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1 Introduction and summary

It has been proposed by Harvey and Moore that it is possible to endow the space of BPS
states (for systems with enough supersymmetries) with an algebraic structure [1, 2] and
define a BPS algebra. For the IIA string on toric Calabi-Yau threefolds, the BPS algebra of
the 1

2 -BPS states was first constructed in the form of a cohomological Hall algebra (CoHA)
in [3]. Using the description of these BPS states in terms of 3D molten crystals [4, 5], one
can also bootstrap their BPS algebras in the form of quiver Yangians [6]. For simple cases, it
has been demonstrated that the latter is the Drinfeld double of the former [7, 8].

A natural question is how to generalize to toric Calabi-Yau four-folds (CY4), namely, to
construct BPS algebras describing BPS D-branes on CY4. However, this is a much harder
question. To illustrate the difficulty, it is enough to compare the simplest cases in these two
dimensions: C3 and C4. First of all, the D6-D0-branes in C3 can be described in terms of
plane partitions (a 3D generalization of the 2D Young diagrams), whereas the D8-D0-branes
in C4 are described by the 4D version and are called solid partitions.

To start with, solid (4D) partitions are notorious for the difficulty of writing down their
generating function, which is presumably related to the BPS partition function of D8-D0
branes in C4, if we assume that each configuration is weighted by q|π| with |π| being the number
of 4D boxes in the solid partition π. Recall that the conjectured generating function of solid
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partitions (with a similar structure) of MacMahon famously failed at level 6. As a comparison,
ordinary (2D) partitions and plane (3D) partition both have rather simple generating functions,
which can be written as the plethystic exponents of even simpler expressions.

This problem has been clarified in [9]. In the ADHM construction that describes D-
branes wrapping toric Calabi-Yau varieties [10–13], solid partitions correspond to fixed
points on the ADHM space for 8D instantons, and the measure should be given by the
loop-correction determinants in the instanton background, instead of the simple one in which
each configuration is weighted by q|π|. Adopting this measure, [9] proposed a closed-form
formula for the generating function of solid partitions, as a plethystic exponent.1

The next difficulty appears at an early stage of the bootstrap procedure. The bootstrap-
ping procedure of [6] starts with a certain ansatz on the actions of operators of the BPS
algebra (in the Chevalley basis) on the representation vector |π⟩ labeled by a 3D crystal
(a plane partition for the C3 case). We first organize all the Cartan/creation/annihilation
operators into three fields of z, using a complex spectral parameter z. The eigen-values
of each crystal configuration under the action of the Cartan operators are correspondingly
organized into a function of z, referred to as the “charge function” in [6]. The action of the
creation and annihilation operators depends on the charge function. To fulfil some basic
requirement on the BPS algebra, the charge function has the important property that for
each crystal configuration, each pole of its charge function either corresponds to a position
where the creation operators of the BPS algebra can add a new atom, or a position where
an existing atom of the crystal can be removed by the annihilation operators of the BPS
algebra.2 In 3D, this property then determines the charge function and furthermore the
action of the BPS algebra on the representation space, which then allows us to determine
the algebraic relations of the BPS algebra itself.

Therefore one of the most important steps in determining the BPS algebra is to construct
the charge function with the important property explained above. In the 3D case, the charge
function that has these properties actually takes a very simple form: each box in the partition
contributes one rational factor, which is defined in terms of a basic rational function (the
“bonding factor”) that eventually enters the definition of the BPS algebra. However, this
simple form of charge function does not generalize to 4D. Already for the simplest case of C4,
a charge function with this simple factorized form does not have the correct pole structure
that can capture the adding and removing 4D boxes from a given solid partition.

The aim of this note is to construct the charge function for solid partitions, as a first
step towards constructing the BPS algebra describing D8-D0 branes on C4. We first arrive at
a conjectured charge function by examining all solid partitions with up to 15 boxes, and then
prove that it indeed obeys all the requirements for all solid partitions, by analyzing local
shapes of the boundaries of the solid partitions. Relative to the 3D counterpart, the crucial
new feature of the final result (4.26) is the appearance of the contributions from certain
4-box and 5-box clusters, apart from the contributions from single boxes. We expect that

1For subsequent development see [14–20]; for recent progress on counting BPS states of D-branes wrapping
toric Calabi-Yau fourfolds (CY4) and associated geometric structures see [21–24].

2In this paper, since we will only deal with D-dimensional partitions, henceforward we will refer to these
atoms by “boxes”, which seem to be the standard terminology for D-dimensional partitions.
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this construction can be straightforwardly generalized to other toric Calabi-Yau fourfolds
and the new features will be crucial in constructing the BPS algebra for C4.3

This paper is organized as follows. In section 2 we give a brief review of the construction
of the effective theory of D-brane systems on C4 and the counting problem for BPS states
in this system. In section 3 we review the construction of solid partitions. The main result
is in section 4, where we construct the charge function for the solid partitions. Then in
section 5 we propose some interesting problems for further research. Finally, in appendix A
we review the Young diagrams (2D) and plane partitions (3D) together with the construction
of their charge functions; and appendix B contains material for the effective theory on the
D8 brane world-volume.

2 BPS D-branes on toric Calabi-Yau fourfolds

The effective theory of D-branes wrapping toric Calabi-Yau varieties is known to flow to an
effective super-Yang-Mills-Higgs theory whose gauge-matter-interaction content is encoded
in a quiver [11].

In the case of toric Calbi-Yau fourfolds (CY4), the effective theory is given by a 2D
N = (0, 2) theory (see appendix B for details). The corresponding quiver can be lifted to
a periodic extended quiver on a 3-torus [25–28]. In addition to the usual gauge and chiral
multiplets encoded in the nodes and oriented edges of the quiver, the 2d N = (0, 2) theory
has a Fermi multiplet encoded in the unoriented edges of the extended quiver. The usual
F-term of N = 1 4d theories (see appendix B) is replaced by EJ-terms defined by a signed
sum over faces with unoriented edges.

In this note, we concentrate on the simplest toric CY4: C4. We follow [25] and consider a
quiver with canonical framing I, which represents a canonical D8-brane wrapping the whole C4:

B1

Λ(1)

B2

Λ(2)

B3

Λ(3)

B4

I
,

Ek = [B4, Bk] , k = 1, 2, 3 ;

WJ =
3∑

i,j,k=1
ϵijkTr

(
Λ(i)BjBk

)
.

(2.1)

For the case of C4, the periodic quiver and the EJ-vacuum equations are:

B2

B3

B1

Λ(2)

Λ(1)

Λ(1)

J E

Λ(1) : B2 ·B3 −B3 ·B2 = 0 , B4 ·B1 −B1 ·B4 = 0
Λ(2) : B3 ·B1 −B1 ·B3 = 0 , B4 ·B2 −B2 ·B4 = 0
Λ(3) : B1 ·B2 −B2 ·B1 = 0 , B4 ·B3 −B3 ·B4 = 0

(2.2)

3We are not aware of an algebra with representations furnished by solid partitions. This suggests that the
resulting BPS algebra for solid partitions could turn out to be a new algebraic structure, e.g. a “Mama-algebra”
in the sense of [9].
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The vacuum equations for the fields Ba and I consist of the canonical D-term and the
EJ-term discussed above:

D-term:
4∑

i=1

[
Bi, B

†
i

]
+ II† = ζ1 ,

EJ-term: [Bi, Bj ] = 0, i, j = 1, 2, 3, 4 .
(2.3)

Note that these vacuum equations are equivalent to the ADHM description of instantons
on R8 [9, 15, 29].

Classical vacua are fixed points on this variety that correspond to equivariant 8D
instantons in the Ω-background. We can count them in a way similar to the 4D or 6D
case [30], using a theorem of King [31]. Consider the equivariant monomials in the quiver
path algebra:

A = C[B1, B2, B3, B4]/⟨[Ba, Bb] = 0⟩ , (2.4)

which act on a cyclic vector I. All such monomials can be enumerated by points of the positive
sedecant Z4

≥0 in a 4D integral lattice. We denote the canonical basis in the 4D space by

e⃗1 =
(

1 , 0 , 0 , 0
)
,

e⃗2 =
(

0 , 1 , 0 , 0
)
,

e⃗3 =
(

0 , 0 , 1 , 0
)
,

e⃗4 =
(

0 , 0 , 0 , 1
)
.

(2.5)

A monomial is defined by the coordinates of a point in this lattice:

(i, j, k, l) ∈ Z≥0 ←→ Bi
1B

j
2B

k
3B

l
4 · I . (2.6)

Some of these operators acquire vacuum expectation values (vevs) when acting on the
vacuum state. A set of operators with vevs forms a subset of points (which will correspond
to boxes in a solid partition) in Z4

≥0, which we call a 4D crystal. The stability conditions on
the fixed points of the quiver moduli space, together with the EJ-term constraints, impose a
convexity constraint on possible crystal configurations, known in the literature as the melting
rule [4, 30, 32–36]. As a result, the BPS vacua of D-brane systems wrapping toric CY4’s
are described by a melting crystal model.

In the current case, the melting rule is:

For any box □ ∈ Z4
≥0,

if there is another box □′ ∈ K at x⃗(□′) = x⃗(□) + e⃗k for any k = 1, 2, 3, 4 ,
then □ ∈ K.

(2.7)

K is called a molten crystal if it satisfies the melting rule.
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3 Solid partitions

A solid partition of an integer n is a three-dimensional array π of non-negative integers
πi,j,k ≥ 0 satisfying:∑

i,j,k

πi,j,k = n, πi+1,j,k ≤ πi,j,k, πi,j+1,k ≤ πi,j,k, πi,j,k+1 ≤ πi,j,k, ∀ i, j, k ∈ Z≥0. (3.1)

The (naive) generating series for solid partitions, which is defined as

P (q) ≡
∑
π

q|π| (3.2)

is given by [37]:

P (q) = 1 + q + 4q2 + 10q3 + 26q4 + 59q5 + 140q6 + 307q7 + 684q8 + 1464q9

+ 3122q10 + 6500q11 + 13426q12 + 27248q13 + 54804q14 + . . . .
(3.3)

Unlike the 2D and 3D counterparts, the coefficients in its plethystic logarithm are neither
monotonic nor all positive:

f(q) = PL[P ](q) = 1 + q + 3q2 + 6q3 + 10q4 + 15q5 + 20q6 + 26q7 + 34q8

+ 46q9 + 68q10 + 97q11 + 120q12 + 112q13 + 23q14

− 186q15 − 496q16 − 735q17 − 531q18 + 779q19 + . . . ,

(3.4)

where the non-monotonicity first appears at q13 and the first negative term appears at q15.4
A solid partition can be visualized as stacking 4D unit-size boxes in the corner of a

4D room. Namely, a solid partition π can be represented by a subset of nodes (boxes in
the solid partition) of Z4

≥0, with coordinates:

(i, j, k, l), 0 ≤ l < πi,j,k. (3.5)

A set of solid partitions is equivalent to a set of 4D crystals in Z4
≥0 satisfying the melting

rule (2.7), thus we will use these two terms interchangeably.
For a solid partition π, we define two sets of boxes

Add(π) ⊂ Z4
≥0 and Rem(π) ⊂ Z4

≥0 (3.6)

as positions in the 4D lattice where the corresponding boxes can be added to π or removed
from π in such a way that the resulting configurations are again solid partitions. (See figure 1
for the illustration of the 3D counterparts.)

In what follows, we will work with the weight space. To each field Bi, we assign a complex
weight (or flavor parameter) hi. These weights measure the equivariant toric action on the CY4:

(x, y, z, w) 7→ (eh1x, eh2y, eh3z, eh4w) (3.7)
4This is what makes it impossible to interpret the naive generating series as the multi-particle partition

function of a physics system, in which the single-particle partition function is given by its plethystic logarithm.
To relate the solid partitions to a physical system, one needs to adopt a non-trivial measure instead, such as
done in [9].
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Figure 1. An example of plane partition π (white), its set of addable boxes Add(π) (red), and its
set of removable boxes Rem(π) (blue).

and satisfy the Calabi-Yau condition:

h1 + h2 + h3 + h4 = 0 . (3.8)

Consider a projection:

prj : (i, j, k, l) 7−→ i h1 + j h2 + k h3 + l h4 . (3.9)

The physical meaning of this projection is the following: an operator Bi
1B

j
2B

k
3B

l
4I which

acquires an expectation value in the SUSY vacuum has a flavor charge given by prj(i, j, k, l).
We assume that the weights hk are generic complex numbers that satisfy (3.8). Therefore

three of these numbers, say h1,2,3, form a non-reduced basis in the module Zh1 + Zh2 + Zh3
over Z, so that the complex numbers (i h1 + j h2 + k h3) and (i′ h1 + j′h2 + k′h3) for two
different tuples (i, j, k) and (i′, j′, k′) are linearly independent over Z. In other words, if
one has a decomposition of a number c:

c = i h1 + j h2 + k h3, i, j, k ∈ Z , (3.10)

then this decomposition is unique.
As we have just seen, the projection operator prj maps the positive sedecant (i.e. 4D

orthant) Z4
≥0, where the 4D crystal associated with the solid partition π is located, into

a 3D body-centered cubic (BCC) Bravais lattice, denoted as B (see figure 2). Note that
following (3.10) (which in turn due to the Calabi-Yau constraint (3.8)), the weight space
is equivalent to the 3D BCC lattice B, therefore we will use h1,2,3,4 (subject to ∑4

i=1 hi)
to denote both the basis (as complex numbers) of the weight space and the basis (as 3D
vectors) of the lattice B.5 Correspondingly, we can use the same letter, such as z, u, c etc, to
denote both a point in the 3D lattice B and a point in the weight space, which the charge
function is a meromorphic function of.

Voronoi cells (“bricks”) of the BCC lattice are truncated octahedra and furnish a
tessellation of R3. A boundary of a solid partition consist of plaques of 3D cubes, which can

5For example, we can draw the 3D lattice B by choosing the following representation for its vectors:

h1 7→ (1, −1, −1) , h2 7→ (−1, 1, −1) , h3 7→ (1, 1, 1) , h4 7→ (−1, −1, 1) .
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h1 h2

h3
h4

Figure 2. A parameterization of 3D BCC Bravais lattice B.

a) Empty 4D corner b) One hypercubic box in the 4D corner

Figure 3. Two tessellations using 3D Voronoi cells, whose plane partition counterparts are tessellations
(8) and (1) in figure 7, respectively.

be mapped to parallelepipeds under prj. Therefore tessellations of R3 by parallelepipeds are
in 1-to-1 correspondence with solid partitions π. See figure 3 for two examples.

Let us consider the lift map:

ℓ : B −→ Z4
≥0 , (3.11)

where the quadruplet ℓk=1,...,4 of non-negative integers is defined uniquely in terms of a
vector c ∈ B by the following rule:

∃! {ℓk}k=1,...,4 : c =
4∑

i=1
ℓihi, ℓi ≥ 0, 0 ∈ {ℓk}k=1,...,4. (3.12)

Given a solid partition π, we can translate it to the field of heights µ(c), defined as the
number of boxes projected to the same point c ∈ B by prj.

Then using the lift map (3.11), we can map a field of height µ(c) back to a subset
of nodes of Z4

≥0:

L : µ(c) 7→
{(

ℓ1(c) + u , ℓ2(c) + u , ℓ3(c) + u , ℓ4(c) + u
)}µ−1

u=0
. (3.13)

The height field µ is a section of the Z4
≥0 → B fibration with a non-trivial connection.

Let us parallel transport a point (c ∈ B, µ ∈ Z≥0) along the vector hk in the following
way. First, we lift it with L to the top-most box in Z4

≥0, then we move this point with
the 4D lift ek of the vector hk, and finally we project back to B with prj. The result of
this parallel-transport operation is:

T3D
k = prj ◦ T4D

k ◦ L : (c, µ) 7→ (c+ hk , µ+ ∆k(c)) , (3.14)
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where
∆k(c) := δ0,ℓk(c) δ0,ℓk(c+hk) . (3.15)

As we can see, the connection ∆k(c) acquires only the values 0 or 1 and it depends only
on the edge (c → c + hk) ∈ B, rather than on the fiber value µ, therefore we will call
the ∆k(c) the edge weight.

Now we translate the melting rule (2.7) for the 4D crystal, which ensures that π is indeed
a solid partition, into a constraint on the height fields µ(c). The melting rule (2.7) simply
means that when one parallel transports the top box hovering over the projection c ∈ B

along hk, it should not get below the top box hovering over c+ hk ∈ B. Thus we arrive at
the following rewriting of the melting rule (2.7) in terms of the height field:

µ (c+ hk) ≤ µ (c) + ∆k(c), ∀c ∈ B, k = 1, . . . , 4 . (3.16)

4 Charge function for solid partitions

4.1 Strategy

As summarized in section 1, our ultimate goal is to construct the BPS algebra that acts on
the set of solid partitions in a manner similar to the 3D case. As reviewed in appendix A.2,
the crucial ingredients in the construction of the BPS algebra for the C3 case is the charge
function (A.21) that satisfies the properties listed in section A.2. Therefore, for the 4D
case, we will aim to construct a charge function ψπ(z) on solid partitions π satisfying the
following properties:

1. ψπ(z) is a meromorphic function of z.

2. All the poles of ψπ(z) are simple

3. All the poles of ψπ(z) are in 1-to-1 correspondence with the set of projected coordinates
prj (x⃗(□)), with the boxes □ ∈ Add(π) ∪ Rem(π) and x⃗(□) their 4D coordinates.

In the 3D case, the plane partitions represent BPS states of D-branes on the simplest
toric CY3: C3, and the corresponding BPS algebra is the affine Yangian of gl1, whose Cartan
generators on vector |π⟩ have eigenvalues that can be packaged in ψπ(z) [6], see (A.21).
The 4D charge function ψπ(z) that we are trying to define in this section will have an
analogous physical meaning in 4D.

As we will see shortly, a simple definition that is analogous to the 3D version (A.21),
namely (4.3), which includes contributions only from individual boxes, together with the
constraint (3.8), fails already at the two-box level.

Our strategy is to use eq. (4.4) below as a starting point, and implement the process
of growing solid partitions level by level starting from the vacuum. At each level, the
requirements from the list above will demand introducing additional contributions to the
charge function. We will see that not only do we have to modify the contribution from each
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individual 4D box (4.4), but we also need to include contributions from certain 4-box and
5-box clusters. We arrive at a conjectured form of the charge function by implementing
this process from the vacuum (level-0) to level-15. Then we use computer to check higher
levels and finally give a proof in section 4.3.

4.2 Charge function conjectured

In this subsection, we will try to construct an expression for the charge function that obeys
all the requirements listed above. The full solid partition is an uplift of a 3D periodic
quiver, namely it can be grown from the vacuum layer by layer according to the 3D periodic
quiver. For example, consider the process that starts from the vacuum and reaches the
first box in the 2nd layer:

vacuum −→ (0, 0, 0, 0) −→ e⃗i −→ e⃗i + e⃗j ̸=i −→ e⃗i + e⃗j ̸=i + e⃗k ̸=j ̸=i −→
4∑

i=1
e⃗i (4.1)

In this process, we try to define the charge function in such a way that for each solid partition
configuration, the set of poles of its charge function accounts for all the adding poles and
removing poles. Apart from the condition that it has to provide all the necessary poles, we
also require that there are no spurious poles (i.e. poles that do not belong to the projection
of coordinates prj (x⃗(□)) of the boxes □ ∈ Add(π) ∪ Rem(π)).

1. vacuum −→ (0, 0, 0, 0).
From the vacuum, i.e. the empty 4D room, we can only add a single box, at coordinate
(0, 0, 0, 0), with equivariant weight h□ = 0. In order to add this box, we need the
contribution from the vacuum to the charge function to be:

ψπ(z) ∋ 1
z
. (4.2)

2. (0, 0, 0, 0) −→ e⃗i.
From the first box at (0, 0, 0, 0), we can add all its four nearest neighbors, namely the
boxes □i at e⃗i, with weight h□ = hi, where i = 1, 2, 3, 4. In order to add these four
boxes, we need:

ψπ(z) = 1
z

∏
Φ1∈π

φ1(z − c(Φ1)) , (4.3)

where each individual 4D box Φ1 contributes a bonding factor

φ1(z) =
4∏

i=1

z + hi

z − hi
, (4.4)

together with the constraint (3.8). The poles guarantee that we can add the boxes, and
they are in one-to-one correspondence with the projections prj(e⃗i); whereas the zeros
are to cancel the pole of the box at the origin so that it can no longer be removed once
some of its nearest neighbors have been added. This is parallel to the 3D case (A.21).
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3. e⃗i −→ e⃗i + e⃗j ̸=i.
This is the first step where we see the need to modify the expression (4.3) with (4.4).
First, we know from the melting rule (2.7) that in order to add the box at e⃗i + e⃗j ̸=i, we
need both the boxes at e⃗i and e⃗j ̸=i to be present first.

Consider the configuration with two boxes, one at the origin and one at one of its
nearest neighbor sites, say at e⃗1. Its charge function is

ψ□0□1(u) = 1
u
· φ1(u) · φ1(u− hi)

= 1
✚u
· (u+ h1)(u+ h2)(u+ h3)(u+ h4)

(u− h1)(u− h2)(u− h3)(u− h4)

· ✚u(u+ h2 − h1)(u+ h3 − h1)(u+ h4 − h1)
(u− 2h1)(u− h2 − h1)(u− h3 − h1)(u− h4 − h1) .

(4.5)

We immediately see the difference from the 3D case: now there are three spurious
poles at

h1 + hj with j = 2, 3, 4 , (4.6)

corresponding to adding of the three boxes at e⃗1 + e⃗j ̸=1,6 which haven’t been canceled
by the zeros from φ1(u) defined in (4.4). To remedy this, we modify the contribution
from individual boxes (4.4) to7

φ1(z) =
4∏

i=1

z + hi

z − hi

∏
1≤i<j≤4

(z + hi + hj) (4.7)

together with the constraint (3.8). This modification cures the problem with spurious
poles for two-box configurations.

4. e⃗i + e⃗j ̸=i −→ e⃗i + e⃗j ̸=i + e⃗k ̸=j ̸=i.
At this step, we will see the need to include contributions from certain clusters of
4-boxes, apart from those from individual boxes. First, we know from the melting
rule (2.7) that in order to add the box at e⃗i + e⃗j ̸=i + e⃗k ̸=j ̸=i, we need all three boxes at

e⃗i + e⃗j ̸=i , e⃗i + e⃗k ̸=j ̸=i , e⃗j ̸=i + e⃗k ̸=j ̸=i (4.8)

to be present first, which in turn need the three boxes at

e⃗i , e⃗j ̸=i , e⃗k ̸=j ̸=i (4.9)

to be present, which in turn need the box at the origin to be present. Now consider the
1 + 3 + 3 = 7-box configuration, with the 7 boxes at the coordinates

(0, 0, 0, 0) , e⃗i , e⃗j , e⃗k , e⃗i + e⃗j , e⃗j + e⃗k , e⃗k + e⃗i , (4.10)
6The reason that these poles are spurious is that we need both the boxes at e⃗i and e⃗j ̸=i to be present first

in order to add the box at e⃗i + e⃗j ̸=i.
7Another choice is to introduce the contribution from the 2-box cluster to cancel this spurious pole, but

this is a less efficient route since we would soon need to introduce the contribution from some additional 2-box
cluster (with different type of configuration) at level-3.
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with i ̸= j ̸= k. Its charge function (4.3) with the contribution from individual boxes
given by (4.7), instead of having a desired pole at hi + hj + hk, has a zero there instead!
To remedy this,8 we introduce a contribution

φ4,ℓ(u) = 1
(u+ hℓ)2 (4.11)

from the 4-box cluster at
(0, 0, 0, 0) , e⃗i , e⃗j , e⃗k (4.12)

with i ̸= j ̸= k ̸= ℓ. More generally, consider a 4-box cluster with

□ , □ + e⃗i , □ + e⃗j , □ + e⃗k . (4.13)

It contributes a factor
φ4,ℓ(u− h□) = 1

(u+ hℓ − h□)2 , (4.14)

where (i, j, k, ℓ) are a permutation of (1, 2, 3, 4). Namely, now

ψπ(z) = 1
z

∏
Φ1∈π

φ1 (z − c (Φ1))
∏

Φ4,ℓ∈π

φ4,ℓ (z − c (Φ4,ℓ)) . (4.15)

5. e⃗i + e⃗j ̸=i + e⃗k ̸=j ̸=i −→
∑4

i=1 e⃗i

Now we will demonstrate the need of introducing contributions from certain 5-box
clusters. First, we know from the melting rule (2.7) that in order to add the box at∑4

i=1 e⃗i, we need all four boxes at( 4∑
i=1

e⃗i

)
− e⃗j with j = 1, 2, 3, 4 (4.16)

to be present first, which in turn need the 6 boxes at

e⃗i + e⃗j ̸=i i, j = 1, 2, 3, 4 (4.17)

to be present, which need all 4 boxes at

e⃗i with i = 1, 2, 3, 4 (4.18)

to be present, which in turn need the box at the origin to be present.
Consider the 1 + 4 + 6 + 2 = 13-box state

(0, 0, 0, 0) ,
e⃗i , i = 1, 2, 3, 4 ,
e⃗i + e⃗j , i ̸= j = 1, 2, 3, 4 ,( 4∑

i=1
e⃗i

)
− e⃗j , j takes two value from {1, 2, 3, 4} .

(4.19)

8Note that it is impossible to cure this new problem by simply modifying the single box contribution, as
what we have done for the spurious poles from the 2-box configurations, without spoiling the correct charge
function properties for configurations with fewer than 7 boxes.
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For this configuration, the charge function (4.15) that we have determined so far has
a single pole at z = 0, which we know to be spurious from the melting rule (2.7).
Similarly, the 1 + 4 + 6 + 3 = 14-box state

(0, 0, 0, 0) ,
e⃗i , i = 1, 2, 3, 4 ,
e⃗i + e⃗j , i ̸= j = 1, 2, 3, 4 ,( 4∑

i=1
e⃗i

)
− e⃗j , j takes three value from {1, 2, 3, 4}

(4.20)

has a double pole at z = 0, which is also spurious. To remedy the two problems, we
introduce a contribution from the 5-box cluster at

(0, 0, 0, 0) , e⃗i i = 1, 2, 3, 4 (4.21)

with
φ5(u) = u2 (4.22)

Now we check the 1 + 4 + 6 + 4 = 15-box configuration with

(0, 0, 0, 0) ,
e⃗i , i = 1, 2, 3, 4 ,
e⃗i + e⃗j , i ̸= j = 1, 2, 3, 4 ,( 4∑

i=1
e⃗i

)
− e⃗j , j = 1, 2, 3, 4

(4.23)

This is the configuration from which one can add the first box at the 2nd layer, at
(1, 1, 1, 1). Including the additional contribution (4.22), the charge function now has
the correct single pole at z = 0! (Otherwise, it would have had a triple pole at z = 0.)
More generally, for a 5-box configuration with

□ , □ + e⃗i i = 1, 2, 3, 4 , (4.24)

it contributes a factor
φ5(u− h□) = (u− h□)2 (4.25)

Summarizing, these iterative considerations fix the charge function for a solid partition
π to be

ψπ(z) = 1
z

∏
Φ1∈π

φ1 (z − c (Φ1))
∏

Φ4,k∈π

φ4,k (z − c (Φ4,k))
∏

Φ5∈π

φ5 (z − c (Φ5)) , (4.26)

with 4 types of contributions:

• The first factor 1
z is the contribution from the vacuum, with a pole at 0 that allows the

first box to be added.
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• A singlet Φ1 is a single box □ ∈ π. The contribution is the function

φ1(z) =
4∏

i=1

z + hi

z − hi
×

∏
1≤i<j≤4

(z + hi + hj) , (4.27)

shifted by the coordinate c (Φ1), which is the projected coordinate of the box prj (x⃗ (□)).

• A fan quadruplet Φ4,k is a quadruplet of boxes □i=1,2,3,4 ∈ π satisfying the coordinate
constraint:

x⃗(□2)− x⃗(□1) = e⃗a, x⃗(□3)− x⃗(□1) = e⃗b, x⃗(□4)− x⃗(□1) = e⃗c , (4.28)

where the indices {a, b, c, k} represent any permutation of {1, 2, 3, 4}. Its contribution
is the function

φ4,k(z) = 1
(z + hk)2 , k = 1, 2, 3, 4 , (4.29)

shifted by the coordinate c (Φ4), which is the projected coordinate of the first box
prj (x⃗ (□1)).

• A quintuplet Φ5 is a quintuplet of boxes □i=1,2,3,4,5 ∈ π satisfying the coordinate
constraint:

x⃗(□i+1)− x⃗(□1) = e⃗i, ∀i = 1, 2, 3, 4 . (4.30)

Its contribution is the function
φ5(z) = z2 . (4.31)

shifted by the coordinate c (Φ5), which is the projected coordinate of the first box
prj (x⃗ (□1)).

We have checked using computer that the charge function (4.26) obeys the required
properties for all solid partitions up to 19 boxes, and for all solid partitions confined in a
3× 3× 3× 3 hypercube. In the next subsection, we will prove that the charge function (4.26)
obeys the required properties for all solid partitions.

4.3 Proof

In this subsection, we give a proof that the charge function (4.26) satisfies the requirements
for all solid partition configurations. The proof proceeds in three steps:

1. First we translate the expression of the charge function (4.26), which is a function
directly of the solid partition configurations, into the potential function w(c)[µ] of the
lattice point c ∈ B and the height field µ(x). The two functions contain the same
amount of information.

2. We then show that w(c)[µ] depends only on the value of the height field µ at point c
and some of its nearest and next-to-nearest neighbor points in the lattice B. We call
this small collection of neighbor points of the lattice B a local patch and prove that
the set of inequalities (3.16) has only a finite number of integral solutions on any local
patches.
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3. Finally, we simply analyze the behavior of the charge function (4.26) via its correspond-
ing potential function w(c)[µ] for all solutions computed in the previous step and show
that the charge function (4.26) has all the desired properties on all these solutions and
thus conclude the proof.

4.3.1 Local potential

Let us introduce the local potential w for a lattice point c ∈ B: it is defined as the order
of the pole of the charge function ψπ at point c:

ψπ(z) = β

(z − c)w(c) × (1 +O(z − c)), as z → c . (4.32)

Apparently, when w(c) is negative, ψπ has a zero of order “−w” at this point.
From (4.26) we can derive the expression for the local potential w(c) for the lattice

point c to be

w(c) =
4∑

k=1
(µ(c− hk)− µ(c+ hk))−

∑
1≤i<j≤4

µ(c+ hi + hj)+

+ 2
4∑

k=1
min

1≤i≤4
i ̸=k

{
µ(c+ hk + hi)−∆i(c+ hk)

}
− 2 min

1≤i≤4

{
µ(c+ hi)−∆i(c)

}
+ δc,0 ,

(4.33)

where the first two terms come from individual boxes Φ1, the next two terms are the
contributions from the quadruplets Φ4,k and the quintuplets Φ5, respectively, and the last
term is from the vacuum contribution in (4.26). While the contribution from Φ1 is easy to
understand, let us explain the other two in more detail.

To capture the contribution from a cluster of boxes such as Φ4,k and Φ5, we first need
to determine all the situations when the position of the box □ and all its neighboring
positions along the required edges e⃗k are filled. Consider a row of µ(c) boxes hovering
over some position c: {

ℓ⃗(c) , ℓ⃗(c) + s⃗ , . . . , ℓ⃗(c) + (µ(c)− 1)s⃗
}

(4.34)

where

ℓ⃗(c) :=
4∑

k=1
ℓk(c)e⃗k and s⃗ :=

4∑
k=1

e⃗k . (4.35)

Now we shift all these boxes by a vector e⃗k. This is equivalent to the parallel transport
of the corresponding sections by T3D

k :

Λ1 :=
{
ℓ⃗(c+ hk) + ∆k(c)s⃗ , ℓ⃗(c+ hk) + (∆k(c) + 1)s⃗, . . . , ℓ⃗(c+ hk) + (∆k(c) + µ(c)− 1)s⃗

}
.

(4.36)

Then we compare it with the row of boxes hovering over c + hk:

Λ2 :=
{
ℓ⃗(c+ hk) , ℓ⃗(c+ hk) + s⃗ , . . . , ℓ⃗(c+ hk) + (µ(c+ hk)− 1)s⃗

}
. (4.37)
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Using the set of inequalities (3.16) and ∆k(c) ≥ 0, we find that the size of the intersection
of two sets of boxes (4.36) and (4.37) equals:

|Λ1 ∩ Λ2| = µ(c+ hk)−∆k(c) . (4.38)

To compute the size of the intersection of all sets over all required directions e⃗k, we only
need apply the minimum function in (4.33).

4.3.2 Solving inequalities locally

Now let us consider a local “patch” of nodes in the lattice B that are close to point c:

Πc = {c} ∪ {c± hk}1≤k≤4 ∪ {c+ (hi + hj)}1≤i,j≤4
i ̸=j

, (4.39)

The first and second subsets of this patch represent the center and the 8 vertices of the cube
in the 3D BCC Bravais lattice cell (see figure 2), respectively, while the last subset represents
the 6 boxes sitting at the centers of the 6 neighboring BCC cells, across each face of the cube.
Below we draw this patch with all the oriented edges c → c + hk in it:

∆1 ∆2

∆3∆4

µ0

µ1

µ2

µ3

(4.40)

Let us first consider a fibration of the height field over an oriented cycle in patch Πc

that passes through the box at the center c, then at one of the four vertices (say at c+ h1),
then at the center of the neighboring cell (say at c+ h1 + h2), then the vertex c− h4, before
coming back to the starting point (see the path marked by the green color in (4.40)):(

c

µ0

)
+h1−→

(
c+ h1
µ1

)
+h2−→

(
c+ h1 + h2 = c− h3 − h4

µ2

)
+h3−→

(
c− h4
µ3

)
+h4−→

(
c

µ0

)
(4.41)

Using the set of inequalities (3.16), one can derive the following ranges for the possible heights
of the neighboring boxes, µ1,2,3, relative to that of the box at the center, µ0:

µ1 ≤ µ0 + ∆1
µ2 ≤ µ1 + ∆2
µ3 ≤ µ2 + ∆3
µ0 ≤ µ3 + ∆4

⇒
µ0 −∆2 −∆3 −∆4 ≤ µ1 ≤ µ0 + ∆1

µ0 −∆3 −∆4 ≤ µ2 ≤ µ0 + ∆1 + ∆2
µ0 −∆4 ≤ µ3 ≤ µ0 + ∆1 + ∆2 + ∆3

, (4.42)

where ∆i are the corresponding edge weights, which take the values of 0 or 1. Such cycles
can be drawn through all the boxes at the vertices and at the centers of the neighboring
cells in patch Πc. It follows that, on the patch Πc, the set of inequalities (3.16) allows only
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Figure 4. Local edge weight configurations on patch Πc.

for a finite set of integer solutions, for a given µ0 (the height at the center of the patch c,
a modulus). Let us denote such a solution as M(Πc, µ0).

Now we can count the number of such solutions. First, note that the weight formula (4.33)
is symmetric with respect to the permutation group S4 permuting hk → hσ(k), σ ∈ S4.
Therefore we only describe representatives of the S4 orbits. We find 4 possible edge weight
distributions on the patch Πc modulo the action of S4, shown in figure 4, where we have
adopted the following color code for the oriented edges:

∆(■) = 0, ∆(■) = 1 , (4.43)

and also given, below each edge weight configuration, the size of the corresponding S4
orbit. The number of solutions to the set of inequalities (3.16) for each local edge weight
configuration on patch Πc depicted in figure 4 turns out to be 166.

We will call the configuration M(Πc, µ0) open if a box can be added to or removed from
a stack of boxes on top of point c, and closed otherwise. Namely, M(Πc, µ0) is open if either
one of M(Πc, µ0 ± 1) is also a solution of (3.16) over Πc, and closed otherwise.

Therefore, to prove that the charge function (4.26) has the desired properties, in particular
having poles of order 1 at positions where boxes can be added or removed, we only need
to prove that the weight function (4.33) can distinguish between open and closed solutions
M(Πc, µ0). And this can be done directly since the inequivalent M(Πc, µ0) form a finite set.
We will return to this computation at the end of this section.

4.3.3 Analyzing local configurations

First, to gain some visual intuition about the boundary behavior of the solid partitions, we
would like to discuss the structure of the “local pictures” – local shapes of the 3D hyper-
surface of a solid partition boundary. To do so, similarly to what is discussed in the 2D and
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3D cases in appendix A, we will only present explicitly the solutions for one configuration,
namely case (c) in figure 4, which is S4-symmetric. The S4-symmetric configuration (c)
corresponds to the configuration where the central box is along the diagonal line, similar
to the partition and plane partition cases. The other 3 S4 orbits in figure 4 then simply
correspond to shifting the resulting local pictures obtained from configuration (c) away from
the diagonal line. And we choose the S4 symmetric configuration (c) in figure 4 since in
this case the solutions to (3.16) can also be divided into S4-orbits, where it is enough to
analyze a single representative of each orbit.

Now, consider the 15 boxes corresponding to the 15 vectors in the local patch Πc in the
configuration (c) in figure 4. Let us denote their height field values by

µ0 , µ1,2,3,4 , µ12,13,23,14,24,34 , µ−1,−2,−3,−4 . (4.44)

The set of inequalities (3.16) translates into 32 inequalities among them:

µi ≤ µ0 ,

µ0 ≤ µ−i + 1 ,
µij ≤ µi , µij ≤ µj i ̸= j ,

µ−k ≤ µij i ̸= j ̸= k ,

(4.45)

which can be further translated into

µ0 − 1 ≤ µ−3,−4 ≤ µ12 ≤ µ1,2 ≤ µ0 , (4.46)

etc.
Using our strategy of considering only a single representative in each S4 orbit, we obtain

28 S4 symmetry classes of solutions in total, corresponding to 28 local pictures, shown in
figure 5, where we have used the following color coding to label the local height field µ(c) value:

µ
( )

= µ0, µ
( )

= µ0 − 1 . (4.47)

One could then lift the local pictures in figure 5 to 3D tessellations similarly to the
Young diagrams and the plane partition cases in appendix A. We will not present them
here since these 3D tessellations are rather complicated and not very intelligible in print.9

In words, each of these tessellations is a unique representative of the S4 group orbit and
represents a local picture of a 3D hyper-surface with “pits”, “hills”, and “saddles” that bound
a solid partition configuration. Therefore, we conclude that the number of inequivalent local
pictures for the solid partitions is 28, in comparison to the 3 and 8 local pictures for the
Young diagram and plane partition cases, respectively.

From figure 5, it is clear that when the configuration of the height fields in the neighbor-
hood of point c is “open”, namely when the solid partition π admits adding or removing of
boxes, the potential w = 1, which corresponds to the order-1 pole in the charge function (4.26).
On the other hand, in a “closed” case, w is non-positive, indicating a zero of order −w at
the corresponding lattice point.

9It is easier to view them in e.g. Mathematica since one can then rotate them.
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Figure 5. Independent local solutions M(Πc, µ0) to inequalities (3.16).

Since the weight function (4.33) is merely a rewriting of the charge function (4.26), and
we have shown, by simply examining all 28 cases in figure 5, that the weight function (4.33)
correctly distinguishes between open and closed solutions M(Πc, µ0), we have effectively
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Figure 6. The lift Π̂c of a local patch Πc from the projection to the solid partition.

proven that the charge function (4.26) has the desired properties, in particular having poles
of order 1 at positions where boxes can be added or removed, for all the local pictures from
configuration (c) of figure 4.

Next, we need to consider the other 3, non-S4-symmetric, configurations in figure 4
as well, which correspond to contributions from the boxes near the walls of the 4D room,
as one moves away from the diagonal. One straightforward way is to simply check all the
4 × 166 = 664 combinations of edge weights in figure 4 and their solutions to the set of
inequalities (3.16), which is what we did first (using computer) and we confirmed that for
open local solutions w = 1 and for closed ones w ≤ 0. Therefore, the charge function (4.26)
has the desired properties for all these configurations as well.

However, let us also give another proof that does not need to involve checking this large
number of cases explicitly. Let us first explain where this large number come from. Consider a
lift Π̂c of a local patch Πc to Z4

≥0 (see figure 6). From the stacked boxes in the solid partitions,
the lift Π̂c carves out all layers of the boxes projected with vector (1, 1, 1, 1) to B, therefore
Π̂c can be viewed as a cylinder of height µ0 and with a 3D cross-section. As a cylinder, Π̂c

has two boundaries: the top one and the bottom one. The top boundary belongs to the 3D
surface that is part of the outer boundary of the solid partition, whose projection to 3D is
called a tessellation, whereas the bottom boundary is at the intersection of Π̂c with the walls
of the 4D room, from the corner of which 4D boxes are stacked to form solid partitions.

When we mod out all the possible local shapes of the top boundaries of these cylinder by
S4, we get 28 local pictures, shown in figure 5. When we mod out all the local shapes of the
bottom boundaries by S4, we get 4 edge weight configurations, shown in figure 4. The fact
that the charge function (4.26) is symmetric with respect to S4 (which acts by permuting
h1,2,3,4) allows us to consider only individual representatives of the local patch in the S4
conjugacy classes. However, this does not allow us to mod out by S4 the top and bottom
boundaries independently — the S4 group acts on the cylinder of Π̂c as a whole! This is
the reason behind the large number of cases mentioned earlier.

To improve the situation, let us perform a canonical cut somewhere in the middle of the
cylinder as it is depicted in figure 6. This canonical cut is chosen to have the form of the
corner of the empty 4D room, transported to the position of the cut, hence is S4-symmetric.
The cut divides Π̂c into two haves: Π̂−

c and Π̂+
c . Since the shape of the cut is S4-symmetric,

we can obtain an arbitrary cylinder Π̂c by gluing a pair of S4-conjugacy classes Π̂−
c and Π̂+

c

after first imposing a twist g ∈ S4 (see figure 6).
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Since the charge function (4.26) is extensive with respect to size of the solid partition,
namely, the products in the expression (4.26) decompose into products over Π̂−

c and Π̂+
c .

Therefore, to prove that the charge function has the right properties, it is sufficient to prove
that its Π̂−

c and Π̂+
c components have the right properties. In other words, one only needs

to check all the S4-conjugacy classes of the bottom boundaries, which are paired using the
canonical cut with the top boundary and then, separately, all the S4-conjugacy classes of
the top boundaries, which are paired using the canonical cut with the bottom boundary.
In total, this only gives us 4 + 28 = 32 cases to check.

Before we end this section, we mention again that we have also checked explicitly, using
computer, all solutions of the set of inequalities (3.16) for all the possible the edge weight
configurations in figure 4, without considering the S4 action. In fact, just to be on the safer
side, we even considered a local patch larger than Πc, by appending to Πc the lattice nodes
located at hi − hj ̸=i, which sit at the centers of the 12 BCC cells located across the 12 edges
of the cube, see figure 2. We found that for this larger local patch, there are 7 (instead of 4)
local edge weight configurations and for each such configuration, there are 14 656 (instead
of 166) solutions to the inequalities (3.16). We have also used computer to check all the
7 × 14 656 = 102 592 cases and verified that w = 1 (resp. w ≤ 0) for open (resp. closed)
local solutions, thus confirmed the validity of the charge function (4.26).

5 Discussion

In this note we have constructed the charge function (4.26) for solid partitions that satisfies
a set of properties that are natural analogues to the lower dimensional cases and are essential
for the charge function to be the ingredient in constructing the corresponding BPS algebra.
We first obtained a conjectured form by analyzing the solid partitions with the number of
boxes up to 15, and then proved that it indeed satisfies the required properties for all possible
solid partitions by checking explicitly all local pictures.

Compared to the case for the plane partitions, which describe D-brane BPS states on C3,
the charge function (4.26) of the solid partitions, which describes D-brane BPS states on C4,
has a somewhat more intricate structure: apart from contributions from individual boxes,
the charge function (4.26) also receives contributions from certain 4-box and 5-box clusters.
Therefore, the corresponding BPS algebra would need to have more than just creation and
annihilation operators that add and remove single boxes, different from the 3D case in [6].
Equivalently, if we want to have some effective model description for the solid partition
boundary, similar to the anyons organized on a lattice in the case of the plane partitions (see
e.g. [38], section 2.7), we would have to supplement the purely pairwise particle interaction
with higher order interactions of 4- and 5-particle clusters.

To conclude this note we would like to list some interesting problems for future directions:
• It would be interesting to generalize the story to dimensions D > 4 and construct the

charge functions of D-dimensional partitions.

• One can also generalize to other toric CY4s, maybe using the effective mechanism of
constructing quivers and molten crystal systems for toric CY4 proposed in [25–27].10 It

10Note added: the generalization to other toric CY4s was also discussed in [39] that appeared shortly after
our paper.
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would be interesting to see how the structure of the charge function varies across the
entire toric CY4 family.

• The charge function hierarchy problem: a D-dimensional partition π(D) is a slice in
a (D + 1)-dimensional partition π(D+1). Suppose this slice is perpendicular to the
(D+1)-st axis, then imposing hD+1 = 0 produces the CYD constraint ∑D

k=1 hk = 0 from
the CYD+1 constraint. Following this hierarchy of partitions across different dimensions,
one would expect some corresponding hierarchy of their charge functions, such that
they simply reduce to one another:11

. . . ψ
(4D)
π (z) ψ

(3D)
π (z) ψ

(2D)
π (z)

h4=0 h3=0
(5.1)

Note that this doesn’t work straightforwardly. Indeed if we set either h3 = 0 in the
φ1(z) contribution in 3D (A.21), or h4 = 0 in the φ1(z) contribution in 4D (4.26), while
keeping the CY constraint ∑

k
hk = 0, then the contribution from the singlet loses poles

and the charge function no longer works even for the partition consisting of a single
box. Therefore it would be very interesting to determine the mechanism that governs
the dimensional reduction at the level of the charge functions.

• As we have seen, the charge function for the D-dimensional partitions is a function
on the (D − 1)-dimensional boundaries. By enhancing the partitions with statistical
weights, one can even reproduce some dynamics of this boundary form and acquire
an effective model of (D − 1)-dimensional gravity [5, 40]. Thus we wonder whether
the simplicity of the charge function in 3D might indicate the emergence of some
integrability properties, similar to how 2D gravity turns out to be integrable, and
whether some analogous structure can be uncovered in higher dimensions.

• Finally, the most intriguing problem is whether and how we can bootstrap the BPS
algebraic structure using the charge function (4.26) that admits contributions from
clusters of boxes.
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A Warm up: Young diagrams and plane partitions

In this appendix we review the Young diagrams (2D) and plane partitions (3D), in particular
the construction of their charge functions, using the same method that we apply on solid
partitions in the main text.

A.1 2D: Young diagrams

The generating function for 2D partitions (Young diagrams) is:

g(q) =
∞∏

k=1

1
(1− qk) =

∞∑
n=0

p(n)qn

= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + . . . ,

(A.1)

where p(n) counts the number of ways to partition a non-negative integer n. Its plethys-
tic log is:

f(q) = PL[g](q) = 1
1− q =

∞∑
k=0

qk (A.2)

Given a Young diagram, we can translate it into a spin-chain configuration by the
following rule, see e.g. [41]. We position the Young diagram as follows and project it onto a
spin-chin, with each vertical strip corresponding to a spin and the spin flipping each time the
outer boundary of the Young diagram has a corner (either convex or concave):

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

(A.3)

Then we view this configuration as a tessellation of the real line by plaques of two types,
which we depict as spin-up and spin-down in diagram (A.3).

There are three possible distributions of the weights of the local edges (3.15), depending
on whether the point of observation is located at the point 0, or to the left or to the right of 0:

µ1
µ0

µ2 µ1
µ0

µ2 µ1
µ0

µ2
S2

S2

(A.4)

where we have adopted the color code (4.43), and indicted how they transform under the S2
reflection. Equivalently, the three pictures in (A.4) correspond to the three cases where the
middle box is along, to the right of, and to the left of, the diagonal line, respectively.

– 22 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
3

Let us express the 2D version of the inequalities (3.16) explicitly for the first diagram
in (A.4), which is S2-symmetric. Using the fact that the middle box is along the diagonal
line of the 2D plane, we have

µ0 ≤ µ1 + 1 , µ1 ≤ µ0 and µ2 ≤ µ0 , µ0 ≤ µ2 + 1
=⇒ µ0 − 1 ≤ µ1 ≤ µ0 and µ0 − 1 ≤ µ2 ≤ µ0 .

(A.5)

The set of inequalities (A.5) has 4 solutions:

(1) : µ1 = µ2 = µ0

(2) : µ1 = µ0 − 1 , µ2 = µ0 (3) : µ1 = µ0 , µ2 = µ0 − 1
(4) : µ1 = µ2 = µ0 − 1

(A.6)

which correspond to the four cases below:

↓↑ ↑↑ ↓↓ ↑↓

S2 S2S2

(A.7)

with 2 of which in the same orbit of S2. Thus in this case we have 3 local pictures (here
we have used the color coding for vertices (4.47). Repeating this computation for the other
two pictures in (A.4), for each of them, we get four solutions as in (A.7), except that the
second (resp. third) picture in (A.4) corresponds to shifting all local pictures in (A.7) to
the right (resp. left) of the diagonal line.12

For 2D, the Calabi-Yau condition is

h1 + h2 = 0 . (A.8)

Without loss of generality, we can drop the scaling of these parameters and set

h1 = 1 and h2 = −1. (A.9)

In terms of these, the projection operator acquires a very simple form for a box with
coordinates (a, b):

prj(a, b) = a− b . (A.10)

The charge function for the 2D partition (Young diagram) π is:

ψπ(z) = 1
z

∏
Φ1∈π

φ1 (z − c (Φ1))
2∏

k=1

∏
Φ2,k∈π

φ2,k (z − c (Φ2,k))
∏

Φ3∈π

φ3 (z − c (Φ3)) , (A.11)

12Note that for the second and third cases in (A.4), the inequalities and their solutions are different from (A.5)
and (A.6), and only the final configurations are to be compared with (A.7) — they are the same configurations
as (A.7) shifted to the right and left of the diagonal line, for the second and third cases in (A.4).
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where

• A singlet Φ1 denotes a single box (a, b) ∈ π, contributing

φ1(z) = 1
z2 − 1 , (A.12)

shifted by its projected coordinate c (Φ1) = a− b.

• A doublet Φ2,k=1,2 is a pair of boxes at

(a, b) and (a+ δk,1, b+ δk,2) , (A.13)

together contributing
φ2,k(z) = z2 , k = 1, 2, (A.14)

shifted by its projected coordinate c (Φ4,k) = a− b.

• A triplet Φ3 is a triplet of boxes at the positions

(a, b) , (a+ 1, b) , (a, b+ 1), (A.15)

together contributing
φ3(z) = 1

z2 , (A.16)

shifted by its projected coordinate c (Φ3) = a− b.

A.2 3D: plane partitions

The generating function for the plane partition numbers P (n) is the MacMahon function;

g(q) =
∞∏

k=1

1
(1− qk)k

=
∞∑

n=0
P (n)qn

= 1 + q + 3q2 + 6q3 + 13q4 + 24q5 + 48q6 + . . . ,

(A.17)

whose plethystic logarithm is

f(q) = PL[q](q) = q

(1− q)2 =
∞∑

k=0
k qk . (A.18)

The Calabi-Yau constraint in this case reads:

h1 + h2 + h3 = 0 . (A.19)

The projection of the 3D plane partition to the 2D plane (A.19) works straightforwardly.
The result is a picture of level lines separating areas of different height field values for the
dual dimer model [40]:

←→

0

0
0
0

0

0

0
0

0
0
0

1
1

1
1

1
1
1

11
1

11

2

h3

h1 h2

(A.20)

– 24 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
3

And the charge function is well-known [42] in this case. In this case we have only a
product over singlets, i.e. over box positions x⃗(□) in π, with prj x⃗(□) = ∑3

i=1 xi(□)hi:

ψπ(z) = 1
z

∏
Φ1∈π

φ1(z − c(Φ1)) , (A.21)

where the pairwise potential is the bonding factor from [6]:

φ1(z) =
3∏

i=1

z + hi

z − hi
, (A.22)

which satisfies the properties

1. ψπ(z) is a meromorphic function of z.

2. All the poles of ψπ(z) are simple.

3. All the poles of ψπ(z) are in 1-to-1 correspondence with the set of projected coordinates
prj (x⃗(□)), with the boxes □ ∈ Add(π) ∪ Rem(π) and x⃗(□) their 3D coordinates.

As was shown in [6], these three properties, in particular the last one, were crucial in
bootstrapping the BPS algebra from its action on the 3D crystals (plane partitions in the
case of C3.)

The potential function corresponding to the charge function is

w(c) =
3∑

i=1
(µ(c− hi)− µ(c+ hi)) + δc,0 . (A.23)

Next we enumerate all the 3 local edge weight configurations, modulo S3 that permutes hk:

|S3 ·Diag| = 1

,

|S3 ·Diag| = 3

,

|S3 ·Diag| = 3

, (A.24)

where below each local edge weight configuration we have also given the size of its orbit
under S3.

As in 2D, it is enough to consider the first, S3 symmetric, configuration in (A.24).13 For
this case, the set of inequalities (3.16) contains 12 inequalities (one for each edge) for the
height functions of the 7 boxes involved. Denoting them as µ0, µ1,2,3, µ12,23,31, we have

µ0 − 1 ≤ µ12 ≤ µ1 ≤ µ0 , µ0 − 1 ≤ µ12 ≤ µ2 ≤ µ0

µ0 − 1 ≤ µ23 ≤ µ2 ≤ µ0 , µ0 − 1 ≤ µ23 ≤ µ3 ≤ µ0

µ0 − 1 ≤ µ31 ≤ µ3 ≤ µ0 , µ0 − 1 ≤ µ31 ≤ µ1 ≤ µ0 .

(A.25)

The set of inequalities (A.25) has 18 different solutions. Instead of enumerating all of them
here, we only present solutions modulo S3, or equivalently, we only present solutions obeying

µ12 ≤ µ31 ≤ µ23 ≤ µ1 ≤ µ2 ≤ µ3 ≤ µ0 . (A.26)
13Similarly to what happened in 2D, the other two configurations in (A.24) do not give new local pictures

but only the shifted versions of the local pictures from the first configuration.
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Figure 7. Local pictures for plane (3D) partitions.

We will call these configurations local pictures, and there are 8 of them, shown in figure 7.
We note that among the local pictures depicted in figure 7, there are three pairs of plane
partitions, (1,8), (2,7), and (3,6), that complement each other in the following sense. The
two plane partitions in a pair can combine into a n× n× n cubic partition after one of them
is reflected in all axes, namely, the hills of one complement the pits of the other. (Using
the same terminology as for ordinary partitions, we call two plane partitions in such a pair
being transposed to each other: π ↔ πT .) In addition, the plane partitions (4) and (5) are
self-transposed. Therefore, if we further factor out the 8 plane partitions in figure 7 by the
transposition symmetry, we finally arrive at 5 independent local pictures, coinciding with
the classification given in ([42], section 4.5).

B N = (0, 2) 2d effective theory of D8-D0 branes

The effective theory of a D8-D0 brane system wrapping CY4 is given by an N = (0, 2) 2d
effective theory [43]. In this appendix we summarize the basic features of this N = (0, 2)
2d theory, following [44].

There are three types of multiplets:
• Chiral multiplet:

Φ = ϕ+
√

2θ+χ+ − i θ+θ̄+ ∂+ϕ . (B.1)

• Fermi multiplet:

Ψ = ψ− −
√

2θ+G− i θ+θ̄+ ∂+ψ− −
√

2θ̄+E , (B.2)

where E is a holomorphic function of the chiral fields ϕ.
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• Vector multiplet:
V = A− − 2i θ+λ− − 2i θ̄+λ̄− + 2θ+θ̄+D , (B.3)

where A± = 1
2 (A0 ±A1).

The Lagrangian has five terms:

L = Lgauge + LΦ + LΨ + LFI + LJ , (B.4)

Here, the gauge Lagrangian is:

Lgauge = 1
8e2

∫
d2θ Λ̄Λ = 1

e2

(1
2F

2
01 + i λ̄−∂+λ− + 1

2D2
)

; (B.5a)

the chiral Lagrangian is:

LΦ = − i
2

∫
d2θ Φ̄i∇−Φi =

= − |Dµϕi|2 + 2i χ̄+iD−χ
i
+ − iqi ϕ̄iλ−χ

i
+ + iqi ϕ

iχ̄+iλ̄− + qi |ϕi|2D ;
(B.5b)

the Fermi Lagrangian is:

LΨ = −1
2

∫
d2θ Ψ̄aΨa =

= 2i ψ̄−aD+ψ
a
− + |Ga|2 − |Ea(ϕ)|2 − ψ̄−a

∂Ea

∂ϕi
χ+i − χ̄+i

∂Ēa

∂ϕ̄i

ψa
− ;

(B.5c)

and the Faye-Illiopolous term is:

LFI = t

4

∫
dθ+ Λ

∣∣∣
θ̄+=0

+ c.c. = −rD + θ

2πF01 . (B.5d)

Finally, the J-term, which replaces the canonical F-term, is

LJ =
∫
dθ+ WJ(Ψ,Φ)

∣∣∣
θ̄+=0

+ c.c. =
∫
dθ+ ΨaJ

a(Φ)
∣∣∣
θ̄+=0

+ c.c.

= GaJ
a(ϕ) + 1

2ψ−aχ+i
∂Ja

∂ϕi
+ c.c. .

(B.5e)

The action is invariant (modulo boundary terms) under the following SUSY transfor-
mations:

δA0 = i
2 ϵ̄−λ− + i

2ϵ−λ̄− , δϕi = −ϵ−χi
+ ,

δA1 = − i
2 ϵ̄−λ− −

i
2ϵ−λ̄− , δχi

+ = 2i ϵ̄−D+ϕ
i ,

δλ− = i ϵ− (D− iF01) , δψa
− = ϵ−G

a + ϵ̄−E
a ,

δD = −ϵ̄−D+λ− + ϵ−D+λ̄− , δG
a = −2i ϵ̄−D+ψ

a
− + ϵ̄−

∂Ea

∂ϕi
χi

+ .

(B.6)

The complete SUSY invariance imposes the following constraint on the E- and J-fields:∑
a

Ea(Φi)Ja(Φi) = 0 . (B.7)

And finally, there is an additional anomaly cancellation constraint:

Tr γ3GG =
∑

i: chiral
q2

i −
∑

a: Fermi
q2

a = 0 . (B.8)
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