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in null and space-like directions. These matching conditions are quite weak but suffice to
reduce the asymptotic symmetry group to a Poincaré group pi◦ . Restriction of pi◦ to future
null infinity I + yields the canonical Poincaré subgroup pbms
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i◦ . We show that
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1 Introduction

Isolated systems in general relativity with vanishing cosmological constant are modeled by
asymptotically flat spacetimes. The nature of radiative aspects of the gravitational field
becomes transparent as one recedes from sources in null directions [6–9], while the Coulombic
aspects reveal themselves as one recedes in space-like directions [10, 11]. These simplifications
have led to a detailed understanding of asymptotic symmetries and the associated conserved
quantities in each regime. However, the two descriptions are disparate. A framework to
unify them was introduced in [4, 5] through the notion of AEFANSI space-times that are
Asymptotically Empty and Flat at Null and Spatial Infinity. The goal of this paper — and
its preceding companion [1] — is to fill the gaps that still remained.

Specifically, the AEFANSI framework provides a 4-dimensional description of spatial
infinity without a 3+1 split and introduces I as the light cone of i◦, thereby providing a
strategy to unify the two descriptions. However, asymptotic conditions themselves were
imposed only as i◦ is approached along space-like directions. In the companion paper [1] we
introduced additional requirements as one approaches i◦ in null directions — i.e., along I +

— by a natural continuation of the conditions that already hold along space-like directions.
Space-times satisfying our strengthened asymptotic conditions are called Asymptotically
Minkowskian (AM ). They provide a natural arena to discuss isolated gravitating systems —
such as compact binaries that merge, or scatter off each other — for which the space-time
geometry is expected to be asymptotically flat in both regimes, not just separately but
in a harmonious manner.

Our strengthening of asymptotic conditions in the passage from AEFANSI to AM space-
times is geometrically natural, and also mild in the sense that it refers only to a small set of
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fields. At the same time, it is rather subtle in that it refers to the limit in which space-like
directions at i◦ approach null directions, avoiding the use of the hyperboloid of unit space-like
vectors at i◦ that is sometimes used for this purpose. As a result, restrictions on curvature
as one approaches i◦ are weaker. For example, the previous works assumed that the Weyl
components that enter the integrands of charges on I + have finite limits as one approaches
i◦, which are moreover continuous in the ‘infinite boost limit’ in which space-like directions
of approach become null [12, 13]. With our boundary conditions, they can well diverge in the
infinite boost limit, as is expected in generic physically interesting situations. The energy
momentum and angular momentum charges are still finite because our analysis involves limits
of charge integrals rather than their integrands and the divergent terms in the integrands
integrate out to zero before the limit is taken.

In the distant past, isolated gravitating systems — such as binaries — are generally
well-described by the post-Newtonian framework in which there is a single Poincaré group at
infinity that energy momentum and angular momentum of the system refer to. It is therefore
natural to ask if this Poincaré group extends to the phase of evolution in which the binaries
are sufficiently close, when a full general relativistic treatment is required. Only then can one
meaningfully compare linear and angular momenta at early, intermediate and late times.

Now, it has been known for some time that in AEFANSI space-times, one can extract a
canonical Poincaré subgroup pspi

i◦ of the Spi group S by imposing a rather weak restriction
on the fall-off of the magnetic part of the Weyl tensor as one approaches i◦ along space-like
directions. (Energy-momentum and angular momentum normally defined using initial data —
e.g. in the post-Newtonian framework — refer to this Poincaré group [14].) Similarly, one can
extract a canonical Poincaré subgroup pbms

i◦ of the BMS group B by requiring an additional,
rather weak condition on the fall-off of the magnetic part of the Weyl tensor, but now as one
approaches i◦ along I + [2, 3]. One can use pspi

i◦ to define energy momentum and angular
momentum charges at i◦ and, similarly, pbms

i◦ to define them on any cross-section S of I +.
However, since pspi

i◦ is a subgroup of S and pbms
i◦ a subgroup of B, the two Poincaré groups

have remained disparate. To meaningfully compare the two sets of charges, one needs a
natural isomorphism between pbms

i◦ and pspi
i◦ .

In general AEFANSI space-times, using the tangent space at i◦ one can set up a natural
isomorphism between the 4-dimensional translation subgroups of B and S. This made it
possible to analyze the relation between the ADM 4-momentum P ADM

a at i◦ and the Bondi-
Sachs 4-momentum P BS

a [S] defined on any cross-section of S of I + [15]. On the other hand,
angular momentum J⃗i◦ at i◦ refers to a SO(3) subgroup of pspi

i◦ , while angular momentum
J⃗I + [S] evaluated at a cross-section S of I + refers to a SO(3) subgroup of B, and there
are infinitely many SO(3) subgroups in B (any two being related by a combination of a
supertranslation and a boost). Therefore, given the SO(3) subgroup of pspi

i◦ that J⃗i◦ refers to,
one has to first isolate a canonical SO(3) subgroup of B that corresponds to the one used
to define J⃗i◦ , and then analyze the relation between J⃗i◦ and J⃗I + [S] (associated with that
canonical subgroup). Now, in stationary space-times one can set up a natural isomorphism
between the specific groups used in the two regimes and show that the two angular momenta
are equal [16]. (Recall that in stationary space-times there are no gravitational waves to
carry away angular momentum.) The goal of this paper is to extend that analysis to general
AM space-times introduced in [1] which admit generic gravitational waves.
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This will be possible because in any AM space-time, each generator ζa of the asymptotic
symmetry group pi◦ of AM space-times is automatically a generator of pbms

i◦ on I +, and of
pspi

i◦ at i◦. Therefore, given the rotational generators ζ̃a that are used to define J⃗i◦ , one can
unambiguously locate the corresponding generators ζa of pbms

i◦ , define J⃗I + [S] using them,
and investigate the relation between J⃗i◦ and J⃗I + . We will find that the charge J⃗i◦ at i◦

is the sum of the charge J⃗I + [S] at the cross-section S of I + and the flux of J⃗ across the
portion of I + to the past of S. This is precisely the expected balance law. However, it
holds only for SO(3) generators that belong to pi◦ . If for example we choose a vector field
ξ̃a which is in the Lie-algebra of pspi

i◦ at spatial infinity but not in the Lie-algebra of pbms
i◦

on I +, the equality fails to hold because ξ̃a does not satisfy the regularity conditions that
hold for generators of asymptotic symmetries of AM space-times. Indeed, since ξ̃a would not
belong to pi◦ , from the perspective of AM space-times it is not even meaningful to compare
the two charges; it would be like comparing apples with oranges.

The paper is organized as follows. In section 2 we begin by recalling the definitions of
angular momentum charges at null and spatial infinity. It has been known for some time
that the expression of charge integrals J⃗I + [S], evaluated at a cross-section S of I +, can be
obtained by first appropriately extending generators ζa of BMS rotations to vector fields ζ̃a in
a neighborhood of I +, then constructing the ‘Komar integrals’ using these ζ̃a on a family of
2-spheres Ŝ in the physical space-time, and finally taking the limit of these Komar integrals as
the 2-spheres Ŝ smoothly converge to the given cross-section S of I + [17]. This is the well-
known ‘linkage formalism’ [18]. Using results of [14], we extend it to include 2-spheres that
converge to i◦ and show that in the limit Komar integrals now yield J⃗i◦ . Section 3 contains the
main result of this paper. In section 3.1 we isolate the SO(3) subgroups of pspi

i◦ and pbms
i◦ that

are used to define J⃗i◦ and J⃗I + respectively. In section 3.2 we introduce a continuous family of
cylinders C on which the conformal factor Ω is constant and which are bounded by 2-spheres
Ŝ1 and Ŝ0, where Ŝ0 lie on a partial Cauchy surface Σ that passes through i◦ (see figure 1).
Now, by Stokes’ theorem, the difference between the Komar integrals evaluated on Ŝ0 and Ŝ1
on any one Ω = const cylinder C can be expressed as a 3-surface ‘flux’ integral across C. In
the limit as Ω → 0, the 2-spheres Ŝ1 converge to a cross-section S1 of I + and the 2-spheres
Ŝ0 converge to i◦. By construction, the extended charge integrals converge to J⃗I + [S1] and
J⃗i◦ respectively. In section 3.3 we show that the flux integral across cylinders C converges to
the flux of angular momentum across the portion of I + to the past of S. The argument is
rather subtle in that it involves an interchange of the operations of taking the limit Ω → 0
and performing the 3-surface integral over C, which is justified thanks to the AM boundary
conditions and the fact that the diffeomorphism generated by ζ̃a is in the Poincaré group pi◦ .
In section 4 we summarize the results and put them in a broader perspective.

Our conventions are as follows. The physical metric is denoted by ĝab, the conformal
metric of the AM completion by gab, and of completions in which I + is divergence-free by g̊ab.
We use −, +, +, + signature. The torsion-free derivative operator of gab is denoted by ∇ and
curvature tensors are defined via: 2∇[a∇b]kc = Rabc

dkd, Rac = Rabc
b, and R = gabRab. In case

of an ambiguity, will use the equality =̂ to emphasize that the equality holds only at I + or
at i◦. Away from i◦, we simply assume that the fields are appropriately smooth. For example,
gab is assumed to be C4 for simplicity, although as discussed in [1], lower differentiability at
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I + suffices for much of the discussion. In the main part of the discussion, we assume that
there is no matter field in a neighborhood of I + ∪ i◦. As we discuss in section 3.3.4, it is
rather straightforward to weaken this assumption to allow, e.g., matter fluxes across I +.

We will conclude this Introduction with a brief discussion of the asymptotic conditions
we use. In AEFANSI space-times, as one approaches i◦ along space-like directions, the
conformally rescaled metric gab is continuous, and the limits of its connection ∇ are smooth
in their angular dependence, but have radial discontinuities (that capture the value of the
ADM 4-momentum). This endows gab with a C>0 differential structure of [4]. As mentioned
above, to define angular momentum at i◦ one has to strengthen these conditions slightly by
requiring that the magnetic part of the Weyl curvature should decay faster than what is
guaranteed by the C>0 condition on the metric (i.e., that limits to i◦ of ∗Cabcd ∇bΩ

1
2 ∇dΩ

1
2

should exist, again, along space-like approach to i◦). In the passage to AM space-times, used
in this paper, one imposes, in addition, certain continuity requirements on limits to i◦ as
the space-like directions are ‘infinitely boosted’ and become tangential to I +. The precise
conditions are spelled out in detail in [1] and summarized in section 3.3.3. Complementary
aspects of the current status of the existence of solutions satisfying these conditions are
discussed in [1] and in section 4.

2 Asymptotic charges as limits of 2-sphere integrals in space-time

This section is divided into two parts. In the first we recall the definitions of asymptotic
charges defined on cross-sections S of I + and at i◦. While individual results are well-known,
charges at I + are generally expressed using conformal completions in which the null normal
to I + is divergence-free, and in the discussion of charges at i◦, using conformal completions
in which the divergence of its null normal is positive (so that I + is the future light cone of i◦).
We make the relation between the two explicit. In the second part we recall that the angular
momentum charges can be recovered as limits of 2-sphere Komar integrals, constructed from a
suitable extension of the rotational symmetry vector field from I + to the space-time interior.

2.1 Angular momentum charges

We will use the same notation as in the companion paper [1]. Thus, physical space-times
will be denoted by (M̂, ĝab), and their conformal completions satisfying the asymptotic
conditions in the definition of AM space-times by (M, gab = Ω2ĝab). In these completions,
the metric gab is C>0 at i◦ and smooth elsewhere on M , and I is the light cone of i◦. On
the other hand, as noted above, in the literature that discusses I + alone, one generally
uses conformal completions (M̊, g̊ab = Ω̊2ĝab) that make I + divergence-free, i.e. for which
∇̊a∇̊aΩ̊ ≡ ∇̊an̊a =̂ 0, where =̂ stands for ‘equals at I +’. Einstein’s equations satisfied by
ĝab then imply that n̊a is in fact covariantly constant at I +, i.e., ∇̊an̊b =̂ 0. The conformal
metric g̊ab provides a canonical degenerate metric q̊ab on I + via pull-back, as well as a
canonical null normal n̊a = g̊ab∇̊bΩ̊ to I +.1

1For a discussion of the conformal rescalings gab = ω̊2g̊ab between the AM and divergence-free conformal
completions, see section 3.1 of [1]. As in [1], we have set n̊a = ∇̊aΩ in a divergence-free conformal completion
and na = ∇aΩ in the AM completion. Thus, these 1-forms are null only at I + where they can serve as a part
of the Newman-Penrose null tetrad.
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Let us recall the definitions of BMS charges using divergence-free conformal completions.
Given any cross-section S of I +, one can decompose any BMS vector field V a on I + into a
part that is along the null normal n̊a and a part that is tangential to S:

V a =
(
f + ů̊κ

)̊
na + ζa , (2.1)

where f is a function on I + satisfying Ln̊f = 0, ů is an affine parameter of n̊a (which can be
taken to be constant on S), κ̊ is given by Ln̊V a = κ̊ n̊a, and ζa is tangential to S, satisfying
Ln̊ζa = 0 on I +. Let ℓ̊a denote the null normal to S satisfying n̊aℓ̊a = −1. Then, the shear
of the cross-section is given by σ̊ab = q̊a

c̊qb
d∇̊aℓ̊d where q̊a

c is the projector into S. The
charge QV [S] evaluated at the cross-section S of I + is a linear map V a → QV [S] from the
Lie algebra of the BMS group to real numbers, given by (see, e.g., [19–21]):

QV [S] := − 1
8πG

∮
S

[(
f + ů̊κ

)(
K̊abcdℓ̊an̊bℓ̊cn̊d + 1

2 σ̊abN̊cd q̊acq̊bd
)

+ K̊abcdℓ̊an̊bℓ̊cζd + ζbσ̊ab D̊cσ̊
ac + 1

4ζcD̊c(̊σabσ̊
ab)

]
d2V̊ . (2.2)

Here K̊abcd is the limit of Ω̊−1C̊abcd to I +, with C̊abcd the Weyl tensor of g̊ab; N̊ab is the News
tensor; q̊ab the intrinsic metric on S; and D̊, the derivative operator on S compatible with q̊ab.
These charges satisfy a balance law: given any two cross-sections S1 and S2 of I +, we have

QV [S1] − QV [S2] = 1
16πG

∫
I +

[1,2]

[
(LV D̊a − D̊aLV )ℓ̊b + 2ℓ̊(aD̊b)κ̊

]
N̊cd q̊acq̊bd dů d2V̊ (2.3)

where I +
[1,2] is the portion of I + bounded by S1 and S2; q̊ab is any inverse of q̊ab, the

pull-back to I + of g̊ab; D̊ is the derivative operator induced on I + via pull-back of the
space-time ∇̊ (that is compatible with g̊ab); and ℓ̊a is any covector field on I + satisfying
n̊aℓ̊a = −1 that is orthogonal to both S1 and S2.

Angular momentum J⃗I + [S] refers to the charge associated to an SO(3) subgroup of B.
Let us first fix a SO(3) subgroup and choose a cross-section S of I + to which generators ζa

of this SO(3) subgroup are tangential. For these BMS vector fields the angular momentum
charges Jζ [S] are given by the Dray-Streubel expression [19, 20]

Jζ [S] = − 1
8πG

∮
S

[
K̊abcdℓ̊an̊bℓ̊cζd + ζbσ̊ab D̊cσ̊

ac + 1
4 ζcD̊c(̊σabσ̊

ab)
]
d2V̊ . (2.4)

Our differentiability assumptions on g̊ab imply that the fields in the integrand of (2.4) are all
C1 on I + whence the integral is manifestly well-defined. We can also simplify the balance
law (2.3) for these SO(3) subgroups. First, since ζa are rotations, without loss of generality,
we can choose a conformal completion such that κ̊ =̂ 0. Next, given any two cross-sections
S1 and S2 to which ζa is tangential, Lζ ℓ̊a vanishes on these cross-sections. Therefore, we
can always choose ℓ̊a (satisfying ℓ̊an̊a = −1) for which Lζ ℓ̊a = 0 on the entire portion I +

[1,2]
of I + bounded by S1 and S2. Then the balance law (2.3) reduces to

Jζ [S1] − Jζ [S2] = 1
16πG

∫
I +

[1,2]

[
Lζ σ̊ab ] N̊cd q̊acq̊bd dů d2V̊ , (2.5)
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where q̊ab is now the inverse of q̊ab satisfying q̊abℓ̊b = 0. If, in addition, Ln̊ℓ̊a = 0, then one
can drop the last condition on the inverse metric and one has:

Jζ [S1] − Jζ [S2] = 1
16πG

∫
I +

[1,2]

[
Lζ σ̊ab ] N̊cd q̊acq̊bd dů d2V̊ (2.6)

where q̊ac is any inverse of q̊ab.
As discussed above, to obtain the conformal completion that incorporates all the re-

quirements of an AM space-time, we need to make an appropriate conformal transformation
g̊ab → gab = ω̊2g̊ab, realizing I + as the light cone of the point i◦. Under this transformation,
the expression of Jζ [S] is recast to the form

Jζ [S] = − 1
8πG

∮
S

[
Kabcdℓanbℓcζd + ζbσab Dcσ

ac + 1
4 ζcDc(σabσ

ab)
]
d2V (2.7)

where Kabcd = lim→I + Ω−1Cabcd = ω̊−1K̊abcd, na = ∇aΩ =̂ ω̊−1n̊a, ℓa =̂ ω̊−1ℓ̊a, D is the
derivative operator compatible with the intrinsic metric on the 2-sphere S, σab is the shear
of ℓb on S. Thus, the form of the expression of Jζ [S] remains unchanged in the passage
from the conformal completion gives by g̊ab to that given by gab (thanks to the specific
form of the last two terms).

Remark. There are other angular momentum expressions discussed in the literature that
also provide a linear map from the BMS generators ζa to real numbers but differ from (2.4)
in the numerical coefficients in front of the last two terms (for a summary, see [22, 23]).
However, they suffer from two drawbacks. First, in general axisymmetric space-times with
non-vanishing Nab they lead to non-zero angular momentum fluxes around the symmetry
axis, which is physically unacceptable. Second, they do not admit a local flux, whence their
angular momentum charge does not change continuously with continuous deformations of
the cross-section S, which is mathematically awkward [24]. The Dray-Streubel charge (2.4)
is free from of these limitations: in axisymmetric space-times yields the conserved Komar
integral, and it has the continuity property because it was in fact obtained by integrating
a local flux [25]. There is also another candidate for angular momentum charges in the
literature [26], obtained from taking limits to I + of quasi-local angular momentum integrals
in space-time. It also satisfies the continuity property, but in axisymmetric space-times with
Nab ̸= 0, there is a non-zero flux of angular momentum between generic cross-sections [24].
Also, the quasi-local charge is not a linear mapping from the BMS Lie algebra to reals.
Therefore, we will work with (2.4) and (2.7).

Let us now recall the definition of angular momentum at spatial infinity. In this case,
the AM boundary conditions ensure that the magnetic part of the Weyl tensor falls-off
appropriately for one to single out a Poincaré subgroup pi◦ of the BMS group. Angular
momentum charges J⃗i◦ are associated with SO(3) subgroups of this pi◦ (see section 2.2 for
further details). Generators of rotations are represented by vector fields ζa on the hyperboloid
H of unit space-time directions at i◦. They preserve the intrinsic metric on H and, on any
cross-section S0 to which a given ζa is tangential, it has the form ζa = ϵab Dbf , where ϵab is
the area 2-form on S0. The angular momentum charge associated with ζa is given by:

Jζ [i◦] = − 1
8πG

∮
S0

βac f τ aτ c d2V̊ , (2.8)
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where βac = lim→i◦ Cabc
d ∇aΩ∇dΩ is the leading, non-trivial contribution to the magnetic

part of the Weyl tensor as i◦ is approached in space-like directions, τ a is the unit normal
within H to S0, and d2V̊ is the volume element on a unit 2-sphere. This expression can be
recast to a more familiar form in terms of fields that refer to the physical metric ĝab, which
will be more directly useful for our purposes. Let us begin by considering a partial Cauchy
surface Σ passing through i◦ which is C>1 at i◦ and smooth elsewhere (as in figure 1), foliated
by 2-spheres Ŝ0 on which Ω = const. Denote by ζ̃a vector fields in a neighborhood of i◦ that
induce the given rotational symmetry ζa on H. Without loss of generality we can assume
that ζ̃a are tangential to the 2-spheres Ŝ0. As Ω → 0, this family of 2-spheres converges
to i◦ and the expression (2.8) can be expressed as a limit of integrals on Ŝ0 involving the
Cauchy data on Σ, induced by the physical metric ĝab [14]:

Jζ [i◦] = − 1
8πG

lim
Ω→0

∮
Ŝ0

K̂ab ζ̃a η̂bd2V̂ (2.9)

where K̂ab is the extrinsic curvature of Σ̂ w.r.t. the physical metric ĝab, ζ̃a is an asymptotic
symmetry vector field near i◦, tangential to the Ω = const 2-spheres, that induces the desired
rotation ζa in the Lie algebra of pi◦ , and η̂a is the unit normal to the family Ŝ of 2-spheres.
We will use (2.9) to relate J⃗i◦ to J⃗I + [S].

This concludes our summary of angular momentum charges at I + and i◦. In the next
subsection, using the ‘linkage framework’ [17, 18] we will use a convenient extension of the
symmetry vector fields ζa in a neighborhood of I + and show that the expression of angular
momentum (2.7) at I + and (2.9) at i◦ can both be expressed as the limits of the same
2-sphere integrals in space-time.

2.2 Extensions

Let us extend the rotational BMS vector field ζa on I + smoothly to a vector field ζ̃a in a
neighborhood N of I + ∪ i◦ in M such that: (i) Lζ̃Ω̊ = 0, and, (ii) the Geroch-Winicour
condition [17]

∇̂aζ̃a = 0 (2.10)

is satisfied, in N. (Condition (i) implies that ζ̃a is divergence-free also w.r.t. g̊ab.) Consider
a smooth family of 2-spheres Ŝ that converge to a cross-section S of I + to which ζ̃a is
everywhere tangential. Then, the ‘linkage’ charge Lζ̃ [S] is given by [17, 18]:

L̂ζ̃ [Ŝ] = 1
16πG

∮
Ŝ

ϵ̂ab
mn ∇̂mζ̂n dSab . (2.11)

Here and in what follows, ζ̂a = ĝab ζ̃b; the hat in ζ̂b emphasizes that the index is lowered using
the physical metric ĝab. L̂ζ̃ [Ŝ] has two interesting properties:

1. The limit of Lζ̃ [Ŝ] as Ŝ → S is well-defined (even though ζ̂a diverges in the limit to
I +); and,

2. When ζa is tangential to S, the limit agrees with Jζ̃ [S] of eq. (2.4) in any divergence-
free conformal completion (M̊, g̊ab) (and hence also with (2.7) in an AM conformal
completion (M, gab)).
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Note that the integral on the right side is precisely the Komar integral defined by ζ̃a in
the physical space-time (M̂, ĝab).

Remark. While linkages do not lead to physically acceptable charges and fluxes for BMS
supertranslations, as noted above, with our overall normalization they do yield the correct
angular momentum Jζ [S]. The linkage expressions used in [17] omitted overall numerical
factors. The numerical factors in [27] were tailored to give the standard 4-momentum while
the ones used in this paper are tailored to give the standard angular momentum. Thus, the
charge of eq. (2.11) is half that used in [27].

Let us now turn to i◦. While linkages have been analyzed extensively in the literature
on null infinity, this is not the case for their limit to i◦. Let us therefore begin by recalling
the salient features of the structure at i◦ in AEFANSI space-times [4, 5]. Note first that
metrics gab and ḡab that provide conformal completions of an AEFANSI space-time (M̂, ĝab)
are related by ḡab = ω2gab, where ω = 1 at i◦ and is C>0 at i◦ and smooth elsewhere. Let
us now restrict ourselves to those AEFANSI space-times in which the magnetic part of the
asymptotic Weyl curvature falls-off faster than the electric part (i.e., as 1/r4 rather than 1/r3

in the physical space-time, a condition that is automatically satisfied in AM space-times).
Then, one can naturally select a preferred class of conformal completions in which the relative
conformal factor ω relating any two metrics is C1 at i◦, (although each metric itself is only
C>0 there). The subset of vector fields ζ̃a in the physical space-times representing infinitesimal
Spi symmetries that in addition leave this preferred class {gab} of conformal completions
invariant is severely restricted: these ζ̃a generate only a Poincaré subgroup pi◦ of the infinite
dimensional Spi group S. Angular momentum J⃗i◦ refers to SO(3) subgroups of pi◦ .

Fix one of these rotational subgroups and, as in section 2.1, consider a partial Cauchy
surface Σ passing through i◦ which is C>1 at i◦ and smooth elsewhere. It is naturally foliated
by 2-spheres Ŝ0 on which Ω = const. Without loss of generality we can assume that the
extension ζ̃a of any given rotation generator of the fixed SO(3) subgroup is tangential to this
foliation. In the discussion of J⃗i◦ this condition replaces the two assumptions we made on the
extension in the discussion of linkages (although, we can also require those two conditions
without loss of generality). Let us perform a 3+1 decomposition of the linkage charge (2.11)
using vector fields τ̂a and η̂a, where τ̂a is the (time-like) unit normal to Σ and η̂a, the
(space-like) unit normal to the 2-sphere foliation within Σ. Then we have:

Lζ [Ŝ] = − 1
16πG

∮
Ŝ

2τ̂ [aη̂b] ∇̂aζ̂b d2V̂ , (2.12)

= 1
16πG

∮
Ŝ

(
τ̂aζ̃b ∇̂aη̂b − η̂aζ̃b ∇̂aτ̂b

)
d2V̂ . (2.13)

Now, since η̂a is normal to the foliation by Ŝ0 2-spheres, the pullback of ∇̂[aη̂b] to the 2-
spheres Ŝ0 vanishes. Therefore, we have τ̂aζ̃b∇̂aη̂b = τ̂aζ̃b∇̂bη̂a. This allows us to rewrite
the linkage charge as

Lζ̃ [Ŝ0] = − 1
8πG

∮
Ŝ0

η̂aζ̃b ∇̂(aτ̂b) d2V̂ (2.14)

= − 1
8πG

∮
Ŝ0

η̂aζ̃b K̂ab d2V̂ , (2.15)
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where K̂ab is the extrinsic curvature of the slice Σ. The limit of the right side of (2.15) as Ŝ0
converges on i◦ is exactly the 3+1 form (2.9) of the angular momentum Jζ [i◦] at spatial infinity.

To summarize, given an appropriate extension ζ̃a of asymptotic rotational symmetries ζa

to a neighborhood of I + ∪ i◦, limits of linkage (or, Komar) charges evaluated on a suitable
family of 2-spheres Ŝ in the physical space-time yield the angular momentum charge J⃗I + [S]
in the limit as Ŝ tend to the cross-section S of I +, and J⃗i◦ in the limit they tend to i◦

along the partial Cauchy slice Σ.

3 Flux and the balance law

In this section we will restrict ourselves to AM space-times and relate J⃗I + [S] and J⃗i◦ using
the fact that they can both be obtained as limits of linkage charges. The section is divided
into three parts. In the first we specify the SO(3) subgroup of pi◦ that will be used to define
angular momentum charges at I + and i◦. In the second, we discuss the flux integrals on
suitable portions of Ω = const 3-manifolds that result from applying Stokes’ theorem to the
linkage charge integrals, and introduce specific structures in a neighborhood of I + ∪ i◦ that
will facilitate the task of taking the limits Ω → 0. In the third, we will take the limit of
charge and flux integrals and establish the angular momentum balance law.

3.1 Selection of the preferred rotation generators

Fix an AM space-time (M̂, ĝab) and consider its conformal completions (M, gab) satisfying the
boundary conditions at both i◦ and I +, introduced in [1]. As pointed out in section 1, the
asymptotic symmetry group of AM space-times is the Poincaré group pi◦ whose restriction to
spatial infinity yields the group pspi

i◦ , and whose restriction to I + yields pbms
i◦ .

Let us begin with i◦ and summarize a convenient characterization of the generators of
pspi

i◦ . Since i◦ is a single point, to discuss the defining properties of these generators we need
to consider vector field ζ̃a in a neighborhood of i◦. Let N denote such a neighborhood. Recall
from section 2.1 that in AM space-times, N is equipped with a preferred equivalence class
{gab} of conformally related metrics whose relative conformal factor ω is C1 at i◦ (although
each metric is only C>0 there). The ζ̃a in the Lie algebra of pspi

i◦ generate diffeomorphisms
that leave i◦ and the metric gab at i◦ invariant (and thus induce a Lorentz rotation in the
tangent space Ti◦ of i◦), and preserve the class {gab}. These requirements translate to certain
conditions on the symmetry vector fields ζ̃a. They have to be C1 at i◦, smooth elsewhere,
and satisfy the following equations at i◦:

(i) ζ̃a =̂ 0; (ii) ∇(aζ̃b) =̂ 0; and, (iii) ∇c
(
∇(aζ̃b)

)
=̂ 2 (∇cϕ) gab (3.1)

where ϕ is a function on N that is C1 at i◦ and smooth elsewhere and, as usual, ζ̃b = gabζ̃
a.

The three conditions follow directly from the three conditions that the diffeomorphsims have
to satisfy to belong to pspi

i◦ . For details, see [1, 5].
In section 2, we defined angular momentum J⃗i◦ using any SO(3) subgroup of pspi

i◦ and
showed that it could be obtained as a limit of linkage/Komar integrals on an appropriate
family of 2-spheres Ŝ0 in the physical space-time that converge to i◦. To relate J⃗i◦ with
J⃗I + [S], we need to match the SO(3) subgroups in the two regimes. The idea is to use the
asymptotic rest frame of the system to select these subgroups.
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Recall first that ADM 4-momentum P ADM
a is well-defined in AM space-times and defines

a time-like vector at i◦ [28, 29] (we assume that matter sources in space-time interior, if any,
satisfy the necessary energy conditions). Consider the SO(3) subgroups of pspi

i◦ that leave
P ADM

a invariant. They are the rotation subgroups defined by the asymptotic rest-frame at i◦

and are thus related by the action of space-translations in pspi
i◦ . The corresponding generators

ζ̃a that induce the same rotation in T ◦
i but differ in the values of ∇c

(
∇(aζ̃b)

)
at i◦, i.e., lead

to different vectors ∇aϕ of eq. (3.1) at i◦. Because the ADM 3-momentum vanishes in this
asymptotic rest frame, these SO(3) subgroups define the same J⃗i◦ . Nonetheless, given a
conformal completion, it is convenient to remove the ambiguity in the choice of the SO(3)
subgroup by requiring that ∇aϕ should vanish at i◦. In the asymptotic rest frame of the
given completion, we can think of these preferred ζ̃a as ‘pure rotations’, uncontaminated by
translations (since translations t̂a in the Lie algebra of pspi

i◦ are characterized by ∇aϕ at i◦).
Next, let us turn to null infinity. Now, in AM space-times the magnetic part ⋆Kab of

the asymptotic Weyl curvature goes to zero also as one approaches i◦ along I + [1]. This
property in turn ensures that I + admits a 3-parameter family of foliations by 2-sphere
cross-sections S with following properties: (i) shear of S goes to zero in the asymptotic past
in any foliation; (ii) any two leaves of one of these preferred foliations are related by a BMS
time-translation; (iii) the group of BMS translations acts simply and transitively on the
4-parameter family of cross-sections; and, (iv) a generic supertranslation (i.e. one that is not
a translation) maps any one of these cross-sections out of the 4-parameter family. These
properties hold both in AM conformal completions (M, gab) and divergence-free conformal
completions (M̊, g̊ab). The requirement that asymptotic symmetries should preserve this
4-parameter family of preferred cross-sections (in addition to the universal structure of I +)
weeds out supertranslations and reduces B to the Poincaré group pbms

i◦ [1, 2].
In our discussion of linkages in section 2 there is complete freedom in the choice of SO(3)

subgroups also at null infinity: we could have chosen any SO(3) subgroup of B and defined
the corresponding angular momentum J⃗I + [S] via eq. (2.4). However, as discussed above, to
relate J⃗I + to J⃗i◦ , we need to restrict this choice. A natural avenue is to use the past limit of
the Bondi-Sachs 4-momentum P BS

a [S] evaluated on any leaf S of our preferred foliations: the
desired SO(3) subgroups of pbms

i◦ are those whose action on I + leaves this past limit invariant.
To make the action of these subgroups on I + explicit, let us use divergence-free conformal

completions as in the literature that discusses I + by itself. Any of these conformal completions
(M̊, g̊ab) provides a pair of fields (q̊ab, n̊a) intrinsically defined on I +, where q̊ab is the
(degenerate) metric on I + and n̊a =̂ g̊ab∇̊bΩ̊ is a null normal to I +. These pairs will be
referred as conformal frames. In a general conformal frame, while n̊a is a ‘time-like’ super-
translation, it need not be BMS translation. Those in which it is a time translation are called
Bondi conformal frames (and the corresponding q̊ab turns out to be a round 2-sphere metric).
There is a unique Bondi conformal frame in which the past-limit of P BS

a [S] is purely time-like,
i.e., in which the spatial 3-momentum P⃗ BS[S] vanishes in the infinite past. Consider any of
the preferred foliations that is left invariant by the time translation n̊a of this Bondi conformal
frame. The SO(3) subgroups of pbms

i◦ of interest are those for which the generators ζa are
tangential to the leaves of any one of these foliations. Again, there is a space-translation
ambiguity in the choice of these preferred foliations — and hence of the preferred SO(3)
subgroups — defined by n̊a, but the past limit of J⃗I + is insensitive to this freedom.
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In this discussion, we used divergence-free conformal completions only to cast the
procedure in a more familiar language. The entire construction — the preferred foliations and
the use of the past limit of P BS

a [S] — can be readily restated using AM completions in which
the null normal na has positive divergence so that i◦ is a point, and I + its future light cone.
To eliminate the remaining freedom in the choice of the SO(3) subgroup of pbms

i◦ , let us pass
to an AM completion. Then, the preferred SO(3) subgroups leave the ADM 4-momentum
P ADM

a invariant, since the past limit of P BS
a [S] along I + agrees with P ADM

a [15]. The linkage
extensions ζ̃a of generators ζa of the preferred SO(3) subgroups automatically satisfy the
first two conditions in (3.1) as one approaches i◦ along I +. However, in general the right
side of the third condition is not zero. The SO(3) subgroup of pbms

i◦ that matches the unique
subgroup we selected to define J⃗i◦ is the one whose generators ζa admit an extension ζ̃a

for which the right side vanishes, i.e.,

∇c
(
∇(aζ̃b)

)
=̂ 0 at i◦ (3.2)

not only as one approaches it along space-like directions, but also along I +. (See the remark
at the end of this subsection.) This requirement ensures that the rotation generated by ζ̃a

in pbms
i◦ is the same as that it generates in pspi

i◦ . Put differently, this matching condition at
i◦ ensures that ζ̃a does not just define an element of the Lie algebra of pbms

i◦ on I + and,
separately, an element of the Lie algebra of pspi

i◦ ; it ensures that the rotations in the two
groups are appropriately matched so that ζ̃a yields a well-defined element of the Lie algebra of
pi◦ . Since angular momenta Jζ [S] at I + and Jζ [i◦] at i◦ will be defined using these rotation
generators (in (2.7) and (2.9) respectively), the two angular momenta can be meaningfully
compared. Finally, note that this SO(3) subgroup of pbms

i◦ picks out a unique foliation of
I +, each leaf of which is left invariant by this SO(3) subgroup. (Moreover, the leaves S

become asymptotically shear-free and are mapped to each other by the BMS translation
that is aligned with the past limit of P BS

a [S]).

Remark. The geometrical underpinning that leads to (3.2) can be summarized as follows.
The metric gab at i◦ in any permissible conformal completion of an AM space-time is universal
and the conformal factor relating them is C1 at i◦. Hence, if gab and ḡab = ω2gab are two
allowed completions, ω=̂1 and C1 at i◦. The two metrics can be distinguished by the limits
to i◦ of their derivative operators ∇̄ and ∇ and the difference (∇̄a −∇a) is encoded in the
convector ∇aω evaluated at i◦. (For further details, see [1, 5].) If the 1-parameter family of
diffeomorphisms generated by ζ̃a (and parameterized by λ) lies in the Poincaré group pi◦ , then
the metric gab is sent to ḡab(λ) = ω2(λ)gab, so that under the infinitesimal motion generated
by ζ̃a we have Lζ̃gab =̂ 2ϕgab at i◦ where ϕ = dω(λ)

dλ |λ=0. If ζ̃a belongs to the Lie-algebra of
our unique SO(3) subgroup in the given conformal completion gab, then ϕ=̂0 and ω(λ) = 1.
That is, under the action of this rotation subgroup, the derivative operator ∇ is left invariant
in the limit as one approaches i◦ along space-like directions. Now, in AM space-times the
derivative operator ∇ is continuous: one obtains the same limit whether one first goes to
I + and then takes the limit to i◦, or if one first approaches i◦ along space-like directions
and then boosts the direction to become null. Therefore, the fact the 1-parameter family
of diffeomorphisms leaves the limit of ∇ along space-like direction unchanged implies that
∇ is also left invariant as i◦ is approached along I +: lim→i◦ (Lζ̃∇a −∇aLζ̃)kb |I += 0 for
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all 1-forms kb. Expanding this equation and using the fact that kb is arbitrary, one obtains
lim→i◦

(
∇a∇bζ̃c = ζ̃mRmabc

)
|I + . Finally, symmetrization on b and c implies (3.2).

To summarize, because ζ̃a generates a rotation in pi◦ , and elements of pi◦ preserve all
the asymptotic conditions satisfied by the AM space-time (M, gab), ζ̃a satisfies (3.1) not only
along space-like approach to i◦ but also null.

3.2 Flux associated with the linkage charge

As we saw in section 2.2, the linkage charge Lζ [Ŝ] is a 2-sphere integral in space-time that
yields both Jζ [S] at null infinity and Jζ [i◦] at spatial infinity in appropriate limits. We now
wish to choose the family of 2-spheres Ŝ in a convenient manner to make the relation between
the two angular momenta transparent. Let us fix an AM completion (M, gab) of the given
physical space-time. Let S denote leaves of the unique foliation of I + picked out at the end
of section 3.1. The SO(3) subgroup of interest leaves each leaf of this foliation invariant.

Let us foliate a neighborhood N of I + ∪ i◦ by Ω = const (time-like) 3-manifolds. Let
us also introduce a partial Cauchy surface Σ in N passing through i◦, that is orthogonal to
P ADM

a and C>1 at i◦ and smooth elsewhere. Denote the 2-spheres at which the Ω = const
surfaces intersect Σ by Ŝ0. Next, let us introduce another smooth foliation of the portion of
N to the future of Σ by a family of space-like surfaces that intersects I + in the leaves S of
the preferred foliation, with Σ serving as the past boundary leaf. The 2-sphere intersections
of these space-like surfaces with the Ω = const surfaces will be denoted by Ŝ. (See figure 1.)
Generators ζa of the preferred SO(3) subgroup of pi◦ are, by construction, tangential to
the leaves S of the preferred foliation of I +. Let us extend them as vector fields ζ̃a to the
portion of N of interest, subject to the following conditions: (i) the extension satisfies the
Geroch-Winicour condition ∇̂aζ̃a = 0; (ii) ζ̃a are tangential to the 2-spheres Ŝ (including the
Ŝ0 that lie on Σ). In particular, then, Lζ̃Ω = 0, whence ∇aζ̃a = 0 as well.

With this structure at hand, let us consider the linkages, Lζ̃ [Ŝ1] and Lζ̃ [Ŝ0] associated
with a general 2-sphere Ŝ1 in our family, and Ŝ0, the 2-sphere that lies on Σ, both on the
same Ω = const surface. As we saw in section 2.2, in the limit Ω → 0 (and moving along
the leaves of the space-like foliation), Ŝ1 tends to a preferred cross-section S1 of I + and
Ŝ0 to i◦. In this limit, Lζ̃ [Ŝ1] yields the angular momentum Jζ [S] at I +, and Lζ̃ [Ŝ0], the
angular momentum Jζ [i◦]. Therefore, it is instructive to first express Lζ̃ [Ŝ0] as the sum of
Lζ̃ [Ŝ0] and a 3-surface flux integral across the cylindrical portion C of the Ω = const surface,
bounded by Ŝ1 and Ŝ0, and then investigate the limit of the flux integral.

Let us then take the exterior derivative of the charge aspect in (2.11) and integrate
it along C. We have

Lζ̃ [Ŝ1] − Lζ̃ [Ŝ0] = Fζ̃ [C] , (3.3)

where the flux Fζ̃ [C] across C is given by

Fζ̃ [C] = 3
16πG

∫
C

ϵ̂[ab
cd∇̂e] ∇̂c ζ̂d dSabe (3.4)

= − 1
32πG

∫
C

η̂f ϵ̂f
abe ϵ̂ab

cd ∇̂e∇̂c ζ̂d d3V̂ . (3.5)

(3.6)
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Figure 1. Extension of structures in (M, gab) from I + ∪ i◦ to the space-time interior. I + is
foliated by a preferred family of 2-sphere cross-sections S that become shear-free in the asymptotic
past. A 1-parameter family of space-like 3-manifolds Σ intersect I + at these 2-spheres S. Σ0 is the
limiting 3-manifold of the Σ-family that passes through i◦ and is C>1 there. The Ω = const (time-like)
3-manifolds intersect the space-like 3-manifolds Σ in 2-spheres Ŝ that converge to the cross-sections S

of I +, as Ω → 0. Along Σ0, the 2-spheres Ŝ0 converge to i◦. The (gray) shaded region denotes the
closed neighborhood N of i◦ enclosed by the surfaces Σ0, Σ1, I + and the Ω = const surface that
passes through Ŝ0 and Ŝ1.

Here, in the second line we have replaced dSabe by 1
3! ϵ̂abe d3V̂ and, as before, set ζ̂a = ĝabζ̃

b

and denoted the unit radial normal to the Ω = const surface C by η̂a. Next, by expanding
out the contraction of the two volume forms and using the identity

∇̂e∇̂cζ̂d = R̂dce
kζ̂k + ∇̂c∇̂(eζ̂d) + ∇̂e∇̂(cζ̂d) − ∇̂d∇̂(eζ̂c) , (3.7)

we can rewrite Fξ̂[C] as

Fζ̃ [C] = − 1
8πG

∫
C

η̂d ∇̂e∇̂(eζ̂d) d3V̂ , (3.8)

where, we have used our assumption that there is no matter in the neighborhood of I ∪ i◦

and thus set R̂ab = 0.
Next, let us recast the expression of Fζ̃ [C] using the conformally rescaled metric gab =

ω2ĝab which is well-behaved at I + ∪ i◦. Since Lζ̃Ω = 0 in the region under consideration,
the integrand on the right side of (3.8) can be readily rewritten as:

η̂d ∇̂e∇̂(eζ̂d) = Ω (n · n)−
1
2 nd(∇e∇(eζ̃d) − 4 ne∇(eζ̃b)

)
(3.9)

where, as before, na = ∇aΩ and ζ̃a = gabζ̃
b. In the limit as Ω → 0, the cylinder C tends to

the portion I +[S1, i◦] of I + to the past of S1. Therefore, one would expect that the volume
element d3V̂ would be simply related to d3V on I +. This expectation is correct, but there
is a subtlety in defining d3V since I + is null. Let us therefore spell out the argument. The
volume form on the time-like cylinder C is d3V̂ = ϵ̂abc d3Sabc = −ϵ̂mabc η̂m d3Sabc, while the
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standard volume 3-form ϵabc on I + is given by ϵmabc = −4n[mϵabc]. Therefore, we have:

d3V̂ = −Ω−3(n · n)−
1
2 ϵmabc nm d3Sabc = 4Ω−3(n.n)−

1
2 n[mϵabc] nm d3Sabc

= Ω−3 (n.n)
1
2 d3V (3.10)

Therefore, in terms of the conformally rescaled metric gab we have:

η̂d ∇̂e∇̂(eζ̂d) d3V̂ = Ω−2nd
(
∇e∇(eζ̃d) − 4 Ω−1ne∇(eζ̃d)

)
d3V , (3.11)

and (3.8) becomes:

Fζ̃ [C] = − 1
8πG

∫
C

Ω−2nd
(
∇e∇(eζ̃d) − 4 Ω−1ne∇(eζ̃d)

)
d3V (3.12)

≡ 1
16πG

∫
C
Fζ̃ d3V , (3.13)

where the integrand of (3.12) is the flux-aspect Fζ̃ .
Interestingly, the two terms that feature in Fζ [C] have a pleasing geometrical inter-

pretation that will be used in section 3.3. Consider the 1-parameter family of diffeomor-
phisms generated by ζ̃a. The infinitesimal change g′ab in the metric is of course given by
g′ab = Lζ̃gab = 2∇(aζ̃b) (which vanishes both on I + and at i◦). The connection ∇ also
changes under this diffeomorphism and the infinitesimal change ∇′ is given by

∇′
akb = Cc

ab kc = 1
2 gcd[∇a(Lζ̃ gbd) + ∇b(Lζ̃ gad) −∇d(Lζ̃ gab)

]
kc , (3.14)

which vanishes as we approach i◦ along space-like or null directions because our rotation
generators preserve the connection ∇ at i◦. Setting kc = ∇cΩ ≡ nc, contracting with gab,
and noting that the extension ζ̃a of the symmetry vector field ζa on I + satisfies ∇aζ̃a = 0
in the neighborhood N , we obtain

gab ∇′
anb = nb ∇a(∇(aζ̃b)) in N . (3.15)

Therefore, the linkage flux aspect can be rewritten as an expression that involves only Ω,
the metric gab and the infinitesimal changes g′ab and ∇′ in the metric and the connection
induced by the infinitesimal diffeomorphism generated by ζ̃a:

Fζ̃ [C] = 2Ω−2 (gab ∇′
anb − 2ne nd g′ed

)
in N . (3.16)

This geometrical recasting of Fζ̃ [C] will be useful in section 3.3 to take the limit Ω → 0.

Remark. Had we passed to a divergence-free conformal completion (M̊, g̊ab) in place of
(M, gab), the same argument that led us to eq. (3.11) would have implied that

η̂d ∇̂e∇̂(eζ̂d) d3V̂ = Ω̊−2n̊d
(
∇̊e∇̊(e

˚̃ζd) − 4 Ω̊−1n̊e∇̊(e
˚̃ζd)

)
d3V̊ ≡ 2 F̊ζ̃ . (3.17)

Geroch and Winicour [17] showed that the flux F̊ζ̃ in the divergence-free frame admits a
smooth limit to I +. Since d3V = ω̊3d3V̊ where the conformal factor ω̊ relating g̊ab to
gab is smooth on I +, it follows that Fζ̃ also admits a smooth limit to I +. We will use
this fact in section 3.3.
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3.3 Asymptotic limit of the balance law

The linkage balance law (3.3) ensures that difference between Lζ̃ [Ŝ1] and Lζ̃ [Ŝ0] is the flux
Fζ [C] across the cylinder C joining [̂S1] and Ŝ0. We already know that in the limit Ω → 0,
the linkage charge Lζ̃ [Ŝ] yields angular momentum charge Jζ [S] at the cross-section S of I +

and Lζ̃ [Ŝ0] provides the angular momentum charge Jζ̃ [i◦] at spatial infinity. The remaining
task then is to take the limit of the flux integral.

3.3.1 Statement of the problem and a strategy to address it

Let us proceed in two steps. First, let us consider only the portion C[1,2] of the cylinder
bounded by the cross-sections Ŝ1 and Ŝ2 that converges to the portion I +

[1,2] of I + bounded
by S1 and S2. Then, as we noted above, the linkage charges converge to the Dray-Streubel
charges [19, 20] which satisfy the simplified version (2.6) of the balance law at I + because
ζa, n̊a and ℓ̊a meet all the conditions that led to the simplification. Therefore, the linkage
flux integral (3.12) over C[1,2] converges to the flux across I +

[1,2]
provided by (2.6). This

balance law is expressed using a divergence-free conformal completion. Let us first re-express
it using the AM conformal completion using the fact that the AM metric gab is related to
the metric g̊ab in the divergence-free completion via gab = ω̊2g̊ab. For the fields at I + that
feature in the flux expression of eq. (2.6) we have

σab =̂ ω̊σ̊ab; qab = ω̊−2q̊ab; d3V = ω̊3dV̊ . (3.18)

Since N̊ab has zero conformal weight among divergence-free frames, let us set Nab := N̊ab.
Then, (2.6) yields the following angular momentum balance law in the AM conformal com-
pletion:

Jζ [S1] − Jζ [S2] = 1
16πG

∫
I +

[1,2]

(Lζσab) Ncd qacqbd d3V , (3.19)

where I +
[1,2] is the closed portion of I + with boundaries S1 and S2. To obtain the desired

difference Jζ̃ [i◦] − Jζ [S2], it is tempting to take the limit as S1 recedes to infinite past and
conclude that Jζ̃ [i◦] − Jζ [S2] is given by replacing I +

[1,2] in the flux on the right-hand side by
the portion ∆I + between i◦ and S2. However, if one lets S1 in (3.19) to recede to infinite
past, i.e, to i◦, one would obtain a balance law that is again intrinsic to I +: it would simply
say that difference between Jζ [S2] and the past limit of Jζ [S1] is given by the flux across
∆I +. This procedure does not yield a relation between Jζ [S2] and Jζ̃ [i◦] because we do
not know that Jζ [S1] will tend to Jζ̃ [i◦] as S1 → i◦!

The second step is to arrive at a strategy that does relate Jζ [S2] to Jζ̃ [i◦]. Let us return
to the linkage balance law (3.3) and apply it to the cylinder C between Ŝ0 and Ŝ1 and then
take the limit Ω → 0. Then we have

Jζ [S1] − Jζ̃ [i◦] = lim
Ω→0

∫
C
Fζ̃ d3V . (3.20)

In the limit Ω → 0, C converges to ∆I and, as remarked at the end of section 3.2, the
linkage flux Fζ̃ extends smoothly to ∆I [17]. Since i◦ is simply a point of zero measure, it
can be removed from the volume integral. Thus, if we could interchange the limit and the
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integral, we would be able to express the total flux across Fζ̃ relating Jζ [S1] and Jζ̃ [i◦] as an
integral of (Lζσab) Ncd qacqbd over ∆I +. This interchange would be justified if, for example,
we were to replace i◦ with a cross-section S1 as in the beginning of this section, because Fζ̃

is smooth in the relevant space-time region and this region is compact. Then (3.19) would
be recovered as the limit of the linkage balance law as the cylinder C bounded by Ŝ2 and
Ŝ1 tends to the portion I +

[1,2] of I + bounded by S2 and S1.
However, for the infinite cylinders C bounded by Ŝ2 and Ŝ0, where the 2-spheres Ŝ0

coverage to i◦, the interchange of the limits and the integral is quite non-trivial. It can
be justified when the flux integrand Fζ d3V is bounded above by an integrable density in
the closed neighborhood N of i◦, enclosed by the surfaces I +, Σ0, Σ2, and the Ω = const
surface passing through Ŝ0 and Ŝ2 (see figure 1). The difficulty is that Fζ̃ d3V fails to be
smooth at i◦ whence, a priori, it may not be bounded in N . We will establish the required
boundedness in two steps. We will first show that, thanks to the conditions satisfied by
the symmetry generators ζ̃a of AM space-times, Fζ̃ d3V admits finite limits along every
spatial and null direction approaching i◦. However, a priori, the limits along space-like
directions may diverge as the limit in which they are infinitely boosted to null directions,
causing an infinite discontinuity. In the second step, we will show that this does not happen;
the integrand is bounded in N , allowing us to interchange the integral and the limit and
establish the desired balance law.

3.3.2 Limits to i◦ of Fζ d3V

Consider space-like curves c(λ) passing through i◦, that is C>1 there and smooth elsewhere,
and take limits of various fields along them. Recall from section 3.1 that ζ̃a =̂ 0; ∇(aζ̃b) =̂ 0;
and ∇c(∇(aζ̃b)) =̂ 0 at i◦. Therefore, fields Ω−1 (∇(aζ̃b)) and Ω− 1

2 ∇c(∇(aζ̃b)) admit regular
direction dependent limits to i◦ [4]. Similarly, limit of Ω− 1

2 ∇aΩ = Ω− 1
2 na is well-defined

(and equals the tangent vector to c(λ) at i◦ with norm 2). Finally, because the 2-spheres
of cylinders C shrink to a point at i◦, Ω−1d3V as a well-defined limit. Therefore, it follows
immediately that the linkage flux integrand Fζ̃ d3V has a well-defined limit to i◦ along all
space-like c(λ) under consideration.

Next, let us consider the limit of the flux aspect as we approach to i◦ along I +. Recall
from the Remark at the end of section 3.2 that Fζ̃ admits a smooth limit F̊ζ̃ to I in any
divergence-free conformal completion (and hence also in any AM conformal completion).
Furthermore, as shown in [27], F̊ζ̃ is related to the Hamiltonian flux on I +,

H̊ζ̃ : =̂ 1
16πG

(
N̊ab Lζ σ̊ab

)
|
I + , (3.21)

also evaluated in a divergence-free completion, via

Ln̊

(
F̊ζ̃ − H̊ζ̃

)
=̂ 1

64πG
Lζ

(
N̊abN̊ab

)
. (3.22)

Now, in an AM space-time the news tensor is guaranteed to fall off as 1/ů2 and shear σ̊ab

of our preferred slices as 1/ů (in a divergence-free conformal completion) [1]. Therefore,
we conclude that in the ů → −∞ limit along I + the linkage flux F̊ζ̃ has the asymptotic
form f̊(θ, φ) + O(1/ů)3 for some f̊ that has conformal weight −3. Now, d3V̊ = dů d2V̊
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where d2V̊ is the volume element of a unit 2-sphere. Therefore, F̊ζ̃ d3V̊ has a well-defined
limit as ů → −∞. Since this combination is invariant under conformal rescalings, in an
AM completion Fζ̃ d3V also admits a well-defined direction dependent limit to i◦.

Remark. As an aside, note that even if f̊(θ, φ) = 0, the linkage and Hamiltonian flux
aspects differ on I +, although they would both tend to zero as ů → −∞. Therefore, it may
first appear that there is a contradiction with the equality in eq. (3.19) that holds at I +,
where by the left side equals the linkage flux, by definition, while the right side equals the
Hamiltonian flux across I +

[1,2]. However, there is no contradiction because the form of the
difference is such that it integrates out to zero on our 2-spheres because ζa is tangential to
them. On the other hand, there would be a contradiction if f̊(θ, φ) is not only non-zero but
also has a constant part, i.e. if

∮
f̊d2V̊ ̸= 0. Thus, while our argument does not show that the

limits to i◦ of linkage and Hamiltonian flux aspects are equal, it implies that the difference
between their 2-sphere integrals is constrained to vanish in the limit to i◦.

3.3.3 Boundedness of Fζ d3V and the desired balance law

We have shown that the integrand Fζ d3V of the linkage flux admits a finite limit along
any space-like or null direction approaching i◦. However, as noted above, it is possible that
the limit along a 1-parameter family of boosted space-like directions may diverge as they
approach a null direction (creating an infinite discontinuity). If this were to happen then
we would not be able to interchange the integral and the limit. We will now show that,
because the diffeomorphisms generated by ζ̃a preserve the AM boundary conditions, the
limit along the 1-parameter family of boosted space-like directions matches continuously
with the limit along the null direction they approach, whence there is no divergence. For a
general AM space-time, this interchange would not be possible if ζ̃a is not a generator of the
asymptotic symmetry group pi◦ because then the required boundedness will fail.

Let us begin by recalling from [1] the continuity conditions that ensure appropriate
gluing of structures on I + and at i◦ in AM space-times. First, the metric gab is continuous
at i◦ in both space-like and null directions of approach. Second, the derivative operator ∇
admits direction dependent limits both in space-like and null directions. Next, consider any
1-parameter family of space-like curves cv(λ) passing through i◦ that are C>1 there with
tangent vectors va, smooth elsewhere, jointly continuous in v and λ, and converges to a
curve cn with a null tangent vector n as λ → 1. Then, the limits ∇(v) to i◦ along cv(λ)
continuously approach the limit of ∇(n) along cn, as λ → 1. The third continuity condition
refers to the set T of tensor fields that (i) are constructed from the conformal factor Ω, the
metric gab its derivative ∇ and fields constructed from them (e.g. curvature tensors and
their derivatives); (ii) admit regular direction-dependent limits along space-like directions
as one approaches i◦; and (iii) are C1 in a neighborhood of I + alone (not including i◦).
(Thus, if two tensor fields belong to T so does their tensor product and contraction.) In
AM space-times, elements of T admit well-defined direction-dependent limits also along the
limiting curves cn of families cv(λ) and, furthermore, the continuity property holds: the
limits to i◦ along cv(λ) converge to the limit along cn as λ → 1.

Now, since asymptotic symmetries preserve all boundary conditions, action of pi◦ must
preserve this set. In particular, then, tensor fields representing the infinitesimal changes
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g′ab and ∇′ induced by any of our rotation generators ζ̃a belong to T . Therefore, Fζ̃ :=(
gab ∇′

anb − 2ne nd g′ed

)
belongs to T . Next, as we see explicitly from eqs. (3.12) and (3.16),

the linkage flux integrand is given by Fζ̃ d3V = 2 Ω−2 Fζ̃ d3V . It would belong to T if and
only if (i) it admits a regular direction dependent limit to i◦ along families of space-like curves
cv(λ) and (ii) is C1 in a neighborhood of I + alone. We established the first condition (i) in
section 3.3.2, and we know from [17] that the second condition (ii) holds at I +. Therefore, it
follows that properties guaranteed by the continuity condition hold. The first property is that
Fζ̃ d3V admit direction-dependent limits to i◦ along null directions. Indeed, we explicitly
showed that this property holds (showing consistency with the present general argument).
The second property is that, for any family of curves cv(λ) mentioned above, the limits
Fζ̃ d3V (λ) tend to the limit of Fζ̃ d3V along curves cn. This implies that the limit does not
diverge as λ → 1, whence Fζ̃ d3V is bounded in N (including i◦).

Consequently, the interchange of the limit and integration in eq. (3.20) is justified,
and we have:

Jζ [i◦] − Jζ̃ [S2] = lim
Ω→0

∫
C
Fζ̃ d3V =

∫
∆I +

lim
Ω→0

(
Fζ̃ d3V

)
= 1

16πG

∫
∆I +

(Lζσab) Ncd qacqbd d3V . (3.23)

Here ∆I + is the portion of I + to the past of S2. Thus, we have the desired balance law: the
difference between the angular momentum Jζ [i◦] is the sum of the angular momentum Jζ̃ [S2]
at a cross-section S2 of I + and the angular momentum flux across ∆I +. Note that Jζ [i◦]
involves structures that refer only to asymptotic flatness at spatial infinity (see eqs. (2.8)
and (2.9)). Similarly, Jζ [S2] and the flux across ∆I + refer only to asymptotic flatness at
null infinity (see eqs. (2.7) and (2.5)). Individual terms in this balance law have no knowledge
of asymptotic flatness in the other regime. Finally, since in the limit in which S2 recedes to
infinite past, the flux integral on the right side of (3.23) vanishes, we conclude

lim
S2→i◦

Jζ̃ [S2] = Jζ [i◦] (3.24)

even though, again, fields entering the integrand on the two sides have no knowledge of other
regime. The equality holds because in AM space-times I + and i◦ are glued appropriately.

The gluing conditions are geometrically motivated, and they are also quite weak. In
particular, there is no assumption that the fields that enter the integrand of Jζ̃ [S2] of (2.7) tend
to those that enter the integrand of (2.8) in the limit in which S2 recedes to i◦. Indeed, this
may not even hold! Furthermore, the integrand of (2.7) (including the volume element d2V )
generically diverges in this limit in scattering situations! This point becomes transparent
in Bondi conformal frames in which the volume element d2V̊ remains unchanged as S2
recedes. In these conformal completions, the component of the Weyl curvature that enters
the integrand of (2.7) — Ψ◦

1, in the Newman-Penrose notation — will diverge as ů → −∞
in generic scattering situations. But this divergence is such that the limit of the 2-sphere
integral Jζ̃ [S2] is well-defined. More explicitly, the divergences can occur only in the ℓ > 1
components of Ψ◦

1 in the spin weighted spherical harmonic decomposition, while the integrand
of (2.7) is sensitive only to the ℓ = 1 components. And the equality Jζ [i◦] = limS2→i◦ Jζ̃ [S2]
refers only to the past limit of the integral on the right side of (2.7) and to the integral on
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the right side of (2.8) (or (2.9)). The AM boundary conditions allowed us to establish the
desired relation between the integrals without any assumption on the relation between the
two integrands. The strategy we used was to first extend the angular momentum charge
integrals to the space-time interior appropriately, and then take the limit Ω → 0 of integrals
in the balance law on cylinders Ω = const in the physical space-time.

3.3.4 Remarks

We will now comment on various aspects of the main result.

1. In arriving at the balance law (3.23), we extended structures at I +∪i◦ to the space-time
interior as shown in figure 1. The construction guaranteed that S2 belongs to the family
of preferred cross-sections that are shear-free in the infinite past, and, the rotation
generator ζa is tangential to it. We will now show that the balance law continues to
hold if we replace S2 by any smooth cross-section S even when it violates both these
restrictions.

We will use the same setup as before. Thus, Lζ n̊a=̂0 whence κ̊=̂0, and we have a
family of cross-sections, ů = const, of I + that are asymptotically shear-free in the
distant past to which ζa is tangential and ℓ̊a is orthogonal. Let us consider the portion
I +

[S2,S] of I + bounded by a cross-section S2 that belongs the preferred family and a
generic cross-section S to the future of S2 which does not. In addition, ζa may not be
tangential to S. Recall from section 2.1 that the charge Qζ [S] is well-defined for any
S and related to Qζ [S2] = Jζ [S2] by the general balance law (2.3) at I +. Conditions
satisfied by ζa and ℓ̊a in our setup ensure that the flux on the right side of eq. (2.3)
assumes the simplified form (2.6), whence we have

Jζ [S2] − Qζ [S] = 1
16πG

∫
I +

[S2,S]

[
Lζ σ̊ab

]
N̊cd q̊acq̊bd d3V̊

= 1
16πG

∫
I +

[S2,S]

[
Lζσab

]
Ncd qacqbd d3V (3.25)

where, in the second step we have expressed the right side using fields in the AM confor-
mal frame as in (3.19). Combining this result with (3.23) we have a balance law for
any cross-section S of I +:

Jζ [i◦] − Qζ [S] = 1
16πG

∫
∆I +

[
Lζσab

]
Ncd qacqbd d3V , (3.26)

where ∆I + now stands for the portion of I + to the past of S. Note that Qζ [S] is
just the ζ-component of the angular momentum at the cross-section S; we use the
stem letter Q rather than J simply because Jζ [S] has been used in (2.4) to denote the
angular momentum associated with an SO(3) generator that is tangential to S. Since ζ

is not tangential to S, we have to use the full expression (2.2) of the charge Qζ [S].

2. In this calculation we focused on the SO(3) subgroup of pi◦ that is tailored to the
asymptotically past rest-frame (i.e., that leaves invariant the P ADM

a and/or the past
limit of P BS

a ) because angular momentum 3-vector J⃗ generally refers to this rotation
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group. But the analysis goes through for any SO(3) subgroup of pi◦ . Since we can
express any generator ξa of pi◦ as a linear combination of translations and generators of
arbitrary SO(3) subgroups, and since the balance law also holds for the 4-momentum
in AM space-times2 the balance law holds for the full Lie algebra of pi◦ .

3. It is instructive to compare the discussion of this paper with that of [16] which established
the relation between J⃗I + [S] and J⃗i◦ in stationary AEFANSI space-times. In that
case two major simplifications occur: (i) there is a 4-parameter family of preferred
cross-sections whose shear vanishes on entire I +, and, (ii) eq. (3.26) reduces to
Jζ [i◦] − Jζ [S] = 0 since Nab=̂0 on all of I +. To establish this equality, one first chose
the families of Ω = const. cylinders C as in figure 1, but such that the stationary Killing
field t̂a is tangential to them. One then extended the charge Jζ [S] from I + to the
space-time interior using just the Weyl tensor, an extension ζ̃ of the BMS rotation ζa,
and of a null vector field ℓ̂a transverse to the cross-sections Ŝ, both transported in a
manner that respects the Killing symmetry. Then, the flux relating the charge integrals
on 2-spheres Ŝ2 and Ŝ0 vanish already on cylinders C and so there was no subtlety
about the interchange of the limit Ω → 0 and integral of the flux over C. Thus, in
stationary space-times one does not need the delicate AM boundary conditions; the
result holds in AEFANSI space-times. In non-stationary space-times, however, we do
not have this luxury!

4. The balance law (3.26) holds only because ζ̃a is an asymptotic symmetry respecting the
AM structure and therefore belongs to pi◦ which correctly glues its action at i◦ with
that on I +. To bring out this point, let us construct a vector field ξ̃a in space-time
that is in the Lie-algebra of the Poincaré group pspi

i◦ , as well as of the BMS group B on
I +, but not in the Lie-algebra of pbms

i◦ , and investigate what happens to this balance
law. An example of such a vector field ξ̃a is obtained by adding to a rotation generator
ζ̃a in pi◦ a supertranslation sa on I + that is not a BMS translation:

ξ̃a = ζ̃a + (1 − e−
ω̃4
Ω ) s̃a ≡ ζ̃a + f s̃a (3.27)

where s̃a is a smooth extension of sa to the space-time interior (that is C>0 at i◦

and smooth elsewhere), and ω̃ = Ω/Ω̊ relates the AM conformal completion with the
divergence free one. (Thus ω̃ vanishes at i◦, is C>0 there and smooth elsewhere.) Since
ω̃2 ∼ Ω in the space-like approach to i◦, it follows that f → 0 exponentially in the limit
to i◦ in space-like directions. On the other hand, since ω̃ is strictly positive on I +, f
equals 1 on all of I +. Therefore, the limit of f to i◦ along any null direction is also 1.
Thus, the limit of f to i◦ has a finite discontinuity along any of our families of ‘boosted’
space-like curves cv(λ) that converges to a curve cn (with a null tangent vector na at
i◦) as λ → 1. As a consequence, the difference ξ̃a − ζ̃a goes to zero exponentially as

2The argument in [15] for the 4-momentum balance law is similar to that in the main text in that one first
extended structures from I + ∪ i◦ to the space-time interior, considered the balance laws satisfied on cylinders
C and then took the limit ω → 0. However, there was an implicit interchange of the limit and the integral
over C. To justify it one needs AM boundary conditions that ensure that structures related to I + and those
related to i◦ are glued properly.
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one approaches i◦ along space-like directions, while we have ξ̃a − ζ̃a =̂ Sa everywhere
on I +. Thus, as desired, although ξ̃a is an asymptotic rotation in both pspi

i◦ and B, it
does not belong to pbms

i◦ because it differs from the ζ̃a ∈ pbms
i◦ by a supertranslation. The

difference goes to zero as one approaches i◦ along I + simply because supertranslations
sa goes to zero in this limit in any AM conformal frame. Consequently, although f has a
discontinuity, ξ̃a is continuous at i◦; it vanishes there along all directions. Nonetheless,
as we show below, the discontinuity of f makes a key difference.

Since this ξ̃a is a perfectly well-defined symmetry in pspi
i◦ , it defines an angular momentum

charge Jξ̂[i◦] at i◦ via (2.8) or (2.9) which equals Jζ̂ [i◦]. On the other hand, it is also a
well-defined symmetry in B, with ξ̃a − ζ̃a = sa on I +. Therefore, the definition (2.2)
of BMS charges implies that

Jξ̃[S] − Jζ̃ [S] = Qs[S] , (3.28)

where Qs[S] is the supermomentum charge associated with Sa at the cross-section S.
Consequently, in the infinite past limit in which the cross-section S is sent to i◦, we have

lim
S→i◦

Jξ̃[S] = Jζ̃ [i◦] + lim
S→i◦

Qs[S] . (3.29)

Thus, the past limit of the angular momentum charge defined by ξ̃a via (2.2) does not
in general equal the angular momentum charge it defines at i◦ via (2.8) or (2.9). Put
differently, the equality between the past limit of Jζ̃ [S] and the angular momentum Jζ̃

defined at i◦ that we have for generators ζ̃a of pi◦ falls to hold for ξ̃a. This is because
the diffeomorphism it generates fails to belong to pi◦ : while ξ̃a belongs to Lie algebras of
both pspi

i◦ and B, its limits along space-like directions are not sufficiently well-matched
with those along null directions for its action to preserve the AM structure.3

We can trace back our arguments to see why the equality (3.24) fails for ξ̃a: it is
precisely because the discontinuity in f prevents us to interchange the integration over
C and the limit Ω → 0. The expression of the linkage flux on cylinders C involves
derivatives of the generator ξ̃a, and they act on the discontinuous f in the expression
of ξ̃a. Therefore, if one considers any of our families Cv(λ) of curves that converge to
cn as λ → 1, the limit to i◦ of Fζ d3V (λ) fails to remain continuous, and so we cannot
conclude that it is bounded in the neighborhood N — and in fact it isn’t. Hence, we
cannot interchange the limit Ω → 0 and the integral over C. This example brings out
the fact that even when ξ̃a preserves the asymptotic conditions in the two regimes
separately — i.e., preserves the AEFANSI structure — the balance law (3.26) will
generically fail unless it preserves the AM boundary conditions and thus belongs to pi◦ .

3Exception occurs if the past limit of the supermomentum Qs happens to vanish. This does happen for
all supertranslations (that are not translations) if the past limit of the Newman-Penrose Weyl component
Ψ◦

2 happens to be spherically symmetric in a Bondi conformal frame. In that ‘accidental case’ the past limit
of the angular momentum Jξ̃[S] does agree with angular momentum Jξ̃[i◦]. This spherical symmetry may
well be realized in binary coalescences but not in scattering situations. Even in cases where Ψ◦

2 happens to
be spherically symmetric, conceptually it is not meaningful to compare Jζ̃ [i◦] with Jξ̃[S] via a balance law
because they refer to different rotation groups. In terms of Newtonian mechanics, it would be like comparing
Jz of a particle in the distant past with, say, Jy at a time t to obtain a balance law in the accidental case
when their values in the distant past happen to be the same.
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5. Recently, there has been renewed interest in the issue of angular momentum balance
law especially in the context of scattering systems (see, e.g., [30–36]). Much of that
discussion pertains to the post-Minkowskian approximation which has a Poincaré group
that the angular momentum refers to. In AM space-times that group is extended to
the full theory by pi◦ . Indeed, as eq. (2.9) shows, our angular momentum J⃗i◦ is the
same as that constructed from initial data in these treatments. Therefore, our results
could shed light on some issues of recent interest. First, as we saw, in generic scattering
situations, there is an exact angular momentum balance law (3.26) provided one chooses
the rotation generators in the Lie algebra of pi◦ . In particular, this implies that on
I +, the generators must be tangential to a family of cross-sections of I + that are
asymptotically shear-free in the distant past. Otherwise, the rotation generator would
not belong to the Lie algebra of pbms

i◦ and one would be comparing angular momentum
at spatial infinity using one SO(3) group, and that I + using one that is supertranslated,
leading to an ‘apples with oranges’ type comparison. Second, there’s some discussion
about whether one can have angular momentum flux at I + in absence of energy flux.
Now if there is no energy flux across ∆I +, then Nab = 0 there, whence it follows
from (3.26) that in the exact theory that the angular momentum flux associated with
ζ̃a must also vanish. Again this result holds because one uses the SO(3) group at I +

that is matched to that at i◦. For a generator of the type ξ̃a discussed in Remark 4
above, this matching fails and a spurious angular momentum flux may well appear
if the past limit of supermomentum is non-zero. These are two illustrations of ways
in which our results can clarify some of the issues that are currently debated in the
context of scattering, using expansions in powers of Newton’s constant.

6. For simplicity, we restricted our detailed discussion to the case when the physical metric
ĝab satisfies source-free Einstein’s equations in a neighborhood of I + ∪ i◦. But our
results go through also in the case when this condition is weakened to allow sources
in this neighborhood, provided stress energy T̂ab has the standard fall-off: Ω−2 T̂ab

admits a C2 limit to I + and T̂ab admits a regular direction dependent limit at i◦.
As is well-known, the expressions of the BMS charges (2.2) and the i◦ charges (2.8)
remain unchanged. However, in the balance law (3.26) the flux expression now has an
additional matter contribution because, while only the Weyl part of the asymptotic
curvature contributes to the charge aspect, to calculate the flux one needs to take its
exterior derivative and simplify it using Bianchi identity on the Riemann tensor. This
brings the Ricci part of the curvature, leading to an additional term representing the
angular momentum carried by matter.

4 Discussion

Let us begin with a summary, emphasizing conceptual issues. The BMS charges Qζ [S] and
fluxes Fζ [∆I +] at null infinity refer only to the BMS generators ζa and fields defined on
I +, without any reference to the Spi group S or the asymptotic behavior of fields near i◦.
Reciprocally, charges Qζ̃ [i◦] refer only to the generators ξa of S and asymptotic fields at i◦

without any reference to the BMS group B or fields on I +. Therefore, in a space-time that
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satisfies asymptotic flatness conditions in the two regimes separately, there is no relation
between these sets of observables. To relate them one needs to restrict oneself to space-times
in which, in addition, the structure at I + and at i◦ are appropriately glued. This is achieved
in part in AEFANSI space-times [4, 5] in which I + arises as the future null cone of i◦.
The BMS group B and the Spi group S each admits a unique translation subgroup and
the AEFANSI structure suffices to identify each of these 4-dimensional Lie algebras with
the tangent space Ti◦ . This identification enables one to ask for the relation between the
Bondi-Sachs and ADM 4-momenta P BS

a [S] and P ADM
a [i◦] as in [15].

For angular momentum, the situation is much more subtle because each of the symmetry
groups B and S admits an infinite number of Lorentz subgroups, related by supertranslations.
Therefore, the minimal gluing provided by the AEFANSI boundary conditions does not suffice.
In the companion paper [1] we supplemented them by demanding certain continuity on that
limits to i◦ along space-like and null directions to arrive at a definition of Asymptotically
Minkowski (AM ) space-times. The additional requirements are well-motivated from a
geometric standpoint and rather weak. One does not simply extend the C>0 differentiability
of the metric in an obvious manner. For example, the limits Eab at i◦ of the electric part of
the asymptotic Weyl curvature are guaranteed to exist along space-like directions already in
AEFANSI space-times. Therefore, one might have expected that the continuity conditions of
AM space-times would imply that as one lets space-like directions approach a null direction
(via a continuous family of increasing boosts), the limits would tend to a finite value. This
is not the case; generically they diverge (but the ADM 4-momentum constructed from a
2-sphere integral of Eab with appropriate contractions remains well-defined in the limit).
Similarly, if one passes from an AM conformal completion to a more familiar divergence-free
conformal completion (that is especially convenient if one is interested only in null infinity),
then the Newman-Penrose component Ψ◦

1 of the Weyl curvature that features in the integrand
of angular momentum at I + is allowed to diverge in the distant past. (Again, the divergence
is such that the angular momentum charge integral itself has a well-defined limit as one
approaches i◦ along I +.) Thus, in particular one can use AM space-times in scattering
situations where the past limit of Ψ◦

1 generically diverges.

As discussed in [1], while the boundary conditions satisfied by AM space-times are rather
tame in the sense that they are met in a wide class of space-times, they have interesting
consequences. First, the news tensor (and radiative curvature components) automatically
satisfy certain fall-off conditions as one approaches i◦ along I + that have been generally
imposed by hand to ensure that radiated angular momentum and energy is finite. The Second
consequence is more surprising: they imply that the asymptotic symmetry group of these
space-times is a Poincaré group pi◦ where the label i◦ is a reminder that it is selected by the
gluing conditions at i◦. Since the primary interest of this paper lies in angular momentum,
we focused on the generators ζ̃a of SO(3) subgroups of pi◦ . Associated with any generator
ζ̃a of i◦, there is an angular momentum charge Jζ̃ [S] constructed from fields defined locally
at a cross-section S of I +, and also a charge Jζ̃ [i◦] constructed from limits of fields to i◦.
Although in each regime the charge is defined without the knowledge of asymptotic flatness
in the other, there is a balance law (3.26): Jζ̃ [i◦] equals the sum of Jζ̃ [S] and the flux of
angular momentum radiated across the portion ∆I + of I + to the past of S. This relation
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holds only because the relevant structures that arise from approach to i◦ along space-like
and null directions are glued appropriately at i◦. To emphasize this point, in section 3.3.4
we considered a vector field ξ̃a that is a rotation generator separately in the two regimes
but does not belong to the Poincaré group pi◦ : it preserves the AEFANSI structure — i.e.,
asymptotic flatness in each regime separately — but not the AM structure that glues the
two appropriately. In that case, the balance law does not hold: in particular, the past limit
of Jξ̃[S] does not equal Jξ̃[i◦] in generic situations.

In this paper, we focused only on I + and i◦. But the discussion shows that all our
considerations apply also to I −. If we include I −, then one finds that there is a single
symmetry group pi◦ that acts rigidly on I −, i◦ and I +. That is, the symmetry generator
ζ̃a belong to the sub-Lie algebra of pspi

i◦ of the Spi group S at spatial infinity, and also to
the sub-Lie algebras of the Poincaré subgroups pbms

i◦ of B on I + as well as I − (selected
by the family of asymptotically shear-free cross-sections in each case). The infinitesimal
transformations it generates unambiguously glue a given rotation on I − to a specific rotation
on I + through i◦, without any supertranslation freedom. For such a rotation generator
ζ̃a the future limit of the angular momentum Jζ̃ [S̄] evaluated at a cross-section S̄ of I −

also equals Jζ̃ [i◦], whence the future limit on I − agrees with the past limit along I +.
Since this holds for all rotation subgroups of pi◦ , and since the same equality holds for the
4-momentum [15], we conclude that the equality between future limits on I − and past limits
on I + holds for all Poincaré charges associated with pi◦ .

However, our primary goal was to relate the Coulombic and radiative aspects of the
gravitational field, i.e., structures at I + with those at i◦ by examining how I + is glued
to i◦. Therefore, our focus has been on the relation between space-like and null approach
to i◦ — relation between the I ± is a byproduct. This is in contrast to some of the recent
literature, where the primary goal has been to relate structures at I − with those at I + via
an S-matrix, and i◦ serves only as an intermediate tool (see, in particular [12, 13, 37–39]).
Much of that work is motivated by perturbative scattering theory. It has been known for
quite some time that the enlargement of the Poincaré group in Minkowski space to the
BMS group by supertranslations is tied to the infrared properties of the radiative aspects
of non-perturbative quantum gravity [40–42]. Through Weinberg’s soft theorems the recent
work has made the relation much more detailed within perturbative quantum gravity [37].
In this analysis, the BMS supermomenta and possible conservation laws from I − to I +

for them play a key role. In [12] a sufficient set of supplementary conditions was added to
the definition of AEFANSI space-times to ensure that the conservation law holds for BMS
supermomentum and subsequently, in [13], the result was extended to all BMS charges in
classical general relativity. By contrast, the conservation law in the present AM framework
refers only to generators of pi◦ ; BMS supermomenta are not included. Could they be included
by just taking the investigation further? As we now explain, answer seems to be in the
negative for AM space-times.

This may seem surprising at first since the notion of AM space-times was also introduced
by strengthening the AEFANSI asymptotic conditions. However, one can trace-back the
reason to the differences in the way the conditions were strengthened. Since investigations
in [12, 13] were primarily driven by conservation laws, it was natural to introduce a hierarchy
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of conditions that suffice to ensure that they hold. In particular, it was assumed that the
Weyl curvature term in the integrand of the BMS supermomentum charge admits (direction
dependent) limits both along space-like and null directions and, furthermore, as the space-like
directions are boosted to a null direction continuously, the limits along space-like directions
approach the one along the null direction continuously (eqs. (2.41) and (4.1) in [12].) In the
AM framework, on the other hand, the AEFANSI boundary conditions were strengthened by
first going back to the drawing board, so to say, whence the gluing procedure was guided
primarily by geometric structures near i◦. As mentioned above, the motivation was to better
understand the relation between radiative and Coulombic aspects that is encoded in the
space-time geometry via Einstein’s equations, rather than to arrive at S-matrix conservation
laws. As a result, it turns out that the AM boundary conditions do not imply the condition
on the Weyl curvature term assumed in [12, 13]. In fact, in generic AM space-times this
condition is violated. Therefore, in striking contrast to the Poincaré charges associated with
pi◦ , there is no assurance that supermomentum would be conserved from I + to I −.

Thanks to a recent result, one can make a more specific statement. Our results, as well as
those of other investigations of this topic [12, 13, 37, 38], do not address the issue of existence
of solutions to full non-linear Einstein’s equations satisfying the assumed boundary conditions.
Recently, this was remedied in part by using prior results of ref. [43] on solutions to the
constraint equations with prescribed asymptotics. Suppose we are given an asymptotically flat
solution with all the properties needed to examine conservation laws. Then ref. [39] provides
explicit conditions that the Cauchy data on a 3-surface Σ0 in that space-time must satisfy
for the supermomentum conservation to hold: the angular dependence of the 1/r-part of the
asymptotic 3-metric is severely restricted; it has to satisfy an infinite number of constraints!
(See Proposition 2 and Theorem 1 in [39]). As a result, in the limit to i◦ along I ±, half of
the supermomentum charges on I ± are constrained to vanish! There is no obvious reason
why this infinite set of constraints would be satisfied in all physically interesting situations,
particularly those involving scattering in full classical general relativity.4

Returning to AM space-times, let us consider a Cauchy surface Σ0 passing through i◦

where it is C>1. If one examines the initial data induced by the physical metric ĝab on Σ0 \ i◦,
the angular dependence of the 1/r-part of the 3-metric does not have to satisfy the constraints
required for the supermomentum balance laws. Thus, AM space-times appear to be general
enough to accommodate generic scattering situations. (This expectation is also supported by
the fact that in these space-times, the limit to i◦ of the Newman-Penrose curvature component
Ψ◦

1 can diverge in the asymptotic past.) This is why in generic AM space-times, although
one does have a conservation law from I − to I + for the Poincaré momenta associated with
pi◦ , one does not expect one for supermomenta.

4Thus, there appears to be a healthy tension between perturbative results involving Weinberg’s soft
theorems and the exact, non-perturbative result of [39] in the classical theory. This should be a fertile area
for further investigations given that, already in the classical theory, the situation vis a vis supermomentum
conservation is quite different in the full general relativity and its linearized approximation [44]. As a side
remark, note that the result quoted above is a non-trivial generalization of the fact that if the initial data is
asymptotically Schwarzschildean (as, e.g., in the Christodoulou-Klainnerman analysis of non-linear stability of
Minkowski space), then the supermomentum conservation law holds rather trivially because the limit to i◦

along I ± of all ‘pure’ supermomenta vanish.
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Let us conclude with a general observation. In the early days of research on gravitational
radiation, it came as a major surprise that, even though the physical metric does approach a
Minkowski metric near null infinity, the asymptotic symmetry group is not the Poincaré group
but the BMS group. Now, physically it is clear that space-times representing isolated
gravitating system should be asymptotically flat both at null and spatial infinity, not just
separately, but in a way that unifies the two regimes seamlessly. AM spacetimes provide
a concrete example. But their asymptotic symmetry group takes us back to a Poincaré
group, pi◦ ! Although steps that led us to pi◦ seems logical and compelling, in view of the
prominent role played by the BMS group in classical and quantum gravity, this reverting
to the Poincaré group is likely to cause serious discomfort. Therefore, a clarification is
warranted: our results do not imply that one can just forgo the full BMS group B and
work exclusively with pi◦ . Irrespective of the issue of conservation laws between I − and
I +, supermomenta that B provides are physically interesting observables, and so are the
associated soft charges and the gravitational memory. In the classical theory, this has been
used to calculate the memory effect for numerical simulations [45], to calculate the posterior
probability distributions for the gravitational memory in gravitational wave detections [46, 47],
and used to compare and contrast waveform models. On the quantum side, soft charges
have been successfully used to highlight infrared issues in the asymptotic, non-perturbative
quantization scheme [40], and to relate them to the soft theorems of perturbative quantum
gravity [37]. Therefore, it is clear that the BMS group B will continue to be immensely
useful. However, it is equally true that these successes of the BMS group do not imply that
pi◦ is physically unimportant or will not exist in physically interesting situations. Indeed,
it is often present also in the analyses aimed at uncovering relation between fields on I −

and I + that focus only on the role of the BMS group (see, e.g., [12, 13, 38, 48, 49]). It’s
just that the fact that a preferred Poincaré subgroup exists when one joins I + and I −

through i◦ is either not noticed or not emphasized.
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