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1 Introduction

Some turbulent behaviors of a single fundamental string in an asymptotically AdS spacetime
have been studied from various aspects [1–12]. In particular, the work [4] studied the classical
dynamics of an open string whose endpoints are attached to the boundary of Poincaré AdS
and revealed the weak turbulence in the string dynamics. That is, an energy cascade from
large to small scales occurs on the string worldsheet and eventually the energy spectrum obeys
the power law. (See also the weak turbulence in an Einstein-scalar system [13] and the D3/D7
system [14, 15].) The turbulence is a typical phenomenon in non-integrable systems. However,
the classical dynamics of a closed string in AdS is integrable due to the existence of an infinite
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number of conserved charges [16]. What is the origin of the turbulence of the AdS string?
Our anticipation is that this turbulence should be intrinsic to the open string case, and the
breakdown of integrability due to the choice of boundary conditions may cause turbulence.

In [4], the classical dynamics of the open string was studied for a probe string dual to
the Wilson loop giving rise to quark-antiquark potential [17, 18]. The string is hanging in
the Poincaré AdS5 from the boundary. Perturbation is induced on the string by moving the
endpoints momentarily and nonlinear time evolution was calculated numerically. For the
simplest kind of perturbation, the string dynamics is confined in the AdS3 slice of AdS5 and
so the AdS3 consideration is sufficient to find the weak turbulence. Hence, in this paper, we
will focus on the string dynamics in AdS3. In addition, we will adopt the global coordinates
to borrow techniques of integrable sigma models.

The string dynamics in AdS3 can be described by the principal chiral model (PCM)
whose target space is an SL(2, R) group manifold. (For a review, for example, see [19].) It
has been shown that the PCM without boundaries is integrable [20]. Meanwhile, an open
string has two endpoints and its dynamics is described by the PCM with boundaries. In the
presence of boundaries, the integrability may be broken depending on the choice of boundary
conditions, but under certain conditions, it is still possible to construct an infinite number of
conserved charges and maintain integrability as shown in a series of works [21–27].

In this paper, we will classify integrable boundary conditions for the open string in AdS3.
However, this story has a downside that we can give only the sufficient condition to preserve
the integrability. Hence, it is not possible to conclude non-integrability when the integrable
boundary conditions are not satisfied. To test non-integrablity depending on boundary
conditions, we will solve the dynamics of the open string numerically and show the existence
of the weak turbulence when the boundary conditions do not guarantee the integrability.

For numerical calculations, we consider an open string connecting two points on the
boundary of the global AdS3. In particular, when the string connects the antipodal points
of the boundary S1, the open string is “straight” in the AdS bulk with the AdS2 induced
metric on the string worldsheet. For the straight string, nonlinear waves can be produced [1].
For these waves, the reflection by the AdS boundary was not fully analyzed. In this paper,
we investigate nonlinear dynamics of the open string by taking account of the presence of
the boundaries on the string worldsheet.

This paper is organized as follows. Section 2 introduces the equations of motion of a
fundamental string in AdS3 with double null worldsheet coordinates. The conserved currents
associated with the isometry group of AdS3 are also obtained. Section 3 is a brief review of
the PCM with the target space SL(2, R). It is shown that an infinite number of non-local
conserved charges are generated by following the standard method. We further introduce
boundaries in the PCM and show that we can obtain an infinite number of conserved charges
depending on the choices of boundary conditions. In section 4, we identify integrable boundary
conditions for the open string in AdS3 from the integrability conditions of the PCM with
boundaries. In section 5, we introduce the formulation for the numerical calculations of the
nonlinear dynamics of classical open string in the global AdS3, where the string endpoints
are fixed on the boundary. In section 6, results of the numerical calculations are shown.
We find the weak turbulence, that gives strong evidence of the non-integrability. The last
section is devoted to conclusion and discussion. Appendix A provides detailed analysis of the
integrability condition of the open string that is omitted in the main text.
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2 Fundamental string in AdS3

In this section, we shall introduce the Nambu-Goto action describing a sting moving in AdS3.

2.1 AdS3 spacetime

The metric of the space R2,2 is written as

ds2 = ηMN dXM dXN , (2.1)

where M, N = 0, 1, 2, 3 and ηMN = diag(−1, 1, 1,−1). The metric of AdS3 is realized as the
induced metric on the equidistance surface in R2,2:

ηMN XM XN = −ℓ2
AdS = −1 , (2.2)

where ℓAdS is the AdS radius, and we set ℓAdS = 1 throughout this paper. The above
equation can be solved by

X0 + iX3 = 1 + r2

1 − r2 eit , X1 + iX2 = 2r

1 − r2 eiθ . (2.3)

The coordinates (t, r, θ) cover the global AdS3, where the metric is given by1

ds2 = −
(

1 + r2

1 − r2

)2

dt2 + 4
(1 − r2)2 (dr2 + r2dθ2) . (2.4)

Here, the surface r = 1 corresponds to the AdS boundary. The center of AdS3 (r = 0) is
the coordinate singularity in this coordinate system, which is inconvenient for numerical
calculations. To avoid this coordinate singularity, it is convenient to introduce the “Cartesian”
coordinates defined as

x ≡ r cos θ , y ≡ r sin θ . (2.5)

Then, the metric (2.4) is written as

ds2 = −
(

1 + x2 + y2

1 − x2 − y2

)2

dt2 + 4
(1 − x2 − y2)2 (dx2 + dy2) . (2.6)

The coordinates are smooth at the origin x = y = 0.
It is also convenient hereafter to take the coordinates (t̄, r̄, θ̄) defined by the following

relations:2

X0 + iX3 = 1√
2

eit̄/2
{

cosh
(

θ̄ + r̄

2

)
+ i cosh

(
θ̄ − r̄

2

)}
,

X1 + iX2 = 1√
2

eit̄/2
{

sinh
(

θ̄ + r̄

2

)
+ i sinh

(
θ̄ − r̄

2

)}
.

(2.7)

1With a new radial coordinate ρ = 2r/(1 − r2), the AdS3 metric becomes a familiar form: ds2 = −(ρ2 +
1)dt2 + dρ2/(ρ2 + 1) + ρ2dθ2.

2For example, see [28].
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It is easy to check that this parametrization also satisfies the condition (2.2). Then, the
metric of AdS3 is written as

ds2 = 1
4{− cosh2 r̄ dt̄2 + dr̄2 + (dθ̄ + sinh r̄ dt̄)2} . (2.8)

The coordinate transformation between (t, r, θ) and (t̄, r̄, θ̄) is complicated, but it can be
obtained explicitly by using eqs. (2.3) and (2.7).

2.2 Equations of motion

Let us consider the classical dynamics of a single string moving in AdS3. In the following, we
will derive the string equations of motion without specifying explicit AdS3 coordinates.

The Nambu-Goto action is given by

S = − 1
2πα′

∫
d2σ

√
−h , (2.9)

where hab is the induced metric on the string worldsheet. The string coordinates in R2,2 are
written as functions of the worldsheet coordinates (σ+, σ−),

XM = XM (σ+, σ−) . (2.10)

The components of the induced metric are

h±± = ηMN ∂±XM ∂±XN , h+− = ηMN ∂+XM ∂−XN , (2.11)

where ∂± ≡ ∂/∂σ±.
The diffeomorphism invariance enables us to impose the double null condition:

h±± = 0 . (2.12)

Then, we find
√
−h =

√
h2

+− − h++h−− = −h+−. Note that h+− is negative when ∂+ and
∂− are future directed. Thus, the Nambu-Goto action can be simply written as

S = 1
2πα′

∫
dσ+dσ− ∂+XM ∂−XN ηMN , (2.13)

where the equidistance condition (2.2) is implicitly imposed. This theory is known as the
nonlinear sigma model of SO(2, 2). We still have residual degrees of freedom of the conformal
transformation,

σ± = σ±(σ′±) . (2.14)

Using the worldsheet metric γab (a, b = +,−), (2.13) can be written as

S = 1
4πα′

∫
dσ+dσ− γab∂aXM ∂bX

N ηMN , γab =
(

0 1
1 0

)
. (2.15)

Then, the worldsheet energy momentum tensor is given by

Tab = ∂aXM ∂bX
N ηMN − 1

2γab∂cX
M ∂cXN ηMN . (2.16)
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This satisfies

T++ = h++ = 0 , T−− = h−− = 0 , T+− = 0 , (2.17)

where the first two relations follow from the double null condition (2.12), and the last
equation holds identically.

As in eqs. (2.3) and (2.7), we can express XM by unconstrained coordinates xµ (µ = 0, 1, 2)
as XM = XM (xµ). Then, the above action can be expressed as

S = 1
2πα′

∫
dσ+dσ− gµν(xµ(σ+, σ−))∂+xµ∂−xν , (2.18)

where gµν = ηMN ∂µXM ∂νXN is the metric of AdS3.
In the action (2.13), we can explicitly realize the equidistance condition (2.2) by using

the Lagrange multiplier λ as follows:

S = 1
2πα′

∫
dσ+dσ−

[
ηMN ∂+XM ∂−XN + λ(ηMN XM XN + 1)

]
. (2.19)

Then the equations of motion are given by

∂+∂−XM = λ XM with ηMN XM XN = −1 . (2.20)

By multiplying XM to the first equation and summing over M , we obtain λ = −XM ∂+∂−XM .
Then, eliminating λ leads to

∂+∂−XM = −XM XN ∂+∂−XN with ηMN XM XN = −1 . (2.21)

In the following analysis, it is convenient to introduce new coordinates (τ, σ) by

τ = σ+ + σ− , σ = σ+ − σ− . (2.22)

Then, eq. (2.21) is written as

∂2XM = −XM XN ∂2XN with ηMN XM XN = −1 , (2.23)

where ∂2 = −∂2
τ + ∂2

σ.

2.3 Isometry group of AdS3 and conserved currents

The AdS3 spacetime has the SO(2, 2)-isometry. The Killing vectors are given by

ξMN = XM
∂

∂XN
− XN

∂

∂XM
, (2.24)

where XM = ηMN XN , and each of the ξMN generates a “rotation” in the (XM , XN )-
plane. The conserved currents on the worldsheet, which are associated with the Killing
vectors (2.24), are given by

(AMN )a = 2(XM ∂aXN − XM ∂aXN ) , (2.25)
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where a, b = τ, σ. Using the equations of motion (2.23), one can directly check that the
above quantity is conserved,

∂a(AMN )a = 0 . (2.26)

We will use the 1-form AMN = (AMN )a dσa in the following analysis.
Because SO(2, 2) ≃ SL(2)L ×SL(2)R, we can obtain the generators of SL(2)L,R by taking

appropriate linear combinations of the Killing vectors (2.24). The generators of SL(2)L and
SL(2)R are denoted by Li and L̄i (i = 0, 1, 2, 3), respectively. They are explicitly written as

L0 = (ξ03 − ξ12)/2 , L1 = (−ξ13 + ξ02)/2 , L2 = (ξ01 + ξ23)/2 ,

L̄0 = (−ξ03 − ξ12)/2 , L̄1 = (−ξ01 + ξ23)/2 , L̄2 = (ξ13 + ξ02)/2 .
(2.27)

The commutation relations are given by

[L0, L1] = −L2 , [L0, L2] = L1 , [L1, L2] = L0 ,

[L̄0, L̄1] = −L̄2 , [L̄0, L̄2] = L̄1 , [L̄1, L̄2] = L̄0 .
(2.28)

The conserved currents associated with Li and L̄i are

I0 = (A03 − A12)/2 , I1 = (−A13 + A02)/2 , I2 = (A01 + A23)/2 ,

J0 = (−A03 − A12)/2 , J1 = (−A01 + A23)/2 , J2 = (A13 + A02)/2 .
(2.29)

We will see that, for closed strings or open strings under certain boundary conditions, an
infinite number of conserved charges can be generated from JA and IA (A = 0, 1, 2).

3 Principal chiral model

In this section, we use the PCM with SL(2, R) target space and discuss the conditions of
integrability in the presence of boundaries on the worldsheet.

3.1 Symmetry and conserved currents

It is known that the dynamics of the string in AdS3 is described by the PCM whose target
space is given by SL(2, R). Let us here provide a short review of the PCM. The action
of the PCM is given by

S = −1
2

∫
d2σ ηabTr(JaJb) = −1

2

∫
d2σ ηabTr(IaIb) , (3.1)

where σ = (τ, σ) and

Ja ≡ g−1(σ)∂ag(σ) , Ia ≡ −∂ag(σ)g−1(σ), g(σ) ∈ SL(2, R) . (3.2)

In the PCM, the dynamical variable is a group element g(σ) ∈ SL(2, R). The equation of
motion of the PCM is simply given by

∂aJa = ∂aIa = 0 . (3.3)
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This shows that Ja and Ia are conserved currents. We also write these currents by 1-forms as

J = Ja dσa = g−1dg , (3.4)
I = Ia dσa = −dg · g−1 , (3.5)

which are referred to as the left and right invariant 1-forms, respectively.
Note that J and I take values into the associated Lie algebra sl(2, R) by definition

and can be expanded as

J = JAT A = JaAT Adσa , I = IAT A = IaAT Adσa , (3.6)

where T A (A = 0, 1, 2) are the generators of SL(2) satisfying

[T 0, T 1] = −T 2 , [T 1, T 2] = T 0 , [T 2, T 0] = −T 1 . (3.7)

The fundamental representation of T A’s is given by

T 0 = i

2σ1 , T 1 = 1
2σ2 , T 2 = 1

2σ3 , (3.8)

by using the Pauli matrices σ1,2,3. Then the orthogonality condition is given by

Tr(T AT B) = 1
2diag(−1, 1, 1) ≡ γAB . (3.9)

The indices A, B, · · · are raised and lowered by using γAB and γAB = 2 diag(−1, 1, 1). For
example, JA ≡ γABJB and IA ≡ γABIB.

The structure constants are defined by [T A, T B ] = fAB
CT C . For SL(2), nonzero compo-

nents contain f01
2 = −1, f12

0 = 1 and f20
1 = −1. These are simply expressed as

fABC ≡ γADγBEfDE
C = 4ϵABC , (3.10)

where ϵABC is the totally antisymmetric tensor with ϵ012 = 1.
One can check that J and I are invariant under global transformations g → gLg and

g → ggR, respectively (gL, gR ∈ SL(2)). This is the origin of the names the left and right
invariant 1-forms. It follows that the action (3.1) is invariant under

g(σ) → gL g(σ) gR . (3.11)

Namely, the PCM (3.1) has the global symmetry SL(2)L × SL(2)R ≃ SO(2, 2), that is the
same as the isometry group of AdS3. Then J and I are conserved current with respect to
SL(2, R)R and SL(2, R)L, respectively.

We can also prove that the “field strength” with respect to J and I is zero:

∂aJb − ∂bJa + [Ja, Jb] = 0 , ∂aIb − ∂bIa + [Ia, Ib] = 0 . (3.12)

The above equations are called the flatness conditions and are essential to generate an
infinite number of conserved charges. Using the conservation equations of J and I (3.3),
the flatness conditions are written as

∂±J∓ = −1
2[J±, J∓], ∂±I∓ = −1

2[I±, I∓] , (3.13)

where σ± are the double null coordinates defined in eq. (2.22).
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3.2 AdS3 metric from principal chiral model

We can derive the classical string action (2.18) from the PCM (3.1). Let us parameterize
g(σ) ∈ SL(2, R) as

g(σ) = exp[t̄(σ)T 0] exp[r̄(σ)T 2] exp[θ̄(σ)T 1] . (3.14)

Then, by direct calculations, the invariant 1-forms are given by

J =
[1

2
{

cosh(θ̄ + r̄) + cosh(θ̄ − r̄)
}

dt̄ − sinh θ̄ dr̄

]
T 0 + (sinh r̄ dt̄ + dθ̄)T 1

+
[
−1

2
{

sinh(θ̄ + r̄) + sinh(θ̄ − r̄)
}

dt̄ + cosh θ̄ dr̄

]
T 2 ,

I = (−dt̄ + sinh r̄ dθ̄)T 0 − (sin t̄ dr̄ + cosh r̄ cos t̄ dθ̄)T 1

+ (− cos t̄ dr̄ + cosh r̄ sin t̄ dθ̄)T 2 .

(3.15)

From the above expressions, we obtain

1
2Tr(JJ) = 1

2Tr(II) = 1
4
{
− cosh2 r̄ dt̄2 + dr̄2 + (dθ̄ + sinh r̄ dt̄)2

}
. (3.16)

This is the metric of AdS3 as given in eq. (2.8). From eq. (3.16), the PCM action (3.1)
is written as

S = −
∫

d2σ ηabgµν(x(σ))∂xµ

∂σa

∂xν

∂σb
. (3.17)

This is nothing but the string action (2.18) written in the (τ, σ) coordinates.
Note that in the string case, the constraints (2.12) must be satisfied as additional

conditions at the initial surface and boundaries of the worldsheet. These are not discussed in
the usual context of the PCM because two-dimensional gravity is not coupled in the usual
PCM setup where two-dimensional flat space is prepared from the beginning.

3.3 Integrability for closed strings

We show the classical integrability of a single closed string propagating in AdS3 [16]. (The
arguments in this subsection are based on ref. [23]. See also ref. [19] for the review of the
construction of the Lax pair and monodromy matrix of the PCM.)

Let us introduce Lax pairs L± and L̄± as

L±(σ; λ) = J±(σ)
1 ± λ

, L̄±(σ; λ) = I±(σ)
1 ± λ

, (3.18)

where λ is a constant called the spectral parameter. The above equations are also written as

Lτ = Jτ − λJσ

1 − λ2 , Lσ = Jσ − λJτ

1 − λ2 , L̄τ = Iτ − λIσ

1 − λ2 , L̄σ = Iσ − λIτ

1 − λ2 , (3.19)

where L± = Lτ ± Lσ and L̄± = L̄τ ± L̄σ. Under eq. (3.13), the flatness conditions for
La and L̄a are satisfied as

∂aLb − ∂bLa + [La,Lb] = 0 , ∂aL̄b − ∂bL̄a + [L̄a, L̄b] = 0 . (3.20)
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The associated monodromy matrices are given by

M(τ, σ2, σ1; λ) = P exp
[
−
∫ σ2

σ1
dσ Lσ(σ; λ)

]
, (3.21)

M̄(τ, σ2, σ1; λ) = P exp
[
−
∫ σ2

σ1
dσ L̄σ(σ; λ)

]
, (3.22)

where P is the path ordering. Here, we will only focus on M(τ, σ2, σ1; λ) and construct
an infinite number of conserved charges. The same argument holds for M̄(τ, σ2, σ1; λ) as
well. In the following, we will omit the arguments τ and λ as M(τ, σ2, σ1; λ) = M(σ2, σ1)
and La(σ; λ) = La(σ) if there is no confusion. Some basic properties of the monodromy
matrix are summarized as below

M(σ, σ) = 1 , (3.23)

M(σ3, σ2)M(σ2, σ1) = M(σ3, σ1) , (3.24)

M(σ2, σ1)−1 = M(σ1, σ2) (3.25)

∂σ2M(σ2, σ1) = −Lσ(σ2)M(σ2, σ1) , (3.26)

∂σ1M(σ2, σ1) = M(σ2, σ1)Lσ(σ1) , (3.27)

δM(σ2, σ1) = −
∫ σ2

σ1
dσ M(σ2, σ)δLσ(σ)M(σ, σ1) , (3.28)

where δ denotes the variation with respect to Lσ(σ).
By using eq. (3.28), the time derivative of the monodromy matrix is evaluated as follows:

∂τ M(σ2, σ1) = −
∫ σ2

σ1
dσM(σ2, σ)∂τLσ(σ)M(σ, σ1) . (3.29)

Also, the flatness condition (3.20) leads to ∂τLσ = ∂σLτ − [Lτ ,Lσ]. Then, from eqs. (3.26)
and (3.27), we obtain

Lσ(σ)M(σ, σ1) = −∂σM(σ, σ1) ,

M(σ2, σ)Lσ(σ) = ∂σM(σ2, σ) .

As a result, the integrand of eq. (3.29) becomes the total derivative with respect to σ.
Thus, we obtain

∂τ M(σ2, σ1) = M(σ2, σ1)Lτ (σ1) − Lτ (σ2)M(σ2, σ1) . (3.30)

Let us suppose here a closed string with 0 ≤ σ ≤ 2π and periodic boundary condition.
From the above equation and the periodicity La(2π) = La(0), we find

∂τ TrMc(τ, λ) = 0 , (3.31)

where Mc(τ, λ) ≡ M(τ, 2π, 0; λ). We now have the conserved quantity as the one-parameter
family of λ. The coefficients in the Taylor expansion of TrMc give rise to an infinite number
of conserved charges.
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3.4 Sufficient conditions for integrability of the open string

In the above argument for the closed string, the periodicity σ ∼ σ + 2π is essential. To
apply this construction of an infinite number of conserved charges to the open string case,
we need to take account of boundaries on the string worldsheet. In fact, under some special
boundary conditions, an infinite number of conserved charges can be constructed even for
open strings as well [21–25]. For an open string, we will take the domain of the coordinate
as 0 ≤ σ ≤ π hereafter.

Sufficient conditions for the integrability of the open string are given by the conditions
for the boundary values of J± and I±. The open string in AdS3 is integrable if either (a),
(b) or (c) is satisfied:

(a) JA
+ = RA

BJB
− ,

(b) IA
+ = RA

BIB
− ,

(c) JA
+ = RA

BIB
− and JA

− = RA
BIB

+ ,

(3.32)

where J± and I± are evaluated at the boundaries. Here, RA
B is a constant matrix satisfying

the following conditions:

• R is symmetric: RA
B = RB

A.

• R is orthogonal: RA
CRB

C = δA
B.

• R gives a group automorphism by T ′A = RA
BT B: [T ′A, T ′B] = fAB

CT ′C .

The conditions (a) and (b) are called chiral boundary conditions. The condition (c) is called
the achiral boundary condition.

For the following arguments, it is convenient to introduce a linear map α defined as

α(T A) ≡ RA
BT B . (3.33)

For example, α acts on the current Ja as

α(Ja) = α(JaAT A) = JaARA
BT B . (3.34)

One can see that the linear map α is an involution (α2 = 1) and automorphism from the
definitions of R. Then, the boundary conditions in (3.32) are rewritten as

(a) J+ = α(J−) ,

(b) I+ = α(I−) ,

(c) J± = α(I∓) .

(3.35)

Using the Lax pair (3.18), these conditions are also written as

(a) L+(σ; λ) = α(L−(σ;−λ)) ,

(b) L̄+(σ; λ) = α(L̄−(σ;−λ)) ,

(c) L±(σ; λ) = α(L̄∓(σ;−λ))
(3.36)
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for any values of λ. In terms of (τ, σ)-coordinates, they are written as

(a) Lτ (σ; λ) = α(Lτ (σ;−λ)), Lσ(σ; λ) = −α(Lσ(σ;−λ)),
(b) L̄τ (σ; λ) = α(L̄τ (σ;−λ)), L̄σ(σ; λ) = −α(L̄σ(σ;−λ)),
(c) Lτ (σ; λ) = α(L̄τ (σ;−λ)), Lσ(σ; λ) = −α(L̄σ(σ;−λ)).

(3.37)

Again, the quantities in the above conditions are evaluated at the boundaries.
Note that α(La) and α(L̄a) also satisfy the flatness conditions since α is an automorphism.

This enables us to define monodromy matrices as

M ′(τ, σ2, σ1; λ) = P exp
[
−
∫ σ2

σ1
dσ α(Lσ(σ; λ))

]
,

M̄ ′(τ, σ2, σ1; λ) = P exp
[
−
∫ σ2

σ1
dσ α(L̄σ(σ; λ))

]
.

(3.38)

For the conditions (a), (b) and (c), we define Mc(τ, λ) as

(a) Mc(τ, λ) = M ′(τ, 0, π;−λ)M(τ, π, 0; λ) ,

(b) Mc(τ, λ) = M̄ ′(τ, 0, π;−λ)M̄(τ, π, 0; λ) ,

(c) Mc(τ, λ) = M̄ ′(τ, 0, π;−λ)M(τ, π, 0; λ) ,

(3.39)

Let us consider the time derivative of Mc under the condition (a). From eq. (3.30), it can
be evaluated as

∂τ Mc(τ, λ) =
{
M ′(τ, 0, π;−λ) α

(
Lτ (τ, σ = π;−λ)

)
− α

(
Lτ (τ, σ = 0;−λ)

)
M ′(τ, 0, π;−λ)

}
M(τ, π, 0; λ)

+ M ′(τ, 0, π;−λ)
{
M(τ, π, 0; λ)Lτ (τ, σ = 0; λ)

− Lτ (τ, σ = π; λ) M(τ, π, 0; λ)
}

.

(3.40)

Then the condition (a) in eq. (3.37) leads to ∂τ TrMc = 0. Similarly, one can prove the
conservation of TrMc for conditions (b) and (c) as well. The coefficients in the Taylor
expansion of TrMc give rise to an infinite number of conserved charges.

4 Integrable boundary conditions for open strings in AdS3

In this section, we shall classify possible boundary conditions preserving the integrability
of an open string in AdS3.

Let us consider a string near the σ = 0 endpoint located in the AdS bulk (r < 1). The
target space coordinates in the global AdS3 (2.4) are expanded as

t(τ, σ) = t0(τ) + t1(τ)σ + · · · ,

r(τ, σ) = r0(τ) + r1(τ)σ + · · · ,

θ(τ, σ) = θ0(τ) + θ1(τ)σ + · · · .

(4.1)

We will impose Neumann or Dirichlet boundary conditions on t(τ, σ), r(τ, σ), θ(τ, σ). For
example, for t(τ, σ), the Neumann and Dirichlet boundary conditions are described as
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NNN NND Dirichlet at center

NDD NDN

Integrable

Integrability
is not obvious.

Figure 1. Schematic profiles of an open string for NND, NND, NDD and NDN. The upper right is a
special case of NDD, where both endpoints of the open string is fixed at the center of AdS3.

t1(τ) = 0 and ṫ0(τ) = 0, respectively. Either Neumann or Dirichlet boundary condition
is imposed on each of the three variables. Therefore, there are 23 = 8 choices. We shall
denote them as NNN, NND, NDN and so on. This notation indicates the Neumann (N) or
Dirichlet (D) boundary condition for {t, r, θ} in this order. For example, NDD corresponds
to t1 = ṙ0 = θ̇0 = 0. In figure 1, schematic profiles of an open string are shown for several
boundary conditions. Note that the case of Dirichlet boundary conditions for r = 0 (see the
upper-right figure in figure 1) has to be considered separately in the polar coordinates (r, θ).

By using (4.1) with (2.3), (2.25) and (2.29), we find the boundary values of the invariant
1-forms at σ = 0 as

J0
+ = α(ṫ0 + t1) − β(θ̇0 + θ1) ,

J1
+ + iJ2

+ = e−i(t0+θ0){−γ(ṫ0 + t1 − θ̇0 − θ1) + iδ(ṙ0 + r1)} ,

I0
+ = −α(ṫ0 + t1) − β(θ̇0 + θ1) ,

I1
+ + iI2

+ = iei(t0−θ0){γ(ṫ0 + t1 + θ̇0 + θ1) + iδ(ṙ0 + r1)} ,

(4.2)

and

J0
− = α(ṫ0 − t1) − β(θ̇0 − θ1) ,

J1
− + iJ2

− = e−i(t0+θ0){−γ(ṫ0 − t1 − θ̇0 + θ1) + iδ(ṙ0 − r1)} ,

I0
− = −α(ṫ0 − t1) − β(θ̇0 − θ1) ,

I1
− + iI2

− = iei(t0−θ0){γ(ṫ0 − t1 + θ̇0 − θ1) + iδ(ṙ0 − r1)} ,

(4.3)

where
α = (1 + r2

0)2

(1 − r2
0)2 , β = 4r2

0
(1 − r2

0)2 , γ = 2r0(1 + r2
0)

(1 − r2
0)2 , δ = 2

1 − r2
0

. (4.4)
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From the double null constraints (2.12) at σ = 0 in the (τ, σ) coordinates (2.22), we obtain

−(1 + r2
0)2

4 ṫ0t1 + ṙ0r1 + r2
0 θ̇0θ1 = 0 , (4.5)

−(1 + r2
0)2

4 (ṫ2
0 + t2

1) + ṙ2
0 + r2

1 + r2
0(θ̇2

0 + θ2
1) = 0 . (4.6)

The first equation is automatically satisfied for the Neumann or Dirichlet boundary conditions
on the (t, r, θ) coordinates. The second one introduces a relation among the three nonzero
coefficients under the Neumann or Dirichlet boundary conditions.

As an example, let us examine the integrability of NNN. Substituting t1 = r1 = θ1 = 0
into eqs. (4.2) and (4.3), we obtain the boundary values of the invariant 1-forms as

J0
+ = αṫ0 − βθ̇0 , J1

+ + iJ2
+ = e−i(t0+θ0){−γ(ṫ0 − θ̇0) + iδṙ0} ,

I0
+ = −αṫ0 − βθ̇0 , I1

+ + iI2
+ = iei(t0−θ0){γ(ṫ0 + θ̇0) + iδṙ0} ,

(4.7)

and
J0
− = αṫ0 − βθ̇0 , J1

− + iJ2
− = e−i(t0+θ0){−γ(ṫ0 − θ̇0) + iδṙ0} ,

I0
− = −αṫ0 − βθ̇0 , I1

− + iI2
− = iei(t0−θ0){γ(ṫ0 + θ̇0) + iδṙ0} .

(4.8)

From these expressions, we find linear relations between the + and − sectors as

JA
+ = JA

− , IA
+ = IA

− (A = 0, 1, 2) . (4.9)

The constant matrix R defined in eq. (3.32) is RA
B = δA

B. This is manifestly symmetric and
orthogonal. Also T ′A = RA

BT B gives an automorphism. Therefore, NNN is integrable.
As another example, let us consider the NDD case. Substituting t1 = ṙ0 = θ̇0 = 0

into eqs. (4.2) and (4.3), we have

J0
+ = αṫ0 − βθ1 , J1

+ + iJ2
+ = e−it0{−γ(ṫ0 − θ1) + iδr1} ,

I0
+ = −αṫ0 − βθ1 , I1

+ + iI2
+ = ieit0{γ(ṫ0 + θ1) + iδr1} ,

(4.10)

and
J0
− = αṫ0 + βθ1 , J1

− + iJ2
− = e−it0{−γ(ṫ0 + θ1) − iδr1} ,

I0
− = −αṫ0 + βθ1 , I1

− + iI2
− = ieit0{γ(ṫ0 − θ1) − iδr1} ,

(4.11)

where we set θ0 = 0 without loss of generality. We cannot find any linear relations between
the + and − sectors for r0 ̸= 0. Hence, there is no indication of integrability. (The case
of r0 = 0 will be treated later.)

Similar analysis is possible for each boundary condition. The results are summarized in
table 1. (See appendix A for detailed analysis.) Under the boundary conditions marked “True”,
the open string in AdS3 is integrable. For the boundary conditions with “?”, integrability is
not guaranteed by this analysis (the conditions in section 3.4). In the following sections, we
will study the dynamics of the string under NDD and show that it exhibits weak turbulence.
This gives evidence that the string under NDD boundary conditions is non-integrable.

Note that the case of r|σ=0 = r0 = 0 needs to be treated separately. This corresponds to
the situation that the string endpoint is located at the center of AdS3. (See the upper-right
figure in figure 1.) Since the center of AdS3 is the coordinate singularity in the polar coordinates
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Boundary conditions for (t, r, θ) Integrability
NNN True
NND True
NDN ?
NDD ?
DNN ?
DND True
DDN ?
DDD ?

Table 1. Integrability for open strings with Neumann and Dirichlet boundary conditions.

Boundary conditions for t Integrability
N True
D ?

Table 2. Integrability in the case that the string endpoint is located at the center of AdS3.

(t, r, θ), we have to use the Cartesian coordinates (2.6). In the Cartesian coordinates, r|σ=0 = 0
corresponds to x|σ=0 = y|σ=0 = 0. Expanding the target space coordinates near the string
endpoint as x(t, σ) = x1(τ)σ + x2(τ)σ2 + · · · and y(t, σ) = y1(τ)σ + y2(τ)σ2 + · · · , we have

J0
+ = t1 + ṫ0 , J1

+ + iJ2
+ = 2ie−it0(x1 − iy1) ,

I0
+ = −t1 − ṫ0 , I1

+ + iI2
+ = −2eit0(x1 − iy1) ,

J0
− = −t1 + ṫ0 , J1

− + iJ2
− = −2ie−it0(x1 − iy1) ,

I0
− = t1 − ṫ0 , I1

− + iI2
− = 2eit0(x1 − iy1) .

(4.12)

Imposing the Neumann boundary condition on t(τ, σ), i.e. t1 = 0, we find linear relations

JA
+ = RA

BJB
− , IA

+ = RA
BIB

− , R = diag(1,−1,−1) . (4.13)

Both satisfy the integrability condition in section 3.4. Imposing the Dirichlet condition to
t(τ, σ) instead, i.e. ṫ0 = 0, we find

JA
+ = RA

BJB
− , IA

+ = RA
BIB

− , RA
B = −δA

B . (4.14)

One can check that T ′A = RA
BT B is not an automorphism. Therefore, the integrability

condition is not satisfied in this case. The result is summarized in table 2.
Finally, it is worth to make a comment on the D-brane interpretation. In the preceding

works [29–31], possible supersymmetric AdS-branes are classified. In particular, 1/2 BPS
AdS-branes are anticipated to provide integrable open strings. It may be rather natural
because the 1/2 BPS AdS D-branes are static and so the associated integrability may be
preserved as well. For example, the (2,0)-brane sitting at the origin of AdS in the work [30]
corresponds to the NND case. The NNN case may be seen as an AdS3 subspace of the
(3,1)-brane, (4,2)-brane or (5,3)-brane in [30]. The result in table 2 (the upper-right figure
in figure 1) may be seen as a part of the (1,3)-brane case.
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5 Nonlinear perturbation of an open string attached to the
AdS boundary

In the rest of this paper, we study numerically time evolution of the nonlinear oscillation
of a classical Nambu-Goto open string hanging from the AdS boundary in the global AdS.
In a limit, this setup contains the nonlinear waves on a straight string in AdS [1]. In the
literature, however, the effect of wave reflection at the string endpoints (i.e. worldsheet
boundaries) was not fully incorporated. Here, we consider full nonlinear time evolution of
the string including the boundaries.

The boundary conditions for the string studied in this and next sections would naturally
correspond to NDD in the classification given in the previous section. This is because
the spatial location of the string endpoints (r, θ) are fixed in late time in time evolution.
Therefore, we expect that integrability is not guaranteed. However, when the endpoints
are located on the AdS boundary, the asymptotic series expansion is different from (4.1),
and the notion of N and D boundary conditions needs to be adjusted accordingly. We will
comment on this later in this section.

5.1 Static string

For initial configurations, we consider a static open string attached to the AdS boundary
in global AdS3. This corresponds to the holographic dual description of the static quark-
antiquark potential in N = 4 super Yang-Mills theory on R × S3. By symmetry, the open
string is embedded in AdS3 ⊂ AdS5. The same setup has been studied in [32]. Here, in
addition, we give the embedding function of the string explicitly.

To write the static string solution, we introduce the z coordinate (0 < z ≤ 1) as

z = 1 − r2

1 + r2 . (5.1)

The metric (2.4) is rewritten as

ds2 = 1
z2

(
−dt2 + dz2

1 − z2 + (1 − z2)dθ2
)

. (5.2)

The AdS boundary and the center of the AdS are located at z = 0 and z = 1, respectively.
In a static gauge (τ, σ) = (t, z), the embedding of the string can be specified by a function
θ(z). With this ansatz, the Nambu-Goto action (2.9) becomes

S = − 1
2πα′

∫
dtdz

1
z2

√
1 + (1 − z2)2θ′(z)2

1 − z2 . (5.3)

The embedding of the open string can be given by elliptic integrals. Without loss of
generality, we can assume that the string is line symmetric in θ → −θ and smooth at θ = 0.
Let z = z0 (≤ 1) denote the coordinate where θ(z0) = 0 on the string. The string then
extends in 0 < z ≤ z0. The string embedding equation is obtained from (5.3) as

θ′(z) = ∓ z2

(1 − z2)
√

z4
0(1 − z2)/(1 − z2

0) − z4
, (5.4)
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(a) Static strings. (b) φ coordinate.

Figure 2. Left: the static strings for θb/(π/2) = 0.25, 0.5, 0.75, 1. Right: φ coordinate and static
strings. Dotted lines denote constant φ (for φ = 0.1, 0.2, . . . , 0.9 from top to bottom, with φ = 0 and
1 on the AdS boundary), and the real lines are the static strings (for θb/(π/2) = 0.2, 0.4, 0.6, 0.8, 1).

where the upper and lower signs are chosen for θ > 0 and θ < 0, respectively. Under the
boundary condition θ(z0) = 0, (5.4) can be solved by

θ(z) = ±

√
1 − z2

0

z0

[
F

(
z

z0
; i
√

1 − z2
0

)
− Π

(
z2

0 ; z

z0
; i
√

1 − z2
0

)
− F0 + Π0

]
, (5.5)

where F (x; k) and Π(n; x; k) are incomplete elliptic integrals defined as

F (x; k) =
∫ x

0

dt√
(1 − t2)(1 − k2t2)

, (5.6)

Π(n; x; k) =
∫ x

0

dt

(1 − nt2)
√

(1 − t2)(1 − k2t2)
, (5.7)

and F0 and Π0 are their complete elliptic integrals,

F0 ≡ F

(
1; i
√

1 − z2
0

)
, Π0 ≡ Π

(
z2

0 ; 1; i
√

1 − z2
0

)
. (5.8)

The embedding can be specified by the location of the string endpoints on the boundary,
denoted by θ = ±θb (0 ≤ θb ≤ π/2). It is related to z0 as

θb = lim
z→0

|θ(z)| =

√
1 − z2

0

z0
(−F0 + Π0) . (5.9)

In figure 2(a), the static strings are shown for θb/(π/2) = 0.25, 0.5, 0.75, 1. The endpoint
coordinate approaches θb → 0 and θb → π/2 in the limits z0 → 0 and z0 → 1, respectively.
In θb → 0, the string shrinks to a point, where with an appropriate zooming in, the quark-
antiquark open string in Poincaré AdS [17, 18] can be obtained. When θb = π/2, the string
embedding is straight at θ(z) = π/2, where the worldsheet is AdS2 ⊂ AdS3. We call this
case as the antipodal string, connecting θ = ±π/2 of the boundary S1.

To parametrize the static string, we find it convenient to use another coordinate. In θ > 0,
we introduce a new coordinate ϕ (0 ≤ ϕ < F0) by the inverse function of F (z/z0; i

√
1 − z2

0) as

z

z0
= sn

(
ϕ; i
√

1 − z2
0

)
, (5.10)
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where ϕ = 0 and ϕ = F0 correspond to z = 0 and z = z0 on the string, respectively. The
positive sign solution of (5.5) can be rewritten as

θ(ϕ) =

√
1 − z2

0

z0

[
ϕ − Π

(
z2

0 ; sn
(

ϕ; i
√

1 − z2
0

)
; i
√

1 − z2
0

)
− F0 + Π0

]
. (5.11)

In θ < 0, we set F0 < ϕ ≤ 2F0 with ϕ|z=0 = 2F0. Using ϕ̃ ≡ 2F0 − ϕ, we can write

z

z0
= sn

(
ϕ̃; i
√

1 − z2
0

)
. (5.12)

The negative sign solution of (5.5) is then expressed as

θ(ϕ) = −

√
1 − z2

0

z0

[
ϕ̃ − Π

(
z2

0 ; sn
(

ϕ̃; i
√

1 − z2
0

)
; i
√

1 − z2
0

)
− F0 + Π0

]
. (5.13)

Note that F0 depends on z0. By introducing φ ≡ ϕ/(2F0), the parameter range can be fixed
to 0 ≤ φ ≤ 1. The φ coordinate is shown in figure 2(b).

5.2 Evolution equations

We will study nonlinear time evolution when the string is perturbed. For numerical calculation,
we use the “Cartesian” coordinates in (2.6) because they are regular at the center of AdS,
(x, y) = (0, 0). Let χ = (x, y) denote these coordinates collectively. In the worldsheet double
null coordinates (σ+, σ−), the induced metric is given by

h++ = 1
(1 − |χ|2)2

(
−(1 + |χ|2)2 t2

,+ + 4|χ,+|2
)

, (5.14)

h−− = 1
(1 − |χ|2)2

(
−(1 + |χ|2)2 t2

,− + 4|χ,−|2
)

, (5.15)

h+− = 1
(1 − |χ|2)2

(
−(1 + |χ|2)2 t,+ t,− + 4χ,+ · χ,−

)
, (5.16)

where |χ|2 = r2 = x2+y2. The first two should satisfy the constraint equations h±± = 0 (2.12).
In these coordinates, the Nambu-Goto action is given by

S = 1
2πα′

∫
dσ+dσ−h+−

= 1
2πα′

∫
dσ+dσ− 1

(1 − |χ|2)2

(
−(1 + |χ|2)2 t,+ t,− + 4χ,+ · χ,−

)
. (5.17)

The equations of motion are

t,+− = − 4
1 − |χ|4

χ · (t,+ χ,− + χ,+ t,−) , (5.18)

χ,+− = − 1
1 − |χ|2

(
χ(1 + |χ|2)t,+ t,−

+ 2
(
χ,+(χ · χ,−) + (χ,+ · χ)χ,− − (χ,+ · χ,−)χ

))
. (5.19)
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If these equations are used as they are, however, time evolution is unstable. This is
because the relation of the directions of the target space and worldsheet times is not specified.
Solving the constraint equations h±± = 0, we can fix the sign of t,+ and t,− as

t,+ = 2|χ,+|
1 + |χ|2

> 0 , t,− = 2|χ,−|
1 + |χ|2

> 0 . (5.20)

These relations ensure that t,+ > 0 and t,− > 0 are future directed vectors. Applying (5.20)
to (5.18) and (5.19), we can realize stable time evolution.

5.3 Asymptotic solutions near the AdS boundary

We comment on the asymptotic series near the AdS boundary and integrable boundary
conditions when the string endpoints is located at the AdS boundary.

When the equations of motion (5.18) and (5.19) are solved near the AdS boundary r = 1,
the form of the asymptotic solutions is different from (4.1). Near the σ = 0 endpoint, we find

t(τ, σ) = t0(τ) + (ṫ2
0 + θ̇2

0)ẗ0 − 2ṫ0θ̇0θ̈0

2(ṫ2
0 − θ̇2

0)
σ2 + t3(τ)σ3 + · · · , (5.21)

r(τ, σ) = 1 − (ṫ2
0 − θ̇2

0)1/2σ + ṫ2
0 − θ̇2

0
2 σ2 + r3(τ)σ3 + · · · , (5.22)

θ(τ, σ) = θ0(τ) + 2ṫ0θ̇0ẗ0 − (ṫ2
0 + θ̇2

0)θ̈0

2(ṫ2
0 − θ̇2

0)
σ2 + θ3(τ)σ3 + · · · , (5.23)

where we assume ṫ0 ̸= 0, and t3 and r3 are fixed by solving the constraint equations (5.20) as

t3(τ) = θ̇0
ṫ0

θ3 , (5.24)

r3(τ) = θ̇0
...
θ0 − ṫ0

...
t0

6(ṫ2
0 − θ̇2

0)1/2 + (θ̇0ẗ0 − ṫ0θ̈0)2

2(ṫ2
0 − θ̇2

0)3/2 + (ṫ2
0 − θ̇2

0)1/2

6 (θ̇2
0 − 2ṫ2

0) . (5.25)

In the asymptotic expansion, t0, θ0 and θ3 are not determined.
When the above asymptotic expansions are used as they are, we find that the currents

diverge as IA
± , JA

± ∼ 1/σ2. This implies that it will be necessary to remove the divergence
by renormalizing the currents in order to define finite currents. Even without doing that
treatment, nevertheless, we can still get some insights. Taking a linear combination of the
bare currents, we find

J0
+ − J0

− = − 2(ẗ0 − θ̈0)
(ṫ0 − θ̇0)2σ

− 6θ3

ṫ0(ṫ0 − θ̇0)
+ O(σ) , (5.26)

(J1
+ + iJ2

+) − (J1
− + iJ2

−)
ei(t0−θ0) =

(
2 + 2i(ẗ0 − θ̈0)

(ṫ0 − θ̇0)2

)
1
σ

+ 6iθ3

ṫ0(ṫ0 − θ̇0)
+ O(σ) , (5.27)

(J1
+ − iJ2

+) − (J1
− − iJ2

−)
e−i(t0−θ0) =

(
2 − 2i(ẗ0 − θ̈0)

(ṫ0 − θ̇0)2

)
1
σ
− 6iθ3

ṫ0(ṫ0 − θ̇0)
+ O(σ) , (5.28)

I0
+ − I0

− = 2(ẗ0 + θ̈0)
(ṫ0 + θ̇0)2σ

− 6θ3

ṫ0(ṫ0 + θ̇0)
+ O(σ) , (5.29)
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(I1
+ + iI2

+) − (I1
− + iI2

−)
e−i(t0+θ0) =

(
−2i − 2(ẗ0 + θ̈0)

(ṫ0 + θ̇0)2

)
1
σ

+ 6θ3

ṫ0(ṫ0 + θ̇0)
+ O(σ) , (5.30)

(I1
+ − iI2

+) − (I1
− − iI2

−)
ei(t0+θ0) =

(
2i − 2(ẗ0 + θ̈0)

(ṫ0 + θ̇0)2

)
1
σ

+ 6θ3

ṫ0(ṫ0 + θ̇0)
+ O(σ) . (5.31)

If θ3 = 0, the finite part satisfies the same linear relations as (4.9). Therefore, integrability
would be guaranteed for θ3 = 0. For a static straight antipodal string, we have θ3 = 0,
but otherwise we have θ3 ̸= 0 in general (i.e. non-antipodal static strings and dynamically
perturbed strings). If θ3 ̸= 0, however, we do not find any linear relations between the ′′+′′

and ′′−′′ sectors. Hence, integrability would not be guaranteed. For time evolution of the
string with θ3 ̸= 0, we do not expect integrability. We are interested in the time evolution
under θ̇0 = 0. Then, the situation would be analogous to NDD.

5.4 Initial data and boundary conditions for time evolution

To calculate the time evolution for (5.18)–(5.20), we need initial data and boundary conditions
of the string.

For the initial data, we parametrize by worldsheet coordinates the static string solution
given in terms of target space coordinates in section 5.1. In terms of (τ, σ) (2.22), the sum
of the constraint equations (5.20) is written as

ṫ2 = 4(r′2 + r2θ′2)
(1 + r2)2 , (5.32)

where ˙ ≡ ∂τ and ′ ≡ ∂σ. We choose the spatial domain of the open string worldsheet as
0 ≤ σ ≤ π (i.e. σ = πφ). Then, this equation can be solved by

t = 2F0z0
π

τ = 2F0z0
π

(σ+ + σ−) , ϕ = 2F0
π

σ = 2F0
π

(σ+ − σ−) , (5.33)

where (2.22) is used. We substitute this parametrization to (5.10)–(5.13). Furthermore, the
(z, θ) coordinates are converted to (x, y) by using (2.5) and (5.1). Then, we can prepare the
initial data (t(σ+, σ−), x(σ+, σ−), y(σ+, σ−)). As a special case, when the string embedding
is antipodal θ(σ) = π/2, the static string can be simply expressed as

t = τ , x = 0 , y = tan
(

π

4 − σ

2

)
. (5.34)

For the boundary conditions, we move one endpoint of the string for a short duration of
time ∆t. We fix the endpoint at σ = π to θ = −θb and move the other end at σ = 0 around
θ = θb. We use the following profile for the endpoint motion:

θ(t) = θb + ϵα(t) , (5.35)

where ϵ specifies the amplitude and α(t) is chosen as a compactly supported C∞ function
given by

α(t) =

exp
[
2
(

∆t
t−∆t −

∆t
t + 4

)]
(0 < t < ∆t)

0 (otherwise)
. (5.36)

The endpoint is brought back to the original location θ = θb after the time ∆t.
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We solve the time evolution of the string (5.18)–(5.20) under the aforementioned initial
data and boundary condition. In numerical calculations, we discretize the equations of motion
in the double null coordinates by second-order finite difference as utilized in [4, 33]. Our
numerical calculations are second-order convergent as (∆h)2 with respect to the grid size of
the finite difference ∆h. Many of our results were obtained with discretization of 211 = 2048
segments in the computational domain of σ+ and σ− (i.e. ∆h = π/211). We also carried out
calculations with different number of segments and checked numerical convergence.

5.5 Cusp formation

As a result of the time evolution, cusps can be formed on the hanging string in AdS3 [4].
Such cusps can be detected by evaluating the Jacobian of the map from the worldsheet to
target space. For the string worldsheet in the three dimensional target space, we have three
Jacobians Jtx, Jty, Jxy. On top of a cusp, all of them vanish simultaneously as

Jij = χi,+χj,− − χi,−χj,+ = 0 , (5.37)

where χi = t, x, y (i = 0, 1, 2). Numerically, we identify the presence of a cusp if all Jij change
signs simultaneously in a discretized numerical grid.

5.6 Linear perturbation and energy spectrum

To evaluate nonlinearity, we expand the nonlinearly oscillating string by linear eigenmodes
around the static string and see deviations.

To this end, we first calculate the linear perturbation of the static string. Here, we express
the static solution by x̄(φ), ȳ(φ).3 In the (x, y)-plane, a unit vector normal to the static
string can be given by (n̂x, n̂y) = (ȳ′/|χ̄′|,−x̄′/|χ̄′|), where ′ ≡ ∂φ. Then, linear fluctuation
of the static string can be introduced as

x(t, φ) = x̄(φ) + n̂xξ(t, φ) , y(t, φ) = ȳ(φ) + n̂yξ(t, φ) . (5.38)

The quadratic action for ξ takes the form

S = 1
2πα′

∫
dtdφ

1
2
(
Ctξ̇

2 − Cφξ′2 − V ξ2
)

, (5.39)

where ˙ ≡ ∂t, and

Ct = 8z0F0
(1 − x̄2 − ȳ2)2 , Cφ = 2

z0F0(1 − x̄2 − ȳ2)2 , (5.40)

while V is lengthy and we do not reproduce it here. The linearized equation of motion
for the fluctuation is given by

(∂2
t + H)ξ = 0 , H ≡ − 1

Ct
∂φCφ∂φ + V

Ct
. (5.41)

The operator H is Hermitian under the following inner product:

⟨α, β⟩ ≡
∫ 1

0
dφ Ct(φ)α(φ)β(φ) . (5.42)

3Here, x̄, ȳ, χ̄ are used in a different meaning from the coordinates (t̄, r̄, θ̄) in (2.7), but the distinction
would be clear.
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(a) Eigenfrequencies. (b) Eigenfunctions for θb = π/2.

Figure 3. Left: eigenfrequencies for θb/(π/2) = 0.25, 0.5, 0.75, 1. The data points for the same
θb are connected by lines for visibility. The black dashed line corresponds to the shrinking string
limit θb → 0, where the eigenfrequencies match those in Poincaré AdS [4]. Right: the first four
(n = 1, 2, 3, 4) eigenfunctions for the antipodal string (5.43).

We obtain the eigenfrequencies and eigenfunctions (ωn, en) (n = 1, 2, 3 · · · ) as solutions to
the eigenvalue problem (5.41). The eigenfunctions are normalized as ⟨em, en⟩ = δmn. When
the static string is not antipodal, we need to solve the eigenvalue problem numerically. For
the antipodal string, the eigenvalue problem can be analytically solved by ωn = n + 1 and

en(φ) = −
√

4ζ2 + ω2
n(1 − ζ2)2

2π(ω2
n − 1) cos

(
ωnπ

2 − 2ωn tan−1ζ + tan−1 2ζ

ωn(1 − ζ2)

)
, (5.43)

where

ζ ≡


√

(1 − sin(πφ))/(1 + sin(πφ)) (0 ≤ φ ≤ 0.5)

−
√

(1 − sin(πφ))/(1 + sin(πφ)) (0.5 ≤ φ ≤ 1)
. (5.44)

In figure 3(a), the eigenfrequencies are shown for θb/(π/2) = 0.25, 0.5, 0.75, 1. In the limit
θb → 0, the frequencies match those in Poincaré AdS [4], denoted by the black dashed line.
In figure 3(b), the first four eigenfunctions of the antipodal string (5.43) are shown.

We then expand nonlinear string solutions by the linear eigenmodes. In the same manner
as (5.38), we define nonlinear fluctuation Ξ(t, φ) by

x = x̄(φ) + n̂xΞ(t, φ) , y = ȳ(φ) + n̂yΞ(t, φ) . (5.45)

When the amplitude of the nonlinear fluctuation is small, we decompose Ξ in terms of the
linear eigenmodes as

Ξ(t, φ) =
∞∑

n=1
cn(t)en(φ) . (5.46)

Using the above decomposition in the quadratic action (5.39) where ξ is replaced with Ξ,
we can construct the energy spectrum of the dynamical string as

εn(t) = 1
4πα′

(
ċ2

n + ω2
nc2

n

)
. (5.47)

We will use this to evaluate the growth of nonlinearity.
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(a) Early times. (b) After cusp formation.

Figure 4. Snapshots for θb = π/4, ϵ = 0.08, ∆t = 2.

Figure 5. Time dependence of the energy spectrum for θb = π/4, ϵ = 0.01, ∆t = 2. In the plot, εn

is normalized by the total energy of the linear energy spectrum εtot. The black dotted curve is an
interpolation of the linear energy spectrum for the linearized action (5.39). The dashed line is a fit of
t = 28 energy spectrum given by a power law ϵn ∝ n−1.35.

6 Results

In this section, we discuss numerical results of the time evolution of the string.

6.1 Non-antipodal string

We first examine the case that the string endpoints are away from the antipodal points. In
figure 4, string snapshots are shown for θb = π/4, ϵ = 0.08, ∆t = 2. The perturbation is
introduced from the upper end of the string for 0 ≤ t ≤ 2. The wave induced on the string is
initially smooth as seen in figure 4(a). It gets sharper as it propagates on the string, and a
cusp pair is formed around t ≃ 4.4. The cusps can be visually recognized in later times as
shown in figure 4(b). The pair-created cusps separate and remain propagating on the string.
This is the same as the case of cusps on the string in Poincaré AdS [4].

The behavior toward the cusp formation indicates turbulence on the string, characterized
by the transfer of energy from large to small scales. In figure 5, the energy spectra are shown
for θb = π/4, ϵ = 0.01, ∆t = 2. In the black dotted curve (labeled “linear”), for reference, we
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Figure 6. Cusp formation time for non-antipodal strings for ∆t = 2. Data points are calculated for
θb/(π/2) ≤ 0.98. The data points almost overlap if 1/(ϵz0tcusp) is plotted.

also show the linear energy spectrum for the linearized action (5.39), where the spectrum is
calculated by using the linear response theory under the boundary perturbation (5.35) in
the same way as it was done in [4]. Note that the energy spectrum is obtained for integer
n, but here it is shown in an interpolated curve for visibility. The linear energy spectrum
is independent of time because nonlinear terms are ignored. This implies that the time
dependent difference of data points from this black dotted curve indicates nonlinearity. In the
figure, the mode energy εn is normalized by the total energy of the linear energy spectrum
εtot. Because the amplitude of the perturbation is small as ϵ = 0.01, the energy spectrum just
after introducing the boundary perturbation is quite similar to the linear spectrum (t = 2:
purple dots). The energy spectrum then changes in time (t = 10, 18, 28).

In figure 5, the energy spectrum saturates a power law dependence toward the cusp
formation in late times. This manifests turbulence — transfer of energy from large to small
scales because of nonlinearity. For this figure, cusps are formed at tcusp ≃ 28.2. The energy
spectrum is calculated before this cusp formation time because the eigenmode expansion is
ill-defined if cusps exist on the string. A fit of the spectrum just before the cusp formation
is approximately ϵn ∝ n−1.35.

Changing the locations of the endpoints affects cusp formation time. In figure 6, the
time for the first cusp formation is plotted when θb and ϵ are varied while ∆t is fixed. The
data points are given for θb/(π/2) ≤ 0.98 and ϵ = 0.01, 0.02, 0.03. As the string embedding
approaches antipodal, it takes longer before cusps to form. When π/2 − θb is finite, the
behavior can be fitted by

tcusp ≃ 1
5.19z0ϵ(π/2 − θb)

. (6.1)

However, corrections will be significant to this fit in the antipodal limit θb → π/2. In
particular, we wonder if tcusp diverges or not in this limit. In the following, we directly study
the nonlinear perturbations of the antipodal string.

6.2 Antipodal string

Let us consider the case that the string endpoints are located at the antipodal points. In
figure 7, string snapshots for θb = π/2, ϵ = 0.1, ∆t = 2 are shown. We find that the waves on
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(a) Focusing of waves. (b) Defocusing of waves.

Figure 7. Snapshots for θb = π/2, ϵ = 0.1, ∆t = 2.

(a) ∆t = 2. (b) ∆t = 8.

Figure 8. First cusp formation time for the antipodal string when ϵ is varied.

the string get sharper initially (figure 7(a)), but the string get loosened afterward (figure 7(b)).
Then, the waves get sharp again. With the parameters for the figure, this cycle repeats
around an interval of t ∼ 100, but the recurrence is not completely periodic. The waves on the
string gradually get sharper as the string experiences the cycles of focusing and defocusing.
Continuing the time evolution, eventually we find that cusps are indeed detected on the
string around t ∼ 700 for these parameters.

We would like to add comments on this “first detection” of cusp formation for the
antipodal string. When θb of non-antipodal strings is changed closer to the antipodal limit
θb → π/2, the main contribution for cusp formation is switched from the collapse of waves
to apparently collisions of sharpening waves. The pair-creation of cusps by the overlapping
of nonlinear waves is momentary, and such cusps pair-annihilate immediately. Hence, we
find that the first detection of cusps does not necessarily result in persistent cusps on the
string. The cusp creation and annihilation then repeats along with the time evolution, with
the lifetime of the cusp pairs getting longer. Eventually, cusp pairs separate and start to
propagate on the string, but we need to wait much longer before this happens as the amplitude
ϵ is decreased. For this reason, we focus on the first cusp creation time, which will be followed
by the appearance of separating cusps in later times.
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(a) ϵ = 0.01. (b) ϵ = 0.1.

Figure 9. The time dependence of the energy spectrum for θb = π/2, ∆t = 2 and ϵ = 0.01 (left), 0.1
(right). The black dotted curve is an interpolated function for the linear energy spectrum calculated
from the linearized action (5.39), and εn is normalized by the total energy of the linear energy spectrum
εtot.

In figure 8, we plot the first cusp formation time for the nonlinearly perturbed antipodal
string when ϵ is varied. We show results for ∆t = 2 and 8. The downward bent in large ϵ is
due to the large amplitude of the perturbation, and we are not interested in that part. We
focus on small ϵ instead. The cusp formation time gets exponentially longer as ϵ is decreased,
but it appears that the antipodal string can form cusps for finite ϵ. From these results, we
expect turbulence (i.e. growth of nonlinearity) for finite ϵ, which we will discuss below.

In figure 9, the energy spectra for the perturbed antipodal string with ∆t = 2 are shown
for ϵ = 0.01 and 0.1. In the case of the antipodal string, the transfer of the energy to higher
modes is slower than non-antipodal cases. Therefore, it will take long for the energy spectrum
to saturate a power law, but we can observe the presence of steady turbulent behavior in the
energy spectrum even in early times. In figure 9(a), the initial energy spectrum (at t = 2) is
close to the linear theory. Then, the energy spectrum grows in time. For this figure (ϵ = 0.01),
we did not continue the time evolution until cusps are formed, but apparently the energy
spectrum will reach a power law. In figure 9(b), we used a larger amplitude ϵ = 0.1. The
energy spectrum at the early time t = 2 is distributed similarly to the linear one. At t = 700,
the energy spectrum is power law distributed. The power law in fact has been saturated
already around t ∼ 400. The envelope decays as n−2. In summary, we observe the turbulence
in the energy spectrum of a nonlinear oscillating open string even when the endpoints are
located at the antipodal points on the AdS boundary.

7 Conclusion

In this paper, we have investigated the origin of the weak turbulence on the worldsheet of an
open string in AdS. The classical dynamics of the string in AdS can be described by that of
the PCM, which without boundaries is known to be integrable. We consider open strings.
They correspond to the PCMs with boundaries, that can break integrability depending on
the types of boundary conditions. We argued that integrability breaking at endpoints of the
open string is the origin of turbulence. In the first part of this paper, we classified boundary
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conditions that preserve integrability or do not guarantee it. The results are summarized
in tables 1 and 2. For example, when the endpoints of the open string are fixed in AdS
(corresponding to NDD in our classification), integrability is not guaranteed. It would be
likely that integrability is broken for such boundary conditions and turbulence would occur
on the open string. In the second part of this paper, we have numerically investigated the
nonlinear dynamics of the classical open string for the aforementioned boundary condition.
We considered the open string hanging from the AdS boundary and calculated nonlinear time
evolution of the string, and we observed weak turbulence. In particular, the weak turbulence
was recognized even for an antipodal string. This means that, while nonlinear wave solutions
were obtained for a straight string [1], they are subject to the weak turbulence if the boundary
conditions of the string worldsheet are taken into account.

In this paper, turbulence was numerically investigated for boundary conditions where
integrability was not guaranteed. However, there is no proof that turbulence only occurs in
such cases, although these cases are speculated to be non-integrable. In particular, among
the patterns listed in tables 1 and 2, we tested only the NDD case for an open string that
has endpoints on the AdS boundary. It will be an important future work to investigate other
boundary conditions and clarify the differences in the classical dynamics of the open strings
for integrable and non-integrable boundary conditions [34].

While the source of non-integrability can be introduced by the boundary conditions
on open string endpoints, it is not evident whether the effect of the boundary conditions
is localized on the endpoints or leaks to the bulk. As seen in figure 4(b), the collapse of
nonlinear waves and formation of cusps can occur in the middle of the string, suggesting that
the waves could experience focusing effect during their propagation on the string, not only at
the moment of reflection on the endpoints. This observation is accompanied by the power
law in the energy spectrum in figure 5, which picks up the tendency of the growth of higher
modes on the string and might not be only of the endpoint effects. It would be interesting
to consider how the effect of the boundary conditions at the endpoint is transmitted to
the bulk part of the string. Related argument has been given in [10] that the boundary
perturbation for the open string connected to the AdS boundary introduces a source of cusp
formation propagating on the string worldsheet. It will also be interesting to generalize the
viewpoint of (non-)integrable boundary conditions to integrable models with non-integrable
boundary conditions in general.
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A Detailed analysis of integrable conditions

In this appendix, we will complete the analysis of the integrable boundary conditions of the
open string in AdS3. The cases of NNN and NDD have been studied in section 4. Here,
we assume r0 ̸= 0 when we impose the Dirichlet condition to r(τ, σ); the analysis of the
exceptional r0 = 0 case has been done in section 4.

NND. For t1 = r1 = θ̇0 = 0, eqs. (4.2) and (4.3) become

J0
+ = αṫ0 − βθ1 , J1

+ + iJ2
+ = e−it0{−γ(ṫ0 − θ1) + iδṙ0} ,

I0
+ = −αṫ0 − βθ1 , I1

+ + iI2
+ = ieit0{γ(ṫ0 + θ1) + iδṙ0} ,

J0
− = αṫ0 + βθ1 , J1

− + iJ2
− = e−it0{−γ(ṫ0 + θ1) + iδṙ0} ,

I0
− = −αṫ0 + βθ1 , I1

− + iI2
− = ieit0{γ(ṫ0 − θ1) + iδṙ0} .

(A.1)

We find linear relations,

JA
+ = RA

BIB
− , IA

+ = RA
BJB

− , R =

−1 0 0
0 0 −1
0 −1 0

 . (A.2)

R is symmetric and orthogonal. Also T ′A = RA
BT B gives an automorphism. Therefore,

NND is integrable.

NDN. For t1 = ṙ0 = θ1 = 0, eqs. (4.2) and (4.3) become

J0
+ = αṫ0 − βθ̇0 , J1

+ + iJ2
+ = e−i(t0+θ0){−γ(ṫ0 − θ̇0) + iδr1)} ,

I0
+ = −αṫ0 − βθ̇0 , I1

+ + iI2
+ = iei(t0−θ0){γ(ṫ0 + θ̇0) + iδr1} ,

J0
− = αṫ0 − βθ̇0 , J1

− + iJ2
− = e−i(t0+θ0){−γ(ṫ0 − θ̇0) − iδr1} ,

I0
− = −αṫ0 − βθ̇0 , I1

− + iI2
− = iei(t0−θ0){γ(ṫ0 + θ̇0) − iδr1} .

(A.3)

We cannot find any linear relations between the ′′+′′ and ′′−′′ sectors. There is no indication
of integrability for NDN.

NDD. For t1 = ṙ0 = θ̇0 = 0, eqs. (4.2) and (4.3) become

J0
+ = αṫ0 − βθ1 , J1

+ + iJ2
+ = e−it0{−γ(ṫ0 − θ1) + iδr1} ,

I0
+ = −αṫ0 − βθ1 , I1

+ + iI2
+ = ieit0{γ(ṫ0 + θ1) + iδr1} ,

J0
− = αṫ0 + βθ1 , J1

− + iJ2
− = e−it0{−γ(ṫ0 + θ1) − iδr1} ,

I0
− = −αṫ0 + βθ1 , I1

− + iI2
− = ieit0{γ(ṫ0 − θ1) − iδr1} .

(A.4)

Again, we cannot find any linear relations between the ′′+′′ and ′′−′′ sectors. There is no
indication of integrability for NDD.
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DNN. For ṫ0 = r1 = θ1 = 0, eqs. (4.2) and (4.3) become

J0
+ = αt1 − βθ̇0 , J1

+ + iJ2
+ = e−iθ0{−γ(t1 − θ̇0) + iδṙ0} ,

I0
+ = −αt1 − βθ̇0 , I1

+ + iI2
+ = ie−iθ0{γ(t1 + θ̇0) + iδṙ0} ,

J0
− = −αt1 − βθ̇0 , J1

− + iJ2
− = e−iθ0{−γ(−t1 − θ̇0) + iδṙ0} ,

I0
− = αt1 − βθ̇0 , I1

− + iI2
− = ie−iθ0{γ(−t1 + θ̇0) + iδṙ0} .

(A.5)

We find linear relations between the ′′+′′ and ′′−′′ sectors as

JA
+ = RA

BIB
− , R =

1 0 0
0 0 1
0 −1 0

 ,

IA
+ = RA

BJB
− , R =

1 0 0
0 0 −1
0 1 0

 .

(A.6)

However, for both cases, R are not symmetric. There is no indication of integrability for DNN.

DND. Substituting ṫ0 = r1 = θ̇0 = 0 into eqs. (4.2) and (4.3), we have

J0
+ = αt1 − βθ1 , J1

+ + iJ2
+ = {−γ(t1 − θ1) + iδṙ0} ,

I0
+ = −αt1 − βθ1 , I1

+ + iI2
+ = i{γ(t1 + θ1) + iδṙ0} ,

J0
− = −αt1 + βθ1 , J1

− + iJ2
− = {−γ(−t1 + θ1) + iδṙ0} ,

I0
− = αt1 + βθ1 , I1

− + iI2
− = i{γ(−t1 − θ1) + iδṙ0} .

(A.7)

We find linear relations between the ′′+′′ and ′′−′′ sectors as

JA
+ = RA

BJB
− , R = diag(−1,−1, 1) ,

IA
+ = RA

BIB
− , R = diag(−1, 1,−1) .

(A.8)

R is symmetric and orthogonal. Also T ′A = RA
BT B gives an automorphism. Therefore,

DND is integrable.

DDN. Substituting ṫ0 = ṙ0 = θ1 = 0 into eqs. (4.2) and (4.3), we have

J0
+ = αt1 − βθ̇0 , J1

+ + iJ2
+ = e−iθ0{−γ(t1 − θ̇0) + iδr1} ,

I0
+ = −αt1 − βθ̇0 , I1

+ + iI2
+ = ie−iθ0{γ(t1 + θ̇0) + iδr1} ,

J0
− = −αt1 − βθ̇0 , J1

− + iJ2
− = e−iθ0{−γ(−t1 − θ̇0) − iδr1} ,

I0
− = αt1 − βθ̇0 , I1

− + iI2
− = ie−iθ0{γ(−t1 + θ̇0) − iδr1} .

(A.9)

We cannot find any linear relations between the ′′+′′ and ′′−′′ sectors. There is no indication
of integrability for DDN.
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DDD. Substituting ṫ0 = ṙ0 = θ̇0 = 0 into eqs. (4.2) and (4.3), we have

J0
+ = αt1 − βθ1 , J1

+ + iJ2
+ = {−γ(t1 − θ1) + iδr1} ,

I0
+ = −αt1 − βθ1 , I1

+ + iI2
+ = i{γ(t1 + θ1) + iδr1} ,

J0
− = −αt1 + βθ1 , J1

− + iJ2
− = {−γ(−t1 + θ1) − iδr1} ,

I0
− = αt1 + βθ1 , I1

− + iI2
− = i{γ(−t1 − θ1) − iδr1} .

(A.10)

We find linear relations between ′′+′′ and ′′−′′ sectors as

JA
+ = RA

BJB
− , IA

+ = RA
BIB

− , RA
B = −δA

B . (A.11)

R is symmetric and orthogonal. But T ′A = RA
BT B is not an automorphism. There is no

indication of integrability for DDD.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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