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1 Introduction

Operator growth is a useful way of distinguishing quantum integrable systems from those ex-
hibiting quantum chaos and information scrambling. It probes how fast a local operator grows
under the time evolution by the Hamiltonian of the system. Several ways of characterizing
such growth have been proposed in recent years, namely the operator size distribution [1, 2],
out-of-time-ordered correlator (OTOC) [3], and Krylov complexity [4]. These approaches are
indirect since they require a probe operator and contrast with more direct probes such as
level statistics [5, 6] and spectral form factor (SFF) [7]. The latter is particularly useful in
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the semiclassical theory of gravity, where a dip, ramp, and plateau are observed and feature
behavior similar to underlying random matrix universality at late times. On the other hand
operator growth turns out to be useful in probing the black hole interior. Particularly the
increasing momentum of a particle in a near AdS2 black hole is reflected as an operator growth
in the dual geometry [8], often studied under the shadow of operator complexity [9, 10].

In this paper, our interest is in studying Krylov complexity, which measures operator
growth on a special basis known as the Krylov basis. The basis is formed by an iterative
Gram-Schmidt-like orthonormalization procedure known as the Lanczos algorithm [11, 12].
An output of this algorithm is the Lanczos coefficients, which usually show distinctive features
for integrable and non-integrable systems, albeit in some special cases [13, 14]. The universal
operator growth hypothesis, proposed in [4] states that the Lanczos coefficients can at most
grow linearly in their indices, and chaotic systems exhibit this fastest linear growth. This linear
growth is consistent with the chaos bound [3] and has attracted substantial studies in recent
times [15–38], along with its cousins, circuit complexity and holographic complexity [39].

On the other hand, open quantum systems are quantum systems that interact with
their environment, which causes decoherence and dissipation. These effects are common
in nature and have practical implications for quantum many-body systems. In particular,
the study is important in the context of the black hole information problem in AdS/CFT
correspondence, where the Hawking radiation is collected in a bath that is attached to an
AdS black hole [40]. In recent times, this has led to a surge of studies on the operator
dynamics in open quantum systems, from quantum many-body systems [41–44] to quantum
field theory and holography [45].

However, the operator evolution in an open system is drastically different compared to a
closed system. The primary reason is the interaction with the environment, which makes
the whole evolution non-unitary. This poses a challenge for studying operator growth in
open systems, as the usual Lanczos algorithm does not work [21]. The problem can be
circumvented by applying more generic algorithms such as Arnoldi iteration [46] or the
bi-Lanczos algorithm. A generic study of Krylov complexity was initiated in [21–23] using
such algorithms. Especially, the authors of this paper initiated a study in the dissipative
Sachdev-Ye-Kitaev (SYK) model [47] using Arnoldi iteration and motivated some universal
aspects of the growth and saturation of Krylov complexity [22]. This study is relevant since
this particular dissipative SYK model can be interpreted as two non-Hermitian SYK models
coupled by a Keldysh wormhole [48], suggesting that generic open quantum systems may
have a holographic dual that involves a wormhole or a similar structure. However, a special
form of dissipation is chosen, which is simple and thus not generic. Therefore, it is still an
open question as to how robust the results are for other forms of dissipation.

In this paper, we partially answer this question by studying a large class of dissipators.
By choosing a p-body Lindblad dissipator with Gaussian strength, in the large N and the
large q limit, we analytically show that both the diagonal and off-diagonal coefficients of the
Lindbladian matrix exhibit asymptotically linear growth, consistent with the observation
made in spin chains [23]. This is further supported by the results of the bi-Lanczos algorithm
in the finite N and finite q SYK in the appropriate regime, modulo the finite-size effects.
The resulting logarithmic timescale of dissipation and the saturation of Krylov complexity

– 2 –



J
H
E
P
0
1
(
2
0
2
4
)
0
9
4

are found to be fairly general and independent of the choice of the form of the dissipation.
We find that this growth and saturation are also reflected in the behavior of OTOC and
operator size, which is supposed to construct a larger class of q-complexity measures [4]. The
saturation can also be interpreted as a result of continuous measurement by the environment
itself. Finally, we also provide a generic notion of the pole structure of auto-correlation and
the high-frequency behavior of the spectral function in the presence of dissipation. This leads
us to motivate an operator growth hypothesis in generic open quantum systems.

Our paper is structured as follows. In section 2, we introduce our system and the generic
form of the dissipation. Section 3 introduces the machinery of the bi-Lanczos algorithm and
the general version of the Krylov complexity in dissipative systems. In section 4, we provide an
analytical derivation of the linear growth of the diagonal coefficients of the Lindbladian matrix
for any generic dissipation which we numerically confirm by implementing the bi-Lanczos
algorithm in section 5. Based on the above results, section 6 motivates some universal
aspects of Krylov complexity and its associated quantities. Finally, in section 7, we derive
the expression of OTOC for a 1-body and general p-body fermionic initial operators. We
conclude in section 8 with a brief summary and future outlook. Appendices consist of some
further results and detailed derivation which we omit in the main text.

2 System and the environment: the Lindbladian

The prototypical example of an open system consists of a system which is interacting with a
dissipative environment. Our system under study is the Sachdev-Ye-Kitaev (SYK) model [49–
51]. This model has garnered much attention in recent times, especially being maximally
chaotic [7, 52], and sharing the same Schwarzian action as Jackiw-Teitelboim (JT) gravity in
low temperatures which elevates it as a toy model for holography. In addition, the generic
model is known to be maximally chaotic, satisfying the Maldacena-Shenker-Stanford (MSS)
bound [3]. From a condensed matter physics perspective, it provides detailed insights into
non-Fermi liquids and strange metals [53].

The q-body Sachdev-Ye-Kitaev (SYK) model consists of N Majorana fermions ψi,
satisfying the Clifford algebra {ψa, ψb} = δab, where q fermions are interacting at a time.
The Hamiltonian is given by [49–51]

H = iq/2 ∑
i1<···<iq

Ji1···iqψi1 · · ·ψiq . (2.1)

The random couplings Ji1···iq are drawn from the Gaussian ensemble with the following
mean and variance

⟨Ji1···iq⟩ = 0 , ⟨J2
i1···iq

⟩ = (q − 1)!J2

N q−1 = 21−q (q − 1)!J 2

qN q−1 , (2.2)

where J 2 = 21−qqJ2. This notation is specifically useful in the large q limit and N → ∞
limit since the model is chaotic and becomes analytically tractable in this limit. As we have
stated before, we will treat this as a system and examine various variations of this model
in the open system setting in the following subsections.
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We consider the system to be connected to an environment governed by Markovian
dynamics. This regime is defined when the system density matrix ρ(t+ dt) = ρ(t) +O(dt)
is solely determined by the system density matrix at time t i.e., ρ(t). More broadly, we
consider the dissipative mechanism where the information leaks out from the system to the
environment such that it never returns to the system at a later time.1 In other words, our
observed time scale of the system dynamics tsys is long compared to the timescale δtE that the
environment retains the memory of the information that has been leaked out from the system
i.e., tsys ≫ δtE . Under the Born-Markovian approximation, and weak coupling regime, the
evolution of the density matrix and any operator can be treated in the realm of Lindbladian
formalism [54, 55]. The density matrix of the system evolves by the master equation

ρ̇ = −i[H, ρ] +
∑

k

[
LkρL

†
k − 1

2{L
†
kLk, ρ}

]
, (2.3)

where H is the system Hamiltonian. The operators Lk are referred to as Lindblad jump
operators and they capture the information of the interaction between the system and the
environment. In particular, they are made of system operators only and completely lack
detailed information about the environment. An arbitrary initial operator O0 at t = 0
evolves as

O(t) = eiL†
ot O0 . (2.4)

Here L†
o is known as the (adjoint) Lindbladian for the operator2 and acts as

L†
oO = [H,O]− i

∑
k

[
±L†

kOLk − 1
2
{
L†

kLk,O
}]

. (2.5)

Here the “−” sign should be considered in case both Lk and O are fermionic [24]. One
usually express it in a vectorized form after the Choi-Jamiłkowski isomorphism [56, 57] with
the following replacement [58, 59]

AOB → (BT ⊗A)(vecO) , (2.6)

where A and B are any arbitrary operators and vecO is the vectorization of the operator
O. This gives the Lindbladian superoperator

L†
o ≡ (I ⊗H −HT ⊗ I)− i

∑
k

[
±LT

k ⊗ L†
k − 1

2
(
I ⊗ L†

kLk + LT
kL

∗
k ⊗ I

)]
. (2.7)

The notation “≡” indicates that the Lindbladian is represented in a matrix form in the
doubled-Hilbert space. In this paper, our system is the SYK Hamiltonian (2.1) and we take
the following two classes of jump operators:

Class 1: Linear dissipator: We consider an open system version of SYK with the
following jump operators [47]:

Li =
√
λψi , i = 1, 2, · · · , N , (2.8)

1In the generic case, the environment can also transfer some information to the system which results in a
complicated non-Markovian evolution.

2The dynamics of the density matrix is governed by the Lindbladian Lo. In this paper, we continue calling
L†

o as Lindbladian unless specified.
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with λ ≥ 0 being the coupling strength between the system and the environment. We often
call the full system a dissipative SYK with linear jump operators. This is the simplest version
of dissipative SYK, where each of the fermions dissipates at an equal rate. One can solve this
model analytically in the large-q limit. This model is particularly useful in being realized
as a connected Keldysh wormhole [48]. A detailed study of Krylov complexity in this setup
was conducted in [22]. This analysis can be extended to a dissipation strength of the type
Vi (instead of

√
λ) where Vi are Gaussian random complex numbers with zero mean and

finite variance. The results are the same under disorder averaging, up to an appropriate
identification of the respective parameters.

Class 2: Non-linear dissipator: For this class, we take the p-body jump operators of
the following form [60]

La =
∑

1≤i1<···<ip≤N

V a
i1i2...ip

ψi1ψi2 · · ·ψip , a = 1, 2, · · · ,M , (2.9)

with the following distribution of Vi1i2...ip :

⟨V a
i1i2...ip

⟩ = 0 , ⟨|V a
i1i2...ip

|2⟩ = p!
Np

V 2 , ∀i1, · · · , ip, a , (2.10)

with V ≥ 0. In other words, the jump operators are p-local and mimic the SYK-like structure.
Together with the Hamiltonian (2.1), they dictate the full non-unitary dynamics governed
by the Lindbladian (2.7). In particular, the parameter J represents the unitary dynamics
while the parameter V breaks it. The p = 1 case without the random average is known
as the linear dissipator (class 1 ). The p = 2 case is known as the quadratic dissipator
model, previously introduced in [47, 61]. In the following sections, our interests will be
the generic p-body dissipator with a possible emphasis on linear (p = 1) and quadratic
(p = 2) dissipator cases particularly.3

Before jumping on to the numerical machinery of the bi-Lanczos algorithm, we briefly
discuss a different perspective of the Lindblad (and Lindblad-like) equation [62]. Suppose we
prepare the system at time t with a density matrix given by ρ(t) and evolve unitarity till
time t + δt. The state of the system is ρ(t + δt), which can be written as

ρ(t+ δt) = ρ(t)− i[H, ρ(t)]δt+O(δt2) . (2.11)

This equation purely comes from the unitary dynamics of the system, namely the Schrodinger
equation dρ(t)/dt = −i[H, ρ(t)]. However, if we measure the system with a probability
P (t + δt) at time t + δt, then the state after the measurement is given by

ρM (t+ δt) = [1− P (t+ δt)]ρ(t+ δt) + P (t+ δt)
∑

k

Lkρ(t+ δt)L†
k , (2.12)

3The jump operators chosen here encompass a large class of non-trivial Markovian dissipative operators,
which are random. As described in [60], they are quite generic. However, they are not the most general form,
especially when one can consider p-body operators without the sum and/or randomness. We believe that
randomness is crucial for our purpose, and hence we only focus on the class 2 operators with random averaging
with the sum.
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where Lk’s are the same quantum jump operators as introduced in (2.5). They act as
projector operators satisfying the completeness relation ∑k L

†
kLk = I.4 We further expand

the probability as

P (t+ δt) = P (t) + η(t)δt+O(δt2) , (2.13)

where η(t) = δP (t)/δt is the change of measurement probability in unit time and we refer
to it as the measurement rate. Plugging (2.11) and (2.13) into the expansion of (2.12), and
neglecting O(δt2) terms, we obtain

∂ρM (t)
∂t

= −i[H, ρ(t)] + η(t)
∑

k

[
Lkρ(t)L†

k − 1
2{L

†
kLk, ρ(t)}

]
, (2.14)

which has a surprisingly similar form to the Lindblad master equation for the density matrix.
The anti-commutator part is trivial here due to the completeness relation. The above
expression (2.14) bears a physical significance. In particular, we can directly associate the
dissipation strength in (2.8) or (2.10) as the measurement rate η(t) by the environment
itself. Depending on the strength of the dissipation, the system can be either in a fully
scrambled phase or a purely dissipative phase, opening the possibility of studying the so-
called “environment-induced phase transition” [42].

3 Bi-Lanczos algorithm for open systems

As we briefly discussed in the introduction section, the bi-Lanczos algorithm is a numerical
method that can transform a Lindbladian matrix into a tri-diagonal form, which can be used
to compute the Lanczos coefficients and the Krylov complexity of an open quantum system.
The bi-Lanczos algorithm was first applied to the study of Krylov complexity in [23], where
some properties of the coefficients were studied in spin chains. In this section, we will review
the bi-Lanczos algorithm and present some more properties of the coefficients, such as their
asymptotic behavior. We will then apply the bi-Lanczos algorithm to the dissipative SYK
model in later sections, and compare our results with analytical counterparts.

3.1 Vectorization and bi-orthonormal vectors

The central idea of the bi-Lanczos algorithm is to construct two sets of bi-orthonormal vectors
|pn⟫ and |qn⟫ satisfying the following bi-orthonormal condition

⟪qm|pn⟫ = δmn . (3.1)

We use the notation of [23] to denote the bi-Lanczos vectors with “double braces”. They
are obtained by vectorizing the initial operator. These two bi-orthonormal vectors evolve
differently under the Lindblad evolution. In the absence of dissipation, the Lindbladian
reduces to the Liouvillian, which is Hermitian and can be recast into a purely tridiagonal
form with vanishing diagonal coefficients. The two spaces become conjugate to each other
and thus become individually orthonormal [4]. Now, we outline the steps of the bi-Lanczos
algorithm [23, 64]:5

4This condition is very special and can be relaxed for the “weak measurements” [63].
5We have made our notation slightly different and more compact than [23].
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1. Initialization.
Let |p0⟫ = |q0⟫ = 0 and b0 = c0 = 0. Also, let |p1⟫ = |q1⟫ ≡ |O0), where O0 is the
initial vector.

2. Lindbladian action and bi-Lanczos coefficients.
For j = 1, 2, . . ., we perform the following iterations:

(a) Compute: |rj⟫ = L†
o|pj⟫ and |sj⟫ = Lo|qj⟫.

(b) Redefine the vectors:
|rj⟫ := |rj⟫− bj−1|pj−1⟫ and |sj⟫ := |sj⟫− c∗j−1|qj−1⟫.

(c) Evaluate the inner product: aj = ⟪qj |rj⟫.
(d) Again, redefine the vectors:

|rj⟫ := |rj⟫− aj |pj⟫ and |sj⟫ := |sj⟫− a∗j |qj⟫.
(e) Evaluate the inner product: ωj = ⟪rj |sj⟫.
(f) Evaluate the norm: cj =

√
|ωj | and bj = ω∗

j /cj .
(g) If cj+1 ̸= 0, then define the vectors:

|pj+1⟫ = |rj⟫
cj

and |qj+1⟫ = |sj⟫
b∗j

. (3.2)

(h) Check the convergence and perform the full orthogonalization (FO) procedure, if
required.

3. Stop, if ck = 0 for some k.

The algorithm generates three sets of coefficients {aj}, {bj} and {cj}, and two sets of bi-
orthogonal vectors {|pj⟫} and {|qj⟫}. The full action of this bi-Lanczos basis can be expressed
in the following form, which are two sets of three-term recurrences

cj |pj+1⟫ = L†
o|pj⟫− aj |pj⟫− bj−1|pj−1⟫ , (3.3)

b∗j |qj+1⟫ = Lo|qj⟫− a∗j |qj⟫− c∗j−1|qj−1⟫ , (3.4)

where ∗ denotes the complex conjugate. In other words, we have generated two sets of Krylov
spaces, one acts by Lo and the other one by L†

o:

Kryj(L†
o, |p1⟫) = {|p1⟫,L†

o |p1⟫, (L†
o)2 |p1⟫, . . .} , (3.5)

Kryj(Lo, |q1⟫) = {|q1⟫,Lo |q1⟫,L2
o |q1⟫, . . .} . (3.6)

From the recurrence (3.3), it is evident that the procedure of the bi-Lanczos algorithm recasts
the Lindbladian into the following tridiagonal form

L†
o ≡



a1 b1 0
c1 a2 b2

c2
. . . . . .
. . . am bm

cm
. . . . . .

0 . . . . . .


. (3.7)
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⋅ ⋅ ⋅⋅ ⋅ bn+1an+1cn

φn φn+1 φn+2φn−1φn−2⋅𝒪0

Simple Complex

⋅ ⋅ ⋅⋅ ⋅ bn+1an+1cn

φn φn+1 φn+2φn−1φn−2𝒪0⋅
Simple Complex

Figure 1. The operator growth in dissipative systems (left) can be mapped to a model of the
non-Hermitian Krylov chain (right). The hopping amplitudes from n-th side to (n + 1)-th and
(n− 1)-th sites are bn+1 and cn respectively, while an+1 gives the amplitude of staying at site n. Here
O0 indicates the initial operator and the red arrows indicate (increasing length indicates stronger
dissipation) the dissipation which affects all sites.

In other words, we have elements in the diagonal and the primary off-diagonal terms only.
This is a distinctive feature from the Arnoldi iteration [21, 22] which considered only a
single set of orthonormal vectors and renders the Lindbladian into an upper-Hessenberg form.
However, the methodology to generate the orthonormal vectors is different in the Arnoldi
iteration where the individual space is orthonormal. Also, the numerical stability significantly
differs in both cases. While the computational cost (time complexity) is higher in the Arnoldi
iteration compared to the bi-Lanczos algorithm, the latter might suffer a breakdown i.e., the
loss of orthogonality. Such breakdown never occurs in Arnoldi iteration [65].

As we will see in the upcoming sections, our numerical algorithm implies bn = cn.
The Lindbladian matrix can be written in tridiagonal form in Krylov (bi-Lanczos) basis
in the following form

L†
o ≡



a1 b1 0
b1 a2 b2

b2
. . . . . .
. . . am bm

bm
. . . . . .

0 . . . . . .


. (3.8)

We find that the diagonal coefficients an are purely imaginary an = i|an| and the off-diagonal
elements bn are purely real. This implies that the Lindbladian L†

o is neither Hermitian
(L†

o ̸= (L†
o)†) nor anti-Hermitian (L†

o ̸= −(L†
o)†). It is generically non-Hermitian. For more

details of the properties of these coefficients, see [23] and subsection 3.3.

3.2 Operator growth and Krylov complexity

Since the operator evolves with L†
o, we expand the time-evolved operator in the bi-Lanczos

basis in the following form

|O(t)) =
∑

n

inφn−1(t) |pn⟫ , (3.9)
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where φn are Krylov basis wavefunctions. We slightly changed the notation from [4] to keep
the auto-correlation function as φ0 since our initial vector starts with |p1⟫ (and |q1⟫) instead
of |p0⟫ (and |q0⟫). Heisenberg equation of motion d|O(t))/dt = iL†

o|O(t)) becomes

∂tφn−1 = cn−1φn−2 + ianφn−1 − bnφn , n ≥ 1 , (3.10)

where φn ≡ φn(t) for brevity and φ0 is the auto-correlation function. For the Lindbladian
evolution, it is defined as

φ0(t) ≡ C({µ}, t) = 1
2N

Tr(O(t)O0) , (3.11)

where O(t) is given by eq. (2.4), {µ} is the set of the dissipative parameters, and N is the
number of degrees of freedom in the system. Eq. (3.10) can be interpreted as a non-Hermitian
tight-binding model [24], which we refer to as the non-Hermitian Krylov chain (see figure 1).
The particle hops from n-th site to (n + 1)-th site with hopping amplitude bn+1 and to
(n− 1)-th site with a different amplitude cn, while the amplitude of staying at that particular
site is an+1. As we will examine later, in all the examples of various versions of dissipative
SYK, we numerically find bn = cn for all n. Moreover we find all an are imaginary, i.e.,
an = i|an|. Hence the eq. (3.10) simplifies to6

∂tφn−1 = bn−1φn−2 − |an|φn−1 − bnφn , n ≥ 1 . (3.12)

The Krylov complexity is thus defined as the average position of a particle in the non-
Hermitian Krylov chain given by

K(t) = 1
Z
∑

n

n|φn(t)|2 =
∑

n n|φn(t)|2∑
n |φn(t)|2

, (3.13)

where Z =∑
n |φn(t)|2 is the normalization. The probability ∑n |φn(t)|2 < 1 is not conserved

due to the unitarity breaking, thus a division is required since the rescaled amplitude φ(t)/
√
Z

conserves the probability i.e., ∑n |φn(t)/
√
Z|2 = 1.

3.3 Properties of bi-Lanczos coefficients

The bi-Lanczos algorithm generates three sets of coefficients. In general, all the coefficients
can be complex numbers. However, as we see the structure and physical properties of a
Lindbladian matrix heavily restrict the properties of these coefficients. The density matrix
evolution is governed by Lo, while the operator evolution is governed by the adjoint L†

o [41].
This will be reflected transparently in the structure of Lindbladian in the bi-Lanczos basis.
Specifically, L†

o has positive and purely imaginary diagonal coefficients, while the diagonal
coefficients of Lo are negative and purely imaginary. In either case, the off-diagonal coefficients
are purely real. Together, this makes L†

o or Lo non-Hermitian. The structure of these elements
must be consistent such that the eigenvalues of −iL†

o or iLo have to be either purely real
6In order to match (3.10) with the relevant equation in [23], we first rescale an → an−1 since our first

element is a1 whereas [23] uses the first element as a0. Then we shift n → n + 1 and start with n = 0. For
closed systems, an = 0 which further reduces to the Hermitian Krylov chain [4].

– 9 –



J
H
E
P
0
1
(
2
0
2
4
)
0
9
4

positive or complex conjugate in pairs with the real part being positive.7 In all the examples
we study, these conditions will be fulfilled. However, before delving into the examples, we
state a proposition8 concerning the elements of the bi-Lanczos coefficients.

Proposition 1. The imaginary part of any eigenvalue λL of L†
o satisfies

min
1≤n≤K

Im(an) ≤ Im(λL) ≤ max
1≤n≤K

Im(an) , (3.14)

where K is the Krylov dimension. For a closed system, λL of L†
o is Hermitian, and all an

vanishes, thus (3.14) holds trivially with equality.

Proof. Following [67], we consider a diagonal matrix D, such that we transform the matrix (3.8)
into the following form

D−1[L†
o]D =



a1
√
b1c1 0√

b1c1 a2
√
b2c2

√
b2c2

. . . . . .

. . . am

√
bmcm

√
bmcm

. . . . . .

0 . . . . . .


. (3.15)

Assume ξ = (ξ1 · · · ξm · · · )T be as a unit eigenvector of D−1[L†
o]D associated to an eigenvalue

λL. Then the eigenvalue reads

λL = ξ†(D−1 [L†
o]D

)
ξ =

∑
n

an|ξn|2 +
∑

n

√
bncn(ξ∗nξn+1 + ξnξ

∗
n+1) , (3.16)

where the sum runs over the corresponding elements (up to the Krylov dimension). Thus we
obtain

Im(λL) = Im
(∑

n

an|ξn|2
)

=
∑

n

Im(an) |ξn|2 . (3.17)

Hence, (3.14) follows.

The form of the Lindbladian (3.15) suggests an alternate form of Lanczos coefficients
dn :=

√
bncn, which was recently advocated in [68].

4 Lindbladian SYK: analytical treatment

In this section, we provide a simple analytical treatment to show the linear growth of diagonal
coefficients. We split the Lindbladian (2.5) into two parts L†

o O = L†
H O + L†

D O, namely

L†
H O = [H,O] , L†

D O = −i
M∑

k=1

[
±L†

kOLk − 1
2{L

†
kLk,O}

]
. (4.1)

7To clarify more, for an even-dimensional matrix, all the eigenvalues of −iL†
o or iLo have to be complex

conjugate in pairs i.e., of the form α ± iβ, with α > 0. The purely real positive eigenvalue appears only for an
odd-dimensional matrix.

8We also wonder if such inequality can be leveraged to understand the Liouvillian gap and relaxation time
in Markovian open quantum systems [41, 66]. We leave it to future work.
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Here we need to choose the “-” sign if both the jump operators and the initial operators
are fermionic. Our derivation is based on a property known as the “operator size concen-
tration” [22]. It states that the eigenoperators of the dissipative part L†

D (ignoring o(1/q)
corrections) are given by

On =
∑

i1<i2<···<is

ci1i2···isψi1ψi2 · · ·ψis + o(1/q) (4.2)

where ci1i2···is are some coefficients, and s = n(q − 2) + 1. This property only holds in the
large q and large N limit, hence our analytical derivation only holds in this limit.

4.1 For linear dissipator

We will present our first example of this model in the open-system setting. This is done by
introducing the linear jump operators of the form [47]:

Li =
√
λψi , i = 1, 2, · · · , N , (4.3)

with λ ≥ 0. These are the jump operators of class 1, as we have discussed earlier. For
the case of the fermionic jump operator, it was shown in [22] that the dissipative part of
the Lindbladian acts linearly i.e.,

L†
DOn = iλsOn = iλ̃nOn , (4.4)

where λ̃ = λq. This immediately gives an ∼ iλ̃n. Moreover, the advantage of these jump
operators is that they allow us to perform an exact analytical calculation in the large-q
limit. In particular, one can solve the Schwinger-Dyson equation and obtain the following
two-point function [47]:

C(λ̃, t) = 1 + 1
q
g(t) + o(1/q2) , (4.5)

g(t) = log
[

α2

J 2 cosh2(αt+ ℵ)

]
, t > 0 , (4.6)

where λ̃ = λq is a redefined coupling in the large-q limit. The parameters α and ℵ are
related to the couplings as

α =
√
(λ̃/2)2 + J 2 , ℵ = arcsinh(λ̃/(2J )) . (4.7)

The closed-system result recovers in the limit λ = 0 and thereby obtaining g(t) = 2 ln sech(J t),
which is a known result [69]. We can also compute the Lanczos coefficients using the moment
method [12]. They are given by [22]

an = iλ̃n+ o(1/q) , λ̃ := λq , (4.8)

bn =

J
√
2/q n = 1 ,

J
√
n(n− 1) + o(1/q) n > 1 .

(4.9)

Not only does the expression of bn match exactly with the closed-system result [4], but
also the expression of an matches what we obtained from the “operator size concentration”
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property, with an o(1/q) correction which vanishes in the large q limit. This gives the first
hint that the off-diagonal elements of the Lindbladian matrix (3.8) might not depend on
the dissipation which is entirely reflected in the diagonal coefficients. However, the linear
dissipation (4.3) is very special and it is unclear if the above conclusion is generic for any
arbitrary dissipation. Thus, we need to choose a more generic dissipation of class 2 to
justify (or falsify) our conclusion.

4.2 For random quadratic dissipator

Next, we consider the jump operators which are random and quadratic. This belongs to the
class 2 non-linear dissipator with p = 2. In particular, we choose

La =
∑

1≤i<j≤N

V a
ij ψiψj , a = 1, 2, · · · ,M , (4.10)

with the following distribution of Vij drawn of random Gaussian ensemble

⟨V a
ij⟩ = 0 , ⟨|V a

ij |2⟩ =
2V 2

N2 ∀i, j, a . (4.11)

In principle, V can be arbitrary but for our computation, we focus on the weak-dissipation
regime, which implies J ≫ V .9 This choice is motivated by the fact that we are considering
the system dynamics that is Markovian.

Similar to the linear case, we divide the Lindbladian into a Hermitian and a dissipative
part. We choose the “+” sign in (4.1) since the jump operators are bosonic. Since our primary
concern is the dissipative part L†

D, we consider the string ψi1ψi2 . . . ψis with i1 < i2 < · · · < is
and attempt to divine its’ action on. In fact, the action of the dissipative part of the
Lindbladian to a string of length s results in the following proposition:
Proposition 2. Under ensemble averaging, the action of the dissipative part of the Lindbladian
to a string of length s = n(q − 2) + 1 results in the following expression:

L†
D On = iζqRV 2nOn , (4.12)

with R =M/N . Here ζ ∼ o(1) number and V is given by the ensemble average (4.11).
The proof is given in the appendix A. The asymptotic linear growth can be deducted

an ∼ iRV 2 n . (4.13)

In the large q and large N , limit R = M/N becomes the relevant quantity with M being
the number of jump operators.

We can generalize the above result as a generic p-body dissipator of the form (2.9)–(2.10).
However, the computation is tedious and put in the appendix B. We obtain

L†
D On = i

ps

2p−1RV
2 On , (4.14)

which is strictly valid in the large N and large q limit. It is easy to see that this reduces to
the leading order contribution (4.12) for p = 2. It is straightforward to conclude

an ∼ iRV 2 n , (4.15)

i.e., the asymptotic growth of the diagonal coefficients is linear and similar to (4.13).
9Since we are working in finite N and finite q, we take our system disorder parameter as J instead of J .

The latter is important in the large q limit.

– 12 –



J
H
E
P
0
1
(
2
0
2
4
)
0
9
4

◆
◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆

◆

◆

◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆

◆

◆

◆

◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

0.30

n

|a
n
|

(a) Behavior of |an|.

◆

◆

◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆

◆

◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆

◆

◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

λ = 0.01

λ = 0.02

λ = 0.03

5 10 15 20 25

0.5

0.6

0.7

0.8

0.9

n

b
n

(b) Behavior of bn.

Figure 2. Behavior of the (a) diagonal coefficients |an| and the off-diagonal coefficients bn with
different dissipative strength for the SYK4 model, with linear dissipators. The dotted line in (a) is
given by (5.1). Our initial operator is O0 =

√
2ψ1, and the number of fermions, N = 20. Here we

have taken 50 Hamiltonian realizations.

5 Bi-Lanczos algorithm in Lindbladian SYK

To justify the above analytical results, we resort to the numerical bi-Lanczos algorithm
to transform the Lindbladian into a pure tridiagonal form as given by equation (3.8). We
separately apply this algorithm for linear, quadratic, and cubic dissipators.

5.1 For linear jump operators

Figure 2 shows the result for N = 20, SYK4 with 50 Hamiltonian realizations. We can see
that the off-diagonal coefficients are unaffected by the dissipation and they are exactly equal
to the closed-system counterparts [4]. On the other hand, the dissipation only influences
the diagonal coefficients. They are purely imaginary and we can compute the slope of
diagonal coefficients as

|an| = λ (2n− 1) , (5.1)

which grows linearly. This slope agrees with the result obtained by Arnoldi iteration in [22],
except for some constant shift that depends on the intrinsic nature of the algorithm. Given the
set of Lanczos coefficients, Proposition 1 holds which can be checked explicitly. Moreover, as
seen from figure 3, the slopes of both diagonal and off-diagonal coefficients do not depend on
the system size N while their saturation value does. In fact, the saturation linearly increases
with the system size N , as shown in the insets of figure 3, i.e.,

|asat
n | ∝ N , bsat

n ∝ N , (5.2)

for a fixed dissipation strength µ. This finite-size scaling is consistent with previous studies [22,
70]. However, in the true thermodynamic limit N → ∞, we only observe the asymptotic
growth (6.1).
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Figure 3. Behavior of the (a) diagonal coefficients |an| and (b) the off-diagonal coefficients bn with
different system sizes for SYK4, with linear dissipators. The insets show the linear dependence (fitted)
of the saturation values of |an| and bn. Our initial operator is O0 =

√
2ψ1, and the dissipative strength

is fixed at λ = 0.01. Here we have taken 50 Hamiltonian realizations.

5.2 For random quadratic jump operators

With this choice, we perform the bi-Lanczos algorithm for several numbers of Lindblad
operators (i.e., different values of M) with a fixed choice of initial operator O0 and system
size N . The Lanczos coefficients are shown in figure 4. We see that the diagonal coefficients
|an| are strongly dependent on the dissipation while the off-diagonal coefficients (bn = cn)
are independent of the dissipation. We also checked that the Proposition 1 remains to
hold with the observed set of Lanczos coefficients.

We remark on two features of the diagonal coefficients. First, we observe that both the
slopes and the saturation values of |an| increase with M . In figure 5(a) and figure 5(b), we
separately show the behavior of the slope m(|an|) and the saturation value |a(sat)

n | with the
number of Lindblad operators. This increase is linear in either case, i.e.,

m(|an|) ∝M , and |a(sat)
n | ∝M , fixedN . (5.3)

From our linear dissipator result, we can also understand that increasing the system size N
increases the individual saturation value but does not affect the slope.

Second, we assume that an is an asymptotically smooth function of n in the thermo-
dynamic limit. This smoothness behavior is a typical assumption of the operator growth
hypothesis for the off-diagonal coefficients [4], although some violations were observed in quan-
tum field theories [29, 30]10 However, in this paper, we continue the smoothness assumption
which enables us to define the growth rate of the form

m(|an|) :=
d|an|
dn

∝M , (5.4)

with fixed N . In the large N and large q limit, the growth will be asymptotic. In other
words, we can write

an ∼ icV M n = icV RN n , (5.5)
10In such theories, odd and even coefficients grow linearly with different slopes, mostly controlled by the

mass gap of the theory [30] or the compactification radius of the compactified geometry [29].
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Figure 4. Behavior of the (a) diagonal coefficients |an| and (b) the off-diagonal coefficients bn with
the different number of jump operators M for SYK4. Notice that the bns exactly overlap for all values
of M . Our initial operator is O0 =

√
2ψ1, system size is N = 16 and the dissipative strength is fixed

at V = 0.02. The random Lindblad operators are taken over 30 averages.
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Figure 5. Behavior of the (a) slope of the diagonal co-efficient |an| and (b) the saturation of the
diagonal coefficients with the different number of jump operators. Our initial operator is O0 =

√
2ψ1,

system size is N = 16 and the dissipative strength is fixed at V = 0.02. The values are obtained after
averaging over 30 disordered realizations. (c) Dependence of cV with V . The numerical fitting gives
κ = 0.0780 and β = 2.0046 according to (5.6).

where the proportionality constant cV depends on the dissipation strength V . The second
equality comes in a special “double-scaling limit”, which is defined as M → ∞ and N → ∞
keeping R = M/N finite (fixed). Our interest is to find the form of the proportionality
constant cV . In principle, it can be either analytically found by computing a two-point
function as in (4.5) or numerically by a fitting of the various data of cV . We choose the
latter approach. The numerical data obtained by implementing the bi-Lanczos algorithm
suggests the following form

cV = κV β , (5.6)

where κ, β are some real coefficients and can be obtained by fitting the data which is shown
in figure 5(c). Note that this set is obtained for N = 16, and can be improved by increasing
N . For our interest, the coefficient κ is irrelevant and we are primarily interested in the
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Figure 6. The behavior of Krylov complexity (6.3) for different dissipation strengths. The gray
dashed line indicates the behavior of ∼ e2t (we kept some separation from u = 0 line to have the
visual distinguishability) of a closed system. We choose η = 1.

exponent β. The fitting suggests β = 2.0046 ≈ 2. Hence, we can write (5.5) of the form

an = iκRNV 2 n ∼ iRV 2 n . (5.7)

This asymptotic growth is consistent with (4.13) and of the form (6.1), while bn follows the
same growth of a closed system with coefficient α.

6 Universal aspects of operator growth in open systems

In this section, we interpret both the analytic and the numerical results into a concise form
and discuss some universal aspects of operator growth, generic to any choice of Lindbladian.

6.1 An asymptotic growth of Lanczos coefficients and Krylov complexity

The analytical and the numerical analysis motivate us to propose the following sets of
asymptotic growth for the Lanczos coefficients in the large-n limit [22]

an ∼ iχµn , bn = cn ∼ αn , (6.1)

where µ is the generic dissipative parameter, χ is some number which is independent of the
dissipation and α captures the information of the Hamiltonian and the initial operator. This
form motivates an operator growth hypothesis in open quantum systems. As we have from
the previous analysis, the growth of an is linear, and thus µ ∝ λ for the linear dissipator
and µ ∝ RV 2 for the generic p-body dissipator. In either case, the dissipation strength is
quadratic due to the simultaneous appearance of Lk and L†

k in the Lindbladian. One can
directly calculate the wavefunctions and the K-complexity from this asymptotic growth (6.1).
First, the Krylov basis wavefunctions φn are given by [22]

φn(t) =
sech(γt)η

(1 + u tanh(γt))η
× (1− u2)

n
2

√
(η)n

n!

( tanh(γt)
1 + u tanh(γt)

)n

, (6.2)

for the exact expression b2
n = (1 − u2)γ2n(n − 1 + η) and an = iuγ(2n+ η) which reduces

to (6.1) for α2 = γ2(1 − u2) and χµ = 2γu asymptotically for some η ∼ o(1). The Krylov
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Figure 7. The pole of the auto-correlation function in the complex t plane. The black crosses indicate
the poles without dissipation i.e., µ = 0 or the leading order term in (6.7), with the blue-shaded
region as the region of analyticity. The red crosses indicate the poles with auto-correlation of the form
of (6.6). In the weak coupling regime, the poles move away from each other along the y axis, thus
resulting in an effect only a linear shift with magnitude µ/α2.

complexity can be straightforwardly computed as [22]

K(t) = η
(
1− u2) tanh2(γt)

1 + 2u tanh(γt)− (1− 2u2) tanh2(γt)
. (6.3)

The behavior of Krylov complexity is shown in figure 6 for different dissipation strengths.
In particular, we observe that the dissipative time scale is logarithmic while the saturation
of Krylov complexity scales inversely to the dissipative strength [22]:

td ∼ 1
γ
ln(1/u) , Ksat ∼ 1/u , (6.4)

and finally, reach a value that is independent of the system size. This logarithmic timescale
and saturation is also found in operator size distribution [43].

The scaling of the above saturation invites an interpretation from the quantum measure-
ment. Recall (2.14), where the rate of measurement is translated as the dissipation strength
in the Markovian approximation. In other words, the jump operators can be interpreted as
performing a similar task to measurement operators — the environment makes a continuous
measurement through it. However, a significant difference from generic measurement is that
here the outcome is unknown to us. However, since the measurement is a non-unitary process,
the stronger the measurement rate, the lower the probability of the system being evolved by a
unitary evolution. In other words, increasing the dissipation strength µ lowers the possibility
of exponential growth which is evident in figure 6.

6.2 Pole structures of auto-correlation and spectral function

The two sets of Lanczos coefficients generically modify the behavior of the auto-correlation
function and correspondingly its Fourier transform, known as the spectral function. It is
interesting to investigate the pole structure of the auto-correlation function, similar to its
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closed system counterpart [4]. In particular, our above analysis suggests that we might devise
a generic form of an auto-correlation function. Let us assume a form of the auto-correlation
function

C(µ, t) = 1
α

√
α2 + µ2 sech

(
t
√
α2 + µ2 + sinh−1(µ/α)

)
, (6.5)

with α being some constant which is independent of µ. This form of the autocorrelation
function looks similar to (4.5)–(4.6).11 We can easily see C(0, t) = sech(αt) reduces to
the known closed system counterpart [4, 15] and C(µ, 0) = 1. In other words, we can
take this as a two-variable function and forget about its origin. Thus it is valid for any
µ, not necessarily small. In fact, this function gives an asymptotic linear behavior of both
an = iαµ(2n+ 1) ∼ iχµn and bn = αn of the form (6.1), without making any approximation
of µ. Note that for µ = 0, the auto-correlation (6.5) reduces to C(0, t) = sech(αt), which
is obtained for an = 0 and bn = αn [4, 15]. To investigate the pole structure of (6.5), we
set it to zero and find that the closest pole is located as

t± = ± iπ

2
√
α2 + µ2 − 1√

α2 + µ2 sinh−1
(
µ

α

)
. (6.6)

The pole is not exactly at the imaginary t axis, rather is it shifted (see figure 7). Then a
reasonable question is to ask which kind of system has such a form of auto-correlation? Our
answer is the dissipative SYK in the weak coupling regime, modeled by any generic random
p-body Lindblad operators. Then our α dictates the system strength while µ encodes the
dissipative strength. We have already found such results both analytically and numerically
in previous sections. Only then, does the pole structure of (6.6) give the information of the
operator growth. Thus, to connect with such growth, we expand (6.6) in the small µ regime as

t± = ± iπ

2α − µ

α2 + o(µ2) . (6.7)

The o(µ2) terms do contain both real and imaginary parts but they are not relevant to
our discussion. In fact, (6.6) does suggest that the pole is not only squeezed by a factor of√
α2 + µ2 along the imaginary t axis but also shifted by a length of sinh−1(µ/α)/(

√
α2 + µ2

on the direction of negative x axis. The combined effect has a diagonal shift (see figure 7),
squeezing the poles into the domain of the analyticity of (6.5) for µ = 0. However, in the
weak dissipation regime, the squeezing is no longer required in the leading order and the
closest pole structure still gives the growth of bn and thus the Krylov exponent. The effect
of dissipation merely affects a linear shift of the pole. Of course, at zero dissipation, the
poles are exactly located at t = ±iπ/(2α) [4].

The spectral function is given by the Fourier transform of the auto-correlation func-
tion, i.e.,

Φ(µ, ω) =
∫ ∞

−∞
e−iωtC(µ, t) . (6.8)

11One can, in principle consider a variety of possible another set of functions that satisfy the required
properties of an auto-correlation function. For example, we can add a functional form f(µ, t) with the property
f(0, t) = f(µ, 0) = 0. This will alter the asymptotic growth of the Lanczos coefficients. However, since we are
considering a particular prescribed set of coefficients, we take the form of (6.5).
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Figure 8. The real and the imaginary part of the spectral function (6.9) for µ = 0.5. We choose α = 1.

Taking the auto-correlation of the form (6.5), we find

Φ(µ, ω) = π

α
sech

(
πω

2
√
α2 + µ2

)
e

iω√
α2+µ2 sinh−1( µ

α) . (6.9)

This is also a completely generic result, for any α, µ, and ω. However, we want to connect it
to the operator growth and thus in the weak dissipation regime, eq. (6.9) becomes

Φ(µ, ω)
∣∣∣
µ→0

= π

α
sech

(
πω

2α

)
+ iπωµ

α3 sech
(
πω

2α

)
+ o(µ2) (6.10)

=
(
1 + i

ωµ

α2

)
π

α
sech

(
πω

2α

)
+ o(µ2) . (6.11)

The leading term in (6.10) is the known result for µ = 0 as

Φ(0, ω) = π

α
sech

(
πω

2α

)
∼ 2π

α
e−

π|ω|
2α for large ω , (6.12)

which shows a long exponential tail in the large frequency regime [4]. The subleading term
in (6.11) depends on the ratio µ/α, and as long as µ ≪ α, the leading term dominates.
Note that the leading term decays as exp(−#|ω|), while the subleading term decays as
ω exp(−#|ω|). The overall decay still follows the leading behavior for large ω. Our analysis
assumes a smooth behavior of the Lanczos coefficients unlike [16, 29], where the different
behavior of even and odd coefficients may lead to incorrect consequences on the spectral
function.12 Thus, in the weak dissipation regime, the linear shift of the pole in the auto-
correlation function is sublinear in µ, which reflects an ω exp(−#|ω|) decay in the sublinear
term of the spectral function. This posits an alternate form of the operator growth hypothesis
in open quantum systems.

7 Lindbladian dynamics: OTOC and q-complexity

In this section, we derive an analytic expression for the out-of-time-order correlator (OTOC)
for a time-evolved p-body fermionic operator and some general aspects of q-complexity.

12We thank Anatoly Dymarksy for pointing out this to us.
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7.1 Lindbladian dynamics for OTOC

We start with the OTOC of a single-body fermionic operator. The expression to be evaluated
is the following

OTOC(t) = 1
2Z(t)N

N∑
j=1

Tr[ρ∞{ψj , ψ1(t)}{ψj , ψ1(t)}†] , (7.1)

where Z(t) = Tr[ρ∞ψ1(t)†ψ1(t)] is the normalisation factor and ρ∞ = 1
2N/2 I. The overall

factor of 1/2 arises because we use unnormalized ψj , and the 1/N factor is introduced to
account for averaging over the full set of Majorana fermions [2]. The key idea is simple:
the knowledge of the Krylov basis of ψ1 allows us to write the time-evolved operator ψ1(t)
in Krylov basis as follows

ψ1(t) =
1√
2
∑

k

ikφk(t)Ok . (7.2)

In general, this would not give us a lot of analytical prowess. In the limit of large q and
large N , however, things become tractable due to operator concentration (4.2). Recall that
the Krylov vectors are naturally orthonormal to each other. Using this we can evaluate the
expression for the commutator {ψj , ψ1(t)} as

{ψj , ψ1(t)} = 1√
2
∑

k

ikφk(t){ψj ,Ok} . (7.3)

A general property of Krylov vectors is that basis vectors generated from a Hermitian
Hamiltonian and initial operator are alternatingly Hermitian and anti-Hermitian. This allows
us to evaluate the Hermitian conjugate of the above expression quite simply by noting that
the combination ikOk is Hermitian. In other words,

{ψj , ψ1(t)}† =
1√
2
∑

k

ikφ∗
k(t){ψj ,Ok} . (7.4)

The trace operation under the sum is written as

Tr[ρ∞{ψj ,ψ1(t)}{ψj ,ψ1(t)}†] =
1

2N/2+1

∑
k=1

∑
l=1

ik+lφk(t)φ∗
l (t)Tr[{ψj ,Ok}{ψj ,Ol}] , (7.5)

where we have used the fact that ρ∞ = 1
2N/2 I. The final task is to evaluate the trace operation

in the r.h.s. of the expression above, i.e.,

Tr[{ψj ,Ok}{ψj ,Ol}] = Tr[OkOl] + 2Tr[ψjOkψjOl] . (7.6)

Note that the first term only contributes if k = l and (assuming that the Krylov vectors
are properly normalized) contributes (−1)k2N/2. The second term is the one that has to
be evaluated carefully. We note that the trace of the product of fermion strings of different
lengths vanishes. This implies that we have a non-zero contribution coming from k = l

only. Therefore the full expression becomes

Tr[{ψj ,Ok}{ψj ,Ol}] = (−1)k2N/2δkl + 2Tr[ψjOkψjOk]δkl . (7.7)
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We now look at the term ψjOk in the second trace. It is straightforward to see that the
following result is true

ψj

∑
1≤i1<i2<···<is≤N

ci1i2...isψi1ψi2 · · ·ψis =
∑

1≤i1<i2<···<is≤N

ci1i2...is(−1)
∑s

l=1
δil,j+sψi1ψi2 · · ·ψisψj .

(7.8)

Therefore the second trace term becomes

Tr[ψjOkψjOk] =
(−1)k+s

2s+1−N
2

∑
1≤i1<i2<···<is≤N

|ci1i2...is |2(−1)
∑s

l=1 δil,j , (7.9)

where in the last step we have used the fact that c∗i1i2...is
= (−1)kq/2ci1i2...is in order to ensure

that ikOk is Hermitian. Combining the two terms we get the following expression

Tr[{ψj ,Ok}{ψj ,Ol}] = (−1)k2N/2

1− (−1)s

2s

∑
1≤i1<i2<···<is≤N

|ci1i2...is |2(−1)
∑s

l=1 δil,j

 .

(7.10)

Utilizing this, the trace operation under the full sum becomes

Tr[ρ∞{ψj ,ψ1(t)}{ψj ,ψ1(t)}†] =
1
2
∑

k

|φk(t)|2
1+ (−1)s

2s

∑
1≤i1<i2<···<is≤N

|ci1i2...is
|2(−1)

∑s

l=1
δil,j

 .

We also note that Z = Tr[ρ∞ψ†
1(t)ψ1(t)] = 1

2
∑

k |φk(t)|2. The last piece of the in-
gredient is noting that since the Krylov basis vectors are normalized, it follows that∑

1<i1<i2<···<is≤N |ci1i2...is |2 = 2s. From these pieces of information, we can write the
following expression for the OTOC

OTOC(t)= 1
2N
∑

k |φk(t)|2
N∑

j=1

∑
k

|φk(t)|2
1+ (−1)s

2s

∑
1≤i1<i2<···<is≤N

|ci1i2...is
|2(−1)

∑s

l=1
δil,j

 .

(7.11)

There is a natural bound on this quantity, which follows from the fact that the sum of the
coefficients in the expression satisfy 1

2s

∑
1≤i1<i2<···<is≤N |ci1i2...is |2(−1)

∑s

l=1 δil,j ≤ 1.

0 ≤ OTOC(t) ≤ 1 . (7.12)

In order evaluate the expression (7.11) further, we evaluate the following sum∑
1≤i1<i2<···<is≤N

(−1)
∑s

l=1 δil,j =
∑

1≤i1<i2<···<is≤N,j /∈{is}
1+

∑
1≤i1<i2<···<is≤N,j∈{is}

1 . (7.13)

The first sum is simple. It involves performing the sum over the indices {i1, . . . , is} over
N − 1 values (i.e. excluding j). This evaluates to

∑
1≤i1<i2<···<is≤N, j /∈{is}

1 =
(
N − 1
s

)
. (7.14)
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The second sum is non-trivial. To evaluate this we consider the cases where j ∈ {i1, . . . , is}.
This is broken up into two pieces, corresponding to j < s and j ≥ s. For j ≥ s, any im can be
chosen from i1, . . . , is and set equal to j. Once the im is chosen, the sum breaks into two pieces.

∑
1≤i1<i2<···<is≤N, j∈{is}≥s

1 =
s∑

m=1

 ∑
1≤i1<i2<...,im−1<j

1

 ∑
j<im+1<i2<...,is≤N

1


=

s∑
m=1

(
j − 1
m− 1

)(
N − j

s−m

)
=
(
N − 1
s− 1

)
. (7.15)

The remaining sum is

∑
1≤i1<i2<···<is≤N, j∈{is}<s

1 =
j∑

m=1

 ∑
1≤i1<i2<...,im−1<j

1

 ∑
j<im+1<i2<...,is≤N

1

 =
(
N − 1
s− 1

)
.

(7.16)

Therefore in both these cases, the sums evaluate to the same value. Thus the full sum is

∑
1≤i1<i2<···<is≤N

(−1)
∑s

l=1 δil,j =
(
N − 1
s

)
−
(
N − 1
s− 1

)
. (7.17)

Now, we note that under disorder averaging, all the coefficients |ci1i2...is |2 must be equal.
Given that their sum is 2s, each individual term is equal to

|ci1i2...is |2 = 2s

(
N

s

)−1

. (7.18)

Inserting (7.17) and (7.18) in (7.11), we obtain the following expression

OTOC(t) = 1
2N∑

k |φk(t)|2
N∑

j=1

∑
k

|φk(t)|2
(
1 + (−1)s

2s

2s(N
s

) ((N − 1
s

)
−
(
N − 1
s− 1

)))

= 1
2N∑

k |φk(t)|2
N∑

j=1

∑
k

|φk(t)|2
(
1 + (−1)s(N

s

) ((
N − 1
s

)
−
(
N − 1
s− 1

)))

= 1∑
k |φk(t)|2

∑
k

|φk(t)|2
(
k(q − 2) + 1

N

)
, (7.19)

where in the final step we have inserted the expression for s in terms of k, noting that it is
odd for even q. Therefore an analytic expression for the OTOC is given by

OTOC(t) = 1∑
k |φk(t)|2

∑
k

|φk(t)|2
(
k(q − 2) + 1

N

)
= ⟨s⟩

N
. (7.20)

We note that for the Lanczos coefficients endowed with the fairly generic form b2
n = (1 −

u2)n(n − 1 + η), an = iu(2n + η), the Krylov basis wavefunctions φn are given by (6.2).
Using this in (7.20), we obtain the following expression

OTOC(t) = tanh2(t)
(
η(q − 2)

(
1− u2)+ 2u2 − 1

)
+ 2u tanh(t) + 1

N +N tanh(t) ((2u2 − 1) tanh(t) + 2u) . (7.21)
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Figure 9. The behavior of OTOC (7.21) for different dissipation strengths. The gray dashed
line indicates the behavior of ∼ e2t (we kept some separation from u = 0 line to have the visual
distinguishability) of a closed system. We choose η = 1 and q = 300. The behavior is similar to 6.

Figure 9 shows the behavior of OTOC with different dissipative strengths. At late-times
(t → ∞), the OTOC saturates to

OTOC(t)
∣∣
t→∞ = 1

N

(
1 + η(q − 2)(1− u)

2u

)
. (7.22)

A useful estimate of the saturation timescale is the time at which the saturation value of
the OTOC for a given u is equal to the u → 0 limit of the OTOC. It is straightforward
to see that this timescale is given by

t∗ = tanh−1
(√

q(1− u)
q + (q − 4)u

)
∼ 1

2 ln
( 2q
(q − 2)u

)
, u→ 0 . (7.23)

This timescale is logarithmic in terms of the inverse dissipation strength.
The analysis so far has been considered for the time-evolved initial operator ψ1. It is

straightforward to see that exactly the same result holds for any single-body initial operator
ψi. However, the same results will not hold exactly for the general p-body initial operator of
the form ψi1ψi2 . . . ψip with i1 < i2 < · · · < ip. As we have discussed, operator concentration
holds for any initial operator string. Therefore, most of the discussion will follow through with
minor modifications (like replacing 1/

√
2 in (7.2) by 1/2p/2). One subtlety to be pointed out is

that this c∗i1i2...is
= (−1)(kq−p(p−1))/2ci1i2...is for a p-body initial operator. The normalisation

factor is now Z = Tr[ρ∞O†O] = 1/2p. This cancels the factor of 1/2p/2 mentioned before.
The remainder of the calculation described above goes through in an identical fashion.

The difference occurs at the final step of (7.19). The OTOC is there given by

OTOC(t) = 1
2N∑

k |φk(t)|2
N∑

j=1

∑
k

|φk(t)|2
(
1 + (−1)s(N

s

) ((
N − 1
s

)
−
(
N − 1
s− 1

)))

= 1
2∑k |φk(t)|2

∑
k

|φk(t)|2
(
1 + (−1)s

(
1− 2s

N

))
. (7.24)
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When s is odd (i.e. if p is odd), the term in the bracket becomes 2s/N , and for even s (i.e.
for even p) the term becomes (2− 2s)/N . However, note that the term 1/N just contributes
a constant 1/N . Thus we are left with

OTOC(t) = (−1)p+1⟨s⟩
N

+ 1 + (−1)p

2N . (7.25)

This concludes the discussion on OTOCs.

7.2 Aspects of q-complexity

We briefly discuss the formal results expected for q-complexity. It is a generalization of the
operator growth probes like Krylov complexity, OTOC, and operator size. The notion is
defined in detail in [4]. We briefly describe the same below:

• For a positive semi-definite superoperator Q, one can write it in its’ own eigenbasis as
follows

Q =
∑

i

qi|qi)(qi| . (7.26)

• There exists a number K such that

(qi|L|qj) = 0 ∀ |qi − qj | > K . (7.27)

This condition ensures that the expectation value of Q does not change massively under
one application of the Liouvillian.

• Similarly, there exists some number K ′ for an initial operator O such that

(qi|O) = 0 ∀ |qi| > K ′ . (7.28)

This condition ensures that the initial operator has a low value of the complexity.

The q-complexity of an initial operator O is then defined as

Q(t) = (O(t)|Q|O(t)) . (7.29)

For our purposes, in the large −N large −q SYK model, it suffices to realize that any general
superoperator in the space of Majorana fermions can be written as

Q =
∑
s,t

∑
i1,...,is,j1,...,jt

qi1,...,is
j1,...,jt

|ψi1 . . . ψis)(ψj1 . . . ψjt | . (7.30)

Due to operator concentration, one can write the time-evolved operator O(t) as follows

|O(t)) =
∑

k

ikφk(t)|Ok) , (7.31)

where |Ok) = ∑
1≤i1<···<id≤N ci1,...,id

|ψi1 . . . ψid(k)), with d(k) = k(q − 2) + p for a p-body
initial operator. Using this expression, we find the time evolved q-complexity as follows

Q(t)=
∑

s,t,k,l

∑
i1,...,is,j1,...,jt

ik−lφ∗
l (t)q

i1,...,is
j1,...,jt

φk(t)(Ol|ψi1 . . .ψis)(ψj1 . . .ψjt |Ok) . (7.32)
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The inner products in the above expression are evaluated by assuming that all the operators
are properly normalized (or factors absorbed in ) and using the fact that strings of different
lengths are orthogonal. This simplifies the expression to the following

Q(t) =
∑
k,l

∑
i1,...,id(l),j1,...,jd(k)

ik−l φ∗
l (t) q

i1,...,id(l)
j1,...,jd(k)

φk (t)c∗i1,...,id(l)
cj1,...,jd(k) . (7.33)

For q even, the string length d(k) can be either odd or even for a fixed p for all k. This is as
far as one can go in general. However, using the disordered nature of our system, we can
make the reasonable assumption that (with small variance and zero mean) under disorder
averaging one can write ⟨c∗i1,...,id(l)

ci1,...,id(k)⟩ = δi1,j1 . . . δid(l),id(k)δk,l2d(l)( N
d(l)
)−1. This greatly

simplifies the expression for the (disorder-averaged) Q(t) further, leading to

⟨Q(t)⟩ =
∑

l

2l

(
N

d(l)

)−1

|φl(t)|2
∑

i1,...,id(l)

q
i1,...,id(l)
i1,...,id(l)

. (7.34)

Further computation would require exact knowledge of the coefficients qi1,...,id(l)
i1,...,id(l)

. Specific
choices of these coefficients lead us to the expressions for the K-complexity, OTOC, operator
size, etc. For these three probes the exact coefficients are discussed in [4].

8 Summary and conclusions

In this paper, we performed a detailed study of operator growth through Krylov complexity
in Lindbladian SYK, where the dissipation is modeled by various jump operators in the
Markovian regime. In particular, we choose our system to be SYK and model the dissipation
by p-body Lindblad operators. We analytically find the Lanczos coefficients which are
numerically verified by implementing the bi-Lanczos algorithm, a suitable generalization of
the Lanczos algorithm in open systems. We obtained a universal result of Krylov complexity,
which initially grows exponentially and saturates at late times. Both the saturation time
scale and saturation value appear to be generic and independent of the choice of the Lindblad
operators, similar to what we obtained from OTOC. We also provide a plausible explanation
of our results from the quantum measurement perspective. Based on these findings and
analyzing the generic pole structure of auto-correlation and high-frequency behavior of the
spectral function, we propose an operator growth hypothesis for generic open quantum
systems, which suggests a broader notion of “dissipative quantum chaos”.

Our approach opens a door to understanding a generic study of operator growth and
chaos in non-Hermitian systems. Especially, since any Hermitian matrix can always be
tri-diagonalizable and put into the form (3.8) with an = 0, we wonder what could be a
Hamiltonian structure of (3.8). In particular, for the Lindblad evolution, the density matrix
evolves as [71]

ρ̇ = −i
(
Heffρ− ρH†

eff
)
, Heff = H − i

2
∑
m

L†
mLm ,
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where Heff is known as the effective Hamiltonian which is non-Hermitian.13 This non-
Hermitian Hamiltonian is constructed by the jump operators.14 It is important to note
that the first term H is Hermitian while the second term is anti-Hermitian, which makes
the overall Hamiltonian Heff non-Hermitian. Hence, we wonder whether any non-Hermitian
Hamiltonian (including PT-symmetric [72, 73]) can be cast into the structure of (3.8), which
can be obtained by an efficient implementation of the bi-Lanczos algorithm.

A limitation of our analysis is that we are completely blind to the physics with stronger
coupling. A more broad analysis is to consider a generic coupling, not necessarily a small
one. In fact, some preliminary analysis shows that the Lanczos coefficients become unstable
at stronger coupling, which results from the fact that the Markovian approximation breaks
down. It will be interesting to explore the non-Markovian regime where a generic coupling
can be chosen. In fact, detailed knowledge about the environment (which might be another
SYK) might lead to the study of the system in a purely scrambling or dissipative phase [42],
resulting in an environment-induced phase transition. Finally, our bigger aim is to develop
a systematic and coherent picture to understand dissipative quantum chaos in holographic
duality. In particular, since the dual picture of generic p-body dissipator is unknown, it is
interesting to see if our study in open SYK leads to the appreciation of a clearer picture of
de Sitter space in quantum gravity. We hope to address this question in future studies.

Note added. During the final stages of this work, ref. [68] appeared which deals with the
behavior of the high-frequency regime of the auto-correlation. Their choice of auto-correlation
function, specific types of system, and dissipation is fundamentally different from ours. Hence,
we do not make any comparison with our results with ref. [68].
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A Random quadratic Lindbladian

In this appendix, we provide a derivation of (4.12). The generic expression to be evaluated
is the following

L†
D O = −i

M∑
k=1

[ ∑
1≤i<j≤N

V k
ijψiψj

†

O

 ∑
1≤p<q≤N

V k
pqψpψq


− 1

2

{ ∑
1≤i<j≤N

V k
ijψiψj

† ∑
1≤p<q≤N

V k
pqψpψq

 ,O}] .
We note that

(
V k

ijψiψj

)†
= −V k

ijψiψj . Thus, we can write the following simpler expression

L†
D O = i

M∑
k=1

∑
1≤i<j≤N

∑
1≤p<q≤N

V
k
ijV

k
pq

[
ψiψjOψpψq −

1
2
{
ψiψjψpψq,O

}]
. (A.1)

Since our goal is to derive the action of the dissipative part of the Lindbladian on On, the
strategy is then to look at the term in the square brackets with O ≡ On given by (4.2).
We write this term as follows

Ai1,...,is

(i,j)(p,q) = ψiψj(ψi1ψi2 · · ·ψis)ψpψq −
1
2
{
ψiψjψpψq, ψi1ψi2 · · ·ψis

}
. (A.2)

To further simplify parts of the calculation, we consider the following relations

{ψj1ψj2 · · ·ψjt , ψi1ψi2 · · ·ψis} = (1 + (−1)ts) (ψi1ψi2 · · ·ψis) (ψj1ψj2 · · ·ψjt) , (A.3)
[ψj1ψj2 · · ·ψjt , ψi1ψi2 · · ·ψis ] = (−1 + (−1)ts) (ψi1ψi2 · · ·ψis) (ψj1ψj2 · · ·ψjt) , (A.4)

which holds when there are no common indices between the sets {j1, j2, . . . , jt} and
{i1, i2, . . . , is}. We denote the first and second terms in (A.2) as G1 and G2 respectively.
Thus one can write Ai1,...,is

(i,j)(p,q) = G1 − 1
2G2. We consider the various cases in terms of the

indices {i, j, p, q} of the summation.
First, we show that the action of the dissipative part of the Lindbladian to single-string

operator ψ1 results in the following expression

L†
D ψ1 = iRV 2 ψ1 , (A.5)

where R =M/N and V is given by the ensemble average (4.11). This result is strictly valid
in the large N limit. The proof goes as follows. For the single-string operator O = ψ1,
we have to evaluate

A1
(i,j)(p,q) = ψiψjψ1ψpψq −

1
2
{
ψiψjψpψq, ψ1

}
. (A.6)

There are naturally 3 cases where we may expect a non-zero contribution those are for
i = 1, p ̸= 1, i ̸= 1, p = 1, and i = 1, p = 1. This is because we necessarily have j > i and
q > p. For these three cases, we obtain the following

A1
(1,j),(p,q) = −1

2ψjψpψq , A1
(i,j),(1,q) =

1
2ψiψjψq , A1

(1,j),(1,q) = ψ1ψjψq . (A.7)
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Plugging this in (A.1), we get the following (suppressing the summation over k for now)

−2i(Lk
D)† ψ1 = 2ψ1

∑
1<j,q≤N

V
k
1jV

k
1qψjψq +

∑
1<i<j≤N

∑
1<q≤N

V
k
ijV

k
1qψiψjψq

−
∑

1<p<q≤N

∑
1<j,q≤N

V
k
1jV

k
pqψjψpψq ,

where L†
D = ∑

k(Lk
D)†. A slight renaming and rearranging of the indices gives us the

following expression

−2i(Lk
D)† ψ1 =

 N∑
j=2

|V k
1j |2

ψ1 +
∑

1<j<q≤N

(
V

k
1jV

k
1q − V k

1jV
k
1q

)
ψjψq

+
∑

1<p<q≤N

∑
1<j≤N

(
V

k
pqV

k
1j − V k

pqV
k
1j

)
ψjψpψq .

Clearly, this term is not ∝ ψ1. However, each term in the parenthesis is also a random
variable with the same mean and the variance as Vij . Thus, under the condition that V k

ijV
k

pq,
(with i ̸= j and/or p ̸= q) vanishes upon averaging (for small V ), the second and third terms
in the above expression vanish and we are left with

L†
D ψ1 = i

2

 M∑
k=1

N∑
j=2

⟨|V k
1j |2⟩

ψ1 . (A.8)

Moreover, we have the result ⟨|V k
1j |2⟩ = 2V 2

N2 . Using M = RN , we obtain

L†
D ψ1 = i

2
2V 2

N2 M(N − 1) = iRV 2
(
1− 1

N

)
ψ1 . (A.9)

In the large N limit, this concludes (A.5).
Now we consider a general string of length s = n(q − 2) + 1 and state the following

proposition (4.12).
Proposition 3. The action of the dissipative part of the Lindbladian to a string of length
s = n(q − 2) + 1 results in the following expression

L†
D On = iζqRV 2nOn , (A.10)

where ζ ∼ o(1) number and V is given by the ensemble average (4.11).
Proof. Here we discuss the general case for an operator string ψi1ψi2 · · ·ψis , where s = n(q −
2) + 1 is an odd number. For this, we note from the expression (A.1) that the only terms
that will survive after averaging over multiple realizations are the ones with i = p and j = q.
We only evaluate terms of this kind below. There are three such distinct cases.

Case 1, {im, in, im, in}. Here all four indices {im, in, im, in} ∈ {i1, i2, · · · , is} and the two
pairs are identical. Here we find

G1 = ψimψin(ψi1ψi2 · · ·ψis)ψimψin = 1
4(−1)2s−1ψi1ψi2 · · ·ψis ,

G2 = −1
4{I, ψi1ψi2 · · ·ψis} = −1

2ψi1ψi2 · · ·ψis ,

where for the second equality, we used the fact that ψimψinψimψin = −1
4I. From here it

follows that G1 − 1
2G2 = 0. Hence, this case does not contribute to (A.2).
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Case 2, {i, j, i, j}. Here both the pairs are identical. Using the identity ψiψjψiψj = −1
4I,

we obtain

G1 = ψiψjψi1ψi2 · · ·ψisψiψj = 1
4(−1)s+1(−1)sψi1ψi2 · · ·ψis = −1

4ψi1ψi2 · · ·ψis ,

G2 = −1
4{I, ψi1ψi2 · · ·ψis} = −1

2ψi1ψi2 · · ·ψis ,

and hence, we find G1 − 1
2G2 = 0. This term also has no contribution.

Case 3, {im, j, im, j}. Here two of the identical indices belong to the set {im} ∈
{i1, i2, · · · , is} but the other two (also identical and > im) indices do not. Therefore, we note
that ψimψjψimψj = −1

4I. The two terms are respectively

G1 = ψimψjψi1ψi2 · · ·ψisψimψj = 1
4(−1)s+1(−1)s−1ψi1ψi2 · · ·ψis = 1

4ψi1ψi2 · · ·ψis ,

G2 = −1
4{I, ψi1ψi2 · · ·ψis} = −1

2ψi1ψi2 · · ·ψis .

Thus we obtain the expression G1 − 1
2G2 = 1

2ψi1ψi2 · · ·ψis .

Case 4, {j, im, j, im}. This is almost identical to the previous case, except that now we
have j < im. Again, the terms G1 and G2 can be written as

G1 = ψjψimψi1ψi2 · · ·ψisψjψim = 1
4ψi1ψi2 · · ·ψis ,

G2 = −1
4{I, ψi1ψi2 · · ·ψis} = −1

2ψi1ψi2 · · ·ψis .

From this we obtain the expression G1 − 1
2G2 = 1

2ψi1ψi2 · · ·ψis .
Keeping these cases in mind, we find the following expression for (A.1) as

L†
D On = i

2

 M∑
k=1

∑
1≤i<j≤N

⟨|V k
ij |2⟩

 ∣∣∣
i/j∈{i1,...,is}

On = Cn On , (A.11)

where we have introduced the ⟨ ⟩ notation to denote the averaging. The notation i/j ∈
{i1, . . . , is} is taken to imply that either i or j lie in {i1, . . . , is} but not both. The objective
now is to evaluate the coefficient

Cn = i

2

 M∑
k=1

∑
1≤i<j≤N

|V k
ij |2
 ∣∣∣

i/j∈{i1,...,is}
. (A.12)

We break this sum over i, j into the following pieces∑
1≤i<j≤N

⟨|V k
ij |2⟩=

∑
i∈{i1,...,is}

∑
j>i

⟨|V k
ij |2⟩+

∑
i<j

∑
j∈{i1,...,is}

⟨|V k
ij |2⟩−2

∑
im

∑
in>im

⟨|V k
ij |2⟩ . (A.13)

The reason for subtracting the third term is because it is included in both the first and second
terms, where we place no constraints on j other than j > i. Additionally, under the averaging
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condition, we can use the result ⟨|V k
ij |2⟩ = 2V 2

N2 . Using this, the summation turns out to be
the following

∑
1≤i<j≤N

⟨|V k
ij |2⟩ =

2V 2

N2

 ∑
i∈{i1,...,is}

∑
j

1−
∑

i∈{i1,...,is}
1−

∑
im

∑
in>im

2

 ,

= 2V 2

N2

(
(N − 1)s− 2s(s− 1)

2

)
, (A.14)

= 2V 2

N
s

(
1− s

N

)
. (A.15)

Hence the coefficient is

Cn = i

2
2V 2

N
sM

(
1− s

N

)
= iRV 2s

(
1− s

N

)
, (A.16)

where R =M/N . For s = 1, this reduces to (A.9). However, our interest is in the large N
and large q limit, where we approximate s ≈ nq for large q. Thus, we obtain

Cn = i

2
2V 2

N
Mnq

(
1− nq

N

)
∼ ζqRV 2n , (A.17)

where ζ ∼ o(1) is a number independent of n and V . The important conclusion here is
that this coefficient Cn is proportional to V 2, R and n. One subtlety to be noted here is
that this analysis holds for an operator string ψi1ψi2 · · ·ψis that is long enough (i.e s < N),
which is evident in the large q approximation. Plugging eq. (A.17) in eq. (A.11), we obtain
eq. (4.12).

B Random p-body Lindbladian

To derive (4.14), we consider the general Lindblad equation

L†
o O = [H,O]− i

M∑
k=1

[
(−1)psL†

kOLk − 1
2{L

†
kLk,O}

]
, (B.1)

where p is the number of fermions in Lk and s is the number of fermions in O. We represent
the operators Lk and O by the following expressions

Lk =
∑

1≤α1<α2<···<αp≤N

V k
α1α2...αp

ψα1ψα2 · · ·ψαp , (B.2)

O = ψi1ψi2 · · ·ψis . (B.3)

For compactness, we denote the sum ∑
1≤α1<α2<···<αp

ans ∑{α,p} in what follows. The
dissipative part of the Lindbladian will be the central focus of our analysis. This is written as

L†
D O=−i(−1)p(p−1)/2

M∑
k=1

[
(−1)ps

∑
{α,p}

V
k

β1β2...βp
ψα1ψα2 · · ·ψαp

O

∑
{β,p}

V k
β1β2...βp

ψβ1ψβ2 · · ·ψβp


− 1
2
∑
{α,p}

∑
{β,p}

{
V

k

β1β2...βp
ψα1ψα2 · · ·ψαp

V k
β1β2...βp

ψβ1ψβ2 · · ·ψβp
,O
}]

, (B.4)
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where we have used the following fact

L†
k = (−1)p(p−1)/2 ∑

{α,p}
V

k
β1β2...βp

ψα1ψα2 · · ·ψαp . (B.5)

We emphasize that the coefficients V k
α1α2...αp

are taken from a random complex Gaussian
distribution with zero mean and variance ⟨|V k

α1α2...αp
|2⟩ = p!V 2

Np . This implies that for small V
and large N , we can ignore terms of the kind V

k
β1β2...βp

V k
β1β2...βp

with some indices different
between the sets {αp} and {βp} since these will vanish upon averaging over a large number
of realizations. We focus our attention to terms with αi = βi ∀ i. With these terms only,
the average over Lindbladian may be written as

L†
D O = −i(−1)p(p−1)/2

M∑
k=1

∑
{α,p}

⟨|V k
α1α2...αp

|2⟩
[
ψα1ψα2 · · ·ψαpOψα1ψα2 · · ·ψαp(−1)ps

− 1
2{ψα1ψα2 · · ·ψαpψα1ψα2 · · ·ψαp ,O}

]
.

(B.6)

The terms in the squared parenthesis need to be treated with care. We split these into
two terms

G1 = (−1)psψα1ψα2 · · ·ψαp (ψi1ψi2 · · ·ψis)ψα1ψα2 · · ·ψαp , (B.7)

G2 = −1
2{ψα1ψα2 · · ·ψαpψα1ψα2 · · ·ψαp , ψi1ψi2 · · ·ψis} , (B.8)

where we have used the expression for O which follows from operator concentration. Firstly,
we note that

ψα1ψα2 · · ·ψαpψα1ψα2 · · ·ψαp = (−1)p(p−1)/2

2p
I , (B.9)

which implies that

G2 = −(−1)p(p−1)/2

2p
ψi1ψi2 · · ·ψis . (B.10)

The evaluation of G1 is more involved. For this, we note that any αk can be written as

ψαk
ψi1ψi2 · · ·ψis = (−1)s+ζs

l ψi1ψi2 · · ·ψisψαk
, where ζs

k =
s∑

j=1
δij ,αk

. (B.11)

Systematically moving each αi across ψi1ψi2 · · ·ψis from the right to left (or vice-versa) we
pick up a phase of (−1)p−i by the time it reaches ψi1ψi2 · · ·ψis . At which point it crosses
over to the other side picking the phase (−1)s+ζs

i . Then it combines with the corresponding
operator on the other side of ψi1ψi2 · · ·ψis to give a factor of 1

2I. Repeating this process
for all the p fermions, we find the following result

G1 = (−1)p(p−1)/2(−1)ps

2p
(−1)

∑p

l=1 ζs
l ψi1ψi2 · · ·ψis . (B.12)
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Combining G1 and G2, we get the following

G1 +G2 = (−1)p(p−1)/2

2p

(
(−1)

∑p

l=1 ζs
l − 1

)
ψi1ψi2 · · ·ψis . (B.13)

With this, one can write the averaged dissipative Lindbladian as follows

L†
D ψi1ψi2 · · ·ψis = i

2p

 M∑
k=1

∑
{α,p}

⟨|V k
α1α2...αp

|⟩2
(
1− (−1)

∑p

l=1 ζs
l

)ψi1ψi2 · · ·ψis . (B.14)

One feature that we note from the onset is that if none of the αi indices lie in {i1, i2, . . . , i2},
then we get zero contribution since all the ζs

l are vanishing. This was also observed explicitly
in the 2-body jump operator case studied in the previous section. Additionally, it is also
evident that there will be a non-zero contribution only when an odd number of the indices
{αi} lie in {i1, . . . , is}. This was also observed in the 2-body jump operator case.

The objective now is to perform the combinatorial sum

1
2

∑
1≤α1<α2<···<αp≤N

(
1−(−1)

∑p

l=1 ζs
l

)
=

 ∑
1≤α1<α2<···<αp≤N

1


−

 ∑
1≤α1<α2<···<αp≤N&αi /∈{i1,...,is}

1


−

 ∑
1≤α1<α2<···<αp≤N&αi,even∈{i1,...,is}

1

 . (B.15)

It is useful to consider this sum in pieces. This sum tells us to put 2 for every case where
1 ≤ α1 < · · · < αp ≤ N and then subtract 2 for each case where ∀αi /∈ {i1, . . . , is}. Then
the cases where an even number of αi ∈ {i1, . . . , is} also have to correspond to a subtraction
of 2. We denote the L.H.S of the above summation as 1

2(S1 − S2 − S3). To evaluate the
first step, we note the following sum

S1 =
∑

1≤α1<α2<···<αp≤N

2 = 2Γ(N + 1)
Γ(p+ 1)Γ(N − p+ 1) . (B.16)

The next step is to subtract out the cases where ∀αi /∈ {i1, . . . , is}. To do this, it is enough
to note that the sum will be the same as (B.16), just with N replaced by N − s. Therefore
this term is

S2 =
∑

1≤α1<α2<···<αp≤N&αi /∈{i1,...,is}
2 = 2Γ(N − s+ 1)

Γ(p+ 1)Γ(N − p− s+ 1) . (B.17)

Let us now look at the term S1 − S2. In the large N limit, this terms is given by

S1−S2 =
2Γ(N+1)

Γ(p+1)Γ(N−p+1)−
2Γ(N−s+1)

Γ(p+1)Γ(N−p−s+1)
N→∞−−−−→ 2pNp−1s

Γ(p+1) . (B.18)

The final step is to evaluate the sum where an even number of αi are taken from {i1, . . . , is}.
Since the numbering of the fermions is really arbitrary, it suffices to compute the expression
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for the arrangement {i1, . . . , is} = {1, 2, . . . , s}. Any other arrangement of the indices will
give the same result. Since we evaluate the sum for the case where {i1, . . . , is} are sequential,
the combinatorial factors will arise from the choice of an even number of {i1, . . . , is}. There
will be no combinatorial factors from assigning these indices to {α1, . . . , αp}, since these will
necessarily be assigned in an increasing order starting from α1.

The number of ways of selecting 2k number of indices from the s indices available to
us is

( s
2k

)
. Once these 2k elements are chosen and assigned to α1, . . . , α2k in ascending

order, the sum can be performed over the remaining p − 2k summation indices spanning
over N − s values. Note that 2k is limited by the s or s− 1 (depending on s odd or even)
or p (p − 1 if p is odd). This simply amounts to replacing N by N − s and p by p − 2k
in (B.16). The resulting summation is

Sk = Γ(N − s+ 1)
Γ(p− 2k + 1)Γ(N − s− p+ 2k + 1)

(
s

2k

)
. (B.19)

The full contribution is then simply S3 = 2∑min(⌊s/2⌋,⌊p/2⌋)
k=1 Sk. The full sum is therefore

represented as S1 − S2 − S3, using (B.14),

L†
Dψi1ψi2 · · ·ψis =

iRV 2p!
2p−1Np−1

( Γ(N+1)
Γ(p+1)Γ(N−p+1)−

Γ(N−s+1)
Γ(p+1)Γ(N−p−s+1)

−
min(⌊s/2⌋,⌊p/2⌋)∑

k=1

Γ(N−s+1)
Γ(p−2k+1)Γ(N−s−p+2k+1)

(
s

2k

))
ψi1ψi2 · · ·ψis .

(B.20)

In the large N approximation, we ignore S3 as it is easy to see that the leading order
contribution of Sk is O(Np−2k), which is at least one order less than Np−1 which is the
leading order contribution from S1 − S2. Hence,

L†
D ψi1ψi2 · · ·ψis = i

ps

2p−1RV
2 ψi1ψi2 · · ·ψis . (B.21)

It is easy to see that this reduces to the leading order contribution (A.17) for p = 2. Hence,
the “operator size concentration” (4.2) leads to (4.14).

C General initial operator

It has been shown that operator concentration is a property of the large−N , large q SYK
model [22]. Using half-melon diagrams to represent the operators generated by subsequent
application of the closed SYK Lindbladian, starting with initial operator ψ1, it was shown that
the Lanczos coefficients are given by b1 = J

√
2/q, bn>1 = J

√
n(n− 1). It is straightforward

to derive the same results for a general p-body initial operator ψi1ψi2 . . . ψip . Before presenting
the arguments, let us briefly review the salient features of the construction in [22].

The SYK Louivillian LH can be split into two parts, each corresponding to a forward
and backward movement in the Krylov basis respectively

LH = L+ + L− . (C.1)
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Considering an operator basis generated by the action of L+ on the initial operator, it is
possible to demonstrate that the basis is orthonormal. This is due to the fact that L+ generates
Majorana strings of length larger than the one on which it acts. The largest such string is
one that arises when a Majorana fermion (in the operator on which L+ is acting) is replaced
by a (q − 1) body string of fermions. A diagrammatic approach is discussed in detail in [22].

Subsequent levels of Ln
+ψ1 give rise to a rapidly increasing number of diagrams, each of

the same length. The red curve is the initial operator and the further black curves represent
the subsequent additional operators generated. The coefficients of each diagram are essentially
the number of ways it can be constructed out of its parent diagram in the previous level.
Careful counting results in the following identity

L−Ln+1
+ ψ1 = 1

2n(n+ 1)Ln
+ψ1 . (C.2)

Using this, one can argue that the Krylov basis up to normalization is given by

On ∝ L+
nψ1 . (C.3)

And the usual action of the Liouvillian on the basis element follows accordingly (for n > 1)

LHLn
+ψ1 = Ln+1

+ ψ1 +
1
2n(n− 1)Ln−1ψ1 , (C.4)

with the edge cases n = 0, 1 represented as

LHψ1 = L+ψ1 , LHL+ψ1 = L2
+ψ1 +

1
q
ψ1 . (C.5)

The edge cases have to be calculated by explicit calculation as follows. We first consider the
case n = 0, remember we start with the normalized initial operator O0 =

√
2ψ1

LH(
√
2ψ1) =

√
2[H,ψ1] . (C.6)

The SYK Hamiltonian is

H =
∑

1≤i1<···<iq≤N

Ji1···iqψi1 · · ·ψiq . (C.7)

Substituting we get, we omit the summation as it is understood

LHψ1 =
√
2Ji1···iq [ψi1 · · ·ψiq , ψ1] . (C.8)

The non-zero contribution comes only when i1 = 1. Using this we get

LHψ1 =
√
2J1···iq [ψ1 · · ·ψiq , ψ1] = −

√
2J1···iqψi2 · · ·ψiq . (C.9)

For the n = 1 case we have, using the action of L+ and L− [20]

L+ψ1 = L2
+ψ1 + b2

1ψ1 . (C.10)
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We know from the definition that b2
1 = ||LH(

√
2ψ1)||. We can calculate this norm as follows

b2
1 = 2||LHψ1|| = 2Tr((LHψ1)†LHψ1)

Tr(I) . (C.11)

Using eq. (C.9) and writing the explicit sum(notice the sum), we then have

b2
1 = 2

∑
1<i2<···<iq≤N

|J1···iq |2
1

2q−1 . (C.12)

Here, we would have to do a disordered averaging. We further use the fact that | < J1···iq >

|2 = (q−1)2J2

Nq−1 ∑
1<i2<···<iq≤N

(1) = Γ(N)
Γ(q)Γ(N − q + 1) .

With this, we now have

b2
1 = Γ(N)

Γ(q)Γ(N − q + 1)
(q − 1)!J2

N q−1
1

2q−1
N→∞−−−−→ 22−qJ . (C.13)

Using the fact that in the large q limit 22−qJ2 = 2J 2/q

b2
1 = 2J 2

q
. (C.14)

With this we can read-off the Lanczos coefficients bn =
√
n(n− 1)/2 for n > 1 and b1 =

√
1/q.

Therefore the Krylov vectors can be generated by subsequent application of L+ on the initial
vectors and the corresponding Lanczos coefficients can be easily determined. The length of
the leading order Majorana string for a given n is s = n(q − 2) + 1.

All the arguments discussed here can be extended to a general p− body initial operator.
To see this, note that a general p-body operator can be represented as a half-melon diagram
of size p (C.15).

ψi1ψi2 . . . ψip ∝ = . (C.15)

L+ψi1ψi2 . . . ψip = c1 , (C.16)

L2
+ψi1ψi2 . . . ψip = c2 + c3 , (C.17)

L3
+ψi1ψi2 . . . ψip = c4 + c5 + c6 + c7 . (C.18)

– 35 –



J
H
E
P
0
1
(
2
0
2
4
)
0
9
4

For the purpose of this manuscript it is enough for us to note that the size of each of these
operators at a level n is given by s = n(q − 2) + p. Additionally, since the Majorana strings
of different size are orthogonal, Ln

+ψi1ψi2 . . . ψip form a Krylov basis. Since the arguments
for the 1− body operator should go through (with some minor modifications) here as well,
we can expect the asymptotic growth of the Lanczos coefficients to be linear in n. Finally,
aside from the edge cases of n = 0, 1, it is also expected from the half-melon representation
that L−Ln+1ψi1ψi2 . . . ψip ∝ Lnψi1ψi2 . . . ψip . The cases for cases n = 0, 1 represented as

LHψi1ψi2 . . . ψip = L+ψi1ψi2 . . . ψip , (C.19)

LHL+ψi1ψi2 . . . ψip = L2
+ψi1ψi2 . . . ψip + p

q
ψi1ψi2 . . . ψip . (C.20)

We conclude this section by presenting a derivation of (C.20). To see this, the first step
is to note that LHL+ψi1 . . . ψip = L2

+ψi1 . . . ψip + L−L+ψi1 . . . ψip . In the ladder operator
language [20], the second term L−L+ψi1 . . . ψip equals b2

1ψi1 . . . ψip where b1 is the norm of
the LHψi1 . . . ψip . We evaluate b1 by starting with the normalised initial operator and the
SYKq Hamiltonian as given below

H = iq/2 ∑
1≤i1<i2<···<iq≤N

Ji1i2...iqψi1 . . . ψiq , O0 = 2p/2ψ1 . . . ψp (C.21)

Note that we have chosen the indices in our initial operator to be sequential. This is for
convenience and does not result in loss of generality. The commutator of H and O0 is given by

LHψi1 . . . ψip = [H,O0] = iq/22p/2 ∑
1≤i1<i2<···<iq≤N

Ji1i2...iq [ψi1 . . . ψiq , ψ1 . . . ψp] . (C.22)

The commutator in the sum [ψi1 . . . ψiq , ψ1 . . . ψp] evaluates to (1− (−1)l)ψi1 . . . ψiqψ1 . . . ψp

where l is the number of the indices in i1, i2, . . . , iq that coincide in some index from 1, 2, . . . , p.
This implies there is a non-zero contribution only when l is odd. The commutator is then
denoted as

LHψi1 . . . ψip = 2iq/22p/2 ∑
1≤{i,l}≤N

Ji1i2...iqψi1 . . . ψiqψ1 . . . ψp , (C.23)

where the index in the summation {i, q} indicates the constraint that l of the indices
i1, i2, . . . , iq lie in 1, 2, . . . , p and there is a sum over all possible l. The norm of [H,O0]
is evaluated to be

b2
1 = ||LHψi1 . . . ψip || =

Tr((LHψi1 . . . ψip)†LHψi1 . . . ψip)
Tr(I) . (C.24)

This expression evaluates to

b2
1 = 2p+2 ∑

1≤{i,l}≤N

|Ji1i2...iq |2
1

2q+p
. (C.25)

Using the definition of the variance ⟨|Ji1i2...iq |2⟩ =
(q−1)!J2

Nq−1 , and the redefinition 21−qJ2 = J 2

q

corresponding to the large−q limit we can simplify the summation in b2
1 under disorder
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averaging to the following expression

b2
1 = 22−q (q − 1)!2q−1

N q−1
J 2

q

∑
1≤{i,l}≤N

1 . (C.26)

This summation has already been evaluated in the previous section (B.20). We quote the
result here∑

1≤{i,l}≤N

1 = Γ(N + 1)
Γ(q + 1)Γ(N − q + 1) −

Γ(N − p+ 1)
Γ(q + 1)Γ(N − q − p+ 1)

−
min(⌊p/2⌋,⌊q/2⌋)∑

k=1

Γ(N − p+ 1)
Γ(q − 2k + 1)Γ(N − p− q + 2k + 1)

(
p

2k

)
. (C.27)

In the large N limit, we obtain the following expression

b2
1 = 22−q (q − 1)!2q−1

N q−1
J 2

q

∑
1≤{i,l}≤N

1 −−−−→
N→∞

2 Γ(q)
N q−1

qN q−1p

Γ(q + 1)
J 2

q
= 2pJ 2

q
. (C.28)

From this the coefficient b1 can be read off as b1 = J
√
2p/q. For our chosen case of

J = 1/
√
2, we obtain the result (C.20).

From this, we can read off the expression for the Lanczos coefficients and show that they
are (asymptotically) identical to the single fermion initial operator case. The Krylov basis
is similarly given On ∝ Ln

+ψi1ψi2 . . . ψip . The only difference is the length of the operator
string, which is s = n(q − 2) + p.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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