
J
H
E
P
0
1
(
2
0
2
4
)
0
7
5

Published for SISSA by Springer

Received: September 7, 2023
Accepted: January 4, 2024

Published: January 15, 2024

Accidentally light scalars from large representations

F. Brümmer ,a G. Ferrante,a M. Frigerio b and T. Hambye c,d

aLaboratoire Univers et Particules de Montpellier (LUPM), University of Montpellier and CNRS,
Place Eugène Bataillon CC072, Montpellier 34095, France
bLaboratoire Charles Coulomb (L2C), University of Montpellier and CNRS,
Place Eugène Bataillon CC069, Montpellier 34095, France
cService de Physique Théorique, Université Libre de Bruxelles,
Boulevard du Triomphe, CP225, 1050 Brussels, Belgium
dTheoretical Physics Department, CERN,
Esplanade des Particules 1, 1211 Geneva 23, Switzerland

E-mail: felix.bruemmer@umontpellier.fr, giacomo.ferrante@umontpellier.fr,
michele.frigerio@umontpellier.fr, Thomas.Hambye@ulb.be

Abstract: In models with spontaneous symmetry breaking by scalar fields in large group
representations, we observe that some of the scalar masses can be loop-suppressed with
respect to the naive expectation from symmetry selection rules. We present minimal models

— the SU(2) five-plet and SU(3) ten-plet — with such accidentally light scalars, featuring
compact tree-level flat directions lifted by radiative corrections. We sketch some potential
applications, from stable relics and slow roll in cosmology, to hierarchy and fine-tuning
problems in particle physics.

Keywords: New Light Particles, Spontaneous Symmetry Breaking, Models for Dark Matter,
Supersymmetry

ArXiv ePrint: 2307.10092

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2024)075

https://orcid.org/0000-0003-4904-9713
https://orcid.org/0000-0002-8408-6117
https://orcid.org/0000-0003-4381-3119
mailto:felix.bruemmer@umontpellier.fr
mailto:giacomo.ferrante@umontpellier.fr
mailto:michele.frigerio@umontpellier.fr
mailto:Thomas.Hambye@ulb.be
https://arxiv.org/abs/2307.10092
https://doi.org/10.1007/JHEP01(2024)075


J
H
E
P
0
1
(
2
0
2
4
)
0
7
5

Contents

1 Introduction 1

2 The simplest model with accidents: an SU(2) five-plet 2
2.1 Potential and tree-level spectrum 2
2.2 One-loop lifting of the flat direction 5
2.3 Coupling to fermions: accident misalignment 6
2.4 A supersymmetric model with accidents 9

3 The first in a series of accidents: an SU(3) ten-plet 10

4 Possible applications 13
4.1 Accident dark matter 13
4.2 Cosmology along the accident potential 14
4.3 The Higgs as an accident 15
4.4 Accidents in supersymmetry 16

5 Conclusions 16

1 Introduction

In this work we consider perturbative, renormalisable models of scalar fields in four-dimensional
quantum field theory. When all operators allowed by Lorentz invariance and the internal
symmetries of the model are included in the Lagrangian with generic coefficients, all scalar
fields are massive, with the only exception of Nambu-Goldstone bosons (NGBs). By Gold-
stone’s theorem, in models with a continuous global symmetry group G spontaneously broken
to a subgroup H , the NGBs, forming the coset G/H , are exactly massless to all orders. As a
general rule, the mass of non-Goldstone scalar fields arises at the tree level from the scalar
potential. One well-known exception to this rule are pseudo-NGBs, which appear when the
symmetry F of the scalar potential is larger than the symmetry G which defines the model
as a whole [1]. This requires additional fields and interactions, such as gauge or Yukawa
couplings, which explicitly break F and induce pseudo-NGB masses via loops.

It is less well known that there exist models with tree-level massless scalars which are
neither NGBs nor pseudo-NGBs in the above sense. In these models, the most general
renormalisable potential compatible with the symmetry G is not invariant under an enhanced
continuous symmetry larger than G. Still, some non-NGB scalar fields remain massless
at the tree level. To distinguish these accidentally tree-level massless fields from pseudo-
NGBs as defined above, we will call them “accidents” for short. Accidents were encountered
e.g. in pre-QCD attempts to build renormalisable models of mesons [2], and their nature
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was clearly emphasised in an early precursor [3] of the little-Higgs idea (reviewed in [4]).1
Accidents also appear in O’Raifeartaigh-like models of spontaneous supersymmetry (SUSY)
breaking [5], where they have been dubbed “pseudo-moduli” and studied in greater detail
more recently [6, 7]; in this case the scalar potential is additionally constrained by SUSY.

In this paper we present some models with accidentally light scalars which are in a sense
the most minimal ones. We focus on two examples, with symmetry groups G = SU(2) × U(1)
and G = SU(3)×U(1); there are no additional discrete symmetries imposed; the field content
is a single scalar multiplet in an irreducible representation. This is to be contrasted with
the examples in the literature, which to our knowledge tend to rely on more complicated
continuous symmetries (typically multiple copies of the same group), feature additional ad-hoc
discrete symmetries, and contain several scalar fields in various representations. The price to
pay to avoid these complications is to take the single scalar field in a large representation of G.

The simplest possibilities are the five-plet in the SU(2) case, analysed in section 2, and the
ten-plet in the SU(3) case, analysed in section 3. There are few known results on spontaneous
symmetry breaking by large representations, see e.g. [8], and these do not cover our cases
of interest, which further motivates our analysis.

The geometry of field space is non-trivial in our models, due to the large field repre-
sentation involved. There is a compact manifold M ′ of degenerate tree-level vacua. The
continuous symmetry group G is completely broken at a generic point on M ′. When G

is gauged, all points on a single G-orbit are identified, but the resulting tree-level vacuum
manifold M of physically inequivalent points does not reduce to a single point. Instead, M is
parameterised by one or more non-Goldstone flat directions in field space: these correspond
to tree-level massless “accident” fields. Both the scalar and the vector mass spectrum change
when moving along M . At special points in M , the vacuum symmetry is enhanced (i.e. a
subgroup H of G is unbroken), and additional accidents appear.

In section 4 we will briefly discuss a few potential phenomenological applications of
accidents in cosmology (dark matter, slow roll) and in particle physics (Higgs, doublet-triplet
splitting). A detailed analysis of the phenomenology is left for future work.

2 The simplest model with accidents: an SU(2) five-plet

2.1 Potential and tree-level spectrum

Our first example of a model with accidentally light scalars is for G = SU(2) × U(1) with a
complex scalar in the five-dimensional representation of SU(2) and with unit U(1) charge,
ϕ ∼ 51. The most general G-invariant renormalisable potential can be written as

V = −µ2 S + 1
2
[
λS2 + κ

(
S2 − |S′|2

)
+ δ AaAa

]
. (2.1)

Here S, S′ and Aa are bilinears transforming in the singlet and adjoint representation of SU(2),

S = ϕ†ϕ , S′ = ϕTϕ , Aa = ϕ†T aϕ (a = 1, 2, 3) , (2.2)
1One may prefer to extend the definition of pseudo-NGB to any scalar which is massless at the leading

order in the loop expansion. In this case accidents can be dubbed pseudo-NGBs too, as done e.g. in ref. [3].
We retain the name “accident”, in order to distinguish this peculiar class of light particles. In most of the more
recent little-Higgs constructions [4], the little Higgs is a conventional pseudo-NGB rather than an accident.
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where T a are the SU(2) five-plet generators, which may be chosen imaginary and antisymmetric
and satisfy tr

(
T aT b

)
= 10 δab. It can be checked that the SO(10) global symmetry of the

free theory is broken explicitly by V to SU(2)×U(1): there is no larger continuous accidental
symmetry.

Since our aim is to study spontaneous symmetry breaking, we take µ2 > 0. We further
take λ, κ and δ to be positive. While λ must be positive for the potential to be bounded from
below, negative values for κ and δ are possible, but not of interest here. With our choice,
each of the three terms in the quartic potential is positive definite, and

• S is non-zero if and only if at least one vacuum expectation value (VEV) is non-vanishing,

• S2 − |S′|2 vanishes if and only if ϕ and ϕ∗ are aligned in field space, i.e. ϕ = cφ̂ for
some complex number c and real unit vector φ̂,

• if ϕ and ϕ∗ are aligned, then Aa = 0 by antisymmetry; this corresponds to the fact that
the adjoint 3 is contained in the antisymmetric part of the product 5 ⊗ 5.

A minimum is therefore found by choosing ⟨ϕ⟩ such that ϕ and ϕ∗ are aligned and ⟨S⟩ = µ2/λ:

⟨ϕj⟩ = vj√
2
eiθ (j = 1 . . . 5) , vj ∈ R , θ ∈ [0, 2π) , v2 ≡ vjvj = 2µ2

λ
. (2.3)

The remarkable feature of this potential is the existence of one flat direction which is not
associated to a NGB, corresponding to one accidentally massless field. The vacuum manifold
is indeed five-dimensional: while the overall scale v of the VEV is fixed by the minimisation
condition, one is free to rotate the five components vj , and to choose the angle θ. Changes in
θ correspond to the U(1) Goldstone direction. Of the four directions in SO(5)/SO(4) ≃ S4

corresponding to different choices for the orientation of the VEV,2 three are associated to
the SU(2) Goldstone directions, but the fourth one does not correspond to any symmetry
generator. When gauging SU(2) × U(1), all points on the Goldstone manifold are identified,
but there remains a flat direction of degenerate, physically inequivalent vacua.

Explicitly, an SU(2) ≃ SO(3) five-plet can be represented as a traceless symmetric 3 × 3
matrix, Φ ≡ ϕjλj , with a convenient basis given by the symmetric Gell-Mann matrices
λ1,3,4,6,8. The SO(3) transformation O acts as Φ → OΦOT . Using SO(3) × U(1) invariance,
the VEV can thus be chosen real and diagonal:

⟨Φ⟩ = v√
2

(λ3 sinα+ λ8 cosα) , λ3 =

 1
−1

0

 , λ8 = 1√
3

 1
1
−2

 . (2.4)

The accidentally flat direction is parameterised by the angle α. One can show that α ∼ α+π/3
as well as α ∼ −α under SU(2) × U(1), hence the fundamental domain of α can be chosen to
be α ∈ [0, π6 ]. After diagonalisation, the scalar mass matrix becomes

M2(α) = diag
[
m2
λ, m

2
κ, m

2
0(α), m2

+(α), m2
−(α), 0, 0, 0, 0, 0

]
, (2.5)

2More precisely one should divide by a Z2 since, for any v, the points (v, θ) and (−v, θ + π) are identified.
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Figure 1. Left panel: tree-level masses of the scalar fields moving along the flat direction α, for some
benchmark values of the couplings, κ = 0.3 and δ = 0.1. The mass of the radial mode m2

λ is not shown,
as it is controlled by an independent quartic coupling. Right panel: tree-level masses of the SU(2)
vector bosons in units of g2

2v
2. At α = 0 one of the gauge bosons is massless as U(1)′ is preserved:

at such point the corresponding would-be NGB becomes a second accidentally massless scalar.

where

m2
λ = λ v2, m2

κ = κ v2,

m2
0(α) =

(
κ+ 4δ sin2 α

)
v2, m2

±(α) =
[
κ+ 4δ sin2

(
α± π

3

)]
v2 . (2.6)

with mλ the mass of the radial mode. When G is gauged, the gauge boson masses are

m2
W0(α) = 4 g2

2 sin2 α v2 , m2
W±(α) = 4 g2

2 sin2
(
α± π

3

)
v2 , m2

B = g2
1 v

2 , (2.7)

where g1 and g2 are the U(1) and SU(2) gauge coupling, respectively. Figure 1 shows the
correlations among the tree-level masses of scalars and gauge bosons, as a function of α.
Note that the sum of scalar squared masses remain constant along the flat direction, and
the same holds for the sum of vector squared masses.

There exists a distinguished point on the vacuum manifold, corresponding to a null
eigenvector of one of the SU(2) generators, T 3 say, where a U(1)′ subgroup of SU(2) is
unbroken. In the above parameterisation, it is given by α = 0. At this enhanced-symmetry
point, there appears a second accidentally massless scalar, which corresponds to the U(1)′
would-be NGB. This should be contrasted with the standard picture in the absence of a
flat direction: in that case an enhanced-symmetry vacuum is an isolated minimum of the
potential, and an unbroken gauge symmetry implies a massless gauge boson, but no massless
scalar. There are degeneracies in the massive spectrum too, mκ = m0, m+ = m− and
mW+ = mW−; they are similarly associated with U(1)′-charged states. The two accidents
together form a complex scalar with U(1)′ charge 2.

A second distinguished point along the flat direction corresponds to an eigenvector of
maximal eigenvalue 2 of T 3, and coincides with the opposite endpoint of the fundamental
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domain, α = π/6. In this point G is completely broken (as in any generic point), but still
there are degeneracies in the mass spectrum, m0 = m− and mW0 = mW−.

The extraneous massless degree of freedom which is found at a generic point of the
vacuum manifold is not a pseudo-NGB in Weinberg’s strict sense [1], since the potential
admits no accidental symmetry it could correspond to. Nevertheless, in the limit where
some of the couplings vanish, the symmetry of the potential is enhanced, and some of the
scalar degrees of freedom become NGBs.3

In particular, for κ = δ = 0 and vanishing gauge couplings, the model has a global SO(10)
symmetry spontaneously broken to SO(9), and indeed there is only one massive radial mode
with non-zero mass mλ, plus nine NGBs. When κ is switched on, the global symmetry is
reduced to SO(5) × U(1), cf. eqs. (2.1)–(2.2). This symmetry is spontaneously broken by the
VEV to SO(4), giving rise to five massless NGBs, while four scalars acquire a mass mκ. When
δ is switched on, the symmetry is explicitly broken to SU(2) × U(1), but five massless modes
remain. Four of them are NGBs of the exact, spontaneously broken symmetries, while the fifth
is the accident. The characteristic feature of this model is that the explicit breaking does not
induce a tree-level mass proportional to δ for the accident, which remains light (to the extent
that the model is perturbative) even when δ is of the order of the other quartic couplings.

We conclude by discussing an interesting property of the tree-level mass matrices in
the presence of accidents. We will argue that in models with one or more accidentally-flat
directions αi, the quantities trM2 and trM4 are independent of αi at the tree level, where
M2 = M2(αi) stands either for the scalar mass matrix, or the vector boson mass matrix
M2
W , or the fermion mass matrix M2

F ≡ m†
FmF . The argument goes as follows: these traces

are quadratic or quartic polynomials in the scalar VEV components vj , with all indices
contracted in a G-invariant way. On the other hand, the scalar potential V (ϕj) contains, by
definition, all independent G-invariant polynomials in ϕj up to degree four. The minimum
value of the potential, V (vj), is constant along the accidentally flat directions αi. This
implies that the vacuum is invariant under a symmetry Gv larger than G. Let us assume
that the action of Gv lifts to a linearly realized action on the initial scalar fields (in the
above example, Gv = SO(5) × U(1)). Then, the VEVs of Gv-invariant operators in the
potential are constant as the αi vary. On the other hand, the Gv-breaking operators vanish
in the vacuum. In conclusion, there is no αi-dependent polynomial that can contribute to
the trace of M2(αi) or M4(αi). One can check that this argument holds for all the models
with accidents considered in this paper.

2.2 One-loop lifting of the flat direction

Let us focus on the special U(1)′ preserving point of the previous section, at α = 0. At
the one-loop level, the tree-level scalar potential is corrected by the Coleman-Weinberg

3In a sense, this is trivially the case for all scalar fields in any model. That is, consider a general model of
N real scalars and take the limit where all couplings tend to zero. All scalars then become massless: N − 1
of them can be regarded as the NGBs of the spontaneous breaking of SO(N) (the symmetry of the kinetic
term) to SO(N − 1) (the subgroup preserved by a generic VEV), while the radial mode associated to the VEV
direction can be regarded as the NGB of scale invariance.
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effective potential [9, 10],

∆VCW = 1
64π2 Str

(
M4 log M2

Λ2

)
, (2.8)

where Str denotes the weighted supertrace, Λ is the renormalisation scale, and M2 is the
scalar-field dependent mass-squared matrix. The one-loop effective potential gives rise to a
Λ-dependent tadpole term for the radial mode of tree-level mass mλ. We impose that this
tadpole should vanish as a renormalisation condition, i.e. we define the renormalised VEV
to be v2 = 2µ2/λ in terms of the renormalised µ and λ. One then finds that all one-loop
tadpole terms for the other scalar fields vanish as well, so that the U(1)′ preserving point
remains a critical point of the effective potential. Concerning the mass spectrum, the NGBs
remain massless as they should, while the two modes which were accidentally massless at
the tree level pick up a finite and positive one-loop mass,

m2
acc = 1

4π2

[
3 g2

2 m
2
W± + δ m2

± f

(
m2

0
m2

±

)]∣∣∣∣∣
α=0

, (2.9)

where m2
W±(0) = 3 g2

2v
2, m2

±(0) = (3δ + κ)v2, m2
0(0) = κv2, and f is a positive-definite

function,
f(x) = 1 − x+ x log x . (2.10)

We conclude that the symmetry-enhanced point becomes an isolated minimum of the potential,
after including one-loop corrections.

For the second distinguished point on the tree-level vacuum manifold, at its opposite
end α = π/6, one finds that there is similarly no tadpole term induced at one loop for the
tree-level massless mode (once the one-loop tadpole for the radial mode has been subtracted).
However, its one-loop mass is instead tachyonic, and can be written as

m̃2
acc = − 1

4π2

[
3 g2

2 m
2
W− f

(
m2
W+

m2
W−

)
+ δ m2

− f

(
m2

+
m2

−

)]∣∣∣∣∣
α= π

6

, (2.11)

with m2
W+(π6 ) = 4 g2

2v
2, m2

W−(π6 ) = g2
2v

2, m2
+(π6 ) = (κ + 4δ)v2, and m2

−(π6 ) = (κ + δ)v2.
Therefore this second point is a saddle point of the effective potential.

Note that the accident effective potential does not depend on g1 at one loop. Indeed,
gauging U(1) preserves the SO(5) symmetry which is recovered for δ → 0 and g2 → 0. In
this limit the accidents become NGBs of SO(5)/SO(4), and therefore their effective potential
must vanish.

2.3 Coupling to fermions: accident misalignment

The low-energy fluctuations around the U(1)′-preserving point at α = 0 are described by a
simple effective field theory: a U(1)′ gauge theory with one light charged scalar. The scalar
mass m2

acc is loop-suppressed with respect to the masses of the heavier states constituting
the UV completion. It is interesting to study the question whether the symmetry-enhanced
point can be destabilized by loop effects, which would spontaneously break the residual
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Figure 2. The fermion contribution to the one-loop mass-squared of the accident, at α = 0 (purple
curves) and α = π/6 (orange curves), as a function of |M |/yv, where M = |M |eiθ is the Dirac mass
and the two Yukawa couplings are assumed to be equal, yχ = yψ = y. For e.g. θ = 0 (solid curves), the
U(1)′-preserving point is destabilised for M ≃ 0.8 yv, whereupon the U(1)′-breaking point at α = π/6
becomes the minimum.

U(1)′. However, we have shown that, with a field content of only scalars and gauge bosons,
m2

acc is always positive.
We therefore add to the model a minimal anomaly-free set of fermion fields coupled to

the five-plet ϕ. We take χ and ψ to be left-handed Weyl fermions, transforming as 3±1/2
with respect to SU(2) × U(1),4 which allows for the terms

L ⊃ yψ ψ
TΦψ + yχ χ

TΦ∗χ+M ψTχ+ h.c. , (2.12)

where the matrix Φ was defined above eq. (2.4). The complex phases of the Yukawa couplings
yψ and yχ can be set to zero without loss of generality, but then the phase of the Dirac mass
M becomes physical. In figure 2 we plot the accident mass at α = 0 induced by fermion
loops, in the limit where gauge and scalar self-couplings are negligible, for the special case
yχ = yψ ≡ y. For a small |M | ≪ yv, we find m2

acc is always positive, while for sizeable |M |
with a suitable phase, there is a region where the accident becomes tachyonic, so that fermion
loops do indeed destabilize the symmetry-enhanced point. In this region, the former saddle
point α = π/6 becomes the minimum of the effective potential, and U(1)′ is spontaneously
broken at the loop level.

Note that, even though this spontaneous breaking is induced at one-loop, its scale is the
same as for the tree-level breaking of SU(2), that is to say, the gauge boson masses in the
new minimum are all of the order g2 v. In other words, the effective field theory valid close
to the symmetry-enhanced point is not suitable anymore, because the new U(1)′-breaking
minimum is at distance of the order of the cutoff v in field space. It would be more interesting
to find a configuration where the effective potential has a minimum αmin close to (but not

4Another minimal choice would be χ ∼ 50, ψ ∼ 1−1, ψ̄ ∼ 11. However in this case the Yukawa couplings
are SO(()5) symmetric, therefore they induce no potential for the accidents.
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exactly at) the U(1)′-preserving point, which would imply a breaking scale v′ ≪ v, where
we define v′/v ≡ sin(3αmin). In the effective theory well below the scale v, one could then
identify the accident field with the Higgs boson of U(1)′ breaking.

To this end, we now discuss the combined effect of scalar self-couplings, gauge couplings
and Yukawa couplings. The one-loop effective potential along the accident direction can
be evaluated explicitly as a function of α because, on the tree-level vacuum manifold, M2

is simply given by the tree-level mass matrix which is easily diagonalised. Subtracting the
radial tadpole and the vacuum energy at the renormalisation point α = 0, one obtains

∆VCW(α)
∣∣∣
tree-level vacuum

= 1
64π2

[
tr
(
M4(α) log M

2(α)
Λ2 −M4(0) log M

2(0)
Λ2

)
(2.13)

+ 3 tr
(
M4
W (α) log M

2
W (α)
Λ2 −M4

W (0) log M
2
W (0)
Λ2

)

− 2 tr
(
M4
F (α) log M

2
F (α)
Λ2 −M4

F (0) log M
2
F (0)
Λ2

)]
.

Here the scalar mass matrix is given by eq. (2.5), and the eigenvalues of the gauge bo-
son mass matrix M2

W by eq. (2.7). The 6 × 6 fermion mass matrix mF resulting from
eq. (2.12) can likewise be diagonalised analytically, and we denoted M2

F ≡ m†
FmF . Note

that the Λ-dependence in eq. (2.13) is spurious, since trM4(α), trM4
W (α) and trM4

F (α)
are α-independent (see section 2.1): the divergences have already been subtracted, and the
resulting effective potential is finite.

The couplings can now be chosen to obtain a minimum of the one-loop corrected potential
parametrically close to α = 0. The potential for an example point in parameter space is
shown in figure 3. At this point, the gauge couplings are negligible, and the loop contributions
from scalars and fermions largely balance each other, leading to a small misalignment from
the U(1)′-preserving direction, with v′/v ≃ 0.06. However, such a minimum can be obtained
only at the price of fine-tuning the parameters at the per-mille level. This in turn implies that
higher loop corrections could significantly shift the minimum of the potential. To understand
the fine-tuning, it is instructive to consider the Fourier expansion of the contributions to
the effective potential. One has

∆VCW(α)
∣∣∣
tree-level vacuum

≃ c6 cos (6α) + c12 cos (12α) , (2.14)

where c6 and c12 are functions of the couplings. Both the fermionic and bosonic contributions
to c12 turn out to be numerically suppressed with respect to the respective contributions to c6,
by at least two orders of magnitude (and higher harmonics are even more suppressed, which
is why they are neglected here).5 For generic values of the couplings, the effective potential is
therefore dominated by the lowest harmonic, ∆VCW ≃ c6 cos(6α), and the minimum is either
at α = 0 or at α = π/6 depending on the sign of c6. In order to obtain a small misalignment,
the fermionic and bosonic contributions to c6 must cancel for the most part, and moreover
c6/c12 must be accurately tuned, in order to achieve (v′/v)2 ≃ 1/2 + c6/(8c12) ≪ 1. The

5To be precise, this statement holds in the fermion sector for all values of the couplings that tend to
destabilise the α = 0 vacuum, see figure 2.
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0.005 0.010 0.020

Figure 3. Left panel: one-loop effective potential along the accident direction α, for κ = 1, δ = 0.995,
θ = 0, |M | /v = 0.8, yχ = yψ = 1 and negligible gauge couplings. Right panel: a zoom of the left-hand
panel in the region close to the origin, showing the minimum at α ≃ 0.02.

tuning in the coefficients is numerically of the order of higher-loop effects, which we neglected
in our analysis. In other words, the exact position of the minimum shown in figure 3 is
not under theoretical control.

2.4 A supersymmetric model with accidents

The insights gained from the SU(2) × U(1) model of section 2.1 can be used to build a
simple supersymmetric model of accidentally light fields. Promote ϕ to a chiral supermultiplet
Φ = φ+θψ+θ2F of N = 1 SUSY, and include a second chiral supermultiplet Φ̃ = φ̃+θψ̃+θ2F̃

with the conjugate quantum numbers 5−1. Introduce the superpotential

W = −µS + 1
2M

[
λSS + κ (SS − S′S̃′) + δAaAa

]
(2.15)

with the bilinear chiral superfields S = ΦΦ̃, S′ = ΦΦ, S̃′ = Φ̃Φ̃, and Aa = Φ̃T aΦ. This is the
most general superpotential compatible with G = SU(2) × U(1), up to mass dimension four.
If G is a global symmetry, the full scalar potential is given by the F -term potential,

VF = KIJ̄WIW
∗
J̄

∣∣∣
Φ→φ,Φ̃→ φ̃

, (2.16)

where subscripts indicate derivatives with respect to superfields, and KIJ̄ is the inverse
Kähler metric.

Any critical point with WI = 0 for all I gives a SUSY vacuum. By comparing W with
the non-supersymmetric scalar potential V of eq. (2.1), one observes that SUSY vacua are
in one-to-one correspondence with the critical points of V , and are obtained from the latter
by simply replacing µ2 → µM , ϕ → φ and ϕ∗ → φ̃. This is despite the fact that the
supersymmetric scalar potential VF is not at all similar to the non-supersymmetric V ; in
particular, it depends on twice as many scalar fields and includes operators up to dimension

– 9 –



J
H
E
P
0
1
(
2
0
2
4
)
0
7
5

6. Thus, following the analysis of section 2.1, in the region where all couplings are real and
positive there are SUSY vacua corresponding to eq. (2.3): the associated moduli space is
compact, with no runaway directions; the VEVs of φ and φ̃ are aligned; G is completely
broken at a generic point in moduli space, and broken to U(1)′ at a special point; there are
five massless superfields, four of which are Goldstones while one is an accident, associated
to the compact modulus parameterised as in eq. (2.4); at a special point in moduli space
there is one less Goldstone superfield and one more accident superfield.

When G is gauged, the D-terms,

Da = g2(φ∗
iT

a
ijφj + φ̃∗

iT
a
ijφ̃j) , D0 = g1(|φ|2 − |φ̃|2) , (2.17)

must also vanish in a SUSY vacuum. This is the case if the VEVs of the five-plets φ, φ̃,
φ∗ and φ̃∗ are all aligned in field space, and |⟨φ⟩| = |⟨φ̃⟩|. The erstwhile Goldstone chiral
superfields are absorbed by the gauge superfields. One chiral supermultiplet remains massless
on the entire moduli space, and a second one becomes massless at the special point. Thus,
the number of chiral-superfield accidents matches the number of real-scalar accidents of
the non-supersymmetric model.

The interest of this model is that a SUSY accident, i.e. a tree-level massless supermultiplet,
remains massless at all orders in perturbation theory by the non-renormalisation theorem, as
long as SUSY is exact. In section 4.4 we will sketch possible phenomenological applications
of SUSY accidents.

3 The first in a series of accidents: an SU(3) ten-plet

Accidentally massless scalars are not specific to the SU(2) × U(1) five-plet model. The same
phenomenon occurs in other models with large representations. Consider for instance the
symmetry group G = SU(N) × U(1) with a scalar field ϕijk in the three-index symmetric
representation of SU(N) and unit U(1) charge. Here i, j, k = 1, . . . , N are fundamental indices;
the ϕ multiplet contains N(N + 1)(N + 2)/6 components. For N = 2, one can check that the
most general renormalisable scalar potential compatible with G gives tree-level masses to
all scalars, while accidents start appearing for N ≥ 3. In the following we give some details
on the N = 3 model, commenting on N > 3 at the end of the section.

Let us thus consider G = SU(3) × U(1) with a scalar field ϕ ∼ 101. Its components can
be alternatively written as a vector with one index in the ten-dimensional representation, ϕI
with I = 1, . . . , 10. The scalar potential for a 10 representation of SU(3) has been partially
analysed previously, e.g. to derive discrete flavour symmetries [11] or to stabilise a scalar
dark matter candidate [12]. In the latter paper, the existence of tree-level flat directions was
pointed out. Here we investigate in more detail their nature and implications.

The most general renormalisable potential invariant under SU(3)×U(1) includes, besides
the mass term, only two algebraically independent quartic invariants,

V = −µ2 S + 1
2
(
λS2 + δ AaAa

)
, (3.1)

where the singlet and adjoint bilinears are defined by

S = ϕ†ϕ , Aa = ϕ†T aϕ (a = 1, . . . 8) . (3.2)
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Here T a are the SU(3) generators in the 10 representation, satisfying tr(T aT b) = 15/2 δab.
The SO(20) global symmetry of a free theory of 20 mass-degenerate real scalars is respected
by the λ term, however it can be checked that δ breaks it explicitly to SU(3) × U(1), with
no larger continuous symmetry surviving. We take µ2 > 0 to realise spontaneous symmetry
breaking, while boundedness from below requires λ > 0 and δ > −λ/3. It so happens that
accidentally massless scalars arise only for positive values of δ, hence we focus on δ > 0.

Since only the AaAa term is sensitive to the direction of the VEV in field space, the
potential is minimized in a direction where AaAa is minimal, i.e. where ⟨Aa⟩ = 0. The VEV
can then be rescaled to satisfy ⟨S⟩ = µ2/λ ≡ v2/2, in order to obtain a minimum of the full
potential. One such direction can readily be identified as the common null eigenvector of
the two Cartan generators of SU(3), conventionally taken to be T3 and T8, so that SU(3)
breaks to U(1)3 × U(1)8. We call the corresponding direction in field space point (I), with
⟨ϕ⟩ = v(I)/

√
2. In terms of the ϕijk components, G transformations can be used to bring it to

the form ⟨ϕ(123)⟩ = |v|/
√

2, with all other components VEVs vanishing. Here the parentheses
in ϕ(123) stand for weighted symmetrisation.

At point (I), out of the 20 real scalar fields, only seven are massive and 13 are massless at
the tree level, despite the fact that only seven generators are spontaneously broken. The re-
maining six massless scalar fields are accidents. The diagonal form of the scalar mass matrix is

M2
(I) = diag

(
m2
λ, 6 ×m2

δ , 13 × 0
)
, (3.3)

where the masses of the radial mode and the other massive modes are given by m2
λ = λ v2 and

m2
δ = δ v2, respectively. When SU(3) × U(1) is gauged with couplings g3 and g1, the gauge

boson masses are m2
V = g2

3 v
2 (× 6), m2

V3
= m2

V8
= 0 and m2

B = g2
1 v

2. It can be checked
that there are no points preserving a larger continuous symmetry than U(1)3 × U(1)8 on the
vacuum manifold, and that the symmetry-preserving point is unique up to G-transformations.

Away from the special point (I), at a generic minimum defined by ⟨Aa⟩ = 0 and ⟨S⟩ = v2/2,
we find that G is completely broken, with nine NGBs, nine massive modes, and two accidentally
massless modes. To explicitly construct the associated flat directions, consider a second point
(II) in field space, ⟨ϕ⟩ = v(II), defined by ⟨ϕ111⟩ = ⟨ϕ222⟩ = ⟨ϕ333⟩ = |v|/

√
6 and all other

VEVs vanishing. The points (I) and (II) are not equivalent under a G-transformation, as
evident from the different tree-level mass spectrum:

M2
(II) = diag

(
m2
λ, 6 × m2

δ

2 , 2 × 3m2
δ

2 , 11 × 0
)
. (3.4)

Likewise, the SU(3) gauge boson masses at point (II) are m2
V /2 (×6) and 3m2

V /2 (×2).
In fact, any superposition of the VEV directions defining points (I) and (II) gives rise to

a minimum of the potential with ⟨ϕ⟩ = v(I) cosα+ v(II) sinα, where α ∈ [0, π/2]. Moreover,
it can be checked that the vacuum energy does not depend on the complex phases of the four
VEVs of ϕ(123) and ϕiii. Three of them can be rotated away using the U(1)3 × U(1)8 × U(1)
generators. However, the fourth phase β is physical, and so one obtains a two-parameter
family of physically inequivalent vacua:

⟨ϕ111⟩= ⟨ϕ222⟩= ⟨ϕ333⟩= |v|√
6

sinα, ⟨ϕ(123)⟩= |v|√
2

cosα eiβ , all other VEVs = 0 . (3.5)
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To summarize, the manifold of tree-level degenerate vacua is eleven-dimensional. At
generic points in this manifold, G is completely broken, and nine of the flat directions are
Goldstone directions. When G is gauged, gauge-equivalent points are identified, and nine
NGBs are absorbed by the gauge bosons. There remains a two-dimensional manifold of gauge-
inequivalent vacua, corresponding to two accidentally massless scalars, parameterised by two
angles α and β. At point (I) the vacuum manifold degenerates, there is a residual symmetry
U(1)3 × U(1)8, and four additional tree-level accidents appear. Two of them correspond to
the would-be NGBs of restored symmetries, while the other two are of different nature; they
are not associated to any of the 11 flat directions, but arise only at the special point.

The non-vanishing scalar masses along the vacuum manifold can be written as the roots of
a certain cubic polynomial; their explicit expressions are not very illuminating. Nevertheless,
they obey a simple sum rule, as is easily checked directly from eq. (3.1): trM2 = (λ+ C2 δ) v2,
where C2 = 6 is the quadratic Casimir. Similarly, the sum of gauge boson masses squared
is constant and equal to (C2 g

2
3 + g2

1)v2; see section 2.1.
Let us focus on the special point (I), where α = 0 and where β becomes the Goldstone

direction of the spontaneously broken U(1). The six non-Goldstone flat directions correspond
to the real and imaginary parts of ϕ111, ϕ222 and ϕ333. The fate of these accidents beyond
the tree level can be determined by computing the one-loop effective potential. In analogy
with our computation of section 2.2, one finds that subtracting the tadpole term induced
for the radial part of ϕ(123) renders the one-loop masses finite. All six accidents receive a
positive and equal one-loop mass given by

m2
acc = 3

16π2

(
δ m2

δ + 3g2
3 m

2
V

)
. (3.6)

The flat directions are therefore lifted, and the symmetry-enhanced point (I) becomes an
isolated minimum of the effective potential, i.e. the physical vacuum of this model. Point
(II), on the other hand, is found to be destabilised by loops and becomes a saddle point
of the effective potential.

The mass degeneracy of the six accidents (as well as the other mass degeneracies in the
spectrum) are due to discrete symmetries preserved after spontaneous symmetry breaking. In
particular, G contains an S3 subgroup acting by permutation on the ϕijk indices, left unbroken
in the vacuum of eq. (3.5). Note the remnant symmetries U(1)3 × U(1)8 and S3 do not
commute. For example, the accident components ϕiii carry different charges, yet they form a
triplet under permutations. In principle, such remnant gauge symmetries could be radiatively
broken by fermion loops, which might destabilise the special point, in the spirit of section 2.3;
in this case finding the new minimum requires a multi-field effective potential computation.

Finally, let us comment on the analogous models obtained by replacing SU(3) with
SU(N). The structure of the most general renormalisable potential V is the same as in
eq. (3.1), for any N . For µ2, λ, δ > 0, the dimension of the tree-level vacuum manifold rapidly
grows, yielding N(N − 1)(N − 2)/3 non-Goldstone flat directions. As for N = 3, there
can be special points on the tree-level vacuum manifold where a subgroup of G remains
unbroken, and the number of accidents is enhanced. A systematic classification of these
models and their vacua is left for future work.
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4 Possible applications

Could accidentally light scalars play a role in real-world particle physics or cosmology? Let
us present a few possible applications of phenomenological interest.

4.1 Accident dark matter

The toy models presented above could actually describe a realistic dark sector with accidents
playing the role of dark matter (DM) candidates. Assume the new scalar field ϕ to be a
Standard Model (SM) singlet, and the SM sector to be neutral with respect to the dark-sector
symmetry G. The two sectors can communicate (and thermalise) through a Higgs portal
interaction, λHϕ(H†H)(ϕ†ϕ) with H the SM Higgs doublet. Let us consider the minimal
model, with dark gauge symmetry SU(2) × U(1) spontaneously broken to U(1)′. Indeed, we
have shown that such symmetry-enhanced vacuum is selected, once the accident flat direction
is lifted by radiative corrections (at least in the absence of dark fermions).

This remnant symmetry guarantees that the lightest charged particle is stable (without
the need to assume an ad-hoc global symmetry). This is naturally the complex scalar accident,
since it is charged under the unbroken U(1)′ and its mass is generated only at loop level.6

The unbroken gauge symmetry at the special point guarantees the presence of massless
dark photons, into which the accidents can annihilate. The DM phenomenology in the case
of annihilation into dark, massless gauge bosons is discussed e.g. in section 5.2.1 of [12]. In
our case, the observed relic density can be reproduced when these annihilations freeze out,
as long as Q4

Dα
2
D ≃ 2.2 · 10−10(mDM/GeV)2, where αD = g2

D/(4π) with gD the U(1)′ dark
gauge coupling and QD = 2 the accident charge. Alternatively, DM annihilation through the
Higgs portal can dominate. In this case direct detection constraints require mDM ≳ 2-3 TeV
or mDM within a very narrow window around the resonance mDM ≃ mh/2, see e.g. [12].
The DM direct detection, indirect detection and collider constraints all depend on the size
of the Higgs portal coupling, which can thus be tested.

A massless dark photon contributes to the extra-radiation parameter ∆Neff , which is
constrained both by BBN and CMB. Therefore, it needs to decouple from the early-universe
thermal bath sufficiently early (so that its contribution is sufficiently diluted by the SM
reheating, from the decoupling of the various SM particles). For a single dark photon, one
finds that the decoupling temperature should be above a few hundreds of MeV, which implies
a DM mass above a few GeV [12]. Future CMB observatories are expected to have the
ability to rule out or establish an extra radiation component at the level of a single dark
photon. Another relevant constraint comes from galactic-scale structure formation: the
so-called ellipticity constraint gives an upper bound on the strength of the dark-photon
long-range force, Q2

DαD ≲ 0.4
√

10−11(mDM/GeV)3 [13–15], which combined with the relic
density constraint implies a DM mass above ∼ 100 GeV in our case.

6Let us remark that, even when fermion loops select a different vacuum, with no continuous unbroken
symmetry, there are typically remnant discrete symmetries which also guarantee the accident stability. For
example, when the minimum occurs at the second special point with α = π/6, one can show that the accident
is odd under a residual Z2 symmetry, which also explains the mass degeneracies observed in figure 1. Therefore,
accidents can be good DM candidates even in the absence of U(1) factors.
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If the Higgs portal coupling is tiny, the SM and dark sectors do not thermalise with
each other in the early Universe, but still each sector can thermalise individually. Such a
scenario with two thermal baths leads to a different, but perfectly viable, DM phenomenol-
ogy [16, 17]. In particular if the dark sector has a temperature T ′ smaller than the one
of the visible sector T , the dark photon contribution to ∆Neff is suppressed by a factor
of (T ′/T )3, and becomes irrelevant.

An analogous analysis holds for the SU(3)×U(1) model: the natural DM candidate is the
multiplet formed by the six degenerate accidents, charged under the remnant gauge symmetry
U(1)3 × U(1)8, corresponding to two dark photons (see [12] for quantitative constraints).

4.2 Cosmology along the accident potential

As well known, any inflationary potential must be extremely flat along the inflaton scalar
field direction. The possibility to invoke a shift symmetry to protect the flatness of the
inflationary potential has been considered extensively since decades. This constitutes the
“natural inflation” scenario [18] (also appearing in axion setups). In these scenarios the
inflaton is the NGB of a spontaneously broken continuous symmetry. Inflation requires
that the shift symmetry is slightly broken for the potential not to be totally flat, and the
inflaton is therefore a pseudo-NGB.

It is interesting to note that the SU(2) × U(1) potential we obtain along the accident
direction is of similar form, i.e. V = Λ4[1 + a cos(φ/v)], with φ the accident field. This
potential is known to be in tension with Planck data [19]. To be in agreement with Planck
data one possibility is to let the inflaton slow roll down this potential and to end inflation
by an extra waterfall scalar field, see e.g. [20]. However, such a field does not exist in our
model, and adding it would imply to significantly change the structure of the scalar potential
and of its minima. A better option might be to invoke a modified cosmology posterior to
inflation (see e.g. [21]), or non-minimal couplings to gravity (see e.g. [22]).

In general, the potential of accidents can have a richer structure than the minimal
expression above: firstly, it may include higher harmonics of the form an cos(nφ/v); secondly,
in models with multiple tree-level flat directions as the SU(3) × U(1) model, slow roll may
occur in the corresponding multi-field space. A dedicated study would be needed to assess
the implications of these features on inflation.

Note also that, as the accident oscillates around the bottom of its potential, it triggers
a burst of (massless dark photon) particle production whenever it crosses the enhanced-
symmetry point [23, 24]. This possibility of producing dark vector bosons could have
interesting consequences for cosmology, see e.g. [25] in a somewhat different context.

We conclude by commenting on the possibility to have a first-order cosmological phase
transition along the accident direction.7 We showed in section 2.3 that the accident effective
potential can develop a minimum away from the U(1)′-preserving point at α = 0, so that
U(1)′ is spontaneously broken. At sufficiently large temperatures, thermal corrections will
dominate the effective potential, and tend to restore the symmetry with a minimum at α = 0.
As the Universe expands, the temperature T decreases, and the potential develops a second
minimum which may be separated by a barrier from the one at the origin. This is typically

7We thank an anonymous Referee for inquiring about this possibility.
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the case if the tree-level potential at zero temperature is flat, and the flat directions are lifted
radiatively by the one-loop effective potential. Then the phase transition can be of first order,
proceeding via tunneling (this ends a period of supercooling, during which the scalar field
lies in the false minimum and dominates the Universe energy density, see e.g. [26–28]). As T
further decreases, the origin becomes a local maximum and, at T = 0, we recover the potential
shown in figure 3. First-order phase transitions may be relevant for baryogenesis [29, 30],
production of primordial black holes (see [31] and references therein), and/or for a signal
of stochastic gravitational wave background (see [32] for an overview).

4.3 The Higgs as an accident

The only elementary scalar field in the SM is the Higgs boson, which at 125 GeV is much
lighter than the scale of new physics. The absence of new physics up to the (multi-)TeV scale
constitutes the “little hierarchy problem”. Ultraviolet embeddings of the SM predicting a
loop-suppressed Higgs mass are therefore appealing, and have been widely explored. The
accident mechanism may lead to an additional class of such models.

To address the little hierarchy problem with accidents, one would need to identify a
model where, at some special point in the tree-level vacuum manifold, the remnant symmetry
contains the electroweak symmetry SU(2)w × U(1)Y (or even the entire custodial symmetry
of the SM Higgs potential), and the accidentally light scalars transform as an electroweak
doublet. We have shown in section 2.3 how radiative corrections may give a VEV to the
accidents, thus breaking the remnant symmetry at a scale parametrically smaller than the
initial scale of spontaneous symmetry breaking. The accident models which we have identified
so far feature only abelian U(1)n remnant symmetries, but this is likely a consequence of the
simplest possible choices for the symmetry G and for the representation of ϕ.

The phenomenology of an accidental Higgs would resemble that of composite pseudo-NGB
Higgs models (see [33, 34] for reviews) or little-Higgs models (see [4] for a review). In the
little-Higgs scenario, the Higgs mass is loop-suppressed because it is protected by a large
global symmetry, explicitly broken only by the product of at least two independent couplings,
typically gauge or Yukawa couplings. In the accident scenario, an enlarged symmetry is
broken by a single scalar quartic coupling, nonetheless the accident mass is loop-suppressed
thanks to the restrictive structure of the scalar potential. In composite Higgs models, it is
typically assumed that the Goldstone-Higgs shift symmetry is exact within the composite
sector, and broken only by external gauge and Yukawa couplings.

In our toy models, the effective theory of accidents has a simple ultraviolet completion, in
terms of a weakly-coupled and renormalisable theory of an elementary scalar ϕ in a large repre-
sentation of G. Notice that, in contrast with models where the Higgs is a NGB, the full symme-
try G can be gauged, with no ad-hoc global symmetries assumed: the NGBs are absorbed by
the gauge bosons, while the abelian Higgs is a tree-level massless accident. On the other hand,
to address the “big hierarchy problem” associated with models of elementary scalars, it would
be interesting to realise composite accident models, where ϕ emerges as a composite multiplet.
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4.4 Accidents in supersymmetry

In supersymmetric models, the accident phenomenon can explain large mass hierarchies:
when a symmetry is spontaneously broken at the scale M by some superfield in a large
representation, its accident components will remain massless at all orders in perturbation
theory, as long as SUSY is unbroken. The super-accident mass scale, which is controlled by
SUSY breaking, can be arbitrarily small with respect to M .

One can therefore speculate that super-accidents might be used to address problems such
as doublet-triplet splitting in SUSY grand unification theories (GUTs), see e.g. [35] for a
recent discussion and earlier references. This would require a non-trivial generalisation of the
toy models above, replacing e.g. SU(2) × U(1) by some unified gauge group G, the residual
U(1)′ by the SM gauge symmetry (preserved at some special point in moduli space), and the
five-plet ϕ with a G-multiplet containing an electroweak doublet. The latter should remain
accidentally massless to play the role of the SUSY SM Higgs. The accident mechanism would
then guarantee the absence of a µ term at the GUT symmetry breaking scale M , while the
other multiplet components do acquire masses of order M , without imposing any ad-hoc
cancellations between the superpotential couplings.

Once SUSY is broken, the accident directions are expected to be lifted. Since the moduli
space in super-accident models is compact, there is no risk of runaway directions appearing,
and the vacuum will be at a stable point in field space. The resulting mass spectrum will
depend on the specific mechanism of SUSY-breaking mediation. It would be interesting to
study whether the accidental protection mechanism leaves some imprint on the final pattern
of soft SUSY-breaking masses. This requires a detailed analysis of concrete example models,
which is beyond the scope of the present work.

5 Conclusions

Given a generic renormalisable scalar potential with symmetry G spontaneously broken to
H, accidents are scalar fields which do not receive a tree-level mass, although they do not
belong to the G/H coset. There is no obvious way to infer from symmetry selection rules
that the accident masses are suppressed.

We demonstrated that accidents appear in theories with a scalar multiplet in a large
representation of G. This can be ascribed to the restrictive structure of the most general
renormalisable G-invariant potential. Already in the minimal models — the five-plet of SU(2)
and ten-plet of SU(3) — the vacuum manifold is non-trivial. It would be valuable to conduct
a systematic analysis of the possible field-space geometries leading to accidents.

Accidents possess unsuppressed, tree-level, non-derivative couplings to other scalars. As
one moves along the accidental tree-level flat directions, the tree-level mass spectrum of other
scalars (and of vectors and fermions which obtain their masses from scalar VEVs) changes,
but the sum of the masses squared remains constant.

When including loop corrections, the flatness of the potential is lifted and an isolated
minimum appears, where a non-trivial symmetry H remains unbroken and the number
of accidents is enhanced. These models exhibit a one-loop hierarchy of scales, even if all
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dimensionless couplings are of the same order. It is an open question whether less minimal
models exist where an accident mass arises only at two-loop or higher order.

An accidentally light Higgs may help to address the little hierarchy problem. We built a
toy model where an accident plays the role of abelian Higgs with a small VEV, motivating
the quest for a less minimal model which could feature a SU(2) doublet of accidents. We
showed that the accident phenomenon persists in supersymmetric theories, and may thus
explain large hierarchies among superfield masses without fine-tuning.

The rolling of accidents along their tree-level flat directions provides a playground for
natural inflation and/or resonant particle production. Accidentally flat directions lifted
by loop corrections may also lead to cosmological first-order phase transitions. Finally,
dark-sector accidents are excellent candidates for DM, as they are naturally the lightest
states charged under unbroken dark-sector symmetries.
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