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1 Introduction

The dynamics of nearly critical systems is a fascinating topic with a long history. Early theories
of critical phenomena aiming to understand the small relaxation rates in systems close to criti-
cality, started with the conventional theory of critical slow down [1, 2]. This turned out to have
limited range of applicability [3] to real systems and a significant improvement was the mode-
coupling theories [4–7]. Mode-coupling took into account the coupling of the order parameter
to other hydrodynamic slow modes that exist at wavelengths larger than the correlation length
of the system. The dynamics of the coupled system is described by stochastic equations with
Gaussian noise. In parallel to static renormalisation group techniques for systems undergoing
a phase transition [8], a systematic treatment of interactions was carried out in [9].

Very recently, a systematic study of low energy effective field theories was proposed in
the context of the Keldysh-Schwinger closed time path formalism [10, 11]. The fluctuation
dissipation theorem is built in the formalism due to the Kubo-Martin-Schwinger symmetry [12,
13] providing an appropriate framework to consider thermal fluctuations beyond Gaussian
noise [14–16]. This is in parallel to the standard approach of stochastic systems [17] where
the variance of the noise fields is fixed again in a way that the probability distribution of the
system will always relax to the Boltzmann distribution [18] and the fluctuation dissipation
theorem will be satisfied.

In this paper we will construct an effective action for systems close to a superfluid phase
transition up to quadratic order in the a-fields. As we will see, at this order in the a-fields, our
system is essentially described by Model F in the classification of Hohenberg and Halperin [9].
Setting all our external a-sources to zero will be necessary as the equations for stochastic
hydrodynamics are written in terms of r-field sources.

An interesting aspect of our construction is that by choosing an appropriate set of
dynamical variables, our effective theory can be viewed as a simple coupling between the
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U(1) symmetric version of Model A and the diffusive model for current conservation [11, 19].
Both models possess their own global U(1) symmetry which in the case of charge diffusion is
gauged by the external electromagnetic field. Interestingly, the diffusive model for current
conservation possesses an additional time independent gauge symmetry, also known as the
“chemical shift” symmetry [11, 20]. Our final effective theory can be obtained by only imposing
the diagonal part of the two global U(1) symmetries and gauging the symmetry of Model
A by the time independent gauge symmetry of charge diffusion.

By considering fluctuations of frequencies much lower than the gap of the amplitude
mode, we end up with an effective description of the conserved current in the broken phase.
At the level of classical hydrodynamics, this system is parametrised by the charge and
current susceptibilities as well as the third bulk viscosity and the incoherent conductivity [21–
24]. As one might expect, the low energy theory is described by the phase of the complex
order parameter. We express the third bulk viscosity of the superfluid in terms of bare
thermodynamic quantities and the complex kinetic coefficient of the order parameter.

2 The effective theory

The basic ingredient of the Keldysh-Schwinger formalism [25, 26] is the acceptance that time
evolution of quantum fields has to happen along a closed time path [25]. In its full generality,
the formalism can be used to extract powerful statements about the dynamics of quantum sys-
tems around a state captured by a generic density matrix. More recently, significant progress
has been made in realising effective theories describing the long wavelength, small frequency
limit within the same framework [11]. After integrating out the fast, short wavelength modes
of the system in the closed time path integral we are left with the effective theory fields χ
and the sources ϕ. In terms of these, the closed time path generating functional reads,

eW [ϕ1,ϕ2] =
∫
Dχ1Dχ2 e

i IEF T [χ1,ϕ1;χ2,ϕ2] , (2.1)

where IEFT is the effective action, with χ1 and χ2 corresponding to the forward and backward
time evolution branch respectively. In order for the path integral in (2.1) to represent the
trace of a closed time path, the dynamical fields χ1 and χ2 must satisfy the gluing conditions,

lim
t→+∞

(χ1(t)− χ2(t)) = lim
t→−∞

(χ1(t)− χ2(t− iβ)) = 0 , (2.2)

where β is the inverse temperature of the thermal state. Due to the integration over the
UV modes, the action IEFT will carry dependence on the thermodynamic variables fixing
the thermal state.

It is convenient to introduce the r and a-fields through,

χr =
1
2 (χ1 + χ2) , χa = χ1 − χ2 ,

and similarly for the sources ϕr and ϕa. The constraints implied by unitarity read [11],

I⋆EFT [χr, ϕr;χa, ϕa] + IEFT [χr, ϕr;−χa,−ϕa] = 0 ,
IEFT [χr, ϕr;χa = 0, ϕa = 0] = 0 ,

Im IEFT [χr, ϕr;χa, ϕa] ≥ 0 . (2.3)
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When both the Hamiltonian of our system and the thermal state are invariant under
a symmetry group G, we would anticipate that the effective theory will possess the same
symmetry. Due to the doubling of fields, one might suspect that the symmetry group should
be enhanced to G×G. This is true for time dependent gauge transformations which preserve
the boundary conditions (2.2). However, for time independent symmetry transformations, it
is only the diagonal subgroup that preserves these boundary conditions. This key difference
will play a crucial role in our construction.

The first degree of freedom that we need to include in our effective theory is the complex
order parameter ψi which is charged under a global U(1) transformation. Moreover, we
assume that this global symmetry is gauged by the external electromagnetic potential Ai µ.
The second observable we need to include is the associated Noether current Jµ due to the U(1)
symmetry and which couples to the order parameter ψ. In the context of the effective theory
it contributes a scalar degree of freedom ϕi, the Stueckelberg field of the electromagnetic
gauge transformations [11].

In the normal phase, the scalar ϕi describes the diffusive dynamics of charge density [11].
For this reason, the effective field theory must also be invariant under the separate diagonal
time independent gauge transformation1 [11, 20],

ϕ′r = ϕr + σ , ϕ′a = ϕa , ∂tσ = 0 . (2.4)

Note that this is a distinct transformation from the electromagnetic gauge transformations
as it does not involve neither the order parameter nor the external gauge field. This is known
as a “chemical shift” symmetry [20] and it is imposed in normal phase effective theories
in order to exclude the presence of supercurrents. However, in nearly critical systems this
symmetry is stronger than imposing the absence of supercurrents in their normal phase.
Moreover, it will be necessary in order to match with both Model F [9] as well as with the
equivalent holographic systems [28].

It will be useful to write down the symmetry transformations that our effective theory
should be invariant under in the notation of the r- and a-fields. Keeping only the leading
order terms in the a-fields we obtain,

ψ′
r = eiqλDψr , ψ′

a = eiqλD(ψa + iqλAψr) ,
ϕ′r = ϕr + λD + σ , ϕ′a = ϕa + λA ,

A′
rµ = Arµ − ∂µλD , A′

aµ = Aaµ − ∂µλA, (2.5)

where we have defined the diagonal λD = 1
2(λ1 + λ2) and the anti-diagonal λA = λ1 − λ2

gauge transformation parameters. The transformations of (2.5) have been linearised in λA
since the latter is of order O(β) in the semiclassical limit we are interested in. Given our
discussion around symmetries, the gauged symmetry should exist on the forward as well as
on the backward branch of the time evolution path. However, we would only have to worry
about the global part of the diagonal λD. Finally, we will also consider source fields sr,a for
the charged scalar transforming in the same way with the fields ψr,a in (2.5).

1A recent construction [27] of critical models for superfluidity has used a similar condition. However, the
reasoning in footnote 4 of [27] would, in principle, allow for the extra terms we discuss below equation (2.14).
Our model agrees with [27] as long as we impose the constraint κ0 = −q cI

6.
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The appearance of more that one field transforming non-trivially under the gauge
transformations allow us to write down the gauge invariant combinations,

ψ̂r = e−iqϕrψr , ψ̂a = e−iqϕr(ψa − iqϕaψr) ,
Brµ = ∂µϕr +Arµ , Baµ = ∂µϕa +Aaµ . (2.6)

A natural choice for the local chemical potential is the time component of the gauge in-
variant r-vector component µ = Br 0 which coincides with the thermodynamic chemical
potential in equilibrium. For spacetime dependent configurations, this choice will fix our
hydrodynamic frame. In terms of our gauge invariant variables, the time independent gauge
transformation (2.4) takes the form,

ψ̂′
r = e−iqσψ̂r , ψ̂′

a = e−iqσψ̂a ,

B′
ri = Bri + ∂iσ , B′

rt = Brt , B′
aµ = Baµ . (2.7)

leading to the natural covariant derivative,

Diψ̂r,a = ∂iψ̂r,a + i qBr i ψ̂r,a , Dtψ̂r,a = ∂tψ̂r,a . (2.8)

The above discussion shows that the effective theory we are after is essentially a combi-
nation of the U(1) symmetric Model A with the charge diffusion model of [11]. The degrees
of freedom of the two systems are then coupled because the diagonal parts of the respective
global U(1) symmetries are identified. Moreover, the global U(1) symmetry of the Model A
sector is gauged by the time independent gauge parameter of charge diffusion.

In addition to the continuous symmetry transformations, our effective theory should
also be invariant under a set of KMS transformations. Our thermal state involves a finite
chemical potential, making simpler to consider the discrete transformation Θ = P̂ T̂ involving
parity and time reversal. The KMS transformations then read,2

B̃rµ(−x) = Brµ(x) , B̃aµ(−x) = Baµ(x) + iβ ∂tBrµ(x) ,
˜̂
ψr(−x) = ψ̂⋆r (x) ,

˜̂
ψa(−x) = ψ̂⋆a(x) + iβ ∂tψ̂

⋆
r (x) . (2.9)

The KMS transformation rules (2.9) preserve the total number of a-field factors and
time derivatives of r-fields. It therefore makes sense to write an expansion for the effective
Lagrangian density according to,

LEFT = L[1] + L[2] + · · · , (2.10)

where the term L[n] contains terms with a total of n factors of a-fields and time derivatives
of r-fields. In this notation, the second line of equation (2.3) guarantees that L[0] vanishes.

Here, we will give the highlights of a more detailed argument for the construction, which
can be found in appendix A. Keeping only linear terms in the scalar field sources which

2For notational simplicity, we only give the parity transformation rules in odd number of spatial dimensions.
In general, we should only be flipping the sign of only one spatial coordinate. Our conclusions would remain
unchanged.
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are invariant under the symmetry as well as the KMS transformations, the leading term
in (2.10) takes the form,

L[1] = 2Re
[
eiqϕrs⋆r ψ̂a + e−iqϕr ψ̂⋆rsa + iq eiqϕr ψ̂r s

⋆
r ϕa

]
+ δS0
δBr µ

Baµ + 2Re
(
δS0

δψ̂r
ψ̂a

)
.

(2.11)
The functional S0 takes the general form,

S0[ψ̂r, ψ̂⋆r , ϕr;Ar µ] = −
∫
dd−1xF , (2.12)

with F being a function of quantities which are invariant under the transformation (2.7),
such as ψ̂r ψ̂⋆r , Diψ̂rD

iψ̂∗
r and Br t.

Close to the phase transition, the function F should be close to the free energy density
F0 of the normal phase. Introducing a perturbative parameter ε and assuming the scaling
behaviour3

∂t ∝ O(ε2) , ∂i ∝ |ψ̂r| ∝ O(ε) , ϕr ∝ O(ε0) . (2.13)

we can write an expansion,

F = F0 − ρnBr t −
1
2χnB

2
r t + r0 |ψ̂r|2 +

1
2u0 |ψ̂r|4 + κ0Br t |ψ̂r|2 + w0Diψ̂rD

iψ̂⋆r , (2.14)

with u0, w0 and κ0 finite while r0 ∝ O(ε2). Moreover, we have shifted Br t by the chemical
potential of the thermal state µ0 and all the bare constants appearing in (2.14) are now
functions of β and µ0. The symmetry (2.4) is stronger than demanding that the effective
theory should be independent of purely spatial derivatives of ϕr in the absence of the
condensate. This would allow for terms of the form |ψr|2Br iBri and Bri Im(ψ̂⋆r Diψ̂r) which
are again of order O(ε4) and vanish in the normal phase.

For the second term in the expansion (2.10) we find the gauge invariant expression,

L[2] = −2 i β−1cR6 ψ̂aψ̂
⋆
a + c6 ψ̂a ∂tψ̂

⋆
r + c⋆6 ψ̂

⋆
a ∂tψ̂r − iβ−1c5B

2
a i + c5Ba i ∂tBr i , (2.15)

which also respects the KMS symmetry (2.9). Moreover, the third condition of constraints (2.3)
implies that c6 = cR6 + i cI6 can be complex with cR6 ≤ 0 and c5 ≤ 0. Our effective action
is invariant under charge conjugation Ĉ since as we show in appendix A, e.g. the constant
κ0 is odd under Ĉ.

Finally, the Noether current of the global symmetry that rotates the a fields can be
obtained be differentiating the effective action with respect to the a-vector fields,

Ĵ ir = −2q Im
(
ψ̂⋆r

∂F

∂Diψ̂⋆r

)
+ c5

(
∂iµ− Ei

)
− i

2 c5
β
Ba

i ,

Ĵ tr = − ∂F

∂Br t
, (2.16)

where Ei = ∂iAr t − ∂tAr i is the external electric field.
3ε parametrises the distance from the critical point. In this paper we want to focus on the small wavevector,

small frequency response of the nearly critical system, and this is why we take the spacetime derivatives to be
of the same order. The time derivative can only be O(ε2), as can be seen from matching the ε powers across
different terms of the action.
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3 Model F from Keldysh-Schwinger

An interesting fact about Keldysh-Schwinger effective theories at quadratic level in a-fields
is that they are equivalent to a set of kinetic equations for the r-fields [11]. In particular,
we will recast our theory as the stochastic Model F of [9] which describes the nearly critical
dynamics of a complex order parameter and the corresponding conserved current.

As we show in appendix B, by using standard path integral techniques, we can recast the
path integral (2.1) in terms of noise fields instead of the a-fields. More specifically, we can
trade ψ̂a and Baµ for the complex noise field z and the real vector noise field ζµ respectively
following a Gaussian distribution with zero mean.

Written in terms of the function F and the chemical potential µ, the system of stochastic
equations becomes,

c⋆6 ∂tψ̂r =
∂F

∂ψ̂⋆r
−Di

(
∂F

∂Diψ̂⋆r

)
− e−iqϕr sr − z ,

∂µJ
µ
r = Im

[
ψ̂⋆r e

−iqϕr sr
]
− ∂iζ

i , (3.1)

where the current is given by (2.16) with trivial Ba i. The real and imaginary parts of z
and the components ζi have variance −cR6 /β and −2 c5/β respectively. In the equations
above, we have set the a-sources equal to zero since we are interested in comparing with a
theory which is meant to compute only the retarded Green’s functions and the r-sources
are sufficient for this purpose.

We now turn our attention to Model F of [9] which we will match with the stochastic
system (3.1). The effective degrees of freedom in that description are the charge density
excitation m above the normal phase and the complex order parameter ψ which satisfy
the stochastic system of equations,

∂tψ = −2Γ0
δW

δψ⋆
− i g0

δW

δm
ψ + θ ,

∂tm = λm0 ∂i∂
i
(
δW

δm

)
+ 2g0 Im

[
ψ⋆

δW

δψ⋆

]
+ ζH , (3.2)

where Γ0 is a complex parameter with positive real part, λm0 is a positive constant, θ and
ζH are noise fields. More specifically, the real and imaginary parts of the random field
θ and the field ζH follow Gaussian distributions of zero mean and variances ReΓ0/β and
−2λm0 /β ∂i∂i respectively [29].

The variance of the z-distribution was fixed by the KMS conditions. In contrast, the
variance of the field θ for Model F, is fixed by demanding that the fluctuation-dissipation
theorem is satisfied. Equivalently, the relevant Fokker-Planck equation admits the grand
canonical probability distribution P [ψ] = Z−1 e−βW [ψ] as a fixed point. The latter highlights
that W plays the role of Ginzburg-Landau-Wilson free energy.

Assuming that the free energy W depends analytically on the fields ψ, m and the
corresponding classical sources h and hm, we can write the leading order terms,

W =W0 −
∫
dd−1x [hmm+Re(hψ⋆)] ,

W0 =
∫
dd−1x

[1
2 r̃0 |ψ|2 +

1
2 w̃0 |∇ψ|2 + ũ0 |ψ|4 +

1
2C0

m2 + γ0m |ψ|2
]
. (3.3)
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We note that [9] has w̃0 = 1 but this is not a significant difference as w0 can be set to
unity via a field redefinition.

In order to compare the stochastic systems (3.1) and (3.2), we need to perform a change
of variables from the charge density difference m to the chemical potential µh = δW0

δm . To
achieve this, we consider the Legendre transformation of the energy potential W0 according
to W̃0 = W0 −

∫
µhm.

To match the system of equations (3.2) to the one obtained from the Keldysh-Schwinger
effective action (3.1), we identify,

ψ = eiqϕr ψ̂r , µh = µ , h = 2 sr , hm = At ,

Ai = 0 , z = −c⋆6 e−iqϕr θ , ζH = −∂iζi , q = −g0 .

Then the matching requires that,

W̃0 =
∫
dd−1x (F − F0(µ0) + ρnBr t) ,

c⋆6 = − 1
2Γ0

, c5 = −λm0 . (3.4)

In our recent paper [28], we matched the dynamics of Model F with a suitable class
of holographic models of superfluidity. At the level of mean field theory, we showed that
the holographic theories capture the same dynamics near criticality with Model F. However,
given that holography provides a weakly coupled description of strongly coupled microscopic
theory, the transport coefficients Γ0 and λm0 (or equivalently c6 and c5) where fixed in terms
of black hole horizon invariants.

4 Superfluid hydrodynamics at low energies

In this section we will consider the limit of our effective theory at energies much lower
than the gap of the order parameter amplitude mode. It is useful to examine the spectrum
of fluctuations of our r-fields around the vacuum solution of equations (3.1) in the mean
field limit setting the sources sr and sa for the order parameter to zero. To proceed, we
consider perturbative fluctuations around the background with Br 0 = Br i = 0 and ψ̂r = ψ0.
The analysis is very similar to that of [28] revealing a gapped mode along with a pair of
propagating sound modes for wavevectors much smaller than the gap,

ωH = −i ωg − iDH k
2 + · · · ,

ω± = ±
√
χJJ
χb

k − iDs k
2 + · · · , (4.1)

where we have set,

ωg = −2 cR6
|c6|2

|ψ0|2 u0
χb
χn

= cR6
|c6|2

4∆E0
|ψ0|2

,

χb = χn +
κ2

0
u0

= χn
∆E0
∆F0

. (4.2)
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In the above equations, χb is the charge susceptibility of the broken phase [28], ∆E0 and
∆F0 are the mean field energy and the free energy difference between the broken and normal
phase. The low energy limit we wish to derive, by integrating out the gapped, amplitude
mode ωH , captures the sound mode ω±. We will postpone an explicit expression for Ds until
we have written down the low energy limit theory.

We introduce a perturbative parameter λ and take the time and spatial derivatives
to be of order ∂t ≈ ∂i ≈ O(λ).4 The mean field theory part of the stochastic system of
equations (3.1) suggests that our r-fields scale according to,

ψ̂r = ρr + δρr + i q ρr δθr + · · · ,
δρr ≈ δθr ≈ Br µ ≈ O(λ) , (4.3)

where we have taken the background VEV ψ0 = ρr of the complex scalar to be real.
As we show in appendix C, by expanding the generating functional (2.1) to order O(λ4),

we can perform the path integration over the fields δρr, δθr and ψ̂a to find the low energy
effective Lagrangian density,

Lsf = ρbCa 0 − c5

(
i

β
C2
a i − Ca i ∂tCr i

)
− χJJ Cr

iCa i

+ χbCa 0Cr 0 + χ2
b ζ3

(
i

β
C2
a 0 − Ca 0 ∂tCr 0

)
, (4.4)

with the gauge invariant vectors Cr,a = ∂φr,a + Ar,a. We have used the identification (4.2)
and defined the broken phase charge density and current susceptibility,

ρb = ρn − κ0 ρ
2
r , χJJ = 2w0 q

2 ρ2
r . (4.5)

Following the details in appendix C, the angle φr coincides with the phase of the original
order parameter variable ψr that we introduced in section 2. The real constant ζ3 can
be expressed as,

ζ3 = (χb u0 + q κ0 c
I
6)2 + q2 κ2

0 (cR6 )2

ωg q2 χb χn |c6|2 u0
. (4.6)

Our low energy degrees of freedom follow the same gauge transformation rules with
the phase variables ϕr and ϕa in equation (2.5). However, the resulting action does not
possess an analog of the time independent gauge symmetry (2.4). It is interesting to point
out that the hydrodynamic frame we seem to have landed in is the same with the natural
frame of holography [30].

Following the details in appendix C we can show that the dispersion relations of the
perturbative modes of our low energy theory yield the mode ω± of equation (4.1) with,

Ds =
1

2χb
(χJJ χb ζ3 − c5) . (4.7)

4We can think of the λ expansion as being performed on top of the ε expansion in (2.13). With the initial
ε expansion we construct a theory valid for energies up to the gap of the amplitude mode, which is set by ε.
With the introduction of λ essentially we focus on energies much smaller than the gap.
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According to the ε expansion of section 2, the bulk viscosity ζ3 in equation (4.6) is of order
O(ε−2). This is certainly to be expected since we have integrated out a mode whose gap
behaves like O(ε2) close to the phase transition. However, the constant Ds remains finite
since the current-current susceptibility behaves like O(ε2) close to the transition as we can
see from the expression (4.5).

In the normal phase, the original effective theory has two gapped modes [28] as well as a
gapless mode describing charge diffusion with diffusion constant De = −c5/χn. This suggests
a rearrangement of the degrees of freedom across the phase transition, in agreement with
earlier observations concerning holographic models [28, 30]. An interesting observation is
that the product χJJζ3 in equation (4.7) remains finite close to the transition. Given that
statistical fluctuations become strong near the critical point, it would be interesting to explore
how non-linearities could affect this conclusion.

5 Discussion

We constructed the effective theory for the critical dynamics close to a superfluid phase
transition in the framework of the Keldysh-Schwinger formalism. An important ingredient to
match with Model F [9] as well as with holography [28] was the “chemical shift” symmetry [11,
20] of equation (2.4), which excluded a number of terms from the effective action and which
would otherwise be allowed in our ε expansion of the free energy in equation (2.14).

In this paper we focused entirely on the coupled sector of the complex order parameter
and the corresponding conserved current. This has simplified the problem as it allowed us to
focus on some of the crucial aspects of the construction. This is in direct analogy with the
probe limit of holographic theories which decouple the metric fluctuations from the charged
and condensed degrees of freedom. However, at finite density this sector also couples to the
energy-momentum of the system leading to a much larger description involving the local
temperature and normal fluid velocity. We will leave this construction for future investigation.

As we observed at the end of section 4, even though the superfluid effective theory is
expected to break down close to the phase transition, the dispersion relations (4.1) remain
finite. These conclusions were drawn from the superfluid phase point of view leaving open
the question of the effect of higher order noise interactions [14, 15].
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A Effective action construction

In this appendix we will discuss some of the details for the derivation of the first couple of
terms in the effective Lagrangian expansion (2.10). We start by discussing the source si of
the complex scalar ψ̂i and how it appears in equation (A.3). The reason we would like to

– 9 –



J
H
E
P
0
1
(
2
0
2
4
)
1
1
0

include such sources in our description is twofold. The first and most obvious is that they
would allow us to compute correlation functions for the order parameter. The second is that
static, background sources will allow us to study the effects of explicit symmetry breaking in
our system. In order to preserve the gauge symmetry transformations, the source s needs to
transform in the same way with the order parameter ψi according to,

s′i = eiqλi si , s⋆ ′i = e−iqλi s⋆i . (A.1)

It is also useful to note that under a KMS transformation, the complex scalar sources
transform as,

s̃r(−x) = s⋆r(x) , s̃a(−x) = s⋆a(x) + iβ ∂ts
⋆
r(x) . (A.2)

For the purposes of our paper we will only be interested in perturbations of the complex
scalar sources and we will only include terms which are linear in sr and sa. The first property
listed in equation (2.3) suggests that we can write,

L[1] = aµBaµ + 2Re
[
aψ ψ̂a + eiqϕrs⋆r ψ̂a + e−iqϕr ψ̂⋆rsa + iq eiqϕr ψ̂r s

⋆
r ϕa

]
, (A.3)

with the coefficients aψ and aµ being functions of the r-fields. This form satisfies all properties
of equation (2.3), provided that aµ is real. Notice that the terms involving the complex scalar
source sr,a are invariant under the symmetry transformations (2.5), (2.7) and (A.1) as well
as the KMS transformations (2.9) and (A.2). Imposing that the rest of the expression (A.3)
is invariant under the KMS transformations (2.9) gives that,

aψ = δS0

δψ̂r
, aµ = δS0

δBr µ
, (A.4)

for some functional S0 of our r-fields,

S0[ψ̂r, ψ̂⋆r , ϕr;Ar µ] = −
∫
dd−1xF . (A.5)

The final step is to ensure that (A.3) is also invariant under the transformations given in
equations (2.7) and (A.1). Considering first derivatives of our fields, it is easy to check that
any function F of the invariant quantities,5

ψ̂r ψ̂
⋆
r , Diψ̂rD

iψ̂∗
r , Br 0 , (A.6)

satisfy our criteria. This allows us to write the most general function that satisfies our
constraints as,

F = F
(
ψ̂r ψ̂

⋆
r , Diψ̂rD

iψ̂∗
r , Br 0

)
. (A.7)

5In fact, we could include gauge invariant scalars of the form Fr ijF ij
r with Fr ij = ∂iBr j −∂jBr i. However,

this scalar depends entirely on the source gauge field and we ignore it since we don’t consider external
magnetic fields.
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Before constraining the function F further, we will turn our attention to the second term
in the expansion of the effective action in (2.10). The most general expression with single time
derivative terms we can write and which are invariant under the transformations (2.7) reads,

L[2] = i c1 ψ̂aψ̂
⋆
a + i c2B

2
a 0 + ic3B

2
a i + c4Ba 0 ∂tBr 0 + c5Ba i ∂tBr i + c6 ψ̂a ∂tψ̂

⋆
r + c⋆6 ψ̂

⋆
a ∂tψ̂r .

(A.8)
The first line of the properties in equation (2.3) demand that c1, . . . , c5 are real and c6 =
cR6 + i cI6 can be complex. Moreover, these can be functions of the invariant quantities (A.6).
Imposing KMS invariance, one can easily show that these coefficients are constrained in
a way such that,

L[2] = −2 i cR6
β

ψ̂aψ̂
⋆
a − i

c4
β
B2
a 0 + c4Ba 0 ∂tBr 0 − i

c5
β
B2
a i + c5Ba i ∂tBr i + 2Re

(
c6 ψ̂a ∂tψ̂

⋆
r

)
.

(A.9)
Finally, imposing the third property of equation (2.3), we conclude that our dissipative
coefficients must satisfy the inequalities cR6 , c4, c5 ≤ 0.

The off-shell conserved current reads,

Ĵ ir =
δIEFT
δAa i

= J ir − i
2 c5
β
Ba

i = −2q Im
(
ψ̂⋆r

∂F

∂Diψ̂⋆r

)
+ c5 ∂tBr

i − i
2 c5
β
Ba

i ,

Ĵ0
r = δIEFT

δAa 0
= J0

r − i
2 c4
β
Ba 0 = − ∂F

∂Br 0
+ c4 ∂tBr 0 − i

2 c4
β
Ba 0 , (A.10)

where Jµr denotes the classical part of the electric current. The above shows that in thermo-
dynamic equilibrium the charge density is given by the derivative of the function −F with
respect to Br 0. In order to understand the role of the function F , it will be enlightening to
consider the classical equations of motion of our system. These can obtained from the effective
action by taking derivatives with respect to the a-fields and setting them equal to zero. Doing
so reveals the derivatives of F with respect to the complex order parameter is fixed by the
classical source sr. The above show that we can treat F as the Ginzburg-Landau-Wilson
potential since µ = Br 0 is the chemical potential of the system. This suggests that, at the
level of thermodynamics, the energy density of the system is E = F + µJ0

r .
Expanding the function F in powers of the order parameter near criticality we obtain,

F = F0(µ) + r(µ) |ψ̂r|2 +
1
2u(µ) |ψ̂r|

4 + w(µ)Diψ̂rD
iψ̂⋆r + · · · . (A.11)

In the above expansion we introduced the constant F0, which is identified as the normal
phase free energy. Its first derivative gives minus the normal phase charge density ρn and
its second derivative will therefore yield minus the susceptibility of the normal phase χn,
so that in a semi-classical approximation,

ρn = − ∂F0
∂µ

∣∣∣∣
µ=µ0

, χn = − ∂2F0
∂µ2

∣∣∣∣∣
µ=µ0

, (A.12)

where µ0 is the value of the chemical potential in the thermal state.
It is useful to note that our functions F0, r, u and w will in general depend on temperature

as well as the deformation parameters and coupling constants of the microscopic theory. For
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example, one can imagine that the system is deformed by a relevant operator which doesn’t
have to be included in our low energy description. However, the corresponding deformation
parameters will in general enter in the effective action.

Being interested in the dynamics of our system close to the phase transition, it is
reasonable to perform the shift,

Br 0 → µ0 +Br 0 , (A.13)

allowing us to treat Br µ as a fluctuation around the thermal state. At the same time, close
to the transition we will take our derivatives, fields and constants to scale according to
equation (2.13). The KMS transformation rules (2.9) then give the a-field scaling rules,

ϕa ∝ O(ε2) , ψ̂a ∝ O(ε3) , sa ∝ O(ε5) . (A.14)

Assuming that the constant c4 behaves as a regular function of ε, the above scalings suggest
that we can drop the corresponding term in (A.9) by setting c4 = 0. This leads us to the
expression quoted in equation (2.15).

Keeping terms up to order ε4 in F (or order ε6 in IEFT ) we arrive at the expression of
equation (2.14). It is useful to understand the bare constants that appear in the expansion
of equation (2.14) for the function F in the context of mean field theory. Demanding that
the free energy is extremised by the mean field value ψ0 of the order parameter in the
undeformed theory, we can identify,

r0 = 2∆F0
|ψ0|2

, u0 = −2∆F0
|ψ0|4

, (A.15)

where ∆F0 is the free energy density difference between the broken and the normal phase.
In terms of mean field theory, our previous arguments lead to,

κ0 = ∂r

∂µ

∣∣∣∣
µ=µ0

= − ∆ρ0
|ψ0|2

. (A.16)

In the above expression, ψ0 is the mean field value of the order parameter in the broken
phase and ∆ρ0 is the charge density difference between the broken and the normal phase
close to the transition.

For convenience, it is useful to note that the energy density difference between the
broken and the normal phase is,

∆E0 = ∆F0 −
1

2χn
(∆ρ0)2 , (A.17)

where on the left hand side we have fixed charge density and on the right hand side we
have fixed background chemical potential µ0.

B Derivation of the stochastic system

In this appendix we will give some of the details needed to derive the stochastic equations of
motion that we have quoted in the main text in equation (3.1) along with the correlation
functions for the noise fields.
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In order to find the equations of motion with the appropriate noise terms from the
effective theory of section 2, we will make use of the following well-known identity,6∫

Dϕe−
∫
ddx ddy ϕ(x)K(x,y)ϕ(y)+i

∫
ddx J(x)ϕ(x) = det

(
K

π

)− 1
2
e−

1
4

∫
ddx ddy J(x)K−1 (x,y) J(y) .

(B.1)
In what follows, numerical constants such as the determinant factor in the above expression
will be absorbed in the integration measure as they carry no dependence on the interesting
part which is the sources J(x).

In order to obtain the stochastic equation of motion (3.1) for the complex order parameter
ψ̂r, we first split the field ψ̂a in real and imaginary parts: ψ̂a = ψ̂Ra + i ψ̂Ia. We then introduce
two real fields z1, z2 and apply (B.1) to obtain,

e
∫
ddx

2 cR
6

β
(ψ̂R

a )2
=
∫
Dz1 e

∫
ddx β

2 cR
6
z2

1+2 i ψ̂R
a z1

,

e
∫
ddx

2 cR
6

β
(ψ̂I

a)2
=
∫
Dz2 e

∫
ddx β

2 cR
6
z2

2+2 i ψ̂I
az2

. (B.2)

Using these identities, ψ̂a appears linearly in the effective action. As a result, the path
integral over ψ̂a and ψ̂⋆a gives two delta functions, which constrain the r-fields ψ̂r, ψ̂⋆r to be
on-shell, obeying the complex scalar stochastic equation,

c⋆6 ∂tψ̂r = − δS0

δψ̂⋆r
− e−iqϕr sr − z . (B.3)

The complex noise field z = z1 + i z2 then satisfies,

⟨z(x) z(y)⟩ =
∫
DzDz⋆z(x) z(y) e

∫
ddx β

2 cR
6
|z|2

= 0 ,

⟨z⋆(x) z(y)⟩ =
∫
DzDz⋆z⋆(x) z(y) e

∫
ddx β

2 cR
6
|z|2

= −2Re(c6)
β

δ(d)(x− y) . (B.4)

For the noise related to the ϕa field we have essentially two choices. The first one is to
introduce a real vector noise field ζµ according to the identities,

e
∫
ddx

c4
β
B2

a 0 =
∫
Dζ0 e

∫
ddx β

4 c4
ζ2

0 +i ζ0Ba 0 ,

e
∫
ddx

c5
β
B2

a i =
∫
Dζi e

∫
ddx β

4 c5
ζ2

i +i ζiBa i . (B.5)

The variable ϕa then appears linearly in the effective action and can be integrated over,
yielding a delta functional with argument,

− ∂µ J
µ
r − ∂µζ

µ + 2Re(i q eiqϕr ψ̂rs
⋆
r) , (B.6)

with Jµr as defined in equation (A.10). However, the weight of the path integral now involves
the “source” term factor e

∫
ddx i ζµ Aa µ . To absorb it, we can make the shift,

ζ0 → ζ0 − 2 i c4
β

Aa 0 ,

ζi → ζi −
2 i c5
β

Aa i . (B.7)

6This is simply a path integral generalisation of the one-dimensional Gaussian integral.
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The argument of the delta functional (B.6) implies then the current continuity equation
with noise,

∂µJ
µ
r = −2 q Im

[
ψ̂r e

iqϕr s⋆r

]
− ∂µζ

µ + 2 i
β

(
c5 ∂iA

i
a + c4 ∂tAa 0

)
. (B.8)

For the correlation function of the noise field we have,

⟨ζ0(x) ζ0(y)⟩ =
∫
Dζµ ζ0(x) ζ0(y) e

∫
ddx β

4 c4
(ζ0)2

= −2 c4
β
δ(d)(x− y) ,

⟨ζi(x) ζj(y)⟩ =
∫
Dζµ ζi(x) ζj(y) e

∫
ddx β

4 c5
ζ2

k = −δij 2 c5
β
δ(d)(x− y) .

An alternative way to write the stochastic equation for the current is to introduce a
scalar noise field ζ through the identity,

e
∫
ddxϕa(− c4

β
∂2

t −
c5
β
∂2

i )ϕa =
∫
Dζ e

∫
ddx (−β

4 ζ (c4 ∂2
t +c5 ∂2

i )−1ζ+i ζ ϕa) . (B.9)

The integral over ϕa constraints the current to be on-shell, obeying the constraint equation
of motion,

∂µJ
µ
r = −2 q Im

[
ψ̂r e

iqϕr s⋆r

]
+ ζ + 2 i

β

(
c5 ∂iA

i
a + c4 ∂tAa 0

)
, (B.10)

with the correlation function for the scalar noise field obeying,

⟨ζ(x)ζ(y)⟩ = 2
β
(c4 ∂

2
t + c5 ∂

2
i )δ(d)(x− y) , (B.11)

and Jµr as defined in equation (A.10).

C Integrating out the amplitude mode

In this appendix we provide some of the necessary technical details regarding the derivation
of section 4.

For convenience, we introduce the real and imaginary parts,

ψ̂a = ψ̂Ra + i ψ̂Ia , (C.1)

obeying the perturbative KMS transformation rule,

˜̂
ψRa (−x) = ψ̂Ra + i β ∂tδρr ,

˜̂
ψIa(−x) = −ψ̂Ia − i β q ρr ∂tδθr . (C.2)

Consistency of the KMS transformations (C.2) then leads to,

ψ̂a ≈ ψ̂⋆a ≈ Baµ ≈ O(λ2) . (C.3)

Based on the discussion around equations (4.3) and (C.3), we can expand the effective action
in the parameter λ. Indeed, the derivative expansion scheme above has similar flavour to a
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semi-classical approximation. In this expansion we aim to retain quadratic terms in a-fields,
suggesting that we maintain terms up to order O(λ4), to obtain,

L[1] =
(
−4u0 ρ

2
r δρr − 2κ0 ρr Br 0

)
ψ̂Ra +

(
ρn − κ0 ρ

2
r − 2κ0 ρr δρr + χnBr 0

)
Ba 0

+ 2w0 q ρr ∂
i (∂iδθr +Br i) ψ̂Ia − 2w0 q

2 ρ2
r

(
∂iδθr +Br

i
)
Ba i , (C.4)

L[2] = 2
(
cR6 ψ̂

R
a − cI6 ψ̂

I
a

)
∂tδρr + 2 q ρr

(
cR6 ψ̂

I
a + cI6 ψ̂

R
a

)
∂tδθr −

2 i cR6
β

[(
ψ̂Ra

)2
+
(
ψ̂Ia

)2
]

− i c5
β
Ba

iBa i + c5Ba
i ∂tBr i . (C.5)

We now observe that δρr appears linearly in the effective action terms (C.4) and (C.5).
Performing the path integration over this variable yields a delta functional imposing a
constraint which can be solved perturbatively up to third order in λ according to,

ψ̂Ra = − κ0
2u0 ρr

Ba 0 +
κ0 c

R
6

4u2
0 ρ

3
r

∂tBa 0 +
cI6

2u0 ρ2
r

∂tψ̂
I
a .

In order for this to make sense, we must ensure that the domain of integration in the path
integral does not include the kernel of the operator we are trying to invert. This is guaranteed
by the fact that we are assuming that the gap of the mode with dispersion relation ωH in
equation (4.1) is larger than the UV cut off scale Λ of our effective theory. By substituting
the above in the effective action we find the expressions,

L[1] = Br 0

(
χbBa 0 −

κ0 c
I
6

u0 ρr
∂tψ̂

I
a −

κ2
0 c

R
6

2u2
0 ρ

2
r

∂tBa 0

)
+ ρbBa 0 − 2w0 q

2 ρ2
r(∂iδθr +Bri)Ba i

− 2w0 q ρr(∂iδθr +Br i)∂iψ̂Ia , (C.6)

L[2] = −2 i cR6
β

(ψ̂Ia)2 − i
cR6 κ

2
0

2β u2
0 ρ

2
r

B2
a 0 + 2 q ρr cR6 ψ̂Ia∂tδθr −

κ0 c
I
6 q

u0
Ba 0 ∂tδθr

− i c5
β
Ba

iBa i + c5Ba
i ∂tBr i . (C.7)

In the above expressions we have defined χb and ρb, the charge susceptibility and the charge
density respectively of the broken phase, given by,

χb = χn +
κ2

0
u0
, ρb = ρn − κ0 ρ

2
r . (C.8)

At this point, it is useful to make a change of variables in the path integral:7

ϕr → φr = ϕr + δθr ,

ϕa → φa = ϕa +
1
q ρr

ψ̂Ia . (C.9)

As in the main text, we introduce the gauge invariant vectors Cr = ∂φr+Ar and Ca = ∂φa+Aa.
Note that the last term of L[1] will change by a total time derivative term, which we will drop.

7These changes are just shifts of the integrated variables and so have unit Jacobian.
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The next step is to observe that the variable δθr appears linearly in the resulting effective
action as well. Performing the corresponding path integration over it we obtain the delta
functional,

δ

(
−2qρrcR6 ∂tψ̂Ia+

(
χb+

qκ0
u0

cI6

)
∂tCa0

)
= 1
det(−2qρrcR6 ∂t)

δ

(
ψ̂Ia−

1
2qρrcR6

(
χb+

qκ0
u0

cI6

)
Ca0

)
.

For the equality to make sense, ∂t acting on ψ̂Ia has to be an invertible operator. The reason
this is the case, is because its domain of definition contains only functions that vanish at
t→ +∞. This is true for all a fields due to the boundary condition (2.2). As a result, the ∂t
has an empty kernel on the space of functions we are integrating over. The above shows that
the operation is meaningful. The final step is to integrate over ψ̂Ia using the delta functional
in order to arrive to our final result of equation (4.4) for the effective action, after identifying
the current susceptibility χJJ through (4.5).

In order to express the constant ζ3 of equation (4.6) in terms of the variables appearing in
Model F, we can use the matching relations (3.4), (A.15) and (A.16) to write the expression,

ζ3 = 1
q2 ρ2

r ReΓ0

(
ReΓ2

0 +
(
ImΓ0 +

q ρ2
r ∆ρ0

4χb∆F0

)2)
. (C.10)

This expression matches precisely the previously obtained result in [28]. Moreover, we can
write the KMS transformation rules for our low energy fields,

C̃r µ(−x) = Cr µ(x) , C̃aµ(−x) = Caµ + i β ∂tCr µ(x) ,

and check that the effective action (4.4) is indeed invariant.
In order to make contact with classical superfluid hydrodynamics, it is useful to write

down the expression for the conserved current,

Ĵr
0 = ∂Lsf

∂Ca 0
= ρb + χbCr 0 − χ2

b ζ3 ∂tCr 0 +
2 i
β
χ2
b ζ3Ca 0 ,

Ĵr
i = ∂Lsf

∂Ca i
= −χJJ Cri + c5 ∂tCr

i − 2 i c5
β

Ca
i , (C.11)

The mean field theory part of the above constitutive relations is consistent with superfluid
hydrodynamics [21–23, 30] after identifying ζ3 with the third bulk viscosity.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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