
J
H
E
P
0
1
(
2
0
2
4
)
0
6
3

Published for SISSA by Springer

Received: October 30, 2023
Revised: December 20, 2023

Accepted: December 20, 2023
Published: January 12, 2024

Internal structure of hairy rotating black holes in three
dimensions

Ling-Long Gao,a,b Yan Liua,b,∗ and Hong-Da Lyua,b,∗

aCenter for Gravitational Physics, Department of Space Science,
and International Research Institute of Multidisciplinary Science,
Beihang University, Beijing 100191, China

bPeng Huanwu Collaborative Center for Research and Education,
Beihang University, Beijing 100191, China

E-mail: linglonggao@buaa.edu.cn, yanliu@buaa.edu.cn,
hongdalyu@buaa.edu.cn

Abstract: We construct hairy rotating black hole solutions in three dimensional Einstein
gravity coupled to a complex scalar field. When we turn on a real and uniform source on the
dual CFT, the black hole is stationary with two Killing vectors and we show that there is
no inner horizon for the black hole and the system evolves smoothly into a Kasner universe.
When we turn on a complex and periodic driving source on the dual CFT with a phase
velocity equal to the angular velocity of the black hole, we have a time-dependent black hole
with only one Killing vector. We show that inside the black hole, after a rapid collapse of
the Einstein-Rosen bridge, oscillations of the scalar field follow. Then the system evolves
into the Kasner epoch with possible Kasner inversion, which occurs in most of the parameter
regimes. In both cases, one of the metric fields obeys a simple relation between its value
at the horizon and in the Kasner epoch.

Keywords: Black Holes, Classical Theories of Gravity, Gauge-Gravity Correspondence,
Spacetime Singularities

ArXiv ePrint: 2310.15781

∗Corresponding author.

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2024)063

mailto:linglonggao@buaa.edu.cn
mailto:yanliu@buaa.edu.cn
mailto:hongdalyu@buaa.edu.cn
https://arxiv.org/abs/2310.15781
https://doi.org/10.1007/JHEP01(2024)063


J
H
E
P
0
1
(
2
0
2
4
)
0
6
3

Contents

1 Introduction 1

2 Setup of the model 2

3 Inside the hairy rotating black holes 6
3.1 Case I: when ω = n = 0 6

3.1.1 No inner horizon 7
3.1.2 Collapse of the Einstein-Rosen bridge 8
3.1.3 Kasner exponents 10

3.2 Case II: for general nonzero n 12
3.2.1 Collapse of the Einstein-Rosen bridge and oscillations 14
3.2.2 Kasner inversion and Kasner singularity 18

4 Conclusions and discussions 22

A The low temperature solution 22

B The non-existence of the inner horizon in case II 24

1 Introduction

Recently, there has been much progress in understanding the interior geometries in static
black holes and novel behaviors have been found, e.g. [1–3]. The purpose of this work is to
go beyond static black hole solutions to stationary black hole solutions and time-dependent
black holes to study their internal geometries.

Stationary black hole solutions are more generic than static black hole solutions, i.e. static
black holes are special limits of stationary black holes with time reversal symmetry preserving.
Time-dependent black holes are even more generic in which the timelike Killing vector ∂t is no
longer a Killing vector. It is known that with less symmetry or less Killing vector the solution
of Einstein’s gravity is much richer and more complicated. For example, the stationary Kerr
black hole has more complicated exterior and interior structure than the static Schwarzschild
black hole. Therefore it is interesting to study the interior behavior of stationary black holes.

The interior of four and five dimensional rotating black holes with scalar hair in the
asymptotic flat case has been studied in [4] and the nonexistence of the inner horizon has been
found. We will be interested in asymptotic AdS black holes. For simplicity, we will consider the
three dimensional hairy rotating black holes. It is known that rotating BTZ black hole exists
in three dimensions [5] and it has been served as a candidate of a consistent quantum gravity
model [6, 7]. Naturally any deformation of this toy model should be interesting to explore.

We will consider the three dimensional rotating black hole solution with a complex scalar
hair of the form ϕ(z)e−iωt+inx in the Einstein-scalar theory. Similar profile of the scalar
field has been used for constructing the five dimensional rotating black hole with only one
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Killing vector [8]. In [9, 10] attempts to construct three dimensional black holes with only
one Killing vector in Einstein gravity coupled to a massless complex scalar field have been
made and they concluded that no such perturbative black hole exists. Different from [9, 10]
we consider Einstein gravity coupled to a massive complex scalar field and turn on a source
on the dual theory to construct the black hole solutions.

We will focus on the internal structure of the hairy rotating black holes. The internal
structure of hairy charged black holes has been studied in [2, 3]. Without any scalar hair,
charged black holes and rotating black holes have similar Penrose diagrams. However, they
are different in symmetries and the formation of them are completely different too. Thus it
deserves to explore the internal structure of rotating black holes with scalar hair.

The paper is organized as follows. In section 2 we show the detailed setup of the model.
In section 3, we explore the internal structure of hairy rotating blck holes in two different
cases. We conclude and discuss the results in section 4. In appendix A we show the low
temperature solution and in appendix B we provide arguments of no inner horizon for black
holes of case II in section 3.2.

2 Setup of the model

We consider three dimensional gravity coupled to a complex scalar field with the follow-
ing action

S =
∫

d3x
√
−g

(
R + 2− ∂aφ∂aφ∗ − m2φφ∗

)
. (2.1)

In principle, one could generalize the potential for the complex scalar field φ to arbitrary
form and here for simplicity we only consider the mass term. For convenience we have set
16πG = 1 and fixed the cosmological constant.

The corresponding equations of motion are

Rab −
1
2Rgab − gab −

1
2(∂aφ∂bφ

∗ + ∂aφ∗∂bφ) +
1
2gab

(
∂cφ∂cφ∗ + m2φφ∗

)
= 0 ,

∇a∇aφ − m2φ = 0 .
(2.2)

The ansatz of hairy rotating black hole is given by

ds2 = 1
z2

(
−fe−χdt2 + dz2

f
+ (Ndt + dx)2

)
,

φ = ϕ(z)e−iωt+inx .

(2.3)

Here f, χ, N, ϕ are functions of z. We assume the spatial direction is periodic, i.e. x ∼ x+2π.1

In this case n should be an integer. We also assume that ω is real. Note that multiplying
the scalar field φ by a constant phase does not change the solution.

For the simplest case ω = n = 0, i.e. the scalar field is real, both the time and
space translational symmetries are preserved. For nonzero ω and nonzero n, and both

1If we assume x is non-compact, then the solution we considered can be explained as a boosted hairy black
hole.

– 2 –



J
H
E
P
0
1
(
2
0
2
4
)
0
6
3

the translational symmetry along t and x directions are broken up to a discrete symmetry
t → t + 2π

ω , x → x + 2π
n . In this case the discrete symmetry along t direction reminds us the

concept of time crystal [11]. The solution with ω = 0, n ̸= 0 is a fine-tunning result of this
case. For the case n = 0, ω ̸= 0 we have checked that there is no hairy black hole solution
while boson star solutions could exist. We will focus on the two cases of ω = n = 0 (case I)
and n ̸= 0 (case II) in the following and study the black hole interiors in the next section.

Note that the ansatz (2.3) is invariant under two scaling symmetries

t → λt , N → λ−1N , χ → χ + 2 log λ , ω → λ−1ω , (2.4)
(t, x, z) → λ (t, x, z) , (ω, n) → λ−1(ω, n) , (2.5)

and a gauge symmetry

N → N + λ , x → x − λt , ω → ω − λn . (2.6)

Substituting (2.3) into (2.2), we obtain the equations of motion

ϕ′′ + ϕ′
(

f ′

f
− χ′

2 − 1
z

)
+ eχϕ

f2 (ω + nN)2 − ϕ

z2f
(m2 + n2z2) = 0 ,

χ′ − 2f ′

f
+ 2m2ϕ2

zf
− 4

zf
+ 4

z
+ zeχN ′2

f
+ 2zn2ϕ2

f
= 0 ,

χ′ − 2zϕ′2 − 2zeχϕ2

f2 (ω + nN)2 = 0 ,

N ′′ + N ′
(

χ′

2 − 1
z

)
− 2nϕ2

f
(ω + nN) = 0 ,

(2.7)

where ′ is the derivative with respect to z. We have an additional second order ODE for
f and χ which can be derived from above.

The series expansion of the solutions near the (event) horizon z → zh are

f =
(

m2ϕ2
h − 2

zh
+ zh

(eχhN2
1

2 + n2ϕ2
h

))
(z − zh) + · · · ,

χ = χh + 8ϕ2
h

(
eχhn2N2

1 z4
h + (m2 + n2z2

h)2)
zh

(
eχhN2

1 z2
h + 2(m2 + n2z2

h)ϕ2
h − 4

)2 (z − zh) + · · · ,

N = Nh + N1(z − zh) + · · · ,

ϕ = ϕh + 2ϕh

(
m2 + n2z2

h

)
zh(eχhN2

1 z2
h + 2(m2 + n2z2

h)ϕ2
h − 4)

(z − zh) + · · · ,

(2.8)

with Nh = −ω
n for nonzero n. Therefore for nonzero n the angular velocity of the horizon is

Ω = −Nh = ω

n
(2.9)

which is exactly the same as the phase velocity of the scalar field. This is similar to the
hairy black holes with synchronized hair in asymptotic flat case [12] and the five dimensional
black holes with only one Killing vector in [8]. When n = ω = 0, Nh is a free parameter
which can not be fixed. In the case n = 0, ω ̸= 0, we have ϕ = 0 which indicates that the
solution has to be a BTZ black hole.
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In the expansion (2.8), we have assumed the existence of the horizon. The system might
allow the solutions of boson star, whose geometry does not have horizon. Then in the center
of the star we have the boundary condition for generic n ̸= 0, ω ̸= 0,2

f = z2 +O(1) , χ = O
( 1

z2

)
, N = N0 +O

( 1
z2

)
, ϕ = O

( 1
zn

)
. (2.10)

For the case n = 0, we found that N = 0 while the other fields have the same boundary
condition as (2.10), which indicates that a non-rotating boson star solution is expected [13].
The boson star solution for the case with massless complex scalar field has been studied
in [9]. The holographic dual of boson stars might be linked to the scar states which is a
non-thermalized state in a quantum many-body system [14]. We leave the detailed solutions
of the stars and their holographic duals for future study and focus on the black hole solution
in the following.

The asymptotic AdS3 requires that the mass of the scalar field is above the Breitenlohner-
Friedman (BF) bound, i.e. m2 > −1. We choose m2 = −3/4 from here on. Near the
boundary z → 0, the metric fields and scalar field are

f = 1 + ϕ2
0
2 z + f2z2 + 3ϕ4

0
8 z2 log z + · · · ,

χ = χb +
ϕ2

0
2 z + 1

16(ϕ
4
0 + 24ϕ0O)z2 + 3ϕ4

0
8 z2 log z + · · · ,

N = Nb + N2z2 + · · · ,

ϕ =
√

z

(
ϕ0 + Oz + ϕ3

0
4 z log z − ϕ0

128
(
16f2 − 64n2 + 21ϕ4

0 − 48ϕ0O + 64eχb(ω + nNb)2
)

z2

+ 3ϕ5
0

64 z2 log z + · · ·
)

.

(2.11)

The above UV expansion can be easily generalized to any relevant deformation of scalar
field, i.e. m2 < 0. When m2 = 0, for n = ω = 0, i.e. the real scalar, we find that the solution
should be a rotating BTZ black hole with a constant scalar field; while for n ̸= 0, the hairy
black hole solution exists.3 When m2 > 0, the source term of the scalar field will strongly
backreact to the metric field near the boundary, the leading geometry is no longer AdS3 at
z = 0 unless the scalar field is sourceless, i.e. ϕ0 = 0. We have not found such kind of solution.

We can solve the system using shooting method. Note that the IR expansion (2.8) for
the case of nonzero n has six free parameters4 zh, χh, ϕh, ω, n, N1 but only three of them
are independent due to the symmetries (2.4), (2.5), and (2.6). This is consistent with the

2Note that the most general solution for f , χ , ϕ should be f = f0z2 +O(1) , χ = χ0 +O(1/z2) , ϕ = O(1/za)
where a depends on both f0 and n. We have chosen f0 = 1 , χ0 = 0 to set the spacetime at the center of the
star to be flat.

3Note that the black hole solution exists only when we turn on a source for the scalar field. This is
consistent with the previous result of [10] that black hole solution does not exist for sourceless boundary
condition of the scalar field when m2 = 0.

4Here we treat n and ω as free parameters since the scaling symmetries of the system involve the
transformation of them.
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fact that there are three independent scale invariant T/J, ϕ0/
√

J, ω/n in the boundary field
theory. Numerically, we use symmetry (2.4), (2.5), and (2.6) to fix χh = 0, n = 1 and ω = 1
respectively. Then we choose the initial value for our shooting parameter zh, N1, ϕh to obtain
the black hole exterior and interior solutions, from which we could further rescale to the
solution we will work in as follows. Here we work in the Schwarzschild coordinates, i.e. the
frame that does not rotate at the boundary. The dual field theory is defined on the asymptotic
AdS3 boundary with ds2 = −dt2 + dx2.5 This can be achieved from the above black hole
solution by using the symmetry (2.6) to fix Nb = 0 and using (2.4) to set χb = 0.

The dual field theory is a two dimensional CFT defined in a cylinder at finite tempera-
ture with a nontrivial angular momentum and a deformation with a scalar source of form
ϕ0e−iωt+inx turning on. We have three dimensionless quantities T/J, ϕ0/

√
J, ω/n6 where

J, T, ϕ0 are the angular momentum, the temperature and the scalar source respectively.
The temperature is

T = −f ′e−χ/2

4π

∣∣∣∣
z=zh

. (2.12)

The source ϕ0 can be obtained from the boundary expansion in (2.11). The mass and angular
momentum of the hairy black hole can be calculated to be

M = − lim
z→0

√
−h T t

t =
1
4e−χb/2(−4f2 + 8eχbN2Nb + ϕ4

0 + 6ϕ0O) ,

J = lim
z→0

√
−h T t

x = −2 eχb/2N2 ,
(2.13)

where h is the determinant of the induced metric on the boundary and Tab is the energy
momentum tensor for the dual field theory. It takes the form of

Tab = 2(Kab − Khab − hab) +
1
2hab (φ∗nc∂cφ − 1

2φ∗φ) , (2.14)

obtaining from holography using the counter-term [15]

Sct = −
∫

∂M
d2x

√
−h

(
2K + 2− 1

2φ∗nc∂cφ + 1
4φ∗φ

)
(2.15)

where na is the normal vector of boundary ∂M which is located at z = 0, Kab = −(∇anb +
∇bna)/2 is the extrinsic curvature tensor and K = habKab is the extrinsic curvature scalar.

The system allows a rotating BTZ solution with a trivial scalar field [5],

f = (z2 − z2
h)(z2 − z2

i )
z2

hz2
i

, χ = 0 , N = − z2

zhzi
, ϕ = 0 . (2.16)

The angular velocity of BTZ black hole is Ω = zh/zi, stability requires Ω ≤ 1. (i.e. M = 1
z2

h
+ 1

z2
i
,

J = 2
zhzi

, with M ≥ J .) From the analysis of the quasi-normal modes (QNM) of the scalar
field around rotating BTZ black holes, it is known that the system is stable for m2 > −1 [16].

5In what follows, we work in this specific coordinate.
6Here the parameters ω, n could not be viewed as thermodynamical quantities, while they play important

roles in energy and momentum relaxation.
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However, for rotation black holes, there might be superradiant instability for the free complex
scalar field around rotating BTZ black holes when 0 < ω < −nNh if we impose the mixed
(or Robin) boundary conditions while not Dirichlet or Neumann boundary condition for the
complex scalar field [17, 18] or real scalar field [19]. Interestingly clouds with nontrivial
configurations of scalar fields exist at the threshold of superradiance [18]. Moreover, it was
shown in [20–23] that the scalar perturbations around non-extremal rotating BTZ should
lead to an instability of the inner horizon. From these results obtained in the probe limit, we
expect that it is important to consider the backreaction of the scalar field to the rotating
BTZ black hole. The hairy rotating black hole solutions we will construct in the next section
could be viewed as a possible endpoint of the above instabilities in the probe limit.

3 Inside the hairy rotating black holes

In this section, we will consider the black hole solutions in two different cases. In the first
case of ω = n = 0, the black hole solution is stationary with two isometries. The time
reversal symmetry is broken compared to the static BTZ black hole. The second case is
for ω ̸= 0, n ̸= 0 where the time-dependent black hole has only one Killing vector. We will
study the internal structures of these black holes.

3.1 Case I: when ω = n = 0

In this case, the scalar field of the hairy rotating black hole is real. In the dual field a real
and uniform source is turned on. In the following we will first collect the useful equations
and then study the internal structure both numerically and analytically.

The ansatz (2.3) becomes

ds2 = 1
z2

(
−fe−χdt2 + dz2

f
+ (Ndt + dx)2

)
,

φ = ϕ(z) ,

(3.1)

which satisfies the following equations

ϕ′′ + ϕ′
(

f ′

f
− χ′

2 − 1
z

)
− m2ϕ

z2f
= 0 ,

χ′ − 2zϕ′2 = 0 ,

χ′ − 2f ′

f
+ 2m2ϕ2

zf
− 4

zf
+ 4

z
+ zeχN ′2

f
= 0 ,

N ′′ + N ′
(

χ′

2 − 1
z

)
= 0 .

(3.2)

There are three symmetries for the system

t → bt , N → N/b , χ → χ + 2 log b ; (3.3)
(t, x, z) → b (t, x, z) ; (3.4)
N → N + b , x → x − bt . (3.5)
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Figure 1. Plot of M/J as a function of T/J at ϕ0/
√

J = 0.05 (left) and as a function of ϕ0/
√

J at
T/J = 0.01 (right).

We can use the first and third symmetry to set the leading order of N and χ to be zero at
boundary z = 0. We can also set zh = 1 from the second symmetry above when the location of
the horizon zh is defined from f(zh) = 0. The corresponding conserved charge from the above
symmetries is Q = eχ/2 (N2 − fe−χ

)′
/z , which can be used to verify the numerical accuracy.

There are two independent Killing vectors ∂t and ∂x in this stationary case. The
combination ξ = ∂t − Nh∂x gives null Killing vectors on the horizon where Nh is the value
of N at the horizon zh. Note that different from the case n ̸= 0, there is no constraint
on the value of Nh in this case.

The near horizon condition and the near boundary condition are the same as (2.8)
and (2.11), except that Nh is a free parameter now. Using the above symmetries, there are
two free parameters near the horizon, which correspond to T/J and ϕ0/

√
J in the dual field

theory. One can integrate the system into the boundary to obtain the numerical solutions for
the black holes. In figure 1, we show M/J as functions of T/J for fixed ϕ0/

√
J and of ϕ0/

√
J

for fixed T/J respectively. It is interesting to note that all the solutions we studied satisfy
the relation M/J ≥ 1. In the extremal limit, we have M/J → 1. Interesting behavior for the
profiles of the metric fields is found at extremely low temperature, as shown in the appendix A.

We find that the metric field N is a monotonic function from the interior to the boundary
numerically. This can also be seen analytically as follows. From the fourth equation in (3.2)
we have N ′ = E0ze−χ/2, where E0 is an integration constant. Thus the function N(z) is
monotonically increasing or decreasing. From (2.13) we have J = −E0. We consider the
case with positive J , which means that N is monotonically decreasing from the interior
to the boundary.

3.1.1 No inner horizon

Without constructing a detailed numerical solution, we can prove that there is no inner horizon
for the hairy black hole solution for m2 ≤ 0. The first equation of (3.2) can be written as

(
fe−χ/2ϕ′

z

)′

= e−χ/2

z3 m2ϕ . (3.6)
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If there were two horizons f(zh) = f(zi) = 0 with outer horizon zh and inner horizon zi,
from (3.6) we would have

0 =
∫ zi

zh

(
fe−χ/2ϕϕ′

z

)′

dz =
∫ zi

zh

e−χ/2

z3

(
z2fϕ′2 + m2ϕ2

)
dz . (3.7)

The first equality is because of f(zh) = f(zi) = 0. However, since we have f(z) < 0 between
the two horizons and m2 < 0 which implies the integrand of right hand side is negative.
Therefore there can not be an inner horizon for m2 < 0.

When m2 = 0, we only have the trivial solution of BTZ black hole with a constant scalar
field. This can be seen as follows. The equation of scalar field ϕ can be solved as

ϕ′ = C zf−1eχ/2 (3.8)

where C is a constant. Then the third equation in (3.2) becomes

2C2z3eχ = f2χ′ . (3.9)

Because f = 0 at the horizon z = zh, we must have C = 0 which means that the scalar
field is constant. Therefore we only have a BTZ black hole solution (2.16) with a constant
scalar field when m2 = 0.

When m2 > 0, the deformation of the scalar operator becomes relevant and the asymptotic
AdS structure is destroyed unless the source ϕ0 = 0. Numerically we have not found any
sourceless solution for this case and this is consistent with the fact that there is no instability
in the bulk.

3.1.2 Collapse of the Einstein-Rosen bridge

We have proved that there is no inner horizon for m2 ≤ 0 in the above subsection. Numerically
we found that the inner horizon zI of the rotating BTZ black hole at the same value of
T/J collapses. The collapse can be approximately described analytically near zI as follows.
Note that the analytical calculation in the following subsections works for any value of m2

while the numerical results are for m2 = −3/4.
The first three equations in (3.2) can be rewritten as

z3eχ/2
(

e−χ/2fϕ′

z

)′

= m2ϕ ,

χ′ = 2z(ϕ′)2 ,

2z3eχ/2
(

e−χ/2f

z2

)′

= −4 + 2m2ϕ2 + z4E2
0 ,

(3.10)

where we have used the fourth equation of (3.2) which can be integrated to be N ′ = E0z e−χ/2 ,

with E0 a constant of integration. Since the collapse occurs over an extremely short range in
the z coordinate, we can set z = z∗ to be the would-be inner horizon where z∗ is a position
very close to the inner horizon z = zI of corresponding BTZ black hole at same value of
T/J . We can also think f, χ, ϕ as functions of δz = z − z∗. Furthermore, we have numerically
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checked that the mass term of scalar field can be neglected due to the small value of ϕ in the
first and third equations in (3.10) comparing other terms.7 Then the equations (3.10) become(

e−χ/2fϕ′
)′

= 0 ,

χ′ = 2z∗(ϕ′)2 ,

(e−χ/2f)′ = E2
0
2 z3

∗e−χ/2 − 2e−χ/2

z∗
.

(3.11)

We can integrate the first equation in (3.11) to obtain ϕ′ = −a eχ/2/f where a is a
constant of integration. Plugging it back into (3.11) and taking the derivative of the last
equation we obtain

g′′tt0
g′tt0

= c2
1g′tt0

gtt0
(
c2

1 + gtt0
) , (3.12)

where gtt0 = −fe−χ/z2
∗ and c1 =

√
2a2/(z4

∗E2
0 − 4) . The solution of (3.12) takes the form

c2
1 log (gtt0) + gtt0 = −c2

2 (δz + c3) , (3.13)

where c2 and c3 are constants of integration.8 Taking the derivative of (3.13) we obtain
g′tt0 = −c2

2gtt0/(c2
1 + gtt0) and together with f = −z2

∗eχgtt0 we can get the solutions of
ϕ , χ and N

ϕ = − c1
z∗c2

log (c4 gtt0) ,

e−χ = z4
∗

a2 ϕ′2g2
tt0 ,

N ′ = E0z3
∗

a

∣∣ϕ′gtt0
∣∣ .

(3.14)

where c4 is a constant of integration.
Collect all the results above we find a fast crossover of the fields near z∗

9

δz < 0 → δz > 0 ,

gtt0 = c2
2 |δz| → gtt0 = e−(c2

2/c2
1)δz ,

ϕ′ = −c1
z∗c2

1
|δz|

→ ϕ′ = c2
c1

,

N ′ = E0c2z3
∗

a
→ N ′ = E0c2z3

∗
c2

1a
e−(c2

2/c2
1)δz .

(3.15)

The gtt0 is linearly vanishing for δz < 0 which is similar to the behavior of the rotating BTZ
black hole when it goes to the inner horizon. When δz > 0, gtt0 decays exponentially to

7Numerically, we have verified that the mass term of the scalar field ϕ is on the order of 10−3 compared to
the other terms near the would-be inner horizon, allowing it to be safely neglected.

8We use this equation to fit the numerical result of gtt0 for a range of z. The parameter z∗ is chosen such
that c3 = 0. Equivalently, the fitting parameters are c1, c2, z∗ while c3 = 0.

9Note the below equations are valid for 0 ≪ δz ≪ z∗.
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Figure 2. Illustration of Einstein-Rosen bridge collapse. The solid orange line is the numerical solution
of (3.2) and the dashed blue line is the solution of (3.13). In this case, we have z∗ = 1.17 , c2/c1 = 50.58
and the parameters of the solution are T/J = 0.025 , ϕ0/

√
J = 0.071.

a nonzero value in extremely small range about ∆z = (c1/c2)2. Note that although gtt0 is
only one term in the metric component gtt = (−fe−χ + N2)/z2, but the volume element of
the wormhole connecting the two exteriors of the black hole depends on the determinant
of induced metric on it which is precisely √

gtt0. Therefore it could be used to measure
the size of the Einstein-Rosen bridge, which is similar to the collapse of the Einstein-Rosen
bridge for the static black holes in [2, 3].

We illustrate the Einstein-Rosen bridge collapse in figure 2 which is the log plot of gtt0
as a function of z/zh. It can be seen that near the would-be inner horizon z = z∗ the full
numerical solution of (3.2) and the solution of (3.13) match very well. When z > z∗, the
linear decrease in the plot indicates exponential decay of gtt0.

Moreover, from (3.15) we find that there is no oscillation for the scalar field. This is
quite similar to the hairy charged black with a charged neutral scalar field [2].

3.1.3 Kasner exponents

After the collapse of the Einstein-Rosen bridge, the system evolves shortly into the Kasner
regime where the geometry is characterized by a Kasner universe. Different from the BTZ
black hole where the center of the black hole is a conical singularity with finite curvature,
in the hairy BTZ black hole there is a curvature singularity near the center.

Near the singularity z → ∞, the equations of motion (3.2) can be simplified under the
assumption that the ignored terms are subleading which will be checked numerically afterward,

ϕ′′ + ϕ′
(

f ′

f
− χ′

2 − 1
z

)
= 0 ,

N ′′ + N ′
(

χ′

2 − 1
z

)
= 0 ,

χ′ − 2zϕ′2 = 0 ,

χ′ − 2f ′

f
+ 4

z
= 0 .

(3.16)
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Eliminating χ′ from the second equation then substituting the result into the first equation
we obtain

ϕ ∼ α log z (3.17)

where α is a constant of integration. It has to be determined from the UV data and can only
be obtained numerically. Plugging (3.17) back into (3.16) we obtain the solution

f ∼ −fKzα2+2 , χ ∼ 2α2 log z + χ1 , N ∼ NK + EK

2− α2 z2−α2
, (3.18)

where fK , χ1, NK , EK are constants. Note that in equations (3.16), we have assumed that
the terms ignored are subleading. More explicitly, we have assumed

|α| >
√
2 . (3.19)

Substituting the solutions (3.17) and (3.18) into ansatz (3.1) and performing the co-
ordinate transformation

τ = 2√
fK(α2 + 2)

z−(α2+2)/2 , (3.20)

we obtain the Kasner form for the fields

ds2 = −dτ2 + ctτ
2ptdt2 + cxτ2px(NKdt + dx)2 ,

ϕ = pϕ log τ + cϕ ,
(3.21)

where the Kasner exponents pt, px, pϕ are

pt =
α2

α2 + 2 , px = 2
α2 + 2 , pϕ = − 2α

α2 + 2 , (3.22)

which satisfy the Kasner relations

pt + px = 1 , p2
t + p2

x + p2
ϕ = 1 , (3.23)

and

ct = fKe−χ1

(√
fK(α2 + 2)

2

)2pt

, cx =
(√

fK(α2 + 2)
2

)2px

, cϕ = pϕ log
(√

fK(α2 + 2)
2

)
.

(3.24)

Note that in (3.21) we have assumed that the leading order of N is a constant NK , i.e.
α2 > 2, so that we are able to introduce a new independent coordinate dΩ̃ = NKdt + dx.
For the case 0 < α2 < 2, the Kasner exponents will change under some complicated physical
process such as Kasner transition or Kasner inversion. But we have not found this case in
the numerical solutions. From (3.19) and (3.22), we have

1
2 < pt < 1 , 0 < px <

1
2 , |pϕ| <

2
3 . (3.25)

Only under this condition can we regard the form (3.21) as the Kasner form.
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Figure 3. The Kasner exponents as functions of T/J for fixed ϕ0/
√

J = 0.05. The dashed gray lines
are Kasner exponents of regular inner horizon of BTZ black hole.
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Figure 4. The Kasner exponents as functions of ϕ0/
√

J for fixed T/J = 0.01. The dashed gray lines
are Kasner exponents of regular inner horizon of BTZ black hole.

In addition to the fact that the metric function N is a monotonic function from the
horizon to the interior, from numerics one interesting observation is that we always have
NK = 1/Nh where NK the leading order of N at the Kasner singularity while Nh is the value
of N at the horizon. It would be interesting to prove it analytically.

In figure 3, we show the dependence of Kasner exponents as functions of T/J for fixed
ϕ0/

√
J = 0.05. We find that when T/J → ∞, the Kanser exponents approach the ones of

nonrotating BTZ black hole, i.e. the conical singularity.
In figure 4, we show the dependence of Kasner exponents as functions of ϕ0/

√
J for fixed

T/J = 0.01. When ϕ0/
√

J → 0, the values of Kasner exponents back to the values of the
regular inner horizon of rotating BTZ black hole.10 This is consistent with the fact that the
black hole solution becomes rotating BTZ black hole when ϕ0/

√
J → 0.

3.2 Case II: for general nonzero n

In the case of n ̸= 0, the scalar field in the hairy black hole is complex. In the dual field
theory we have turned on a both spatially and time periodic source with a phase velocity
equal to the angular velocity of the black hole. In the following again we first list the useful
equations and then study the internal structure of the black holes.

10It is interesting to note that these Kasner exponents are the same as the one in the center of non-rotating
BTZ black hole.
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The ansatz of the background is (2.3). The equations of motion can be rewritten as

z3eχ/2
(

fe−χ/2ϕ′

z

)′

= ϕ

(
m2 + n2z2 − eχ

f
z2(ω + nN)2

)
,

ze−χ/2
(

eχ/2N ′

z

)′

= 2nϕ2

f
(ω + nN) ,

χ′

2z
= ϕ′2 + eχϕ2

f2 (ω + nN)2 ,

2eχ/2z3
(

e−χ/2f

z2

)′

= 2(m2 + n2z2)ϕ2 + z2eχN ′2 − 4 .

(3.26)

The Killing vector of this solution can be analyzed as follows. From the metric we
have Killing vectors ∂t and ∂x. From the scalar field we have ξb∇bφ = 0, the Killing vector
has to be ξ = ∂t − Nh∂x with Nh = −ω

n . Thus the ansatz (2.3) describes a black hole
with only one Killing vector,

ξ = ∂t +
ω

n
∂x . (3.27)

The norm of the Killing vector is

gabξ
aξb = 1

z2

(
N + ω

n

)2
− f

z2 e−χ . (3.28)

When z = zh, we have gabξ
aξb = 0. Therefore the event horizon is also a Killing horizon

associated with the Killing vector ξ. Just outside the horizon, the Killing vector is always
timelike which is different from four dimensional Kerr black hole. Near the boundary the
Killing vector ξa has norm 1

z2 (ω2

n2 − 1) which is spacelike, null or timelike for
∣∣ω

n

∣∣ > 1,= 1, < 1
respectively. All the solutions we find are for

∣∣ω
n

∣∣ < 1 which means that the Killing vector is
timelike. This behaves differently with the five dimensional rotating black hole with only
one Killing vector [8].

In figure 5, we show M/J as a function of ω/n when other parameters are fixed. We find
M/J is a monotonic decreasing function of ω/n. When ω/n → 0 we have M/J → ∞ which
can be understood as a non-rotating black hole, because when ω = 0, n ̸= 0, i.e. Ωh = 0,
we only have a non-rotating black hole with N = 0. When ω/n → 1, we have M/J → 1.
Note that similar to the black holes in section 3.1, all the black hole solutions we found
satisfy M/J ≥ 1. At low temperature, we find the similar behaviors of the system as case I
discussed in section 3.1, which are summarized in appendix A, i.e. an extremal BTZ black
hole emergies with clouds of the scalar field.

Numerically we find that for the solutions we have studied, N is monotonically increasing
from the boundary to the interior before the location where Kasner inversion occurs. This
observation is not straightforward to proved analytically. Furthermore, we numerically find
that the scalar field ϕ does not have any node outside the horizon.

Before proceeding, we first have a comment on the non-existence of inner horizon. Notice
that near the horizon we have f → 0 and ω + nN → 0. One might attempt to prove the
no inner horizon using the methods with equations of motion, or conserved charges. In

– 13 –



J
H
E
P
0
1
(
2
0
2
4
)
0
6
3

��� ��� ��� ��� ��� ���
�

�

�

�

�

ω/n

M
J

Figure 5. Plot of M/J as a function of ω/n at ϕ0/
√

J = 0.5 and T/J = 0.05.

appendix B we summarize the attempts and show that they do not work here. Nevertheless,
one can work in the probe limit and consider a scalar field propagating around the rotating
BTZ black hole. One finds that when we choose the infalling boundary condition for the scalar
field near the outer horizon, the scalar field exhibits rapidly oscillations near the inner horizon
under the synchronization condition (2.9) resulting in a divergent energy-momentum tensor,
which indicates that the inner horizon would be destroyed by the scalar field. Numerically, we
indeed have not found any black hole with an inner horizon. Therefore it seems reasonable to
expect that for n ̸= 0 the hairy rotating black hole does not have any inner horizon.

3.2.1 Collapse of the Einstein-Rosen bridge and oscillations

Similar to the previous case, inside the horizon there is an Einstein-Rosen bridge collapse
close to the would-be-inner horizon. Different form the previous case, the scalar field oscillates
after the collapse. This can be seen both analytically and numerically.

When the system evolves inside the black hole while not far from the outer horizon, we can
ignore the (m2 +n2z2)ϕ terms in the first and the last equations in (3.26) and the right hand
side of the second equation in (3.26).11 Then the equations of motion can be simplified as

N ′ = E0ze−χ/2 ,

zeχ/2
(

fe−χ/2ϕ′

z

)′

= −ϕ
eχ

f
(ω + nN)2 ,

χ′

2z
= ϕ′2 + eχϕ2

f2 (ω + nN)2 ,(
e−χ/2f

z2

)′

= E2
0
2 ze−χ/2 − 2e−χ/2

z3 .

(3.29)

Similar to the ω = n = 0 case, near the would-be inner horizon z = z∗, we can
set z = z∗ + δz and f, χ, N, ϕ are functions of δz. The metric function N is larger than

11Similar to the previous discussion in footnote 7, here we have also numerically checked that the (m2+n2z2)ϕ
terms are approximately on the order 10−3 in comparison to the other terms near the would-be inner horizon
z = z∗.
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its derivative, so we can set N = N0 to be a constant in this regime. The equations of
motion (3.29) become

N = N0 ,

eχ/2
(
fe−χ/2ϕ′

)′
= −ϕ

eχ

f
(ω + nN0)2 ,

χ′

2z∗
= ϕ′2 + eχϕ2

f2 (ω + nN0)2 ,

(
e−χ/2f

)′
= E2

0
2 z3

∗e−χ/2 − 2e−χ/2

z∗
.

(3.30)

Solving the second equation above we obtain

ϕ = φ0 cos
(
(ω + nN0)

∫ z

z∗

eχ/2

f
dz̃ + φ1

)
, (3.31)

where φ0, φ1 are integration constants. Defining again gtt0 = −fe−χ/z2
∗ , and taking the

derivative of the fourth equation in (3.30), we obtain

g′′tt0
g′tt0

− c2
1g′tt0

gtt0(c2
1 + gtt0)

= 0, with c2
1 = 2φ2

0(ω + nN0)2

E2
0z4

∗ − 4
, (3.32)

whose solution satisfies

c2
1 log(gtt0) + gtt0 = −c2

2 (δz + c3) (3.33)

where c2 > 0 and c3 are constants of integration. When z < z0, gtt0 ∝ |δz| is linear vanishing,
but when z > z0, gtt0 ∝ e−(c2/c1)2δz is exponentially decaying but always larger than 0,
indicating a collapse occurs over a coordinate range ∆z = (c1/c2)2. This behavior is quite
similar to the previous case.

An example of the collapse is shown in the left plot of figure 6. This is similar to the
case of ω = n = 0 shown in figure 2. The right plot in figure 6 shows that the scalar field
oscillates after the collapse and this is different from the case of ω = n = 0 where there
is no oscillation for the scalar field ϕ.

From (3.33), we have g′tt0 = − c2
2gtt0

c2
1+gtt0

. Then we can get the solution of f, χ

f = −z2
∗eχgtt0 , e−χ = c2

2g2
tt0

(c2
1 + gtt0)2

2z3
∗

E2
0z4

∗ − 4
. (3.34)

Substituting them into (3.31), we have

ϕ = φ0 cos
(

c1
c2φ0

1
√

z∗
log gtt0(z)

gtt0(z∗)
+ φ1

)
. (3.35)

Note that the above equation only works close to z∗. The cosine behavior in (3.35) indicates
the scalar field will start to oscillate after the collapse of Einstein-Rosen bridge, which is
similar to holographic superconductor model [3], while there is no cosine behavior for the
scalar field in the previous case. In the following we will show that the oscillation will
continue for a longer regime.
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Figure 6. Plot of the Einstein-Rosen bridge collapse (left) and the scalar field ϕ near the would-be
inner horizon (right). In both figures the solid orange line is our numerical solution of (2.7). The
dashed blue line is the solution of (3.33) (left) and the numerical fitting of (3.31) (right) respectively.
In this plot we have ϕ0/

√
J = 0.190 , T/J = 0.116 , ω/n = 0.502 and z∗ = 2.001 , c2/c1 = 17.442.

After the collapse of Einstein-Rosen bridge, the value of e−χ becomes extremely small
so that we can further simplify the first and last equations in (3.29) as

N = N0 ,

zeχ/2
(

fe−χ/2ϕ′

z

)′

= −ϕ
eχ

f
(ω + nN0)2 ,

χ′

2z
= ϕ′2 + eχϕ2

f2 (ω + nN0)2 ,(
e−χ/2f

z2

)′

= 0 .

(3.36)

The last equation above implies

e−χ/2f

z2 = − 1
c4

(3.37)

where c4 is a constant of integration. Matching it with the z > z∗ solution of gtt0 from (3.33)
in the overlap region, we get

c4 = c2
c2

1

√
2z3

∗
E2

0z4
∗ − 4

. (3.38)

Plugging (3.37) into the second equation of (3.36), we obtain the solution of scalar field

ϕ = c5 J0

( |c4(ω + nN0)|
z

)
+ c6 Y0

( |c4(ω + nN0)|
z

)
(3.39)

where c5, c6 are constants of integration. J0 and Y0 are Bessel functions which are oscillatory.
Figure 7 shows a typical example of the oscillation of the scalar field ϕ. From the

figure, we can see that the full numerical solution of (2.7) and the approximate analytical
solution (3.39) match very well. We can also see that the frequency of oscillation decreases
and the amplitude increases as z/zh increases.
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Figure 7. Plot of the scalar field ϕ for ϕ0/
√

J = 0.371 , T/J = 0.108 , ω/n = 0.506. The orange line
is the numerical solution of (2.7) and the dashed blue line is the fitting using (3.39).

� � � � �� �� ��
-�

-�

-�

�

�

�

�

z/zh

ϕ

ϕh

� � �� �� ��

-�

-�

�

�

�

z/zh

ϕ

ϕh

� � � � ��

-�

-�

�

�

�

z/zh

ϕ

ϕh

Figure 8. Left: plots of the scalar field for ϕ0/
√

J = 0.5 , ω/n = 0.5 and T/J = 0.15 (blue), 0.1
(orange) and 0.05 (red). Middle: plots of the scalar field for T/J = 0.05 , ω/n = 0.5 and ϕ0/

√
J = 0.2

(blue), 0.3 (orange) and 0.5 (red). Right: plots of the scalar field for T/J = 0.05 , ϕ0/
√

J = 0.5 and
ω/n = 0.73 (blue), 0.7 (orange) and 0.6 (red).

In figure 8, we show the scalar field ϕ as a function of z/zh for fixed ϕ0/
√

J, ω/n (left)
or T/J, ω/n (middle) or T/J, ϕ0/

√
J (right) respectively in the oscillation regime. The left

plot in figure 8 shows that for fixed ϕ0/
√

J and ω/n, the field ϕ oscillates less dramatic at
lower temperature which is similar to the holographic superconductor model [3]. This is also
consistent with the discussion in [21] that in the probe limit the scalar field is more smooth
at higher temperature. The middle plot shows that for fixing temperature T/J and ω/n,
the smaller ϕ0/

√
J is, the more times ϕ oscillates, and the right plot shows that for fixing

temperature T/J and ϕ0/
√

J the frequency of the oscillation is larger for larger ω/n.
The oscillation of scalar field also backreacts the metric field f and χ. Inserting (3.39)

into the third equation of (3.36), we get the solution

χ = 2 log(f0c4) +
∫ z

z∗

[
2c2

4(ω + nN0)2ϕ2

z̃3 + 2z̃ϕ′2
]

dz̃ , (3.40)

f = −f0z2 exp
{∫ z

z∗

[
2c2

4(ω + nN0)2ϕ2

z̃3 + 2z̃ϕ′2
]

dz̃

}
, (3.41)

where f0 is an integration constant.
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At large z, by expanding (3.39) at z → ∞, the behavior of scalar field becomes

ϕ ∼ 2c6
π

log
(

c4(ω + nN0)
2z

)
+ c5 +

2c6γE

π
+ · · · (3.42)

where γE is the Euler constant. The logarithmic behavior is a typical behavior of the scalar
field near the Kasner singularity.

3.2.2 Kasner inversion and Kasner singularity

After the oscillation regime of the scalar field (if it exists), the system evolves into the
Kasner epoch. Different from the previous case, the Kasner inversion might exist. In the
following we first analytically describe the Kasner epoch and the Kasner inversion and then
provide numerical analysis.

As we have already shown in (3.42), the system will evolve into the Kasner regime in
the deep interior of the black hole. The simplified equations near the singularity z → ∞ are
nearly the same with ω = n = 0 case (3.16) except that the term proportional to N ′2 can
not be ignored in the last equation which triggers the Kasner inversion

zeχ/2
(

fe−χ/2ϕ′

z

)′

= 0 ,

ze−χ/2
(

eχ/2N ′

z

)′

= 0 ,

χ′

2z
= ϕ′2 ,

2eχ/2z3
(

e−χ/2f

z2

)′

= z2eχN ′2 .

(3.43)

Taking the derivative of the first equation and eliminating f ′′, χ′, f ′ and f from the other
three equations, we obtain a third order ODE of the scalar field ϕ

ϕ′′′ − 2ϕ′′2

ϕ′ +
(

zϕ′2 − 3
z

)
ϕ′′ + ϕ′3 − 3ϕ′

z2 = 0 . (3.44)

For analyzing the behavior of ϕ, we set

ϕ =
∫

α̃(ϕ)
z

dz (3.45)

then (3.44) becomes a second order ODE of α̃(ϕ)

¨̃α −
˙̃α2

α̃
+ α̃ ˙̃α − 2 ˙̃α

α̃
= 0 , (3.46)

where the dot is the derivative with respect to ϕ. The above equation (3.46) has an
analytical solution

α̃ = 1
2

βi +
√

β2
i − 8 tanh


√

β2
i − 8 (ϕ − ϕi)

2

 (3.47)
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Figure 9. Plot of α̃ = zϕ′ as a function of z/zh when ϕ0/
√

J = 0.371 , T/J = 0.108 , ω/n = 0.506.
The orange line is the numerical solution of (3.26), while the dashed blue line is the solution of (3.44).
Note that α1 = −0.872 in the intermediate Kasner epoch and α2 = −2.295 in the final Kasner epoch
satisfying α1α2 = 2.

where βi, ϕi are two constants of integration and we have assumed |βi| > 2
√
2. The solu-

tion (3.47) has the limit behavior

α̃ →
βi +

√
β2

i − 8
2 as ϕ ≫ ϕi , (3.48)

α̃ →
βi −

√
β2

i − 8
2 as ϕ ≪ ϕi . (3.49)

Obviously ϕi is the location where α̃ jumps. As can be seen from (3.45), different limits (3.48)
and (3.49) correspond to different Kasner epoches. Therefore when ϕ is close to ϕi, the
Kanser inversion happens. From (3.48) and (3.49), we know that α̃ changes before and
after the Kasner inversion in the form

α̃ → 2
α̃

. (3.50)

We will call the Kasner epoch before inversion intermediate Kasner epoch and the one after
inversion final Kasner epoch.

A typical example of Kasner inversion is shown in figure 9. In the intermediate and final
Kasner epoch, α̃ are constants of α1 and α2 respectively. The orange line is from numerics of
the solution while the dashed blue line is the solution of (3.44). The perfectly matching of these
two lines indicates that (3.44) is a good approximation of the entire system near singularity.
The time domain for inversion is extremely short comparing to the Kasner epoches.

At each Kasner epoch, we set α̃(ϕ) = α to be a constant and the solution of (3.43) is
the same as ω = n = 0 case with the following form

f ∼ −fKz2+α2
, χ ∼ 2α2 log z + χ1 , ϕ ∼ α log z , N ∼ NK + EKz2−α2

2− α2 . (3.51)

If α2 < 2 in the intermediate Kasner epoch, then the right hand side in the last equation
of (3.43) becomes more and more important when we increase z, resulting in a possible
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Figure 10. Plot of N as a function of z/zh for ϕ0/
√

J = 0.371 , T/J = 0.108 , ω/n = 0.506 (left),
ϕ0/

√
J = 1 , T/J = 0.005 , ω/n = 0.859 (middle) and ϕ0/

√
J = 0.5 , T/J = 0.05 , ω/n = 0.05 (right).

instability for the above Kasner form. In this case Kasner inversion occurs and the geometry
further flows into a new stable Kasner epoch and we will have α2 > 2 in the end. Note that
the Kasner inversion may not exist when it evolves directly into a Kasner singularity with
α2 > 2 or it takes extremely short time to evolve into a Kasner singularity with α2 > 2 so
that the intermediate Kasner epoch can not exist. Also note that there is only one inversion
at most because (2/α)2 > 2 for any α2 < 2.

Three typical interior configurations of the metric field N are shown in figure 10. We
find that N is a monotonic function of z before the Kasner inversion. All these three plots
show that N can be treated as a constant in both Kasner epochs. The left plot also indicates
the value of N at the horizon Nh is the same as that at the final singularity N

(f)
K when

the Kasner inversion exists, i.e. N
(f)
K = Nh. In the intermediate Kasner regime, we have

N
(i)
K = 1/Nh.12 We have verified that the above two relations are always true whenever there

is a Kasner inversion. Moreover, numerically we find that when there is no Kasner inversion,
we have NK = 1/Nh, which is the same as the previous case of real scalar field. Note that
the phase velocity of the scalar field is related to the horizon value of N (2.9). In this way
we see that the source on the boundary is connected to the singularity.

From the fact that N is almost a constant during each Kasner epoch as shown in
figure 10, we can perform a coordinate transformation

τ = 2√
fK(α2 + 2)

z−(α2+2)/2 (3.52)

and obtain the Kasner form for the fields

ds2 = −dτ2 + ctτ
2ptdt2 + cxτ2px(Ndt + dx)2 ,

ϕ = pϕ log τ + cϕ ,
(3.53)

where

pt =
α2

α2 + 2 , px = 2
α2 + 2 , pϕ = − 2α

α2 + 2 . (3.54)

Obviously, the Kasner relations pt + px = p2
t + p2

x + p2
ϕ = 1 are satisfied.

12It would be interesting to obtain them analytically and to check if these relations still hold for higher
dimensional hairy rotating black holes.
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Figure 11. Plots of Kasner exponents pt (red), px (blue) and pϕ (black) as a function of z/zh

when ϕ0/
√

J = 0.371 , T/J = 0.108 , ω/n = 0.506. The Kasner exponents before inversion are
pt = 0.275, px = 0.725, pϕ = 0.447 and after inversion are pt = 0.725, px = 0.275, pϕ = 0.447.
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Figure 12. The Kasner exponents as functions of ω/n for fixed ϕ0/
√

J = 0.5, T/J = 0.05. The
dashed light blue lines are the intermediate Kasner exponents, while the solid blue lines correspond to
final Kasner exponents.

When the Kasner inversion ocurrs, from (3.50) and (3.54), we have the following trans-
formations of the Kasner exponents before and after the Kasner inversion:

pt → px , px → pt , pϕ → pϕ . (3.55)

A typical example for the Kanser exponents during the inversion is shown in figure 11.
Finally, we show the final Kasner exponents as functions of ω/n for fixing ϕ0/

√
J and

T/J in figure 12. The solid blue lines are for the final Kasner exponents while the dashed
light blue lines are for the intermediate Kanser exponents. For pϕ the two lines coincide. We
have verified that the Kasner inversion relation (3.55) is always satisfied. Near the regime
ω/n → 1, the Kanser inversion always occurs and the Kanser exponents are sensitive to
the parameter. When ω/n is small there are regimes that we do not have Kasner inversion.
Different from the black holes in case I where typically the Kasner exponents are smooth
functions of the external parameters, here these functions are not smooth at certain locations
of pt = px = 0.5, pϕ = ±

√
2/2. In most parts of the parameter regimes, the Kasner inversion

occurs and the behaviors of Kasner exponents become irregular, which is different from
that in [2].
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4 Conclusions and discussions

In this work we have studied two kinds of hairy rotating black holes in three dimensional
Einstein gravity coupled to a complex scalar field. In the first case, the scalar field is real and
the system has two Killing vectors. We find that there is no inner horizon in this case. The
system evolves smoothly into a stable Kasner regime. In the second case, the rotating black
hole with a complex scalar field has only one Killing vector. We find that inside the black
hole, after a collapse of the Einstein-Rosen bridge, the scalar field can oscillate dramatically,
then the system evolves into Kasner epoch. It turns out that at lower temperatures the scalar
field oscillates fewer times. This behavior shares similarity with the properties of the scalar
field close to the Cauchy horizon of the rotating BTZ in the probe limit discussed in [21].
Moreover, there could be Kasner inversion for some parameter regimes. Different from the
interior of holographic superconductors [3], in most of the parameter regimes, the Kasner
inversion occurs. In both these two cases, we find an interesting simple relation between the
metric field N at the horizon and the value of N (to the leading order) in the intermediate or
final Kanser epoch. Our study shows that the internal structure of certain stationary black
holes and time-dependent black holes behaves similarly to the static black holes, indicating
a possible universality of the internal structure of black holes.

For nonzero ω, the time shift symmetry is explicitly broken into t → t + 2π
ω for the hairy

black hole, which leads to an energy dissipation in the dual system. Further exploration of
the dual field is necessary. For example, it should be interesting to connect it to the time
crystal. It is also interesting to study the quantum chaos for the dual field theory from the
method of OTOC and pole skipping to see if they give the same result [24, 25]. In this way
one could understand better the relationship between hydrodynamics and quantum chaos.

It would be interesting to study if the hairy black hole solution studied in this work could
serve as a final state during the gravitational collapse in three dimensional Einstein-scalar
theory [26, 27]. In order to explore this question, it is clear that one needs to consider a fully
dynamical process under a generic initial condition to study the final state.

We have only studied the three dimensional hairy rotating black holes. A qualitatively
similar internal structure has been seen in four dimensional asymptotic flat hairy rotating
black hole [4]. It is interesting to consider other higher dimensional hairy rotating black
holes to study their interior geometries [28, 29]. We expect that such exploration will help us
further understanding the universal physics of the internal structure of black holes.

Acknowledgments
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Natural Science Foundation of China grant No. 11875083, 12375041.

A The low temperature solution

In this appendix, we show the low temperature solution of the two cases discussed in section 3.1
and section 3.2. At low temperatures, the solutions behave quite interestingly outside the
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Figure 13. Plots of the metric field f for T/J = 4× 10−11 and ϕ0/
√

J = 0.103. The blue lines are
the numerical solutions of hairy rotating black holes, red dashed lines are solutions of the extremal
BTZ black hole with the “horizon” z0, and gray dashed line is the location of the “horizon”. The
metric field f has a minimum value near z = z0 (z0 < zh).
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red dashed lines and gray dashed lines are the numerical solutions, solutions of the extremal BTZ and
the location of the “horizon” respectively.

horizon. The profile of the metric field f is no longer monotonic. On the other hand, we have
not any special behavior inside the horizon for black holes at low temperatures.

More precisely, for the case I of ω = n = 0, i.e. the real scalar field, the function f has
a minimum value in the vicinity of z0 which is located between the horizon and boundary,
see figure 13. This happens when the temperature is quite low at any value of ϕ0/

√
J , i.e.

T/J → 0. In this case we find that the angular velocity of the black hole approaches the
speed of light.13 Even though we have chosen the event horizon to be zh, z0 can be regarded
as the “horizon” of an extremal BTZ black hole whose spacetime outside the “horizon” match
very well with this extremal hairy black hole. Moreover, we have J/M → 1 which implies
that we reach the upper limit of the angular momentum for hairy rotating black holes.

Inside the hairy black hole at low temperatures, it behaves differently compared with
the extremal BTZ black hole, as shown in figure 14. Now there is a curvature singularity
of Kasner form inside the hairy black hole, taking the Kasner form f ∼ −0.004 z63.15, χ ∼
122.3 log z, ϕ ∼ 7.82 log z, N ∼ −1, while the singularity of extremal BTZ is a conical one,
i.e. f ∼ z4/z4

0 , N ∼ −z2/z2
0 , χ = ϕ = 0. Moreover, the scalar field outside the horizon

mainly stays in between z0 and zh.
For the case of n ̸= 0, i.e. the complex scalar field, we have three parameters for the

hairy black holes. It turns out that the above behavior happens only at low temperature
T/J → 0 when the parameter ω/n → 1. In this case the angular velocity of the black hole is

13Our numerics works at finite temperature. At zero temperature, we should use another near horizon
expansion to get the full solution.
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close to the speed of light. Inside the hairy black hole, we find that there is no oscillation
of the scalar field and no Kasner inversion. So the black hole interiors are also similar to
the case of a real scalar field.

It is natural to suspect that the low temperature solutions are connected to the branch
of the boson stars at zero temperature. In other words, when the mass M/J of the boson
star at zero temperature approaches a critical value, the extremal BTZ black hole appears
and the system evolves to the hairy solution discussed above. Similar behavior has been
discussed in [9].

B The non-existence of the inner horizon in case II

In this appendix we first show that the non-existence of the inner horizon can not be proved
analytically using the methods developed in recent literature, see e.g. [2, 3, 30–40]. Then we
show that in the probe limit the backreaction of the scalar field is expected to destroy the
inner horizon of the BTZ black hole, which is consistent with our numerical results.

We start from the method widely used in literature for proving the no inner horizon and
show that they fail. The idea is to find an inconsistent relation with the assumption of the
existence of more than one event horizon, e.g. two event horizons zh and zi.

The first method is to obtain relations using the equations of motion [2]. From the
first equation of (3.26) we have

0 =
∫ zi

zh

(
fe−χ/2ϕϕ′

z

)′

dz =
∫ zi

zh

e−χ/2

z3

[
z2fϕ′2 + ϕ2

(
m2 + n2z2 − eχ

f
z2(ω + nN)2

)]
dz .

(B.1)

The first equality is because of f(zh) = f(zi) = 0. For the right hand side, although the
first term and second term in the integrand are negative because we have f(z) < 0 between
the two horizons and m2 < 0 but the last two terms are positive so that there is no conflict.
Another equality we find from the equations of motion is∫

dz
(
z2fϕ′2 + 2

)e−χ/2

z3 = 0 (B.2)

from which the nonexistence of the inner horizon can not be verified.
The second method is to use conserved quantity [3, 30]. We find there is a radial

conserved charge in our system

Q(z) = 1
z

eχ/2(fe−χ)′ − eχ/2

nz
(ω + nN)N ′ − 2f

z2 e−χ/2 −
∫ z

zh

dx
e−χ/2

x3 (4− 2m2ϕ2) (B.3)

and it can be checked Q′ = 0 by using equations of motion (2.7). Assuming there are two
horizons zh and zi and evaluating Q at the two horizons we have

ThSh + TiSi = 2π

∫ zi

zh

dz
e−χ/2

z3 (4− 2m2ϕ2) (B.4)

where Th,i and Sh,i are the temperature and thermal entropy at the outer and inner horizon.
Note that (B.4) are positive on both side so it can not be used to eliminate the inner horizon.
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The third method is essentially the same as the second one, i.e. using the Killing vector [40].
Assume that there are two horizons, which are both expected to be Killing horizons with
generators ξh,i = ∂t +Ωh,i ∂x. In order to guarantee the scalar ϕ to be invariant at the two
horizons, we must take Ωh = Ωi = Ω = ω

n and thus ξh = ξi = ξ. Then, we can integrate some
quantity associated with the only Killing vector ξ to get a contradiction.

More precisely, we use the equivalent expression of the Ricci identity ∇b∇bξa = −Rabξ
b

for the Killing vector

d ∗ dξ = ∗K, Ka ≡ 2Rabξ
b = 2(m2ϕ2 − 2)ξa . (B.5)

Integrating the 2-form ∗K on the timelike surface Σi
h of t = t0 from zh to zi, and using

Stokes’ theorem, we have ∫
Σi

h

∗K =
∫

Σi
h

d ∗ dξ =
∫

∂Σi
h

∗dξ (B.6)

with nonzero contributions to the above equation

(∗K)xz = 2(m2ϕ2 − 2)
√
−g, (∗dξ)x = −e−χ/2f ′/z . (B.7)

So the left and right sides of (B.6) can be calculated directly. The final result is

∫
Σi

h

dxdz
√
−g 2(m2ϕ2 − 2) = −2π

(
|f ′(zh)|e−

χh
2

zh
+ |f ′(zi)|e−

χi
2

zi

)
(B.8)

which can be simplified to

ThSh + TiSi = 2π

∫ zi

zh

e−χ/2

z3 (4− 2m2ϕ2) dz . (B.9)

It has the same form with (B.4), so it also fails to prove no inner horizon.
In the following, we provide an argument to show the nonexistence of the inner horizon

for black holes of case II in section 3.2. We consider the probe limit of the system, i.e.
a probe complex scalar field in the BTZ black hole background, to study the stability of
inner horizon following [20, 21]. We rewrite some useful formulas here for convenience. The
metric of BTZ black hole is (2.16), i.e.

ds2 = 1
z2

(
−fdt2 + dz2

f
+ (Ndt + dx)2

)
,

f = (z2 − z2
h)(z2 − z2

i )
z2

hz2
i

, N = − z2

zhzi
,

(B.10)

where zh is the outer horizon and zi is the inner horizon. The surface gravity κ and the
angular velocity Ω of the event horizons are

κh = z2
i − z2

h

zhz2
i

, Ωh = zh

zi
, (B.11)
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and similarly for the inner horizon

κi =
z2

i − z2
h

z2
hzi

, Ωi =
zi

zh
. (B.12)

We will consider the non-extremal BTZ black hole.
In the probe limit, the complex scalar field satisfy the following Klein-Gordon equation

∇a∇aφ − m2φ = 0 . (B.13)

For convenience, we introduce a new coordinate

z̃ = z2
h(z2

i − z2)
z2(z2

i − z2
h)

. (B.14)

In this new coordinate, the inner horizon of BTZ is at z̃ = 0, the outer event horizon is
at z̃ = 1 and the AdS boundary is at z̃ = ∞.

We consider the profile of the scalar field

φ = e−iωt+inx ϕ(z̃) = e−iωt+inx z̃
−i

ω−nΩi
2κi (1− z̃)−i

ω−nΩh
2κh F (z̃) . (B.15)

Then F should satisfy a hypergeometric equation

z̃(1− z̃)F ′′(z̃) + (c − z̃(a + b + 1))F ′(z̃)− abF (z̃) = 0 (B.16)

with

a = 1
2

(
∆− i

ω − nΩi

κi
− i

ω − nΩh

κh

)
,

b = 1
2

(
2−∆− i

ω − nΩi

κi
− i

ω − nΩh

κh

)
,

c = 1− i
ω − nΩi

κi
.

(B.17)

Here ∆ is the conformal dimension of dual scalar operator which satisfies

m2 = ∆(∆− 2) . (B.18)

Near the outer event horizon z̃ = 1, the solution of (B.16) is

F = c1 2F1
(
a, b, a + b − c + 1, 1− z̃

)
+ c2 (1− z̃)(c−a−b)

2F1
(
c − b, c − a, c − a − b + 1, 1− z̃

)
(B.19)

where c1, c2 are constants of integration. We consider stationary scalar clouds which satisfy
ω = nΩh [41]. This condition is essentially (2.9) and similar consideration can also be seen in
the four dimensional case [4]. With the ingoing condition at the outer horizon, the scalar
field should take the form

ϕ = ϕh z̃
−i

ω−nΩi
2κi 2F1

(
a, b, a + b − c + 1, 1− z̃

)
(B.20)
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We will analyze its behavior near the inner horizon for this solution. Near the inner horizon
z̃ → 0, the scalar field has the form

ϕ ∼ ϕh
π csc(cπ)

Γ(a)Γ(b)Γ(2− c) cos
(

ω − nΩi

2κi
log(z̃)

)
(B.21)

which oscillates dramatically with constant amplitude and the frequency of the oscillation
increases when approaching the inner horizon. This fact indicates that the inner horizon
will be backreacted and destroyed due to the scalar filed.

Moreover, we can study the behavior of energy flux at the inner horizon. The energy
momentum tensor of scalar field is

Tab =
1
2(∂aφ∂bφ

∗ + ∂aφ∗∂bφ)−
1
2gab

(
∂cφ∂cφ∗ + m2φφ∗

)
(B.22)

We first define the tortoise coordinate for (B.10),

dr∗
dz

= − 1
f

, r∗ = − 1
2κi

log
[

zi − z

zi + z

(
z + zh

z − zh

)zi/zh
]

(B.23)

the inner horizon and event horizon correspond to r∗ = ∞ and r∗ = −∞ respectively. Then
we can define the advanced and retarded time coordinates

u = t − r∗ , v = t + r∗ . (B.24)

Finally we define the Kruskal coordinate near the inner horizon

U = −eκiu , V = −e−κiv , x̃ = x − Ωi t (B.25)

where the inner horizon is located at V = 0.
The energy flux at inner horizon

TV V = ∂xa

∂V

∂xb

∂V
Tab

= 1
4κ2

i V 2

(
Ttt + 2ΩTtx +Ω2Txx + f2

(
∂z̃

∂z

)2
Tz̃z̃

)
, (B.26)

where xa = {t, x, z}. For the solution we considered, we have TV V ∼ 1/V 2 near the inner
horizon V → 0. This divergent energy momentum tensor will contribute to the Einstein’s
equation and destroy the inner horizon. Therefore, the inner horizon of the BTZ black hole
in the probe limit is not stable. Similar results has been studied in [20–23].
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