T ∇µu

µ = 0. These equations can be directly
compared with the ones derived in [36]. However, unlike [36], our hydrodynamic equations are
not designed to be exhaustive at second-order in derivatives. In particular, we have ignored
any dependence of the constitutive relations on the fluid vorticity that is present in [36].
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The effective action for MIS-hydrodynamics in the conformal limit simplifies to

S =
∫

dd+1x
√
−gr

[1
2Gaµν

(
uµuν + 1

d
∆µν

)
ϵ+Baµnu

µ − χT
κ

2 κaµνκ
µν
r − χυυaµυ

µ
r

+ 1
2Ga⟨µν⟩

(
χT

κκ
µρ
r κν

rρ + χυυ
µ
r υ

ν
r

)
+ iT

2 η∆ρ⟨µ∆ν⟩σ
(
Gaµν + χT

κ

αT
κ

κaµν

)(
Gaρσ + i£βgrρσ + χT

κ

αT
κ

(κaρσ + i£βκrρσ)
)

+ iTσ∆µν
(
Baµ + χυ

αυ
υaµ

)(
Baν + iδBAν + χυ

αυ
(υaν + i£βυrν)

)]
, (3.62)

which is better suited for potential holographic applications.

4 Discussion

In this work, we have constructed UV-regularised stable and causal Schwinger-Keldysh effective
field theories for relativistic diffusion and hydrodynamics. The SK-EFTs are appropriately
coupled to double-copy background sources and non-linearly realise the dynamical KMS
symmetry, and thus can be used to compute n-point time-ordered correlation functions,
including perturbative stochastic loop corrections, consistent with FDT, stability, and causality
requirements. We derived the respective SK-EFTs using both the MSR and SK formalisms,
although the latter is more systematic and general and can potentially be used to include
non-Gaussian stochastic interactions into the framework.

We also find that it is possible to construct multiple models in the SK formalism that, up
to certain field redefinitions, ultimately result in the same UV-regularised SK effective action;
see appendix C. As a consequence, the SK-EFTs discussed in this work simultaneously realise
multiple dynamical KMS symmetries that act differently on the UV degrees of freedom. This
is not really surprising because the UV sectors of these models are not constrained by the
global symmetries in the hydrodynamic regime.

To construct these causal and stable SK-EFTs, we used hydrodynamic models inspired
from the Maxwell-Cattaneo model of relativistic diffusion and the Müller-Israel-Stewart model
of relativistic hydrodynamics, wherein one promotes the charge flux and spatial stress tensor
to independent dynamical degrees of freedom with respective characteristic relaxation times.
However, it is interesting to note that the classical evolution equations of the models we
constructed, given in eqs. (2.17) and (3.16) respectively, are non-linearly different from the
conventional treatments of MC-diffusion and MIS-hydrodynamics respectively. The precise
form of the equations depends on the particular choice of variables for the relaxed degrees of
freedom and we found that using charge flux or spatial stress tensor directly for this purpose
does not generically non-linearly agree with the dynamical KMS symmetry. We are forced
to work in the so-called “thermodynamic frame”, where the choice of variables is enforced
upon us by the grand canonical free energy density of the system under consideration. In
retrospect, this is not surprising since SK-EFTs are designed to describe thermal fluctuations,
while the very notion of relativistic temperature is not treated consistently in the traditional
Landau frame; see e.g. [57]. Thus, extensions of relativistic hydrodynamics based on Landau
frame, such as [36], do not lend themselves naturally to producing EFTs that respect FDT
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for n-point functions. As a future direction, it will be interesting to explore this connection
between the choice of variables and the SK formalism.

Generally speaking, relaxation times are second-order transport coefficients in the hydro-
dynamic derivative expansion. In this work, our goal was to develop the general framework
for extending relativistic SK-EFTs to include UV sectors that are consistent with stability,
causality, and FDT requirements. To this end, we have analysed minimal models that fit
the bill and have not attempted to be complete or rigorous at second order in derivatives,
which would be an interesting avenue to pursue in the future. Care must be taken, however,
because certain second order terms might end up worsening the causality and stability issues.
A simple example of this is allowing an arbitrary συ coefficient in the MC-diffusion model
as given in eq. (2.53), not fixed by the frame condition in eq. (2.55). This modifies the
dispersion relations in the denominator of eq. (2.20) by a term +iDυωk

2, where the coefficient
Dυ =

(
συ − σχ2/α2

υ

)
Dn/χυ is non-negative due to the constraints in eq. (2.51). In a boosted

frame of reference with small boost speed v0 ≪ 1, this yields an unstable mode that goes
as ω = iτJ /(v2

0Dυ) + . . .. To fix these issues, we will need to raise the powers of ω in the
dispersion relations further by introducing higher-derivative terms in the effective theory
and thus continuing the vicious cycle.

We should also emphasise that these SK-EFTs are not meant to describe physics near the
relaxation timescales with any level of generality. They should only be viewed as introducing a
consistent UV-regularisation into the hydrodynamic framework, while all physical predictions
are still only universally valid at the longest spacetime scales within the hydrodynamic
regime. If we wish to reliably describe physics near the relaxation timescales, we will need
more information regarding the relaxed degrees of freedom and the relevant symmetries
applicable at these scales, generically leading to qualitatively distinct results. For example,
as we discussed in footnote 5, the relaxed vector modes in MC-diffusion model can come from
momentum density relaxed due to impurities or superfluid velocity relaxed due to vortices.
Near the relaxation timescales, the former realises an approximate translation symmetry
while the latter realises an approximate higher-form symmetry; see e.g. [58, 59], both of
which will lead to drastically distinct physical signatures. Similarly, recalling footnote 9, the
tensor modes in MIS-hydrodynamics might arise from a plastic crystal, which also realises an
approximate higher-form symmetry near the relaxation timescales; see e.g. [55, 56]. Without
the knowledge of the underlying small(er) scale physics, the predictability of these models
is only limited to the universal hydrodynamic sector.

As we mentioned in the introduction, the recently proposed BDNK formalism also
provides an algorithm to bypass stability and causality issues in relativistic hydrodynamics by
invoking the freedom to arbitrarily redefine hydrodynamic fields. However, this formalism, as
it stands, is not well-suited for being lifted to a SK-EFT and describing stochastic fluctuations.
Relegating details to section A, one finds that tuning the transport coefficients in the BDNK
formalism to ensure stability and causality at the classical level leads to potentially negative
symmetric 2-point correlation functions and thus violations of unitarity. That being said,
BDNK-hydrodynamics provides a certain advantage over MIS-hydrodynamics within the
context of classical evolution: it is not straightforward to demonstrate causality and stability
of the fully non-linear equations of MIS-hydrodynamics [60], while it is relatively simple
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to prove this for BDNK-hydrodynamics [40, 41]. It will be interesting to explore whether
one can adjust the BDNK formalism so as to yield a consistent SK-EFT and yet preserve
the inherent simplicity of the non-linear hydrodynamic equations. On the other hand, it
will also be interesting to explore whether the SK-EFT framework for MIS-hydrodynamics
developed in this work, and appropriate extensions to other MIS-inspired models in the
literature [37, 43, 61, 62], can help us analyse the stability and causality of these models
at the full non-linear level.

The primary practical objective of SK-EFTs is to provide a systematic platform for
studying statistical fluctuation corrections to classical hydrodynamic observables such as
the retarded correlation functions of conserved densities and the corresponding fluxes. This
entails using the linearised SK-EFT with interactions, like the one presented in section B, to
compute stochastic loop corrections to various correlation functions order-by-order in the
loop-expansion. This analysis for non-UV-regularised models appeared in [8, 63, 64] and
more recently for a UV-regularised model of diffusion in [47]. We comment on the model
of [47] in the second half of section A. It will be interesting to undertake the computation
of stochastic loop corrections using the KMS-compatible SK-EFTs developed in our work,
which we leave for future explorations.

It will also be interesting to extend our results to more intricate dissipative relativistic
hydrodynamic theories such as relativistic superfluid hydrodynamics [53, 65, 66] or relativistic
magnetohydrodynamics [67–72], which are all plagued by similar stability and causality issues.
It might also be interesting to extend these ideas of UV-regularisation to non-relativistic SK-
EFTs, such as the ones discussed in [18, 19]. While an additional UV sector is not necessitated
by any stability or causality requirements in non-relativistic contexts, the loop integrals in
the respective SK-EFTs still need to be regulated with a KMS-compatible prescription and
the results of this work might provide a viable and simple resolution to this end.

This work is closely related to the recent work of [73], where authors developed a general
mechanism based on information current for introducing stochastic interactions into causal
and stable models of linear relativistic hydrodynamics, like linear MC-diffusion and MIS-
hydrodynamics. In a follow-up work that appears on arXiv on the same day as this paper,
the authors have also utilised the information current perspective together with the MSR
formalism to construct free EFTs for these linear hydrodynamic models consistent with
2-point FDT [48]. In particular, the authors have identified a modified-KMS symmetry
that is responsible for implementing 2-point FDT in their formalism. As we discussed in
footnote 8, this is nothing but an alternate prescription of KMS transformations admissible
in UV-regularised SK-EFTs. By contrast, the SK-EFTs constructed here correspond to the
fully non-linear theories inspired from MC-diffusion and MIS-hydrodynamics, and include
arbitrarily non-linear interactions consistent with all n-point FDT requirements. It will be
interesting to further explore the connections with the work of [73], in particular with the
information current identified by the authors and how it is realised in the fully non-linear EFT.
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A Comparison with BDNK formalism

In the introduction, we mentioned an alternate formalism for stabilising the gapped modes
in a boosted frame of reference in relativistic hydrodynamic theories, without the need for
introducing additional relaxed degrees of freedom, known as the Bemfica-Disconzi-Noronha-
Kovtun (BDNK) formalism [38–41]. Let us look at the diffusion model for concreteness. The
key idea is to untie the physical density −Jµu0

µ from the thermodynamic density n that
appears in the thermodynamic relations (2.4) and, just like the flux J µ, allow for arbitrary
constitutive relations for Jµu0

µ as well. To this end, let us split the constitutive relations
into the ideal and dissipative parts

Jµ = (n+ N )uµ
0 + J µ. (A.1)

The expression for entropy production modifies from eq. (2.5) to

∂µS
µ = − 1

T0
Nuµ

0∂µµ− 1
T0

J µ
(
∂µµ+ uρ

0Fρν

)
, (A.2)

where Sµ = (s− µ/T0 N )uµ
0 − µ/T0 J µ. This allows us to read out the constitutive relations

N = λuµ
0∂µµ,

J µ = −σ∆µν (∂νµ+ uρ
0Fρν) , (A.3)

for some arbitrary dissipative transport coefficients λ and σ. Looking at the expression
for entropy production, i.e.

∂µS
µ = − 1

T0λ
N 2 + 1

T0σ
JµJ µ, (A.4)

we might be tempted to claim that σ is non-negative while λ is non-positive. However, note
that entropy production is only required to be positive onshell. Therefore, before imposing
the positivity of entropy production, we should replace

N = λ

χ
uµ

0∂µn = −λ
χ

(uµ
0∂µN + ∂µJ µ) . (A.5)

In particular, we see that N is a 2-derivative onshell and thus the contribution from λ to
the entropy production is two orders suppressed relative to the contribution from σ. It was
observed in [74, 75] that the second law does not impose any constraints beyond the leading
order in derivatives; we can always introduce even further derivative order corrections to the
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constitutive relations so that the positivity of entropy production is ensured with only the
leading order dissipative coefficients being non-negative. As a consequence, the positivity of
entropy production only imposes σ ≥ 0, while λ is left unconstrained.

We can compute the retarded correlation functions for this theory using the variational
formulae in eq. (2.8). We find

GR
JtJt(ω, k) = −(1 − iωτ)σk2

iω(1 − iωτ) −Dk2 ,

GR
Ji

⊥Ji
⊥

(ω, k) = iωσ kij , (A.6)

where τ = λ/χ. Note that these correlation functions are considerably different from the ones
obtained in the Maxwell-Cattaneo theory of diffusion in eq. (2.20). Nonetheless, they get the
job done: in arbitrary boosted frame of reference, we find a diffusive and a gapped mode

ω = kv0 cos θ − iDk2
√

1 − v2
0

(
1 − v2

0 cos2 θ
)

+ . . . , ω = −i

√
1 − v2

0

τ − v2
0D

+ . . . , (A.7)

and provided that we take τ ≥ D ≥ 0, they are stable for any boost parameter. Given
that χ ≥ 0, this essentially implies that stability requires λ ≥ σ ≥ 0. As discussed near
eq. (A.5), despite the positive λ, these constraints are not at odds with the positivity of
entropy production.

The positivity of λ does pose a different problem. We can revisit our discussion of
stochastic fluctuations from section 2.3 for the BDNK model. We can introduce noise θN and
θµ
J in the constitutive relations (A.3) and set-up a path integral over noise configurations

similar to eq. (A.3), but with the new weight factor

exp
(
−1

4

∫
dd+1x

[〈 −1
T0λ̃

〉
θ

θ2
N +

〈∆µν

T0σ̃

〉
θ
θµ
J θ

ν
J

])
. (A.8)

Following through the procedure in section 2.3, we can obtain the symmetric 2-point Green’s
functions

GS
JtJt(ω, k) = 2T0

(1 + ω2τ2)σ̃k2 − λ̃D2k4

|iω(1 − iωτ) −Dk2|2
,

GS
Ji

⊥Ji
⊥

(ω, k) = 2T0σ̃ k
ij . (A.9)

Requiring the symmetric and retarded Green’s functions to satisfy the fluctuation-dissipation
theorem will force us to take

σ̃ = σ, λ̃ = λ, (A.10)

meaning that λ̃ is also positive. This, however, means that the θ2
N term in the noise weight

factor (A.8) has the wrong sign: configurations with larger stochastic noise contribute more
to the classical expectation values of operators. Also, the symmetric correlation function
GS

JtJt(ω, k) is nothing but the variance of a random stochastic variable J t and thus is not
allowed to be negative for any ω, ki. Ignoring this problem for the moment, we will be led
to the effective action for BDNK-diffusion

S =
∫

dd+1x

[
Baµnu

µ
0 + iT0 (−λuµ

0u
ν
0 + σ∆µν)Baµ

(
Baν + iβλ

0 ∂λBrν

) ]
. (A.11)
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In fact, we already derived this action using the Schwinger-Keldysh formalism in appendix 2.4.
It follows from the general Schwinger-Keldysh effective action in eq. (2.49) upon dropping all
dependence on the gapped Maxwell-Cattaneo fields and skipping imposing any hydrodynamic
frame requirement. However, the third SK-condition in eq. (2.44) is violated for positive λ,
causing higher-frequency configurations of the noise field φa to contribute arbitrarily more to
the path integral. In fact, in the MSR formalism, we needed to perform a Gaussian integral
over noise fields θN , θµ

J to derive this effective action, similar to our discussion preceding
eq. (2.30), which will be ill-defined with the wrong sign of θ2

N term. These problems can be
avoided by taking λ to be negative, however this will cause the mode spectrum to be unstable
and compromise the entire purpose of introducing gapped modes in the first place.

It is worth pointing out that the wrong sign of λ in the path integral smells similar to the
apparent reduction of entropy in eq. (A.4) for positive λ. However, there, we could brush the
problem under the rug by noting that we can always find some higher-derivative corrections
so that entropy production remains positive semi-definite while leaving λ unconstrained; see
the discussion in [74, 75]. It is, in principle, possible that a higher-derivative generalisation of
BDNK-diffusion will circumvent the problems with the associated Schwinger-Keldysh path
integral as well. However, in its current form, BDNK-diffusion model cannot be used to
reliably compute UV-regulated Green’s functions and stochastic fluctuations.

The arguments presented above also qualitatively apply to the full theory of relativistic
BDNK-hydrodynamics [38–41]. We start by untying the physical energy current −Tµνuν and
charge density −Jµuµ from the respective thermodynamic quantities ϵuµ and n, allowing
for arbitrary derivative corrections Euµ + Qµ and N relating the two. These corrections
generically admit λ-like transport coefficients described above, which are required to be
positive by the stability and causality and negative by the consistency of the EFT formalism,
thus leading to a contradiction.

From MC-diffusion to BDNK-diffusion. Despite our comments above, there is still
something to be understood. Note that, taking τ and αυ to be constant, we can take a
gradient of the constitutive relations of MC-diffusion in eq. (2.18) and precisely land on
the equations of BDNK-diffusion

∂µ

(
(n+ λuν

0∂νµ)uµ
0 − σ∆µν

(
∂νµ− Fνρu

ρ
0

))
= 0, (A.12)

where we have identified λ = χτ . So, at least for constant τ and αυ, the classical equations
of motion of the two theories are precisely the same. The difference between the two is really
the coupling to background fields: e.g. while Aµu

µ
0 couples to n in MC-diffusion, it couples

to n − λ∂tµ in BDNK-diffusion. Given so, it should be possible to derive a SK-EFT for
BDNK-diffusion for constant τ by using its MC counterpart. To this end, let us start with the
effective action for MC-diffusion in the form (2.30) and assume that all coefficients appearing
therein are just functions of n and not υ2. If so, υµ becomes a Lagrange multiplier to set

Vaµ − 1
αυ
uλ

0∂λ(αυτVaµ) = Baµ. (A.13)

Provided that we take τ and αυ to be constants, this can be explicitly solved in terms
of non-local relation Vaµ = (1 − τuλ

0∂λ)−1Baµ. Plugging this back in and performing a
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field redefinition

φa → φ̂a − τuµ
0∂µφ̂a, (A.14)

we are led to the effective action

S =
∫

dd+1x

[
B̂aµnu

µ
0 + T0λu

µ
0u

ν
0 B̂aµ β

λ
0 ∂λBrν + iT0σ∆µνB̂aµ

(
B̂aν + iβλ

0 ∂λBrν

)]
, (A.15)

where we have defined

B̂aµ = ∂µφ̂a + 1
(1 − τuλ

0∂λ)
Aaµ. (A.16)

It should also be noted that taking µ(n) to not depend on υ2, the thermodynamic rela-
tion (2.14) forces us to also take χυ = α2

υτ/σ to be constant; see our previous discussion
around eq. (2.19). Together with the requirement that τ and αυ are constants, this forces us
to take the conductivity σ to also be a constant as well. Even though the two effective ac-
tions (A.11) and (A.15) lead to the same classical equations of motion, modulo the constraints
on coefficients outlined above, they are quite different from each other. Firstly, the λ term
does not appear in the imaginary part of the action at all, so the whole problem concerning
the wrong sign of the path integral is avoided. Secondly, the coupling to background fields is
different, so the correlation functions we obtain from this effective action are those given in
eqs. (2.20) and (2.31) and not the ones from eqs. (A.6) and (A.9). The downside, however,
is that there is no simple realisation of the dynamical KMS symmetry in the new effective
action (A.15), even though it was derived from a KMS-invariant effective action (2.30). We
refer to this new EFT as BDNK∗-diffusion to distinguish it from the original (and inconsistent)
EFT of BDNK-diffusion in (A.11). The effective action (A.15) of BDNK∗-diffusion becomes
simpler if we choose the local rest frame uµ

0 = δµ
t and only turn on the time-components

of the background fields Ar,at. We get

S =
∫

dd+1x

[
∂tφ̂a(n+ τ∂tn) −D∂iφ̂a∂

in+ iT0σ ∂iφ̂a∂
iφ̂a +Aatn+ σ ∂iφ̂a∂

iArt

]
, (A.17)

where σ and τ are constants, while D can be an arbitrary function of n.
The EFT for BDNK∗-diffusion in eq. (A.17) was recently analysed in the work of [47],

however the authors allowed the conductivity σ to not be constant and depend arbitrarily on
n. As we discussed above, σ and τ need to be constant for this effective action to be derived
from the KMS-invariant effective action in eq. (2.30). Without this constraint, the tree-level
3- and higher-point functions derived using the EFT in eq. (A.17) will not satisfy FDTs;
we look at these in detail in section B. This further implies that stochastic loop corrections
to 2-point correlation functions computed using eq. (A.17) with non-constant σ and τ will
also violate the FDT in eq. (1.1), however it would be interesting to verify this explicitly.
In the context of [47], the coefficients λσ and λ′σ in their work must be switched off for
the results to be compatible with FDTs at full non-linear level. We note that the authors
in [47] only computed the loop-corrected symmetric 2-point correlation function of density
using the EFT in eq. (A.17) and assumed the 2-point FDT to define the associated retarded
correlation function. Hence, the constraints arising from non-linear FDTs was invisible in
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their computation. If we wish to probe the effects of non-constant σ and τ in the EFT,
we will need to invoke the effective action for Maxwell-Cattaneo model of diffusion given
in eq. (2.30) with relaxed vector degrees of freedom.

Our comments above are not intended as a criticism of the analysis of [47], but rather
as a cautionary note when using the MSR formalism to study statistical interactions in
stochastic thermal systems. Ordinarily in the MSR formalism, one only imposes the 2-point
FDT at tree-level to fix the noise term in the action. In ordinary theories of diffusion
and hydrodynamics (without UV-regularisation), this luckily also ensures conformity with
higher-point FDTs at tree-level and one can faithfully use the resulting EFT to compute
statistical loop corrections. However, this does not work as neatly with the EFT employed
in [47]. Although this EFT respects tree-level 2-point FDT, one finds that higher-point
FDTs are violated by the correlation functions. Note that, if we had not used the correct
thermodynamic frame for MIS-hydrodynamics in section 3, a similar problem would have
occurred for us while constructing the respective EFT using the MSR formalism; see the
comments at the end of section 3.3.

This construction has no obvious analogue for the full BDNK-hydrodynamics, even for
a particular choice of transport coefficients. Because of the spacetime-dependent velocity
field uµ, the classical dynamical equations of MIS-hydrodynamics in eq. (3.16) cannot be
recast into a BDNK-like format, as was possible for the simple diffusion model in eq. (A.12).
Therefore, the two theories are quite different even at the classical level and there is no
simple way of deriving a consistent effective action for BDNK-hydrodynamics, similar to
the one in eq. (A.15), utilising its MIS counterpart.

B Linearised effective field theory and correlation functions

Given the Schwinger-Keldysh generating functional Z[ϕr, ϕa], we can compute various time-
ordered n-point correlation functions as

Gr...a... =
(−iδ
δϕa

. . .

)(
δ

δϕr
. . .

)
lnZ[ϕr, ϕa]. (B.1)

For example, GR = Gra and GS = Grr are the retarded and symmetric 2-point correlation
functions, while Graa, Grra, and Grrr are the retarded, partially-retarded, and completely
symmetric 3-point correlation functions. When computed in a thermal state with global
constant temperature T0 and local rest frame velocity uµ

0 = δµ
0 , the Fourier-space 2- and

3-point functions are required to satisfy the fluctuation-dissipation theorems

Grr(p1, p2) = T0
iω

(
Gra(p1; p2) −G∗

ra(p1; p2)
)
, (B.2a)

Grra(p1, p2; p3) = − T0
iω2

(
Graa(p1; p2, p3) −G∗

raa(p3; p2, p1)
)

+ (1 ↔ 2), (B.2b)

Grrr(p1, p2, p3) = − T 2
0

ω2ω3

(
Graa(p1; p2, p3) +G∗

raa(p1; p2, p3)
)

+ (1 ↔ 2) + (1 ↔ 3), (B.2c)
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where
∑

n p
µ
n = 0, and so on for higher-point functions [10].11 These theorems are guaranteed

by dynamical KMS symmetry of the Schwinger-Keldysh effective field theory.

BDNK∗-diffusion. As an illustration, let us consider the effective action for BDNK∗-
diffusion given in eq. (A.17). Let us also allow the relaxation time τ and conductivity σ in
this action to depend on n, to see how this causes violations of higher-point FDTs. The
discussion here is a straight-forward generalisation of the work in [8, 64]. Denoting n by solid
lines and φ̂a by wavy lines, we find the nonzero bare propagators

p
= 1
F (p) , p

= 2T0σk
2

|F (p)|2 , (B.3)

where F (p) = ω(1 − iτω) + iDnk
2. There are also two 3-point interaction vertices

λ, λτ

p1

p2

p3
= − i

2
(
λk2

1 − λτω
2
1

)
,

λ̃
p1

p2

p3
= T0χλ̃(k2 · k3), (B.4)

where λ = ∂D/∂n, λ̃ = χ−1∂σ/∂n, and λτ = ∂τ/∂n. We can similarly work out higher-point
interaction vertices as needed. Finally, since the background field Art couples non-trivially to
the dynamical fields n and φa, we have background coupling vertices

p = iσk2,
λ̃

p1
p2

p3
= −iχλ̃(k1 · k2), (B.5)

where we have denoted an Aat insertion with double arrow. We have not included a
diagrammatic notation for Aat because it couples trivially to n.12 Blending these ingredients
together, the two-point symmetric and retarded functions at tree-level are given as

Gra(p) =
p

= iσk2

F (p) , Grr(p) =
p

= 2T0σk
2

|F (p)|2 , (B.6)

It is easy to check that they satisfy the fluctuation-dissipation theorem in eq. (B.2). We can
also compute the tree-level 3-point correlation functions: retarded

Graa(p1, p2, p3) =
λ, λτ

p1

p2

p3
+

 λ̃
p1

p2

p3
+ (2 ↔ 3)


= iσ2k2

2k
2
3
(
λk2

1 − λτω
2
1
)

F (p1)F (p2)∗F (p3)∗ − χσλ̃

(
k2

2(k1 · k3)
F (p1)F (p2)∗ + (2 ↔ 3)

)
, (B.7a)

11The convention for correlation functions in [10] is related to ours as GWH
r...a... = i/2(−1)na (−2i)nr Gr...a...,

where nr and na are numbers of “r” and “a” type fields in the correlation function.
12The choice of variables here is slightly different from our previous work [8, 64]: here we are working with

fluctuations in density n(µ)−n0, whereas in [8, 64] we worked with δn = n(µ−Art)−n0, resulting in different
background coupling vertices. One consequence of this being that there are non-trivial interactions vertices
among Aat and Art in [8, 64]. Since this is just a choice of variables, the final answers for the correlation
functions remain unaffected.
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partially-retarded

Grra(p1, p2, p3) =

 λ

p1

p2

p3
+ (1 ↔ 2)

+ λ̃
p1

p2

p3
+

 λ̃
p1

p2

p3
+ (1 ↔ 2)


= −2T0σ

2
(

k2
1k

2
3
(
λk2

2 − λτω
2
2
)

|F (p1)|2F (p2)F (p3)∗ + (1 ↔ 2)
)

− 2iT0χσλ̃

(
k2

3(k1 · k2)
F (p1)F (p2)F (p3)∗ +

(
k2

2(k1 · k3)
F (p1)|F (p2)|2 + (1 ↔ 2)

))
, (B.7b)

and symmetric

Grrr(p1, p2, p3)

=

 λ

p1

p2

p3
+ (1 ↔ 3) + (2 ↔ 3)

+

 λ̃
p1

p2

p3
+ (1 ↔ 3) + (2 ↔ 3)


= −4iT 2

0 σ
2
(

k2
1k

2
2
(
λk2

3 − λτω
2
3
)

|F (p1)|2|F (p2)|2F (p3) + (1 ↔ 3) + (2 ↔ 3)
)

+ 4T 2
0χσλ̃

(
k2

3(k1 · k2)
F (p1)F (p2)|F (p3)|2 + (1 ↔ 3) + (2 ↔ 3)

)
. (B.7c)

We find that these correlation functions do not satisfy the fluctuation-dissipation theorems in
eq. (B.2) for non-constant σ and τ , i.e. nonzero λ̃ and λτ . The Grra and Grrr fluctuation-
dissipation theorems have residual contributions(

λτ

ω1ω2ω3

(
ω3

1k
2
2k

2
3 + ω3

2k
2
1k

2
3 + ω3

3k
2
1k

2
2

)
− τχλ̃

σ

(
k2

1(k2 · k3) + k2
2(k1 · k3) + k2

3(k1 · k2)
))

× T0σ
2ω3

F (p1)F (p2)F (p3)∗ , (B.8a)

and(
λτ

ω1ω2ω3

(
ω3

1k
2
2k

2
3 + ω3

3k
2
1k

2
2 + ω3

2k
2
1k

2
3

)
− τχλ̃

σ

(
k2

1(k2 · k3) + k2
2(k1 · k3) + k2

3(k1 · k2)
))

×

× 2iT 2
0 σ

2
( −1
F (p1)F (p2)F (p3) +

(
ω1

|F (p1)|2F (p2)F (p3) + (1 ↔ 2) + (1 ↔ 3)
))

, (B.8b)

on the right-hand sides respectively. For non-zero relaxation time τ ̸= 0, the FDTs are only
satisfied χλ̃ = ∂σ/∂n = 0 and λτ = ∂τ/∂n = 0, i.e. σ and τ are taken to be a constants.
Note that σ is allowed to be non-constant in the ordinary diffusion model when τ = 0. Since
higher-point interaction vertices also contribute to 2-point correlation functions via stochastic
interactions, the loop-corrected 2-point correlation functions will also violate the respective
FDT in eq. (B.2) for non-constant σ or τ , when τ ̸= 0.
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MC-diffusion. To include the effects of non-constant σ and τ while respecting FDTs, we
will need to invoke the full EFT for MC-diffusion derived in eq. (2.30) with additional vector
degrees of freedom. We could, of course, work with the form of the effective action in eq. (2.56)
derived using the SK formalism, but the interactions are simpler in the MSR incarnation
of the effective action in eq. (2.30). Recall that the two are related via field redefinitions in
eq. (2.57). For simplicity, we will assume µ to just depend on n and choose αυ = 1, which,
owing to our discussion around eq. (2.19), will imply that τ/σ is still a constant. Nonetheless,
we only really care about the generality of the “hydrodynamic” transport coefficient σ; the
additional relaxed sector included for stability and causality reasons is anyway not universal,
so we might as well work with the simplest such extension. For completeness, let us rewrite
the effective action (2.19) in the local rest frame uµ

0 = δµ
t and with only the time-components

of the background gauge fields Ar,at turned on, leading to

S =
∫

dd+1x

[
∂tφan+ ∂iφaυ

i − V i
a (υi + τ∂tυi)−DnV

i
a∂in+ iT0σ V

i
aVai +Aatn+ σ V i

a∂iArt

]
.

(B.9)
As opposed to the simple propagators in eq. (B.3), we have a more intricate set of propagators
in this case due the additional vector degrees of freedom. Denoting n and φa still by solid
and wavy lines, and υi and V i

a by the respective thicker versions, we find

p
= 1 − iτω

F (p) ,
p

= 2T0σk
2

|F (p)|2 ,

p
= −iω
F (p)

kikj

k2 − i

1 − iτω
kij ,

p
= 2T0σω

2

|F (p)|2
kikj

k2 + 2T0σ

|1 − iτω|2
kij ,

p
= −iki

F (p) , p
= −iDnk

i

F (p) ,
p

= 2T0σω k
i

|F (p)|2 . (B.10)

We have three 3-point interaction vertices

λ

p1

p2

p3
= λ

2k
i
1,

λτ

p1

p2

p3
= λτω2δ

ij ,
λ̃

p1

p2

p3
= −T0χλ̃δ

ij .

(B.11)
Note that there are no interactions involving the noise field φa. We can similarly work out
higher-point interaction vertices as needed. Finally, we have the background coupling vertices

p = σki,
λ̃

p1
p2

p3
= χλ̃ki

1, (B.12)

where we have still denoted the insertion of Art with a double arrow. Using this EFT, the
2-point correlation functions of density at tree-level can be computed simply as

Gra(p) =
p

= iσk2

F (p) , Grr(p) =
p

= 2T0σk
2

|F (p)|2 , (B.13)

– 43 –



J
H
E
P
0
1
(
2
0
2
4
)
1
6
2

and yield the same results as in eq. (B.6), consistent with FDT. The computation for tree-level
3-point correlation functions is a little more involved and we find: retarded

Graa(p1, p2, p3) = λ

p1

p2

p3
+

 λτ

p1

p2

p3
+ (2 ↔ 3)

+

 λ̃
p1

p2

p3
+ (2 ↔ 3)


= iσ2λk2

1k
2
2k

2
3

F (p1)F (p2)∗F (p3)∗ + iσ2λτ
ω2

2k
2
3(k1 · k2) + ω2

3k
2
2(k1 · k3)

F (p1)F (p2)∗F (p3)∗

− χσλ̃

(
k2

2(k1 · k3)
F (p1)F (p2)∗ + (2 ↔ 3)

)
, (B.14a)

partially-retarded

Grra(p1, p2, p3) =

 λ

p1

p2

p3
+ (1 ↔ 2)

+

 λτ

p1

p2

p3
+

λτ

p1

p2

p3
+ (1 ↔ 2)



+ λ̃
p1

p2

p3
+

 λ̃
p1

p2

p3
+ (1 ↔ 2)


= −2T0σ

2λ

(
k2

1k
2
2k

2
3

|F (p1)|2F (p2)F (p3)∗ + (1 ↔ 2)
)

− 2T0σ
2λτ

(
ω2

1k
2
3(k1 · k2) + k2

1ω
2
3(k2 · k3)

|F (p1)|2F (p2)F (p3)∗ + (1 ↔ 2)
)

− 2iT0χσλ̃

(
k2

3(k1 · k2)
F (p1)F (p2)F (p3)∗ +

(
k2

2(k1 · k3)
F (p1)|F (p2)|2 + (1 ↔ 2)

))
,

(B.14b)

and symmetric

Grrr(p1, p2, p3) =

 λ

p1

p2

p3
+ (1 ↔ 3) + (2 ↔ 3)

+

 λτ

p1

p2

p3
+ (1 ↔ 2 ↔ 3)



+

 λ̃
p1

p2

p3
+ (1 ↔ 3) + (2 ↔ 3)


= −4iT 2

0 σ
2λ

(
k2

1k
2
2k

2
3

|F (p1)|2|F (p2)|2F (p3) + (1 ↔ 3) + (2 ↔ 3)
)

− 4iT 2
0 σ

2λτ

(
ω2

2k
2
1(k2 · k3) + ω2

1k
2
2(k1 · k3)

|F (p1)|2|F (p2)|2F (p3) + (1 ↔ 3) + (2 ↔ 3)
)

+ 4T 2
0χσλ̃

(
k2

3(k1 · k2)
F (p1)F (p2)|F (p3)|2 + (1 ↔ 3) + (2 ↔ 3)

)
. (B.14c)
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Plugging these into the respective FDTs in eq. (B.2), we find that the residual terms on
the right-hand side are given as

(
λτ − χτλ̃

σ

)
T0σ

2ω3

(
k2

1(k2 · k3) + k2
2(k1 · k3) + k2

3(k1 · k2)
F (p1)F (p2)F (p3)∗

)
, (B.15a)

and

2iT 2
0 σ

2
(
λτ − χτλ̃

σ

)(
k2

1(k2 · k3) + k2
2(k1 · k3) + k2

3(k1 · k2)
)
×( −1

F (p1)F (p2)F (p3) +
(

ω1
|F (p1)|2F (p2)F (p3) + (1 ↔ 2) + (1 ↔ 3)

))
, (B.15b)

respectively. As mentioned before, FDTs are only satisfied when λτ −χτλ̃/σ = σ ∂(τ/σ)/∂n =
0, i.e. τ/σ is taken to be a constant.

We can also use the diagrammatic representation and Feynman rules described above to
compute loop corrections to 2-point correlation functions consistent with FDT requirements.
We leave this exercise for future work. We also leave the generalisation of the discussion in
this appendix to MIS-hydrodynamics for future explorations.

C Alternate KMS prescriptions

Since the additional relaxed degrees of freedom in MC-diffusion and MIS-hydrodynamics are
not associated with any symmetries, we can actually construct different models in the SK
formalism that ultimately give rise to the same effective action, but with different realisations
of the dynamical KMS symmetry. As an example, let us consider the SK model for MC-
diffusion from appendix 2.4, but with vector fields υ̂1,2µ (normalised as βµ

0 υ̂1,2µ = 0) instead
of υ1,2µ that respect a “spatial diagonal shift symmetry”, i.e.

υ̂1,2µ → υ̂1,2µ + λµ, such that βµ
0 λµ = 0, βλ

0 ∂λλµ = 0. (C.1)

This means that all dependence on the average combination υ̂rµ in the EFT must arise via its
time-derivative υµ ≡ uλ

0∂λυ̂rµ, which we will use as the definition of the classical vector degree
of freedom υµ is MC-diffusion. We take the C,P,T eigenvalues of the spatial-components of
the new fields υ1,2i, υr,ai to be (−,−,+), while those of the time-components can be obtained
using the normalisation conditions. With the identification of υµ above, these lead to the
correct C,P,T eigenvalues of υµ as given in table 1. The KMS transformation properties of
υ̂1,2µ and υ̂r,aµ are given similar to eqs. (2.46) and (2.47), which imply

υµ → Θυµ, υ̂aµ → Θ
(
υ̂aµ + i

T0
υµ

)
. (C.2)
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A simple EFT that realises this and all other requirements in appendix 2.4 can be written
down similar to eq. (2.49) as

S =
∫

dd+1x

[
Baµnu

µ
0 − χυυ̂

µ
au

λ
0∂λυµ

+ iT0
(
−λ̂ uµ

0u
ν
0 + σ̂∆µν

)
Baµ

(
Baν + iβλ

0 ∂λBrν

)
+ iT0σ̂υ ∆µν υ̂aµ (υ̂aν + iβ0υν)

+ iT0γ̂× ∆µν
(
Baµ (υ̂aν + iβ0υν) + υ̂aµ

(
Baν + iβλ

0 ∂λBrν

) )
+ iT0 ˆ̄γ× ∆µν

(
Baµ (υ̂aν + iβ0υν) − υ̂aµ

(
Baν + iβλ

0 ∂λBrν

) )]
, (C.3)

where all coefficients are functions of µ ≡ uµ
0Brµ and υ2, and satisfy the inequality constraints

similar to eq. (2.51). The first two terms satisfy the KMS condition up to a total-derivative
term similar to eq. (2.52). The remaining terms are manifestly KMS-invariant. However,
since υ̂r,aµ and Br,aµ have opposite eigenvalues under T this time around, the ˆ̄γ× term is
disallowed by Θ = T,PT. Whereas for Θ = CT,CPT, all terms are allowed, provided that
ˆ̄γ× and n is odd functions of µ, while all other coefficients are even functions of µ. Using
this EFT, one can work out the vector equation of motion

χυ∆µνuλ
0∂λυν = −(γ̂× − ˆ̄γ×)∆µν(∂νµ− Frνρu

ρ
0) − σ̂υυ

µ, (C.4)

and the current

Jµ
r =

(
n+ λ̂ uλ

0∂λµ
)
uµ

0 − σ̂∆µν (∂νµ− Frνρu
ρ
0) − (γ̂× + ˆ̄γ×)υµ, (C.5)

analogous to eqs. (2.53) and (2.54). Comparing these to the frame conditions in eqs. (2.2)
and (2.15), we are led to set

λ̂ = 0, σ̂ = 0, σ̂υ = α2
υ

σ
, γ̂× = 0, ˆ̄γ× = −αυ, (C.6)

instead of the analogous expressions (2.55) in the original SK model. The effective action,
in this case, simplifies to

S =
∫

dd+1x

[
Baµnu

µ
0 − χυυ̂

µ
au

λ
0∂λυµ + αυ ∆µν

(
Baµυν − υ̂aµu

λ
0∂λBrν

)
+ iT0α

2
υ

σ
∆µν υ̂aµ (υ̂aν + iβ0υν)

]
. (C.7)

We again recover the effective action (2.30) we derived using the MSR formalism, with the
KMS condition (2.32) already imposed, but with the field identifications

υµ = uλ
0∂λυ̂rµ, Vaµ = αυ

σ
υ̂aµ. (C.8)

Note that υµ and Vaµ have opposite Θ-eigenvalues under this prescription, precisely leading
to the alternate prescription of KMS symmetry given in eq. (2.35).
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In the full theory of MIS-hydrodynamics, we can actually write down three distinct
SK models with different realisations of the dynamical KMS symmetry, depending on if we
allow a spatial diagonal shift symmetry in the tensor degrees of freedom, in vector degrees
of freedom, or both, taking the form

κ̂µν → κ̂µν + λµν , such that βµλµν = 0, λµν = λνµ, £βλµν = 0,
υ̂µ → υ̂µ + λµ, such that βµλµ = 0, £βλµ = 0. (C.9)

Following through the procedure outlined above, we find the same effective action as the
MSR formalism in eq. (3.25), with the KMS conditions (3.26) already implemented, together
with the field identifications of the tensor degrees of freedom

κµν = T£βκ̂µν , Waµν =
(1
d

αS
κ

ζ
∆µν∆ρσ + αT

κ

η
∆ρ

⟨µ∆ρ
ν⟩

)
κ̂aρσ, (C.10)

and/or the vector degrees of freedom

υµ = T£β υ̂µ, Vaµ = αυ

σ
υ̂aµ. (C.11)

As expected, the physical and auxiliary fields have opposite Θ-eigenvalues under these
identifications. These precisely lead to the alternate prescriptions of KMS transformations
mentioned in eq. (3.28).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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