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1 Introduction

In recent times, the study of Quantum Field Theory (QFT) has localized to its surprisingly
rich kinematic sector. This follows from the novel perspective, due to [1], that such aspects
of QFT can be characterized by various topological structures acting on them. It has led to
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several generalizations of the notion of symmetry such as higher-form symmetries, higher
groups, non-invertible symmetries and inevitably to categorical symmetries. In all of these
cases there continues to be rapid development on the nature of topological symmetries, and
the many ways they provide a fundamental scaffolding of QFT. A priori these emerging
symmetries seem exotic, however in the last two years they have been discovered in many
“bread-and-butter” QFTs such as Yang-Mills theories in four dimensions, and even for the
Standard Model of particle physics.

Two central themes of research now are to understand the scope of topological symmetries,
broadly, and the mathematical framework needed to characterize them. It has come to focus
that a useful way to describe topological symmetries associated to a QFT in a d-dimensional
space, Md, is to consider a topological field theory on a (d+ 1)-dimensional space Xd+1 with
∂Xd+1 = Md [1–3]. Such TQFTs are referred to as Symmetry Topological Field Theories
(SymTFTs) [4]; they naturally emerge via anomaly inflow methods for QFTs engineered
from string theory and holography [4–7]. From this point of view, string theory provides an
important avenue for studying topological symmetries and their role in the dynamics of QFTs.

An important result appeared recently in the context of non-invertible symmetries [8, 9].
In these works, it was demonstrated how to realize them in string theory and holography
from supergravity and brane dynamics. Such developments seeded many other interesting
results where non-invertible symmetries are constructed and analyzed from various D-brane
setups [8–17].

In this paper, we will explore the SymTFT associated to 4d N = 1 Super Yang-Mills
(SYM) theory with gauge algebra su(M). This QFT emerges in the IR limit of a stack of N D3
branes probing the conifold in IIB string theory, with M units of G3 flux where M is a divisor
of N . This is famously described by the Klebanov-Tseytlin [18] and Klebanov-Strassler [19]
(KT-KS) backgrounds in IIB supergravity; these are holographically dual to cascading field
theories. A relevant review for these backgrounds is provided in the appendix A. Our main
interest is to obtain the full SymTFT as initiated in [8], and then construct all the symmetry
operators and their fusion rules. We will identify all the brane configurations that are
associated to the operators, and then characterize their fusion rules from brane dynamics.
Another objective will be to sharply understand what data captures the topological operators
and their associated physics derived from the SymTFT.

We start with a brief discussion of our main results. First we complete the derivation of
the SymTFT of the KT-KS background discussed in [8]. Here we identify all the couplings
relevant to the TQFT and its associated discrete gauge symmetries. In particular we emphasize
how continuum fields in supergravity can be used to construct and describe the discrete gauge
fields in a TQFT. By using the (classical) Gauss Law constraints, we derive all the topological
operators which generate a bulk gauge symmetry from the SymTFT [8, 20]. We then match
each symmetry generator with a specific Dp-brane configuration by considering the reduction
of the Wess-Zumino action for the branes. The details are the focus of sections 2, 4, and 5,
but a quick summary can be found in table 1.

Once we have the symmetry generators, the next question is to understand their fusion
algebra. When considering the parallel fusion of two symmetry generators, the correspond-
ing Dp-branes become coincident and are subject to non-Abelian dynamics involving the
worldvolume gauge fields. In this work we demonstrate that the non-Abelian effects are
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Symmetry Action Symmetry Generator Brane Configuration

Z(0)
2M N1(M3) D5 wrapping S3 ⊂ T 1,1

Ẑ(2)
2M V1(γ1) D1 wrapping Hopf fiber S1 ⊂ S3

Z(1)
M O1(W 2) D3-D1 bound state wrapping S2 ⊂ T 1,1

Ẑ(1)
M U1(Σ2) D3 wrapping Hopf base S̃2 ⊂ S3

Table 1. Symmetry generators/defects and their D-brane realizations.1

excluded from the topological data of the symmetry defects; only the Abelian modes in
the Dp-brane worldvolume theory participate in the fusion. It is kinematical information,
rather than dynamical, captured in the fusion of the corresponding operators. Specifically,
the center-of-mass mode for a given stack of branes yields the symmetry operator. For two
stacks brought together, the resulting operator is associated to the total center-of-mass mode.
The modes describing any relative motion between the two stacks decouple from the defects
but survive as nontrivial fusion coefficients in the form of decoupled TQFTs.

Another interesting feature we point out, elaborated upon in the main text, is the
non-invertibility of operators can be attributed to induced brane charges due to bulk-brane
dynamics. For example, the operator O1(W 2) presented in table 1 takes the explicit form,

O1(W 2) =
∫

Dλ1Dφ exp
(

2πi
∫

W 2
ĉ2 + λ1A1 + φB2 −Mφdλ1

)
, (1.1)

where λ1 and φ are modes localized on the D3-D1 bound state. The first term in this action
encodes all the information contained in the D3- and D1-branes themselves. The second and
third terms describe induced charges present on the D3-D1 worldvolume, while the final term
is a standard BF-term describing a ZM × ZM gauge theory. Figure 3 provides a picture to
keep in mind during this discussion. As will be seen later in the paper, the induced charges
are associated with D1-branes and F1-strings in the worldvolume.

In addition to the above fusion, we study further the condensation defect present in many
recent examples such as [8–10, 21–23]. We find that these defects are described naturally in
string theory via tachyon condensation. When a Dp- and a Dp-brane are brought together,
these branes will not completely annihilate but leave behind a solitonic D(p− 2)-brane in
the original worldvolume, determined by a choice of tachyon profile. By summing over
all possible solitonic D(p − 2)-branes on the original worldvolume for a specific tachyon
profile, we can reproduce exactly the condensation defect that arise when considering the
operator fusion. There is a parallel discussion here as in the other cases of fusion; we can
see the condensate being given by the center-of-mass mode for the original brane-anti-brane
worldvolume. Including the appropriate condensates, we work out the full fusion algebra for
the symmetry defects in the KT-KS background. The full list of the bulk fusion rules can be
found in table 2. We also discuss the realization of these fusion rules in the boundary field
theory in terms of allowed boundary conditions on the bulk supergravity fields.

This paper is organized as follows. In section 2, we construct the SymTFT for the KT-KS
background, and use the associated Gauss Law constraints to derive the gauge symmetry

1We assume a Euclidean spacetime throughout this paper, and use the terminology “generator”, “operator”,
and “defect” interchangeably.
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Brane Fusion Defect Fusion

D5 ⊗ D5 Np(M3) ⊗Np′(M3) = AM,pp′(p+p′)Np+p′(M3)

D5 ⊗ D5 Np(M3) ⊗N−p(M3) = C(M3)

D3 ⊗ D3 Uq(Σ2) ⊗ Uq′(Σ2) = Uq+q′(Σ2)

D3 ⊗ D5 Uq(Σ2) ⊗Np(M3) = Np(M3)

D3 ⊗
(∑

D3
)

Uq(Σ2) ⊗ C(M3) = C(M3)

D5 ⊗
(∑

D3
)

Np(M3) ⊗ C(M3) = (ZM )0 Np(M3)(∑
D3
)
⊗
(∑

D3
)

C(M3) ⊗ C(M3) = (ZM )0 C(M3)

(D3-D1) ⊗ (D3-D1) Oq(W 2) ⊗Oq′(W 2) = XM,qq′(q+q′)−1Oq+q′(W 2)

(D3-D1) ⊗ (D3-D1) Oq(W 2) ⊗O−q(W 2) = C̃(W 2)

D1 ⊗ D1 Vp(γ1) ⊗ Vp′(γ1) = Vp+p′(γ1)

D1 ⊗ (D3-D1) Vp(γ1) ⊗Oq(W 2) = Oq(W 2)

D3 ⊗ (D3-D1) Uq(Σ2) ⊗Oq′(W 2) = Oq′(W 2)

D1 ⊗
(∑

(D1-F1)
)

Vp(γ1) ⊗ C̃(W 2) = C̃(W 2)

D3 ⊗
(∑

(D1-F1)
)

Uq(Σ2) ⊗ C̃(W 2) = C̃(W 2)

(D3-D1) ⊗
(∑

(D1-F1)
)

Oq(W 2) ⊗ C̃(W 2) = XM,−1XM,−1Oq(W 2)(∑
(D1-F1)

)
⊗
(∑

(D1-F1)
)

C̃(W 2) ⊗ C̃(W 2) = XM,−1XM,−1C̃(W 2)

Table 2. Fusion rules for the symmetry defects. The left column indicates the schematic fusion in terms
of the associated Dp-branes, while the right column shows the explicit fusion rules. The coefficients
AM,p,XM,q, and (ZM )0 denote decoupled TQFTs that are elaborated upon in the main text.

generators in this setup. In section 3, we switch gears and discuss how symmetry generators
in a generic string theory background can also be realized using D-branes. In sections 4
and 5, we study in detail the fusion rules for the (N ,U) and (O,V) defect pairs respectively.
These two pairs of defects share a strikingly similar fusion algebra, e.g. the former undergoes
non-invertible fusion to produce a condensation defect containing the latter. We offer an
interpretation of these fusion rules in terms of the underlying brane kinematics and dynamics.
In section 6, we derive the mixed fusion rules between all the symmetry defects, as well as their
braiding relations. In section 7, we analyze the role of the choice of boundary conditions in
realizing the bulk gauge symmetry generators as global symmetry generators in the boundary
field theory. Last but not least, we follow up by a discussion in section 8.

2 Bulk supergravity gauge symmetries

2.1 Symmetry topological field theory

In holographic constructions, one can use anomaly inflow methods to obtain a Symmetry
Topological Field Theory (SymTFT) that encodes the symmetry data of a lower-dimensional
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QFT (e.g. [4–7, 24]). In the case of supergravity solutions in the low energy limit of Type IIB
string theory, the SymTFT can be obtained by starting with the anomaly polynomial of the
ten-dimensional supergravity theory and dimensionally reducing over the internal space. This
anomaly polynomial was derived in [7]. The resulting topological theory, once augmented
with kinetic terms for the relevant fields, is the SymTFT of the boundary field theory.

In the present work, we expand upon the SymTFT of the KT-KS solution as derived
in [8], and particularly study the effect of additional terms that were previously neglected. A
review of the KT-KS solution can be found in appendix A. We first start with the 11-form
anomaly polynomial in Type IIB string theory,2

I11 = 1
2 G5 ∧ dG5 + G5 ∧H3 ∧G3 , (2.1)

where G3 and H3 are the field strengths for the RR 2-form and NSNS 2-form potentials
respectively, and G5 is defined such that G5 = (1 + ⋆10)G5 is the self-dual RR 5-form. To
dimensionally reduce the above polynomial, we perform an expansion of the supergravity field
strengths onto the U(1)R-equivariant cohomology classes defined in (A.2) and (A.3), namely,

H3 = h3, G3 = Mω3 + g1ω2 + g3 , G5 = NΩ5 + g2ω3 . (2.2)

The fluctuating fields h3, g1, g2, and g3 are defined on the external space W 5, while the
coefficients M and N of ω3 and Ω5 reflect the nontrivial fluxes threading S3 and T 1,1

respectively in the KT-KS setup.
Consistency of the IIB Bianchi identities for the RR field strengths, which in this

background take the form dH3 = 0, dG3 = 0, and dG5 = −H3 ∧ G3, impose constraints
on the external field strengths written above. These extra constraints reduce to the 5d
Bianchi identities

dh3 = dg3 = dF2 = 0 , dg1 = 2MF2, dg2 = −Mh3 . (2.3)

We may solve the leftmost equations via

h3 = db2 −H3 , g3 = dc2 + C3 , F2 = dA1 + F2 , (2.4)

where H3, C3,F2 ∈ H∗(W5;Z) and b2, c2, and A1 are globally well-defined gauge potentials.3

In the later computations C3 will play no role, so without any loss of generality we will
set it to zero. On the other hand, the nontrivial Bianchi identities for g1 and g2 indicate
the presence of discrete gauge fields in the bulk theory. Specifically, these putative U(1)
gauge fields are respectively Higgsed down to Z2M and ZM gauge fields via the Stückelberg
mechanism. As a result, we may solve the Bianchi identities as

g1 = dc0 + 2MA1 + A1 , g2 = dβ1 −Mb2 + B2 , (2.5)
2Unless otherwise specified, we choose the normalization of all field strengths appearing in this work to be

such that they have integral periods, and we also work in dimensionless units, i.e. 2πα′ = 1 and gs = 1, to
avoid cluttering of notation. For the same reason, we will often suppress the wedge/cup products between
differential forms/cochains.

3The fact that these are valued in integer cohomology follows from the flux quantization of the RR field
strengths [25].
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where A1 ∈ H1(W5;Z2M ) and B2 ∈ H2(W5;ZM ), while c0 and β1 are globally well-defined
gauge potentials.4 The quantities g1 and g2, containing both free and torsional components,
carry the same information as differential cochains. See [26–29] for a collection of reviews.

The coefficients of the cohomology groups in which A1 and B2 live can be understood as
follows. The Bianchi identites in (2.3) put constraints on the basepoint fluxes F2 and H3
that we have written above, i.e. 2MF2 and MH3 must vanish identically for the right-hand
side of the relations to be an exact cocycle.5 This requirement implies that F2 and H3 are
each contained in the image of a Bockstein homomorphism. Specifically, we may express

F2 = β̃(A1) , H3 = β̃′(B2) . (2.6)

In the above β̃ and β̃′ are respectively the Bockstein maps6

β̃ : H∗(W5;Z2M ) → H∗+1(W5;Z) , β̃′ : H∗(W5;ZM ) → H∗+1(W5;Z) . (2.7)

With this notation we can now compute the 5d SymTFT by reducing (2.1) over the
conifold T 1,1. The topological action Stop takes the following form,

Stop = 2π
∫

W 5

(
Mb2dĉ2 − 2Mc3dA1 + b2A1B2 − A1B2

2 − K
M

A1β(A1)β(A1)
)
, (2.8)

where K is defined in (A.5), and we have defined the field dĉ2 = kdc2 + da2 in terms of
a field a2 that arises when computing the SymTFT.7 The details of this computation can
be found in appendix A.

2.2 5d bulk gauge symmetries

The topological action Stop in (2.8) details the symmetry structure of the 5d bulk gauge
theory, and it acts as the SymTFT for the 4d QFT living on the boundary. The first two
terms of act as BF terms, so for instance, the fluctuating U(1) gauge fields b2 and ĉ2 in
the former term are Higgsed down to ZM gauge fields at low energies via the Stückelberg
mechanism [34]. As a consequence, the holonomies of A1 and b2 in the IR turn into

exp
(

2πi
∫

γ1
A1

)
IR−→ exp

( 2πi
2M

∫
γ1
A1

)
, exp

(
2πi

∫
Σ2
b2

)
IR−→ exp

(
−2πi
M

∫
Σ2

B2

)
.

(2.9)
We shall remark that the U(1) gauge symmetry associated with A1 comes from the S1

isometry circle inside T 1,1. This isometry, as was discussed in the introduction, corresponds
to the R-symmetry in the 4d N = 1 boundary field theory. The Higgsing of the gauge

4More precisely, A1 and B2 are cohomology class representatives. The difference between two representatives
of the same class is exact, i.e. A1 − A′

1 = dλ0 for some globally well-defined 0-cochain λ0 on W5. We see
that the choice of representative is immaterial since g1 is invariant under the redefinitions A1 → A1 + dλ0

and c0 → c0 − λ0. Similarly, g2 is invariant under B2 → B2 + dλ1 and β1 → β1 − λ1. See appendix B for a
related discussion.

5In general one might demand 2MF2 to be simply cohomologically trivial rather than to vanish identically,
but such an exact piece can be removed via a field redefinition of A1.

6A brief review of Bockstein homomorphisms can be found in appendix B.
7Technically, at the level of cochains, the term B2 ∪ B2 is more approrpiately written as P(B2), where P

denotes the Pontryagin square operation defined in, e.g. [30–33].
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symmetry down to a Z2M subgroup is exactly the same as how the U(1) global R-symmetry
of the boundary theory is broken down to a Z2M subgroup by the ABJ anomaly. Reading
off the form degrees of the gauge fields, the first term in Stop corresponds to Z(1)

M and Ẑ(1)
M

gauge symmetries in the 5d bulk theory, where the hat denotes the Pontryagin-dual group.8

Similarly, the latter term corresponds to Z(0)
2M and Ẑ(2)

2M gauge symmetries.
The third and fourth terms in Stop are interaction terms describing an interplay between

the Z(1)
M and Z(0)

2M gauge symmetries present in the bulk theory.9 The interplay, when
considered from the perspective of the 4d boundary theory, is a mixed ’t Hooft anomaly
between the two symmetries. Similarly, the final term in Stop is a cubic interaction term
in the bulk gauge theory, and becomes a ’t Hooft anomaly purely for the Z(0)

2M symmetry
on the boundary.

2.3 Gauss Laws and symmetry generators

For each of the discrete gauge symmetries present in the SymTFT, we may construct
a symmetry operator that generates the corresponding symmetry. This can be done by
treating the radial direction of the external space W5 as a time coordinate and performing a
Hamiltonian analysis of the 5d bulk action [20, 35, 36]. In this formalism, the time components
of the bulk fields have vanishing conjugate momentum and thus impose (classical) Gauss Law
constraints. Each of the fields b2, ĉ2,A1, and c3 will impose a Gauss Law constraint, which
were originally computed in [8] and we restate them here for convenience,

Gb2 = Mdĉ2 + A1B2 , GA1 = 2Mdc3 + B2
2 ,

Gĉ2 = Mdb2 , Gc3 = 2MdA1 . (2.10)

The quantities Gi may be thought of as dPi where Pi is a “Page charge” generating the
corresponding gauge transformation. For a continuous symmetry, e.g. U(1), the operator
exp

(
2πi

∫
Mi
Pi
)

acts as a symmetry generator supported on some submanifold Mi ⊂ W5 of
the appropriate dimension. In contrast, if the symmetry is broken down to a finite group,
e.g. Zk, then the proper generator to consider is the “k-th” root of the aforementioned one,
i.e. D ∼ exp

(
(2πi/k)

∫
Mi
Pi
)
, such that D⊗k ∼= 1 corresponds to the identity element of the

finite group (up to condensation defects in the case of non-invertible symmetries).
To illustrate this, let us look at the Gauss Law constraint GA1 . Using the prescription

above, one would naïvely construct an operator of the form,

N1(M3,M4) = exp
(

2πi
∫

M3
c3 + 2πi

2M

∫
M4

B2
2

)
. (2.11)

This operator is well-defined when placed on a 3-manifold M3 that is the boundary of some
4-manifold M4. To define the operator solely on M3, we may rewrite the second term as a

8Here the form degree of a symmetry (as labeled by the superscript) is defined with respect to a 4d “time”
slice in the bulk resulting from Hamiltonian quantization. In this case, a p-form gauge field is associated with
a (3 − p)-form symmetry.

9The reason for b2 being a gauge field for the Z(1)
M symmetry rather than the Ẑ(1)

M symmetry will be made
clear when we consider the boundary field theory later in section 7.
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3d action by coupling B2 to a dynamical U(1) gauge field a1 localized on M3 [8, 22], i.e.

N1(M3) =
∫

Da1 exp
(

2πi
∫

M3
c3 + M

2 a1da1 + a1B2

)
. (2.12)

As an aside, one may recognize the latter two terms as an effective action for a fractional
quantum Hall state. We claim that such an operator generates a Z(0)

2M symmetry, and as
we will show in section 4, stacking 2M copies of (2.12) indeed produces a trivial operator
up to a condensation defect.

It is instructive to point out that the defect N1(M3) can be schematically decomposed
into two pieces, i.e.

N1(M3) = exp
(

2πi
∫

M3
c3

)
⊗AM,1[B2] := Ñ1(M3) ⊗AM,1[B2] , (2.13)

where Ñ1(M3) generates a Z(0)
2M R-symmetry rotation, and AM,1[B2] is a 3d minimal TQFT

associated with the Ẑ(1)
M symmetry [37]. Note that the simultaneous appearance of these

two operators in N1(M3) results from the presence of the anomaly term A1B2
2 in (2.8). An

analogous decomposition of the chiral symmetry defect can be found in [22] in the context
of 4d massless QED (see also, e.g. [23, 38] for similar constructions). There, the defect is
similarly composed of a naïve chiral rotation operator stacked with a minimal TQFT.

Applying the same philosophy, we can construct symmetry defects generating the re-
maining symmetries encoded by the SymTFT, namely, Ẑ(2)

2M ,Z(1)
M , and Ẑ(1)

M , using the Gauss
Law constraints Gc3 ,Gb2 , and Gĉ2 . Explicitly, these defects take the respective forms,

V1(γ1) = exp
( 2πi

2M

∫
γ1

A1

)
, (2.14)

O1(W 2,W 3) = exp
(

2πi
∫

W 2
(kc2 + a2) + 2πi

M

∫
W 3

A1B2

)
, (2.15)

U1(Σ2) = exp
(2πi
M

∫
Σ2

B2

)
. (2.16)

When constructing V1 and U1, we have made use of the discussion surrounding (2.9).
Analogously to the previous case of N1, the operator O1(W 2,W 3) as written in (2.15) is

well-defined when placed on a 2-manifold W 2 that is the boundary of some 3-manifold W 3.
To define the operator solely on W 2, we may rewrite the last term in (2.15) as a 2d action by
coupling A1 and B2 respectively to dynamical U(1) gauge fields λ1 and φ localized on W 2, i.e.

O1(W 2) =
∫

Dλ1Dφ exp
(

2πi
∫

W 2
ĉ2 + λ1A1 + φB2 −Mφdλ1

)
. (2.17)

For convenience, let us define the shorthand notation,

XM,q[A1,B2] :=
∫

Dλ1Dφ exp
(

2πiq
∫
λ1A1 + φB2 −Mλ1dφ

)
, (2.18)

assuming gcd(M, q) = 1. The anomaly label q ∼ q + M specifies the braiding statistics
between λ1 and φ. Note that in the absence of the coupling to A1 and B2, the TQFT XM,1
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is an untwisted 2d ZM × ZM BF theory.10 Similarly to the defect N1(M3), we observe
that O1(W 2) decomposes into

O1(W 2) = Õ1(W 2) ⊗XM,1[A1,B2] , (2.19)

where Õ1(W 2) = exp
(
2πi

∫
W 2 ĉ2

)
is an invertible operator generating a Z(1)

M transformation,
and the appearance of the 2d TQFT XM,1[A1,B2] is a consequence of the interaction term
b2A1B2 in (2.8).

3 Symmetries from branes

3.1 Bulk SymTFT vs. brane worldvolume action

We derived earlier the SymTFT for the bulk supergravity theory in the KT-KS background,
from which the Gauss Law constraints give us a complete set of symmetry generators in the
5d bulk. In this and the subsequent sections, we show that each of these symmetry defects can
be engineered as a certain probe D-brane configuration in the KT-KS geometry. As alluded
to in section 1, recently in the literature there have been field-theoretic constructions of non-
invertible symmetry defects with dimension d ≥ 2. The hallmark of such defects is two-fold:

1. (Defect A) ⊗ (Defect B) = (Decoupled TQFT Coefficient) ⊗ (Defect C),

2. (Defect) ⊗ (Oppositely Oriented Defect) =
∑

(Lower-dimensional Defect).

The significance of the brane-defect correspondence in our work is that it allows us to interpret
both of these properties purely in terms of brane kinematics and dynamics in the bulk. In
fact, as we will discuss in section 7, there exist obstructions to realize certain bulk-symmetry-
generating branes (or combinations of them) on the boundary field theory. The obstructions
are determined by the anomaly terms in the SymTFT and choices of boundary conditions for
the 5d bulk gauge fields. A comprehensive analysis of such branes therefore realizes a much
richer structure of the topological data encoded by the SymTFT in the bulk, which would
otherwise not be appreciated from the perspective of the boundary field theory.

In Type II string theory, the worldvolume action of a general Dp-brane consists of two
parts: a Dirac-Born-Infeld (DBI) action encoding the dynamics of worldvolume gauge fields,
and a Wess-Zumino (WZ) action describing the topological coupling of the Dp-brane to the
bulk RR and NSNS fields. To construct a topological operator out of a probe Dp-brane, one
can push it to the conformal boundary of the external spacetime. The dynamical degrees
of freedom are frozen out since the brane tension scales as Tp ∼ rp, causing the DBI term
to decouple. This leaves us with the WZ action (see, e.g. [40, 41]), given by

SDp
WZ = µp

∫
Mp+1

IDp
p+1 := µp

∫
Mp+1

∑
q≤p

Cq+1 ∧ chB(E) ∧

√√√√ Â(RT )
Â(RN )

∣∣∣∣∣
(p + 1)-form

, (3.1)

10By construction, the Wilson-like operators e
2πi
∮

λ1 and e2πiφ generate the two ZM symmetries on W 2.
The cocycles A1 and B2 are respectively the BF-duals of λ1 ∈ H1(W 2;ZM ) and φ ∈ H0(W 2;ZM ) [39].
This can be seen by rewriting XM,1[A1,B2] in terms of continuum fields Â1 = A1/M and b2 = B2/M , and
path-integrating over them instead of λ1 and φ, which results in the equations of motion, Mdλ1 = Mdφ = 0.
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where µp is the charge of a single Dp-brane, and E is the Chan-Paton bundle over the
worldvolume Mp+1. We sum over even q in Type IIA and odd q in Type IIB string theory.
The quantities RT = 2πRT and RN = 2πRN denote respectively the (normalized) curvature
2-forms of the tangent and normal bundles of the worldvolume Mp+1 of the Dp-branes,
while Â is the A-roof genus. In the analysis that follows, we will omit the gravitational
couplings in the WZ action for simplicity.

For the purpose of our work, we would like to highlight two salient properties of the WZ
action. Firstly, a Dp-brane is not only coupled to the (p+ 1)-form RR field Cp+1, but also
to the lower RR fields Cp−1, Cp−3, etc. via the (twisted) Chern character chB(E) = eB2+F2 .
Such couplings are physically interpreted as Dq-branes (q < p) being dissolved in Mp+1 [42].
The numbers of these Dq-branes are determined by the worldvolume Chan-Paton flux on
the Dp-brane. As a simple example, suppose Mp+1 = M̃2 ×Mp−1, and the Chan-Paton
field strength decomposes as F2 = f̃2 + f2 with f̃2 ∈ H2(M̃2;Z) and f2 ∈ H2(Mp−1;Z).
The Chern character factorizes as

eB2+F2 = ef̃2 ∧ eB2+f2 = 1 + f̃2 ∧ eB2+f2 + · · · , (3.2)

and so the number, k, of D(p− 2)-branes within the Dp-brane is given by k =
∫
M̃2 f̃2.

Let us now consider a single Dp-brane with zero net Dp charge, i.e.
∫
Mp+1 Cp+1 = 0,

but with k units of worldvolume flux through M̃2. As far as the center-of-mass mode is
concerned, such an object can also be thought of as a stack of k coincident D(p− 2)-branes.
To see this, we use the fact that the Chan-Paton bundle E on the brane stack has structure
group U(k). Suppose we parametrize the u(k)-valued field strength F2 = F2 + f21k, with F2
being su(k)-valued and f2 ∈ H2(Mp+1;Z), then the Chern character factorizes as

eB2 Tr(eF2) = Tr(eF2) ∧ eB2+f2 = keB2+f2 + · · · . (3.3)

We therefore recover the second term in (3.2) with k =
∫
M̃2 f̃2. Note that the gauge field f2

here is associated with the center-of-mass mode of the stack of D(p− 2)-branes, while F2 is
associated with the remaining relative Chan-Paton modes. The relation between these two
perspectives will prove useful later as we study the fusion between Dp-branes.

3.2 D-brane anomaly polynomial

As for any Chern-Simons action, we can naturally construct an anomaly polynomial associated
with the Dp-brane via descent. It can be defined locally as11

IDp
p+2 = dIDp

p+1 =
∑
q≤p

Gq+2 e
B2+F2 . (3.4)

The RR and NSNS field strengths locally take the forms,

Gq+2 = dCq+1 +H3Cq−1 , H3 = dB2 . (3.5)

11Formally, IDp
p+2 is defined on a manifold Mp+2 such that ∂Mp+2 = Mp+1 is the worldvolume of the

Dp-brane. We also assume the gauge fields originally defined on Mp+1 can be extended to Mp+2.
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In the presence of backgroud D-branes, or when [H3] ∈ H3(Mp+1;Z) is nontrivial [43, 44],
the RR field strengths Gq+2 can be topologically nontrivial. Globally, they should be defined
by the Bianchi identities,12

dGq+2 = −H3Gq , (3.6)

in addition to the requirement that they are equivariant under all additional gauge symmetries
present in the system (e.g. in our setup we gauged the R-symmetry circle in T 1,1). Throughout
the rest of this work, we take the r.h.s. of (3.4) as the definition of the D-brane anomaly
polynomial, subject to Gq+2 satisfying the Bianchi identities (3.6). Specifically, we assume
the ansatzes for the RR fields as defined in (2.2) to account for global topological data
in the KS setup.

Bulk symmetry generators from wrapped D-branes. Recall that the 5d topological
action (2.8) of the SymTFT is derived by reducing I11 of Type IIB string theory on the
conifold base T 1,1 of the KT-KS background. Similarly, one can reduce IDp

p+2 of a Dp-brane
on some n-manifold Xn ⊂ T 1,1, resulting in an effective action for a topological defect defined
on a (p + 1 − n)-submanifold Mp+1−n of the 5d bulk W5.

We claim that each of the four symmetry generators, N1(M3), V1(γ1), O(W 2), and
U1(Σ2), derived in section 2 with a Gauss Law constraint admits a D-brane origin. The
first symmetry generator we are interested in is N1 = Ñ1 ⊗ AM,1[B2] which generates the
Z(0)

2M gauge symmetry. From the bulk string theory setup, this defect can be realized by
reducing a D5-brane on S3 ⊂ T 1,1 [8]. With this interpretation, the dynamical gauge field
a1 in AM,1[B2] can be understood as the Chan-Paton field living on the D5-brane. These
localized degrees of freedom thereby naturally encode the stacking of a minimal TQFT in
order to construct the symmetry defect.

4 Z(0)
2M and Ẑ(1)

M defect fusion

4.1 Np ⊗ Np′ fusion and dielectric branes

Defect fusion. Let us study the parallel fusion between two copies of N1 defined on the
same 3-manifold M3. Here we would like to neglect the D5-brane origin of N1 for a moment
and treat them solely as topological defects acting on the Hilbert space of the theory. It is
straightforward to deduce that Ñ1 fuse invertibly as Ñ1 ⊗ Ñ1 = Ñ2 = exp

(
4πi

∫
M3 c3

)
.13 On

the other hand, the minimal TQFT AM,1[B2] satisfies the fusion rule [22],

AM,1[B2] ⊗AM,1[B2] = AM,2 ⊗AM,2[B2] , (4.1)

assuming gcd(M, 2) = 1, i.e. M is odd. Note that the first copy of AM,2 is a decoupled
TQFT [47], while the second one couples to the ZM gauge field B2. Combining the results,
we conclude that the fusion of two R-symmetry defects is given by

N1 ⊗N1 = Ñ2 ⊗AM,2 ⊗AM,2[B2] := AM,2 ⊗N2 . (4.2)
12Equivalently, the Bianchi identities for the various RR fields Gq+2 as differential forms can be collected

and rewritten in a more suggestive way, (d + H)G = 0, which is one of the supporting arguments for the claim
that D-brane charges are formally classified by twisted K-theory [45, 46].

13To avoid notational clutter, we hereafter often omit the dependency of the operators on manifolds.
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In general, one may construct an operator Np analogously to how we defined N2 above,
i.e. we take the naïve operator Ñp and stack it with a minimal TQFT AM,p[B2]. The latter
has an anomaly label p ∼ p + M dictating the braiding statistics of the anyons living on
M3. This implies that AM,M ∼= AM,0 is a trivial theory, so the operator NM

∼= ÑM reduces
to an invertible operator when we take p = M . The operator NM therefore generates
the anomaly-free Z(0)

2 subgroup of the Z(0)
2M R-symmetry that is associated with the (−1)F

operator [19, 48]. It is important, however, to note that ÑM has a periodicity p ∼ p+ 2M ,
and the same applies to the full operator Np.

We show in appendix C that if gcd(M,p) = gcd(M,p′) = gcd(M,p+p′) = 1,14 the fusion
between general R-symmetry defects follows

Np ⊗Np′ = AM,pp′(p+p′) ⊗Np+p′ , (4.3)

which reduces to (4.2) when p = p′ = 1. It should be emphasized again that the factor
AM,pp′(p+p′) does not couple to B2. Since AM,pp′(p+p′) is symmetric in the labels p and p′,
the fusion rule (4.3) is manifestly commutative.

Dielectric branes. The above field-theoretic fusion for the Np operators can alternatively
be understood geometrically through the dynamics of probe Dp-branes in the dual string
theory. The N1 ⊗N1 fusion is modeled by two coincident D5-branes on the M3 × S3 needed
to generate the Z(0)

2M R-symmetry. As the two branes are brought together, the worldvolume
theory will undergo an enhancement of the gauge group from U(1) to U(2) as can be seen
from the new stringy modes stretching between the two D5-branes. This enhancement will
play a significant role in the behavior of the stack of D5-branes.

It is known in the string theory literature that, in the presence of a nontrivial Gp+4 or
B2 background, k coincident Dp-branes will polarize and “puff up” into an S2 transverse
to the original stack [8, 49–51], known as the Myers Effect. The resulting configuration is
equivalent to that of a D(p+ 2)-brane with vanishing D(p+ 2)-brane charge and k units of
Dp-brane charge. In the case at hand, when two D5-branes wrapping M3 × S3 are brought
close to one another, the configuration becomes indistinguishable from a single D7-brane
wrapping M3 × T 1,1 with two units of worldvolume flux through the S2 ⊂ T 1,1.

There is a subtlety arising from the description of two D5-branes polarizing into a
D7-brane. To illustrate the issue, let us reduce a D7-brane on T 1,1, with two units of
worldvolume flux threading the S2 orthogonal to the S3 ⊂ T 1,1 on which the D5-branes
are wrapped. The reduction leads to

exp
(

2πi
∫

M4×T 1,1
ID7

9

)
= exp

(
4πi

∫
M3

c3 + M

2 a1da1 + a1B2

)
= N2(M3) , (4.4)

where ∂M4 = M3. Note that here a1 is the U(1) Chan-Paton field living on the D7-brane.
A quick comparison with (4.2) reveals the issue: the decoupled TQFT AM,2 seems to be
absent from the naïve computation above.

To recover this missing information, we can simply model each D5-brane as a “neutral”
D7-brane with one unit of worldvolume flux (see the discussion following (3.3)). Specifically,

14This condition can be satisfied for all possible values of p, p′ = 0, . . . , M − 1 if M > 2 and is prime.
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the anomaly polynomial of each of these neutral D7-branes can be expanded as

ID7
9,i = G7(B2 + dai

1 + f i
2) + 1

2 G5(B2 + dai
1 + f i

2)2 + 1
6 G3(B2 + dai

1 + f i
2)3 , (4.5)

where ai
1 denotes the Chan-Paton gauge field along S3, and f i

2 represents the worldvolume
flux such that

∫
S2 f i

2 = 1. We can then perform the reduction over T 1,1 using (2.2) to find

∫
M4×T 1,1

ID7
9,1 + ID7

9,2 =
∫

M4
2dc3 + M

2
(
da1

1da
1
1 + da2

1da
2
1

)
+ d(a1

1 + a2
1)B2

=
∫

M3

2−1M

2 α′
1dα

′
1 + 2

(
c3 + M

2 α1dα1 + α1B2

)
, (4.6)

where we have made the field redefinitions 2α1 = a1
1 + a1

2 and α′
1 = −a1

1 + a2
1. Not only have

we recovered the action for N2(M3), but we have also gained an additional term. This term
encodes the information of the minimal TQFT AM,2−1 .15 Since the anomaly p of the minimal
TQFT is only defined modulo M , the quantity 2−1 denotes the unique multiplicative inverse
of 2 modulo M assuming gcd(M, 2) = 1. Importantly, it is an integer so that (4.6) is properly
quantized. We now further utilize the equivalence of minimal TQFTs [37],

AM,p ∼= AM,pr2
, (4.7)

by rescaling the generating line a = e2πi
∮

α′
1 of a minimal TQFT as a→ ar, for any r such

that gcd(M, r) = 1. Setting r = 2 gives AM,2−1 ∼= AM,2, and so we have fully reproduced
the r.h.s. of (4.2).

The question then arises of how to address the more general fusion Np ⊗Np′ . We can
repeat the above computation for stacks of p and p′ coincident D5-branes, by viewing each
stack as a single D7-brane with p and p′ units of D5-brane charge respectively, i.e.

∫
S2 f1

2 = p

and
∫

S2 f2
2 = p′. The reduction over T 1,1 now becomes

∫
M4×T 1,1

ID7
9,1 + ID7

9,2 =
∫

M4
(p+ p′)dc3 + M

2
(
pda1

1da
1
1 + p′da2

1da
2
1

)
+ d(pa1

1 + p′a2
1)B2

=
∫

M3

pp′(p+ p′)−1M

2 α′
1dα

′
1 + (p+ p′)

(
c3 + M

2 α1dα1 + α1B2

)
,

(4.8)

where the required field redefinition here is (p+ p′)α1 = pa1
1 + p′a2

1 and α′
1 = −a1

1 + a2
1. This

exactly reproduces the general fusion in (4.3), with the first term describing AM,pp′(p+p′)−1 ∼=
AM,pp′(p+p′), and the terms in parentheses describing Np+p′ . Note that the latter can
equivalently be described as a single D7-brane with p+ p′ units of worldvolume flux.

15We should be careful as there is an ambiguity in this description. As was discussed in [37], U(1)mn
∼=

Amn,1 ∼= Am,n ⊗ An,m are isomorphic as topological field theories. Furthermore, the effective Lagrangian
descriptions for Am,n, An,m, and U(1)mn are essentially identical. Technically, they can only be distinguished
by coupling to appropriate background fields. Our choice of the identification is motivated by the field-theoretic
results detailed in appendix C.
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Figure 1. Fusion of three stacks of D5-branes. The left figure depicts the fusion Np ⊗ (Np′ ⊗Np′′),
while the right depicts the fusion (Np ⊗ Np′) ⊗ Np′′ . In the former case, there is a center-of-mass
mode α for the overall p+ p′ + p′′ stack, and two other relative modes α′ and α′′ respectively for the
p — (p′ + p′′) and p′ — p′′ stacks. The same applies to the figure on the right.

Collective degrees of freedom. The conclusions above can be recasted from the perspec-
tive of the original stacks of p and p′ D5-branes. We see that the gauge field α1 ∼ pa1

1 + p′a2
1

defined on Np+p′ is the overall center-of-mass mode for the combined stack of p+p′ D5-branes.
Likewise, a1

1 and a2
1 are the center-of-mass modes of the individual stacks.

The other gauge field, α′
1, should be interpreted as a mode describing the relative motion

of the two stacks of p and p′ D5-branes. This can be understood in the following way. The
Chan-Paton bundle for the stack of p D5-branes has a gauge group U(p). It is known that
the center-of-mass mode and the non-Abelian modes are decoupled from each other, so that
the gauge group can be schematically considered as SU(p) × U(1)CM. The same is true of
course for the stack of p′ D5-branes as well as the final stack of p+ p′ D5-branes. However,
this final stack has another Abelian mode contained within it. Within SU(p + p′) there
is a maximal subgroup given by

SU(p+ p′) ⊃ SU(p) × SU(p′) × U(1)rel , (4.9)

where the U(1)rel is generated by the Cartan element diag(p′1p,−p1p′). It is this U(1)rel
that is describing the relative motion of the D5-brane stacks, which manifests itself as
the decoupled minimal TQFT AM,pp′(p+p′) at the level of the fusion algebra (4.3). Note
that if we were to start with stacks of, say, p + k and p′ − k D5-branes, then we would
end up with a different U(1)rel, as is reflected by a different decoupled minimal TQFT
AM,(p+k)(p′−k)(p+p′) in the fusion.

We can carry out the same argument for more than two stacks of D5-branes. Consider,
for instance, three stacks of p, p′, and p′′ D5-branes as in figure 1. Each stack of D5-branes
will itself have a center-of-mass mode describing the collective motion, i.e. a1

1, a
2
1, and a3

1, but
we can repackage these degrees of freedom in different combinations. We may first consider
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an overall center-of-mass mode, α1, describing the collective motion of the three stacks. We
can then consider a mode describing the relative motion of the leftmost D5-brane stack
compared to the collective motion of the rightmost two D5-brane stacks given by α′

1, as well
as a mode describing the relative motion of the two rightmost D5-brane stacks given by α′′

1.
The explicit expressions for α1, α

′
1, α

′′
1 can be written as

α1 = 1
p+ p′ + p′′

(
pa1

1 + p′a2
1 + p′′a3

1

)
,

α′
1 = 1

p(p′ + p′′)
(
(p′ + p′′)(pa1

1) − p(p′a2
1) − p(p′′a3

1)
)
, (4.10)

α′′
1 = 1

p′p′′

(
p′′(p′a2

1) − p′(p′′a3
1)
)
.

By regrouping our degrees of freedom in this way, we are effectively perfoming the fusion

Np ⊗ (Np′ ⊗Np′′) ∼= AM,p′p′′(p′+p′′) ⊗AM,p(p′+p′′)(p+p′+p′′) ⊗Np+p′+p′′ . (4.11)

The above describes the left side of figure 1. If we grouped the stacks of D5-branes in the other
way as in the right side, we could define similar modes and would be performing the fusion

(Np ⊗Np′) ⊗Np′′
∼= AM,pp′(p+p′) ⊗AM,p′′(p+p′)(p+p′+p′′) ⊗Np+p′+p′′ . (4.12)

Since the only difference between the two processes is the order in which we fuse the stacks
of D5-branes, it is natural to argue that locality of the theory demands the fusion to be
associative, i.e. (4.11) and (4.12) should be physically equivalent. In appendix C, we show
that these two triple fusion rules are indeed isomorphic.

It is worth taking a moment to reassess the previous results. We are able to model
the symmetry defects Np as stacks of p D5-branes, which themselves can equivalently be
described as a single D7-brane with p units of worldvolume flux. The fusion (4.3) of the defects
themselves does not seem to favor a particular approach, as it extracts only the Abelian
information from the Dp-branes. All the brane information captured by the fusion rules comes
from a single center-of-mass mode as well as a single mode describing relative motion, or
multiple relative modes in the case of more instances of fusion. In this sense, the dynamics of
the non-Abelian modes in the worldvolume theory are “washed out” in the symmetry defects.

4.2 Np ⊗ N−p fusion and Tachyon Condensation

Condensation defect. The case of p′ = −p mod M requires special treatment. As
discussed above, the Ñp(M3) component of the defect is invertible and thus becomes the
identity for the Np ⊗ N−p fusion. Regarding the fusion between the minimal TQFTs, we
have, in terms of explicit worldvolume actions,

AM,p[B2]⊗AM,−p[B2] =
∫

Da1Da′1 exp
(

2πi
∫

M3

pM

2 a1da1−
pM

2 a′1da
′
1+p(a1−a′1)B2

)
=
∫

Dā1Da′1 exp
(

2πi
∫

M3
Mā1da

′
1+ p−1M

2 ā1dā1+ā1B2

)
= (ZM )0[B2] , (4.13)
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where a1 and a′1 respectively denote the auxiliary fields living on AM,p and AM,−p, while
ā1 = p(a1 − a′1). In the third line, we used the fact that if M is odd, the Dijkgraaf-Witten
(DW) term in (ZM )K is trivial when K is an integer multiple of M , i.e. K ∼ K + M

(assuming M3 is a spin manifold) [52].16 Integrating out a′1 enforces Mā1 ∈ H1(M3;Z) to
be an integral lift of a 1-cocycle in H1(M3;ZM ). We then rewrite (4.13) as a discrete sum
of the Ẑ(1)

M symmetry defects U1(Σ2) in (2.16),17

Np ⊗N−p = 1
|H0(M3;ZM )|

∑
Σ2∈H2(M3;ZM )

U1(Σ2) := C , (4.14)

where Σ2 is the Poincaré dual of the torsional reduction of ā1 with respect to M3. We will
refer to C as the “condensation defect” as is common in the literature. This nomenclature
stems from the interpretation that the sum of operators signifies a “higher gauging” of the Ẑ(1)

M

symmetry [47]. The symmetry operators condense on the submanifold M3 of spacetime, hence
the name. Note that the factor of |H0(M3;ZM )| is a standard gauge-theoretic normalization
coming from the normalization of the path integral measure [1, 23].

Tachyon condensation. The presence of the condensation defect can be understood com-
pletely in terms of the dynamical process of tachyon condensation, suggesting an interesting
interpretation of non-invertible fusion in holographic setups. Here we review some relevant
generic features of tachyon condensation [53–55].

Our starting point is a Dp-Dp-brane pair wrapped on a submanifold Mp+1 of the total
spacetime, where an anti-Dp-brane is the orientation reversal of a Dp-brane. Over the
Dp-brane we denote the Chan-Paton bundle by E+, while over the anti-Dp-brane we denote
the bundle E−. Without loss of generality, we may take E− = K and E+ = L ⊗K for L and
K complex line bundles.18 It is known that the worldvolume theory for a brane-antibrane
pair suffers from a tachyonic mode. The tachyon in this case should be viewed as a section of
E+ ⊗ (E−)∗ ∼= L, where (E−)∗ denotes the dual bundle, reflecting that it is charged under
the U(1) × U(1) gauge symmetry of the worldvolume theory. We may consider vortex-like
solutions correpsonding to a choice of tachyon profile that vanishes in a specified region of
spacetime. To be precise, let us take the tachyon profile to be

T = c · s , (4.15)

where s is a section of L which vanishes over a codimension-2 submanifold Mp−1 ⊂ Mp+1,
and c is a constant chosen such that the tachyon takes its vev away from Mp−1. By
construction, this localizes a codimension-2 solution to exist only along Mp−1, and far from
Mp−1 the system is indistinguishable from the vacuum. In the above construction, we are only

16The continuum action for a 3d DW theory (ZM )K is given by
∫

Ma1da1 + (k/2)a1dc1.
17For general M , there is an additional factor in the condensation defect coming from a choice of discrete

torsion, or the choice to stack with an SPT phase when gauging. For M odd, which we are assuming throughout
this work, this discrete torsion factor will be trivial and thus not present in the condensation defect.

18The proper classification of D-branes is well-known to be formalized not by ordinary cohomology but
by K-theory [45, 46, 56, 57]. In this formalism, the relevant quantity which classifies the D-branes is the
K-theoretic “difference” between the bundles E±. Hence, the choice of parametrization in the main text is
for convenience.
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considering a single Dp-brane and Dp-brane producing a single D(p− 2)-brane, but in general
one may consider 2k−1 each of branes and antibranes to produce a D(p− 2k)-brane [46].

More explicitly, note that the worldvolume bundle E has a natural Z2 grading induced
by the splitting between the brane and antibrane degrees of freedom, thereby giving the
structure of a superbundle. Taking advantage of the superbundle structure, we may collect
the worldvolume degrees of freedom into a single superconnection [58],

A =

 a+
1 iT

iT a−1

 , (4.16)

where a±1 denote the Chan-Paton gauge fields over E±, and T is the tachyon field as a section.
Using this superconnection, we may write an action that allows us to go directly from a
Dp-Dp configuration to a stable D(p − 2)-brane. This action was proposed in [59], later
elaborated on in [60–63], and can be written in the form

SDp-Dp
WZ = µp

∫
Mp+1

C ∧ eB ∧ Trse
F ∧

√√√√ Â(RT )
Â(RN )

∣∣∣∣∣
(p+1)−form

, (4.17)

where F = dA + A2 is the supercurvature given by

F =

da+
1 − TT iDT

iDT da−1 − TT

 . (4.18)

In the above, Trs is the Z2-graded supertrace and the covariant derivatives DT and DT

are defined as

DT := dT + (a+
1 − a−1 )T, DT := dT − (a+

1 − a−1 )T . (4.19)

By writing a+
1 = aL + aK and a−1 = aK to reflect the structure of the line bundles, we

can see that the tachyon field T couples only to aL and thus is tied only to the bundle
L. The action (4.17) may be rewritten as a WZ action for a D(p − 2)-brane living inside
the Dp-Dp worldvolume, i.e.

SDp-Dp
WZ = µp

∫
Mp+1

C eB ch(K) (ch(L) − 1) = µp−2

∫
Mp−1

C eB+FK = S
D(p−2)
WZ , (4.20)

where in the final equality we integrated out the two directions transverse to the D(p− 2)-
brane’s worldvolume Mp−1. Due to our choice of bundle structure, this is equivalent to
integrating out the dependence on the line bundle L, and thus the tachyon.19

19It is worth pointing out that the factor involving ch(L) is encoding the K-theoretic difference alluded
to in the previous footnote. Had we not made the previous simplification and instead chosen E+ = L1 ⊗K
and E− = L2 ⊗K (we can always consider a common line bundle K), this term would have taken the form
ch(L1) − ch(L2). For the purpose of illustration, we assume in (4.20) that the integral of ch(L) − 1 is equal to
2π. In general, the ratio of Dp-brane charges is given by µp/µp′ = (2π

√
α′)p′−p [64], but we also adopt the

convention that 2πα′ = 1, otherwise B2 + 2πα′F2 should be the gauge-invariant combination instead.
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Condensation defect from tachyon condensation. Let us apply the general discussion
above to our case where a D5-brane and an anti-D5-brane wrap the submanifold M3×S3 in the
KT-KS geometry W5 × T 1,1. When the branes are brought together there will be a solitonic
D3-brane localized on a worldvolume M4 ⊂M3 × S3, with a WZ action described by (4.20).

To reconstruct the condensation defect C ∼
∑

U1 in (4.14), we must first specify the
submanifold M4 that the solitonic D3-brane is wrapping. Equivalently, this amounts to
specifying the bundle L defined along the two transverse directions of M4 with respect to
M3 × S3. The integration in (4.20) can be viewed as a two-step process: a fiber integration
from the S3 down to the Hopf base S̃2, and an application of Poincaré duality to land on
Σ2 ∈ H2(M3;ZM ). Both of these are encoded by the Chan-Paton flux FL. Specifically, we
can construct a U(1)R-equivariant ansatz for the Chan-Paton flux as

FL = f2 +Mη1
Dψ

2π + ai
0Vi , (4.21)

where f2, η1, and ai
0 are fields defined over the external spacetime, and Vi are the volume

forms of the spheres present in the T 1,1. Enforcing the Bianchi identity dFL = 0 leads us
to identify a1

0 = a2
0 = a0 and Mη1 = da0, so that

FL = Mη1
Dψ

2π − a0 (V1 + V2 − F2) + Λ2 = daL + Λ2 , (4.22)

where aL = a0(Dψ/2π) is a locally defined gauge field associated with L. The 2-form Λ2
is closed, and it plays the role of a basepoint flux for FL, much like f i

2 in the discussion
surrounding (4.5). Performing the integration in (4.20) using this field strength yields the
desired WZ action for a solitonic D3-brane localized on M4 = Σ2 × S̃2.

Note that the expression for FL give two possible sources for a D3-brane in the D5-D5
worldvolume. The first is as a soliton arising from tachyon condensation as discussed above.
The second is from any worldvolume flux present on the original D5-brane and anti-D5-brane.
The D5-branes used to construct N1(M3) did not carry any worldvolume flux, so we may
take the corresponding term to be zero if desired.

At this point, one may try to reduce the anomaly polynomial ID3
5 for the D3-brane on

the Hopf base S̃2, but end up finding an apparently vanishing result, i.e.∫
S̃2⊂S3

ID3
5 = I3 “=” 0 . (4.23)

However, this is too quick. The operator U1(Σ2) we are ultimately concerned with finding
is a holonomy of a discrete gauge field B2 ∈ H2(M3;ZM ). The standard descent procedure
falls short as the reduction above merely indicates that there is no nontrivial holonomy for
continuous gauge fields; we may still have discrete holonomies. Roughly speaking, we can
again think of I3 as a “field strength” for torsional flux and thus would vanish when evaluated
on integer-valued cycles. If not integer-valued, then what cycles should we evaluate this
on? Since we aim to recover a ZM -valued operator, we shall follow our nose and consider
reducing on ZM -valued torsional cycles.

The correct topological operator is then not the standard holonomy of I3 on an integer-
valued cycle, but a holonomy along a ZM -valued cycle. Namely, the proper operator to
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consider is20

U1(Σ2) = exp
(2πi
M

∫
Σ̃3

I3

)
= exp

(2πi
M

〈
Σ̃3, I3

〉)
, (4.24)

where Σ̃3 is a formal extension of Σ2 such that ∂Σ̃3 = MΣ2. In the final expression
we have rewritten the integral as a pairing between ZM -valued cycles and cocycles, and
should now consider everything to be valued in (co)homology with ZM coefficients. As
we mentioned, I3 should be viewed as a “field strength” for a discrete field, so we may
express I3 = β′(B2) ∈ H3(M3;ZM ). This justifies our decision to consider the reduction on
ZM -valued cycles, as opposed to cycles valued in any other coefficients, as the only discrete
2-form gauge field present in the supergravity setup is B2 ∈ H2(M3;ZM ).21

With this choice, we can evaluate the holonomy of I3 as

exp
(2πi
M

〈
Σ̃3, β′ (B2)

〉)
= exp

(2πi
M

〈
β′
(
Σ̃3),B2

〉)
= exp

(2πi
M

〈
Σ2,B2

〉)
. (4.25)

In the first equality, we switched the Bockstein homomorphism in cohomology to its dual in
homology, and in the second equality, we used the property that β′ = ∂/M for the Bockstein
homomorphism in homology (see appendix B for details). This holonomy is nothing but the
U1(Σ2) operator we saw in the condensation defect (4.14).

The arguments above regarding the D3-brane worldvolume action can be rephrased
in the language of differential cohomology [26–29, 65]. The standard characteristic class
construction via the descent procedure constructs the curvature form for a (higher) anomaly
bundle over the base spacetime. Naïvely, this curvature form only captures the continuous
data of a Cheeger-Simons differential cocycle; the torsional data is overlooked. What we see
above is that the torsional data is not completely lost, but can be reconstructed through
the presence of torsional flux.

Now that we have constructed an operator for the D3-brane wrapping Σ2 × S̃2, there is
one last thing to consider about the D3-brane soliton arising from the D5-D5 worldvolume.
The Chan-Paton field on the D5-D5 brane pair is dynamical and therefore should be summed
over in a quantum theory. This includes a summing over the gauge field not only from the
solitonic D3-brane itself, but also from aL along the other two transverse directions in the
original D5-D5 worldvolume. A sum over aL configurations is equivalent to a sum over the
configurations of a0 defined in (4.22). This in turn, as a0 dictates the torsional 2-cycle Σ2

that the D3-brane is wrapping (via Poincaré duality), yields a sum over all possible 2-cycles
Σ2 ∈ H2(M3;ZM ). Hence, taking into account the proper gauge theoretic normalization,
our final defect is given by

C = 1
|H0(M3;ZM )|

∑
Σ2∈H2(M3;ZM )

exp
(2πi
M

∫
Σ2

B2

)
, (4.26)

20We can alternatively phrase this in terms of the RR field strengths, by originally having a term in G5 of
the form Mη3 ∧ (V1 + V2) with η3 a ZM -valued field strength. Due to the torsion, this term would formally be
zero and naïvely wouldn’t be present in the expansion.

21By exactness of the short exact sequence 0 → ZM → ZM2 → ZM → 0, the quantity MB2 is trivial, and so
is β′(MB2). This means that UM (Σ2) = U1(MΣ2) = exp

(
2πi
∫

Σ̃3 I3
)

= 0 as we saw in (4.23).
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Figure 2. Condensation defect arising from tachyon condensation on a Dp-Dp system wrapping some
internal manifold. We schematically decomposed the worldvolume of the branes as a direct product of
internal and external manifolds. Chan-Paton modes exist both for open strings ending on the same
brane or on different branes. The latter includes tachyonic modes, which, upon integrating out, lead
to a condensate of lower branes within the (both internal and external) worldvolume of the original
Dp-Dp system.

which is in exact agreement with (4.14) for p = 1. We have understood the condensation
defect arising in the fusion N1 ⊗N−1 as being a sum of all possible D3-brane configurations in
the original D5- and D5-brane system. It is worth noting that the aL that the condensation
defect couples to is the center-of-mass mode for the brane-antibrane configuration. Even
though it arises as a difference of gauge fields, this “difference” is really a sum with an
orientation reversal coming from the anti-D5-brane. The condensation defect aligns with the
earlier observation (in the case of Np ⊗Np′) that the symmetry defects are those coupling
to the center-of-mass modes for the stacks of Dp-branes.

We can extrapolate the above argument to the more general fusion of Np ⊗N−p. In this
case, tachyon condensation will produce p D3-branes defined on the Σ2 × S̃2 submanifold.
As we will elaborate upon later, this will cause each term in the sum over 2-cycles to have
charge p rather than charge one. As the sum is over all 2-cycles in M3, this rescaling will
simply reshuffle the terms in the sum and has no effect otherwise. We can then immediately
see the brane realization of the more general fusion Np ⊗N−p = C as derived in (4.14).

There is one last comment to make regarding the computation of the condensation defect.
When constructing the solitonic D3-brane on the D5-D5 worldvolume, the base S̃2 of the
Hopf fibration was really one of the many possible choices on which to wrap the D3-brane.
We could have chosen any possible linear combination of the two spheres in the base of the
T 1,1 fibration and would have produced the same defect Uq(Σ2). From the point of view of
the external spacetime, the defects are identical. In fact, one might argue that a more natural
choice for the worldvolume of the D3-brane is one wrapping the equatorial S2 of the S3 cycle.
For this choice the solitonic nature is more apparent as follows. When implementing tachyon
condensation for a D5-D5 system, the tachyon profile is crucial in determining where the
D3-brane is located. We could have picked the tachyon profile such that it approaches T0, its
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minimum, at one pole of the S3, and −T0 at the other pole.22 The tachyon will then have a
profile such that it vanishes exactly along the equatorial S2 specified above. The fact that
this choice of internal directions for the D3-brane has no effect on the produced operator is
an interesting phenomenon that we will encounter again later in this paper.

4.3 Nature of the Ẑ(1)
M Defect

We have so far seen that the existence of the Z(0)
2M symmetry defect N1(M3) in the 5d bulk

W5 can be attributed to a D5-brane wrapping M3 × S3. Furthermore, the fusion of such a
D5-brane with its orientation reversal produces a condensate of the Ẑ(1)

M defects U1(Σ2) as
solitonic D3-branes localized on M3. A natural question to ask then is whether a U1(Σ2) defect
defined on a generic Σ2 ̸⊂M3 can be realized as a bona fide D3-brane existing on its own right.

The answer is actually baked in already in the presentation of (4.20). Instead of
considering solitonic D3-brane excitations on a D5-D5 worldvolume, we can consider a
D3-brane on its own wrapping the Hopf base S̃2 ⊂ S3 inside the internal T 1,1, and an
arbitrary external ZM -valued cycle Σ2 ∈ H2(W5;ZM ). Following the identical arguments
given previously, the D3-brane reproduces the Ẑ(1)

M magnetic symmetry defect,

U1(Σ2) = exp
(2πi
M

∫
Σ2

B2

)
. (4.27)

It is interesting to note that this symmetry defect can also be constructed by a closed
fundamental (F1) string sitting in the external spacetime W5. As F1-strings do not couple to
the Ramond-Ramond sector, the anomaly polynomial for this F1-string is simply given by

IF1
3 = h3 = db2 − β̃′(B2) , (4.28)

where we used (2.5) and (2.6). The fluctuating field b2 is suppressed as we push the F1-string
towards the conformal boundary, so what is left behind is a holonomy ∼ exp

(
2πi

∫
Σ2 B2/M

)
(up to a sign convention). We have thus showed that these F1-strings can also give rise
to the symmetry defect U1(Σ2).

An alternative understanding of this comes from a modification of the “baryon vertex”
introduced in [66]. This utilizes the fact that F1-strings act as Wilson operators in the
boundary field theory, which can be screened by operators carrying the appropriate charge.
In the background we are concerned with, there are two possible causes for the screening
of F1-strings: a D5-brane wrapping the entirety of the T 1,1, or a D3-brane wrapping only
the S3 ⊂ T 1,1 [67]. From the Bianchi identities,∫

T 1,1
dG7 = −

∫
T 1,1

H3G5 = −Ndb2 ,

∫
S3
dG5 = −

∫
S3
H3G3 = −Mdb2 , (4.29)

we can see that the former will screen N F1-strings while the latter will screen M F1-strings.
The combined effect will be to screen gcd(N,M) = M F1-strings. This implies that the
defect produced by an F1-string will generate a ZM (rather than ZN ) symmetry.

Due to the baryon vertex, a collection of k F1-strings also generates the full Ẑ(1)
M symmetry

as long as gcd(M,k) ̸= 1 (otherwise it will only generate a ZM/k subgroup). With an eye
22We would need to pick similar configurations in the external spacetime within M3.
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towards the construction of the dual symmetry defect in section 5, it is convenient for us
to take k = N/M . One may then interpret the defect U1(Σ2) to be either one D3-brane or
k coincident F1-strings. However, these descriptions are equivalent when considering the
Myers Effect discussed earlier.23 To see this, it is best to first consider the construction
of [68] which describes an S-dual description to the KS/KT background. In that analysis,
there exists nontrivial H3 flux threading the S3 of the internal geometry. If one imagines
k coincident D1-branes placed in the external spacetime of this background, the D1-branes
will “puff up” into a single D3-brane with k units of worldvolume flux through an S2 ⊂ S3

via the standard Myers Effect. Transforming to the KS/KT background,24 this tells us
that a stack of k F1-strings in the presence of a nontrivial G3 background is equivalent to
a D3-brane with k units of worldvolume flux threading a transverse S2 ⊂ S3, which we
identify as the Hopf base S̃2 above. We thus see that the two descriptions presented above
for U1(Σ2) converge. We will use the D3-brane description, as opposed to the one involving
F1-strings, in the discussion that follows.

Recall that earlier we constructed the Z(0)
2M defects Np(M3) by stacking p D5-branes

on M3 × S3, thanks to the fact that only the (Abelian) center-of-mass mode, but not the
non-Abelian modes, of the stack contributes to this topological operator. Equivalently, we may
take a D7-brane with p units of worldvolume flux threading S2 ⊂ T 1,1. It is straightforward
to apply the same argument here to construct the general Ẑ(1)

M defects,

Uq(Σ2) = exp
(2πiq
M

∫
Σ2

B2

)
, (4.30)

from a stack of D3-branes wrapping Σ2 × S̃2. Again equivalently, this can also be realized
by taking a D5-brane with q units of worldvolume flux threading S2 ⊂ T 1,1.

Defect fusion. Unlike the D5-brane operator Np(M3) on which the Chan-Paton fields
form a nontrivial TQFT, the D3-brane operator Uq(Σ2) has a relatively simple structure as
seen in (4.30). For two such defects wrapping the same external 2-cycle (mod M) Σ2 ⊂ W5,
their fusion obeys

Uq(Σ2) ⊗ Uq′(Σ2) = Uq+q′(Σ2) = exp
(2πi(q + q′)

M

∫
Σ2

B2

)
, (4.31)

where the label q of Uq is only defined modulo M . In other words, the Uq operators realize
a group-like fusion algebra corresponding to a ZM group.

5 Z(1)
M and Ẑ(2)

2M defect fusion

Let us proceed to discuss the remaining two symmetry defects resulting from the Gauss
Law constraints presented in section 2, namely, Oq and Vp, which respectively generate the
Z(1)

M and Ẑ(2)
2M symmetries. As we will show, these operators can also be realized by certain

D-brane configurations in the KT-KS background. Remarkably, their fusion rules share some
23We thank Oren Bergman for pointing this out to us.
24This was described in [69], and a similar effect was discussed in [70].
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qualitative features with those we studied in the previous section, thus shedding light on
the underlying brane kinematics and dynamics.

The Z(1)
M symmetry defect Oq(W 2), as written in (2.15), is composed of multiple 5d bulk

gauge fields of different origins. Therefore, it is natural to expect that the string-theoretic
construction is not given by a single type of Dp-brane. In fact, we can construct the desired
operator through a bound state of a single D3-brane and k D1-branes.25 Let us first consider
a D3-brane wrapping the (homologically) nontrivial S2 ⊂ T 1,1. To reduce its WZ action, we
have to carefully isolate the components of G5 along the directions of the S2. With (2.2),
the full expression for G5 = (1 + ⋆10)G5 is given by

G5 = NΩ5 + g2ω3 +Ng5 −
N

2 (V1 + V2) ⋆5 F2 + ⋆5g2ω2 , (5.1)

where g5 is an external gauge field. By imposing the IIB Bianchi identities, we find that
⋆5g2 can be solved as

⋆g2 = da2 + 1
M

g1g2 , (5.2)

for some globally well-defined a2. Now that we have this expansion, the reduction of the
D3-brane characteristic class over S2 becomes∫

S2
ID3

5 =
∫

S2
G5 +G3(B2 + da1) = da2 + 1

M
g1B2 + g1

(
da1 + dβ1

M

)
, (5.3)

where we have made use of the expression for g2 in (2.5). We also hereafter absorb β1 into
the worldvolume Chan-Paton gauge field a1 via a simple field redefinition.

As argued previously in section 4, the Chan-Paton field is dynamical and hence should be
summed over in the worldvolume gauge theory. For the D3-brane operator at hand, performing
the path integral enforces the condition dg1 = 0, so we retain only the cohomological class
(representative) A1 of g1 as in (2.5).26 The topological operator associated to the D3-brane
wrapping S2 ⊂ T 1,1 is thus given by

exp
(

2πi
∫

W 2
a2 + 2πi

M

∫
W 3

A1B2

)
, (5.4)

where ∂W 3 = W 2 ⊂ W5.
In addition to the D3-brane configuration described above, we also consider a D1-brane

in the external W5, whose characteristic class is simply

ID1
3 = G3

∣∣
W5 = dc2 . (5.5)

To reproduce the Z(1)
M symmetry generator, we need k such D1-branes wrapping the W 2 of

the D3-brane worldvolume, combining to give

O1(W 2,W 3) = exp
(

2πi
∫

W 2
(kc2 + a2) + 2πi

M

∫
W 3

A1B2

)
. (5.6)

25We previously defined k via N = kM . As long as M2 ≫ N ≫ M , there is no significant backreaction
from the stack of k probe D1-branes. We assume this limit for the above discussion.

26The potential c0 may be turned off via a gauge transformation.
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Alternatively, we can derive the above expression for O1(W 2,W 3) by considering a D3-brane
with k units of worldvolume flux threading the S2 ⊂ T 1,1.

This combination of branes pairs nicely with the discussion of the U1(Σ2) operator
surrounding (4.29). There, a bound state of a single D3-brane and k F1-strings gave rise
to a Ẑ(1)

M symmetry generator. It is natural to expect that the symmetry generator for
the Pontryagin dual symmetry Z(1)

M should be generated by the S-dual brane configuration,
i.e. a bound state of a single D3-brane and k D1-branes, which is precisely what was used
to construct O1(W 2,W 3).

As mentioned in section 2, this operator is only well-defined when W 2 = ∂W 3. In order
to find an operator that is well-defined even when W 2 is closed but is not a boundary, we
may rewrite it in terms of auxiliary fields which we denote as λ1 and φ,

O1(W 2) =
∫

Dλ1Dφ exp
(

2πi
∫

W 2
ĉ2 + λ1A1 + φB2 −Mφdλ1

)
. (5.7)

We emphasize that, similarly to the worldvolume Chan-Paton field a1 in AM,p[B2] (see (2.12)),
the presence of the worldvolume gauge fields λ1 and φ can be understood in terms of anomaly
inflow. The A1B2/M term in (5.6) should be interpreted as an anomaly defined in one
dimension higher than the D3-D1 worldvolume. Specifically, it describes a mixed anomaly
between the Z(0)

M ⊂ Z(0)
2M and Z(1)

M global symmetries on the D3-D1 bound state. It is known in
general that a theory with a global symmetry G(k) can be equivalently viewed as a gauge theory
for the Pontryagin-dual symmetry Ĝ(d−k−2) [1]. In our case, this corresponds to a Ẑ(0)

M × Ẑ(−1)
M

gauge theory on the D3-D1 worldvolume, which is exactly the TQFT XM,1 within O1(W 2).
Before proceeding, let us pause to examine the field content of the O1(W 2) operator.

The first term with ĉ2 describes the D3- and D1-brane charges present in the bound state,
while the final term is simply a BF term that Higgses the two gauge fields from U(1) down to
ZM . On the other hand, the second and third terms can be interpreted as induced charges
from F1-strings and D1-branes. To see this explicitly, note that φ ∈ H0(W 2;ZM ) and
λ1 ∈ H1(W 2;ZM ) by virtue of the discussion in footnote 10. The coupling to B2 in (5.7)
then implies that the D3-D1 worldvolume has a φ number of induced F1-string charge, where
φ is summed from 0 to M − 1 in order to create a gauge-invariant operator. Similarly, the
coupling to A1 in (5.7) describes induced D1-brane charge localized on 1-cycles γ1 which
is Poincaré-dual to λ1 (with respect to W 2). We will soon explain why A1 is associated
with D1-branes when we discuss the V1(γ1) operator. See figure 3 for a schematic picture
of these induced charges on O1(W 2).

5.1 Oq ⊗ Oq′ fusion

We are now interested in the fusion of these operators, which can be computed using methods
similar to those utilized in section 4. First we can consider the self-fusion of O1(W 2,W 3)
where W 2 is a boundary such that W 2 = ∂W 3. In this case, we may compute the fusion
by taking the D3-D1 configuration to be a neutral D5-brane with the appropriate units of
worldvolume flux. Specifically, we take two D5-branes each with worldvolume W 2 × S2 × S̃2

and one unit of worldvolume flux threading the S̃2. Each D5-brane will have a characteristic
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Figure 3. A schematic picture for the induced charges on the Z(1)
M generator Oq(W 2). In addition

to the D3- and D1-brane charges from the constituent branes, there are additional induced charges
describing F1-strings and D1-branes. The F1-charge is spread throughout the manifold W 2, while the
D1-charge is localized to codimension-1 submanifolds.

class I7,i similar to what we used before in (4.5), that can be written as

ID5
7,i = G5(B2 + dai

1 + f i
2) + 1

2 G3(B2 + dai
1 + f i

2)2 , (5.8)

where
∫

S̃2 f
i
2 = 1 and

∫
S2 f i

2 = k to account for the k D1-branes in the bound state. Summing
the two characteristic classes and performing the reduction over the internal geometry yields∫

S2×S̃2
ID5

7,1 + ID5
7,2 = 2

∫
S2
G5 +G3(B2 + da1 + f1

2 + f2
2 ) , (5.9)

which is twice that of the reduction for a single D3-D1 bound state. We therefore find that
the operators obey a group-like fusion,

O1(W 2,W 3) ⊗O1(W 2,W 3) = O2(W 2,W 3) . (5.10)

The same can be shown to hold for general Oq(W 2,W 3) and Oq′(W 2,W 3). We emphasize
that this fusion, and by extension this method, will only be valid in the case W 2 = ∂W 3. If
W 2 is a non-contractible closed manifold, we will need to take more care in handling the
discrete worldvolume fields φ and λ1 discussed previously.

To account for these additional worldvolume fields, we can compute the fusion directly
at the level of O1(W 2) or, in general, Oq(W 2). We find, for q′ ̸= −q,

Oq(W 2) ⊗Oq′(W 2) = XM,qq′(q+q′)−1(W 2) ⊗Oq+q′(W 2) , (5.11)

where the coefficient is a decoupled 2d TQFT using the notation introduced in (2.19). The
full details of this fusion can be found in appendix C, but we highlight some important
features here. It is first worth noting that the gauge fields φ and λ1 are localized worldvolume
degrees of freedom coupled respectively to the 5d bulk fields B2 and A1. To arrive at the
fusion rule (5.11), we make a field redefinition analogously to what we did in (4.8), i.e.

(q + q′)φ̃ = qφ+ q′φ′ , (q + q′)λ̃1 = qλ1 + q′λ′1 ,

φ̃′ = −φ+ φ′ , λ̃′1 = −λ1 + λ′1 . (5.12)
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Ultimately, the φ̃ and λ̃1 fields are associated to the Oq+q′ operator while the φ̃′ and λ̃′1 fields
comprise the decoupled TQFT coefficient. This lends itself to an interpretation reminiscent
of that given for the fusion of the Np operators; the symmetry defects themselves couple to
the center-of-mass modes of their corresponding brane stacks, whereas the topological sector
that decouples from the system is encoded by the relative modes. In this case, the relative
modes yield the 2d TQFT XM,qq′(q+q′)−1 arising as the fusion coefficient.

Despite the similarity, the mechanisms from which the 3d TQFT AM,pp′(p+p′) and the 2d
TQFT XM,qq′(q+q′)−1 arise are slightly different. In the former case, since the Chan-Paton
field a1 is what couples to B2 in the 3d worldvolume action of Np, it captures both the
center-of-mass and relative modes of the brane stacks. However, in the latter case, these
modes are instead captured by the pair of gauge fields φ and λ1, which respectively couple
to B2 and A1 in the 2d worldvolume action of Oq.

5.2 Oq ⊗ O−q fusion

Due to the existence of the nontrivial 2d TQFT XM,q[A1,B2] within the Oq(W 2) operator,
one naturally expects it to be non-invertible. The fusion of Oq with its orientation reversal
produces another condensation defect C̃ through

Oq(W 2)⊗O−q(W 2) = 1
|H0(W 2;ZM )|

⊕
γ1∈H1(W 2;Z2M )
Σ2∈H2(W 2;ZM )

V2(γ1)⊗U1(Σ2) := C̃(W 2) . (5.13)

More technical details are provided in appendix C. The presence of this sum over operators can
be understood as a consequence of the discussion following (5.7), as it is simply enumerating
the additional induced charges on the worldvolume W 2 of the D3-D1 operator.

We can interpret this condensation defect analogously to what we did to that in section 4:
through tachyon condensation between the D3-D1 bound state and its orientation reversal. In
this case, the overall D3-brane charge and the overall D1-brane charge (from the k D1-branes
in W5) will annihilate completely, but the induced charges will not. This logic is the same as
that of the non-invertible fusion of [9]. As the initial configuration is a product of sums of
the induced states, the final result will be a sum over charges that have not been completely
annihilated. The charges remaining in the (D3-D1)-(D3-D1) configuration are those of the
F1-strings induced in the worldvolume, and some remaining D1-brane charge that can be
seen coming from the coupling to λ1 in the definition of Oq(W 2). The reason why the sum
includes terms of the form V2 ⊗ U1 can be understood from the BF term in (5.7). It acts as
a constraint that the induced charges are equal for the F1-strings and D1-branes, so that
we do not sum over all insertions of the Ẑ(2)

2M symmetry generator but only those which
satisfy the imposed charge constraint.

It is clear from the discussion following (4.27) that the F1-strings in the external spacetime
represent the U1(Σ2) factors in the condensation defect C̃(W 2). The question remains of
where the remaining D1-brane charge is localized. As stated previously, this D1-brane charge
is induced on the original D3-D1 worldvolume and should not be thought of as a stand-alone
D1-brane. We should interpret the induced charge as a D1-brane soliton on the worldvolume
of the bound state, which is picked out by the tachyon condensation process. Specifically,
we see that the net D1-brane charge is localized to a torsional 1-cycle γ1 ∈ H1(W 2;ZM )
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in the external spacetime. In order for the soliton D1-brane to be stable, there must be
a locus in the internal geometry where the tachyon profile vanishes. Analogously to the
discussion in section 4 for the D5-D5 condensation, we can pick the tachyon profile such
that it reaches its minimum T0 at one pole of the internal S2, and takes the value −T0 at
the other. This leaves a codimension-1 locus where the tachyon vanishes, and thus where
a solitonic D1-brane can live. For simplicity, we take this to be the S̃1 equator of the S2

cycle wrapped by the original D3-D1 bound states. The end result is then a collection of
F1-string operators U1(Σ2), and a solitonic D1-brane operator V2(γ1).

We shall emphasize that the D1-brane operator V2(γ1) resulting from tachyon condensa-
tion is stable only because of its solitonic nature. To construct a generic Ẑ(2)

2M defect from a
stable D1-brane configuration, as we will do in the next subsection, we have to consider a
different S1 to wrap in the internal geometry of the KT-KS background. This is the same
phenomenon we witnessed in constructing the condensation defect C in section 4, namely,
when constructing symmetry operators from Dp-branes, there is an ambiguity arising from
which internal manifolds the branes wrap. In fact, multiple distinct configurations may
lead to the same 5d bulk operator that cannot otherwise be distinguished. For the setup of
interest, it is plausible that such a degeneracy can be lifted if we also consider the charges
of the operators under the SU(2) × SU(2) isometries, corresponding to the S2 × S2 base
of T 1,1 in the KT-KS background.

5.3 Nature of the Ẑ(2)
2M defect

As alluded to earlier, one can construct a stand-alone Ẑ(2)
2M symmetry operator,

V1(γ1) = exp
( 2πi

2M

∫
γ1

A1

)
, (5.14)

with γ1 ∈ H1(W5;Z2M ), by wrapping a D1-brane on the S1 Hopf fiber of the T 1,1. The
stability of this D1-brane can be attributed to the fact that the S1 fiber is non-vanishing over
the base S̃2, such that the brane is protected from shrinking to zero.

The explicit construction of V1(γ1) follows closely to that of Uq(Σ2) in section 4, i.e. if
we naïvely reduce the characteristic class over the Hopf fiber, we find∫

S1⊂S3
ID1

3 = I2 “=” 0 (5.15)

Much akin to the construction of the Ẑ(1)
M operator, this is simply a side effect of the

descent formalism overlooking information regarding discrete holonomies in our theory.
The appropriate torsional flux that should appear this time can be anticipated, using the
simple fact that the S1 Hopf fiber is associated with the U(1), or more precisely, Z2M

R-symmetry. Following the same arguments as presented around (4.24), we may express
I2 = β̃(A1) ∈ H2(W5;Z2M ), and by wrapping the D1-brane on a cycle γ1 such that
∂γ̃2 = 2Mγ1, one can reproduce (5.14). More generally, the operator

Vp(γ1) = exp
(2πip

2M

∫
γ1

A1

)
, (5.16)

where p ∼ p + 2M , can be constructed from a stack of p D1-branes.
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It is straightforward to show that these operators obey a group-like fusion rule, i.e.

Vp(γ1) ⊗ Vp′(γ1) = Vp+p′(γ1) . (5.17)

Similarly to before, the fusion rule can be understood by considering the D1-brane used
to construct V1(γ1) as being instead a neutral D3-brane wrapping γ1 × S1 × S2 with one
unit of worldvolume flux through the sphere S2. Bringing two such D3-branes together
is equivalent to a single D3-brane with two units of worldvolume flux, which we can then
extrapolate to arbitrary p = 1, 2, . . . , 2M − 1 ∈ Z2M .

6 Cross-symmetry defect fusion and braiding

6.1 Dissolved branes

We discussed in sections 4 and 5 the brane kinematics and dynamics underlying the parallel
fusion rules for Np ⊗Np′ , Oq ⊗Oq′ , Uq ⊗Uq′ , and Vp ⊗Vp′ . These fusion rules alone, however,
only form part of the full-fledged story involving the interplay between defects associated
with different bulk gauge symmetries, as summarized in table 2 and derived in appendix C.
In the following, we will discuss the brane origin of the rest of these fusion rules.

Let us begin with the fusion rule,

Uq(Σ2) ⊗Np(M3) = Np(M3) . (6.1)

The D-branes associated with Uq(Σ2) and Np(M3) are respectively q D3-branes wrapping
Σ2 × S̃2 and p D5-branes wrapping M3 × S3, where Σ2 ⊂M3 and S̃2 ⊂ S3. It now becomes
clear why (6.1) should be the way it is. Since the entire worldvolume of the D3-branes is a
submanifold of the D5-branes, the former can be absorbed by the latter without a cost. This
can be understood by the fact that D3-branes are dissolved in the D5-branes through the WZ
coupling da1C4, where we integrate over all configurations of the (dynamical) Chan-Paton
field a1. The effect of embedding extra D3-branes into the D5-branes then is merely to
reshuffle the summands in the said integration.27

Moreover, adding D3-branes to the condensation defect C(M3), which is itself a sum of
all D3-branes localized on M3(×S3), has the identical effect of reshuffling the summands
in the condensation defect. This naturally explains the fusion rule,

Uq(Σ2) ⊗ C(M3) = C(M3) . (6.2)

Alternatively, locality of the fusion allows us to interpret (6.2) from a different but equivalent
perspective, i.e.

Uq ⊗ C = Uq ⊗ (Np ⊗N−p) = (Uq ⊗Np) ⊗N−p = Np ⊗N−p = C . (6.3)

The expression above tells us that Uq ⊗ C can equivalently be thought of as a two-step
process, namely, absorption of D3-branes by D5-branes, followed by tachyon condensation

27If we instead interpret the defect Uq(Σ2) to be coming from F1-strings (or more generally, a D3-F1 bound
state), we can understand the fusion rule as the simple statement that a D5-brane freely absorbs F1-strings.
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on the D5-D5 system. Analogous arguments can be used to provide a brane interpretation
of the following fusion rules,

Vp(γ1) ⊗Oq(W 2) = Oq(W 2) , Vp(γ1) ⊗ C̃(W 2) = C̃(W 2) ,
Uq(Σ2) ⊗Oq′(W 2) = Oq′(W 2) , Uq(Σ2) ⊗ C̃(W 2) = C̃(W 2) .

(6.4)

We now turn our focus to the fusion between the Z(0)
2M defect Np(M3) with its associ-

ated condensation defect C(M3). To motivate the subsequent explanation, we utilize the
associativity of the fusion algebra again to rewrite the fusion in the following manner,

Np ⊗ C = Np ⊗ (Np′ ⊗N−p′)
= (Np ⊗Np′) ⊗N−p′

= AM,pp′(p+p′) ⊗Np+p′ ⊗N−p′

= AM,pp′(p+p′) ⊗AM,−pp′(p+p′) ⊗Np , (6.5)

assuming gcd(M,p + p′) = 1. As per the discussion in section 4, there is a center-of-mass
mode associated with each stack of D5-branes (or D5-branes). Suppose we first fuse p and
p′ D5-branes. This results in a stack of p+ p′ D5-branes, in addition to the relative mode
AM,pp′(p+p′) between these two stacks. Next, we fuse this new stack of p + p′ D5-branes
with p′ D5-branes, which results in a stack of p D5-branes, in addition to the relative mode
AM,−pp′(p+p′) between the two original stacks. It turns out that these two minimal TQFTs,
each of which is associated with an independent ZM symmetry, combines to form a ZM ×ZM

3d DW theory (ZM )0 [37] (see appendix C for details).
This result suggests that conceptually, rather than thinking of the condensation defect

as a collection of D3-branes, it is more appropriate to think of the defect as a “zero-charge”
D5-brane with solitonic D3-branes dissolved within, with an emphasis on “D5-brane” such
that we can associate it with an appropriate notion of a center-of-mass mode. Accordingly,
the decoupled DW theory in the fusion Np ⊗ C = (ZM )0 ⊗ Np can be interpreted as the
relative mode between the p D5-branes and such a neutral D5-brane. Similar remarks apply
to the remaining nontrivial fusion rules in table 2, i.e.

C ⊗ C = (ZM )0 ⊗ C , Oq ⊗ C̃ = (XM,−1)⊗2 ⊗Oq , C̃ ⊗ C̃ = (XM,−1)⊗2 ⊗ C̃ . (6.6)

6.2 Commutation relations

What we have worked out earlier in this paper is the full set of parallel fusion rules for the
symmetry operators we constructed from D-branes. While the fusion algebra plays a crucial
role in the interplay between the symmetry defects in the bulk, an equally important piece
of information is the braiding rules of these defects. Here we study the case where there is
a nontrivial linking between the manifolds on which the defects are defined. Depending on
the field content of these defects, there may be nontrivial commutation relations, meaning
that they are charged under each other.

To determine which pairs of operators are mutually charged, we first recall from the
SymTFT (2.8) that the conjugate momenta of the various 5d gauge fields are given by

Πb2 = −2πMĉ2 , Πĉ2 = 2πMb2 → −2πB2 ,

ΠA1 = 4πMc3 , Πc3 = −4πMA1 → −2πA1 .
(6.7)
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Importantly, we see that (b2, ĉ2) and (A1, c3) are conjugate pairs. Note that at low energies,
the fluctuating fields Mb2 and 2MA1 are respectively Higgsed to the discrete gauge fields
−B2 ∈ H2(W5;ZM ) and A1 ∈ H1(W5;Z2M ) via the Stückelberg mechanism.

It follows that the commutation relation between the Ẑ(1)
M defect Uq(Σ2) and the Z(1)

M

defect Oq′(W 2) is

Uq(Σ2)Oq′(W 2) = exp
(2πiqq′

M
ℓ(Σ2,W 2)

)
Oq′(W 2)Uq(Σ2) , (6.8)

where ℓ(Σ2,W 2) denotes the linking number of Σ2 and W 2 with respect to W5.28 As
discussed in [12, 27, 72, 73], the nontriviality of the commutation relation is very natural
when considering the Dp-branes associated with these operators. In Type II string theory,
Dp-branes are (electromagnetically) dual to D(6 − p)-branes, and particularly, D3-branes
are self-dual.29 Therefore one does expect the commutation relation between Uq(Σ2) and
Oq′(W 2), both of which are constructed from D3-branes, to be nontrivial. By the same token,
the Ẑ(2)

2M defect Vp(γ1) (from D1-branes) and the Z(0)
2M defect Np′(M3) (from D5-branes) do

not commute. More explicitly, we find

Vp(γ1)Np′(M3) = exp
(
− 2πipp′

2M ℓ(γ1,M3)
)
Np′(M3)Vp(γ1) , (6.9)

where ℓ(γ1,M3) again denotes the linking number of γ1 and M3 with respect to W5.
For completeness, let us provide a broad-brush argument for the commutation relation

between Np(M3) and Oq(W 2), as was also studied by [8]. The corresponding manifolds
typically do not link in W5, in which case these two operators commute. However, if
we consider a refined case where W 2 ∼= S1 × L1, with S1 ⊂ M3, then heuristically the
commutation relation takes the following form,

Np(M3)Oq(S1 × L1) ∼ exp
(
− 2πipq ℓ(L1,M3)

∫
S1
a1

)
Oq(S1 × L1)Np(M3) . (6.10)

The “charge” here is not a c-number phase, but rather a holonomy of the Chan-Paton field
of (multiple) open F1-strings, whose endpoints trace out the two copies of S1 respectively
embedded in M3 and W 2. Via the open-closed string duality, one may equivalently interpret
this process as the creation of a 2d worldsheet of closed F1-strings when the D3-brane
operator Oq(S1 × L1) is dragged through the D5-brane operator Np(M3). Note that the
Chan-Paton field a1 is a trivialization of the NSNS field b2 on the boundary of this worldsheet
(with b2 → −B2/M at low energies), so we may schematically express the action of Np(M3)
on Oq(S1 × L1) as

Np(M3) : Oq(S1 × L1) → exp
(2πipq

M
ℓ(L1,M3)

∫
S1×I

B2

)
Oq(S1 × L1) , (6.11)

where I is the interval along the transverse direction between Np(M3) and Oq(S1 ×L1). Such
a phenomenon is akin to the Hanany-Witten transition [74], where a D3-brane is created when

28The linking number we are using in this context is defined in the sense of [71]. By construction,
ℓ(Σ2, W 2) = 0 if Σ2 ⊂ W 2, such that it is compatible with the parallel fusion rule Uq(Σ2)⊗Oq′(W 2) = Oq′(W 2).

29This duality is not to be confused with the SL(2,Z) duality of Type IIB string theory, under which the
pair (B2, C2) transforms as a doublet while C4 transforms as a singlet.
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a D5-brane crosses an NS5-brane (each wrapping manifolds along appropriate directions).
By successively applying T and S dualities on this brane system, i.e.

(NS5–D3–D5) T2
−−→ (NS5–D1–D3) S−−→ (D5–F1–D3) ,

we arrive at the desired combination of branes in our construction.

7 Boundary conditions and field theory

In the previous sections, we have been primarily concerned with the presence and action
of the symmetry defects in the 5d bulk gauge theory, where all the discussed operators are
realized and interact in nontrivial ways. While the bulk alone has an involved structure, there
is another half of the story, namely, the symmetry structure of the 4d boundary field theory
is determined by choices of (Neumann or Dirichlet) boundary conditions for the bulk gauge
fields [1, 2, 6, 20, 75]. Importantly, these choices also prescribe the spectrum of topological
operators existing on the boundary.

7.1 Allowed choices from the SymTFT

Owing to the canonical quantization imposed on conjugate gauge fields, one cannot simulta-
neously pick Neumann (or Dirichlet) boundary conditions on the pair of fields. In addition,
there are potential obstructions from the anomaly terms in the SymTFT that forbids us
from imposing Neumann boundary condition on a given gauge field. In the following, we
are going to systematically study all the allowed choices of boundary conditions for the 5d
bulk gauge fields in the KT-KS setup.

Recall that the SymTFT is given by

Stop = 2π
∫
W5

(
Mb2dĉ2 − 2Mc3dA1 + b2A1B2 − A1B2

2 − K
M

A1β(A1)β(A1)
)
, (7.1)

where the first two terms are BF couplings respectively pairing b2 and ĉ2, and c3 and A1.
For concreteness, let us consider the former pair; the story for the latter pair is completely
analogous. Varying the topological action, we find

δSBF = 2π
∫

∂W5
Mb2δĉ2 , (7.2)

where we have made a choice in having the variation on ĉ2. By adding a boundary term
we may equivalently view the variation as δS′

BF = 2π
∫

∂W5 Mĉ2δb2. Because the variation is
first-order in derivatives, we must impose Dirichlet boundary condition on one of the gauge
fields, and Neumann boundary condition on the other to have a well-defined variational
problem.30 The difference between these two choices corresponds to different global structures
for the gauge group of the 4d N = 1 SYM field theory living on the boundary W4 = ∂W5.

30These boundary conditions are topological boundary conditions as they do not require a metric on the
boundary manifold, and are indeed invariant under diffeomorphisms of the boundary manifold. One can also
discuss topological boundary conditions in theories other than BF theories. One such example is 3d Abelian
Chern-Simons theory, where the existence of topological boundary conditions depends on the choice of the
coefficient matrix for the theory [76].
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Boundary Conditions (D,N,N,D) (N,D,N,D)

Gauge Group SU(M) PSU(M)

Global Symmetries Z(0)
2M , Z(1)

M Z(0)
2M , Ẑ(1)

M

Gauged Symmetries Ẑ(2)
2M , Ẑ(1)

M Ẑ(2)
2M , Z(1)

M

Symmetry Generators Ñp(M3), Õq(W 2) Np(M3), Uq(Σ2)

Charged Operators V(x), U(γ1) V(x), O(W 1)

Table 3. The allowed boundary conditions for the four bulk gauge fields (b2, ĉ2, c3,A1), and their
effect on the boundary field theory. Here and in the main text “N” (“D”) denotes Neumann (Dirichlet)
boundary condition imposed on a given gauge field.

Specifically, an SU(M) gauge theory has a Z(1)
M (electric) global symmetry, whereas a PSU(M)

gauge theory has a Ẑ(1)
M (magnetic) global symmetry. In general, one may consider a larger

family of boundary conditions when M = kk′ is not prime. This realizes a Zk × Zk′ global
symmetry on the boundary 4d N = 1 SU(M)/Zk SYM theory. We leave the study of such
cases to future work.

The remaining cubic terms in (7.1) place additional constraints on the allowed choices
of boundary conditions for the bulk gauge fields. From the point of view of the boundary
field theory, these interaction terms describe ’t Hooft anomalies between different global
symmetries. For example, the A1B2

2 term is a mixed ’t Hooft anomaly between the Z(0)
2M

and Z(1)
M symmetries. Imposing Neumann boundary conditions on b2 (and B2 by extension)

amounts to gauging the Z(1)
M symmetry on the boundary, which causes the Z(0)

2M symmetry to
become non-invertible [8, 23, 67]. Meanwhile, the self-anomaly term A1β(A1)β(A1) indicates
A1 (and A1) cannot be given Neumann boundary conditions, reflecting the fact that one
cannot gauge the anomalous Z(0)

2M R-symmetry in the 4d N = 1 SYM field theory.

7.2 Boundary conditions and branes

The choice of boundary conditions for the bulk supergravity fields determines the set of allowed
configurations of the probe Dp-branes in W5. A priori, there are 24 = 16 choices of boundary
conditions on the set of fields (b2, ĉ2, c3,A1). However, A1 only admits Dirichlet boundary
condition due to its self-anomaly, so its conjugate, c3, only admits Neumann boundary
condition. This narrows the number of combinations down to 2. Table 3 summarizes the
consequences of each of these two choices in the corresponding boundary field theories.

(D,N,N,D) boundary conditions. To see the effect of boundary conditions concretely,
let us again focus on the (b2, ĉ2) BF pair discussed in the previous subsection, keeping in
mind that c3 and A1 must be given Neumann and Dirichlet boundary conditions respectively.
We first consider the case where we impose Neumann boundary condition on ĉ2. By the
variational principle,

Mb2δĉ2
∣∣
W4 = 0 , (7.3)
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we must require that Mb2, and by extension B2, vanish on the conformal boundary W4. In
terms of the symmetry structure of the boundary field theory, this is equivalent to choosing
a gauge group of SU(M) rather than PSU(M).

With this choice of boundary conditions it is straightforward to see from (4.27) that
Uq(Σ2) becomes a trivial operator when pushed to the boundary. This is expected for a theory
with gauge group SU(M), as the defects Uq would generate the magnetic 1-form symmetry
not present in this theory. Instead of having the D3-branes being pushed parallel to W4,
we can consider transverse D3-branes such that one of their external dimensions is aligned
with the radial coordinate of W5. Using (7.3), we can write b2 in terms of a ZM -valued flat
connection B1 defined only on the conformal boundary, i.e.

Mb2
∣∣
W4 = dB1 = 0 , (7.4)

in which case the resultant operator becomes

U(γ1 ⊂ W4) = exp
(2πi
M

∫
γ1

B1

)
, (7.5)

with γ1 closed. The commutation relation (6.8), when localized to W4, tells us that such a
line operator living in the boundary field theory is charged under the Z(1)

M electric symmetry
generated by the Oq defects. Following the discussion below (4.27), this could have been
equivalently argued from an alternative construction of the Uq defects using F1-strings. It is
known in the literature that F1-strings ending on the conformal boundary trace out Wilson
lines [77]. The line operators U(γ1) should therefore be identified with these Wilson lines
in the SU(M) gauge theory.31

Similarly to before, imposing Neumann boundary condition on c3 leads to

2MA1
∣∣
W4 = dA0 = 0 , (7.6)

where A0 ∈ {0, . . . , 2M − 1} is a flat Z2M -valued 0-form field. This corresponds to a local
operator V(x ∈ W4), where x = ∂γ1, that is charged under the Z(0)

2M symmetry generated
by the Np defects according to (6.9).

The (D,N,N,D) boundary conditions also affect the non-invertibility of the Z(1)
M symmetry

generator. From either (5.6) or (5.7), we see that Oq simplifies dramatically when A1 and
B2 have Dirichlet boundary conditions, i.e.

Õq

(
W 2 ⊂ W4

)
= exp

(
2πiq

∫
W 2

ĉ2

)
. (7.7)

Note that the b2A1B2 anomaly trivializes as both fields A1 and B2 are turned off on W4, so
the D3-D1 operator no longer couples to the TQFT XM,q on which the auxiliary fields λ1
and φ live. Importantly, Õq is an invertible operator, which agrees with our expectation
that this defect generates the (invertible) Z(1)

M center symmetry in the SU(M) gauge theory.
By the same token, the A1B2

2 anomaly trivializes on W4, so the Z(0)
2M defect also becomes

an invertible operator [8], i.e.

Ñp

(
M3 ⊂ W4

)
= exp

(
2πip

∫
M3

c3

)
. (7.8)

This conforms with the fact that the Z(0)
2M R-symmetry is invertible in the SU(M)

gauge theory.
31More accurately, the U operators describe the topological data of a Wilson line in the picture of [2, 3].
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(N,D,N,D) boundary conditions. Let us now consider the case where ĉ2 is chosen to
have Dirichlet boundary conditions instead of b2. This is equivalent to having a PSU(M)
gauge theory on the boundary. As has been discussed previously, this causes the Uq operators
to generate an invertible Ẑ(1)

M symmetry and the Np operators to generate a non-invertible
Z(0)

2M symmetry on the boundary. Furthermore, the bulk line operator Vp ends on the boundary
to become the local operator V(x ∈ W4). What remains to be discussed is the fate of the Oq

operators. When ĉ2 is chosen to vanish on W4, the defect Oq takes the form,

Oq

(
W 2 ⊂ W4

)
=
∫

DφDλ1 exp
(

2πi
∫

W 2
φB2 −Mφdλ1

)
, (7.9)

where we have kept in mind that A1
∣∣
W4 = 0 due to the self-anomaly term. In the above, λ1

acts as a Lagrange multiplier causing φ to take on integer values, such that the remaining
operator turns into a (normalized) sum over trivial operators.32 This implies that the D3-D1
operator trivializes when placed parallel to the conformal boundary.

Nonetheless, we may consider D3-D1 bound states that instead end transversely to W4,
i.e. we take one of the directions in W 2 to align with the radial coordinate of W5. From
the variation (7.3), we can write on the boundary,

Mĉ2
∣∣
W4 = dĈ1 = 0 , (7.10)

where Ĉ1 is a ZM -valued flat connection. The associated operator on W4 is then given by

O
(
W

1 ⊂ W4) = exp
(2πi
M

∫
W

1 Ĉ1

)
, (7.11)

which is charged under the Ẑ(1)
M magnetic symmetry generated by the Uq defects. Hence, the

line operators O(W 1) should be identified with ’t Hooft lines in the PSU(M) gauge theory.

8 Discussion and outlook

In this paper, we have studied in detail the complete fusion algebra of gauge symmetry
generators in the 5d bulk W5 of the KT-KS background (see table 2 for a summary). More
precisely, the gauge symmetries of the bulk are encoded by the SymTFT (2.8), whose kinetic
terms are suppressed near the conformal boundary W4 ⊂ W5. Via the Gauss Law constraints,
the SymTFT indicates the existence of topological extended operators (near W4) which
generate the gauge symmetries.

Intuitively, the candidates for these operators are nothing but the solitonic objects in
Type II string theory, i.e. D-branes, wrapping suitable internal submanifolds. We find that
this is indeed the case, and particularly, the WZ coupling of D-branes to lower-degree RR
fields naturally reproduces the mixed anomaly terms in the SymTFT. The agreement between
the symmetry generators and the D-branes therefore serves as a nontrivial check for the
consistency between the Type IIB supergravity action and the WZ action of D-branes. An

32Alternatively, we can see that the A1B2 anomaly again vanishes on the conformal boundary due to the
Dirichlet boundary condition on A1. The associated TQFT involving φ and λ1 will then vanish and the
operator Oq will still be trivial.
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even more stringent test can be carried out by further including the gravitational terms
respectively in the 11-form Type IIB anomaly polynomial I11 and the WZ action of the
D-branes.33 We leave a careful analysis of this to future work.

The consistency between the supergravity bulk and the D-branes teaches us three
important lessons. Firstly, the construction of, say, non-invertible global symmetry generators
in the dual field theory typically requires a manual stacking of individually non-topological
operators (e.g. [22]), whereas we can obtain the full operator at once from a straightforward
dimensional reduction of the D-brane WZ action. For example, the 3d TQFT AM,1 within
the R-symmetry defect N1 comes for free when we reduce a D5-brane over S3. The fact
that the WZ action is compatible with the bulk supergravity action enables the former to
capture the necessary anomaly data from the latter.

Secondly, the explicit fusion algebra of symmetry generators in the boundary field theory
can be understood holographically as brane interactions in the bulk. For concreteness, in
the case of the 4d N = 1 PSU(M) SYM theory, charge-p and charge-p′ R-symmetry defects
fuse not only into a charge-(p+ p′) defect, but also an extra decoupled TQFT. We argued
in section 4 that this fusion rule is fully characterized by brane kinematics, i.e. the former
comes from the overall center-of-mass mode of the combined stack of branes, and the latter
comes from the relative contributions from the center-of-mass modes of the individual stacks.

On the contrary, a condensation defect arises from the fusion between a charge-p defect
with its orientation reversal. We suggest that this can instead be interpreted as a dynamical
process known as tachyon condensation. In fact, the dressing of an otherwise invertible
operator with a nontrivial TQFT (as in (2.13)) is indicative of lower-dimensional D3-branes
being dissolved within the worldvolume of the D5-brane. As a proof of concept, we showed
that by engineering a certain tachyon profile, the D5-D5 fusion indeed results in a sum of
(codimension-2) solitonic D3-brane operators that matches the field-theoretic fusion rule.

That being said, it is not entirely clear to us how unique the specific tachyon profile is.
To illustrate this, recall that the worldvolume of the D5-branes is M3 × S3, so there are at
least three naïve ways to construct a codimension-2 soliton, namely,

γ1 × S3 , Σ2 × S̃2 , M3 × S1 ,

where γ1,Σ2 ⊂M3, and S̃2, S1 are respectively the Hopf base and fiber of S3. The first option
amounts to integrating out a 2-cycle in M3, and the second option amounts to integrating
out a one-cycle in M3 plus a fiber integration in S3, whereas the third option does not
seem to be viable because we cannot perform a “base integration” in S3. Ruling out the
first option requires some technical details, but essentially one can show that the resultant
operator is incompatible with the fluxes present in the KT-KS background. This then singles
out the second option, as far as the condensation defect is concerned. Nevertheless, there
is still a degeneracy in the choice of the internal manifold on which the tachyon profile
is defined. We may for example replace the Hopf base S̃2 with the equatorial S2 of S3,
and one cannot tell the distinction between these two D3-brane configurations from the
perspective of the 5d bulk operator.

33We expect in this case that the mixed chiral-gravitational anomaly of 4d N = 1 SU(M) SYM theory
disguises as some nontrivial TQFT attached to the appropriate D-brane operator. The resultant defect should
be similar to that constructed by [78].
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This degeneracy may be lifted by considering the isometries of the S2×S2 base in the T 1,1

fibration. Including these isometries would introduce an additional SU(2)L × SU(2)R gauge
symmetry in the bulk; in the dual field theory there are two sets of chiral superfields Ar, Bu

in bifundamental representations of the UV gauge group SU(N + M) × SU(N). Each set
forms a doublet under an SU(2) global symmetry, which gives a combined SU(2)L × SU(2)R

global symmetry in the boundary field theory. In the supergravity theory, the effect of this
symmetry can be seen in the following way. A D3-brane wrapping a submanifold of the
S3 cycle will act as a point particle on S2 in the presence of a nonzero “magnetic field”
arising from the G5 flux threading T 1,1. This will cause the correpsonding operator to have a
Landau-level label as discussed in [79, 80]. It is possible that this additional label will remove
the degeneracy in the choice of internal manifold for the tachyon condensation.

Moreover, as we saw in section 4, the D3-brane operators Uq obey a group-like fusion
rule, and notably, it annihilates with its orientation reversal. In other words, they do not
undergo further tachyon condensation to form D1-branes. One may heuristically argue that
there is a qualitative difference between the Np ⊗N−p and Uq ⊗U−q fusions. The operator Np

consists of a 3d TQFT AM,p on which Chan-Paton fields reside, whereas all the Chan-Paton
modes are already integrated out in Uq. Since the presence of worldvolume Chan-Paton
modes are necessary (but not sufficient) for tachyon condensation to happen, as effective 5d
bulk operators the former is non-invertible while the latter is not. It is likely that we can
shed some light on these open questions by examining more constructions of condensation
defects in other holographic setups.

The third lesson that we can learn is the bulk SymTFT contains a rich symmetry
structure that encodes the data of multiple possible boundary field theories. As explained in
section 7, the global symmetries present in the boundary field theory is not only specified by
the SymTFT itself, but also by a choice of boundary conditions for the various supergravity
gauge fields. Consequently, this determines the field content of a given D-brane operator
when placed at the conformal boundary (transverse to the radial direction of W5). For
instance, the electric Z(1)

M symmetry defect Oq(W 2) can only be invertible if W 2 ⊂ W4, but
once we move slightly into the bulk (but still near W4), the 2d TQFT XM,q attached to
Oq(W 2 ⊂ W5) renders the defect non-invertible. This illustrates a crucial point: a non-
invertible gauge symmetry can be trivialized to an invertible global symmetry depending
on the choice of boundary conditions.

There is a further subtlety that one should consider when using the Gauss Laws to
derive the symmetry structure from the SymTFT. The analysis performed in this paper
was only concerned with the classical Gauss Laws of the associated symmetries. In general
there may be nontrivial and important effects from the quantum Gauss Laws as considered
in [20]. These effects may contribute extra torsional phases to the symmetry generators. It
would be interesting to study the effect of these phases as well as their origin in holographic
constructions.

Recently in the literature, the study of symmetry-generating D-brane operators has
provided us with fruitful insights into the nature of non-invertible and/or higher-form global
symmetries in quantum field theories. Multiple examples of non-invertible symmetries have
indeed been uncovered in different string theory solutions using D-branes. On top of that, we
have shown in this paper brane interactions in the bulk play a significant role in characterizing
the fusion algebra of the boundary field theory. It is widely believed a fusion algebra involving
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defects of various dimensions furnishes part of the data of some higher fusion category
(e.g. [81–86]). The data contained in the bulk theory should then be interpreted as describing
the Drinfeld center of this higher fusion category [87–91]. We therefore hope our work will
offer a complementary understanding of the intricacies of such higher categorical structures.
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A SymTFT computation

We start with a brief review of the Klebanov-Tseylin (KT) [18] and Klebanov-Strassler (KS)
setups [19] dual to the cascading field theory. There are two relevant features. The first is a
stack of N D3-branes extending along flat space R1,3 and placed at the tip of the conifold
background as was studied in [92]. The conifold is a non-compact Calabi-Yau cone over a
Sasaki-Einstein 5-manifold denoted T 1,1. The space T 1,1 is constructed as a Hopf fibration
over S2 × S2 with Einstein metric given by [8, 93, 94]

ds2(T 1,1) = 4
9

(
dψ + 1

2

2∑
i=1

cos θidϕi

)2

+ 1
6

2∑
i=1

(
dθ2

i + sin2 θidϕ
2
i

)
, (A.1)

where in the above {θi, ϕi} denote the coordinates of the two S2 geometries each with
periodicity 2π, and ψ is the coordinate of the S1 fiber with 4π periodic. The T 1,1 space
admits the topology of S2 × S3 and cohomologically nontrivial one 2-cycle, one 3-cycle, and
5-cycle that we denote by ω2, ω3, and Ω5 respectively. The near-horizon geometry of the stack
of D3-branes in Type IIB string theory is correspond to AdS5 ×T 1,1, with N units of G5 flux.

We will be interested in gauging the U(1) isometry of the fiber coordinate ψ through the
introduction of a connection dψ → dψ + 2πA1, where the normalization is chosen such that
the flux of A1 has integral periods. In general one may consider gauging the SU(2) × SU(2)
isometries of the S2 × S2 base of T 1,1, in which case one would then have to incorporate
global angular forms to account for the equivariant completion [24, 95–97]. The effect of
these forms do not play a role in this paper, so we refrain from gauging these isometries. We
can construct a U(1)-equivariant completion of the volume forms mentioned earlier as

ω2 = −1
2(V1 − V2) , ω3 = (V1 − V2)Dψ2π , (A.2)

where Vi denote the normalized volume forms of the 2-spheres in the base of the T 1,1

fibration. The normalization of these forms comes from demanding that
∫

T 1,1 ω2ω3 = 1. The
U(1)-equivariant completion of Ω5 is written

Ω5 = ω2ω3 + 1
2 F2(V1 + V2)Dψ2π , (A.3)

where F2 is the field strength of A1.
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The second main ingredient of the KT and KS setup is a stack of M D5-branes wrapping
the topological S2 of the conifold and extending along the flat space R1,3. The backreaction
of this stack of branes has two effects on the supergravity setup, the first of which being that
the conifold metric is replaced with that of the deformed conifold34 where the S3 cycle is
blown up at the tip of the cone. The change in metric is felt very close to the original stack
of N D3-branes and similarly in the deep IR of the dual field theory, but far away from the
origin the space is indistinguishable from the original conifold. In the near horizon limit,
the effect of the stack of M D5-branes is that the G5 flux runs along the AdS5 radius. The
asymptotic region of the KS background corresponds to the KT [18]. This latter geometry is
enough to determined the symmetry structure of interest in this paper.

The dual field theory of the setup is N = 1 Super Yang-Mills with gauge group SU(N +
M) × SU(N) coupled to bifundamental matter [18]. This is a non-conformal background
where the gauge couplings run. As this theory flows to the IR a sequence of Seiberg duality
transformations occurs, often referred to as the “duality cascade”. For N a multiple of M ,
this cascade ends with pure N = 1 Super Yang-Mills theory with gauge group SU(M). In this
paper we will study the symmetry structure of the N = 1 SU(M) theory from the SymTFT
derived from the dual gravitational background. In particular we will use various brane probes
of the supergravity to construct the possible symmetry generators and their fusion rules.

To construct the SymTFT in this background, we first write down the 5d topological
action using the nontrivial fluxes for h3 and F2 as discussed in section 2,

2π
∫

W 5

[
Nb2g3 − A1(B2)2 + A1b2B2 −

1
2M A1g̃

2
2 + K

2M A1β(A1)β(A1) (A.4)

− 1
2M g̃1

(
g̃2

2 + 2g̃2B2 −K
(
(dA1)2 + 3dA1β(A1) + 3β(A1)2

)) ]
,

where the A1 cubic coefficient is given by

K = N(N +M)
4 + M2

6 − 1
3 . (A.5)

The subleading corrections in N may be computed directly from the UV quiver of the KT-KS
setup. The full SymTFT is given by the above action augmented with standard kinetic terms
for g1, g2, g3, h3, and F2 with associated couplings κ1, κ2, κ3, κh, and κF.

To elucidate the symmetry structure of the boundary field theory, we may dualize some
of the fields in the above SymTFT. We first dualize g1 by introducing a 3-form c3 as a
Lagrange multiplier to enforce the Bianchi identity.

Smult = 2π
∫

W 5
c3 ∧ (2MdA1 − dg1) . (A.6)

The equation of motion for g1 yields

⋆5g1 =κ1

(
dc3−

1
2M

(
g̃2

2 +2g̃2B2−K
(
(dA1)2+3dA1β(A1)+3β(A1)2

)))
:= g4 . (A.7)

34There is another construction which considers the resolved conifold rather than the deformed conifold [98].
The difference is in which cycle is blown up, but the physical theory is still that of 4d N = 1 Super Yang-Mills.
It would be interesting to explore the connections between the two theories with regard to the operators
constructed out of branes.
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After integrating out g1 by replacing it with its equation of motion, we may also dualize g2
through an additional field a2 acting as a Lagrange multiplier

S′
mult = −2π

∫
W 5

a2 ∧ (dg2 +Mdb2) . (A.8)

The equation of motion for g2 can then be found as

⋆5g2 = −κ2

(
da2 + 1

M
A1B2

)
. (A.9)

After performing both dualizations, we may write our final action Stop as

2π
∫

W 5

(
Mb2dĉ2 − 2Mc3dA1 − A1B2

2 + A1b2B2 −
K
M

A1β(A1)β(A1)
)
, (A.10)

thus producing (2.8). In the low energy limit, the kinetic terms present in the full SymTFT
are suppressed, so we often refer to Stop as “the SymTFT” unless otherwise specified.

B Brief review of Bockstein homomorphisms

For a detailed introduction to Bockstein homomorphisms, we refer the reader to standard
references in the literature, e.g. [99, 100]. Here we briefly review and explain the notation
adopted in the main text. Let us first consider the following short exact sequence with
k prime,35

0 → Zk
× k−−→ Zk2

mod k−−−→ Zk → 0 , (B.1)

where the “mod k” map means reduction modulo k. Associated with it is a long exact
sequence in homology,

· · ·→Hn(M ;Zk2) modk−−−→Hn(M ;Zk) β−→Hn−1(M ;Zk) ×k−−→Hn−1(M ;Zk2)→·· · , (B.2)

where the Bockstein homomorphism is defined to be a map

β : Hn(M ;Zk) → Hn−1(M ;Zk) . (B.3)

Explicitly, it acts on cycles (mod k), Cn ∈ Hn(M ;Zk), as

β(Cn) = 1
k
∂Cn . (B.4)

A closely related construction starts with the short exact sequence

0 → Z × k−−→ Z mod k−−−→ Zk → 0 , (B.5)

which leads to the long exact sequence

· · · → Hn(M ;Z) mod k−−−→ Hn(M ;Zk) β̃−→ Hn−1(M ;Z) × k−−→ Hn−1(M ;Z) → · · · . (B.6)
35If k is not prime, then there are possibly additional torsion subgroups that we have to worry about, but

we refrain from considering that in this appendix.

– 39 –



J
H
E
P
0
1
(
2
0
2
4
)
1
1
7

The codomain of this Bockstein homomorphism is different from that in the previous
case, namely,

β̃ : Hn(M ;Zk) → Hn−1(M ;Z) . (B.7)

On a cycle Cn ∈ Hn(M ;Zk), the map similarly acts as

β̃(Cn) = 1
k
∂Cn , (B.8)

where the two connecting homomorphisms are related via a reduction map,

β(Cn) = (mod k) ◦ β̃(Cn) . (B.9)

In summary, the relations between the various maps are depicted by the following commutative
diagram.

Hn(M ;Z) Hn(M ;Zk) Hn−1(M ;Z) Hn−1(M ;Z)

Hn(M ;Zk2) Hn(M ;Zk) Hn−1(M ;Zk) Hn−1(M ;Zk2)
modk2

modk

id

β̃

modk

×k

modk2

modk β ×k

(B.10)

We see that if ∂Cn = kCn−1 for some Cn−1 ∈ Hn−1(M ;Z), i.e. Cn−1 is a torsion n-cycle of order
k, then β̃(Cn) = Cn−1. In addition, since the kernel of β̃ is the image of the reduction map by
exactness, we have β̃(kCn) = 0 ∈ Hn−1(M ;Z) for any Cn ∈ Hn(M ;Zk). Similar remarks apply
to the β map. Note that by construction, the Bockstein homomorphisms are nilpotent, e.g.

β ◦ β = 0 , (B.11)

and they satisfy the Leibniz rule,

β(am ∪ bn) = β(am) ∪ nn + (−1)m am ∪ β(bn) . (B.12)

One can obtain dual Bockstein homomorphisms by constructing long exact sequences in
cohomology instead, also denoted as β and β̃ with an abuse of notation. Again, the relevant
maps are described by the following commutative diagram.

Hn(M ;Z) Hn(M ;Zk) Hn+1(M ;Z) Hn+1(M ;Z)

Hn(M ;Zk2) Hn(M ;Zk) Hn+1(M ;Zk) Hn+1(M ;Zk2)

mod k2

mod k

id

β̃

mod k

× k

mod k2

mod k β × k

(B.13)

Just like how the Bockstein homomorphisms act on cycles as “boundary operators,” they
act on cocycles as “coboundary operators.” More explicitly,

β(cn) = 1
k
δcn (B.14)

for any cn ∈ Hn(M ;Zk).
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The Bockstein homomorphisms have important applications in physics, especially when
torsional manifolds or fluxes are involved. One of them being the definition of the integral
Stiefel-Whitney classes. For a degree-n (generalized) Stiefel-Whitney class wn ∈ Hn(M ;Zk),
the corresponding integral Stiefel-Whitney class is defined as

Wn+1 := β̃(wn) ∈ Hn+1(M ;Z) . (B.15)

If n = k = 2, the degree-3 integral class W3 = β(w2) measures the obstruction to having a
spinc structure on the manifold M . Another example, used in our contruction, is the flat but
topologically nontrivial part of the NSNS field B2 ∈ H2(W5;ZM ), which corresponds to the
cohomological class of the ’t Hooft magnetic flux via H3 = β̃′(B2) as in (2.6). In fact, these
two examples are closely related through the Freed-Witten anomaly [43, 44].

Moreover, the Bockstein homomorphism for k = 2 coincides with the first Steenrod
square (see, e.g. [101]),

β(cn) = Sq1(cn) := w1(M) ∪ cn ∈ H2(M ;Z2) , (B.16)

where w1(M) ∈ H1(M ;Z2) is the first Stiefel-Whitney class of M (or more precisely, its
normal bundle).

As an aside, we clarify that the Bockstein homomorphisms invoked in this paper shall be
distinguished from that commonly used in ordinary differential cohomology, i.e.

β̂ : Hn(M ;R/Z) → Hn+1(M ;Z) , (B.17)

which is associated with the short exact sequence, 0 → Z → R → R/Z → 0. These two
distinct Bockstein homomorphisms are in fact related to each other, as can be inferred from
the commutative diagram [102],

0 Z Z Zk 0

0 Z R R/Z 0

id

× k

× 1/k

mod k

ϕ

i

(B.18)

The map ϕ induces a homomorphism ϕ∗ : Hn(M ;Zk) → Hn(M ;R/Z), so it follows that
β̃ = β̂ ◦ ϕ∗ by exactness.

C Derivation of fusion rules

In this appendix, we are going to derive the nontrivial fusion rules between the symmetry
defects. The reader may find similar derivations in [103]. We assume all manifolds are
spin throughout the appendix.

Np ⊗Np′ fusion. We already derived in section 4 the fusion rule for the case when p′ = −p
mod M . Let us turn to the case when p′ ̸= −p mod M and assume gcd(M,p+ p′) = 1 (in
addition to gcd(M,p) = gcd(M,p′) = 1). Recall that the defect Np(M3) can be decomposed as

Np = Ñp ⊗AM,p[B2] , (C.1)
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where Ñp = exp(2πi
∫

M3 c3) obeys a group-like fusion rule,

Ñp ⊗ Ñp′ = Ñp+p′ , (C.2)

thus the only nontrivial part of the fusion Np ⊗ Np′ is that between the minimal TQFTs,
i.e. AM,p[B2] ⊗AM,p′ [B2]. An efficient way to compute the fusion rule is as follows.36

The minimal TQFT AM,p is a 3d theory with a ZM 1-form symmetry generated by Wilson
lines denoted by as where s = 0, . . . ,M − 1 [37], and their topological spins are labeled by

h[as] = ps2

2M . (C.3)

The theory is modular given that its S-matrix,

S(as,as′) = 1√
M

exp
(

2πi
{
h[as]+h[as′ ]−h[as+s′ ]

})
= 1√

M
exp

(
− 2πipss′

M

)
, (C.4)

is non-degenerate, i.e. only the transparent line a0 = 1 braids trivially with all other lines.37

Similarly, AM,p′ has lines a′ r with spins h[a′ r] = p′r2/2M . We claim that for any (p, p′),
there always exists an equivalent factorization of the minimal TQFTs of the form,

AM,p ⊗AM,p′ = AM,n ⊗AM,p+p′ , (C.5)

for some integer n yet to be determined. Suppose we denote the sets of lines in AM,n and
AM,p+p′ respectively as

bs = (axa′ y)s = axsa′ ys , b′ r = (aa′)r = ara′ r , (C.6)

then their spins are

h[bs] = p(xs)2

2M + p′(ys)2

2M = (px2 + p′y2)s2

2M ,

h[b′ r] = pr2

2M + p′r2

2M = (p+ p′)r2

2M .

(C.7)

One may see that p + p′ corresponds to the anomaly of AM,p+p′ as desired.
To impose the condition that AM,n and AM,p+p′ are decoupled from each other, we

demand the line bs to braid trivially with b′ r for any (s, r), i.e.

h[bs] + h[b′ r] − h[bsb′ r] = −sr(px+ p′y)
M

= 0 . (C.8)

The simplest nontrivial integer solution for general (p, p′) is (x, y) = (p′,−p), so the spin
of bs becomes

h[bs] = pp′(p+ p′)s2

2M , (C.9)

36We thank Ho Tat Lam for discussions about this point.
37In a braided fusion category with fusion rules a ⊗ b =

∑
c

Nc
ab c, the S-matrix is given by Sab =∑

c
Nc

āb(θc/θaθb)(dc/D), where θa = exp(−2πih) is the topological twist of the simple object (or anyon) a. If
we represent a finite group G with a fusion category, then the quantum dimension of any anyon is da = 1, and
the total quantum dimension of the category is D =

√∑
a

d2
a =

√
|G|.
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from which we can read off the anomaly label to be (p+p′)pp′. We have therefore found that38

AM,p ⊗AM,p′ = AM,pp′(p+p′) ⊗AM,p+p′ . (C.10)

Note that gcd(M,p+ p′) = gcd(M,p) = gcd(M,p′) = 1 guarantees gcd(M,pp′(p+ p′)) = 1.
Furthermore, since the lines b′ r = ara′ r are those that are coupled to B2 in the product
AM,p ⊗ AM,p′ (whereas bs are decoupled), we conclude that the fusion rule between Np

and Np′ is given by

Np ⊗Np′ = Ñp+p′ ⊗AM,pp′(p+p′) ⊗AM,p+p′ [B2] = AM,pp′(p+p′) ⊗Np+p′ . (C.11)

Alternatively, one may show this result using an effective Lagrangian description of
AM,p[B2] ⊗ AM,p′ [B2], in which case we have∫

M3

(
pM

2 a1da1 + p′M

2 a′1da
′
1 + (pa1 + p′a′1)B2

)
. (C.12)

Motivated by the “correct” answer from the previous approach, we define pp′(p + p′)ã1 =
p(p′a1) + p′(−pa′1) and (p + p′)ã′1 = pa1 + p′a′1. The Lagrangian then turns into

pp′(p+ p′)
∫

M3

M

2 ã1dã1 + (p+ p′)
∫

M3

(
M

2 ã′1dã
′
1 + ã′1B2

)
, (C.13)

which can be identified as an effective Lagrangian for AM,(p+p′)pp′ ⊗AM,p+p′ [B2]. Note that
the former minimal TQFT is decoupled from B2, while the latter is associated with a stack
of p + p′ D5-branes (reduced on S3).

The fusion rule (C.11) is manifestly commutative, i.e. Np ⊗ Np′ = Np′ ⊗ Np. We also
claim that it is associative, and in fact any triple fusion admits the following factorization
(assuming gcd(M,p + p′ + p′′) = 1),

Np ⊗Np′ ⊗Np′′ = AM,pp′p′′P (p+p′+p′′) ⊗AM,P ⊗Np+p′+p′′ , (C.14)

where P = (p+ p′)(p+ p′′)(p′ + p′′). To examine such a claim, we first apply (C.11) twice
to write down

(Np ⊗Np′) ⊗Np′′ = AM,(p+p′)pp′ ⊗AM,(p+p′+p′′)(p+p′)p′′ ⊗Np+p′+p′′ . (C.15)

Denoting the topological Wilson lines in AM,pp′(p+p′) and AM,(p+p′)p′′(p+p′+p′′) respectively
as as and a′ r, we define two sets of new lines,

bs = (ap′′(p+p′+p′′)a′ −pp′)s , b′ r = (aa′)r , (C.16)

whose spins are given by

h[bs] = pp′(p+ p′)[p′′(p+ p′ + p′′)s]2

2M + (p+ p′)p′′(p+ p′ + p′′)[−pp′s]2

2M

= pp′p′′(p+ p′)(p+ p′′)(p′ + p′′)(p+ p′ + p′′)s2

2M , (C.17)

h[b′ r] = pp′(p+ p′)r2

2M + (p+ p′)p′′(p+ p′ + p′′)r2

2M

= (p+ p′)(p+ p′′)(p′ + p′′)r2

2M . (C.18)

38This is consistent with the result of [103] where they chose the solution (x, y) = (p−1,−p′−1), thus
producing AM,p−1+p′−1 ∼= AM,(p+p′)pp′

. Here we have used the fact that AM,pr2 ∼= AM,p if gcd(M, r) = 1.
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These two sets of lines braid trivially with each other, i.e.

h[bs] + h[b′ r] − h[bsb′ r] = 0 , (C.19)

so we have successfully reproduced the triple fusion rule (C.14). By the same token, we
may write down

Np ⊗ (Np′ ⊗Np′′) = AM,p′p′′(p′+p′′) ⊗AM,p(p′+p′′)(p+p′+p′′) ⊗Np+p′+p′′ . (C.20)

In this case, one can check that the following redefinition of lines,

bs = (ap′p′′a′ −p(p+p′+p′′))s , b′ r = (aa′)r , (C.21)

gives rise to (C.14) as well. Since the fusion is also commutative, this triple fusion rule
indeed holds for arbitrary permutations of (p, p′, p′′) with an appropriate redefinition of
lines. Holographically, this implies that we can freely reshuffle the three stacks of D5-branes
without altering the end result, although the decoupled modes are sensitive to the number
of branes in each individual stack.

Np ⊗ C fusion. The invertible operator Ñp essentially acts as a spectator, so it suffices
to work out the fusion rule for AM,p[B2] ⊗ (ZM )0[B2]. In terms of the effective Lagrangian
description, we have∫

M3

(
pM

2 a1da1 + pa1B2

)
+
∫

M3

(
MΛ1da

′
1 + Λ1B2

)
. (C.22)

Defining â1 = a1 + p−1Λ1 and â′1 = a′1 − â1, we can rewrite the Lagrangian as

∫
M3

(
MΛ1dâ

′
1 + p−1M

2 Λ1dΛ1

)
+
∫

M3

(
pM

2 â1dâ1 + pâ1B2

)
, (C.23)

which may be identified as (ZM )p−1M ⊗ AM,p[B2]. Assuming M is odd, the DW twist in
(ZM )K has a periodicity K ∼ K +M , so (ZM )p−1M

∼= (ZM )0 given p−1 ∈ ZM is an integer.
We thus conclude that

Np ⊗ C = C ⊗ Np = (ZM )0 ⊗Np , (C.24)

where (ZM )0 is decoupled from B2 and acts as a coefficient.
We can immediately verify that associativity (and commutativity) holds for the following

triple fusion,

Np ⊗Np′ ⊗ C . (C.25)

More explicitly, performing the fusion in different orders yield the same answer,

(Np ⊗Np′) ⊗ C = AM,pp′(p+p′) ⊗ (ZM )0 ⊗Np+p′ = Np ⊗ (Np′ ⊗ C) . (C.26)
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C ⊗ C fusion. The most efficient way to compute this fusion rule is to observe that

C ⊗ C = (Np ⊗N−p) ⊗ C = Np ⊗ (N−p ⊗ C) = Np ⊗ (ZM )0 ⊗N−p = (ZM )0 ⊗ C . (C.27)

Alternatively, one may derive this using a Lagrangian description, i.e.∫
M3

(
MΛ1da1 + Λ1B2

)
+
∫

M3

(
MΛ′

1da
′
1 + Λ′

1B2
)
. (C.28)

If we define Λ̂1 = Λ1 + Λ′
1 and Λ̂′

1 = a′1 − a1, then we will obtain∫
M3

M Λ̂′
1dΛ′

1 +
∫

M3

(
M Λ̂1da1 + Λ̂1B2

)
, (C.29)

which can be identified as (ZM )0 ⊗C. It can be readily checked that Np ⊗C⊗C and C ⊗C ⊗C
are both commutative and associative.

Uq(Σ2) ⊗ Np fusion. Suppose we define Uq on a 2-cycle Σ2 ∈ H2(M3;ZM ), then we may
use Poincaré duality to express

Uq(Σ2) = exp
(2πiq
M

∫
Σ2

B2

)
= exp

(2πiq
M

∫
M3

Λ̄1B2

)
= exp

(
2πiq

∫
M3

Λ1B2

)
, (C.30)

where Λ̄1 = PD(Σ2) ∈ H1(M3;ZM ) and MΛ1 = Λ̄1. Hence, the worldvolume Lagrangian
of Uq(Σ2) ⊗ Np can be written as∫

M3

(
qΛ1B2+ pM

2 a1da1+pa1B2

)
=
∫

M3

(
q2p−1M

2 Λ1dΛ1+ pM

2 a′1da
′
1+pa′1B′

2

)
=
∫

M3

(
q2p−1

2 Λ̄1β(Λ̄1)+ pM

2 a′1da
′
1+pa′1B′

2

)
, (C.31)

where a′1 = a1 + qp−1Λ and B′
2 = B2 − qp−1MdΛ1 = B2. Note that the last two terms can

be identified as AM,p[B2]. The Bockstein homomorphism is associated with the short exact
sequence 0 → ZM → ZM2 → ZM → 0, and acts explicitly as β(Λ̄1) = dΛ̄1/M . Suppose
we define the shorthand notation,

Q(Σ2) =
∫

M3
Λ̄1β(Λ̄1) , (C.32)

then we may express

Uq(Σ2) ⊗Np = Np ⊗ Uq(Σ2) = (−1)q2p−1Q(Σ2) ⊗Np . (C.33)

Similarly to before, the fusions Uq(Σ2) ⊗ Uq′(Σ2) ⊗ Np and Uq(Σ2) ⊗ Np ⊗ Np′ are both
commutative and associative. If M is odd, the phase (−1)Q(Σ2) is always trivial [103], so
we recover the fusion rule presented in section 4.

Since the condensation defect C is essentially a sum of magnetic symmetry defects, i.e.

C = 1
|H0(M3;ZM )|

⊕
Σ2∈H2(M3;ZM )

U1(Σ2) , (C.34)
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we find that
1

|H0(M3;ZM )|
⊕

Σ2∈H2(M3;ZM )
U1(Σ2) ⊗Np = 1

|H0(M3;ZM )|
⊕

Σ2∈H2(M3;ZM )
(−1)p−1Q(Σ2) ⊗Np

= (ZM )p−1M ⊗Np

= (ZM )0 ⊗Np . (C.35)

This result is consistent with the previously derived fusion rule for C ⊗ Np.

Uq(Σ2) ⊗ C fusion. We can again use (C.34) to deduce that

Uq(Σ2) ⊗ C = 1
|H0(M3;ZM )|

⊕
Σ̂2∈H2(M3;ZM )

Uq(Σ2) ⊗ U1(Σ̂2)

= 1
|H0(M3;ZM )|

⊕
Σ̃2∈H2(M3;ZM )

U1(Σ̃2) = C , (C.36)

where Σ̃2 = Σ̂2 + qΣ2 ∈ H2(M3;ZM ). In other words, the effect of such a fusion is merely
to relabel the 2-cycles (mod M) that are being summed over in the condensation defect.
We can again easily verify that this fusion rule is compatible with the previous ones that
we have derived.

Oq ⊗ Oq′ fusion. Let us consider first the case where q′ ̸= −q mod M . The worldvolume
Lagrangian of the Oq ⊗ Oq′ fusion reads∫

W 2

(
(q + q′)ĉ2 + (qλ1 + q′λ′1)A1 + (qφ+ q′φ′)B2 − qMλ1dφ− q′Mλ′1dφ

′
)
. (C.37)

Rewriting the Lagrangian above in terms of the redefined fields, λ̃1 = −λ1 +λ′1, φ̃ = −φ+φ′,
(q + q′)λ̃′1 = qλ1 + q′λ′1, (q + q′)φ̃′ = qφ + q′φ′,39 we obtain

−qq′(q + q′)−1
∫

W 2
Mλ̃1dφ̃+ (q + q′)

∫
W 2

(
ĉ2 + λ̃′1A1 + φ̃′B2 −Mλ̃′1dφ̃

′
)
. (C.38)

Consequently, we may express

Oq ⊗Oq′ = XM,qq′(q+q′)−1 ⊗Oq+q′ . (C.39)

On the other hand, if q′ = −q mod M , then the Lagrangian simply reduces to

q

∫
W 2

(
λ̃1A1 + φ̃B2 −Mλ′1dφ̃−Mλ̃1dφ

)
. (C.40)

Integrating out λ′1 and φ respectively enforces Mλ′1 ∈ H1(W 2;Z) and Mφ ∈ H0(W 2;Z).
Applying similar arguments in the discussion following (4.13), we conclude that

Oq ⊗O−q = 1
|H0(W 2;ZM )|

∑
γ1∈H1(W 2;ZM )
Σ2∈H2(W 2;ZM )

exp
(2πi
M

∫
γ1

A1

)
exp

(2πi
M

∫
Σ2

B2

)

= 1
|H0(W 2;ZM )|

⊕
γ1∈H1(W 2;Z2M )
Σ2∈H2(W 2;ZM )

V2(γ1) ⊗ U1(Σ2) := C̃ . (C.41)

39Note the resemblance of these field redefinitions to those in the discussion preceding (C.13).
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Note that if W 2 is connected, then Σ2 = sW 2 for s = 1, . . . ,M . The condensation defect C̃
is essentially a sum of all the Ẑ(2)

2M and Ẑ(1)
M defects localized on W 2.40

Oq ⊗ C̃ and C̃ ⊗ C̃ fusions. The worldvolume Lagrangian corresponding to this fusion is∫
W 2

(
qĉ2 + qλ1A1 + qφB2 − qMλ1dφ+ λ̃1A1 + φ̃B2 −Mλ′1dφ̃−Mãdφ′

)
. (C.42)

Defining λ̂1 = λ1 + q−1λ̃1, φ̂ = φ + q−1φ̃, λ̂′1 = λ1 − λ′1 + q−1λ̃1, φ̂ ′ = φ − φ′, we can
rewrite the Lagrangian above as∫

W 2

(
Mλ̃1dφ̂

′ +Mλ̂′1dφ̃
)

+ q

∫
W 2

(
ĉ2 + λ̂1A1 + φ̂B2 −Mλ̂1dφ̂

)
. (C.43)

Therefore, we find that

Oq ⊗ C̃ = XM,−1 ⊗XM,−1 ⊗Oq . (C.44)

It also follows immediately from (C.41) and (C.44) that

C̃ ⊗ C̃ = XM,−1 ⊗XM,−1 ⊗ C̃q . (C.45)

Vp(γ1) ⊗ Oq, Uq(Σ2) ⊗ Oq′, Vp(γ1) ⊗ C̃, and Uq(Σ2) ⊗ C̃ fusions. Analogously to
the earlier derivation for Uq(Σ2) ⊗ Np, one can show that

Vp(γ1) ⊗Oq = Oq , Uq(Σ2) ⊗Oq′ = Oq′ , (C.46)

assuming γ1 ∈ H1(W 2;Z2M ) and Σ2 ∈ H2(W 2;ZM ). We stress again that here we are only
considering parallel fusion, in which case Σ2 and W 2 do not link, thus there are no nontrivial
commutation relations involved. Using (C.41), we also have

Vp(γ1) ⊗ C̃ = C̃ , Uq(Σ2) ⊗ C̃ = C̃ . (C.47)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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