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1 Introduction

T-duality of string theory [1, 2] is a duality between string theories defined on different target
spaces. This is known as the exact/quantum duality of string theory on tori T d, where the
duality group forms O(d, d;Z) . The duality also gives rise to an O(d, d;R) symmetry of the
supergravity equations of motion that describe the strings on T d at low energy [3]. This
O(d, d) symmetry has been studied from various perspectives in string sigma models (see for
example [4–8]). In particular, a derivation of the duality as an isomorphism of conformal
field theories (CFTs) has been given in [6]. The global structure of the dual geometry in
general cases has been discussed in detail in [7].

This well-established T-duality requires the existence of d commuting (Abelian) isometries
and is called Abelian T-duality. The existence of Abelian isometries gives a strong restriction

– 1 –



J
H
E
P
0
1
(
2
0
2
4
)
1
5
0

on the target space, and extensions of T-duality that does not require Abelian isometries have
been proposed. The first of such extensions has been known as non-Abelian T-duality [9–11],
which assumes the existence of non-Abelian isometries in the target space. Because the
dual geometry does not always have isometries, this map is generally a one-way map, and
we cannot recover the original model from the dual one. This situation has been improved
in [12, 13] and the generalized duality is called Poisson-Lie T-duality. This duality assumes
the existence of certain geometrical structure, Poisson-Lie symmetry, in the target space, and
the standard isometries are not necessary. Accordingly, the resultant non-Abelian duality has
become a true “duality” in both directions, and more general extensions of T-duality have
become possible. Similarly to Abelian T-duality in general, Poisson-Lie T-duality is a classical
symmetry of string sigma models [14, 15], and it is also a symmetry of the supergravity
equations of motion (see for example [16]). Thus Poisson-Lie T-duality is frequently employed
as a solution-generating technique in supergravity.

To study the symmetry of the supergravity equations of motion, it is useful to employ
T-dual-manifest formulations of supergravity, such as double field theory (DFT) [17–20].
Using these frameworks, we can clearly show the duality covariance of the supergravity
equations of motion even in the presence of the Ramond-Ramond fields or the spectator
fields (or the external spacetime that is invariant under the duality) [21–24]. Poisson-Lie
T-duality is based on a 2d-dimensional Lie algebra, and if the structure constants of its
d-dimensional subalgebra satisfy fa

ab ̸= 0, it is known that the dual geometry, in general,
satisfies the generalized supergravity equations of motion [25], which are shown in [26] to
be equivalent to the κ-symmetry of the Green-Schwarz superstring.

In that case, the conformal symmetry may be broken in the dual model, as is found in [27].
However, the generalized supergravity equations of motion can be derived from the DFT
equations of motion by choosing a non-standard section, and then, as has been discussed in [28],
we can always consider the corresponding background as a solution of DFT. By performing a
suitable redefinition of the coordinates and fields that maps the configuration into the standard
section, we get another solution which solves the standard supergravity equations of motion
where the conformal invariance is recovered even when fa

ab ̸= 0. Moreover, in some particular
cases, it is possible that the dual geometry satisfies the standard supergravity equations of
motion without any redefinition (or with a shift of the dilaton) [29]. Poisson-Lie T-duality
can be understood as a duality map between conformal string sigma models also in this sense.

Unlike well-established Abelian T-duality, several open questions remain in the case of
Poisson-Lie T-duality. One is the global structure of the dual model. For example, there is no
established way as in [7] to discuss the global structure, such as the period, of the dual geometry.
Another is its quantum aspects. In this respect, loop corrections of Poisson-Lie symmetric
models have been studied for example in [30–33]. Also from the point of view of DFT, Poisson-
Lie T-duality in the presence of the α′-corrections has been studied in [34–36]. Path integral
formulations of Poisson-Lie T-duality have been discussed in [37–39]. However, the quantum
equivalence of the dual pairs under Poisson-Lie T-duality is generally yet to be understood.

To take a step toward understanding these issues, in this paper we conduct a detailed study
of Poisson-Lie T-duality of Wess-Zumino-Novikov-Witten (WZNW) models. Under certain
mild conditions, which are discussed in section 2, WZNW models are known to be self-dual un-
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der Poisson-Lie T-duality [40], and we focus on this case. We describe an explicit construction
of the associated currents. The conformal invariance in this self-duality is also discussed.

As concrete examples, we consider a certain six-dimensional Drinfel’d double and its
generalization in section 3, which result in the self-duality of the SU(2) WZNW model. We
find an explicit relation between the dual pairs of the currents. Though this relation is
non-local, non-linear and involving an infinite number of the modes of the currents, it turns
out to be a chiral automorphism of the associated affine Lie algebra ŝu(2) in terms of the
Poisson bracket. This is also understood as a consequence of the general property that
Poisson-Lie T-duality is represented by a canonical transformation [14, 15].

We then discuss the quantum aspects, as well as the global structure, of this self-duality
in section 4. A quantum equivalence under any duality may be reduced to an isomorphism of
the underlying CFT, as in the case of Abelian T-duality on tori [6]. We find that the above
classical automorphism can be promoted to the quantum one through the parafermionic
formulation of ŝu(2), which indeed induces an isomorphism of the WZNW model. This
establishes the full quantum equivalence of the dual pair in our case. The isomorphism of the
CFT implies that the equivalence holds to all orders in α′ and at any genus of the world-sheet.
In the course, the global structure of the duality is also figured out. The isomorphism is
represented by a change in the sign of the associated chiral free boson or the order-disorder
duality of the parafermionic CFT [41, 42], as in Abelian T-duality on tori or in the mirror
symmetry [43, 44] of the Gepner model [45]. Equivalently, the isomorphism is understood
as that between the SU(2) WZNW model and its orbifold model [42, 46, 47].

The organization of the rest of this paper is as follows. In section 2, we discuss general
properties of the self-duality of the WZNW models under Poisson-Lie T-duality. In section 3,
we consider concrete examples of the self-duality of the SU(2) WZNW model, and find
explicit relations between the dual pairs. In section 4, we discuss the quantum aspects, as
well as the global structure, of the self-duality. We also observe that the self-duality in our
case is represented by Abelian T-duality of WZNW models [7, 8, 48]. We conclude with
a summary and discussion in section 5.

2 Poisson-Lie T-duality and self-duality of WZNW models

Poisson-Lie T-duality [12, 13] is a (classical) equivalence of two or more string sigma models
on some cosets D/G̃, D/G̃′, · · · . When r is a d-dimensional Lie subalgebra of d = Lie(D)
transversal to g̃ = Lie(G̃) and g̃′ = Lie(G̃′) and R = exp(r) is a compact Lie subgroup of D,
then both cosets D/G̃ and D/G̃′ can be identified with R or its discrete coset, and there is a
choice of the dual pair of sigma models on D/G̃ and D/G̃′ such that both models are the
WZNW models associated with R [40]. In this case, Poisson-Lie T-duality becomes self-dual
at the level of equations of motion and we find a non-trivial map between the WZNW models
with the same R. Here we review the classical aspects of this self-duality, extending the
Drinfel’d double, which corresponds to D, by a slightly more general algebra. We also study
aspects of WZNW models using the formulation of DFT. The classical analyses in this and
the next section apply up to global issues, which are discussed in detail in section 4. For
Poisson-Lie T-duality in WZNW models, see for example [37, 49–51].
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2.1 Set-up

We consider a 2d-dimensional Lie algebra d ,

[TA, TB] = FAB
C TC , (2.1)

which admits an adjoint-invariant bilinear form of split signature (d, d)

ηAB ≡ ⟨TA, TB⟩ . (2.2)

We assume that d contains a maximally (i.e., d-dimensional) isotropic subalgebra g̃ . We
parameterize the generators as TA = (Ta, T

a) (a = 1, . . . , d) and choose T a to be the generators
of g̃ . The other generators Ta are chosen such that the bilinear form takes the form

ηAB =
(

0 δb
a

δa
b 0

)
. (2.3)

We always raise or lower the indices A by using ηAB , and then the adjoint invariance shows
that FABC ≡ FAB

D ηDC is totally antisymmetric. Then we can express the Lie algebra d as

[Ta, Tb] = fab
c Tc + fabc T

c , [T a, T b] = fc
ab T c ,

[Ta, T
b] = fa

bc Tc − fac
b T c = −[T b, Ta] ,

(2.4)

where fab
c = −fba

c, fa
bc = −fa

cb, and fabc = f[abc], and fa
bc corresponds to the structure

constants of g̃ . If the structure constants fabc are absent this reduces to the Lie algebra of
the Drinfel’d double, but their absence is not assumed in the following discussion.

We now consider the motion of the strings on the Lie group D = exp(d). The embedding
of the string world-sheet Σ is described by l(σ) ∈ D , and the action can be given by [52, 53]

4πα̃′ S = 1
2

∫
Σ
⟨dl l−1, ∗Ĥ(dl l−1)⟩ − 1

3!

∫
B
⟨dl l−1, [dl l−1, dl l−1]⟩ , (2.5)

where ∂B = Σ and ĤAB ∈ O(d, d) is a constant symmetric matrix that may be param-
eterized as

ĤAB =
(

[ĝ − B̂ (ĝ)−1 B̂]ab [B̂ (ĝ)−1]ab

−[(ĝ)−1 B̂]ab [(ĝ)−1]ab

)
. (2.6)

We have introduced a dimensionless parameter α̃′ ≡ α′/L2 where L is a length scale of
the target space. To reproduce the conventional string theory, we impose the self-duality
constraint [52, 54] at the level of equations of motion

Ĥ(dl l−1) = ∗dl l−1 . (2.7)

2.2 Conventional string sigma model

Here we clarify the relation to the conventional string sigma model, by following section
3.3.1 of [53] but without assuming fabc = 0 . We choose a maximally isotropic subgroup
G̃ = exp(g̃) of D and decompose the group element l(σ) ∈ D as

l(σ) = f(σ) g̃(σ) , (2.8)
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where f(σ) ∈ D/G̃ and g̃ ∈ G̃ (recall that T a generate g̃ in our convention). We shall define

ℓ ≡ f−1 df ≡ ℓA TA , r ≡ df f−1 ≡ rA TA ,

ℓ̃ ≡ g̃−1 dg̃ ≡ ℓ̃a T
a , r̃ ≡ dg̃ g̃−1 ≡ r̃a T

a ,
(2.9)

and then dl l−1 can be expressed as

dl l−1 = r + f r̃ f−1 = f
(
ℓ+ r̃

)
f−1 . (2.10)

Using the self-duality constraint (2.7), we can express r̃ by using ℓ as

r̃a = (dg̃ g̃−1)a = −ℓa +Bf
ab ℓ

b + gf
ab ∗ ℓ

b . (2.11)

Then eliminating r̃, the action (2.5) can be expressed as

S = 1
4πα̃′

∫
Σ

(
gf

ab ℓ
a ∧ ∗ℓb +Bf

ab ℓ
a ∧ ℓb − ℓa ∧ ℓa

)
− 1

24πα̃′

∫
B
⟨ℓ, [ℓ, ℓ]⟩ . (2.12)

Here we have defined

f−1 TA f ≡MA
B TB , Hf

AB ≡ (M−1)A
C (M−1)B

D ĤCD , (2.13)

and parameterized Hf
AB as

Hf
AB =

(
[gf −Bf (gf )−1Bf ]ab [Bf (gf )−1]ab

−[(gf )−1Bf ]ab [(gf )−1]ab

)
. (2.14)

The superscript f is a mnemonic for the adjoint action by f . If we further rewrite the
action (2.12) as

S = 1
4πα̃′

∫
Σ

(
gmn dxm ∧ ∗dxn +Bmn dxm ∧ dxn) , (2.15)

the background fields can be determined as

gmn ≡ gf
ab ℓ

a
m ℓbn , Bmn ≡ Bf

ab ℓ
a
m ℓbn − ℓa[m| ℓa|n] +BWZ

mn , dBWZ ≡ −1
2 ⟨ℓ, [ℓ, ℓ]⟩ . (2.16)

This type of backgrounds is called Poisson-Lie symmetric [13], which sets the ground for
Poisson-Lie T-duality and enables us to perform the duality transformation.1

To find the Poisson-Lie T-dual background, we choose another maximally isotropic
subgroup G̃′, follow the same steps, and then obtain the dual background fields {g′mn, B

′
mn} .

If there are more maximally isotropic subgroups, we can construct more dual backgrounds,
and the (classical) equivalence of the sigma models on these backgrounds is called Poisson-Lie
T-plurality, or simply Poisson-Lie T-duality.

In a particular case of the Abelian double where FAB
C = 0, by using the parameterization

f = exa Ta and g̃ = ex̃a T a , we find gf
ab = ĝab, Bf

ab = B̂ab, ℓa = dxa, ℓa = 0, and r̃a = dx̃a ,
1In Poisson-Lie T-duality, fabc = 0 is assumed originally and then we find ℓam = 0 and BWZ

mn = 0 . The
generalized result (2.16) has been clearly presented in [55] using the formulation of DFT.
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where ĝab and B̂ab are introduced in eq. (2.6), and we obtain a constant background. In
this case, eq. (2.11) reduces to

dx̃a = B̂ab dxb + ĝab ∗ dxb . (2.17)

Defining

xa
L = 1

2 (δa
b − ĝac B̂cb)xb + 1

2 ĝ
ab x̃b , xa

R = 1
2 (δa

b + ĝac B̂cb)xb − 1
2 ĝ

ab x̃b , (2.18)

the following standard equations are reproduced under the equations of motion:

∂−x
a
L = 0 , ∂+x

a
R = 0 . (2.19)

Here we have introduced the light-cone coordinates σ± ≡ τ ± σ , for which

γij =
(

0 −2
−2 0

)
, ∗dσ± = ±dσ± , (2.20)

with γij being the inverse of the world-sheet metric. The self-duality constraint (2.7) can be
understood as a non-Abelian generalization of the above relation [54].

2.3 Self-duality of WZNW models

In the following, we consider a particular case where the string sigma models reduce to WZNW
models [40]. We assume that the 2d-dimensional Lie algebra d contains a d-dimensional
subalgebra r generated by tα̂ (α̂ = 1̂, . . . , d̂) satisfying

[tα̂, tβ̂ ] = fα̂β̂
γ̂ tγ̂ , Ĥ(tα̂) = ±tα̂ , (2.21)

where either sign can be chosen. Using a parameterization2

Ĥ(TA) = ĤA
B TB =

(
−(g̃−1 β)a

b (g̃−1)ab

(g̃ − β g̃−1 β)ab (β g̃−1)a
b

)
TB , (2.22)

the second condition indicates that tα̂ can be expressed as

tα̂ = dα̂b

(
T b ± Ebc

∓ Tc
) (

Eab
± ≡ g̃ab ± βab) , (2.23)

where dα̂b is an arbitrary invertible matrix.
We also assume that the group element l(σ) ∈ D can be parameterized as

l(σ) = f(σ) g̃(σ) , (2.24)

where f(σ) ∈ R = exp(r) and g̃ ∈ G̃ . Since f tα̂ f−1 is an element of r , we find

Ĥ(f tα̂ f−1) = ±f tα̂ f−1 = f Ĥ(tα̂) f−1 (∀f ∈ R) . (2.25)

This can be also expressed as

Ĥf = Ĥ . (2.26)
2In our conventions, (ĝac + B̂ac) (g̃cb + βcb) = δb

a is satisfied.

– 6 –



J
H
E
P
0
1
(
2
0
2
4
)
1
5
0

In addition, we find that ℓ satisfies

(Ĥf )A
B ℓ

B = ĤA
B ℓ

B = ±ℓA , (2.27)

and this can be expressed as

ℓb = ±gf
ab ℓ

a −Bf
ab ℓ

a = ±ĝab ℓ
a − B̂ab ℓ

a . (2.28)

Then the action in (2.12) becomes

S = 1
4πα̃′

∫
Σ
gab ℓ

a ∧ ∗ℓb − 1
24πα̃′

∫
B
⟨ℓ, [ℓ, ℓ]⟩

= ± 1
8πα̃′

∫
Σ
⟨ℓ, ∗ℓ⟩ − 1

24πα̃′

∫
B
⟨ℓ, [ℓ, ℓ]⟩

= 1
8πα̃′

∫
Σ
hα̂β̂ ℓ

α̂ ∧ ∗ℓβ̂ ∓ 1
24πα̃′

∫
B
fα̂β̂γ̂ ℓ

α̂ ∧ ℓβ̂ ∧ ℓγ̂ , (2.29)

where
hα̂β̂ ≡

〈
tα̂, Ĥ(tβ̂)

〉
= 2 dα̂c dβ̂d g̃

cd , fα̂β̂γ̂ ≡ fα̂β̂
δ̂ hδ̂γ̂ = f[α̂β̂γ̂] . (2.30)

This is the WZNW action associated with R, as claimed at the beginning of this section.
Changing the parameterization as

l(σ) = f ′(σ) g̃′(σ)
(
f ′(σ) ∈ R , g̃′ ∈ G̃′) , (2.31)

we obtain the dual action, which is again the WZNW action for the same group R. In this
sense, Poisson-Lie T-duality is self-dual in this case.

The self-duality constraint (2.11) now reduces to

r̃a = −ℓa + B̂ab ℓ
b + ĝab ∗ ℓb = ĝab

(
∗ℓb ∓ ℓb

)
, (2.32)

which can be expressed as follows in the light-cone coordinates (2.20):

r̃±a = 0 , r̃∓a = ∓2 ĝab ℓ
b
∓ . (2.33)

Namely, under the equations of motion, g̃ ∈ G̃ depends only on σ∓ ; g̃ = g̃(σ∓) .
We remark that the self-duality of WZNW models discussed above does not mean that the

duality is trivial [40]: the duality generally involves non-linear and non-local transformations,
and hence the correspondence of the fields and the global properties of the duality are not
clear a priori. We address these issues in the following sections.

2.4 Current algebra

The string sigma model on a Poisson-Lie symmetric background can be described by the
so-called E-model [56]. This formulation simplifies our discussion on the currents below.
The E-model is defined by the Hamiltonian

H = 1
4πα̃′

∫
dσ ĤAB jA(σ) jB(σ) , (2.34)

– 7 –
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where the currents jA(σ) satisfy the following algebra under the canonical Poisson bracket:

{jA(σ), jB(σ′)} = 2πα̃′ FAB
C jC(σ) δ(σ − σ′) + 2πα̃′ ηAB δ

′(σ − σ′) . (2.35)

The time evolution of the currents is determined by

∂τ jA(σ) = {jA(σ), H} . (2.36)

This equation corresponds to the equations of motion of the string theory on the Poisson-Lie
symmetric background.

The currents jA(σ) of the E-model can be constructed as

jA(σ) = EA
M ZM , ZM ≡

(
2πα̃′ pm(σ)
∂σx

m(σ)

)
, (2.37)

where pm are the canonical conjugate momenta of xm satisfying {xm(σ), pn(σ′)} = δm
n δ(σ−σ′)

and the generalized frame fields EA
M are given by [55]

EA
M = MA

B V̂B
N NN

M , V̂A
M ≡

(
vm

a 0
0 ℓam

)
, NM

N ≡
(
δn

m −(BWZ
mn + ℓa[mℓ

a
n])

0 δm
n

)
, (2.38)

where vm
a ℓbm = δb

a . They satisfy the algebra [21, 23, 55]

[EA, EB]MD = −FAB
C EC

M , (2.39)

where [·, ·]D is called the D-bracket3 and FAB
C are the structure constants of the Lie algebra

d . Using this property and the canonical commutation relation of xm(σ) and pm(σ), we
can reproduce the current algebra (2.35) [17].

The generalized frame fields are constructed from the coset element f ∈ D/G̃, and hence
so are the currents jA(σ). To consider the dual model, let us choose another maximally
isotropic subgroup G̃′. We can construct new currents j′A(σ) from the new coset D/G̃′ . We
here use a convention where the generators TA are redefined as T ′

A = CA
B TB with CA

B ∈
O(d, d) [57] such that ⟨T ′

A, T
′
B⟩ = ηAB is satisfied and the generators T ′a form the Lie algebra

g̃′ associated with the Lie group G̃′. The structure constants of the new generators become
F ′

AB
C = CA

D CB
E (C−1)F

C FDE
F and the currents constructed from D/G̃′ satisfy

{j′A(σ), j′B(σ′)} = 2πα̃′ F ′
AB

C j′C(σ) δ(σ − σ′) + 2πα̃′ ηAB δ
′(σ − σ′) . (2.40)

If we go back to the original basis by defining j̃A(σ) ≡ (C−1)A
B j′B(σ), however, j̃A satisfy

the algebra of the same form as (2.35). By defining the Hamiltonian of the dual model as

H̃ = 1
4πα̃′

∫
dσ ĤAB j̃A(σ) j̃B(σ) , (2.41)

the equations of motion (2.36) then take the same form in terms of j̃A(σ),

∂τ j̃A(σ) = {j̃A(σ), H̃} , (2.42)

which shows the (classical) equivalence between the original and the dual model. The canonical
equivalence at the classical level has also been shown in [14, 15]. In particular, the generating
functionals of the canonical transformations have been constructed in the latter reference.

3For two generalized vector fields V M = (vm, ṽm) and W M = (wm, w̃m) which depend on xm , the
D-bracket is defined as [V, W ]MD = (£vwm, [£vw̃ − ιwdṽ]m) .
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2.5 Current algebra of WZNW models

Now we shall consider the case discussed in section 2.3, and find the relation between
the current algebra of jA(σ) and the more familiar current algebra of WZNW models.
Corresponding to the definition of tα̂ in eq. (2.23), if we define the generalized vector fields

Vα̂
M ≡ dα̂b

(
EbM ± Ebc

∓ Ec
M) , (2.43)

they satisfy the Lie algebra r,

[Vα̂, Vβ̂ ]MD = −fα̂β̂
γ̂ Vγ̂

M . (2.44)

Moreover, due to the property (2.26), they are generalized Killing vectors satisfying

£̂Vα̂
HMN ≡ V P ∂PHMN + 2

(
∂(MV P − ∂PV(M

)
HN)P = 0 . (2.45)

Namely, there exist the corresponding (on-shell) conserved currents

Jα̂ = γ
[
Vα̂

m (gmn ∗ dxn +Bmn dxn)+ Vα̂n dxn] , (2.46)

where γ is a normalization constant. Using Jα̂σ = γ Vα̂
M ZM and eq. (2.35), we can easily

compute the Poisson bracket of the spatial components Jα̂σ(σ) of (2.46) as

{Jα̂σ(σ), Jβ̂σ(σ′)} = 2πα̃′ γ fα̂β̂
γ̂ Jγ̂σ(σ) δ(σ − σ′) ± 2πα̃′ γ2 hα̂β̂ δ

′(σ − σ′) . (2.47)

In the light-cone coordinates, the components of the currents are

Jα̂± = γ
[
Vα̂

m (gmn ±Bmn
)
± Vα̂n

]
∂±x

n . (2.48)

Due to the property HM
N Vα̂

N = ±Vα̂
M that follows from Ĥ(tα̂) = ±tα̂, we have Jα̂∓ = 0

for Ĥ(tα̂) = ±tα̂ . Then, recalling Jα̂σ = Jα̂+ − Jα̂− = ±Jα̂± , we find

{Jα̂±(σ), Jβ̂±(σ′)} = ±2πα̃′ γ fα̂β̂
γ̂ Jγ̂±(σ) δ(σ − σ′) ± 2πα̃′ γ2 hα̂β̂ δ

′(σ − σ′) , (2.49)

or equivalently, using the conservation of the currents ∂∓Jα̂± = 0 ,

{Jα̂±(σ±), Jβ̂±(σ′±)} = ±2πα̃′ γ fα̂β̂
γ̂ Jγ̂±(σ±) δ(σ± − σ

′±) + 2πα̃′ γ2 hα̂β̂ δ
′(σ± − σ′±) .

(2.50)
This corresponds to the current algebra of the left or the right currents in the WZNW model,
depending on the choice of the sign in (2.21). Since either set of Jα̂− or Jα̂+ vanishes, we
need to elaborate a little more to obtain both left and right currents.

For this purpose, we define the generalized vectors of opposite chirality

Kα̂
M ≡ −dα̂b

(
EbM ∓ Ebc

± Ec
M) , (2.51)

which satisfy HM
N Kα̂

N = ∓Kα̂
M . Defining the corresponding currents by

J ′
α̂∓ = γ

[
Kα̂

m (gmn ∓Bmn
)
∓Kα̂n

]
∂∓x

n , (2.52)
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the Hamiltonian (2.34) can be expressed as

H = 1
4πα̃′γ2 h

α̂β̂ (Jα̂± Jβ̂± + J ′
α̂∓ J ′

β̂∓
)
, (2.53)

where hα̂γ̂ hγ̂β̂ = δα̂
β̂

and we have used

hα̂β̂ Jα̂± Jβ̂± = γ2

2 g̃ab (ja ± Eac
∓ jc) (jb ± Ebd

∓ jd) = γ2

2
(
ĤAB ± ηAB

)
jA jB , (2.54)

and a similar expression for J ′
α̂∓ . Then one might expect that J ′

α̂∓ would correspond to the
right/left currents in the WZNW model. This is, however, not always the case because Kα̂

M

are not generalized Killing vectors in general, and moreover, they do not satisfy the algebra
similar to (2.44).4 In fact, we need to find a suitable coordinate-dependent redefinition5

V̄α̂
M ≡ Λα̂

β̂ Kβ̂
M (

Λα̂
γ̂ Λβ̂

δ̂ hγ̂δ̂ = hα̂β̂

)
, (2.55)

such that the resulting V̄α̂
M satisfy

[V̄α̂, V̄β̂ ]MD = +fα̂β̂
γ̂ V̄γ̂

M , £̂V̄α̂
HMN = 0 . (2.56)

We then define the corresponding conserved currents as

J̄α̂∓ = Λα̂
β̂ J ′

β̂∓ , (2.57)

which satisfy J̄α̂± = 0 for Ĥ(tα̂) = ±tα̂ . These currents turn out to be the right/left currents
in the WZNW model satisfying

{J̄α̂∓(σ∓), J̄β̂∓(σ′∓)} = ±2πα̃′ γ fα̂β̂
γ̂ J̄γ̂∓(σ∓) δ(σ∓ − σ′∓) + 2πα̃′ γ2 hα̂β̂ δ

′(σ∓ − σ′∓) .
(2.58)

Since this E-model is the WZNW model, this matrix Λα̂
β̂ should exist, and indeed can be

found in the examples studied in this paper.
In section 3 and later, we choose the convention Ĥ(tα̂) = +tα̂ and use the short-hand

notation Jα̂ ≡ Jα̂+ and J̄α̂ ≡ J̄α̂− . Then, starting from the currents jA of the E-model,
we obtain the left and right current algebras

{Jα̂(σ+), Jβ̂(σ′+)} = 2πα̃′ γ fα̂β̂
γ̂ Jγ̂(σ+) δ(σ+ − σ′+) + 2πα̃′ γ2 hα̂β̂ δ

′(σ+ − σ′+) ,

{J̄α̂(σ−), J̄β̂(σ′−)} = 2πα̃′ γ fα̂β̂
γ̂ J̄γ̂(σ−) δ(σ− − σ′−) + 2πα̃′ γ2 hα̂β̂ δ

′(σ− − σ′−) .
(2.59)

The Hamiltonian (2.53) can be expressed as

H = − 1
2π (T++ + T−−) , T++ ≡ − 1

2α̃′γ2 h
α̂β̂ Jα̂ Jβ̂ , T−− ≡ − 1

2α̃′γ2 h
α̂β̂ J̄α̂ J̄β̂ . (2.60)

4There is a specific class of Drinfel’d doubles where J ′
α̂∓ become the right/left currents in the WZNW

model (see in appendix A for the details).
5A similar redefinition has been discussed in [58].
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2.6 Conformal invariance in the self-duality of WZNW models

So far, we have focused on the metric and the B-field. To describe strings, we further need
to take into account the dilaton. In this respect, some issues have been discussed in the
literature regarding non-Abelian T-duality for isometries with fab

b ̸= 0 [10, 11, 27, 59] or
Poisson-Lie T-duality with fb

ba ̸= 0 [38, 39]. Here, assuming that Êab
± is non-degenerate, we

show that these issues do not arise in the case of the self-duality of WZNW models. We
shall employ the flux formulation of DFT [20] for this purpose.

In the flux formulation, using the generalized frame fields EA
M , we define two fluxes,

FAB
C ≡ −[EA, EB]MD EM

C , FA ≡ 2DAd − ∂MEA
M , (2.61)

where DA ≡ EA
M ∂M and d is the T-duality-invariant dilaton of DFT, which is related to

the standard dilaton as e−2d = e−2ϕ
√
|det(gmn)| . We assume that these fluxes satisfy the

consistency condition (or the section condition) [20]

Z ≡ DAFA − 1
2 FA F

A + 1
12 FABC F

ABC = 0 , (2.62)

ZAB ≡ DAFB −DBFA + (FC −DC)FC
AB = 0 . (2.63)

In our set-up, FAB
C coincide with the structure constants of the Lie algebra d, and thus

are constant. For simplicity, we ignore the existence of spectator fields, or focus on the
d-dimensional space. The supergravity equations of motion, or equivalently the conditions
for the vanishing β-functions, are then given by

R = 0 , R+
AB = 0

(
or R−

AB = 0
)
, (2.64)

where

R = 2PAB (2DAFB − FA FB

)
+ 1

3 F¯
A

¯
B

¯
C F ¯

A
¯
B

¯
C + F

¯
A

¯
BC̄ F ¯

A
¯
BC̄

= −2 P̄AB (2DAFB − FA FB

)
− 1

3 FĀB̄C̄ F
ĀB̄C̄ − FĀB̄

¯
C F

ĀB̄
¯
C , (2.65)

R+
AB = −F

¯
C F

¯
AB̄ ¯

C +DB̄F¯
A + F

¯
A

¯
CD̄ FB̄ ¯

CD̄ , (2.66)

R−
AB = −FC̄ FĀ

¯
B

C̄ +D
¯
BFĀ + FĀC̄

¯
D F

¯
B

C̄
¯
D , (2.67)

and R+
AB = 0 is equivalent to R−

AB = 0 under eq. (2.63). Here we have defined the projectors

PAB ≡ 1
2
(
ηAB + ĤAB) , P̄AB ≡ 1

2
(
ηAB − ĤAB) , (2.68)

and used the notation such as F
¯
A = PA

B FB or FĀ = P̄A
B FB . We note that using the

parameterization

HMN =
(
gmn −Bmp g

pq Bqn Bmp g
pn

−gmpBpn gmn

)
= EM

AEN
B ĤAB , (2.69)

the generalized Ricci scalar R is expressed as follows in terms of the supergravity fields:

R = R+ 4∇m∂mϕ− 4 gmn ∂mϕ∂nϕ− 1
12 Hmnp H

mnp . (2.70)

– 11 –



J
H
E
P
0
1
(
2
0
2
4
)
1
5
0

When we study Poisson-Lie T-duality, the dilaton is determined in such a way that
FA = 0 [21, 23].6 Parameterizing the dilaton e−2d as

e−2d = e−2d̂ |det(ℓam)| , (2.71)

it is also possible to compute the curved components of the flux FM ≡ EM
A FA as

FM = 2 ∂M d̂ + fb
ba

(
ℓam + vn

a (BWZ
nm + ℓa[n ℓ

a
m])

−vm
a

)
. (2.72)

Then, if the dual structure constants satisfy fb
ba = 0 , we can realize FA = 0 by choosing d̂ as

a constant. However, the condition fb
ba = 0 is not O(d, d) covariant, and thus it can be broken

in the dual frame even when it holds in the original duality frame. Such an example has been
found in [27] where the dilaton cannot be found such that the supergravity equations of motion
are satisfied. Namely, the conformal invariance can be broken when fb

ba ̸= 0 in the dual model,
and this was understood in terms of a mixed gauge and gravitational anomaly in [10, 11, 59].7

Accordingly, from a conservative point of view, it may not be appropriate to consider
Poisson-Lie T-duality when the original or the dual model contains non-vanishing fb

ba .
However, even in such a case, the duality transformation works as a solution generating
transformation in DFT. Indeed, even in the problematic example of [27], the dual background
has been identified as a solution of DFT in [60]. Since DFT is a framework providing useful
insights into the low-energy effective theory of strings, this result suggests that there might be
a resolution to these issues (see also [28, 61]). A common understanding however is still absent.

In the case of the self-duality of WZNW models, the situation is simpler even though
fb

ba ̸= 0 in general. Indeed, in the example studied in section 3.1, both the original and dual
model satisfies fb

ba ̸= 0 . However, as we show below, this does not matter because the flux
FA is decoupled from the supergravity equations of motion and the conformal invariance can
be realized both in the original and the dual model. A similar situation has been observed in
the context of the Yang-Baxter deformation in [62]. A more general discussion associated with
the decoupling has been given in [29].8 It would be interesting to find a unified understanding.

As shown in eqs. (2.26) and (2.27), we have

Ĥf
AB = ĤAB , ĤA

B ℓB = ±ℓA , (2.73)

when Ĥ(tα̂) = ±tα̂ . The latter gives

ℓam = (±ĝab + B̂ab) ℓbm , (2.74)

from which it follows that the former, together with (2.16), results in

gmn = ĝab ℓ
a
m ℓbn , Bmn = BWZ

mn . (2.75)
6A more general case with FA is a non-zero constant has been studied, for example, in [24].
7Though the example in [27] is for non-Abelian T-duality, the argument generally holds also for Poisson-Lie

T-duality [38]. Poisson-Lie T-duality reduces to non-Abelian T-duality e.g. when fa
bc = 0.

8A field redefinition that cancels the mixed anomaly associated with fab
b ̸= 0 has also been discussed.
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Using these, we find that FM of (2.72) reduces to

FM = 2 ∂M d̂ + fb
ba

(
vn

a (±gnm +Bnm)
−vm

a

)
, (2.76)

and by choosing d̂ to be constant,

ĤA
B FB = ∓FA . (2.77)

Consequently, we have F
¯
A = PA

B FB = 0 (or FĀ = P̄A
B FB = 0) for Ĥ(tα̂) = +tα̂ (or

−tα̂) . Recalling F
¯
A

¯
CD̄ = 0 (or FĀC̄

¯
D = 0), which follows from [tα̂, tβ̂] = fα̂β̂

γ̂ tγ̂ , we then
find R+

AB = 0 (or R−
AB = 0). Moreover, since R = 1

3 F¯
A

¯
B

¯
C F ¯

A
¯
B

¯
C (or R = −1

3 FĀB̄C̄ F
ĀB̄C̄),

FA does not give any contribution to the supergravity equations of motion even when it
is not constant. In terms of the structure constants fα̂β̂

γ̂ , the above result is written as
R = 1

3 fα̂β̂γ̂ f
α̂β̂γ̂ where the indices are raised/lowered with the metric hα̂β̂ and its inverse.

To summarize, from a given 2d-dimensional algebra d and the constant matrix ĤAB ,
we can construct the supergravity fields as

gmn = ĝab ℓ
a
m ℓbn

(
= 2hα̂β̂ ℓ

α̂
m ℓβ̂n

)
, Bmn = BWZ

mn , ϕ = ϕ̂ , (2.78)

where we have parameterized the constant e−2d̂ as e−2d̂ = e−2ϕ̂
√
|det(ĝab)| . Then even

when fb
ba ̸= 0, the flux FA does not contribute to the supergravity equations of motion

(of the d-dimensional part), so that

R = 1
3 fα̂β̂γ̂ f

α̂β̂γ̂ , R±
AB = 0 . (2.79)

By adding other spacetime that is orthogonal to this d-dimensional space such that the
constant term in R is canceled out, we obtain a conformal sigma model as usual.

3 Poisson-Lie T-duality of SU(2) WZNW model

In this section, we find concrete examples of the self-duality of WZNW models, where the
Drinfel’d double is six-dimensional and the Lie group R turns out to be SU(2). These
examples allow us to study their quantum aspects in detail, which are discussed in section 4.

3.1 Example 1

Let us take a Drinfel’d double given by9

f13
1 = −ω , f13

2 = 1 , f23
1 = −1 , f23

2 = −ω ,
f1

13 = −ω , f2
13 = ω2 , f1

23 = −ω2 , f2
23 = −ω (ω > 0) ,

(3.1)

the Lie algebra of which is isomorphic to sl(2,C). In the classification of [57], this corresponds
to the Manin triple (7ω|71/ω| − ω2). We note that this example has been discussed in [40].

9Note that this Drinfel’d double satisfies FABC F ABC ̸= 0 and is of the type called non-geometric in [63].
Indeed, if FA = 0, the section condition Z = 0 in (2.62) is broken. However, we are introducing non-constant
FA (note that fb

ba ̸= 0) such that Z = 0, and hence the section condition is not broken in our example.
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Here, we take 71/ω to be the dual Lie subalgebra generated by T a. The corresponding Lie
subgroup is denoted by G̃1/ω in the following.

We choose the constant matrix Eab
+ as

Eab
+ =

 1 ω2−1
2ω 0

−ω2−1
2ω 1 0
0 0 1

 , (3.2)

and then the generators tα̂ ≡ − 1
1+ω2 δα̂b

(
T b +TcE

cb
+
)
, which span r , satisfy the su(2) algebra

[t1̂, t2̂] = t3̂ , [t2̂, t3̂] = t1̂ , [t3̂, t1̂] = t2̂ . (3.3)

From (2.29), we obtain the SU(2) WZNW model with the action,

SWZNW(f) ≡ S = − k

8π

∫
Σ
κ(ℓ, ∗ℓ) + k

24π

∫
B
κ(ℓ, [ℓ, ℓ]) . (3.4)

We have introduced k ≡ 4
(1+ω2)2 α̃′ , which has to be a positive integer, and a bilinear form

κ(tα̂, tβ̂) = −1
2 δα̂β̂ . We shall parameterize f and g̃ as

f ≡ e−2 u t3̂ e−2 ρ t1̂ e−2 v t3̂ , g̃ ≡ e
ρ̃

1+ω2 T 3
eỹ T 2 ex̃ T 1

, (3.5)

where the normalization of ρ̃ has been fixed for later convenience. Then by using

ĝab + B̂ab =


4ω2

(1+ω2)2
2ω(1−ω2)
(1+ω2)2 0

−2ω(1−ω2)
(1+ω2)2

4ω2

(1+ω2+1)2 0
0 0 1

 , BWZ = 4 cos 2ρ
(1 + ω2)2 du ∧ dv , (3.6)

ℓm
a =


sin 2ρ (2ω sin 2v+(1−ω2) cos 2v)

ω(1+ω2) −2 sin 2ρ (ω cos v−sin v)(ω sin v+cos v)
ω(1+ω2)

2 cos 2ρ
1+ω2

0 0 2
1+ω2

−(1−ω2) sin 2v+2ω cos 2v
ω(1+ω2)

2ω sin 2v+(1−ω2) cos 2v
ω(1+ω2) 0

 , (3.7)

ℓma =


2 sin 2ρ sin 2v

1+ω2 −2 sin 2ρ cos 2v
1+ω2

2 cos 2ρ
1+ω2

0 0 2
1+ω2

2 cos 2v
1+ω2

2 sin 2v
1+ω2 0

 , (3.8)

with ℓm
a and ℓma being the matrix elements of ℓam and ℓam , the background fields are

found to be

ds2 = α̃′ k
(
du2 + 2 cos 2ρ du dv + dv2 + dρ2) , B2 = α̃′ k cos 2ρ du ∧ dv . (3.9)

We choose the ranges of the coordinates as

0 ≤ u ≤ π , 0 ≤ v ≤ 2π , 0 ≤ ρ ≤ π

2 . (3.10)

The left/right currents, which correspond to the ones defined in section 2.5 with γ =
−1/α̃′, are denoted by

Jα̂ = −k2
(
∂+f f

−1)
α̂
, J̄α̌ = k

2
(
f−1 ∂−f

)
α̌
, (3.11)
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where we have used the equations of motion ∂−f f
−1 = 0 = f−1 ∂+f . We have also

introduced the generators

t1̌ = −t1̂ , t2̌ = t2̂ , t3̌ = −t3̂ , (3.12)

and expanded the right currents by using tα̌ , so that the left and the right currents take
the symmetric form

J3̂ = k
(
∂+u+ cos 2ρ ∂+v

)
, J±̂ = k

(
∂+ρ± i sin 2ρ ∂+v

)
e∓2iu ,

J̄3̌ = k
(
∂−v + cos 2ρ ∂−u

)
, J̄±̌ = k

(
∂−ρ± i sin 2ρ ∂−u

)
e∓2iv ,

(3.13)

where J±̂ ≡ J1̂ ± iJ2̂ and J̄±̌ ≡ J̄1̌ ± iJ̄2̌ . Since tα̂ → tα̌ is an automorphism of su(2), the
Poisson brackets among J̄α̌ are of the same form as those among J̄α̂ obtained by using tα̂.

Due to the self-duality constraint (2.33), the right currents are expressed as

J̄±̌ = ±i k (1 + ω2) (ω ± i)2

8ω
(
r̃1− ∓ i r̃2−

)
, J̄3̌ = −k 1 + ω2

4 r̃3− . (3.14)

Since
r̃1 ± i r̃2 = e

ω(1∓iω)
1+ω2 ρ̃(dx̃± i dỹ

)
, r̃3 = dρ̃

1 + ω2 , (3.15)

the above currents also become

J̄±̌ = ±i k (1 + ω2) (ω ± i)2

8ω e
ω (1±iω)

1+ω2 ρ̃ (
∂−x̃∓ i ∂−ỹ

)
, J̄3̌ = −k4 ∂−ρ̃ . (3.16)

We note that ∂+ρ̃ = 0. The energy-momentum tensors in (2.60) are

T++ = −1
k
δα̂β̂ Jα̂ Jβ̂ , T−− = −1

k
δα̌β̌ J̄α̌ J̄β̌ . (3.17)

In the quantum case, k in the denominator is shifted by the second Casimir of su(2) as k + 2,
though it is irrelevant classically since k ≫ 1.

3.1.1 Dual model

Now, we consider a Poisson-Lie T-duality transformation which exchanges T3 and T 3 . Under
this transformation, ĤAB is not changed, but the structure constants become

f ′13
1 = ω , f ′13

2 = ω2 , f ′23
1 = −ω2 , f ′23

2 = ω ,

f ′1
13 = ω , f ′2

13 = −1 , f ′1
23 = 1 , f ′2

23 = ω (ω > 0) .
(3.18)

This corresponds to the Manin triple (71/ω|7ω| − ω2) . Therefore, at least for ω ̸= 1, this is
a non-trivial example of Poisson-Lie T-duality, which changes the coset D/G̃1/ω into another
coset D/G̃ω with G̃ω corresponding to 7ω.

In this case, we define the generators t′α̂ ≡ − 1
1+ω2 δα̂b

(
T ′b + T ′

c E
cb
+
)
. We then find

t′1̂ = t1̂ , t′2̂ = t2̂ , t′3̂ = t3̂ , (3.19)

which generate the same Lie algebra r as above. It turns out that the following parametrization
of l is useful for the discussion below,

l = f ′ g̃′ , f ′ ≡ e−2 u′ t3̂ e−2 ρ′ t1̂ e−2 v′ t3̂ , g̃′ ≡ e
ρ̃′

1+ω2 T3 eỹ′ T 2 ex̃′ T 1
, (3.20)

which gives the same background fields (3.9) and the currents (3.13) with all the coordinates
replaced with the primed ones.
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3.1.2 Relation

Given the above parametrization, we can now find an explicit relation between the original
and the dual model. To this end, we first recall the parameterization

f g̃ = l = f ′ g̃′ . (3.21)

In general, such a dual parametrization gives a highly non-linear relation between the
coordinates of the dual pair. In our example, however, the relation turns out to be very simple;

ρ̃′ = −ρ̃ , v′ = v + 1
2 ρ̃ , (3.22)

and the other coordinates are invariant. Moreover, from [T3, T
3] = 0, it follows that

f ′ = f e
ρ̃

1+ω2 T 3− ρ̃′

1+ω2 T3 = f e−ρ̃ t3̂ . (3.23)

The relation between the currents are thus found to be

J ′
3̂ = J3̂ , J ′

±̂ = J±̂ ,

J̄ ′
3̌ = −J̄3̌ , J̄ ′

±̌ = e∓iρ̃ J̄±̌− .
(3.24)

3.1.3 Current algebra

Now we consider the current algebra discussed in section 2.4 and 2.5. Using eq. (2.59) and
recalling γ = −1/α̃′, we find the current algebra in the original model

{Jα̂(σ+), Jβ̂(σ′+)} = −2πfα̂β̂
γ̂ Jγ̂(σ+) δ(σ+ − σ′+) + πk δα̂β̂ δ

′(σ+ − σ′+) ,

{J̄α̌(σ−), J̄β̌(σ′−)} = −2πfα̌β̌
γ̌ J̄γ̌(σ−) δ(σ− − σ′−) + πk δα̌β̌ δ

′(σ− − σ′−) ,
(3.25)

where we have used hα̂β̂ = α̃′ k
2 δα̂β̂ . More explicitly, for the right currents, it is written as

{J̄3̌(σ−), J̄3̌(σ′−)} = πk δ′(σ− − σ′−) ,
{J̄3̌(σ−), J̄±̌(σ′−)} = ±2πi J̄±̌(σ−) δ(σ− − σ′−) ,
{J̄+̌(σ−), J̄−̌(σ′−)} = 4πi J̄3̌(σ−) δ(σ− − σ′−) + 2πk δ′(σ− − σ′−) .

(3.26)

These form the ŝu(2) affine Lie algebra in the sense of Poisson brackets.
As for the currents of the dual model, since the dual model is again the SU(2) WZNW

model, the Poisson brackets are also of the form in (3.25) and (3.26) in terms of the brackets
defined through the dual action. Given the relations (3.24) and (3.16), the Poisson brackets
of the original model among J̃ ′

α̌ are also computed, up to those involving the zero mode of ρ̃.
These should be obtained from the sigma model on the Drinfel’d double described by (2.12)
with the constraint (2.7) (or the E-model). However, there is a simple way around: as
mentioned above, Poisson-Lie T-duality is represented by a canonical transformation, which
means that the Poisson brackets of the original model among J̃ ′

α̌ are again of the same form
as in (3.25) and (3.26). These in turn determine the brackets involving the zero mode of ρ̃.

Let us explicitly check this below. First, from (3.24) it follows that

{J̄ ′
3̌(σ−), J̄ ′

3̌(σ′−)} = {J̄3̌(σ−), J̄3̌(σ′−)} = πk δ′(σ− − σ′−) . (3.27)
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Next, a slightly non-trivial bracket is

{J̄ ′
3̌(σ−), J̄ ′

±̌(σ′−)} = −{J̄3̌(σ−), e∓iρ̃(σ′−) J̄±̌(σ′−)}

= ∓2πi J̄ ′
±̌(σ−) δ(σ− − σ′−) ± i {J̄3̌(σ−), ρ̃(σ′−)} J̄ ′

±̌(σ′−) . (3.28)

Requiring the bracket to have the same form as eq. (3.26) in accordance with the canonical
transformation, we should have

{J̄3̌(σ−), ρ̃(σ′−)} = 4π δ(σ− − σ′−) . (3.29)

This is confirmed to be consistent with {J̄3̌(σ−), J̄3̌(σ′−)} = πk δ′(σ− − σ′−) by acting with
∂′− and using the relation between ρ̃ and J̄3̌ in (3.16). If we consider a mode expansion

J̄3̌ =
∑
n∈Z

ᾱn e−inσ−
, (3.30)

where ᾱn obey the algebra

{ᾱn, ᾱm} = − ik2 n δn+m,0 , (3.31)

we can expand ρ̃(σ−) as

ρ̃(σ−) = ρ̃0 −
4
k
ᾱ0 σ

− − 4
k

∑
n ̸=0

i

n
ᾱn e−inσ−

, (3.32)

by introducing the zero mode ρ̃0 . In terms of the modes, the only non-trivial requirement
for (3.29) is

{ρ̃0, ᾱn} = −2 δ0,n . (3.33)

Similarly, we find

{J̄ ′
+̌(σ−), J̄ ′

−̌(σ′−)} = {e−iρ̃(σ−) J̄+̌(σ−), eiρ̃(σ′−) J̄−̌(σ′−)}

= 4πi J̄ ′
3̌(σ−) δ(σ− − σ′−) + 2πk δ′(σ− − σ′−)

− iJ̄ ′
+̌(σ−) {ρ̃(σ−), J̄−̌(σ′−)} eiρ̃(σ′−)

+ i e−iρ̃(σ−){J̄+̌(σ−), ρ̃(σ′−)} J̄ ′
−̌(σ′−)

+ J̄ ′
+̌(σ−) {ρ̃(σ−), ρ̃(σ′−)} J̄ ′

−̌(σ′−) . (3.34)

For the last three lines to be canceled out, we should have

{ρ̃0, ρ̃0} = 0 , {ρ̃0, J̄±̌(σ−)} = ±4i
k
σ− J̄±̌(σ−) . (3.35)

These give

{ρ̃(σ−), ρ̃(σ′−)} = −16π
k

θ(σ− − σ′−) , (3.36)

{ρ̃(σ−), J̄±̌(σ′−)} = ∓8πi
k
θ(σ− − σ′−) J̄±̌(σ′−) , (3.37)

where θ(σ) = 1
2π (σ −

∑
n ̸=0

i
n einσ) is the step function.
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Consequently, the currents in the dual model indeed satisfy the same algebra even in terms
of the Poisson bracket of the original model. We thus find that the duality transformation
contrives to induce an automorphism of the current algebra. Turning the argument around
and assuming the Poisson brackets involving the zero mode of ρ̃ give another derivation of
the canonical transformation in our case of Poisson-Lie T-duality. The Poisson bracket (3.36)
means that ρ̃(σ−) is a chiral free boson, as is understood also from the relation to J̄3̌ in (3.16).
We discuss that implication further in section 4.

Summarizing, by finding appropriate coordinates in the dual model as in (3.20), we
have found a simple relation of the currents (3.24). In terms of the currents, the relation is
non-linear and non-local because ρ̃ is expressed by an integral of J̄3̌ through (3.16). It also
involves an infinite number of the modes of the currents, which are defined as in (3.30). The
zero mode ρ̃0 is not given by the currents. The transformation is however found to be an
automorphism of the current algebra, as assured by the general property that Poisson-Lie
T-duality is expressed as a canonical transformation. Given these results, we can explore
the quantum aspects of the duality, including global issues and details of the spectrum, as
discussed in section 4. We note that due to the properties mentioned above the automorphism
is not on the list of the classification genuinely in terms of ŝu(2)k [64, 65]; to analyze it, the
space that the currents act on should be properly defined, or a completion should be necessary.

3.2 Example 2

Before moving on to the quantum analysis, we note that the limiting case ω → 0 in Example
1, which is singular in eq. (3.2), can be achieved by considering another 2d-dimensional Lie
algebra, where the structure constants contain fabc as well and are given by

f12
3 = −1 , f23

1 = −1 , f31
2 = −1 , f123 = 1 . (3.38)

This is generalizing the Drinfel’d double in the sense that fabc ̸= 0. Here we choose Eab
+ as

Eab
+ =

1 0 0
0 1 0
0 0 1

 . (3.39)

In this case, the action of the WZNW model becomes

SWZNW(f) ≡ S = − k

8π

∫
Σ
κ(ℓ, ∗ℓ) + k

24π

∫
B
κ(ℓ, [ℓ, ℓ]) , (3.40)

where we have defined the level k ≡ 4
α̃′ and a bilinear form κ(tα̂, tβ̂) = −1

2 δα̂β̂ . The generators
tα̂ ≡ −δα̂b

(
T b + TcE

cb
+
)
, which span r , satisfy the su(2) algebra

[t1̂, t2̂] = t3̂ , [t2̂, t3̂] = t1̂ , [t3̂, t1̂] = t2̂ . (3.41)

Here again we consider a Poisson-Lie T-duality transformation which exchanges T3 and
T 3 , under which the constant part of the generalized metric ĤAB is not changed, and the
structure constants become

f ′12
3 = 1 , f ′1

23 = −1 , f ′2
13 = 1 , f ′123 = −1 . (3.42)
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In the original model the maximally isotropic subalgebra g̃ is Abelian while in the dual
model it is a Lie algebra of Bianchi type 70 , and thus this Poisson-Lie T-duality gives a
map between two different cosets.

In the original/dual model, we can parameterize l as

l = f g̃ = f ′ g̃′ , (3.43)

f ≡ e−2 u t3̂ e−2 ρ t1̂ e−2 v t3̂ , g̃ ≡ eρ̃ T 3 eỹ T 2 ex̃ T 1
, (3.44)

f ′ ≡ e−2 u t3̂ e−2 ρ t1̂ e−2 v′ t3̂ , g̃′ ≡ eρ̃′ T3 eỹ T 2 ex̃ T 1
, (3.45)

where the new coordinates ρ̃′ and v′ are given by

ρ̃′ = −ρ̃ , v′ = v + 1
2 ρ̃ . (3.46)

Again we define the left/right currents as

Jα̂ = −k2
(
∂+f f

−1)
α̂
, J̄α̌ = k

2
(
f−1 ∂−f

)
α̌
, (3.47)

and obtain the same expression as eq. (3.13) with k = 4
α̃′ (or ω = 0). Then the relation of

the currents between the original and the dual model becomes

J ′
3̂ = J3̂ , J ′

±̂ = J±̄ ,

J̄ ′
3̌ = −J̄3̌ , J̄ ′

±̌ = e∓iρ̃ J̄±̌ ,
(3.48)

which is precisely the same as the one in the previous example in (3.24). Accordingly, the
current algebra is analyzed as in Example 1, and we find that the duality transformation
induces a non-local chiral automorphism.

3.3 Action on geodesic solutions

Usual Abelian T-duality exchanges momentum and winding modes. Similarly, our Poisson-Lie
T-duality can exchange the roles of the world-sheet coordinates τ and σ, though it does not
generate true windings because SU(2) is simply connected. To see this, let us consider the
action of the duality on the zero mode represented by geodesic solutions.

Since the general solution of the WZNW model takes the form f = f+(σ+)f−(σ−), the
geodesics represented, for example, by f = gα̂(p τ) with p being constant provide solutions,
where gα̂(τ) ≡ exp[τ tα̂] = exp[σ+ tα̂/2] exp[σ− tα̂/2]. For f = gβ̂(p τ), the currents and the
energy-momentum tensor in the right mover are

J̄α̌ = (−1)α̌ k

4 p δα̌β̂ , T−− = − k

16 p
2 . (3.49)

As a solution in string theory, the value of p has to satisfy the Virasoro constraints including
other part of spacetime. In particular, taking f = g3̂(p τ), one has ρ̃ = ρ̃0 + p σ− from (3.16).
The duality transformation (3.23) and the corresponding one in Example 2 (where ω = 0
should be understood) are thus

f ′ = g3̂(p τ) e−p σ−t3̂ e−ρ̃0 t3̂ ∼ g3̂(p σ) , (3.50)
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up to the zero mode part associated with ρ̃0 that can be absorbed into a shift of σ . This
indeed shows the exchange of the roles of τ and σ. As discussed in section 4.4, the value
of p is found to be quantized in the unit of 2/k in the quantum case, which specifies the
global structure of the dual target space.

The duality transformation is trivial for f = gα̂ (α̂ = 1, 2), since J̄3̌ = 0 in these cases.
One can also consider the general geodesic f = Ug3̂(p τ)V −1 where U and V are constant
elements of SU(2). In this case, the t3̂-component of V t3̂V −1 contributes to J̄3̌.

4 Quantum description of duality

In the previous section, we found concrete examples where the SU(2) WZNW model is
self-dual under Poisson-Lie T-duality. The duality was expressed as a chiral automorphism
of the current algebra or the ŝu(2) affine Lie algebra.

In this section, we show that this automorphism is extended to the quantum or the
α′-exact one, which induces an isomorphism of the CFT associated with the SU(2) WZNW
model. We thus find that the classical duality in the previous section is promoted to the
quantum duality which ensures the full quantum equivalence of the dual pair. In the course,
the global structure of the duality is also figured out. From the world-sheet point of view, a
quantum equivalence under any duality may be reduced to an isomorphism of the underlying
CFT, which also implies an automorphism of the symmetry algebras, as for usual Abelian
T-duality. Our case of Poisson-Lie T-duality is regarded as providing another example. In
the following, we mainly focus on Example 1, but the discussion also applies to Example 2.

4.1 Parafermionic formulation of ŝu(2) affine Lie algebra

For notational convenience, in what follows we take the world-sheet to be Euclidean by
performing the Wick rotation τ = −it, and define the complex coordinates

z ≡ et+iσ = eiσ+
, z̄ ≡ et−iσ = eiσ−

. (4.1)

We also introduce the currents Jâ(z) and J̄ǎ(z̄) in the Hermitian basis tâ ≡ i tâ and tǎ ≡ i tǎ;

Jâ(z) = −iJâz(z) = −idσ
+

dz Jâ+(σ+) , J̄ǎ(z̄) = −iJ̄ǎz̄(z̄) = −idσ
−

dz̄ J̄ǎ−(σ−) . (4.2)

Replacing the Poisson brackets of the modes of the currents with the commutators as
i {·, ·} → [·, ·], the current algebra in (3.26) is translated to the operator product expansions
(OPEs) for the affine Lie algebra ŝu(2)k,

J3(z)J3(w) ∼ k/2
(z − w)2 , J3(z)J±(w) ∼ ±J±(w)

z − w
,

J+(z)J−(w) ∼ k

(z − w)2 + 2J3(w)
z − w

. (4.3)

Here we have set J3(z) ≡ J3̂(z), J±(z) ≡ J1̂(z) ± iJ2̂(z). We have similar OPEs for J̄3(z̄) =
J̄3̌(z̄), J̄±(z̄) = J̄1̌(z̄) ± iJ̄2̌(z̄).

The automorphism of ŝu(2)k found in the previous section turns out to have a simple
representation, though it might appear to be intricate, as suggested by the fact that ρ̃ in (3.16)
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is a chiral free boson. To see this, let us introduce the parafermionic formulation of the affine
Lie algebra [41, 42]. At level k, the affine Lie algebra ŝu(2)k in the holomorphic sector is
represented by a free boson φ(z) and the parafermions ψ1(z), ψ†

1(z) as

J3(z) = i

√
k

2 ∂φ(z) ,

J+(z) =
√
k ψ1(z) ei

√
2
k

φ(z) , J−(z) =
√
k ψ†

1(z) e−i
√

2
k

φ(z) . (4.4)

One can check that the OPEs (4.3) are indeed recovered by using

φ(z)φ(w) ∼ − ln(z − w) ,

ψ1(z)ψ†
1(w) ∼ (z − w)

2
k
−2 , ψ†

1(z)ψ1(w) ∼ (z − w)
2
k
−2 . (4.5)

For k = 1, the parafermions are absent. For k = 2, they reduce to free fermions. We
have similar expressions for the anti-holomorphic sector, which are denoted by bars, for
example, as φ̄(z̄).

4.2 Poisson-Lie T-duality as isomorphism of CFT

From J̄3̌ in (3.16) and J̄3(z̄) defined as in (4.4), one finds that ρ̃(σ−) corresponds to φ̄(z̄).
Indeed, both ρ̃ and φ̄ are chiral free bosons, and the Poisson brackets involving ρ̃ and its
modes in section 3.1.3 are in accordance with the OPE of φ̄(z̄) as in (4.5). One can then
identify k ρ̃/4 with

√
k/2 φ̄, and hence the sign-change of J̄3(z̄) from (3.24) with that of

φ̄(z̄). The transformations of J̄ ′
±̌ in (3.24), which preserve the Poisson brackets of the

currents, amount to the change in the sign of φ̄(z̄) in the parafermionic representation of
J̄±(z̄) defined as in (4.4). The non-locality of the transformations in terms of the currents
has been absorbed in the definition of φ̄.

Therefore, the classical Poisson-Lie T-duality transformation in (3.24) is translated to

J̄ ′
3(z̄) = −J̄3(z̄) = −i

√
k

2 ∂̄φ̄(z̄) ,

J̄ ′
+(z) = e−2i

√
2
k

φ̄(z̄) J̄+(z̄) =
√
k ψ̄(z̄) e−i

√
2
k

φ̄(z̄) , (4.6)

J̄ ′
−(z̄) = e2i

√
2
k

φ̄(z̄) J̄−(z̄) =
√
k ψ̄†(z̄) ei

√
2
k

φ̄(z̄) ,

with the holomorphic currents Ja(z) kept intact. Compared with the expression of J̄a, the
above transformation is summarized as the chiral sign-change in all of J̄a,

φ̄(z̄) → −φ̄(z̄) , (4.7)

where the OPE of φ̄ as in (4.5) is kept invariant. Clearly, this is an automorphism of the
parafermionic representation of the SU(2) WZNW model. This means that the classical
Poisson-Lie T-duality in our case can be promoted to a quantum duality where the (self-)dual
pair is equivalent in the quantum sense. As is discussed further below, the spectrum is
equivalent, and so are the correlations functions at any genus of the world-sheet.

We note that the chiral change in the sign, though simple, is not trivial: in the case of
k = 1, where the parafermions are absent, (4.7) corresponds to usual Abelian T-duality of
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a free boson at the self-dual radius which describes the SU(2) WZNW model. In addition,
we recall that the unitary discrete series of the N = 2 superconformal field theory (minimal
models) are represented by the parafermions and a free boson [66]. The mirror symmetry
in the Gepner model consisting of the N = 2 minimal models is implemented also by the
chiral change in the sign of the free boson as in (4.7) [43, 44].10 Furthermore, there exits a
marginal deformation connecting the SU(2) WZNW model and the N = 2 minimal model,
where the radius of the free boson is changed [68]. Taking this into account, one may
say that our Poisson-Lie T-duality represented by (4.7) is of the same class as the mirror
symmetry in the Gepner model.

As in the classical case mentioned above, the automorphism of ŝu(2)k in (4.6) is not
generally expressed genuinely in terms of the affine Lie algebra. Thus, the automorphism
in our case is not reduced to the usual inner or outer automorphism of ŝu(2)k generally.
We discuss related issues later in section 4.5.

4.3 Spectrum

Now, let us see the correspondence of the spectrum in more detail. To this end, we recall
that the primary fields Gl,l̄

m,m̄ of the SU(2) WZNW model at level k are given by the product
of those of the parafermionic part Φl,l̄

m,m̄ and the free-boson part [41, 42] as

Gl,l̄
m,m̄(z, z̄) = Φl,l̄

m,m̄(z, z̄) e
i√
2k

[mφ(z)+m̄φ̄(z̄)]
. (4.8)

Here, l = 0, 1, . . . , k and −l ≤ m ≤ l are respectively twice the su(2) spin and its component
in the 3-direction of the zero-mode algebra of Ja;0 =

∮ dz
2πiJa(z). Similarly, l̄ and m̄ are those

in the anti-holomorphic sector. The general states are obtained by acting with the currents
in (4.4) and those in the anti-holomorphic sector.

Accordingly, the partition functions of the SU(2) WZNW model split into the
parafermionic (PF) part and the free-boson (φ) part. For example, in the holomorphic
sector with fixed l and m, one has

Z l,m
WZNW(τ) = Z l,m

PF (τ)Zm
φ (τ) , (4.9)

with τ being the modulus of the world-sheet torus. The free-boson part is given by

Zm
φ (τ) = q

m2
4k η(τ)−1 , (4.10)

where q = e2πiτ and η(τ) = q
1

24
∏∞

n=1(1 − qn). These are customarily expressed by the
string functions cl

m(τ) as

Z l,m
WZNW(τ) = q

m2
4k cl

m(τ) , Z l,m
PF (τ) = η(τ)cl

m(τ) . (4.11)

They satisfy

cl
m = 0 (l −m /∈ 2Z) , cl

m = cl
−m = cl

m+2k = ck−l
k+m . (4.12)

10The mirror symmetry has been discussed in relation to Poisson-Lie T-duality in [67].
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Summing over m and using the periodicity of cl
m in m, one obtains the character of the

spin- l
2 representation,

χl(τ) =
k∑

m=−k+1
cl

m(τ)Θm,k(τ) , (4.13)

where Θm,k(τ) =
∑

n∈Z q
k(n+ m

2k
)2 . The partition functions in the anti-holomorphic sector are

similar. The total partition functions of the SU(2) WZNW model are then given by the
modular invariant combinations of the characters of the form,

ZWZNW(τ) =
k∑

l,l̄=0

Nll̄ χl(τ)χl̄(τ)∗ , (4.14)

where Nll̄ are non-negative integers. A simple example is the diagonal invariant with Nll̄ = δll̄.
Under (4.7), the primary fields transform as

Gl,l̄
m,m̄ → Φl,l̄

m,m̄ e
i√
2k

(mφ−m̄φ̄) = Φl,l̄
m,−m̄′ e

i√
2k

(mφ+m̄′φ̄) (4.15)

with m̄′ ≡ −m̄. Together with (4.6), the transformations of the descendant fields are read off.
Consequently, only the change in the partition function is regarded as

Zm̄
φ̄ (τ)∗ → Z−m̄

φ̄ (τ)∗ , (4.16)

in the free-boson part of the anti-holomorphic sector, which is indeed invariant.
Alternatively, one may think that, as in the last expression of (4.15), the sign of m̄′ (Z̄2k

charge) in the parafermionic part is reversed in the total spectrum (after Gl,l̄
m,m̄ → Gl,l̄

m,−m̄),
under which the string function in the anti-holomorphic sector becomes

cl̄
m̄(τ)∗ → cl̄

−m̄(τ)∗ , (4.17)

which is invariant again. This corresponds to the order-disorder duality of the parafermionic
theory [41], where the spin and the dual spin fields are exchanged, as is recognized also in the
context of the mirror symmetry [43, 44].11 Although the spectrum is invariant under (4.16)
or (4.17), the primary fields of the dual theory (4.15) are not of the form (4.8). This means
that the states in the dual theory are generally not expressed by those in the original theory,
as in Abelian T-duality connecting different radii of bosons. This is also in accordance with
the fact that the transformations (3.24), (3.48) or their quantum versions involve infinitely
many modes of the currents, as mentioned above, and that the order-disorder duality relates
equivalent descriptions which are however non-local to each other.

4.4 Global structure

It is important to figure out global properties under dualities in understanding the equivalence
of the dual pair. However, this is generally an open problem in Poisson-Lie T-duality. Our
examples enable us also to address this issue.

11The order-disorder duality has been discussed also in the context of T-duality for example in [7, 48].
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From (3.32) and the quantization of ᾱ0 ∈ Z/2, one finds that ρ̃ has the periodicity

ρ̃(σ− + 2π) = ρ̃(σ−) − 4π
k
. (4.18)

In order for the string in the dual model to be closed, it then follows from (3.22) that the
range of the coordinate v′ in the dual model should be

0 ≤ v′ ≤ 2π
k
. (4.19)

This gives 1/k times the periodicity which ensures that the dual field f ′ in (3.23) is an element
of SU(2). Thus, f ′ belongs to the lens space SU(2)/Zk and, precisely speaking, the dual
theory is the Zk orbifold of the level k SU(2) WZNW model. This picture is consistent with
the discussion on the spectrum in section 4.3: it is known that the Zk orbifold of the Zk

symmetric parafermionic CFT is represented by the order-disorder duality, and that of the
level k SU(2) WZNW model is equivalent to the original one [42–44, 46, 47]. In other words,
while our Poisson-Lie T-duality is understood as the chiral change in the sign of φ̄ or the
oder-disorder duality from the point of view of the map of the currents, it is also understood as
the Zk orbifolding from the point of view of the dual Lagrangian/action. Requiring the strings
be closed also in the total target space of the Drinfel’d double, one may need to consider
them as periodic in ρ̃ with the given periodicity. Instead, one may consider, following [69],
“monodromic strings” which are not necessarily closed in the total target space.

The isomorphism of the CFT shows that the duality indeed holds in both directions.
We may also repeat the discussion of the sigma model starting from the dual side, i.e. the
lens space SU(2)/Zk. For k = 2, we have SU(2)/Z2 = SO(3). For k > 2, the (untwisted)
ŝu(2) symmetry in the right mover is broken to û(1) [47]. For example, the right currents
J̄±̌ in (3.13) are not well-defined due to the change of the periodicity of v. In any case,
the orbifold model is equivalent to the one on SU(2), as mentioned above, after taking into
account the twisted sectors. The remaining û(1) current is represented by a free boson whose
radius is 1/k times the original one. The quantization of the zero mode of ρ̃ is also changed.
These are consistent with the duality which maps the dual model back to the original one,
though the classical action by itself is not sufficient to understand the inverse map from the
sigma model point of view because of the twisted sectors.

4.5 Relation to Abelian T-duality of WZNW models

Our quantum Poisson-Lie T-duality may be regarded as the second simplest to those reducing
to usual Abelian T-duality in torus compactifications. The duality transformation (4.7) is the
usual T-duality transformation for a free boson representing û(1) currents. These suggest that
there may be a simpler formulation. Indeed, it turns out that the classical transformation (3.23)
can be realized also as Abelian T-duality of the SU(2) WZNW model [7, 8, 48]. Here, we
return to the Lorentzian world-sheet to conform to the discussion on the sigma models.

We begin with the SU(2) WZNW model given by

SWZNW(f) = − k

8π

∫
Σ
κ(ℓ, ∗ℓ) + k

24π

∫
B
κ(ℓ, [ℓ, ℓ]) , (4.20)
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where f ∈ SU(2) and ℓ = f−1df = ℓα̂ tα̂. The notation here is as in section 3. We then
gauge an isometry associated with the right-multiplication of t3̂ by introducing the gauge
field A ≡ A+ dσ+ + A− dσ− and an auxiliary field χ̃ as

Sgauged = SWZNW(f) − k

8π

∫
Σ

dσ+ ∧ dσ−
[
A+A− +A+ (2 ℓ3− − ∂−χ̃) + ∂+χ̃ A−

]
. (4.21)

Under a (finite) gauge transformation

f → f e−ϵ t3̂ , A→ A+ dϵ , χ̃→ χ̃− ϵ , (4.22)

this action is indeed transformed as

Sgauged → Sgauged + k

8π

∫
Σ

dϵ ∧ dχ̃ . (4.23)

The additional term is a surface term irrelevant to the equations of motion, and it is not
important at the classical level.

The equations of motion for χ̃ in the gauged system (4.21) show that A is closed, and
we can choose the gauge A = 0 locally. This reproduces the original model with the action
S = SWZNW(f) . If we instead use the equations of motion for A and Â , we obtain

A+ = −∂+χ̃ , A− = ∂−χ̃− 2 ℓ3− , (4.24)

and the dual action becomes

S = SWZNW(f) − k

8π

∫
Σ

dσ+ ∧ dσ−
(
∂+χ̃ ∂−χ̃− 2 ∂+χ̃ ℓ

3
−
)
. (4.25)

This can be expressed due to the Polyakov-Wiegmann formula as

S = SWZNW(f ′) , f ′ ≡ f e−χ̃ t3̂ = e−2 u t3̂ e−2 ρ t1̂ e−2 v′ t3̂ , v′ ≡ v + χ̃

2 , (4.26)

where we have again used the parameterization f = e−2 u t3̂ e−2 ρ t1̂ e−2 v t3̂ . The dual model
is thus described by the action of the SU(2) WZNW model, which ensures the equivalence
of the classical equations of motion.

This duality is promoted to the quantum one by considering the path integral of the
gauged system. The additional term in (4.23) then has to be a multiple of 2π, not to
contribute to the path integral. This requirement determines the periods of χ̃ along the
non-trivial homology cycles of Σ [7, 46]. In our case, the finite gauge transformation (4.22)
corresponds to a coordinate shift v → v + ϵ

2 and, taking into account the periodicity of v, the
period of ϵ should be 4π . Then the period of χ̃ is found as 4π/k, by taking Σ to be a torus
where

∫
Σ dϵ ∧ dχ̃ =

∮
a dϵ

∮
b dχ̃ −

∮
a dχ̃

∮
b dϵ in terms of the cycles a, b.

Alternatively, one can fix the gauge where v = 0. Integrating out χ̃, one finds that A is
pure gauge, A = dξ. By the summation over the winding numbers, the periodicity of χ̃ assures
that the holonomies of A along the cycles are trivial, and A is pure gauge globally [6, 7]. The
resultant action is then S = SWZNW(f eξ t3̂). This shows that ξ is identified with a coordinate
of the original model, whereas χ̃ is identified with one of the dual model after integrating out
A [6]. Consequently, the additional term in (4.23) is thought of as symmetric with respect
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to the original and dual models. The periodicity of ϵ is also read off from that of ξ, since
ξ is regarded as a gauge parameter, ξ ∼ ϵ.

Now, we find that the transformation of f in (4.26) coincides with that in (3.23) from
our Poisson-Lie T-duality under the identification χ̃ = ρ̃. The relation between the current
and ρ̃ in (3.16) is also read off by adopting the gauge A± = 0 in (4.24). The periodicity of
χ̃ in the above agrees with that of ρ̃ determined by the quantization of ᾱ0 in section 4.4.
This periodicity means that f ′ is an element of the lens space SU(2)/Zk as in our case of
Poisson-Lie T-duality. The quantum equivalence of the dual pair is thus shown similarly as in
sections 4.3 and 4.4, based on either on the chiral sing-change/the order-disorder duality, or
the Zk orbifolding. Indeed, the equivalence of the Zk orbifold to the original model has been
shown in this context by using the twisted ŝu(2) and its isomorphism to the untwisted one [46].
Because of the symmetry of the additional term in (4.23) mentioned above, the action of the
original model on SU(2) with the correct periodicity of the coordinates is obtained by the
inverse duality transformation from that of the dual model on SU(2)/Zk.

We note that generally the duality here is not represented either by the Weyl group of
ŝu(2), which is implemented as inner automorphisms, or by other automorphisms genuinely
in terms of ŝu(2), as argued in the earlier literature. In this regard, we refer also to [46].
Following the discussion so far, one has to take into account the non-trivial transformation of
the right currents as J̄±̌, and to deal with its non-locality and the issue of the zero mode
which is not expressed by the currents of ŝu(2) as ρ̃0. Both in Poisson-Lie T-duality in
section 3 and in Abelian T-duality of the WZNW model in this subsection, these issues are
resolved in the parafermionic formulation, or bypassed by considering the orbifold based on
the dual Lagrangian. Therefore, slightly larger frameworks than the untwisted affine Lie
algebra ŝu(2) itself are necessary to understand the dualities in any case.

For k = 1, corresponding to the free boson at the self-dual radius, the parafermions
are absent and, for k = 2, the parafermion reduces to the usual fermion satisfying ψ̄†

1 = ψ̄1.
In these cases, the transformation of the currents becomes (J̄3, J̄±) → (−J̄3, J̄∓) in the
parafermionic representation, which is essentially the Weyl automorphism of su(2) up to
the signs of J̄∓. The Weyl group has been discussed in relation to Abelian T-duality for
torus compactifications in [70].

5 Conclusions

We have studied Poisson-Lie T-duality of WZNW models. When the 2d-dimensional Lie
group D contains a d-dimensional subgroup R satisfying certain mild conditions, the resultant
Poisson-Lie symmetric models become a pair of WZNW models associated with R, which
means that they are classically self-dual under the duality. We have described an explicit
construction of the associated currents. For this self-duality, we have noted that the conformal
invariance can be maintained even when the trace part of the structure constants does not
vanish. As concrete examples, we have considered the self-duality of the SU(2) WZNW model
by starting from a six-dimensional Drinfel’d double and its generalization. Although the
transformation of the currents is non-local, non-linear and involving an infinite number of
the modes, it has been represented as a chiral automorphism of the ŝu(2) affine Lie algebra
in terms of the Poisson bracket.
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We have found that this classical automorphism can be promoted to the quantum one
through the parafermionic formulation of ŝu(2), which induces a non-trivial isomorphism of
the WZNW model. As in usual Abelian T-duality of torus compactifications or in the mirror
symmetry of the Gepner model, this isomorphism is represented by the change in the sign
of the associated chiral boson or the order-disorder duality of the parafermionic CFT. The
global structure of the duality has also been figured out. The duality can be understood
also as the one between the SU(2) WZNW model with level k and its Zk orbifold, which are
indeed isomorphic to each other. Our results provide explicit examples of the Poisson-Lie
T-duality transformation which can be promoted to a quantum one and assures the full
quantum equivalence of the dual pair to all orders in α′ and at any genus, where the issues,
for example, of the global structure and the spectrum are also well understood. These may
be regarded as the second simplest to those reducing to usual Abelian T-duality.

Once it is understood that Poisson-Lie T-duality can be further extended to the quantum
one, we may expect extensions of our analysis to more general cases. The relation to Abelian
T-duality of WZNW models, in addition to the classical canonical transformation preserving
the underlying affine Lie algebras, suggests that the generalization to higher-rank cases may be
possible. In such cases, the generalized parafermions [71] should be useful. Another extension
would be to the non-compact model, i.e. the SL(2,R) WZNW model. In this case, even in the
set-up in section 2.3, Poisson-Lie T-duality may not be self-dual in the standard description.
This happens when the standard metric and the B-field in the dual model become singular
in spite that the generalized metric HMN is still well-defined. Concrete examples of such
backgrounds have been studied in [51] by using certain six-dimensional Drinfel’d doubles.

Such a class of backgrounds is known to form the non-Riemannian geometry discussed
in [72, 73]. It would be interesting to study the quantum aspects of the associated string
sigma models. For the quantization of strings on a flat non-Riemannian geometry, we refer
to [74]. We also note that, when the condition (A.1) is satisfied as discussed in appendix A
and in section 3 of [51], we can find the conserved left and right currents associated with the
generalized Killing vector fields Vα̂

M and Kα̂
M . Their associated currents satisfy the same

current algebras as those of the SL(2,R) WZNW model, and thus would be useful to study
the strings on non-Riemannian geometries in the quantum regime.

We may also consider the strings on Poisson-Lie T-fold backgrounds, where the transition
functions involve Poisson-Lie T-duality transformations such as the change in the sign of
φ̄ in our example. Given the world-sheet description of the duality, it would be possible
to study the strings on this class of non-geometric backgrounds by exact conformal field
theories. A simple set-up is to tensor a circle and the group manifold where the latter
receives the Poisson-Lie T-duality transformation as a monodromy around the circle. From
the world-sheet point of view, the model which describes the strings there is the orbifold
model by the discrete symmetry of the translation along the circle direction accompanied
by the duality transformation. The world-sheet formulation of such strings, their quantum
aspects and possible applications would be explored for example along the line of [75–77].
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A Specific case

To supplement the discussion in section 2.5, in this appendix we explain a specific class
of E-models where both the left and the right currents of the WZNW model can be easily
constructed from those of the E-model. For an application, see the discussion in the last
section of the conclusions.

On this class of the models, we impose a restriction

F
¯
A

¯
BC̄ = 0 , FĀB̄

¯
C = 0 , (A.1)

which is called the strong conformal condition in [78]. At least when βab = 0 and g̃ab is
non-degenerate, this condition results in the following constraints on the structure constants

fab
c = 0 , fa

bc = fade g̃
bd g̃ce , (A.2)

which have been discussed for example in [23] (see eq. (5.50)) in the study of the λ-model.
If the strong conformal condition is satisfied, the generalized vector fields Kα̂

M defined
in eq. (2.51) satisfy

[Kα̂, Kβ̂ ]MD = +fα̂β̂
γ̂ Kγ̂

M , £̂Kα̂
HMN = 0 . (A.3)

Then the currents J ′
α̂∓ of eq. (2.52) play the role of the right/left currents in the WZNW model,

and we do not need to find the matrix Λα̂
β̂ in eq. (2.57). We note that the condition (A.1)

is covariant under Poisson-Lie T-duality, and if it is satisfied in the original model, so is
in the dual model as well.

For example, in the case of the SU(2) WZNW model, we can choose g̃ab = δab and

fa
bc = ϵade δ

bd δce , fabc = ϵabc . (A.4)

Then the condition (A.1) is satisfied and we can construct the left and the right currents.
However, in this example, non-trivial maximally isotropic subalgebras other than the original
one generated by T a are yet to be found, which may not exist in the SU(2) case. We thus
refrain from discussing Poisson-Lie T-duality of this model.
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any medium, provided the original author(s) and source are credited.
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