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1 Introduction

One of the important lessons from superstring/M -theory over the last four decades has been
the significant role played by special kinds of singularities in space. The broad and rich
framework of the underlying theory can often be used to show that certain singularities
may be perfectly sensible physically and, moreover, often support localised, light, interacting
degrees of freedom. The geometric and topological properties of such singularities often
provide microscopic insights into the fundamental properties of the quantum field theories
which describe these degrees of freedom. Therefore it is important to try to understand
which kinds of singularities are physically sensible and to provide a description of the physics
supported at such singularities.

The classic examples of such singularities are orbifold singularities in space [1, 2] of which
the supersymmetric, conical ADE-singularities (C2/ΓADE) are perhaps the best understood.
Other supersymmetric cases are also reasonably well understood to some extent, such as
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singularities in Calabi-Yau threefolds, but there is much more to explore; for instance much
of the literature focuses on algebraic descriptions of such singularities whilst the properties of
the spacetime background are less well studied. See [3] for further comments.

We will discuss four dimensional supersymmetric vacua of M -theory obtained by modelling
the 7 extra dimensions by a space X, with metric g, whose holonomy group is the exceptional
Lie group G2. In particular, for smooth X, the physics of M -theory has only Abelian gauge
symmetries and only neutral light particles. Non-Abelian gauge fields have been shown to
arise from codimension four orbifold singularities of X [4, 5] whilst chiral fermions arise from
particular conical codimension seven singularities [6]. In both cases, these degrees of freedom
are in fact wrapped M2-branes which have collapsed to formally zero size (and mass) at the
singularity. Such models of M -theory on G2-holonomy spaces have been shown to give rise
to models of physics beyond the Standard Model with a rich phenomenology [7, 8].

Proving the existence of G2-holonomy metrics on a compact 7-manifold X is notori-
ously difficult. The known existence results involve surgery and gluing methods whereby
one constructs X by gluing together non-compact model spaces along common boundary
regions [10–14]. Often, one starts with a model space X0 that itself has very special kinds of sin-
gularities, removes a neighbourhood of the singular regions and glues in a suitable model space
which gives a smooth X. One then uses perturbation theory methods to prove the existence
of the G2-holonomy metric [10, 15]. Thankfully, the kinds of singularities which arise in gluing
constructions themselves tend to have interesting and sensible physical interpretations, with
localised light degrees of freedom, often describable by an interacting quantum field theory.

Joyce and Karigiannis [16] have shown, under certain topological assumptions, that
perhaps the simplest orbifold singularities in a compact G2-holonomy space (X0, g0) can be
desingularised to produce smooth topologically distinct G2-manifolds (Xc, gc) and (Xh, gh)
respectively. The goal of this paper is to interpret these results physically and to generalise
them to more complicated singularities. The main conclusions are that the topologically
distinct desingularisations considered by Joyce and Karigiannis are describable physically by
the Coulomb and Higgs branches, respectively, of certain four dimensional gauge theories.
The basic result is explained in section three, after reviewing the relevant features of Joyce-
Karigiannis in section two.

In section four we introduce some simple, exactly solvable local models of the kind
originally introduced in [5] and subsequently studied in [17, 18]. These models are obtained
as fibrations of ADE-type ALE (or even ALF) spaces over compact flat 3-manifolds and we
establish a correspondence between the (complexified) moduli space of G2-holonomy metrics
on these 7-manifolds, the moduli space of (complex) flat connections over the 3-manifolds and
the classical moduli space of the physical four dimensional field theories. At the end of the
paper we combine all the results to show that massless matter in fundamental representations
of the gauge group arise at special points in the semi-classical moduli space of M -theory
on certain compact G2-holonomy manifolds and determine the light particle spectrum of
most of Joyce’s compact examples.

Background material and notation. In this paragraph, for the ease of the reader, we collect
some background material and definitions concerning G2-manifolds. A G2-structure on
a compact 7-manifold X, is defined by a 3-form, φ which is G2-invariant at each point
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w.r.t. the natural action of G2 on the tangent spaces of X at each point: R7 ≡ T (X)|pt.
Since G2 ⊂ SO(7), φ induces a metric, g(X) and orientation on X. The holonomy group
of g(X) is a subgroup of G2 if and only if φ is parallel w.r.t. the Levi-Cevita connection,
∇gφ = 0 . This is equivalent to dφ = d∗φ = 0. If ∇gφ = 0 and the universal cover of
X is compact then Hol(g(X)) = G2. The latter conditions are equivalent to the existence
of a single parallel spinor field, η, ∇gη = 0, which also implies that G2-manifolds preserve
supersymmetry when used as models of the extra dimensions in superstring/M -theory. Since
the Ricci tensor of a G2-holonomy metric is identically zero, the classical vacuum of such
models have zero cosmological constant.

2 Joyce-Karigiannis manifolds

In this section we give a brief overview of constructions of compact G2-holonomy manifolds
with emphasis on the Joyce-Karigiannis construction which will feature throughout this
paper. For reasons of brevity our description will necessarily be sketchy with no analytic
details at all on the existence results, but we encourage the reader to consult the original
papers for more details.

The first examples of compact manifolds with G2-holonomy are due to Joyce [10, 11].
These were constructed by a generalised Kummer construction, where one begins with a
finite quotient of a 7-torus T 7/Γ, which is a singular G2-orbifold. Then, for suitable choices
of Γ, one can remove the singular set and glue in special holonomy model spaces to produce
a smooth 7-manifold, which in favourable circumstances, will have a G2-structure which is
approximately close to being G2-holonomy. For such G2-structures, Joyce’s main existence
theorem asserts that one can perturb this G2-structure to a genuinely G2-holonomy structure.
We will meet some explicit examples in section four.

Another construction is the twisted connected sum construction of [12–14] in which one
glues together a pair of asymptotically cylindrical Calabi-Yau three folds times a circle in
a specific way, proves the existence of an approximately G2-holonomy structure and again
one applies Joyce’s existence theorem.

More recently, Joyce and Karigiannis constructed G2-holonomy manifolds by resolving
codimension four orbifold singularities. These are the focus of this paper. The starting
point is (X0, φ0), a compact G2-holonomy orbifold with torsion free G2-structure φ0. Further
suppose that the orbifold singularities occur in codimension four along a connected 3-manifold
L. Then the singularities must be of ADE type, i.e. the fibers of the normal bundle to L

will be of the form R4/ΓADE with ΓADE a finite subgroup of SU(2) acting irreducibly on
R4. Joyce-Karigiannis restrict to the simplest case when Γ = Z2. They show that under
certain conditions which we describe shortly the orbifold singularities of (X0, φ0) can be
desingularised, by excising a neighbourhood of L and gluing in a certain family of Eguchi-
Hanson 4-manifolds, MEH = T ∗S2 parametrised by L. A key assumption is that L admits a
nowhere vanishing harmonic 1-form, αc, with respect to the induced metric on L. The volume
of the sphere at the origin of T ∗S2 is controlled by the norm of αc times an overall scale, t

i.e. Vol(S2) = πt|αc| This produces a smooth 7-manifold, Xc which they prove has metrics of
G2-holonomy. They also consider a Z2-twisted version of the construction which produces a
different 7-manifold, Xh. In these constructions, the model space MEH × L does not have a
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known exactly G2-holonomy metric. This makes this construction different to those described
above, since it is not based on gluing together model metrics. However, remarkably the
authors are able to prove that suitable cancellations occur allowing for the existence of an
approximately G2-holonomy structure on the compact 7-manifold such that Joyce’s existence
result can again be applied. This proves that the 7-manifolds Xc and Xh admit metrics with
G2-holonomy. We will need to describe some aspects of the topology of these manifolds.

In the first case a small neighbourhood of the singular set is removed and replaced by
MEH × L. This gluing procedure increases both the second and third Betti numbers, in the
sense that bi(Xc) = bi(X0) + bi−2(L) for i = 2, 3. The induced metric on MEH admits a
harmonic 2-form, β, essentially the Poincare dual of the zero-section of T ∗S2 and β extends
to a harmonic form in Xc. The wedge product of β with αc is a harmonic 3-form on Xc.
Furthermore, if γ is any other harmonic 1-form on L, then αc + ϵγ will also be nowhere
vanishing for small ϵ. This explains the Betti numbers of Xc. In terms of homology, the
Poincare dual of β in Xc is a 5-cycle of topology S2 × L, where S2 can be thought of as
the zero-section of T ∗S2. The dual of αc ∧ β is a 4-cycle with topology S2 × Σ, with Σ
being the Poincare dual of αc in L.

In the Z2-twisted case, the singular set is replaced by (MEH × L̂)/Z2 where the Z2 acts
non-trivially on MEH . This is a non-trivial fibration over L = L̂/Z2 with MEH fibres. A
key fact is that β is odd under this action and hence Xh does not inherit any additional
harmonic 2-forms from the gluing and b2(Xh) = b2(X0). The 3-form αh ∧ β, however, is
Z2-invariant and becomes a harmonic 3-form on Xh and hence b3(Xh) = b3(X0) + b1(L,Z2),
where the last term is the number of Z2-twisted harmonic 1-forms on L. This is equal to the
number of independent nowhere vanishing harmonic 1-forms on L̂ which are Z2-odd. The
Poincare dual of this harmonic 3-form is topologically of the form (S2 × Σ̂)/Z2, where S2

is the zero section in MEH and Σ̂ is the Poincare dual of αh in L̂. We note in passing that
these and other Z2-twisted harmonic fields have a variety of applications in mathematical
gauge theories in various dimensions [19–21]

The reason that the harmonic 1-form is assumed to have no zeroes is because the volumes
of the spheres in the Eguchi-Hanson spaces is directly proportional to the norm of αc,h. If
αc,h were allowed to have a zero the spheres would collapse to a point there and the total
space would develop an additional singularity. Unfortunately, having control over the metric
and curvature tensor in this more general situation is rather difficult, hence the assumption
that αc,h has no zeroes. Physically, as we discuss in the next section, one actually expects the
existence of light degrees of freedom, in fact chiral fermions, when αc,h has isolated zeroes.

3 Interpretation in M -theory

M -theory compactified on a manifold of G2-holonomy (X, φ) gives rise semi-classically to a
four dimensional supergravity theory with b2(X) U(1) vector multiplets, b3(X) neutral chiral
multiplets, Φi, and four supercharges (i = 1. . . b3(X)). The complex scalar fields, ϕj = tj +isj ,
in the chiral multiplets contain axions, tj , from harmonic modes of the 3-form field C and
the moduli, sj , of the G2-holonomy metric which appear as harmonic deformations of φ.

Additional, physically relevant light particles can arise if X has special kinds of singular-
ities. Non-abelian gauge fields of type ADE arise if X contains codimension four orbifold
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singularities of type ADE [4, 5]. Chiral fermions charged under such gauge symmetries will
arise from additional, special kinds of conical codimension seven singularities [6].

In the Joyce-Karigiannis construction, we consider a G2-orbifold with a codimension four
A1-singularity along a 3-manifold L ⊂ X, hence our story begins with an SU(2) gauge theory
on L× R3,1 with the latter factor being our four dimensional spacetime. Since G2-holonomy
preserves supersymmetry, this SU(2) gauge theory is supersymmetric. By integrating over L

and neglecting massive modes our goal is to provide a complete description of the low energy
dynamics of this SU(2) gauge theory in the form of a four-dimensional effective field theory.

These M -theory backgrounds have been analysed previously, beginning in [5], and later
in [17, 22–25]. To briefly summarise the analysis, one is considering 7d SU(2) supersymmetric
Yang-Mills theory compactified on L. The 7d theory in flat space is known to have three
scalar fields ϕ⃗, each in the adjoint representation of SU(2). When compactified on L in a
G2-orbifold the three fields become the components of a 1-form field B, again in the adjoint
of SU(2). We thus have a Yang-Mills gauge field A and a 1-form Higgs field B as the bosonic
fields on L. These fields naturally pair up into a complex gauge field A = A + iB and the
conditions on A which minimise the potential whilst preserving supersymmetry is that A
is a harmonic flat connection on L [22, 23]. The space of classical vacua of the low energy
effective theory is therefore the space of flat complex SU(2) connections on L. In general, this
space will have distinct disconnected components. As we will show, the distinct components
naturally correspond to the topologically distinct desingularisations of X0 constructed in [16].
Previous analyses have focused on the flat connections continuously connected to the identity.

3.1 The Coulomb phase

The identity connected component of the space of flat SU(2) connections is b1(L)-dimensional.
Once complexified by B we obtain b1(L) massless chiral multiplets in the four-dimensional
effective theory. These naturally match up with the b1(L) moduli of Xc which desingularise
the orbifold X0, as reviewed above.

A crucial fact about the Joyce-Karigiannis theorem is the assumption that the harmonic 1-
form must be nowhere vanishing; whereas in the physical analysis, the nowhere zero condition
is generally not required. The harmonic 1-form αc which appears in the Joyce-Karigiannis
theorem is identified with B in the direction of the Cartan subalgebra of SU(2) and further
can be identified with the volume and complex structure of the S2 in the centre of T ∗S2 as it
varies over L. If αc had a zero at a point p, B would vanish and hence, SU(2) gauge symmetry
is restored at p. Geometrically, the norm of αc controls the size of the two-sphere of MEH ,
hence, away from p the glued in MEH spaces are smooth. But at p the MEH degenerates to an
orbifold. At this point we expect that X itself develops a further singularity. In fact, the cone
over CP3 i.e. R+×CP3 is, topologically, a 3-dimensional family of Eguchi-Hanson spaces which
at the origin degenerate to R4/Z2 and this was precisely the description given in [6], where this
additional singularity is interpreted as giving rise to a chiral fermion charged under the U(1)
gauge symmetry. One would certainly like to have a better understanding of what the zeroes
of harmonic 1-forms on L imply physically and for the would-be G2-holonomy space (X, φ).

In any case, when αc has no zeroes, at a generic point in moduli space, SU(2) is broken to
its maximal torus and hence we refer to this branch of vacua as the Coulomb branch (hence
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the subscript on αc). Hence, the low energy description is simply an N = 1 supersymmetric
SU(2) gauge theory with b1(L) adjoint chiral multiplets, as originally found in [5].

3.2 The Higgs phase

Interpretation of the dynamics in M -theory on Xh is one of the main results. We will see that
in this case there is a non-identity connected component of the space of flat SU(2)-connections,
which naturally corresponds to the moduli of Xh. In this case we have L = L̂/Z2 and L̂

has a Z2-odd harmonic 1-form, αh, with no zeroes. The existence of αh implies that b1(L̂)
is at least one and that π1(L̂) contains an element gα of infinite order. Furthermore, this
element is Z2 odd, hence, if gβ gives the order two action on L̂,

gβgαg−1
β = g−1

α (3.1)

In general, although gβ is of order two on L̂ it need not be of order two on its universal
cover. Hence

g2
β = gγ (3.2)

for some other element gγ . Vacua of the 7d SU(2) Yang-Mills theory on L are given by
specifying a flat SU(2) connection on L. Modulo conjugation, these are just given by set of
matrices in SU(2), satisfying the relations of π1(L). In particular, we would like to satisfy
the above two relations with SU(2) matrices, Mα, Mβ , Mγ .

Without loss of generality, we can conjugate Mα into the maximal torus and hence take
Mα to be diagonal. The first relation then asserts that Mβ permutes the two eigenvalues
of Mα and is thus in the Weyl group of SU(2):

Mα =
(

eiθ3 0
0 e−iθ3

)
, Mβ =

(
0 1
−1 0

)
, Mγ = −⊮ (3.3)

We thus see that we have a one-dimensional space of vacua, which is in keeping with the
one dimensional space of G2-manifolds, Xh, constructed by Joyce and Karigiannis. The fact
that the Weyl group plays a key role is essential and was already anticipated by Joyce [26].
Also, though obvious, we note that these flat connections cannot be continuously deformed
to the identity.

Since the subgroup of SU(2) generated by Mα and Mβ break SU(2) to its centre, Z2, this
tells us that at generic points in its space of vacua, the gauge group of the low energy theory
is broken to Z2, however, since there are no fields in the 7d theory which are charged under
the centre, the classical low energy theory has the gauge group effectively broken completely.
As we will see, this component of the moduli space corresponds to a Higgs phase in the
effective four dimensional theory, and hence the subscript on αh.

The key is to note that at the origin of the moduli space, Mα = ⊮ and that the SO(2)
subgroup of SU(2) consisting of real matrices remains unbroken by Mβ. This tells us that
the gauge group of the four dimensional theory is SO(2). There must therefore also be
supersymmetric Higgs fields whose vacuum values break SO(2) completely. The proposal is
that there are precisely two complex, chiral superfields, Φ1,2 transforming in the fundamental
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representation of SO(2). This Higgs doublet contains four bosonic degrees of freedom of
which one becomes the longitudinal component of the now massive gauge boson. Another
is the Higgs boson itself and these two massive degrees of freedom comprise the degrees
of freedom of a massive vector multiplet. The remaining two degrees of freedom remain
massless and give rise to the expected complex one-dimensional space of vacua arising from
the Joyce-Karigiannis construction.

The Higgs doublet is naturally associated with the Z2-twisted harmonic 1-form αh because
at the origin of the moduli space the flat SU(2) connection in the adjoint representation
arises from a Z2-bundle via the natural inclusions Z2 ⊂ SO(3) ← SU(2). Hence, at the
origin of the moduli space, the Yang-Mills Laplacian effectively reduces to the Laplacian
acting on Z2-twisted 1-forms. Another way to obtain this result is that if we look at how
the Z2 acts on the fields on L̂ it is via the combined action of the geometric action together
with the gauge transformation by gβ and it is the SO(2) doublet of fields in the low energy
theory which are Z2-invariant.

To summarise: the Z2-twisted Joyce-Karigiannis construction of G2-manifolds (Xh, φ)
has a low energy description as a supersymmetric SO(2) gauge theory with matter in the
fundamental representation. The one-dimensional complexified moduli space of G2-holonomy
metrics correpsonds naturally to the Higgs branch of this gauge theory.

Note that, in general L could have both ordinary harmonic as well as Z2-twisted harmonic
1-forms. In this case, there will clearly be both Coulomb and Higgs vacua arising from the
same G2-orbifold.

The picture developed above can clearly be generalised in two ways. First, it is clear that
one can consider more general ADE singularities beyond SU(2). Second, one may also consider
higher order twists beyond Z2. We will encounter both of these possibilities in what follows.

In the next section we introduce some simple explicit local models which are exactly
solvable and which allow us to consider any ADE gauge group as well as higher order twists
where we can prove that the gauge theory moduli space is the moduli space of G2-holonomy
metrics desingularising X0. Following that we will describe some compact G2-manifolds
which give rise to both Coulomb and Higgs branches classically.

4 Explicit local models

The simplest models of 3-manifolds, L, admitting nowhere vanishing Z2-twisted harmonic 1-
forms are when L̂ = Σ×S1 with Riemannian product metric where the Z2 acts simultaneously
as an orientation reversing isometry of both the S1 and the compact Riemann surface Σ.
Then, the standard harmonic 1-form on S1 is nowhere vanishing and Z2-twisted in the
quotient L. We can simplify this even further by considering Σ = T 2 with a flat metric i.e. we
can take L to be a smooth Z2-quotient of the flat 3-torus. Since L is oriented, the Z2 action
is essentially unique. If the coordinates of 3-torus are denoted as y1,2,3 with periodicities
chosen to be one, then the Z2 action may be defined as:

(y1, y2, y3) 7→ (−y1,−y2, y3 + 1/2). (4.1)

We see that dy1 and dy2 are both Z2-twisted harmonic 1-forms, whilst dy3 is an ordinary
harmonic 1-form. Therefore if this L arises in the Joyce-Karigiannis construction, there will
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be a 2-parameter family of G2-manifolds corresponding to a Higgs branch and a 1-parameter
Coulomb branch.1 We will next explicitly construct local models of such singular G2-spaces
before exhibiting the corresponding moduli spaces of flat SU(2) connections.

4.1 A simple example

We are thus looking for a local G2-holonomy orbifold X0 which fibers over L with fibers
C2/Z2. The simplest model arises by taking L to be flat and, since the ambient metric is
Ricci flat, the 7-orbifold itself will be locally a Riemannian product i.e.

Xo = (T 3 × C2/Z2)
Z2

(4.2)

with a flat metric. These locally flat models are very special cases of the Joyce-Karigiannis
construction where the harmonic 1-form is constant along L. The fibration over L is however
non-trivial as the requirement that the holonomy be contained in G2 requires the Z2 which
acts on T 3 to also act on C2. In fact, we can choose complex coordinates (z1, z2) in which
the Z2-action is (z1, z2) → (−z1, z2).

The torsion-free G2-structure on (4.2) is,

φ = dy1dy2dy3 + dy⃗ · ω⃗, (4.3)

where ωi are the Kähler 2-forms on C2/Zk defining the flat hyperKähler structure. Then
the metric is,

g = dy⃗2 + h (4.4)

where h is the Euclidean metric on C2/Zk.
The G2-orbifold (X0, φ) admits two topologically distinct smooth desingularisations

(Xc, φc) and (Xh, φh) of the form

T 3 ×MEH

Za
2

, a = c, h (4.5)

with Ricci flat metrics

ga = dy⃗2 + hEH (4.6)

where hEH is the family of hyper-Kähler Eguchi-Hanson metrics on T ∗S2. Both of these are
just free Z2 quotients of MEH × T 3, differing by the action of the involution: as described
in section two, in Xc, H2(MEH) is preserved by the Z2, whereas in Xh it is odd. Note
that the holonomy group of both of the metrics ga is SU(2) ⋉ Z2 and that this group is
a subgroup of SU(3) ⊂ G2. Hence these special local models actually preserve N = 2
supersymmetry in four dimensions.2

Xc and Xh are topologically distinct since b2(Xc) = b3(Xc) = 1, whilst b2(Xh) = 0 and
b3(Xh) = 2. Hence, whilst Xc has a one-dimensional moduli space of G2-metrics, the moduli

1Joyce explicitly constructs examples of compact G2-manifolds by desingularising such singularities as we
will describe later.

2We will describe a genuinely N = 1 supersymmetric example at the end of this subsection.

– 8 –



J
H
E
P
0
1
(
2
0
2
4
)
1
4
7

space of Xh is two-dimensional. The topology of the compact 4-cycles which arise from the
two distinct desingularisations are S2 × T 2/Z2 on the Coulomb branch and (S2 × T 2)/Z2 in
the Higgs case. The latter may be regarded as the non-trivial S2-bundle over the Klein bottle
or as a particular T 2-fibration over RP2. All of these cycles have calibrated (co-associative),
i.e. supersymmetric, representatives.

4.1.1 Flat connections on L

Since this example is so explicit we can also be explicit about the gauge theory interpretation.
The low energy field theory descriptions in four dimensions will be given by gauge theories
whose moduli spaces of vacua are the moduli spaces of flat connections on L. These models
were first considered in the physics literature in [5] and the moduli spaces were considered
by Barbosa in his Ph.D. thesis [27].

The fundamental group of L in this case can be presented with four generators: three
translations representing the fundamental group of T 3 and another representing the Z2
quotient. The explicit relations may be presented as:〈

g1, g2, g3, gβ | gigj = gjgi i = 1, 2, 3, g2
β = g3, gβg3g−1

β = g3, gβg1,2g−1
β = g−1

1,2

〉
(4.7)

There are several components to the moduli space of flat SU(2) connections on L. First
there are actually four, one dimensional Coulomb branches:

g1 7→ ±
(
1 0
0 1

)
, g2 7→ ±

(
1 0
0 1

)
, g3 7→

(
eiθ3 0
0 e−iθ3

)
, gβ 7→

(
eiθ3/2 0
0 e−iθ3/2

)
(4.8)

Note that, at the origin (θ3 = 0), the centraliser of the solution in SU(2) is the whole group
and away from the origin we break down to the maximal torus U(1).

Noticing that the last two group relations are exactly as described in the previous section,
we learn that there is also a Higgs branch:

g1 7→
(

eiθ1 0
0 e−iθ1

)
, g2 7→

(
eiθ2 0
0 e−iθ2

)
, g3 7→

(
−1 0
0 −1

)
, gβ 7→

(
0 1
−1 0

)
(4.9)

These are all the flat SU(2)-connections and this result agrees with [27, 28]. The Coulomb
branch solutions have one parameter θ3, corresponding to b3(Xc) = 1, whilst the Higgs branch
has two parameters as expected by b3(Xh) = 2 in perfect agreement with the moduli space
of Ricci flat, special holonomy metrics described above.

4.1.2 Field theory interpretation

The four dimensional field theory description is now straightforward: the classical dynamics
on each of the four Coulomb branches is just pure N = 2 SU(2) Yang-Mills theory. The Higgs
branch description is given by N = 2 supersymmetric SO(2) Yang-Mills with a hypermultiplet
in the fundamental representation. At first sight it seems that there is a discrepancy in the
comparison to the moduli space of M -theory in the Coulomb phase, since there is only one
G2-manifold Xc = T 3×MEH

Zc
2

but four Coulomb branches. However, there are four spaces of
vacua arising from Xc differing by the expectation values of the C-field. Flat C-fields on Xc
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are classified by H3(Xc,U(1)) and this is given by Z2 × Z2 × U(1) and there are therefore
four discrete families of one-dimensional flat C-field backgrounds. One may also think of
these as the Zc

2-invariant harmonic C-fields on T 3 ×MEH .
These locally flat explicit models clearly have natural generalisations to G2-orbifolds

of the form

Xo(ΓADE , K) = C2/ΓADE × T 3

K
(4.10)

where K is a finite group acting freely on T 3, preserving orientation. The existence of these
examples demonstrate that one can consider more general gauge groups as well as K-twisted
harmonic 1-forms. In these examples, T 3/K is an orientable, compact Bieberbach 3-manifold,
hence there are only six possibilities: K = 1,Z2,Z3,Z4,Z6,Z2×Z2. The key to understanding
the moduli spaces of Ricci flat metrics on these spaces reduces essentially to classifying the
actions of K on C2/ΓADE which lift to actions on its hyperKähler desingularisations, ˜C2/ΓADE .
This amounts to classifying actions of K on ( ˜C2/ΓADE×T 3) which preserve the G2-structure,
giving rise to Ricci flat metrics with holonomy group SU(2)⋉ K on the smooth 7-manifolds
( ˜C2/ΓADE × T 3)/K. These metrics preserve four dimensional N = 2 supersymmetry for
K = 1,Z2,Z3,Z4,Z6, but the case K = Z2 × Z2 has N = 1 supersymmetry. This latter
example was considered in [5] and the moduli spaces of flat SU(2)-connections in [28]. We
will be able to describe all components of the moduli space of Ricci flat metrics and compare
that with the space of flat connections and then describe the low energy dynamics of the
effective four dimensional field theory associated to each branch.

4.2 N = 1 supersymmetric example

The 3-manifold in this example is L = T 3/Z2 × Z2. The action of K on the coordinates
of C2/Z2 × T 3 is given by:

gβ1 : (z1, z2, y1, y2, y3) 7→ (−z1, z2, y1 + 1/2,−y2,−y3) (4.11)
gβ2 : (z1, z2, y1, y2, y3) 7→ (z̄1, z̄2,−y1, y2 + 1/2,−y3 + 1/2) (4.12)
gβ3 : (z1, z2, y1, y2, y3) 7→ (−z̄1, z̄2,−y1 + 1/2,−y2 + 1/2, y3 + 1/2) (4.13)

The fundamental group of L can thus be described as having six generators g1,2,3, gβ1 ,
gβ2 , gβ3 with the relations

⟨g1, g2, g3, gβ1 , gβ2 , gβ3 |gigj = gjgi, g2
βi

= gi, gβi
gig

−1
βi

= gi, i = 1, 2, 3,

gβi
gj,kg−1

βi
= g−1

j,k , i ̸= j ̸= k, gβ3gβ2gβ1 = g1g3⟩ (4.14)

Here gβ3 = g1gβ2gβ1 .

4.2.1 Moduli space of Ricci flat metrics

In order to describe the possible smooth Ricci flat manifolds (MEH × T 3)/K we first have
to describe how the Z2-symmetries gβ1,2,3 act on MEH . Since H2(MEH) = Z, generated by
the S2 in the centre, each gβi

can either preserve or reverse the orientation of all classes in
H2(MEH). The action on homology is therefore specified by a sign for each of the three
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involutions. There are then three smooth possibilities according to how the gβi
act on the

S2 at the centre of MEH . These are given by the choices (i) : (+,−,−), (ii) : (−,+,−) and
(iii) : (−,−,+), where, for example (+,−,−) means that gβ1 preserves H2(MEH) whilst gβ2

and gβ3 act as minus the identity. Since there is no (+,+,+) case there are no compact
2-cycles or 5-cycles in (MEH × T 3)/K or equivalently no compactly supported harmonic
2-forms. In M -theory these would have given rise to U(1) gauge fields in four dimensions and
hence a Coulomb branch. Thus there is no continuous Coulomb branch of vacua. In case (i)
we see that there are compact 4-cycles in (MEH × T 3)/K which are Poincare dual to β ∧ dy1.
In case (ii) instead, it is β ∧ dy2 which is invariant and in case (iii) the Poincare dual of
β ∧ dy3 is an invariant compact 4-cycle. The proof that these are the only possibilities will
be given section 4.4. The space of Ricci flat metrics resolving the orbifold singularities thus
has three one-dimensional components, giving a space of vacua which is C ∪ C ∪ C.

We will now examine the moduli space of flat SU(2)-connections on L and see that it
matches nicely with this description.

4.2.2 Flat connections on L

Coulomb branches. First note that, since none of the dyi are K-invariant, b1(L) = 0, so
there is no continuous moduli space of Coulomb vacua. There are non-trivial, discrete,
Abelian connections however. Note that the Abelianisation of π1(L) is H1(L,Z) = Z4 × Z4.
This can be seen to be generated by gβ1 and gβ2 with the relations that both are order
four. Thus the corresponding sixteen flat SU(2) connections on the Coulomb branch can
be obtained by choosing gβ1 and gβ2 independently from the four diagonal matrices in the
Z4 subgroup of the maximal torus.

Higgs branches. From the relations of the fundamental group as we have presented them,
the strategy to finding flat connections should be clear. One chooses a flat connection in
the Weyl group of SU(2) for each of the three non-trivial elements of K. The remaining
elements of the group are diagonal. This will give rise to three components to the space of flat
connections, beyond the Coulomb branch above. The three components are, for i ̸= j ̸= k,

gi 7→
(

eiθi 0
0 e−iθi

)
, gj 7→

(
−1 0
0 −1

)
, gk 7→

(
−1 0
0 −1

)
, (4.15)

gβi
7→
(

eiθi/2 0
0 e−iθi/2

)
, gβj

7→
(

0 1
−1 0

)
, gβk

7→
(

0 eiθi/2

−e−iθi/2 0

)
(4.16)

The interpretation in the low energy effective theory of each branch is clear: an N = 1
supersymmetric SO(2) gauge theory with chiral multiplets in the fundamental representation
and a flat direction in the space of vacua along which the gauge group is spontaneously
broken. The fact that there are three one dimensional Higgs branches matches the three
one-dimensional components to the moduli space of Ricci flat metrics found in the previous
subsection.

4.3 Moduli space of Ricci flat metrics

In this subsection we describe the space of Ricci flat metrics with holonomy group SU(2)⋊K on
the smooth families of 7-manifolds Xa(ΓADE , K) := ( ˜C2/ΓADE × T 3)/K which desingularise
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the flat orbifolds

Xo(ΓADE , K) = C2/ΓADE × T 3

K
(4.17)

and the parameter a collectively denotes the Coulomb or Higgs branch parameters of the family.
Since Xa(ΓADE , K) is simply a free quotient of ˜C2/ΓADE × T 3, the moduli space of

Ricci flat metrics is given by the subspace of Ricci flat metrics on ˜C2/ΓADE which admit the
appropriate action of K. We will first describe the answer to the problem for Xa(ΓAn , K)
where we can use the explicit form of the metrics given by Gibbons and Hawking [29]. This
then provides enough insight to solve the problem completely in the general case.

4.3.1 Multi-centre Gibbons-Hawking space

An An−1 singularity is the singularity at the origin of C2/Zn, where Zn acts as a subgroup of
SU(2). The spaces C2/Γ (where Γ is a finite subgroup of SU(2)) all have topologically unique
crepant resolutions , C̃2/Γ which are hyperKähler and Asymptotically Locally Euclidean
(ALE) [30].

For the An−1 singularities, the corresponding ALE spaces are the n-centre Gibbons-
Hawking spaces M

(n)
GH with explicit metrics given by

ds2 = gGH = V (x⃗) dx⃗ · dx⃗ + V (x⃗)−1(dt + Ai dxi)2 (4.18)

V (x⃗) =
n∑

γ=1

1
|x⃗− a⃗γ |

(4.19)

∇⃗ × A⃗ = ∇⃗V (x⃗) or equivalently ∗ dA = dV. (4.20)

where x⃗ ∈ R3 and t ∈ S1. There are 3n-parameters which appear as n 3-vectors, a⃗γ and
are the centres of the harmonic functions appearing in the potential V (x⃗). By a choice of
coordinates we can assume that

∑
γ a⃗γ = 0.

There is a triplet of complex structures, (I, J, K), given by,

Idx1 = V (x⃗)−1(dt + A⃗ · dx⃗), Idx2 = dx3 (4.21)

with J and K given by cyclically permuting dx1,2,3. The hyper-Kähler forms are determined
from the metric via, ωI(·, ·) = g(I·, ·) and similarly for J and K. They are given by,

ωI ≡ ω1 = (dt + Ai dxi) ∧ dx1 + V (x⃗) dx2 ∧ dx3 (4.22)

with ωJ,K obtained by cyclic permutations of dx1,2,3.
The cohomology group H2

(
M

(n)
GH ,Z

)
is spanned by the L2-normalisable 2-forms [31]

which are the Poincaré duals of the 2-spheres arising from line segments in R3 connecting
adjacent centres. Denote the 2-form associated to the centres aγ and aγ+1 by Γγ . We can
write these explicitly, first define,

Vλ ≡
1

|x⃗− a⃗λ|
, V ≡

n∑
λ=1

Vλ (4.23)
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then define the basis of anti-self-dual 2-forms,

Σa = ea e4 − 1
2 εa

bc eb ec, e1,2,3 = V 1/2dx1,2,3, e4 = V −1/2(dt + Ai dxi) (4.24)

To each centre we can associate a 2-form Ωγ ≡ −∂a (Vγ/V ) Σa and define the following 2-form,

Γγ = − 1
4π

(Ωγ − Ωγ+1), γ = 1, . . . , n− 1 (4.25)

which is anti-self-dual and L2-normalisable. Further, one can check that,∫
M

(n)
GH

Γλ ∧ Γγ (4.26)

is minus the An−1 Cartan matrix using the fact that [32, 33],∫
M

(n)
GH

Ωλ ∧ Ωγ = −16π2δλγ (4.27)

Having an explicit expression for Γi makes it easy to see how many K-invariant and K-
twisted 2-forms we have on Xa(ΓADE , K).

4.3.2 Gibbons-Hawking moduli space and flat connections on T 3

Here we explicitly demonstrate the relationship between the moduli space of flat SL(n,C)
connections on a 3-torus to the Gibbons-Hawking moduli space. We will show that the
M -theory moduli space is isomorphic to the space of flat connections.

The n centres, a⃗γ of the harmonic potential V are 3n-free parameters whose sum is fixed.
Hence the moduli space of Ricci flat metrics is given by (R3)n−1/Sn, where we factor out
by permutations of the centres, which acts as the Weyl group of SU(n). In fact there is a
close connection between this moduli space and the space of flat SU(n) connections on T 3.
A flat SU(n) connection on T 3 is just given by three commuting elements of SU(n) and, in
fact, is given by any three elements of the maximal torus, T (SU(n)), modulo the action of
the Weyl group [34]. This space is (T (SU(n)))3/Sn. In M -theory this gets complexified to
the space of SL(n,C) connections which is essentially (C∗3)n−1/Sn and points in this space
are just diagonal matrices of unit determinant, up to the Weyl group action. Denote these
three diagonal matrices by Ma, Mb and Mc and their diagonal elements as (λa1 , λa2 , · · · , λan),
(λb1 , λb2 , · · · , λbn) and (λc1 , λc2 , · · · , λcn). If we suggestively label the coordinates of a given
centre by (aγ , bγ , cγ), then the absolute values of the diagonal entries of the matrices are
the exponentials of the entries: |λaγ | = eaγ , |λbγ | = ebγ and |λcγ | = ecγ . This is the explicit
relationship between the flat connections and the Ricci flat metrics. We can recover the full
moduli space of flat SL(n,C)-connections by including the harmonic modes of the C-field in
M -theory. In M -theory on (C̃2/Zn×T 3) with the metric gGH +h, in addition to the Gibbons-
Hawking moduli (aγ , bγ , cγ) we have the massless scalar fields arising from the harmonic
modes of the C-field. These are given by H3(C̃2/Zn × T 3,U(1)) = (T (SU(n)))3 × S1, where
the S1 is the set of four-dimensional axion VEVs and will play no further role. However, this
description is not complete since it does not take into account the action of the non-identity
connected diffeomorphisms of (C̃2/Zn × T 3) given by the permutation group Sn. This group
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also acts as the Weyl group on H2(C2/Zn) which induces the standard action of the Weyl
group on the maximal torus T (SU(n)). Hence, for fixed axion vev, the moduli space of C-fields
is given by (T (SU(n)))3/Sn and is precisely the moduli space of flat SU(n) connections on
T 3. This shows that, for fixed T 3 volume and axion VEV, that the moduli space of M -theory
on (C̃2/Zn × T 3) is isomorphic to the moduli space of flat SL(n,C) connections on T 3.

4.3.3 K-invariant Ricci flat metrics

We want to consider all of the K-actions on M
(n)
GH asymptotic to the action on C2/Zn. We

now investigate how these act on the coordinates of M
(n)
GH . Quotients of Gibbons-Hawking

spaces were also considered in the papers [35, 36]. The G2-structure on T 3×M
(n)
GH is given by,

φ = dy1dy2dy3 + dy⃗ · ω⃗, (4.28)

and we require that this is K-invariant. From the first term we see that K must act on T 3

such that dy⃗ 7→ M dy⃗ where M ∈ SL(3,R) and from the second term the action on M
(n)
GH

must induce an action ω⃗ 7→ N ω⃗ such that MT = N−1. If we take the action on M
(n)
GH to

be (t, x⃗) 7→ (t′, L x⃗) then, using equations (4.22) and (4.20), we see first that V (x⃗) must
be preserved which means L ∈ O(3) and L preserves the set of centres {aγ} (as discussed
below) and second that A 7→ det(L)A and t′ = det(L) t. Then a calculation shows that
ω⃗ 7→ det(L)L ω⃗. Thus N = det(L)L and so M, N ∈ SO(3). So even if the action on x⃗ is in
O(3) the action on the T 3 and the Kähler forms is always in SO(3). In this paper, however,
we will restrict to the cases where the action on the R3 coordinates is in SO(3), leaving the
remaining O(3) cases for future investigation.

The condition that V (x⃗) must remain invariant gives an important insight. Since

|L · x⃗− a⃗γ | = |x⃗− LT · a⃗γ | (4.29)

whenever L is orthogonal, we see that the action of K on the coordinates xi is equivalent
to an action on the centres. Therefore, in order for V (x⃗) to be invariant, the elements
of K must permute the centres amongst themselves. This is the key restriction on the
moduli space that we were seeking. The set of compatible K-actions are given by the set
of homomorphisms χ from

χ : K 7→ Sn (4.30)

Some comments are now in order. As explained in [26], non-identity elements of Sn are actually
diffeomorphisms of M

(n)
GH which are disconnected from the identity. This is related then to the

distinct topologies that can arise on the corresponding G2-manifolds. This is also then clearly
related to the distinct components of the moduli space of flat connections on L. The insight
gained from these examples allows us to address the general case: since the moduli space of
ALE metrics on ˜C2/ΓADE is given by (hADE ⊗R3)/Weyl(ADE), we must look for homomor-
phisms from K to the Weyl group. Actually, this is not quite the full answer as, in addition
to the action of the Weyl group, the ADE Lie algebras gADE also admit outer automorphisms
in general and these could also be induced by actions of K, hence the final answer is given by

χ : K → Aut(∆ADE)⋉Weyl(ADE) (4.31)

where ∆ADE is the Dynkin diagram associated to the ADE Lie algebra.
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4.4 Further explicit examples

Example 1. Our first example is to consider gauge group SU(2) and K = Z2 i.e. Xo(ΓA1 ,Z2).
Let us consider therefore the most general Z2-invariant 2-centre Gibbons-Hawking metric on
C̃2/ΓA1 . This amounts to finding all actions of K = Z2 which act as

K : (ω1, ω2, ω3) −→ (−ω1,−ω2, ω3) (4.32)

on the Kähler forms and preserve V (x1, x2, x3). In this case we see that the action on
the coordinates is

K : (x1, x2, x3) −→ (−x1,−x2, x3) (4.33)

which, because of (4.29), is equivalent to the corresponding action on the centres a⃗1 and a⃗2
which appear in the Gibbons-Hawking potential. We are free to fix the sum of the two centres,
a⃗2 = −a⃗1. We then see that there are two branches to the moduli space of K-invariant
hyperKähler metrics, given by

a⃗1 = −a⃗2 =

00
c

 (4.34)

for any c ∈ R and

a⃗1 = −a⃗2 =

a

b

0

 (4.35)

for any a, b ∈ R. In the first case we see that the two centres lie along the fixed point
set of the K-action on R3 and hence H2(C̃2/ΓA1) is preserved by K. This corresponds
to the Coulomb branch solution. In the second case the two centres are permuted by K

and hence the action of K on the homology is non-trivial. This corresponds to the Higgs
branch, which we happily see is two-dimensional in this case, in agreement with our gauge
theory result from subsection 4.1.1.

We can also count the L2-normalisable harmonic forms on the smooth manifolds
Xa(ΓA1 ,Z2) (where a = c corresponds to the Coulomb branch and a = h to the Higgs
branch) by considering the action of K on the harmonic 2-form Γ1, defined in 4.3.1. In
general, since the K-action permutes the set of centres, one can see that it also permutes
the set of 2-forms Ωi and thus acts on the Γi as some invertible linear transformation. In
this case, on the Coulomb branch Γ1 is K-invariant and on the Higgs branch,

Z2 :
(
Ω1
Ω2

)
7→
(
Ω2
Ω1

)
(4.36)

and so Γ1 7→ −Γ1. Thus we see that Xc has b2 = 1 and b3 = 1 and Xh has b2 = 0 and b3 = 2
which give rise to the expected number of scalar field moduli and U(1) factors in the gauge
group in the 4d theory arising from compactifying M-theory on Xa(ΓA1 ,Z2).
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Example 2. This is the example corresponding to SU(2) gauge theory on T 3/(Z2 × Z2) i.e.
M -theory on Xo(ΓA1 ,Z2×Z2). The action of K on the R3 coordinates of the Gibbons-Hawking
metric is generated by the diagonal order two matrices in SO(3) of the form:

β := (−1,−1, 1) γ := (−1, 1,−1) (4.37)

In this case there is no Ricci flat metric in which the action of K preserves the homology.
Instead there are three components to the moduli space in which the two centres lie along
each of the three coordinate axes:

a⃗1 = −a⃗2 =

a

0
0

 ,

0b
0

 ,

00
c

 (4.38)

and this is in perfect agreement with the three Higgs branches to the moduli space of SU(2)
flat connections on T 3/K from subsection 4.2.2.

Here, as in the previous example, we can count the harmonic forms. Looking at the first
branch of the moduli space, we can compute that both β and γ act as Γ1 7→ −Γ1 and so
βγ acts trivially. Thus by wedging Γ1 with the harmonic 1-form on T 3 that is odd under
β and γ but even under βγ we get a (Z2 × Z2)-invariant harmonic 3-form. Thus we have
b2 = 0 and b3 = 1 for the desingularisation of Xo(ΓA1 ,Z2 × Z2) corresponding to this branch
and the same for the other two.

Example 3. Let’s now consider SU(3) gauge theory on T 3/Z2, so Z2-invariant 3-centre
Gibbons Hawking metrics. Denote the centres as,a1

b1
c1

 ,

a2
b2
c2

 ,

−a1 − a2
−b1 − b2
−c1 − c2

 (4.39)

Since K is generated by gβ and preserves points of the form (0, 0, x3), we have K-invariant
metrics if the three centres are all of this form. This is the two-dimensional Coulomb branch
of the N = 2 supersymmetric SU(3) gauge theory. There are also solutions of the form,a

b

c

 ,

−a

−b

c

 ,

 0
0
−2c

 (4.40)

This corresponds to an action of K = Z2 which reverses the orientation of the S2 corresponding
to the line segment joining the first two centres, but preserves the orientation of the other
S2. Hence the Betti numbers of Xh(Z3,Z2) are b2 = 1 and b3 = 3, the latter corresponding
to the three parameters above.

We can see this three dimensional moduli space in the SU(3) gauge theory explicitly.
Notice that when a = b = 0 the first two centres coincide and hence an A1-singularity
appears and that this solution intersects the Coulomb branch there. At this point the physical
theory has an unbroken SO(2) gauge symmetry as the S2 which appears when a and b are
non-zero is Z2-odd. There is also an unbroken U(1) gauge symmetry coming from the S2
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which connects the first two centres with the third. The corresponding three dimensional
moduli space of flat connections is given by,

g1 7→

λa 0 0
0 λ−1

a 0
0 0 1

 , g2 7→

λb 0 0
0 λ−1

b 0
0 0 1

 , g3 7→

−λc 0 0
0 −λc 0
0 0 λ−2

c

 , gβ 7→

 0 λ
1/2
c 0

−λ
1/2
c 0 0
0 0 λ−1

c


(4.41)

We see that at the origin of the moduli space the gauge group is SO(2)× U(1) ⊂ SU(2)×
U(1) ⊂ SU(3), where the U(1) factor is in the direction of the Lie algebra which generates g3.
Since g3 commutes with g1, g2 and gβ , this U(1) is unbroken for all values of the λi. We propose
that the massless hypermultiplet which appears at the origin is in the representation 20 i.e.
a doublet which is neutral under U(1). Along the Higgs branch the SO(2) vector multiplet
combines with four real bosonic (plus fermionic) degrees of freedom from the hypermultiplet
to become a long massive vector multiplet, leaving a massless spectrum consisting of a U(1)
vector multiplet plus a single neutral hypermultiplet. Thus the low energy moduli space
is (1+2)-complex dimensional corresponding exactly to the three parameters, (λa, λb, λc)
in the family of flat connections.

For this case we have two harmonic 2-forms, Γ1 and Γ2. On the Coulomb branch both 2-
forms are invariant and so b2 = b3 = 2 for Xc(Z3,Z2) matching the expected two-dimensional
moduli space and U(1)2 unbroken gauge symmetry at generic points. On the Higgs branch,
the action on the 2-forms is, (

Γ1
Γ2

)
7→
(
−Γ1

Γ1 + Γ2

)
(4.42)

and so there is one Z2-odd 2-form, Γ1, and one Z2-even 2-form, Γ1 + 2Γ2. Thus, for
Xh(Z3,Z2) we have that b2 = 1 and b3 = 3, as anticipated (explicitly, if the action on T 3

is α : (y1, y2, y3) 7→ (−y1,−y2, y3 + 1/2), then the harmonic 3-forms are dy1 ∧ Γ1, dy2 ∧
Γ1, dy3 ∧ (Γ1 + 2Γ2)).

4.4.1 The general case for n centres

We will now describe the most general K-invariant Gibbons-Hawking Ricci flat metrics by
simply describing K-invariant configurations of n centres in R3 for arbitrary n.

Firstly, we take K = Z2 = ⟨α⟩. Then either one can place P1 centres in the α-invariant
subspace of R3 (such that their centre of mass is at the origin) or one can arrange P2 pairs
of centres to be exchanged under the action of α. So P1 + 2P2 = n and the dimension of
the branch of the moduli space is P1 + 3P2 − 1. The dimension is this because the centres
that are α-invariant contribute 1 parameter each (their position on the axis of rotation) and
each pair of centres exchanged under α contributes 3 parameters (since such pairs will be
of the form {(a, b, c), (−a,−b, c)}) and the centre of mass condition takes away 1 parameter.
Secondly, take K = Z2 × Z2 = ⟨α, β⟩. We can place P1 centres in the K-invariant subspace,
in this case this is just the origin so this is the same as considering the case for n − P1
centres. We can arrange P2 pairs of centres to live in the invariant subspace of, say, α and
be exchanged in pairs under α and αβ (plus cyclic permutation of α, β and αβ). Or we
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can arrange centres in P3 sets of four as a full orbit of the group. Then 2P2 + 4P3 = n and
the dimension of the moduli space is P2 + 3P3.

One could continue this reasoning for more general K. Thus we can find the number of
branches simply by finding all the ways of partitioning the integer n into the tuple (P1, P2, . . .)
subject to a linear condition on the Pi determined by the fact that the centres must be
K-invariant. As an example, consider n = 4 and K = Z2. We have 3 branches,

(P1, P2) d = P1 + 3P2 − 1
(4, 0) 3
(2, 1) 4
(0, 2) 5

We can explicitly see these branches from the point of view of the centres,

(4, 0)↔

a⃗1 =

 0
0
c1

 , a⃗2 =

 0
0
c2

 , a⃗3 =

 0
0
c3

 , a⃗4 =

 0
0

−c1 − c2 − c3


 (4.43)

(2, 1)↔

a⃗1 =

a1
b1
c1

 , a⃗2 =

−a1
−b1
c1

 , a⃗3 =

 0
0

−c1 + d1

 , a⃗4 =

 0
0

−c1 − d1


 (4.44)

(0, 2)↔

a⃗1 =

a1
b1
c1

 , a⃗2 =

−a1
−b1
c1

 , a⃗3 =

 a3
b3
−c1

 , a⃗4 =

−a3
−b3
−c1


 (4.45)

and we can use the map described in subsection 4.3.2 to find the corresponding flat connections,
thus giving a prediction for the number and dimension of the branches of the moduli space
of flat SU(n) connections on T 3/K.

4.5 Some higher rank examples

In this section we describe some higher rank ADE Higgs branch solutions by embedding the
basic SU(2) flat connection on T 3/Z2 of section 4.1.1 into higher rank groups.

For instance consider the maximal subgroup SU(2)N of SU(2N) (or similarly for SU(2N +
1)). We can take N diagonal copies of the SU(2) solution. The gauge group at the origin
of the Higgs branch for the space,

T 3 ×M
(2N)
GH

Z2
(4.46)

is the centraliser of N copies of gβ from (4.9) as a subgroup of SU(2N). This subgroup is,

S(U(N)×U(N)) ∼= (SU(N)× SU(N)×U(1))/ZN , (4.47)

The fields in the higher dimensional theory (i.e. before compactification onto T 3/Z2) transform
in the adjoint of SU(2N). So in order to see how the hypermultiplets in the lower dimensional
theory transform we must look at the decomposition of this representation,

SU(2N)→ (SU(N)× SU(N)×U(1))/ZN

4N2 − 1→ (N2 − 1, 1)0 + (1, N2 − 1)0 + (N, N̄)2 + (N̄, N)−2 + (1, 1)0

– 18 –



J
H
E
P
0
1
(
2
0
2
4
)
1
4
7

which is the adjoint plus the bifundamental and its complex conjugate. The N = 2 vector
multiplet will transform in the adjoint and the two hypermultiplets in the bifundamentals,
thus we have 8N2 real scalars (the hypermultiplets contain 8 real scalar degrees of freedom
and the dimension of the representation is N2). Now we can move away from the origin of the
moduli space by switching on VEVs. If we turn on the (N, N̄)2 field we break the U(1) and
the two SU(N)’s break to a diagonal subgroup and 4N2 of the real scalars become massive.
The matter representation breaks to adjoints and singlets of this new group. If we give a
VEV one of the remaining scalars in the adjoint we break the group to the maximal torus
U(1)N−1, 4(N2−N) scalars become massive and we can break no further. So we are left with
a U(1)N−1 gauge group and 8N2−4N2−4(N2−N) = 4N massless real scalars, these are the
moduli on the Higgs branch and match the number of moduli in the explicit flat connection.

This corresponds to (N − 1) Z2-even spheres (giving N − 1 gauge bosons) and N odd
spheres (giving 2N complex scalars). Indeed, several such Z2 actions can be shown to exist
when the centres are arranged in a regular polygon, for example. One can also embed the
Coulomb branch solution diagonally with the Higgs branch solution to obtain a mixed branch,
which would correspond to having more even spheres. We can achieve this by placing some
of the centres on the line that is invariant under the Z2 action.

Also we may explore the moduli spaces of D and E type singularities from the flat
connections viewpoint. For the D case this comes from the maximal subgroup of Spin(4N),

Spin(4N)→ Spin(4)N ∼= SU(2)2N (4.48)

and then the centraliser of the diagonally embedded SU(2) Higgs branch solution at the
origin is,

Spin(2N)× Spin(2N). (4.49)

Away from the origin the gauge group gets completely broken and there are 8N massless
real scalars remaining. Similarly, for the SU(2)8 subgroup of E8 one should get that the
surviving gauge symmetry at the origin of the Higgs branch is,

Spin(16)/Z2 ⊂ E8. (4.50)

and again, away from the origin the gauge group is completely broken and there are 32
massless real scalars corresponding to 8 copies of the moduli of the basic SU(2) solution.

Another way in which we can generalise is to consider more general twists than Z2. For
example, we could consider the space,

T 3 ×MEH

Z3
(4.51)

where the action on the torus is,

(y1, y2, y3) 7→ (−y2, y1 − y2, y3 + 1/3) (4.52)

Then on T 3/Z3 we have one harmonic 1-form, dx3, and two ‘Z3-twisted’ harmonic 1-forms,
e−2πi/3 dx1+dx2 and e2πi/3 dx1+dx2. However, for this example, the Z3 can only act trivially
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on the 2-sphere in the Eguchi-Hanson space (since there are no non-trivial homomorphisms
from Z3 into Z2) and so we will only get a Coulomb branch. If we replace MEH with M

(3)
GH

then we do get a Higgs branch and the Z3-twisted 1-forms play the role that the Z2-twisted
ones did in our previous discussion.

4.6 D-type ALE space

For Dn singularities we can consider the moduli space of flat connections by thinking about
configurations of centres as we did for the An case. Far away from the origin, the ALE
space that is the resolution of a Dn singularity looks essentially like Gibbons-Hawking space
modded out by a Z2 action (t, x⃗) 7→ (−t,−x⃗) so now instead of thinking about centres in R3

we can think about centres in R3/Z2 or equivalently, centres in R3 along with their Z2 images.
We no longer require that the centres sum to zero, since this is trivially satisfied by

including their Z2 images. So the only constraints are that the set of centres is invariant
under the K action and additionally that K acts on the Dynkin diagram defined by the
2-spheres as an element of Aut(∆Dn) ⋉ Weyl(Dn) = Z2 ⋉ (Zn−1

2 ⋉ Sn) (except for n = 4,
when Aut(∆Dn) = S3). The Zn−1

2 factor is important; it corresponds to multiplying an even
number of the coordinates of a Dn root vector by −1. Geometrically, this corresponds to
sending an even number of centres to their Z2 images. Thus, on top of the constraint that
K preserves the set of centres, we also have that if K sends m centres to their Z2 images,
m must be even (note that for the A-type examples the fact that K preserves the set of
centres automatically means it acts as an element of the Weyl group on the 2-spheres, so
we got no further constraint like we do here).

As an example, consider D2 with K = Z2.3 We expect this to coincide with two
copies of our A1 example by virtue of the isomorphism so(4) ∼= su(2)× su(2). The allowed
configurations of centres (omitting the orientifold images) are,a⃗1 =

 0
0
c1

 , a⃗2 =

 0
0
c2


 (4.53)

a⃗1 =

a1
b1
c1

 , a⃗2 =

−a1
−b1
c1


 (4.54)

a⃗1 =

a1
b1
0

 , a⃗2 =

a2
b2
0


 (4.55)

Where the first branch corresponds to two copies of the A1 Coulomb branch, the second to
a one copy of the A1 Coulomb branch and one copy of the Higgs branch and the third to
two copies of the A1 Higgs branch. By looking at the corresponding flat connection, we see
that on the first branch the full SO(4) is unbroken at the origin of the branch and at generic
points this is broken to SO(2)2, on the second branch there is an unbroken SO(2)× SU(2)

3There is no ALE space for this example but there is an ALF space. For our arguments this difference is
irrelevant.
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at the origin and at generic points an unbroken SO(2) and on the third branch there is an
unbroken SO(2) × SO(2) at the origin which is completely broken at generic points. This
matches nicely with what we would expect from our considerations for A1.

Next, we consider D3 with K = Z2. This example should give the same answer as the A3
example, thanks to the isomorphism so(6) ∼= su(4). The allowed configurations of centres are,a⃗1 =

 0
0
c1

 , a⃗2 =

 0
0
c2

 , a⃗3 =

 0
0
c3


 (4.56)

a⃗1 =

a1
b1
c1

 , a⃗2 =

−a1
−b1
c1

 , a⃗3 =

 0
0
c2


 (4.57)

a⃗1 =

a1
b1
0

 , a⃗2 =

a2
b2
0

 , a⃗3 =

 0
0
c3


 (4.58)

where, using the notation of subsection 4.4, the first branch corresponds to the A3 branch
labelled (4, 0), the second branch to (2, 1) and the third to (0, 2) and dimensions of the
branches agree as expected. Note how, for example, the 6d solution given by

{a⃗1 = (a1, b1, 0), a⃗2 = (a2, b2, 0), a⃗3 = (a3, b3, 0)} (4.59)

is not allowed since the K = Z2 action sends an odd number of centres to their images.

4.7 Compact examples

Finally, we briefly also discuss compact examples, where now the low energy theory is a
four dimensional supergravity theory coupled to vector multiplets and chiral multiplets.
The general strategy is clear: the chiral multiplet representations under the ADE-gauge
symmetries are determined by the Weyl group action and flat connections as above.

For the basic Joyce-Karigiannis examples, the answer (as given in section 3) is clear
when one considers the Z2-twisted desingularisation of an A1-singularity: one obtains an
SO(2) gauge theory with a chiral multiplet in the fundamental representation. We point out
that several of Joyce’s original examples are of this form [11].

4.7.1 Joyce examples

All of the examples in [11, 15] are obtained by considering a quotient of a flat 7-torus by a
finite group, Γ producing an orbifold whose singularities, in favourable cases can be resolved,
producing a smooth 7-manifold with metrics of G2-holonomy. In [11], in all except two
examples (17 and 18), all of the singularities that occur are of the kinds described in this
paper since they are all locally modelled on X0(ΓADE , K). Hence, the results presented here
allow one to simply read off the key ingredients of the low energy field theory arising from
those examples. For instance, all of the examples of table 1 of [11] have A1-singularities
fibered over T 3 or T 3/Z2. Hence for each T 3 one has an SU(2) vector multiplet plus three
adjoint chiral multiplets. Each T 3/Z2 instead gives rise either to an SO(2) vector multiplet
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and a doublet of chiral multiplets or to an SU(2) vector multiplet and a single adjoint chiral
multiplet depending on which choice of resolution one makes.

Higher order singularities of the form X0(Z3,Z2) also occur, e.g. in example 15 of [11] the
singular set contains one component with singularity modelled on X0(Z3,Z2). As discussed
in section 4.4, there are two distinct resolutions of X0, one which gives rise to an SU(3)
vector multiplet plus an adjoint chiral multiplet (and a two-dimensional space of Coulomb
vacua) and a second which gives rise to an SO(2)×U(1) vector multiplet with a pair of chiral
multiplets both in the fundamental of SO(2) (and a three-dimensional space of vacua).

Joyce’s examples were extended by Barrett [37] and Reidegeld [38] and include cases
containing An, Dn and E6 singularities fibered over T 3/K for various K. The corresponding
gauge and matter representations can similarly be obtained from the results presented here [39].
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