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ABSTRACT: The described Dark Abelian Sector Model (DASM) extends the Standard Model
(SM) by a “dark” sector containing a spontaneously broken U(1)q gauge group. Keeping
this dark sector quite generic we only add one additional Higgs boson, one Dirac fermion,
and right-handed SM-like neutrinos to the SM. Using the only two singlet operators of the
SM with dimension less than 4 (the U(1)y field-strength tensor and the SM Higgs mass
operator |®|?) as well as the right-handed neutrino fields we open up three portals to the
dark sector. Dark sectors, such as the one of the DASM, that introduce an additional
Higgs boson H as well as an additional Z' gauge boson can have a large influence on the
predictions for electroweak precision observables and even accommodate possible dark
matter candidates. We consider one of the two Higgs bosons to be the known 125 GeV
Higgs boson and parameterize the extension of the scalar sector by the mass of the second
Higgs boson, the Higgs mixing angle, and a Higgs self-coupling. We do not assume any
mass hierarchy in the gauge sector and use the mass of the additional Z’' boson and a
corresponding gauge-boson mixing angle to parameterize the extension of the gauge sector.
The fermion sector is parameterized by the mass of the additional fermion and a fermion
mixing angle. We describe an on-shell as well as an MS renormalization scheme for the
DASM sectors and give explicit results for the renormalization constants at the 1-loop level,
and, thus, prepare the ground for full NLO predictions for collider observables in the DASM.
As a first example, we provide the DASM prediction for the W-boson mass derived from
muon decay.
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1 Introduction

With the discovery of a SM-like Higgs boson [1, 2] at the Large Hadron Collider (LHC)
in 2012, all particles described by the SM have been found. Currently, measurements

at collider experiments agree very precisely with predictions of the SM with only very

few exceptions. Despite this success of the SM, there are several clear indications that it

cannot be the ultimate theory describing Nature. Neither can the SM explain the observed

matter-antimatter asymmetry in the visible universe, nor can it describe the origin of dark



matter (DM) observed in the universe. Finally, a quantum-field-theoretical description of
the gravitational force is missing within the SM, but most likely particle physics experiments
cannot help to solve this problem. Among the measurements within particle physics, the
tension [3] between the high-precision SM prediction of the anomalous magnetic moment of
the muon, (g —2),, and its measurements performed by the BNL and FNAL collaborations
have somewhat tightened. Further, the new result for the mass of the W boson published
by the CDF collaboration shows a significant deviation of 7o from the SM prediction [4]
(which, however, is at variance with the previous experimental world average [5]).

There are several, quite fundamental SM extensions like supersymmetric models or
grand unifying models that claim to solve some of the open problems mentioned above.
However, at the moment there is no convincing experimental evidence hinting towards the
realization of one of these models in Nature, and thus, it is not clear how the SM needs
to be modified in order to match all observed phenomena. Since there are no new, truly
elementary particles found by any experiment so far, a promising way to get hints towards
the structure of possible new physics is to compare theoretical predictions within the SM
and generic extensions at the highest possible precision with measurements.

In the search for physics beyond the SM (BSM), investigations of the structure of
electroweak (EW) symmetry breaking are of great importance. In the past, analyses [5, 6]
probing this structure were able to limit the parameter space of various prominent extensions
of the Higgs sector, like Singlet Extensions of the SM (SESM) [7-10], substantially, but
many of such extensions (including singlet Higgs extensions) are still viable. Recently the
observed tensions in (g — 2),, have drawn some attention towards non-standard models that
enrich the gauge structure of the SM by a U(1) or even more evolved gauge symmetries
that might help to relax these tensions [11-14]. There are several ideas on how these
extensions of the gauge structure are added to the SM without introducing anomalies, to
potentially solve some of the open questions like the origin of neutrino masses or dark
matter. One way is to promote the global B — L (baryon number minus lepton number)
symmetry of the SM to a (possibly spontaneously broken) U(1)p_1, gauge symmetry, which
will introduce a massive neutral Zj; ; gauge boson to the theory coupling to the B — L
charge (see, e.g., refs. [15-17] and references therein). This opens a portal to possible BSM
physics carrying B — L charge. Another prominent class of Z’ or “dark photon” models
make the basic assumption of a “dark” sector with a non-trivial gauge structure and at
least one (possibly spontaneously broken) U(1)q gauge symmetry [10, 18-26]. Note that
the two abelian gauge groups U(1)q of the dark sector and U(1)y of the SM sector open
the possibility of kinetic mixing between the (gauge-invariant) field-strength tensors of the
respective gauge fields. As a result the two neutral massive gauge bosons Z (which is SM
like) and Z' (the mass of which is only weakly constrained) connect the SM with the dark
sector. In addition to the scalar and gauge sector extensions, the focus of BSM physics
more recently also includes extensions of the fermion sector of the SM since they seem to
provide promising DM candidates (see, e.g., refs. [27, 28] and references therein).

In this work we formulate a simple but quite generic model with a “dark” U(1)q group
and call it the Dark Abelian Sector Model (DASM) in the following. The DASM is a
simplified model featuring some phenomenological imprints of more comprehensive theories.



More precisely, it introduces a dark sector with generic features that resembles a broad
range of possible dark sectors embedded in more complete models. Similar to the proposals
of refs. [10, 19, 20] the DASM introduces an additional neutral U(1)q gauge field, featuring
kinetic mixing with the U(1)y gauge field of the weak hypercharge, unlike models that
exclude mixing by, e.g., postulating additional discrete symmetries in the dark sector,
like in ref. [29]. The U(1)q gauge group is spontaneously broken by an additional Higgs
field p which is a singlet with respect to the SM, but carries dark charge and develops a
non-vanishing vacuum expectation value (vev). This leads to an additional massive, neutral
gauge boson as well as an additional Higgs boson. Finally, a generic Dirac fermion with
dark charge as well as right-handed, SM-like neutrinos are introduced in order to allow for
an additional portal to the dark sector of the DASM.

The SM itself is considered to be a singlet with respect to this additional U(1)q gauge
symmetry. The full gauge group of the DASM is, thus, given by SU(3)c x SU(2)w x U(1)y x
U(1)q. Via a scalar mixing in the Higgs potential and kinetic mixing between the two U(1)
gauge group factors of the theory, the DASM uses the only two gauge-invariant operators of
the SM that can be employed to couple a dark (singlet) sector to SM particles, namely the
mass operator ®'® for the complex Higgs doublet ® and the field-strength tensor of the
U(1)y. This opens two possible portals to the hypothetical dark sector with at least some
U(1)q gauge symmetry. By adding right-handed neutrinos to the theory, a third portal to a
possible dark fermion sector opens up via the mixing of the SM-like neutrino fields with the
newly introduced fermion of the dark sector. Further, the DASM can accommodate effects
of massive, SM-like neutrinos. The introduced model extensions can have large influence on
the predictions of Higgs and EW precision observables, and on (g —2),. Moreover, for some
regions of the parameter space the DASM can provide viable DM candidates. Recently, in
ref. [30], a comprehensive phenomenological study of the Hidden Abelian Higgs Model, a
SM extension with extensions of the gauge and Higgs sectors similar to the DASM, was
presented, further highlighting the relevance of abelian dark sector extensions in current
searches for possible BSM physics.

In this paper, we present the full theoretical setup of the DASM, including a complete
renormalization at NLO. We propose two alternative renormalization schemes for the DASM:
the first scheme is based on on-shell renormalization conditions for directly measurable
quantities as far as possible and is, thus, particularly suited for a phenomenological study
of EW and Higgs precision observables. The second alternative scheme is based on MS
conditions for the new mixing angles. We are not aware of any comprehensive description
of renormalization schemes for kinetic mixing in the gauge-boson sector existing in the
literature.! Our formulation may, thus, serve as a proposal for the renormalization of similar
models as well.

The structure of this paper is as follows: we introduce the DASM in detail in sec-
tion 2 and define a particularly intuitive input parameter scheme that is well suited for a
phenomenological study of collider observables. For the sector of neutrinos and the dark

'Recently a first, but very brief description of on-shell renormalization of the additional gauge-boson
mixing angle was given in ref. [23], however, without giving the full details on the renormalization of
the model.



fermion, we formulate a simplified approximate parameterization based on the smallness
of the masses of the three known neutrinos. In the resulting approximation, which is
sufficient for collider physics, only the dark fermion is massive. In section 3 we define an
on-shell renormalization scheme for the DASM and give the full NLO set of renormalization
constants needed to perform precision calculations. In section 4 we give NLO predictions
for the W-boson mass in the DASM (based on the measured muon decay width) as a first
phenomenological application for the introduced renormalization schemes. In section 5 we
give a summary and our conclusions. In the appendix we display explicit expressions for
lengthy, but important and interesting field-theoretical quantities of the DASM.

2 Description of the DASM

In this section we define the DASM and discuss some of its salient features. All parts of the
Lagrangian that differ from their SM counterparts are discussed in detail. Moreover, we
give a particularly intuitive set of input parameters for the DASM that is well suited for a
phenomenological confrontation of theory and experiment.

The presence of an additional U(1)q gauge field C*, an additional Higgs field p, and a
newly introduced Dirac fermion field f] leads to additional terms to the SM part of the
Lagrangian. We will not give a detailed discussion of the SM parts of the theory that are
not modified within the DASM. They can be found, e.g., in refs. [31-35]. In detail, we
adopt the notation and conventions for field-theoretical quantities from ref. [35].

The full Lagrangian of the DASM can be split up in the following way,

LDASM = LYM + ACFermion + LHiggs + £QCD- (21)
The individual parts of Lpasm will be explained in the following. The QCD part Lqcop of
the Lagrangian is not modified with respect to the SM and can, e.g., be found in refs. [32-35].
2.1 Higgs sector

The extension of the SM scalar sector with its complex Higgs doublet ® by the additional
complex Higgs field p leads to

Lhiges = (Du®)" (D"®) + (Daup)’ (Dfp) = V (@, p), (2:2)

where the covariant derivatives are given by
Dg =0 + i(jedcua QP = 6pp7 (jp = 1a (23)
DF =" — %QTCLWW + %Bﬂ, (2.4)
with the charge operator ¢ and the coupling constant eq of the U(1)4 gauge symmetry, and
the quantities 7* denote the Pauli matrices. The choice ¢, = 1 for the eigenvalue ¢, of ¢
simply provides the normalization of the U(1)4 coupling strength eq. The fields W*# BH
are the usual SU(2)w x U(1)y gauge fields with respective gauge couplings g2, g1. The

most general gauge-invariant, renormalizable potential V(®, p) allows for a mixing of the
Higgs doublet @ and the Higgs field p and can be written as

Y
V(®,p) = 5210 — 2p3plp+ T (212)° + 4% (pp)” + 20122, (2.5)



with the five free real parameters u?, u3, A1, A2, A12. The SM-like Higgs doublet ® and the
Higgs field p can be parameterized according to

P " ! (h1 +v1 +1ix1) (2.6)
= , v p= s+ +ixa), :
%(hQ + v +ix2) V2

with v, ve representing constants quantifying the vacuum expectation values (vevs) of ®
and p, respectively. Without loss of generality the parameters v, vo can be taken real and
positive by making use of global gauge transformations. Further, ¢ and ¢~ = (¢)! are
SM-like charged would-be Goldstone-boson fields, x1 and xs represent two neutral CP-odd
would-be Goldstone-boson fields, and the two neutral CP-even Higgs fields h; and hy will
eventually lead to two Higgs fields corresponding to two physical CP-even Higgs bosons.
The vacuum stability conditions for the potential are given by

A >0, A2>0, AMAg— 2, >0. (2.7)

The main features of the scalar potential of the DASM are reflected by most Higgs sin-
glet extensions, see e.g. refs. [7-9, 36]. Here we outline the main features adopting the
parameterization given in ref. [36].

Expanding the Higgs potential (2.5) with the help of eq. (2.6) leads to

V =—1t1h1 —taho
1 ho 1 X1 -
+ 5(]12, hl)M%{iggs (hl) + §(X1a XQ)M?( (X2) + M2¢+¢7¢ ¢+

+ interaction terms, (2.8)

with the tadpole terms
2 2 2 U% 2 2
tl = —U1 (42}1)\1 + 1)2>\12 - 2#1) y t2 = —V2 Z}\Q + 111)\12 — Mo ], (29)

the mass matrices

v2 t t
M = FA2— 2 2010212 M2 — o 0 (2.10)
8es 2?)11)2)\12 8’[)%)\1 — % X 0 —%

and the mass term of the charged would-be Goldstone-boson fields given by

t
2 __2
Mgy = - (2.11)
At leading order, the tadpole parameters t;, ty are set to zero, in order to obtain the
standard form for free propagation. For the renormalization procedure described below it
is, however, convenient to keep the t1, t5 terms explicit here. The Higgs fields h and H

corresponding to mass eigenstates are obtained by a rotation by an angle «,

h cosa —sina ho
= , (2.12)
H sin  cosa hi



which diagonalizes the mass matrix M?

Higes EXpressing the potential in terms of these fields

one finds

V=—tph—tgH

1 ME M h 1 X1 _
+ o (hH) [T + 5 (x1, x2)My + M3 g0 0"
2 My ME)\H) 2 X2

+ interaction terms, (2.13)
with the rotated tadpole terms
th = cato — Sat1, tg = Sata + caty, (2.14)

where the shorthands ¢, = cosa and s, = sin « are used.
For the potential to acquire a minimum at the vevs, i.e. for h; = x; = ¢T = 0 with
i = 1,2, one has to set the tadpole terms to zero in leading order. Using t;, =ty = 0 the
diagonalization of the mass matrix 1\/12Higgs fixes the mixing angle o at leading order to
8v1v2A12
toq = tan(2a) = ———5—. 2.15
2a ( ) 16’1)%/\1 — ’U%/\Q ( )
We enforce the mass hierarchy My, < My by allowing for o € (-7, 5] and choosing a such
that Ai2s9, > 0, leading to

8 A
S0 = Dt : (2.16)
\/(8’01112)\12)2 + (16?)%)\1 — U%)\Q)2
160\ — v3A
Co0 = Ovii — v3 o : (2.17)
\/(8’01’[12)\12)2 + (16@%)\1 — U%)\Q)2
with eigenvalues
1 1
M}? = 1’0%)\2 + 4’[)%)\1 — 1\/(81111/2)\12)2 + (161)%)\1 — U%)\Q)Q, (2.18)
1 1
Mle = ng)Q + 4’1)%)\1 + Z\/(81}1U2)\12)2 + (16’0%)\1 — U%)\Q)Z. (2.19)

Input parameters of a theory should always be intuitive and phenomenologically most easily
accessible. We choose the masses M), My, the mixing angle «, and the dimensionless
coupling A12. The tadpole constants ¢;, and ¢y are fixed by the definition of the EW vacuum,
i.e. they do not count as input parameters, and are kept here only for later convenience.
For the parameters introduced in the Higgs potential, expressed in terms of the new input
parameters, we find

1 1
1 1
_ 2 2 2 2 2 2
o= (M2 +s2MF) + e (2.21)



1 1 3
i = (s2ME+ M) + SUbM2 + -t (2.22)

4 41)1
1 3
2 2 2 2 2 2
Hy = Vi A12 + 3 (CaMh + saMH) + 20 ta, (2.23)

(Mfi — M) s2a

2.24
4dva 12 (224)

v =

Using these relations it is easy to see that the stability conditions for the potential given in
eq. (2.7) are automatically fulfilled for physical input values for My, and My. Note that the
requirement of symmetry breaking, i.e. u2 > 0 or p3 > 0, is in the physical parameter space
automatically fulfilled.? Expanding the potential one finds scalar interaction terms of the

form
Vint = cunnh® + conah®H + cppuhH? + canu H?
+ cpnnnh? + connuah® H + cnnanh?H? + enpanh H? + cappn H?
1 _
+ 5 (engoh + engp H + Chhgoh” + chgphH + cagH?) (207 ¢~ + X3)
1
+ §(Chxxh + ey H + Chhxxh2 + chiyy hH + CHHXXHQ)X%
A9 _ A2 _
+ E(qur(ﬁ +x3)% + TX%(X% +2¢7¢") + Mixd, (2.25)
with
Chyx = 2U9Ca A 12 — 8U1Sa A, CHyx = 8v1CaA1 + 2025412, (226)
Chhyy = Ci)\m + 483)\1, ChHyy = 25aCaA12 — 85aCai, (2.27)
CHHyy = 4Ci>\1 + Si)\lg, (2.28)

and all other coupling constants of the Higgs potential are spelled out explicitly in eq. (2.18)
of ref. [36].

2.2 Gauge part and physical gauge bosons

Different versions of generic U(1) extensions of the SM have been already discussed quali-
tatively a long time ago in the literature, see e.g. refs. [10, 18-21]. To achieve a precision
necessary for a meaningful confrontation of predictions with EW precision data all predic-
tions should include at least NLO corrections. In the following, we present the DASM in
R¢ gauge, which provides the most convenient and most common framework for calculating
higher-order corrections.

Owing to the presence of the U(1)4 gauge group, new terms in the Yang-Mills (YM)
part of the Lagrangian are present in addition to the SM YM part,

Ly = L + L8y (2.29)

2To achieve the desired symmetry breaking only pu? > 0 or u2 > 0 is needed. Therefore, the stated
inequalities given in eq. (2.16) of ref. [36], forcing u? > 0 and p3 > 0, are not necessary.



The new part
d 1 v a 72
Ly = _ZC Cuw — §B Ciw (2.30)

includes a mixing term of the gauge field B* of the SM U(1)y group and the gauge field
C* of the additional U(1)q group via the gauge-invariant field-strength tensors

B, = 0,8, — 0,B,, Cw =0,C, —-0,C, (2.31)

of the U(1)y and the U(1)q, respectively, with the parameter a ruling the strength of this
mixing. The kinetic terms are diagonalized by a redefinition of the fields [20]

1
Cﬂ _ V1—a? 0 CL ’ (2_32)
B, — e 1)\ B,

leading to
r 1 v a v 1 v 1 ”rb zzurb
YM — —ZC‘M Cuy - QB'U' CMV - EB'U' BH,V - Z M uv
1 1 1
4C/NVC:“, 4B/'LLVB;“, 4I1fb“ul/11fﬁy. (233)

Choosing |a| > 1 would lead to a relative sign factor between the eigenvalues of the
quadratic form of the fields B, and C,, (or equivalently of B, and C},) and thus to
a wrong signature for one of the kinetic terms. Therefore, we constrain the parameter a
according to |a| < 1 to maintain the self-consistency of the DASM.

Rewriting eq. (2.4) with the help of eq. (2.32) and expanding the kinetic terms in

eq. (2.2) with the decompositions (2.6) of the Higgs doublet and singlet fields leads to

B/
1 g’ -
Lty = 5 (Bl WL CL) MY | W |+ MWW, (2.34)
C/
m

with the mass matrix for the neutral vector bosons

S%VM\%V st\Q,V . ns?NM\zN
c2, ) Cw c2, )
2 sw M, 9 nsw M,
i | el g el ] 25)
_msuMy  msw My s MGy g o
c2, Cw c2, C
where
4 Mc=¢ g= 4
n= ) C = €y, €= ;
V1—a? V1—a?
g1

v
MW:WJ‘

Sw = sinfy, =

(2.36)



Diagonalizing the matrix M% leads to the field basis for the mass eigenstates of the neutral
vector bosons. Since rank (M%,) = 2, this can be achieved with a combination of two
appropriate rotations of the fields in the form

BL A Cw Sw 0 10 0

W;:j = Ry ZM ) Rv = —Sw Cy 0 0 Cy —Sy ) (237)

c, Z 0 0 1/ \0 sy ¢

=

=~

where s, = sinv, ¢, = cosy for an appropriate mixing angle 7. For s, = 0 the whole
rotation (2.37) reduces to a mere rotation by the mixing angle 6 as in the SM. The
rotation (2.37) transforms M% into

0 0 0
2 2
0 MZZ' MZ'
with
M2, (¢y — $y54n)°
M2 = 2 M2 W A\Cy ~ SySw
7 S,Y C + C‘QN )
M, (54 + cy5um)?
lezciM%+ W ’7627 7
M3 2t —1) -2
Mgy = sye, MG + =X 521 (5 502 ) = 25wemm] (2.39)
cz,
The diagonalization condition M%Z’ = 0 fixes the mixing angle ~ to
NSy
toy =tan2y = Ll R (2.40)
1—n?s2 —c2, M§
The mass of the photon remains zero,
M3 =0, (2.41)

and requiring the photon-fermion couplings to reproduce its QED form, the electric unit
charge e is, as in the SM, directly related to the gauge couplings g1, go according to
9192

e = —=—. (2.42)
V9t + 93
Choosing v € (=7, 7], eq. (2.40) leads to
2
2nswsgn {1 n?s2 — c?,”\]‘jg}
. , (2.43)
,/1+t27 \/ 1—n2s2 — é) + 4282,
‘1 —n?s? M
(2.44)

Coy =
./1+t2
2y \/1_7732 w 2) _|_47752



and one finds the masses of the two massive, neutral gauge bosons Z and Z’ to be

M2

M7z = =V (1= sytym), (2.45)
CW
M2

M = =W (1 + 5W"> . (2.46)
cs ty

We do not impose a mass hierarchy between the Z and Z’ bosons, i.e. both M, > My and
My < My are possible. In addition to the SM-like parameters e and Myy, we choose My,
and v as the two input parameters that fully fix the parameters of the gauge-boson sector
of the DASM. Using eqgs. (2.39) the dependent parameters are given by

Mw g = MMy onch (M ~ M) (2.47)
Cw = 9 C~= a2 n= 9 .
,/C?YM% + S%Mé, Mgy 25 M,
and further
. CWMZMZ’ CWMZMZ/ n
6= —F"—= = ————————, a=—. 2.48
v1 Mw leW‘/1+772 1 _|_772 ( )

We have not inserted the full analytical dependence on the input parameters to keep the
expressions compact. This includes in particular v; (see egs. (2.24) and (2.36) for its explicit
relation to input parameters). Without loss of generality we choose eq > 0, i.e. we absorb
the sign into the definition of C),, which is possible since the sign of the parameter a, ruling
the strength of the kinetic mixing in eq. (2.30), is not constrained. Finally, we note that in
contrast to the SM the W-boson mass My is not equal to ¢y My, not even in lowest order,
i.e. the p parameter [37, 38| is not equal to 1 in lowest order. This means that in order
to describe EW precision data in the DASM, we have to pay the price of fine-tuning the
mixing angle v to some small value. By virtue of eq. (2.47) the consistency of the theory
further demands the additional restriction

Mgy < Mg + s2Mj, (2.49)
for the parameter space of the DASM.

2.3 Gauge-fixing and ghost Lagrangian

The kinetic terms of the Higgs fields contain mixing terms between the gauge-boson fields
and the corresponding would-be Goldstone-boson fields. To avoid unpleasant non-diagonal
propagators between gauge bosons and would-be Goldstone bosons at tree level we choose
R¢ gauge-fixing conditions, i.e. we introduce a gauge-fixing Lagrangian of the form

1

56 (P = 5 (P2

with the gauge-fixing functionals

1
287

b
287

(F7)? — L e (2.50)

Lax =
i Ew

F* = 0"W,; F iéw Mwo™,

~10 -



2
wCy M

c
FZ = a#ZM — &z [Mcsy)a + M X2

)

2
z _ / Cw Sy My
P =0rZ, - &y [Mccwa o e

FA=0rA,. (2.51)
Introducing a gauge-fixing of this form leads to a non-diagonal mass matrix Mi for the
neutral would-be Goldstone fields. This mass matrix can be diagonalized by an appropriate

rotation of the would-be Goldstone fields,

/
X T [ X1 T Cy —Sg
X X2 Sz Cx
with s, = sinf,, ¢; = cosf,. Choosing a common gauge parameter &; = &y, for the neutral
gauge bosons ¢ = Z, Z’, to avoid unnecessarily complicated expressions, leads to
M2/ ! M2 !
XXX ) : (2.53)

RIM2R :§V<
XXX M2 M2
XX’ XX

with
T r M52 + nswse My (2Mocyew + Mwnswsz) — s2vits + c2vaty
vx = Mec + 2 B v
W 1v2€v
M2 - 22 MEc2 + nswea My (Mwnswes — 2Mocwss) — cauits + s2vaty
= Mcsy + 2 B v
W 1028y
M2 - Sz 5 M\%v B Mwnsw (2Mccewcar + Mywnsysaz) n SzCy (Vita — vaty)
XX 2 © c2 2¢2, v102€y '
(2.54)

Requiring Mixl = 0 and setting tadpole terms to zero suggests the definition

_ _ —2nMgsyew B CwMCt2ry
toy = tan(26,) = 2N~ M (1= suta))’ (2.55)
My (1 + 7728%V — C‘QNM§) i
W

which eliminates mixing terms between y and x’ in lowest order. We choose

CwSoyMc
S2x = ]\2477, C2x = C2y — Sw1]52+, (256)
W
to align the masses of the two would-be Goldstone bosons
M, =& Mz, My = &My (2.57)
with the masses of the respective gauge bosons (for ¢;,ts — 0). Moreover, we find
CwS~y My cwCy M7, My,
R AL N (2.58)
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With these simplifications the gauge-fixing functionals given by eq. (2.51) reduce to

F* = 0"WE Figw Mwo™,

FZ =9"Z, — &y Myx,

F? = 0"Z), — &y My X,

FA =014, (2.59)

Following the Faddeev-Popov procedure, unphysical anti-commuting scalar ghost fields
u®, u®, (a ==+,7,7', A), needed for the consistency of the gauge-fixing procedure in the
functional integral, are introduced. The ghost Lagrangian is given by

tonto) = - [ dyaro) (i) o) (2:60)

with a,b =+, Z,Z', A. In the chosen R gauge all masses of the ghost fields coincide with

the masses of the corresponding would-be Goldstone bosons. The gauge transformations of
the fields, which are needed for the evaluation of eq. (2.60), as well as the explicit form of
Lyp can be found in appendix A.

2.4 Fermion sector

The DASM extends the fermion sector of the SM by right-handed neutrino fields Z/}R,
j = e, u, T, corresponding to the left-handed SM-like neutrino fields VJ/-L, and an additional
non-chiral Dirac fermion f} of the hidden sector. The primes on the fields indicate the
use of the gauge-interaction eigenbasis. The field f} is assumed to carry only the charge
greq of the U(1)q gauge group, but neither weak isospin, nor weak hypercharge, nor colour.
Since f}j is non-chiral, no anomalies are introduced in the DASM. For the relative coupling
strength we choose

Gt =dp=1, (2.61)

where qq peq is the U(1)q charge of the Higgs singlet p. While g, = 1, as already mentioned
above, simply provides the normalization of the U(1)q coupling eq, the choice of g = 1
allows for a Yukawa coupling in the Lagrangian connecting the Higgs field p, the new
fermion field of the dark sector fj, and the right-handed neutrinos V;-R, opening another
portal between the SM and the dark sector. The terms that need to be introduced in the
Lagrangian in addition to the SM-like fermionic terms E%}s\/r{mion (with massless left-handed

neutrinos) read

LFermion = Elsi‘le\/r[mjon + fcll (lwd - mfd) fcll + Z [E}RiaV}R - (yp,jpfc,lLyj,'R + hC)}
Jj=eu,T

- Y (LFemteC 4 he.), (2.62)

k7l:evl"‘77_

with the covariant derivative D of the dark sector given in eq. (2.3). The first term
in eq. (2.62) contains the gauge interactions of f} as well as its Dirac mass term with
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the mass parameter m,. We can assume mg, as real and non-negative, mg, > 0, upon
adjusting a chiral phase of f} appropriately. The sum over j contains the kinetic terms
of the right-handed neutrinos as well as the Yukawa terms including f, the right-handed
neutrino fields VJ’R, and the Higgs singlet p. The sum over k, [ introduces Yukawa terms
involving the SM-like neutrinos and the charge-conjugate ®C = i72®* of the SM-like Higgs
doublet. Here G} denote the respective Yukawa coupling constants. We do not consider
the possibility of Majorana mass terms for the right-handed neutrinos. Using eq. (2.6) the
mass terms in Lpermion for the neutral fermion fields 1/,’}, I/,lcR, and f} = fc’lL + fc’lR (with

éL/R = wr,/rf4 and the chiral projectors wy, /g = %(1 F 75)) become
VR
_ V’R
}IZV = —(DQL,DLL,D;L, éL> L ’/‘R +he. , (2.63)
VT
/R
d
with
mi1 miz miz 0
ma1 Moz mog 0 VY v G
Mg, = ;= e, myy = —=2 (2.64)
mg1 mgz m3zz 0 V2 V2

Yo Yu Yr miy

In general Mgd is a complex, non-symmetric matrix. A bi-unitary transformation

VéR I/F VéL I/{"
R R /L L
v v. v v
2 2
“o| = Ug N " , (2.65)
/R R |’ /L L
Ve Vs Ve Vs
/R R /L L
/4 Vy 14 Vy

can be used to transform the fields into the mass eigenbasis of the resulting four neutrino-like
states,

U{M%dUR =M,, M, 08 = Mu,a0a8, Mya > 0, a,f=1,2,3,4. (2.66)
2.4.1 Qualitative discussion of the neutrino mixing

In this section we consider the main features of the diagonalization process of the mass
matrix of the neutral fermions in the limit of small SM-like neutrino masses. The results
from this consideration are then used in the next section to define an approximation to
the complete fermion sector of the DASM that is sufficient for applications to collider
phenomenology.

We assume all entries of the SM-like mass matrix (my;) to be of the scale m,, representing
the generic scale of the SM-like neutrino masses, my; = O(m,,). Inspired by the experimental
evidence for very small neutrino masses we consider the case
K °

+ | Gul® + |97 0. (2.67)

<
vV

my, K m= maX{gv mfd}a gQ = ‘ge

)
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The four neutrino masses are obtained as the square roots of the (non-negative) eigenvalues
of the matrices Mg £, or M; dMg. The latter has the structure

(o)
2 ~
M = Olrm.) 0 Em”T; (269)

O (mym) O (mym) O (mym) mi + >

Note that in the notation used in eq. (2.68) the symbol O(m?2) should be read as a 3 x 3
matrix with elements of order O(m?). From this form, we read that the neutrino masses
obey the hierarchy

my, = O0(m,), k=1,2,3, My, = \/mi, + 42 + O(m,), (2.69)

and that the mixing matrix Uy, which is the unitary matrix diagonalizing M} dM/Jf

Ul 1 Mg, My! TUL = dlag(m,,l,m?@,mi, mz,), (2.70)
has the form
0
| UL g +o<”%’), UL, = 0(1), (2.71)
0001

where Uy, is a unitary 3 x 3 matrix ruling the mixing in the sector of the light SM-like

neutrinos. The unitary matrix Ugr, which diagonalizes Mg ,fd’
UT M;ZM UR - dlag(myl ’ m12/27m12/3a m2 ) (272)

is more complicated and leads to mixing between the right-handed SM-like neutrino fields
and féR which is, in contrast to the respective case for the left-handed fields, not suppressed
by m,. Motivated by the hierarchy of the coefficients in M »

0
O(m 0
Mf, = (m) : (2.73)
0
Je gu Yr me,

we decompose Ug into two factors, Ugr = Ug,1UR 2, where Ug ; aligns the vector (Ye, ¥y, §r)
along the (0,0, 1) direction and Ug o takes care of the remaining rotation in the v3-v4 plane.
In detail, we define

{

) (geagm?}r) = ge ) ?j > 07 (2'74)

@

@

®
_ o o o
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with {e,€’,e”} forming an orthonormal system of 3-vectors, i.e. |e|] = |¢/| = || = 1,
efe’ =0, etc., so that

0
O(my) 0

MU = | ) 2.75)
00 gy my,

The second matrix Ug 2 rotates the 2-vector (g, mg,) in the v3-v4 plane into (0,m,,),

0
O(m 0
Mi, Ugr,1Ur2 = () O (my) (2.76)
my
000 my,

Thus, while Ug ; simply aligns the SM-like right-handed neutrino fields, the rotation Ug 2
dictates the mixing of the right-handed SM-like neutrino fields with the fermion from the
dark sector.

2.4.2 Simplified fermion sector of the DASM

The results of the previous section illustrate that it is possible to restrict any analysis
of observables that are not sensitive to SM-like neutrino masses to the case m;; = 0
(1,7 = 1,2,3). After aligning the right-handed SM-like neutrino fields with the help of (2.74)
the Lagrangian (2.62) simplifies to

L3 on = Fi (B — ) 1o (vppfiiR 4 he) + 30 [FRigvR], (@77)
j=1,2,3

with y, = V2§ /v1. The resulting mass matrix for the SM-like neutrinos and the dark
fermion f} reads

000 0
000 0

Mj, = voo o | (2.78)
00§ mg,

Note that both § and my, can be assumed real and non-negative as became clear in the
discussion of the previous section. The very simple form of Mgd allows for the ansatz

10 O 0 10 O 0
01 0 0 01 0 0
Uy = , Urp2 = , (2.79)
00 cosf sinb 00 cosf, sind,
0 0 —sin#; cos b 00 —siné, cosb,
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/R

for the rotation matrices leading to the fields ViL ,1=1,2,3,4, that correspond to mass

eigenstates. The diagonalization conditions then read
0 = sin 6 (g sin 6, + my, cosb;) , 0 = cos 6 (§ cos 0y — my, sin6,) . (2.80)

Equations (2.80) have the solution

sinfy =0,  tanf, = — (2.81)
me,
so that we can choose
o ] — Miy
6, =0, sp, = sinfy = ———, cp, = O8Oy = ———. (2.82)
VI +mi VI +mE,
In particular, we have Uy, = 14. This means that in the approximation of neglecting

My e, the flavour eigenstates for each of the left-handed fields are already aligned to the
mass eigenstates, but the right-handed flavour eigenstates need to be rotated to correspond
to mass eigenstates. The masses are given by

My = Myy = My, =0, my, = /9% + m?d. (2.83)

Moreover, it should be noted that for m,, ,, ., = 0 any further unitarity transformation
of the SM-like neutrino fields (provided by some Uy, of the form (2.71) with m, = 0) is
unobservable as in the SM, so that there is no CKM-like mixing in the charged-current
interaction of the leptons. As an intuitive set of input parameters we choose the mass m,,
of the heavy neutrino v4 and the mixing angle 6, € [0, ] for the right-handed fields. Using
egs. (2.81) and (2.83) we find

U = S, My, me, = Cp, My, (2.84)

for the additional parameters introduced in the fermion part of the Lagrangian.
Rewriting eq. (2.77) in terms of v; (i = 1,2, 3,4) leads to
E%‘ggmion =1y (1&9 - ml/4) vy + Z IijlaV]R
=123
s, M
4 (Sgrsahﬂgfu}} + co, SahTE VS — s co HUEUR — cp co HUYUE + h.c.)
U1
—é (SVZM + CVZL) (17}7“1/4% + cgr e sgr AR
- [89r09r17}f‘7“1/§ + h.c.} ), (2.85)
from which the couplings of the neutrinos v; (i = 1,2,3,4) can be easily read off.

2.5 Input parameters

For the input parameters originating from the SM part of the DASM we use the precisely
measured masses of the gauge bosons, Myy, My, the electromagnetic coupling aen, = €2/(47),
the fermion masses, the CKM matrix elements V;;, and the mass of the SM-like Higgs
boson, which can be h or H. The various extensions introduced above lead to additional

free parameters:
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o There are two additional free parameters in the gauge sector. Using eq. (2.47) we
express a and eq in terms of My, and + and use the latter two as input parameters.

e There are three extra parameters, Ay, Ajo, u%, introduced in the Higgs sector in
addition to the SM Higgs parameters. Using eq. (2.24) we express the additional
parameters coming from the Higgs potential in terms of M/, «, and Aj2, which are
used as input parameters, where h’ is the non-SM-like Higgs boson of h, H. Note that
the mixing angle « is most directly connected to the “signal strength” of the SM-like
Higgs boson as measured by LHC collaborations.

o The new parameters § and my, of the fermion sector are expressed in terms of the
input quantities 6, and m,, using eq. (2.84).

In total we use
{MW’ MZ) MZ’) MH7 Mh7 Qem, Y, &, 61‘7 )\127 My My, ‘/Z]} (286)

as a particularly intuitive set of input parameters for the DASM.

3 Renormalization of the DASM

In order to match the accuracy of EW precision data from the LHC and previous colliders,
including the (g — 2), result, at least NLO predictions for precision observables are needed.
Thus, the theory needs to be renormalized. In this section we introduce two types of
renormalization schemes for the DASM and give the resulting expressions for the various
renormalization constants at NLO. The first scheme is based on on-shell (OS) renormal-
ization conditions as far as possible, the second employs MS conditions for some of the
parameters of the non-SM sectors.

3.1 Renormalization transformation

We choose a multiplicative renormalization procedure for the input parameters and the
fields. To this end, at NLO we define the following renormalization transformations,

Mgy = My + 6Mg, ME o = ME + SMF,

M= M3+ 6 Y

M\%v,o :M\%V—i_(SM\%Va eo=(1+0dZ.)e = e+ de,

Yo =y + 07, oy = a+ da,

A12,0 = A1z + 02, myeio=myg;+ omy,,

Vijo = Vij +0Vij, Or0 = Or + 60, (3.1)

for the input parameters of the SM and dark parts of the model. Here we denote the bare
parameters and fields with a subscript “0” to distinguish them from their renormalized
counterparts without this subscript; the quantities dp are the renormalization constants for
the respective parameters p. After the rotation of the fields into a basis corresponding to
mass eigenstates, the renormalization transformation for the fields reads

h 1 h 8Znn 07
O = (12 + 5zs) : 0Zg = | M T
Hy 2 H 5Zmn 6Zmu

)
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Ap . A 0Zan 0Zay OZay
2 (ﬂs + 25Zv> Z |, 0Ly = | 0Zz4 0Zzz 0Zzz |,
Z() A 0Lgip 0L g1 0L g0

Wi = <1 + ;5ZW) W,

1l = <1 + %52{ vL) L /R = <5ij + ;525;1‘) R (32
where the matrix structures for the Higgs fields h and H, the neutral gauge-boson fields
A, Z, 7', and the right-handed fermions f& arise due to their possible mixing. For charged
leptons, up-type and down-type quarks, the indices ¢, j label the three generations. Since
the new fermion fj mixes with right-handed neutrinos, it has to be taken into account in
the renormalization of the neutrino fields and, thus, for f = v the indices ¢, j run over the
three SM-like neutrino generations as well as the non-standard fermion v4. Note that we do
not introduce a matrix structure in the quark sector, since we set the CKM matrix in the
following to the unit matrix.® For our purposes this is an adequate approximation as we
will not consider flavour-sensitive observables.

Additionally, we introduce renormalization constants for the tadpole parameters, which
were introduced in egs. (2.9) and (2.14), according to

tho =1th + otp, tgo =1ty + oty. (3.3)

Note that the relation (2.14) is true for the sets of the bare and renormalized quantities,
{t1,0,t2,0,th0,tuo} and {t1,t2,th, tu}, respectively. However, the parameter relations ob-
tained from eq. (2.9) only hold for the bare quantities ¢ ¢ and ¢z, but not for ¢, and tg.

The renormalization of the unphysical sector, i.e. the renormalization of the would-be
Goldstone-boson fields, ghost fields, and gauge parameters, is not relevant for the calculation
of S-matrix elements and we choose to not renormalize them at all. In particular, this
means that the gauge-fixing functionals do not generate any counterterms at all (for more
details on possible renormalization schemes of the unphysical sector in the SM see, e.g.,

refs. [35] and references therein).

3.2 Renormalization conditions

First we set up a renormalization scheme that, as far as possible, adopts OS renormaliza-
tion conditions that lead to intuitive and direct relations between the input parameters
and physical observables. The only exception is the coupling constant Ajo where no OS
renormalization condition is phenomenologically appropriate as long as the non-SM-like
Higgs boson is not found. Thus, d\j2 will be fixed by an MS renormalization condition.
The dimensionless coupling A1 is not related to masses, and therefore, its renormalization
does not depend on the details of the tadpole renormalization (see section 3.2.1). As an
alternative to the OS renormalization conditions for the non-SM parameters, we describe MS

3A generalization to a non-diagonal CKM matrix proceeds exactly as in the SM (see, e.g., refs. [31, 35]
and references therein).
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renormalization of the corresponding parameters. Once OS renormalization is established,
the transition to MS renormalization is provided by simply keeping only the standard UV
divergences in the renormalization constants of the respective parameters.

In the following we present the various renormalization conditions and the explicit form
of the renormalization constants.

3.2.1 Tadpole renormalization

In EW renormalization — in particular if MS conditions are involved — the treatment of
tadpoles plays an important role. Historically, the two most popular tadpole schemes are
the Parameter Renormalized Tadpole Scheme (PRTS) [31, 39] and the Fleischer-Jegerlehner
Tadpole Scheme (FJTS) [40]. In addition, recently the Gauge-Invariant Vacuum expectation
value Scheme (GIVS) was proposed in refs. [41, 42] as an alternative to the former two.
Here we briefly sketch the renormalization procedure of the tadpoles, for a more detailed
and comprehensive description we refer, e.g., to refs. [35, 41, 42].

In spontaneously broken gauge theories, like the DASM, explicit 1-loop contributions
originating from tadpole diagrams, i.e. Feynman diagrams of the form

h H
irt = i7" = Q irf =it = Q (3.4)

where the blobs represent any 1-loop subdiagrams, arise if the effective Higgs potential
does not acquire its minimum at the renormalized vevs v1,v2 (see also appendix C of
ref. [43]). Technically it is desirable to avoid the appearance of these tadpole contributions
in calculations as far as possible. This can be done by an appropriate choice of parameter
and field definitions in the course of the renormalization programme. At LO, tadpole
contributions can be eliminated by demanding t; o =ty o = 0 (see section 2.1). At NLO,
explicit tadpole contributions can be canceled by generating tadpole counterterms &t h and
Ot H in the Lagrangian and demanding for the renormalized 1-point functions F}f{ and Fg
of the physical Higgs fields to vanish,

It =T"+6t, =0 = oty = —T",
=1 +6ty =0 = Sty = —TH. (3.5)

There are different ways to introduce the tadpole counterterms dtph and §ty H in the La-
grangian.

In the Fleischer-Jegerlehner Tadpole Scheme (FJTS) [40] the bare tadpoles ¢j o and
tm,o are consistently set to zero, and the tadpole counterterms are introduced via shifts of
the Higgs fields

h— h+ AUFJTS AUFJTS _ _6t£JTS
h ’ h - M2
h
5tFJTS
H— H+ AT AlTS = - ]\1}2 . (3.6)
H

Even though AUE‘]TS and AUZJTS turn out to be gauge dependent, the FJTS does not
destroy the gauge independence in predictions for observables in OS or MS renormalization
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schemes since the field redefinitions (3.6) can be viewed as mere shifts in the integration
variables in the functional integral used to quantize the theory. However, the FJTS tends
to lead to large tadpole contributions to renormalization constants of mass parameters in
MS renormalization schemes, often jeopardizing the perturbative stability of predictions
(see e.g. refs. [41-46]).

In contrast to the FJTS the Parameter Renormalized Tadpole Scheme (PRTS) [31,
39] treats the tadpoles similar to model parameters and introduces the desired tadpole
counterterms simply via the parameter renormalization transformation given in eq. (3.3).
For the renormalized effective Higgs potential to have a minimum at v1, v9, the renormalized
tadpoles are set to zero in the PRTS, t}, = tg = 0, so that 0t;, = tpo and 6ty = tmpo.
Starting from

2
V32,0
oty = —v1 (40%70)\1,0 + 05 g A12,0 — 2#%,0) , Oty = —v20 <4 X2,0 + V7 g A12,0 — M%,o) ;

2 2 2 2
V1,0 (Ca,OMH,O + Sa,OMhp) -+ Ca705tH — Sa705th
Alﬁ = 3 )
8vi g

2 [7}2,0 (Ci,oM}io + si,OMlgLO) + Ca,00ty + Sa70(5tH]
A2 = 3 , (3.7)
2,0

)

and using eq. (2.24) for the bare (v1,0) and renormalized (v;) vev of the Higgs field p, one
finds the simple replacements?

3 (cadtERTS — 5, 515RT5) 3 (caBFTS 4 5, B0FTS)

2 2
; M3 — M2 +

2 2
Hio — Hip T

)

4U1 2’[)2
PRTS PRTS
o §5¢PRTS _ o s/PRTS 2 (cadt, ™ ° + 840ty
Ao = Ao+ 2 3 s, A2 —> A2 + ( 3 ),
U1 Vs
A12,0 = A12,0, (3.8)

for the bare parameters of the Higgs potential to generate all tadpole counterterms from the
bare Lagrangian in which ¢ ¢ and ¢ ¢ are set to zero. The PRTS leads to small corrections
to renormalized mass parameters, but in general introduces a gauge dependence in the
parameterization of predictions for observables in MS schemes (there is no such dependence
introduced in OS schemes). Thus, to produce consistent predictions using the PRTS in
combination with an MS scheme, either a gauge has to be fixed once and for all or the
values of the input parameters have to be converted between different gauge choices.

In both tadpole schemes the tadpole counterterms are chosen in such a way that
they cancel the respective contributions from explicit tadpole diagrams in Green functions.
Nevertheless, the tadpole renormalization constants dt, and dty enter the Lagrangian in
different places, and therefore, lead to a dependence of counterterms on the chosen tadpole
renormalization scheme.

4These replacement rules, due to the similar construction of the Higgs sectors, are equivalent to the ones
given in ref. [42] for the pure Higgs singlet extension.
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Combining the benefits of the FJTS and the PRTS — the gauge independence of
the FJTS and the perturbative stability of the PRTS — recently a hybrid version of the
two schemes, the GIVS, was proposed in refs. [41, 42]. The GIVS constructs the tadpole
renormalization constant dtg (S = h, H) from two contributions, 5t§11\/s and 5tgl2vs, where
575%711\/5 is introduced as in the PRTS and 575%}2\/5 as in the FJTS. The GIVS switches to
the non-linear Higgs representation for the calculation of the 5tgllvs. In the non-linear
representation the scalar components corresponding to CP-even neutral physical Higgs
fields are gauge invariant, rendering the corresponding tadpole functions gauge independent.
These tadpole renormalization constants are given by

sty = —Th, stiyS = T4, (3.9)

where the explicit expressions for the NLO Higgs 1-point functions in the non-linear Higgs
representation (see appendix B) are given by

Ti= > dev [3A(M3) - 20|+ Y [Assrdo(ME))]
V=2,72' W S'=h,H

+Asp Y [Nc,fm?vAo(m?)} + Asvmy, Ao(ms,),
f=lud

S =h,H, (3.10)

with the respective color factor N¢ ; of a fermion f and

) 2772 2772 2 172 2172 27072
M7 (vlcac,yMZ — U2SQS,YMZ/) co M7 (vlsac,yMZ + vgcas,yM ,)

Az = ; Mgz = ;
167T21)11)2M\2N 167T21)11)2M\%V
2 272 2272 2072 2 272 2072 2072
\ ey M7, (vlcas,yMZ, — vzsac,YMZ) \ e M7, (vlsas,yMZ, + vgcacvMZ>
hz' = HZ' —
167T21)1U2M\2N ’ 167T21)11)2M\%v ’
2 2
Apw = coMiy AHW saMiy
8mluy 8miuy
3chhn ChhH
Anh = 1672 AHh 16,2’
) ChHH \ 3cunn
hH = ——= HH Ha 9
1672’ 1672’
Cq Sa
)\hF = — )\HF -
Am29y’ A2y’
2 2
SaSg CaSy
My = L Ay, = — =, 3.11
YL A2y, va A2, (3.11)

The explicit expressions for the Higgs self-couplings cg, 5,5, (51,52 = h,H) can be found
in eq. (2.18) of ref. [36]. The function Ag(m?) is the standard 1-loop 1-point integral in
dimensional regularization using the conventions of refs. [31, 34, 35]. The 1-point functions
Tfl are then used in tadpole counterterms that are generated in the course of parameter
renormalization as in the PRTS, i.e.,

3 (caétgys — saétﬁllvs)

41)1

3 (cadt§1VS + sadtGYS)

2v9

2 2 2 2
Mo = M1+ ) Moo = M2 +

)
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1 I
CaltGIYS — 5,631V 2 (cad VS + 500t G1YS)
A2,0 = A20 + 3 ;

3 )
8vy v

)\170 — )\170 +

A12,0 = A12,0- (3.12)

Apart from the calculation of 5tgg711vs, the whole loop calculation proceeds in the linear
Higgs representation as usual. Therefore, the mere use of 5t§}1\/ S as tadpole renormalization
constants would not lead to a full cancellation of tadpole loops in the loop calculation.
The “missing” parts in the tadpole renormalization constants, (525%712\/8 and (525%378 (which

are gauge dependent), are introduced by field shifts as in the FJTS,

GIVS GIVS 675%12\/8
h-)h-‘rA’Uh s A'Uh = - Mz )
h
StGyS
GIVS GIVS )
H — H + A'UH s A'UH = —W, (313)
H
with
GIVS TS — TSI
Avg ™ = =" = Ay Ao(€vMz) + Ay Ao (§vMz ) + AspAo(§wMw), S = h, H,
S
(3.14)
and
vlcac?t — vgsas,i Ulsaci + vgcasg
)\hx = 2 b)) >\HX = 2
32720109 32w v1v9
A . vlcas% — vgsaci A\ - vlsasg + Ugcaci
X' = 32720109 Hx' = 3272019
Co Sa
Mg = —2 Airo = . 3.15
hé 167209 He 167209 ( )
The full tadpole renormalization constants 5t§'IVS, thus, consist of two parts,
SIGIVS — §ySIVS | OIS _ _ph 5GIVS _ sy GIVS | gGIvS _ _pH(3.16)

The GIVS is designed in such a way that the vevs vy, vy of the Higgs fields are tied to the
minimum of the renormalized Higgs potential, rendering the GIVS a perturbatively stable,
gauge-independent tadpole renormalization scheme.

In the following we give explicit results for OS and MS renormalization constants for all
parameters of the DASM that are related to masses. The OS scheme leads to a systematic
cancellation between tadpole corrections in mass renormalization constants and self-energies
in calculations of observables in all three tadpole schemes so that predictions for observables
in OS schemes do not depend on the tadpole scheme. However, for MS renormalization the
choice of the tadpole scheme matters. By default, we choose the (most commonly used)
PRTS for the renormalization of the DASM (see section 3.1), but the use of each of the
three tadpole schemes described above is straightforward in the DASM. In the following we
give substitution rules for the translation of the PRTS results to the respective FJTS and
GIVS results for all mixing angles of the DASM.
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3.2.2 Mass and field renormalization

We adopt OS renormalization conditions for the masses and fields as, e.g., formulated
in refs. [31, 35, 36, 43] and follow ref. [35] in the notation and conventions for field-
theoretical quantities. This means that the renormalized mass parameters of physical
particles correspond to the locations of the zeroes in the real parts of the respective inverse
propagators, that on-shell fields do not mix with other fields, and that the renormalized
fields are canonically normalized. In terms of renormalized two-point vertex functions F“Rb
of fields a, b the renormalization conditions are given by

ReTh 1, (=k, k)" (B)jacprz =0, V,V'= A, 2,2/, W=, (3.17)
1 viv v
kQIianz K2 _ M2 ReFR /J,I/(_k7 k)g (k) = _€M<k)7 (318)
ReTR" (—k, k‘)|k2:M§ =0, S,8" =h,H, (3.19)
: SS _
Re T} (—p, p)u;(p) =0 (3.21)
R,ij ’ J ) ’
pzsz]
+
tim, 2 Re DY, (<p.p)usp) = wilp), (3.22)

p%mflp _mf7

where £#(k) and u(k) represent the polarization vectors and spinors for on-shell external
gauge bosons and fermions with momentum k, respectively. Using the covariant decomposi-
tion of the two-point functions for gauge bosons in 't Hooft-Feynman gauge,

17 k kV Ty k k Ty
Dl (—k k) = =g (K — M )dyyr — (gm, - ’,;) it (k) = 2528 (), (3.23)

where EK’TTV "(k?) and EK}TLV "(k?) are the renormalized transversal and longitudinal self-
energies, we find the well-known results

2 VIV 2 axy'V (k?) .
SM{ =ReXy ¥ (M), 8§ Zvyty = —ReT , V=A22 W+,
kQ:M\%
SV (M2,
§Zyyv = —2Re =1y —— V2 VV'=AZ ZA AZ'\Z'A, 27", 7' Z, (3.24)
Mg, — My;

for the renormalization constants in the gauge sector. Note that in our convention all
self-energies include one-particle irreducible (1PI) contributions ¥1py (k%) as well as 1- and
2-point tadpole counterterms Y5 and reducible tadpole loop corrections Yi,q (for more
details see section 3.1.7 of ref. [35]),

B(k?) = Sip1(k?) + Sst + Stad- (3.25)
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In contrast to the SM, the Higgs sector of the DASM contains two physical Higgs bosons.
Higher-order effects lead to mixing between the fields of these two scalar bosons. Therefore,
similarly to the sector of the neutral gauge bosons, the renormalized two-point function with
two external scalar fields S, 5" = h, H is not diagonal and might be decomposed according to

3% (k. k) = (k2 = M3) 6550 + T° (K2), (3.26)

with the renormalized self-energies
/ / 1 1
225 (k%) = 295 (k%) + 5(k2 — M%) Zss + §(k:2 — M2)6Zg1g — 6550 M2. (3.27)

Using egs. (3.19) and (3.20) one finds for the mass and field renormalization constants of
the Higgs sector,

azSS(kQ)

M2 = Re 259(M3), 6Zss = — Re 2 |
Mg

S (ME)

52551 = —2R67,
Mg’ - Mgv

S£S'. (3.28)
The renormalization procedure of the fermion part of the DASM can be carried out in
analogy to the SM procedure. We parameterize the renormalized two-point function for
fermions by covariants as follows,

71 I
F{{fm( ) prFR Zj( ) + prFR U( 2) + wLF{{,z]( ) + WRF{{ z]( )v (3'29)

where wy, /R = 3 (1 F75) denote the chiral projectors and FR ZJ( 9, ngffj( 3, F{i’ Zj( ?),
and Fgrij (p?) are the renormalized left- and right-handed vector and scalar parts of the
fermion two-point vertex function. Adopting this notation for the covariants of the fermion

self-energy we find

I (v 2)=5ij+2§£jL(p2)+% (625" +oz5M), (3.30)
Ty () =63+ 255 (07) + ; (628" +o25™), (3.31)
Tl 0%) = —myid+ 5 (07) - ;(mfﬂ-azifv +my 0 Z5) = 5is0my s, (3.32)
Fﬁ’,ﬂj(p?)Z*Mf,iéiﬁsz(pz)*%(mf,z-éZij’ tmy 0 Z5) ~ 6, 50my s, (3.33)

where 523]- = 0Z3;. In combination with the renormalization conditions (3.21) and (3.22)
one finds the same form as in the SM [31, 34, 35],

Smpi = gRe [my (SEE0m% ) + 23 ) + B ) + S m3, )]

)
0z = —Rex{(m3;) — my;= 5Re

57 mpi (55007 + 25 07)

2
pr=my;

+ 25 0%) + (0]
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0
§ZR = —Re EfR(mfZ) my. 19,7 ——5Re {mf,i (Ef.’L(p2) + Zf.ﬁR(p2)>

pP=m7,
2
7R ) 2 7L 2 91 2
025" = - omi,—mi; 5 Re |3 S0, + mgmg 2L ) +mg 5 )
+mp Sl (mf])} i 7 J, (3.34)

for the mass and field renormalization constants of the fermion sector.

3.2.3 Renormalization of the mixing angle ~

For the renormalization of the mixing angle v we follow the OS renormalization approach
that was introduced in ref. [43] for mixing angles in scalar sectors. To this end, we introduce
an extra “fake fermion” field wq with appropriate infinitesimal couplings which, thus, does
not change any predictions for observables, but still can be used in the formulation of
renormalization conditions. The additional fermionic field wq is a singlet under the gauge
group of the SM, but is charged under the additional U(1)4 gauge group of the DASM. The
relative U(1)q charge of wq is called g, in the following. The respective Lagrangian for wq
is given by

wd (iPq — My, ) wa = Wy {1{/9 — €, (37Z + c,yZ/> — mwd} wq. (3.35)

The fake fermion wq is non-chiral, so that we can attribute to it a Dirac mass term with
mass parameter m,,,. Moreover, no anomalies are introduced to the theory because of the
non-chirality of wq. The Feynman rules for the two new vertices introduced by L,,, are

Wq Wd
Zuw< = —1Guesy Vs ZLW\< = —1GuecyYp- (3.36)
Wy Wq

Obviously, the original theory is recovered by taking g, — 0. Following ref. [43] we consider
OS formfactors FV@dwd (V = 7, 7", defined by the decay matrix elements

given by

MZ—Mded _ [ﬂwd¢vwd]ZfZ®dea MZ’-)LTded —_ [aLUd¢de]Z/fZ’ded’ (337)

where 4, and v, are the spinors of the final-state fermions, €, denotes the polarization
vector of the respective gauge boson, and the [...] 7/z indicate the respective decay
kinematics. To fix v we demand that higher-order corrections to the ratio of the two
formfactors defined in eq. (3.37) vanish,

]:Z&ded ! fzwdwd 8oy
qhgl0 F 7o ]_—Z o = o (3.38)
¥ LO v
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Using the OS renormalization scheme we find for the NLO-corrected formfactors FZ4/4'@awa

loop
€ Sy gl

(Sé 50}/ 1 S 7'
—4+ 241467 —8Z g1 + —L 675 + 67 ©awd 3.39
é+c7+ wd+2 Zz+2c7 22"+ Oj50p )7 ( )

o o 6 9 1 B
FReo e = Ffé“(‘“(l +

Z/Z’:ded
loop
vertices and 07, is the field renormalization constant of the non-chiral field wq. At NLO

this leads to

where ¢ represent the unrenormalized relative 1-loop corrections to the Z/Z'wqwq

Fia Zeawa 5sy dc, 1 c s
= = = 14+ -2 — 4 |62y —0Zp 0 + L6277 — 2L5Z,0
]:—ﬁLdewd ]:fowdwd + 5y c + 2 zZ 7'z + 5y zZ'Z o VA

+ Bgon 5120;%“}- (3.40)

The 1-loop vertex corrections are induced by the diagrams

Wd Wd
Z,va@ Z:LW@ (3.41)
wWqa Wa

and thus the terms 5120{5%% are of O(g2) for g, — 0. Similarly we obtain §Z,, = O (§3).

Evaluating the NLO renormalization condition (3.38) in the limit ¢, — 0 and using
05y = ¢,0, thus, leads to

1 1
(5")/03 = 58767 (5ZZ’Z’ — 5ZZZ) + 5 (S,QY(SZZZ/ — C%5Zle) . (3.42)

Note that the OS renormalization condition (3.38) has several of the desirable properties
that were discussed in refs. [43, 47]:

(i) The OS renormalization of v is symmetric in the fields Z and Z’ of the neutral gauge
bosons.

(ii) The renormalization constant of the mixing angle 7 is given by a gauge-independent
combination of field renormalization constants.

(iii) The renormalization does not depend on a specific physical process.

(iv) dv0s is well behaved for exceptional values of v, i.e. it has smooth limits for s, — 0
and ¢, — 0.

(v) Combining eq. (2.37) for the bare fields with eq. (3.2) and using the NLO expansion

RV (’70; CW,O) = RV (77 CW) + 5RV(7> Cw, 577 5Cw)7 (343)
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we find to 1-loop accuracy

B, . Ay
W | =Ry (14 R3O )Ry (i 0de0) + 3020 ) | 2, | (349)
c, Zy

This field redefinition leads to explicit ¢ terms originating from ~ in Ry, i.e. from
dRy in eq. (3.43). Similar to the situation for scalar mixing (see ref. [43]) these explicit
0 terms are always introduced via the combinations

1 1
oy + §6ZZZ’7 oy + §5ZZ’Z- (345)
The dependence of (3.45) on §Zzz and §Z 4 in the chosen OS renormalization (3.42)
is, in either case, given by the combination

247 (M) — 247 (Mz)

0Zziz +0Z77 = 2Re
M%/ _M%

(3.46)

This combination of renormalization constants is numerically stable for degenerate
masses, i.e. for My ~ My/. Further, all appearances of v coming from rewriting the
original parameters of the Lagrangian in terms of the chosen input parameters include
a prefactor of M2 — M?2,. This shows that no artifacts occur in the degeneracy limit
My — Mgz, i.e. the OS scheme is perturbatively stable in this limit. In the OS scheme
all renormalization conditions for parameters related to masses and mixing are based
on S-matrix elements. Thus, even though dvpg itself depends on the tadpole scheme,
all predictions of observables made within this OS scheme are independent of the
chosen tadpole scheme.

As an alternative to the OS condition (3.38), the mixing angle v could be renormalized with
an MS prescription. Using eq. (3.42), the MS version of §v can be obtained according to

s = &YOS’UV’ (3.47)

where the subscript UV indicates that only the UV-divergent parts of dvyog that are
proportional to the standard UV divergence Ayy, defined in eq. (C.1), are kept. The
explicit expression for 0575 in the PRTS is given in appendix C. We recall that even though
eq. (3.47) is true in any tadpole scheme, NLO predictions based on 75 are, in contrast
to predictions based on ~pg, in general dependent on the tadpole renormalization scheme
(see section 3.2.1). The tadpole contributions to 07315 in the tadpole schemes described in
section 3.2.1 explicitly read

PRTS __
57@,%@ =0, (3.48)
FJTS FJTS
SFITS _ (CZZ’hAvh + czznAvy ) (3.49)
fYM&tad - M% _ Mgl UV7 )
GIVS GIVS
5 CIVS (CZZ/hAvh + ey Avy ) (3.50)
ryMS,tad - M% _ M%, UV’ :
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with the shorthands

2 2
Cyzm = —S2v (Cal1 + Sa¥2) ng’ Cyzm = S2v (Ca2 — SqU1) Ti (3.51)

for the couplings czzhZ;, Z" + czzqHZ,Z" in the Lagrangian. In contrast to the FJTS,
in the PRTS and GIVS tadpole terms explicitly appear in the relations between the original
bare parameters A1 g, A2, A12,0, M%,o: N%,o of the Higgs potential and the bare masses, vevs,
and mixing angles. Thus, the latter depend on the tadpole scheme. The bare mixing angles

VSRS and A5ITS are related via
1 SLEITS SEEITS
PRTS FJTS
B = (CZZ vt ) (3:52)

For the MS-renormalized mixing angle we find the (gauge-dependent) shift
,YI\P;[}S{TS ,yll*\“/[JSTS _ ,y(lJDRTS ,ngTS _ ( 5,YPRTS 5,YFJTS)

1 " TH
- m CZZ’hﬁg + sz’Hﬁlz{
between the PRTS and the FJTS values, where the subscript “finite” indicates that all
UV-dependent parts proportional to Ayy are dropped. Similarly, we find the (gauge-
independent) shift

GIVS _FJTS _ 1 Th TH
™Ms WS s | Corn~3 + Carn—%
MZ — MZ’ M M

(3.53)

finite

(3.54)

finite

for the conversion between the GIVS and the FJTS.

3.2.4 Renormalization of the mixing angle «

Similar to our procedure for the renormalization of v, we apply OS or alternatively MS
renormalization for the mixing angle «. Further possible schemes based on symmetry-
inspired conditions are described in refs. [43, 46, 48].

If the mass hierarchy Mj > 2m,, holds (recall My, < My), the OS renormalization
condition for the Higgs mixing angle a can be formulated for the OS formfactors of the
decays h/H — p4vy, defined by

Mh_>l74y4 = [al/4vu4]h‘7:hl74y47 MH_>D4V4 = [ﬂu4vl/4]H‘FHD4y47 (3’55)

where again the fermion spinors of the final state are denoted by u,, and v,, and the
decay kinematics are indicated by [...] . As renormalization condition we demand the
higher-order corrections to the ratio of the real parts of the two formfactors defined in
eq. (3.55) to vanish,’

Re Fh1741/4 ! fhl/4l/4 54

Re le74I/4 fHI/4lI4 = _a (356)

5Since we choose an OS renormalization scheme, i.e. a to be real, the absorptive parts on the left side of
eq. (3.55) are not taken into account in the renormalization condition.
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At NLO the two formfactors are given by

0So  0sg, Oy  Ouy

~F~hﬁ4l/4 — higvy 1 + ol + + - _
NLO LO 50 s, 7 "~
1 _
4= (25254 57— S5 g+ 5Z§f‘) + 5{;;4”4},
2 Sa 50, P
_ _ Ye dsg, 0y  Oup
]_-HV41/4 — Huvy [1 + Yta + I + 2=
NLO LO o 56, 7 m
1 _
+3 (252;;4 0 Zum — iﬁéZhH + ?wszgf) + 5553“4], (3.57)
(0% er

with 51’2%;”4 and 6gg§”4 denoting the relative unrenormalized 1-loop corrections to the decays,

respectively, and

1
62}, = 5 (625 +02"). (3.58)
The ratio of the real parts of the two formfactors at NLO is given by

R. hivavy o 1) o 1) o 1 « «
L?IEO - _ 5{1 4 %% 0% | - {5Zhh — 07y + i5ZhH - C5ZHh}
Re F; 1\1LV40V4 Ca Sa Ca 2 Ca Sa
+ Re [ofizws — gl1riv ] } (3.59)

Using 0sq = coda, the renormalization condition (3.56) then finally leads to

1 1 5 5
daost = ;casa (82 — 0Zu) + 5 (A0Zmn — 28 Znir) + casaRe [Sig” = Sl

(3.60)

where OS1 stands for the particular OS condition (3.56) based on the assumed mass hierarchy
My, > 2m,,. To relax this mass hierarchy, for m,, < My, My, m,, we can formulate an
OS renormalization condition based on the OS formfactors of the h/H — w314 decays or
4 — h/Hig depending on the mass hierarchy between h,H, and v4.° For M}, > m,,, e.g.,
we have

MEP (i con n FPP2, MIS [ o, | FIP,(3.61)
while for My < m,, we can write
Ml74—>hl_/3 — [@U4WRUV3]}L]:’ZD4V37 M174—>Hl_/3 — [@V4WRUV3]H~7-—HI_/4V35 (362)

with the same formfactors” F574*3 and wr = %(1 + 75) denoting the right-handed chiral
projection operator. Here the spinors of the final-state particles are denoted by u,,,v,, and

5In the “collider approximation” for the neutrino sector outlined in section 2.4.2, where m,, = m,, =
my, = 0, the state v3, which is specifically aligned to couple to the dark sector maximally, corresponds to a
mass eigenstate, so that OS renormalization conditions can make use of v3 directly. For non-vanishing neutrino
masses m.; (j = 1,2,3), the renormalization of the full neutrino sector becomes way more complicated, an
issue that is, however, not relevant for collider physics and, thus, beyond the scope of this paper.

"Note that in our notation the labels of the formfactors always denote incoming fields.
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Uy, , Vys, respectively, and the decay kinematics are indicated by [...], /- As renormalization
condition we now demand the higher-order corrections to the ratio of the real parts of these

two formfactors to vanish,

Re P 1 FG™ _ sa (3.63)
Re Fllvavs — pHwvs =~ ¢ ‘

The renormalized NLO formfactors are given by

7 5 0s ic oy ov
i = A e e T
[ r
1 C S _
+ 5 (523V§>R + 5ZZZLL + 6 Zpn — S—aéZHh + chaZZ)’R> + 5’”4”3} ,

loop
e

5 5 oc dcg. 0 vy
fHV4U3 — Hu,vg 1 + h®] + Z0r + =
NLO LO o co. 7 v
1 s S 5
+ = (6Zj;f +OZER 4 62y — "0 2y + 2 5ZZ§R) + 5{55;”3}, (3.64)
2 Ca Cor
where the 5&{)151741/3 again represent the unrenormalized 1-loop corrections to the respective

decays. Inserting this into the renormalization condition (3.63) leads to

1 1 = 5
daose = 3Casa (0Zuu — 0Zpy) + 3 (Ci5ZHh - 8(2152;11{) + casaRe [611:)1(,),3% - 51}334;)1/3]

(3.65)

for the renormalization constant of the Higgs mixing angle.

The renormalization conditions (3.56) and (3.63) have various desirable features. Firstly,
they are symmetric in the fields h and H. Secondly, the OS renormalization constants daos;
(i = 1,2) are gauge independent and numerically stable for degenerated masses My ~ My
and have smooth limits for s, — 0 and ¢, — 0. In contrast to the OS renormalization of
the Higgs mixing angle a of the SM extension by a real Higgs field considered in ref. [43] or
an MS renormalization of the DASM, the OS renormalization of « in the DASM is process
dependent. This is reflected by the remaining non-vanishing higher-order contributions
5{:;;;”1 and 6gggyj, j =3,4, in egs. (3.60) and (3.63), respectively, and due to the fact that
the complex Higgs field p of the DASM cannot be coupled to fully gauge-invariant fake
fermion fields since p is not a singlet under the U(1)4 gauge group.

As an alternative to OS conditions, the angle a could be renormalized via an MS
prescription. The resulting renormalization constant in the MS scheme can be obtained

from (3.60) or (3.65) via
(5(){ == 5()& == 6()4 . 366
MS 0OS1 082 < )

The explicit expression for dagg in the PRTS, which does not depend on any mass hierarchy
of the Higgs bosons, is given in appendix C. Note that even though eq. (3.66) is true in
any tadpole scheme, the NLO predictions based on the OS renormalization of « are, in
contrast to NLO predictions based on MS renormalization, not dependent on the tadpole
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scheme (see section 3.2.1). The tadpole contributions to dagg in the three described tadpole
schemes explicitly read

dageioy =0, (3.67)
5aﬁ§§dZ:—quHAU?EE?:iﬁ?Aﬂ%HS : (3.68)
H h Uv
§allVS _ 2ChhHAv,?]I\\; + %HAU}}IVS | (3.69)

’ H ™ ““h uv

where ey and cppy are the scalar coupling constants given in eq. (2.18) of ref. [36]. As
described in section 3.2.3, tadpole terms explicitly appear in the relations between the
original bare parameters of the Higgs potential and mixing angles. The bare mixing angles

o BTS and of TS are related via
9 §1FITS SHEITS )
PRTS FJTS h H
Qg =y~ ChhH + chHH . (3.70)
ﬂ@-<Mﬁ< Mg Mg
For the MS-renormalized mixing angle we find the (gauge-dependent) shift
PRTS FJTS _ _PRTS FJTS PRTS FJTS
s T O%s . = Qo — o - (&XW — 50‘% )
2 ( ™ TH>
= 772 2 | ChhH 73 + ChHH (3.71)
MH Mh Mh MH finite

between the respective PRTS and the FJTS values. Similarly, we find the (gauge-
independent) shift

GIVS _ _FJTS 2 T i
Of3g . — O = m ChhH 75 + chHHW (3.72)
H h h H finite

for the conversion between the GIVS and the FJTS.

3.2.5 Renormalization of the mixing angle 0,

For the renormalization of the mixing angle 6, in the neutrino sector we consider OS
formfactors for appropriate decays. By default, we assume My > 2m,, for the decays
H — v4vy /03y to be possible. For My < 2m,,, we sketch an alternative OS renormalization
condition for 6, at the end of this section. The amplitudes for H — v4v4 and H — v3v4 read

MH_W4V4 = [au4vu4]H~FHD4V4a MH_>173V4 - [aV4wRUV3]H’FHD4V3’ <3'73)

with the spinors u,, and vj;, j = 13,14, of the final-state fermions, the right-handed chiral

projection operator wg = (1 +75) and [...]y denoting the decay kinematics. To fix 66,
we demand that the higher-order corrections to the ratio of the LO formfactors .7-"50”4”4 and

ffg 43 vanish up to absorptive parts,
Re FH7ava B ‘7:15101/4”4 S0,

RefH174V3 o FI{{OIZU/:; = co : <374)

r
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Combining egs. (3.57) and (3.64) one finds

Re ]_—Hl/41/4 s 08 dc 1 C S
ReFNio™ _ so. {1 4 0% %% 2 [525;}‘ —ozslt 4 Lyt - 2y gk
ReFyro® <o so,  ¢co, 2 56 €6

+ Re {5{({(1)};V4 _ 61121(1;31/3}} (375)

for the ratio of the real parts of the two formfactors at NLO. Using eq. (3.74) and
0sg, = ¢, 006, we finally find

1 R R
BT - ) et - ).

(3.76)

1CerSgr ((5Z§§)R — 5ZZ&R>

As an alternative for My < 2m,,, one can formulate an OS renormalization condition using
the OS formfactors FZ' 75 and FZ'74" (defined below) of the Z' — vl and 7' — 31y
decays, respectively. Further, in the case My < m,, one can simply switch from Z' — D3vy
to the vy — Z'v3 decay for the formulation of the renormalization condition to cover the
whole parameter space. This will not affect the formal result for the renormalization
constant 59?;05 (see eq. (3.80)). The amplitudes are given by

MZ _WS V?’ = [uu3¢wRUz/3]Z’ ]:ZIVS V3 s (3'77)

MZ v — [au4¢wR'Uu3]Z’ ]:1 s + [ﬁmWRUVs]Z/ (Eﬂpﬁzs) ‘7:Z V4V3 (3.78)

with the spinors u,,, j = 3,4, and v,, of the final-state fermions, the polarization vector ¢,
of the Z' boson, and the right-handed chirality projector wgr = %(1 + 75). The momentum
of the neutrino v3 is given by p,,, and [...]z denotes the decay kinematics. Note that the
additional formfactor ]-"QZ ""1¥3 for the 7/ — 3y decay is loop induced, i.e. zero at LO. Due
to the unique decomposition of the matrix element into different covariants spanning the
underlying Z'-truncated Greens function, it is still possible to formulate the renormalization
conditions by only using F; Z'vavs

The OS renormalization condition at NLO then reads

AT Z'pByR
Ref 373 ' 373 Sp
NLO Lo = (3.79)

! !’
ReFIUS  FL” o

Following the steps presented above for 59508 one finds

/ 1 1 /
06705 = 56,0, (5ZZZLR - 5Z3VéR> t5 (Cgr‘sZZéR - Sgr‘sZgiR) + sg,co,Re | 0004 — o ”3'/3}

9 loop loop

(3.80)

at NLO. Here 5120;131137 1 = 3,4, represent the unrenormalized, relative 1-loop corrections to
the respective decays.

Both presented OS renormalization conditions (3.74) and (3.79) lead to gauge-independent

renormalization constants (59rH (/)ZS , which are well behaved for exceptional values of 6,. As
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already pointed out for the renormalization of the Higgs mixing angle « in the previous
section, NLO predictions based on 6, os in an OS scheme are independent of the chosen
tadpole scheme, but a process dependence is introduced in 605 (/)ZSI via the explicit loop
corrections appearing in (3.76) and (3.80), respectively. Further, (3.76) requires the mass
hierarchy My > 2m,, in the DASM.

As an alternative to OS renormalization, the angle §, can be renormalized in the MS
scheme. The MS version of §6, can be obtained via

06, 515 = 99%0s| = 30%0s|

. 3.81
uv uv ( )

Again, this relation is true in any tadpole scheme, but NLO predictions based on 0r7M78 are, in
general, dependent on the tadpole renormalization scheme (see section 3.2.1). The resulting
explicit expression for 66, 55 in the PRTS can be found in appendix C; note that it does not
depend on any hierarchyjof masses of the Higgs bosons, Z’, or the neutrinos. The tadpole
contributions to 5«9r7m in the tadpole schemes described in section 3.2.1 explicitly read

PRTS  _
00, 35 taq = 0 (3.82)
1
FJTS FJTS FJTS
00, 315 tad = ™ (Chﬁ4u3Avh + CHpyvy AVE >’Uv7 (3.83)
1
GIVS GIVS GIVS
S = (et AOETYS + cpizu, Avf )‘UV, (3.84)

where we have introduced the shorthands

1 1
Chl_/4l/3 = ;Sasercermwp CHZ_/4I/3 - _;COCSQrC@rmVAU (385)
1 1

for the couplings ¢y, hVav3 + CHi, s HVavs in the Lagrangian. As described in the previous

sections tadpole terms explicitly appear in the relations between the original bare parameters

of the Higgs potential and 6, . The bare mixing angles 95 RTS 05 JTs

and are related via

PRTS FJTS 1 aty?"s ot "
GERTS _ gFJTS 4 (ch Th 4 oeny ) (3.86)
T, r, ) Uav3 M]? D4v3 MI%
Thus, for the MS-renormalized mixing angle we find the (gauge-dependent) shift
PRTS _ gFJTS _ gPRTS _ gFJTS PRTS FJTS
O — O = 0o S — 010" — (307 NE — 903
1 Th T
= — — (Chy41j3 ﬁ}? + CH134,/3 ]\4I?I> ' <387)
finite

between the respective PRTS and the FJTS values. Similarly, we find the (gauge-
independent) shift

pavs _ prars _ 1 ( T} Trﬁ[>

_ nl B
r,MS r,MS Moy Chiyvs M}% + CHpyvs 5 (3.88)

finite

for the conversion between the GIVS and the FJTS.
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3.2.6 Charge renormalization

The electric unit charge e is defined as the coupling constant of the fermion-photon
interaction with on-shell fermions in the Thomson limit, i.e. in the limit of vanishing photon
momentum transfer. In the following, we make use of the results of ref. [49], where the
charge renormalization of the SM was generalized to SM extensions with gauge groups that
contain an explicit U(1) factor similar to the broken weak hypercharge symmetry of the
SM. While the treatment of charge renormalization in ref. [49] is even valid to all orders,
here we only consider NLO accuracy as throughout this paper.

We briefly sketch the arguments of ref. [49] for the derivation of the electric charge
renormalization constant within the DASM in our notation. The derivation is based
on charge universality. Charge universality states that in the Thomson limit higher-
order corrections to the coupling strength of the photon to any charged particle do not
depend on any specific properties of the charged particle besides its charge, i.e. the charge
renormalization constant does not depend on the specific charged particle (typically taken as
fermion) used to derive it. Charge universality can, e.g., be proven with the background-field
method (see e.g. refs. [34, 49-51]), where the all-order renormalization of electric charge
widely works as in pure QED. Exploiting charge universality we introduce a second “fake
fermion” field® x which only carries infinitesimal weak hypercharge, Y4, but no other
quantum numbers, leading to the infinitesimal electric charge Q. = Yy /2. The most
general gauge-invariant Lagrangian including the new fermion field that has to be added to
the Lagrangian of the DASM is given by

Yo
L = H<13 - 27 ng - mn)l"f

= ’%{ia —eQx [A + Civ ((ch'y — 1Sy) Z— (Swsy + ncy) Z/)] - mn}’i- (3.89)

The non-chirality of the fermion x allows for a Dirac mass term with mass parameter m,,
and ensures that no anomalies are introduced into the theory. Further, taking the limit
@, — 0 will decouple the introduced fake fermion field x from any other particles so that
the DASM is recovered. Charge universality now implies that one can use this fake fermion
to restore the desired physical meaning of the electric charge in higher orders by demanding
all relative higher-order corrections to the Akx vertex to vanish in the Thomson limit.
Therefore, the imposed renormalization condition for the renormalized Akk vertex function
is given by

u(p)TR5 (0, —p, p)u(p) = —Qret(p)yu(p), (3.90)

p?=mZ
where m, denotes the renormalized on-shell mass of the fake fermion. At the 1-loop level,
the renormalized vertex function is given by

R = 1 RK = K =
Fé:jf(kap7p) = <1 + §5ZAA +0Zk + 526) FfO,u(k7p7p) + QHA;;‘ (kapap)

1 - _ 1 Ve
+ 5022aVE8, (k. b,p) + 5622 ATE S, (k. b, ), (3.91)

8Note that this “fake fermion” field is equivalent to the field 7 in ref. [49]. We have renamed it here to
avoid confusion with the parameter n introduced in section 2.2.
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Figure 1. The Feynman diagrams representing muon decay in the DASM (left) and the Fermi
theory (right) at LO.

with the LO vertex functions

Ff(%’fu(kvﬁa p) = - Qn67ua (392)
RK — €

FI%O,u(kapvp) = - Qn: (ch'y - 7737) ) (393)
"Rk — €

FLO,u(kapap) = Qn? (Sws'y + 7707) ) (394)

and the unrenormalized vertex corrections Aﬁ’%"(k:, p,p). A crucial point in the derivation is
that all possible couplings of the fake fermion to particles within the DASM are proportional
to Qx which implies

02 =0(Q), N (k,p,p) =0 (Q2). (3.95)

Taking the limit Q. — 0 and keeping only terms linear in Q, eq. (3.90) implies

0= |02+ %5ZAA + 2iw{(3vvcw = NSy) 0274 — (SwSy +1¢y) 5ZZ’A} u(p)yuu(p),
(3.96)
leading directly to
57, = —% [6ZAA + 2O 7,, - Swsvcﬂ(szz/ e (3.97)

In agreement with charge universality, dZ, is independent of the fermion x used for the
formulation of the renormalization condition and is, similarly to the SM, given by a pure
combination of gauge-boson self-energies. Obviously, the well-known NLO SM result for
the electric charge renormalization constant is obtained by taking the SM limit vy — 0.

4 Prediction for the W-boson mass from muon decay

In this section we give a first confrontation of the DASM with a high-precision measurement
by investigating the W-boson mass prediction based on muon decay in the OS scheme
introduced above. The relevant LO Feynman diagrams in the DASM (left) and in the Fermi

2
theory (right) are shown in figure 1. Neglecting terms of order (’)(%), the comparison
w
between the respective amplitudes leads to the well-known LO relation
Qe T

=" 4
V282 M,

“Note that v — 0 simultaneously induces n — 0 (see eq. (2.47)).

Gr (4.1)
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i

(S

Figure 2. Box diagrams with Z, Z’, and W exchange contributing to muon decay at NLO in
the DASM.

%, connecting My to the precisely
measured Fermi constant Gr. Note that even though this looks similar to the relation valid

with the electromagnetic coupling constant e, =

in the SM, the dependence of sy on the gauge-boson masses differs from the corresponding
SM relation according to eq. (2.47) and thus, the relation between Gy and My in the
DASM differs already at LO from the respective SM relation.

Higher-order corrections to muon decay are usually quantified in terms of the constant
Ar [52]. The generalization of eq. (4.1) to NLO reads

Qe T

Gr = m (14 Ar)
- \/% (1 + 267, — iijv - 5]\]\4@ Z%O) + 6vertex+box> , (42
where
Overtex+box = Overtex + 511;3)??51“3 + 6§XX (4.3)

contains the relative NLO vertex corrections to the Wpuw, and Wreet vertices denoted by
dvertex, corrections originating from box diagrams of the muon decay in the DASM as well
as the NLO QED corrections of the Fermi theory, and the bremsstrahlung corrections in
the two theories.

All diagrams needed for the predictions of Ar in the DASM were generated using
FEYNARTS [53] and further evaluated using FORMCALC [54] and LoopTooLs [54]. To
have an additional cross-check on the DASM implementation we have constructed two
completely independent FEYNARTS model files.

The QED parts in the DASM and the SM are identical. Thus, similar to the SM, for
Me, My, <K Myy the QED contributions originating from bremsstrahlung and virtual photon
exchange between initial- and final-state leptons in the DASM and the Fermi model lead
to [55]

W Qlem MW MW m m 9
ooy = 4‘; (log — + log i 2log7e — 2log Tﬂ + ) , (4.4)

e " 2

where the photon mass A is used for infrared regularization. The box diagrams induced by
contributions from massive gauge-boson exchange between initial- and final-state particles
in the DASM are shown in figure 2. They yield the corrections
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2

M,
, o M2 log 1%
dmesive = S W [ T (G (51083 + 250 ) + 6smeys, — Bsin’s?)

WEwW 7 W
M2

log 4"
M.

+ W]\VZ[? (83 (5 — 102 + 23@) — 683mCy 5, — 333,77203) ] : (4.5)
z W

massive

passive with (4.4) and the vertex corrections one finally finds

Combining §
2
oy log ]\J\j—é’v

W & (MF— M)

Wv=27,7'
x (ov [BM[s% (24+0%) — 1]+ 10c, M| +coy (3BMig [1+ 53 (n* —2)]

_ Oem M\%V 1
5vertex+box = W { 16 <AUV_10g /L2> +24—— Z

—10ch ME)+61s9, 55 M)

}, 0y =F1, (4.6)

where Ayy is the standard 1-loop UV divergence defined in (C.1) and pu? denotes the
reference scale of dimensional regularization. There is a strong dependence of Ar on
the light fermion masses entering through the charge renormalization constant §Z.. The
dependence on the light-quark masses results from the non-perturbative effect of the
photonic vacuum polarization at low energies induced by hadronic resonances. To ab-
sorb this non-perturbative contribution to the My prediction into the input parameters,
the running electromagnetic coupling cen, (M%) is used instead of the fine-structure con-
stant aem(0). Further, the leading SM terms of the top-quark mass dependence, origi-
nating from the correction Ap to the p-parameter, can be resummed up to O (agm) to
further reduce the theoretical uncertainty. This can be summarized by the following
replacements [37, 38, 56-58|:

Qem (0)

Qom — ozem(M%) =1 Ao sgv — 53, = s?N + cgvAp, Ar — Ariem, (4.7)
- em
with
62‘4‘4 (k’2) EAA (]{32)
5 t t
Acer, = Aal(“la,)d + AOllep = fgéT - - #T 2 M2’ (48)
- —M2

c2 30temm? M3
AN p —
Su 167 (M3, , — M3)*

N Boemsymy [ Mg, (Mg y + Mg) — M7 (Mg, + 2My , + M7)]
16m (M3, | — M2)°

2
Ar = Aoy — C—;VAp + Arrem, (4.10)
s

w

where Aajep, and Aa}(l?d summarize the terms with lepton- and light-quark (all other than

the top-quark) mass logarithms introduced by 6Z.. The leading top-quark mass dependence
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of Ar up to O (33) is absorbed into Ap. The decomposition!®
Mgy = My + M 585 + O(s5), (4.11)

was introduced to keep the expression compact. At NLO, eq. (4.2) is then modified to

B Qem (M2)T
GF = m (1 =+ Arrem) . (412)
The DASM admits two SM limits
1. v — 0, a — 0, A2 — 0,
2. MZ' — My, a— 0, A2 — 0, (413)

leading to a complete decoupling of the dark sector from the SM at NLO.!! Therefore, the
DASM can provide at least the same level of agreement between theory predictions and
measurements as the SM for any precision observable (PO). Equation (4.12) can now be
used to obtain the desired prediction for Mw at NLO. Therefore, we first eliminate My in
the radiative corrections Aryey, and Ap in favour of Gy using the LO relation (4.1) and
finally solve eq. (4.12) for My after expressing sy, in terms of My, My, My, and ~ via
eq. (2.47). Assuming the effects of the BSM sectors on the SM predictions to be small, as
clearly favoured by experimental data, we will take the best SM predictions of M\%JVM [59]
and add the difference between the NLO DASM and SM predictions according to

MMM = MR+ AMw,  AM = MPARD - MiPhio. (4.14)

where the best SM prediction is given by M\%M = 80.3536 GeV [59], to obtain the best
predictions within the DASM, which includes SM corrections beyond NLO. For the explicit
values of the SM-like input parameters we closely follow ref. [5] and take

em (0) = m, Gp = 1.1663788 - 107° GeV 2,

Aal®) = 0.02768, as(M3) = 0.1179,

Aayep = 0.0314977, My = 91.1876 GeV,
My, = 125.25GeV, me = 0.51099895 - 1073 GeV,
m, = 0.1056583755 GeV, m, = 1.77686 GeV,
my = 0.1 GeV, mq = 0.1 GeV,
mgs = 0.1 GeV, me = 1.27 GeV,
mp = 4.18 GeV, my = 172.5 GeV. (4.15)

0The corresponding expression for My is obtained from solving eq. (4.1) for the W-boson mass.

"This statement holds as long as the masses my,, ¢ = 1,2,3, of the SM-like neutrinos are negligible.
Taking into account neutrino mass effects, SM limits would require a decoupling of f} from the other three
neutrinos. Further, we assume MPASM = MM here. For M24SM = MM the decoupling limits are given
by (4.13) with o« — 7/2.
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Figure 3. Predictions for My in the DASM for various combinations of v and My. The
best SM prediction is given by M{M = 80.3536 GeV [59], and the measured world average
is My" = 80.377 £ 0.012GeV [5]. For completeness we show the result of the CDF experiment
MS&%DF = 80.4335 +0.0094 GeV [4], which is not included in the world average value quoted above.
The parameters of the fermion and Higgs sectors are set to the benchmark values given in eqs. (4.16)

and (4.17), respectively.

Note that the values for Aae, [60] and ag(MZ) are only used in the determination of
the best SM value Ms’vM Further, we use aem(M%) throughout the whole calculation and
em(0) is only needed for the determination of aem(M2). Owing to the use of qem(M3),
the light-fermion masses hardly play a role. In our calculation we assume My > M and
identify the h boson with the SM-like Higgs boson, i.e. M}?ASM = MEM

In eq. (4.2) the newly introduced parameters from the fermion sector m,, and 6, only
enter via §s2 and are of order O (s%) Therefore, we find their influence to be negligible
for the shown predictions for My and choose the benchmark scenario

my, = 10 GeV, 6, =0.2. (4.16)

Figure 3 shows the dependence of the DASM predictions for Myy as a function of the mixing
angle v for various Z’ masses M,,. Due to the appearance of renormalization constants
in eq. (4.12) all additional parameters of the theory implicitly appear in the prediction
of Mywy. However, the prediction for My is most sensitive to v and My, because these
parameters already enter the LO prediction for My via sy. The additional parameters
introduced in the Higgs sector lead to a small shift of the W-boson mass prediction towards
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My [GeV] || 40 | 50 100 300 600 1000
y[/1072 || = | = | 4.06—6.10 | 0.59 — 0.88 | 0.28 — 0.43 | 0.17 — 0.26
Ylepr/1072 || — | — | 8.22-9.16 | 1.19 — 1.32 | 0.58 — 0.64 | 0.35 — 0.38

Table 1. The intervals of the values of |y| for several exemplary values of My that show agreement
between the theoretical prediction of Myw and the 1o uncertainty band of the measurements in
the benchmark scenarios (4.16) and (4.17) for the fermion and Higgs sector, respectively. Here we
distinguish between the values || that lead to agreement with the experimental world average My "
and the values |y|cpr that lead to agreement with the measured value of the CDF collaboration

exp
MW,CDF'

smaller values for My > Mjy,. This shift manifests itself in the results shown in figure 3 as
the deviation from the SM result (black dashed line) at v = 0. To further illustrate the
effects of the Higgs sector extension we give more results for various values of My, a, and
A1g in figure 4. As expected, the dependence of the prediction on the parameters from the
Higgs sector extension compared to the My, and v dependence, already present at LO, is
small. Therefore, we choose the benchmark scenario

My =2000GeV, a=02  Ap=02, (4.17)

for the further investigation of the influence of the gauge-sector extension on the W-boson
mass prediction in the DASM. Figure 3 shows that for M, > Mz the DASM prediction
for Myy rises and intersects the 1o uncertainty bands for various combinations of My
and . The larger the difference between the Z- and the Z’-boson masses the steeper this
rise becomes. For My < My the predicted values for My decreases in the DASM, so
that the DASM shows in these regions of the parameter space a worse compatibility with
measurements than the SM. As a first rough estimate for the parameter regions of the
DASM that can explain the measured value of Mw we give the intervals for the v values
where the theory predictions intersect with the 1o uncertainty band of the measured values
in table 1. Generally the confrontation of the DASM with a measured value of My only
constrains ||, and the sign of v has to be determined by including additional observables
in a fit of the DASM to data. To estimate the uncertainty of the predicted AMyy in the OS
scheme (see eq. (4.14)) coming from BSM effects in the missing higher-order contributions
we proceed in two different ways. For a global estimate, we take typical values for the
two-loop correction in the SM, which are of the order of ~ 40MeV (see ref. [59]) and
correct them by the typical scaling behaviour of the corresponding BSM contributions to
the amplitudes introduced in the DASM (e.g. s2, s%) leading to a rough estimate for the
A My uncertainty of 1 MeV. To further confirm this, we assess the renormalization scheme
uncertainty by evaluating My with v renormalized in the MS scheme, i.e. we assess the
corresponding renormalization scheme dependence of the NLO prediction in the BSM sector.
After proper scheme conversion of -, the predicted value for My changes by less than
1 MeV when switching the renormalization scheme for v from the OS to the MS scheme
(with g = Mz) in the benchmark scenarios shown in figure 3. We will further elaborate on
this in a future publication, where we will investigate the phenomenology of the DASM in
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Figure 4. The dependence of the DASM prediction for Myw on My (top), a (middle), and Ao
(bottom). The red line represents the prediction for a decoupled scalar sector extension. For the blue
lines all parameters that are not specified in the plots are set to their values according to egs. (4.16)
and (4.17).
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greater detail. Thus, mainly due to the small values of -, the uncertainty resulting from
the BSM sector of the DASM is suppressed with respect to the uncertainty from the SM
sector, i.e. the dominant theoretical uncertainty in the My prediction originates from the
SM prediction MM, estimated to be about 4 MeV [59]. To account for missing higher-order
corrections of the BSM sector, we add an additional uncertainty of ~ 1 MeV.

5 Conclusions

In the absence of any spectacular direct signal of physics beyond the SM, “discovery via
precision” seems to be the potential path to BSM physics, so that the need for precise
theoretical predictions is greater than ever, not only in the SM but also for BSM physics. In
order to achieve these highly accurate predictions, higher-order corrections, at least to NLO,
need to be taken into account. Moreover, to parameterize the theory by an intuitive and
phenomenologically sound set of input parameters, a judicious choice of the renormalization
scheme is important in the SM and its extensions. While the renormalization of the SM is
well understood since about 30 years, most of the extensions of scalar, gauge-boson, and/or
fermion sectors introduce further subtleties in the renormalization procedure, especially by
introducing mixing angles.

In this work we have given a full theoretical setup of the DASM in R, gauge and defined
a particularly intuitive and experimentally easy accessible set of input parameters. The
DASM extends the SM by a widely generic dark abelian sector containing a spontaneously
broken U(1)q gauge group. This U(1)q gauge group is broken by a Higgs field that carries
only dark charge and, thus, is a singlet under the SM gauge group. Further, introducing
right-handed SM-like neutrinos as well as a fermion to the dark sector allows for three
portals from the SM to this possible dark sector. The influence of these portal terms should
be quite generic, so that the DASM provides a quite generic extension of the SM to study
the sensitivity of EW precision data to a broad range of BSM models.

The DASM inherits mixing of fields in the scalar, fermion, and gauge sectors, giving
rise to mixing angles in each of the three sectors mentioned above. We have performed a
full renormalization of the model at NLO and derived explicit results for renormalization
constants in OS and MS renormalization schemes. The proposed OS renormalization
schemes for mixing angles have several desirable properties:

o All renormalization conditions (besides the one for the scalar self-coupling A\12) are
based on S-matrix elements. Thus, all NLO predictions based on these OS parameters
are gauge independent.

e The complete OS renormalization of all parameters related to masses leads to a
systematic cancellation between tadpole corrections in mass counterterms and self-
energies in the calculation of predictions for observables, making the presented OS
prescription independent of the chosen tadpole scheme.

e The proposed OS renormalization conditions render predictions for observables pertur-
batively stable for degenerate masses of the particles involved in the mixing process,
respectively.
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o All mixing-angle renormalization constants have smooth limits for exceptional values
of the respective mixing angles.

On the other hand, MS renormalization schemes have the benefit of being very simplistic
and symmetric in the fields that mix. Further, the variation of the renormalization scale
offers a simple way to estimate the perturbative stability of predictions. Nevertheless,
MS renormalization of mixing angles suffers from severe downsides, such as issues with
perturbative stability in certain parameter regions, for instance for degenerate masses of the
particles corresponding to the mixing fields or for extreme values of the respective mixing
angles. In addition, MS renormalization schemes for mixing angles are prone to introduce
gauge dependences in the parameterization of predictions for observables. Having both OS
and MS renormalization prescriptions available is an ideal situation to asses perturbative
uncertainties from missing higher-order corrections by studying renormalization scale and
scheme uncertainties. The formulation of the renormalization done in this work may serve
as a proposal for the renormalization of models including mixing angles, e.g., due to kinetic
mixing in the gauge-boson sector or similar phenomena.

As a first application of our OS scheme we have presented NLO predictions for My in
the DASM. Assuming the influence of new physics on the prediction of My to be small,
we include state-of-the-art corrections in the SM limit to further improve the precision of
our prediction. We find a large part of the parameter space of the DASM that is capable of
describing the experimental results better than the SM does. The DASM prediction for
Myy is independent of the sign of v and large Z’' masses My > My are preferred for all
values of v. For several values of My and v the full region between the experimental world
average M " and the measured value of the CDF collaboration MS\)/(,%DF can be covered by
the DASM prediction. For My < M, < 1TeV, |y| ranges from ~ 107! to ~ 1073, where
Mig'tpp needs larger |y| than M. Thus, the DASM, as generic extension of the SM,
remains a promising candidate for the search of possible BSM physics.

With the complete NLO setup for the DASM provided in this work the next logical
step is the confrontation of NLO predictions within the DASM with EW precision data.
These precision tests can then be used to resolve the correlation between v and M, and
might further clarify whether the generic extensions introduced in the DASM are capable of
significantly loosening the tensions between some SM predictions and measurements, e.g.,
for (g9 — 2),, while keeping the good agreement of the SM between most predictions and
data, and, thus, whether these types of SM extensions remain promising candidates in the
search for BSM physics.
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A Explicit form of the ghost Lagrangian

In this appendix we list the infinitesimal gauge transformations of the fields in the DASM
as well as the explicit expression of the ghost Lagrangian Lpp, adopting the conventions of
ref. [35] for the field-theoretical SM quantities.

The infinitesimal gauge transformations of the gauge fields Wy, B, and C), are given by
SW = 0,60% + go f**“W}60°, 6B, = 0,007,  6C, = 0,60°, (A1)

where 662, 60, and 66 are the gauge group parameters of the SU(2)w, U(1)y, and U(1)4
gauge groups, respectively. For the Higgs doublet and singlet we have

5 = (—192159Y + 19?59“) ®,  dp=—icadt) p. (A2)

For the fields corresponding to the gauge and scalar bosons we find

SWE = 9,50% + < [Wi (w007 = 5,60%) — 54,06 ] (A.3)
+ {SWAM — cwley 2y, — S,YZL)} 59ﬂ ) (A4)
A, = 0,60" +1ie (W+59— — W 60%), (A.5)
87, = 0,60% — 1ec7 (W+5e— W, 60%) (A.6)
57!, = 050% + 1es7 (W+59— W,;59+) (A7)
82 — C2
ot = Fieg™ |56° 4 567 | —cusym + 23wcww (cy — swsw)]
—56% [chw + ngs;cf” (8y + sweyn) ]
+ 2{; [vg + cah + so H +1 (czx — s2X')] 6%, (A.8)
Sh = — ésq (CW(SQZ, + sﬂ,(wz) (caX'+ sax) + . (cxx — s2X')
1eca

x [067 (cy — swnsy) — 667 (s, + swney)| + (¢+59— 6700%),  (A9)

0H = écy, (07592' + 87(59Z> (caXx + s2X') + (me — 5:X')

23W W
esa

x [067 (cy — swnsy) — 667 (s, + swney)| + (¢+59— $700%),  (A.10)

Sy = 66% {—ésnysx (caH — sqh + v1) — (v2 + cah + 5o H) (cy — swnsv)}

WCW

+ 667 {23602 (v2 + cah + 80 H) (81 + swilcy) = €cysq (CaH — sah + ”ﬁ}
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&Y' = 66% { jsz (v2 + cah + 5o H) (¢y — 8yNSy) — €5yCy (ca H — sa.h + Ul)}
— 507 {QESZ (8¢ + swhcy) (V2 + cah + 8o H) + écycy (coH — soh + 01)}
- gsﬁ (%00~ +¢00"), (A.12)

where the variations of the gauge group parameters

56" T 66>
sor = =T 7 A13
7 (A.13)
00% = acy60° + ¢y, 00" — 5,06°, (A.14)
507 = (acysy + 5, V1= a2) 80 + ¢5,00% + ¢y0436%, (A.15)
502 = (\/ 1—a%cy — asysw> §0¢ — S,YSW(sGY — S,YCW(593 (A.16)

have been used.
With the help of this transformation behaviour of the fields as well as egs. (2.59)
and (2.60) one finds the following Faddeev-Popov ghost Lagrangian,

Lpp =—u™ 8“8uuA+ie(8“ﬂA) (W:u_ —WM_uJF)
— (00" +&v MZ) u? — 2N (9ra?) (Wihu =W ut)

w

Cpe _ L
+§§VMZUZ (pTu 4o uh)

—u?&yMy CCala (Cy—5wNSy) —€5ySz54 | h+ ésvsxca—l—@(@—swnsw) HbYu?
28w Cyw 28w Cyw

_ _ €CrCa . €CrSe ,

+uZ ey Mz |Ecysu5a+ o (84 +5whey) | h— |y SpCa— (85 +swney) | H pu?
28w Cw 28w Cw

= a7 (0,0 + &y M) u + =T (0" ) (WruT =W )

Sw

_7/ Sg€ _ _
Sw
—ﬂzlgvMZ/ { Esxco‘ (sv—l—swncw)—écvcmsa} h-+ [;%Sa (87+swncv)+écvczca] H}uz/
SwCw wbw
—l—ﬂz/vaZ/ { [esxca (cw—swnsy)—l—ésﬂ,sacx] h+ {eszsa (cw—swnsw)—ésﬂ,czca} H}uz
28w Cyw 28w Cyw

+ { — 4T (9,0 +&w My )ut +ie(d"u™) [A# - E—W(CA,Z# —SWZL)} ut

_ﬂ+%€WMW [Cah+SaH+i(ch_3xX,)] u+ —ie (8“@”‘) le—uA

iecy

+utEw MyedTut + (8“ﬂ+) WJ (cﬂ,uz—svuzv

sw
2 _¢? 2 _ .2 ,
+ut Ew Mweg™ [(M—W> u? — <M+Cv77> u? ]
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B The non-linear Higgs representation of the DASM

Here we give a brief account of the chosen non-linear Higgs representation of the DASM
used in the calculation of the tadpole renormalization constants of the GIVS. For the
SM-like Higgs doublet ® we closely follow refs. [41, 42, 61, 62]. Therefore, we introduce the
2 X 2 matrix notation for the linearly represented Higgs doublet

$j0;

@z(@cp):\}Q[(v2+h2)]l+2i¢], o=2%, (B.1)

In our notation we use bold symbols to denote matrices. The quantities o;, ¢+ = 1,2, 3, are

the Pauli matrices and ¢; the three real would-be Goldstone-boson fields. They are related
to the would-be Goldstone-boson fields of eq. (2.6) according to

ot = ;5 (b2 £id1),  xo=—ds (B.2)

In the matrix representation the gauge-invariant mass operator of the Higgs doublet ®f®,
appearing in the Higgs potential, is simply given by

1
ofe = T [@Tﬂ , (B.3)
and, similarly, the kinetic terms for the Higgs doublet are given by the trace

L (D.®)T (D'®)]. (B.4)

L xin = 5

A matrix formulation for the Higgs field p is not needed since it is only charged under a
U(1)q gauge group. Now we can easily switch to the non-linear representations of the Higgs
fields

V2 V2 V2 vy

where A}l h3! are the physical, gauge-invariant Higgs fields of the non-linear representation
and ¢, X‘fl, 1 =1, 2,3 represent real would-be Goldstone-boson fields. With this choice of
non-linear representation the component fields of the linear and non-linear representations

P — 1 (hgl I vg) exp (iCjUj> 7 p= 1 (hrlll + Ul) exp <1X?l> ; (B.5)

are connected via

nl

hi = (hrfl + Ul) cos <Xl> — vy, ho= (hgl + vg) cos (K') — Vo, (B.6)

V1 V2
X1 = (hﬂﬂ + vl) sin X—iﬂ hi= (hgl + ’Ug) sin @ C—i (B.7)
v ) v2 ) I¢]

Note that the respective fields of the linear and non-linear representations agree to linear
order in the Goldstone-boson fields.!?

12T herefore, the respective interaction terms of the Lagrangian containing at most one Goldstone field are
identical in the linear and non-linear representation.
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C Explicit expressions for MS renormalization constants of mixing angles

Here we list the explicit expressions for the MS renormalization constants of the mixing
angles v, «, and 6, in the 't Hooft-Feynman gauge. They are obtained by keeping only
terms proportional to the standard 1-loop UV divergence

2
Ayy = —— — log 4, C.1
UV = T ~ e Tlog (C.1)
where g is the Euler-Mascheroni constant and D = 4 — 2¢ is the number of space-
time dimensions used to calculate loop integrals in dimensional regularization, from the
respective OS renormalization constants. In the PRTS the renormalization constants are
given by

2,2
5,YPRTS Auv{aem [82’7 (1 Swll )+25w7702w Z[m +3m +md)}

2 <2 V2
167cs,s MZZ’ o
_02 82789 A2,m? MZM2 1 {7r2042 { 2
Qe T S2aMZZ, M, 76873 ctom s2,¢4 M M%Z,

X |:Cer (362acwMHh, [4swnM\2N—23chvnM%Z,+—i—stc‘2NM§Z/7 (swn —1)}
—25w7) {3CX2VMI%h+(2M\%V —Cgngzur)*’QCév [Mézur _QM%M%’}

+26% My, My (8252 —1)+48 My (262 5% +s2n*+1) )

+ 52, (3c2act My (8312 =1) (Mg, —203)

_303va21h+ (33\/772_1) (CgvM%Z’+_2M\2/V)+CévM%Z’+ (53772—1)

+263 M3, M3, [81520? +45% (5—2352) 9|

+A48 My, {202 (sgvn2 —2s2 +1> +sent— 1} )} +25Can (303(M12{h+ *M§Z'+)

GCQGCQWCWMHh +C4vc (3MHh+ zz’ )
+AM(Teh = T58%—6) ) = [ 8103 (8302 1) (BMf — My +)}}
8595 C /\22M2M PR 9 29
02 &2 M%Z, Mf_llh |: 3c2aMHh (CWMZZ/++C27CWMZZ/—
—2My)+eayeq My (Mg, —3Miiy ) —3¢i M My,
+6 My, My +ca My, +8M7, +M%V+4SC3VM%M2,} }} (C.2)
Here we introduced the shorthands
2 2 2
Mzg:l: = Mz + Mja sz:i: = (Mlj:l:) : (03)

Note that the explicit expressions for dvy5g in the FJTS and the GIVS are easily obtained
from (C.2) using egs. (3.48), (3.49), and (3.50). For the MS-renormalization constant of
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the Higgs mixing angle we find

«, SQQA2 ’
S5aERTS _ AUV{ em 7z Ne, g |m3 (M — 8m3)
MS 327rM\%VM}21h,(A%z/ — 2M) flz,u,d { ! ! }

sgr/\%gm24M\%v (QM\%V - A%Z,) (2029rm,2,4 —6m2, + M§h+>

v.

3
A0em T3S0 Co, <M§h7> A%Z,
1 { aemWZM%V ( 254Ca
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4 4
26404 MHh— AZZ/
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4 2 2 2 2 2
— ey (MZy, lenMZy, + oy My | = ey M7y My, )
4
+ 160¢4, My — 16M{§V)} — 8k MEMZ, (M3 ) ] }} (C.4)
Sa
where N¢ ¢ is the respective colour factor of the fermions. In addition to eq. (C.3), we have
introduced the abbreviations
2
2 2 2 4 _ (A2
Ny =My, + My ooy, Ay =(A3y) (C.5)

to further compactify the result. The explicit expressions for dagg in the FJTS and
the GIVS are easily obtained from (C.4) using eqgs. (3.67), (3.68), and (3.69). The MS

renormalization constant for the mixing angle in the fermion sector is given by

2 (2
SOPRIS _ AuvA 2556, Co, {5602 M2M2,
r,MS 6473 Qtem 2 52 (ME — M)? Witz

+2m}, s5 [3ckcoy (Mg — M7) — 3¢, (M7 + M) + 10My] } (C.6)

Again, the explicit expressions for 06 175 in the FJTS and the GIVS are easily obtained
from (C.6) using egs. (3.82), (3.83), and (3.84).
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