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Abstract: The described Dark Abelian Sector Model (DASM) extends the Standard Model
(SM) by a “dark” sector containing a spontaneously broken U(1)d gauge group. Keeping
this dark sector quite generic we only add one additional Higgs boson, one Dirac fermion,
and right-handed SM-like neutrinos to the SM. Using the only two singlet operators of the
SM with dimension less than 4 (the U(1)Y field-strength tensor and the SM Higgs mass
operator |Φ|2) as well as the right-handed neutrino fields we open up three portals to the
dark sector. Dark sectors, such as the one of the DASM, that introduce an additional
Higgs boson H as well as an additional Z′ gauge boson can have a large influence on the
predictions for electroweak precision observables and even accommodate possible dark
matter candidates. We consider one of the two Higgs bosons to be the known 125GeV
Higgs boson and parameterize the extension of the scalar sector by the mass of the second
Higgs boson, the Higgs mixing angle, and a Higgs self-coupling. We do not assume any
mass hierarchy in the gauge sector and use the mass of the additional Z′ boson and a
corresponding gauge-boson mixing angle to parameterize the extension of the gauge sector.
The fermion sector is parameterized by the mass of the additional fermion and a fermion
mixing angle. We describe an on-shell as well as an MS renormalization scheme for the
DASM sectors and give explicit results for the renormalization constants at the 1-loop level,
and, thus, prepare the ground for full NLO predictions for collider observables in the DASM.
As a first example, we provide the DASM prediction for the W-boson mass derived from
muon decay.
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1 Introduction

With the discovery of a SM-like Higgs boson [1, 2] at the Large Hadron Collider (LHC)
in 2012, all particles described by the SM have been found. Currently, measurements
at collider experiments agree very precisely with predictions of the SM with only very
few exceptions. Despite this success of the SM, there are several clear indications that it
cannot be the ultimate theory describing Nature. Neither can the SM explain the observed
matter-antimatter asymmetry in the visible universe, nor can it describe the origin of dark
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matter (DM) observed in the universe. Finally, a quantum-field-theoretical description of
the gravitational force is missing within the SM, but most likely particle physics experiments
cannot help to solve this problem. Among the measurements within particle physics, the
tension [3] between the high-precision SM prediction of the anomalous magnetic moment of
the muon, (g − 2)µ, and its measurements performed by the BNL and FNAL collaborations
have somewhat tightened. Further, the new result for the mass of the W boson published
by the CDF collaboration shows a significant deviation of 7σ from the SM prediction [4]
(which, however, is at variance with the previous experimental world average [5]).

There are several, quite fundamental SM extensions like supersymmetric models or
grand unifying models that claim to solve some of the open problems mentioned above.
However, at the moment there is no convincing experimental evidence hinting towards the
realization of one of these models in Nature, and thus, it is not clear how the SM needs
to be modified in order to match all observed phenomena. Since there are no new, truly
elementary particles found by any experiment so far, a promising way to get hints towards
the structure of possible new physics is to compare theoretical predictions within the SM
and generic extensions at the highest possible precision with measurements.

In the search for physics beyond the SM (BSM), investigations of the structure of
electroweak (EW) symmetry breaking are of great importance. In the past, analyses [5, 6]
probing this structure were able to limit the parameter space of various prominent extensions
of the Higgs sector, like Singlet Extensions of the SM (SESM) [7–10], substantially, but
many of such extensions (including singlet Higgs extensions) are still viable. Recently the
observed tensions in (g − 2)µ have drawn some attention towards non-standard models that
enrich the gauge structure of the SM by a U(1) or even more evolved gauge symmetries
that might help to relax these tensions [11–14]. There are several ideas on how these
extensions of the gauge structure are added to the SM without introducing anomalies, to
potentially solve some of the open questions like the origin of neutrino masses or dark
matter. One way is to promote the global B − L (baryon number minus lepton number)
symmetry of the SM to a (possibly spontaneously broken) U(1)B−L gauge symmetry, which
will introduce a massive neutral Z ′

B−L gauge boson to the theory coupling to the B − L

charge (see, e.g., refs. [15–17] and references therein). This opens a portal to possible BSM
physics carrying B − L charge. Another prominent class of Z ′ or “dark photon” models
make the basic assumption of a “dark” sector with a non-trivial gauge structure and at
least one (possibly spontaneously broken) U(1)d gauge symmetry [10, 18–26]. Note that
the two abelian gauge groups U(1)d of the dark sector and U(1)Y of the SM sector open
the possibility of kinetic mixing between the (gauge-invariant) field-strength tensors of the
respective gauge fields. As a result the two neutral massive gauge bosons Z (which is SM
like) and Z′ (the mass of which is only weakly constrained) connect the SM with the dark
sector. In addition to the scalar and gauge sector extensions, the focus of BSM physics
more recently also includes extensions of the fermion sector of the SM since they seem to
provide promising DM candidates (see, e.g., refs. [27, 28] and references therein).

In this work we formulate a simple but quite generic model with a “dark” U(1)d group
and call it the Dark Abelian Sector Model (DASM) in the following. The DASM is a
simplified model featuring some phenomenological imprints of more comprehensive theories.
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More precisely, it introduces a dark sector with generic features that resembles a broad
range of possible dark sectors embedded in more complete models. Similar to the proposals
of refs. [10, 19, 20] the DASM introduces an additional neutral U(1)d gauge field, featuring
kinetic mixing with the U(1)Y gauge field of the weak hypercharge, unlike models that
exclude mixing by, e.g., postulating additional discrete symmetries in the dark sector,
like in ref. [29]. The U(1)d gauge group is spontaneously broken by an additional Higgs
field ρ which is a singlet with respect to the SM, but carries dark charge and develops a
non-vanishing vacuum expectation value (vev). This leads to an additional massive, neutral
gauge boson as well as an additional Higgs boson. Finally, a generic Dirac fermion with
dark charge as well as right-handed, SM-like neutrinos are introduced in order to allow for
an additional portal to the dark sector of the DASM.

The SM itself is considered to be a singlet with respect to this additional U(1)d gauge
symmetry. The full gauge group of the DASM is, thus, given by SU(3)C×SU(2)W×U(1)Y×
U(1)d. Via a scalar mixing in the Higgs potential and kinetic mixing between the two U(1)
gauge group factors of the theory, the DASM uses the only two gauge-invariant operators of
the SM that can be employed to couple a dark (singlet) sector to SM particles, namely the
mass operator Φ†Φ for the complex Higgs doublet Φ and the field-strength tensor of the
U(1)Y. This opens two possible portals to the hypothetical dark sector with at least some
U(1)d gauge symmetry. By adding right-handed neutrinos to the theory, a third portal to a
possible dark fermion sector opens up via the mixing of the SM-like neutrino fields with the
newly introduced fermion of the dark sector. Further, the DASM can accommodate effects
of massive, SM-like neutrinos. The introduced model extensions can have large influence on
the predictions of Higgs and EW precision observables, and on (g − 2)µ. Moreover, for some
regions of the parameter space the DASM can provide viable DM candidates. Recently, in
ref. [30], a comprehensive phenomenological study of the Hidden Abelian Higgs Model, a
SM extension with extensions of the gauge and Higgs sectors similar to the DASM, was
presented, further highlighting the relevance of abelian dark sector extensions in current
searches for possible BSM physics.

In this paper, we present the full theoretical setup of the DASM, including a complete
renormalization at NLO. We propose two alternative renormalization schemes for the DASM:
the first scheme is based on on-shell renormalization conditions for directly measurable
quantities as far as possible and is, thus, particularly suited for a phenomenological study
of EW and Higgs precision observables. The second alternative scheme is based on MS
conditions for the new mixing angles. We are not aware of any comprehensive description
of renormalization schemes for kinetic mixing in the gauge-boson sector existing in the
literature.1 Our formulation may, thus, serve as a proposal for the renormalization of similar
models as well.

The structure of this paper is as follows: we introduce the DASM in detail in sec-
tion 2 and define a particularly intuitive input parameter scheme that is well suited for a
phenomenological study of collider observables. For the sector of neutrinos and the dark

1Recently a first, but very brief description of on-shell renormalization of the additional gauge-boson
mixing angle was given in ref. [23], however, without giving the full details on the renormalization of
the model.

– 3 –



J
H
E
P
0
1
(
2
0
2
4
)
0
3
7

fermion, we formulate a simplified approximate parameterization based on the smallness
of the masses of the three known neutrinos. In the resulting approximation, which is
sufficient for collider physics, only the dark fermion is massive. In section 3 we define an
on-shell renormalization scheme for the DASM and give the full NLO set of renormalization
constants needed to perform precision calculations. In section 4 we give NLO predictions
for the W-boson mass in the DASM (based on the measured muon decay width) as a first
phenomenological application for the introduced renormalization schemes. In section 5 we
give a summary and our conclusions. In the appendix we display explicit expressions for
lengthy, but important and interesting field-theoretical quantities of the DASM.

2 Description of the DASM

In this section we define the DASM and discuss some of its salient features. All parts of the
Lagrangian that differ from their SM counterparts are discussed in detail. Moreover, we
give a particularly intuitive set of input parameters for the DASM that is well suited for a
phenomenological confrontation of theory and experiment.

The presence of an additional U(1)d gauge field Cµ, an additional Higgs field ρ, and a
newly introduced Dirac fermion field f ′

d leads to additional terms to the SM part of the
Lagrangian. We will not give a detailed discussion of the SM parts of the theory that are
not modified within the DASM. They can be found, e.g., in refs. [31–35]. In detail, we
adopt the notation and conventions for field-theoretical quantities from ref. [35].

The full Lagrangian of the DASM can be split up in the following way,

LDASM = LYM + LFermion + LHiggs + LQCD. (2.1)

The individual parts of LDASM will be explained in the following. The QCD part LQCD of
the Lagrangian is not modified with respect to the SM and can, e.g., be found in refs. [32–35].

2.1 Higgs sector

The extension of the SM scalar sector with its complex Higgs doublet Φ by the additional
complex Higgs field ρ leads to

LHiggs = (DµΦ)† (DµΦ) + (Dd,µρ)† (Dµ
dρ)− V (Φ, ρ), (2.2)

where the covariant derivatives are given by

Dµ
d = ∂µ + iq̃edCµ, q̃ρ = q̃ρρ, q̃ρ = 1, (2.3)

Dµ = ∂µ − ig2
2 τaW a,µ + ig1

2 Bµ, (2.4)

with the charge operator q̃ and the coupling constant ed of the U(1)d gauge symmetry, and
the quantities τa denote the Pauli matrices. The choice q̃ρ = 1 for the eigenvalue q̃ρ of q̃

simply provides the normalization of the U(1)d coupling strength ed. The fields W a,µ, Bµ

are the usual SU(2)W × U(1)Y gauge fields with respective gauge couplings g2, g1. The
most general gauge-invariant, renormalizable potential V (Φ, ρ) allows for a mixing of the
Higgs doublet Φ and the Higgs field ρ and can be written as

V (Φ, ρ) = −µ2
2Φ†Φ− 2µ2

1ρ†ρ + λ2
4 (Φ†Φ)2 + 4λ1(ρ†ρ)2 + 2λ12Φ†Φρ†ρ, (2.5)
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with the five free real parameters µ2
1, µ2

2, λ1, λ2, λ12. The SM-like Higgs doublet Φ and the
Higgs field ρ can be parameterized according to

Φ =

 ϕ+

1√
2(h2 + v2 + iχ2)

 , ρ = 1√
2
(h1 + v1 + iχ1), (2.6)

with v1, v2 representing constants quantifying the vacuum expectation values (vevs) of Φ
and ρ, respectively. Without loss of generality the parameters v1, v2 can be taken real and
positive by making use of global gauge transformations. Further, ϕ+ and ϕ− = (ϕ+)† are
SM-like charged would-be Goldstone-boson fields, χ1 and χ2 represent two neutral CP-odd
would-be Goldstone-boson fields, and the two neutral CP-even Higgs fields h1 and h2 will
eventually lead to two Higgs fields corresponding to two physical CP-even Higgs bosons.
The vacuum stability conditions for the potential are given by

λ1 > 0, λ2 > 0, λ1λ2 − λ2
12 > 0. (2.7)

The main features of the scalar potential of the DASM are reflected by most Higgs sin-
glet extensions, see e.g. refs. [7–9, 36]. Here we outline the main features adopting the
parameterization given in ref. [36].

Expanding the Higgs potential (2.5) with the help of eq. (2.6) leads to

V =− t1h1 − t2h2

+ 1
2(h2, h1)M2

Higgs

h2

h1

+ 1
2(χ1, χ2)M2

χ

χ1

χ2

+M2
ϕ+ϕ−ϕ−ϕ+

+ interaction terms, (2.8)

with the tadpole terms

t1 = −v1
(
4v2

1λ1 + v2
2λ12 − 2µ2

1

)
, t2 = −v2

(
v2

2
4 λ2 + v2

1λ12 − µ2
2

)
, (2.9)

the mass matrices

M2
Higgs =

v2
2
2 λ2 − t2

v2
2v1v2λ12

2v1v2λ12 8v2
1λ1 − t1

v1

 , M2
χ =

− t1
v1

0
0 − t2

v2

 , (2.10)

and the mass term of the charged would-be Goldstone-boson fields given by

M2
ϕ+ϕ− = − t2

v2
. (2.11)

At leading order, the tadpole parameters t1, t2 are set to zero, in order to obtain the
standard form for free propagation. For the renormalization procedure described below it
is, however, convenient to keep the t1, t2 terms explicit here. The Higgs fields h and H

corresponding to mass eigenstates are obtained by a rotation by an angle α,h

H

 =

cosα − sinα

sinα cosα

h2

h1

 , (2.12)
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which diagonalizes the mass matrix M2
Higgs. Expressing the potential in terms of these fields

one finds

V =− thh − tHH

+ 1
2(h, H)

 M2
h M2

hH

M2
hH M2

H

h

H

+ 1
2(χ1, χ2)M2

χ

χ1

χ2

+ M2
ϕ+ϕ−ϕ−ϕ+

+ interaction terms, (2.13)

with the rotated tadpole terms

th = cαt2 − sαt1, tH = sαt2 + cαt1, (2.14)

where the shorthands cα = cosα and sα = sinα are used.
For the potential to acquire a minimum at the vevs, i.e. for hi = χi = ϕ+ = 0 with

i = 1, 2, one has to set the tadpole terms to zero in leading order. Using th = tH = 0 the
diagonalization of the mass matrix M2

Higgs fixes the mixing angle α at leading order to

t2α ≡ tan(2α) = 8v1v2λ12
16v2

1λ1 − v2
2λ2

. (2.15)

We enforce the mass hierarchy Mh ≤ MH by allowing for α ∈ (−π
2 , π

2 ] and choosing α such
that λ12s2α ≥ 0, leading to

s2α = 8v1v2λ12√
(8v1v2λ12)2 + (16v2

1λ1 − v2
2λ2)2

, (2.16)

c2α = 16v2
1λ1 − v2

2λ2√
(8v1v2λ12)2 + (16v2

1λ1 − v2
2λ2)2

, (2.17)

with eigenvalues

M2
h = 1

4v2
2λ2 + 4v2

1λ1 −
1
4

√
(8v1v2λ12)2 + (16v2

1λ1 − v2
2λ2)2, (2.18)

M2
H = 1

4v2
2λ2 + 4v2

1λ1 +
1
4

√
(8v1v2λ12)2 + (16v2

1λ1 − v2
2λ2)2. (2.19)

Input parameters of a theory should always be intuitive and phenomenologically most easily
accessible. We choose the masses Mh, MH, the mixing angle α, and the dimensionless
coupling λ12. The tadpole constants th and tH are fixed by the definition of the EW vacuum,
i.e. they do not count as input parameters, and are kept here only for later convenience.
For the parameters introduced in the Higgs potential, expressed in terms of the new input
parameters, we find

λ1 = 1
8v2

1

(
c2

αM2
H + s2

αM2
h

)
+ 1

8v3
1

t1, (2.20)

λ2 = 2
v2

2

(
c2

αM2
h + s2

αM2
H

)
+ 2

v3
2

t2, (2.21)

– 6 –



J
H
E
P
0
1
(
2
0
2
4
)
0
3
7

µ2
1 = 1

4
(
s2

αM2
h + c2

αM2
H

)
+ 1

2v2
2λ12 +

3
4v1

t1, (2.22)

µ2
2 = v2

1λ12 +
1
2
(
c2

αM2
h + s2

αM2
H

)
+ 3

2v2
t2, (2.23)

v1 =
(
M2

H − M2
h
)

s2α

4v2λ12
. (2.24)

Using these relations it is easy to see that the stability conditions for the potential given in
eq. (2.7) are automatically fulfilled for physical input values for Mh and MH. Note that the
requirement of symmetry breaking, i.e. µ2

1 > 0 or µ2
2 > 0, is in the physical parameter space

automatically fulfilled.2 Expanding the potential one finds scalar interaction terms of the
form

Vint = chhhh3 + chhHh2H + chHHhH2 + cHHHH3

+ chhhhh4 + chhhHh3H + chhHHh2H2 + chHHHhH3 + cHHHHH4

+ 1
2(chϕϕh + cHϕϕH + chhϕϕh2 + chHϕϕhH + cHHϕϕH2)(2ϕ+ϕ− + χ2

2)

+ 1
2(chχχh + cHχχH + chhχχh2 + chHχχhH + cHHχχH2)χ2

1

+ λ2
16(2ϕ+ϕ− + χ2

2)2 + λ12
2 χ2

1(χ2
2 + 2ϕ−ϕ+) + λ1χ4

1, (2.25)

with

chχχ = 2v2cαλ12 − 8v1sαλ1, cHχχ = 8v1cαλ1 + 2v2sαλ12, (2.26)
chhχχ = c2

αλ12 + 4s2
αλ1, chHχχ = 2sαcαλ12 − 8sαcαλ1, (2.27)

cHHχχ = 4c2
αλ1 + s2

αλ12, (2.28)

and all other coupling constants of the Higgs potential are spelled out explicitly in eq. (2.18)
of ref. [36].

2.2 Gauge part and physical gauge bosons

Different versions of generic U(1) extensions of the SM have been already discussed quali-
tatively a long time ago in the literature, see e.g. refs. [10, 18–21]. To achieve a precision
necessary for a meaningful confrontation of predictions with EW precision data all predic-
tions should include at least NLO corrections. In the following, we present the DASM in
Rξ gauge, which provides the most convenient and most common framework for calculating
higher-order corrections.

Owing to the presence of the U(1)d gauge group, new terms in the Yang-Mills (YM)
part of the Lagrangian are present in addition to the SM YM part,

LYM = LSM
YM + Ld

YM. (2.29)

2To achieve the desired symmetry breaking only µ2
1 > 0 or µ2

2 > 0 is needed. Therefore, the stated
inequalities given in eq. (2.16) of ref. [36], forcing µ2

1 > 0 and µ2
2 > 0, are not necessary.
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The new part

Ld
YM = −1

4CµνCµν − a

2BµνCµν (2.30)

includes a mixing term of the gauge field Bµ of the SM U(1)Y group and the gauge field
Cµ of the additional U(1)d group via the gauge-invariant field-strength tensors

Bµν = ∂µBν − ∂νBµ, Cµν = ∂µCν − ∂νCµ (2.31)

of the U(1)Y and the U(1)d, respectively, with the parameter a ruling the strength of this
mixing. The kinetic terms are diagonalized by a redefinition of the fields [20]Cµ

Bµ

 =

 1√
1−a2 0

− a√
1−a2 1

C ′
µ

B′
µ

 , (2.32)

leading to

LYM = −1
4CµνCµν − a

2BµνCµν − 1
4BµνBµν − 1

4W b,µνW b
µν

= −1
4C ′µνC ′

µν − 1
4B′µνB′

µν − 1
4W b,µνW b

µν . (2.33)

Choosing |a| > 1 would lead to a relative sign factor between the eigenvalues of the
quadratic form of the fields Bµν and Cµν (or equivalently of B′

µν and C ′
µν) and thus to

a wrong signature for one of the kinetic terms. Therefore, we constrain the parameter a

according to |a| < 1 to maintain the self-consistency of the DASM.
Rewriting eq. (2.4) with the help of eq. (2.32) and expanding the kinetic terms in

eq. (2.2) with the decompositions (2.6) of the Higgs doublet and singlet fields leads to

LMV = 1
2
(
B′

µ, W 3
µ , C ′

µ

)
M2

V


B′

µ

W 3
µ

C ′
µ

+ M2
WW +W−, (2.34)

with the mass matrix for the neutral vector bosons

M2
V =


s2

wM2
W

c2
w

swM2
W

cw
−ηs2

wM2
W

c2
w

swM2
W

cw
M2

W −ηswM2
W

cw

−ηs2
wM2

W
c2

w
−ηswM2

W
cw

η2s2
wM2

W
c2

w
+ M2

C

 , (2.35)

where

η = a√
1− a2

, MC = ẽv1, ẽ = ed√
1− a2

,

sw ≡ sin θw = g1√
g2

1 + g2
2

, MW = g2v2
2 . (2.36)

– 8 –



J
H
E
P
0
1
(
2
0
2
4
)
0
3
7

Diagonalizing the matrix M2
V leads to the field basis for the mass eigenstates of the neutral

vector bosons. Since rank
(
M2

V
)
= 2, this can be achieved with a combination of two

appropriate rotations of the fields in the form
B′

µ

W 3
µ

C ′
µ

 = RV


Aµ

Zµ

Z ′
µ

 , RV =


cw sw 0
−sw cw 0
0 0 1



1 0 0
0 cγ −sγ

0 sγ cγ

 , (2.37)

where sγ = sin γ, cγ = cos γ for an appropriate mixing angle γ. For sγ = 0 the whole
rotation (2.37) reduces to a mere rotation by the mixing angle θw as in the SM. The
rotation (2.37) transforms M2

V into

RT
VM2

VRV =


0 0 0
0 M2

Z M2
ZZ′

0 M2
ZZ′ M2

Z′

 , (2.38)

with

M2
Z = s2

γM2
C + M2

W (cγ − sγswη)2

c2
w

,

M2
Z′ = c2

γM2
C + M2

W (sγ + cγswη)2

c2
w

,

M2
ZZ′ = sγcγM2

C + M2
W
[
s2γ

(
s2

wη2 − 1
)
− 2swc2γη

]
2c2

w
. (2.39)

The diagonalization condition M2
ZZ′ = 0 fixes the mixing angle γ to

t2γ ≡ tan 2γ = −2ηsw

1− η2s2
w − c2

w
M2

C
M2

W

. (2.40)

The mass of the photon remains zero,

M2
A = 0, (2.41)

and requiring the photon-fermion couplings to reproduce its QED form, the electric unit
charge e is, as in the SM, directly related to the gauge couplings g1, g2 according to

e = g1g2√
g2

1 + g2
2

. (2.42)

Choosing γ ∈ (−π
4 , π

4 ], eq. (2.40) leads to

s2γ = t2γ√
1 + t2

2γ

= −
2ηswsgn

{
1− η2s2

w − c2
w

M2
C

M2
W

}
√(

1− η2s2
w − c2

w
M2

C
M2

W

)2
+ 4η2s2

w

, (2.43)

c2γ = 1√
1 + t2

2γ

=

∣∣∣∣1− η2s2
w − c2

w
M2

C
M2

W

∣∣∣∣√(
1− η2s2

w − c2
w

M2
C

M2
W

)2
+ 4η2s2

w

, (2.44)
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and one finds the masses of the two massive, neutral gauge bosons Z and Z′ to be

M2
Z = M2

W
c2

w
(1− swtγη) , (2.45)

M2
Z′ =

M2
W

c2
w

(
1 + swη

tγ

)
. (2.46)

We do not impose a mass hierarchy between the Z and Z′ bosons, i.e. both MZ′ ≥ MZ and
MZ′ < MZ are possible. In addition to the SM-like parameters e and MW, we choose MZ′

and γ as the two input parameters that fully fix the parameters of the gauge-boson sector
of the DASM. Using eqs. (2.39) the dependent parameters are given by

cw = MW√
c2

γM2
Z + s2

γM2
Z′

, M2
C =

c2
wM2

ZM2
Z′

M2
W

, η =
s2γc2

w

(
M2

Z′ − M2
Z

)
2swM2

W
, (2.47)

and further

ẽ = cwMZMZ′

v1MW
, ed = cwMZMZ′

v1MW
√
1 + η2 , a = η√

1 + η2 . (2.48)

We have not inserted the full analytical dependence on the input parameters to keep the
expressions compact. This includes in particular v1 (see eqs. (2.24) and (2.36) for its explicit
relation to input parameters). Without loss of generality we choose ed ≥ 0, i.e. we absorb
the sign into the definition of Cµ, which is possible since the sign of the parameter a, ruling
the strength of the kinetic mixing in eq. (2.30), is not constrained. Finally, we note that in
contrast to the SM the W-boson mass MW is not equal to cwMZ, not even in lowest order,
i.e. the ρ parameter [37, 38] is not equal to 1 in lowest order. This means that in order
to describe EW precision data in the DASM, we have to pay the price of fine-tuning the
mixing angle γ to some small value. By virtue of eq. (2.47) the consistency of the theory
further demands the additional restriction

M2
W < c2

γM2
Z + s2

γM2
Z′ (2.49)

for the parameter space of the DASM.

2.3 Gauge-fixing and ghost Lagrangian

The kinetic terms of the Higgs fields contain mixing terms between the gauge-boson fields
and the corresponding would-be Goldstone-boson fields. To avoid unpleasant non-diagonal
propagators between gauge bosons and would-be Goldstone bosons at tree level we choose
Rξ gauge-fixing conditions, i.e. we introduce a gauge-fixing Lagrangian of the form

Lfix = − 1
2ξA

(
F A)2 − 1

2ξZ

(
F Z)2 − 1

2ξZ′

(
F Z′)2 − 1

ξW
F +F−, (2.50)

with the gauge-fixing functionals

F± = ∂µW±
µ ∓ iξW MWϕ±,
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F Z = ∂µZµ − ξZ

[
MCsγχ1 +

cwcγM2
Z

MW
χ2

]
,

F Z′ = ∂µZ ′
µ − ξZ′

[
MCcγχ1 −

cwsγM2
Z′

MW
χ2

]
,

F A = ∂µAµ. (2.51)

Introducing a gauge-fixing of this form leads to a non-diagonal mass matrix M2
χ for the

neutral would-be Goldstone fields. This mass matrix can be diagonalized by an appropriate
rotation of the would-be Goldstone fields,χ′

χ

 = RT
χ

χ1

χ2

 , RT
χ =

cx −sx

sx cx

 , (2.52)

with sx = sin θx, cx = cos θx. Choosing a common gauge parameter ξi = ξV, for the neutral
gauge bosons i = Z, Z ′, to avoid unnecessarily complicated expressions, leads to

RT
χM2

χRχ = ξV

M2
χ′χ′ M2

χχ′

M2
χχ′ M2

χχ

 , (2.53)

with

M2
χ′χ′ = M2

Cc2
x + M2

Ws2
x + ηswsxMW (2MCcxcw + MWηswsx)

c2
w

− s2
xv1t2 + c2

xv2t1
v1v2ξV

,

M2
χχ = M2

Cs2
x + M2

Wc2
x + ηswcxMW (MWηswcx − 2MCcwsx)

c2
w

− c2
xv1t2 + s2

xv2t1
v1v2ξV

,

M2
χχ′ =

s2x

2

(
M2

C − M2
W

c2
w

)
− MWηsw (2MCcwc2x + MWηsws2x)

2c2
w

+ sxcx (v1t2 − v2t1)
v1v2ξV

.

(2.54)

Requiring M2
χχ′ = 0 and setting tadpole terms to zero suggests the definition

t2x ≡ tan(2θx) =
−2ηMCswcw

MW

(
1 + η2s2

w − c2
w

M2
C

M2
W

) = cwMCt2γ

MW (1− ηswt2γ)
, (2.55)

which eliminates mixing terms between χ and χ′ in lowest order. We choose

s2x = cws2γMC
MW

, c2x = c2γ − swηs2γ , (2.56)

to align the masses of the two would-be Goldstone bosons

Mχ =
√

ξVMZ , Mχ′ =
√

ξVMZ′ (2.57)

with the masses of the respective gauge bosons (for t1, t2 → 0). Moreover, we find

sx = cwsγMZ′

MW
, cx = cwcγMZ

MW
, tx = MZ′

MZ
tγ . (2.58)
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With these simplifications the gauge-fixing functionals given by eq. (2.51) reduce to

F± = ∂µW±
µ ∓ iξWMWϕ±,

F Z = ∂µZµ − ξVMZχ,

F Z′ = ∂µZ ′
µ − ξVMZ′χ′,

F A = ∂µAµ. (2.59)

Following the Faddeev-Popov procedure, unphysical anti-commuting scalar ghost fields
ua, ūa, (a = ±, Z, Z ′, A), needed for the consistency of the gauge-fixing procedure in the
functional integral, are introduced. The ghost Lagrangian is given by

LFP(x) = −
∫

d4y ūa(x)
(

δF a(x)
δθb(y)

)
ub(y), (2.60)

with a, b = ±, Z, Z ′, A. In the chosen Rξ gauge all masses of the ghost fields coincide with
the masses of the corresponding would-be Goldstone bosons. The gauge transformations of
the fields, which are needed for the evaluation of eq. (2.60), as well as the explicit form of
LFP can be found in appendix A.

2.4 Fermion sector

The DASM extends the fermion sector of the SM by right-handed neutrino fields ν ′R
j ,

j = e, µ, τ , corresponding to the left-handed SM-like neutrino fields ν ′L
j , and an additional

non-chiral Dirac fermion f ′
d of the hidden sector. The primes on the fields indicate the

use of the gauge-interaction eigenbasis. The field f ′
d is assumed to carry only the charge

q̃fed of the U(1)d gauge group, but neither weak isospin, nor weak hypercharge, nor colour.
Since f ′

d is non-chiral, no anomalies are introduced in the DASM. For the relative coupling
strength we choose

q̃f = q̃ρ = 1, (2.61)

where qd,ρed is the U(1)d charge of the Higgs singlet ρ. While q̃ρ = 1, as already mentioned
above, simply provides the normalization of the U(1)d coupling ed, the choice of q̃f = 1
allows for a Yukawa coupling in the Lagrangian connecting the Higgs field ρ, the new
fermion field of the dark sector f ′

d, and the right-handed neutrinos ν ′R
j , opening another

portal between the SM and the dark sector. The terms that need to be introduced in the
Lagrangian in addition to the SM-like fermionic terms LSM

Fermion (with massless left-handed
neutrinos) read

LFermion = LSM
Fermion + f̄ ′

d
(
i /Dd − mfd

)
f ′

d +
∑

j=e,µ,τ

[
ν̄ ′R

j i/∂ν ′R
j −

(
yρ,jρf̄ ′L

d ν ′R
j + h.c.

)]
−

∑
k,l=e,µ,τ

(
L̄′L

k G′ν
klν

′R
l ΦC + h.c.

)
, (2.62)

with the covariant derivative Dµ
d of the dark sector given in eq. (2.3). The first term

in eq. (2.62) contains the gauge interactions of f ′
d as well as its Dirac mass term with
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the mass parameter mfd . We can assume mfd as real and non-negative, mfd ≥ 0, upon
adjusting a chiral phase of f ′

d appropriately. The sum over j contains the kinetic terms
of the right-handed neutrinos as well as the Yukawa terms including f ′

d, the right-handed
neutrino fields ν ′R

j , and the Higgs singlet ρ. The sum over k, l introduces Yukawa terms
involving the SM-like neutrinos and the charge-conjugate ΦC = iτ2Φ∗ of the SM-like Higgs
doublet. Here G′ν

kl denote the respective Yukawa coupling constants. We do not consider
the possibility of Majorana mass terms for the right-handed neutrinos. Using eq. (2.6) the
mass terms in LFermion for the neutral fermion fields ν ′L

k , ν ′R
k , and f ′

d = f ′L
d + f ′R

d (with
f
′L/R
d = ωL/Rf ′

d and the chiral projectors ωL/R = 1
2(1∓ γ5)) become

Lm
f ′

dν = −
(

ν̄ ′L
e , ν̄ ′L

µ , ν̄ ′L
τ , f̄ ′L

d

)
M′

fd


ν ′R

e

ν ′R
µ

ν ′R
τ

f ′R
d

+ h.c. , (2.63)

with

M′
fd =


m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
ỹe ỹµ ỹτ mfd

 , ỹi =
v1yρ,i√

2
, mij =

v2Gν
ij√
2

. (2.64)

In general M′
fd is a complex, non-symmetric matrix. A bi-unitary transformation

ν ′R
e

ν ′R
µ

ν ′R
τ

f ′R
d

 = UR


νR

1

νR
2

νR
3

νR
4

 ,


ν ′L

e

ν ′L
µ

ν ′L
τ

f ′L
d

 = UL


νL

1

νL
2

νL
3

νL
4

 , (2.65)

can be used to transform the fields into the mass eigenbasis of the resulting four neutrino-like
states,

U†
LM

′
fdUR = Mν , Mν,αβ = mν,αδαβ , mν,α ≥ 0, α, β = 1, 2, 3, 4. (2.66)

2.4.1 Qualitative discussion of the neutrino mixing

In this section we consider the main features of the diagonalization process of the mass
matrix of the neutral fermions in the limit of small SM-like neutrino masses. The results
from this consideration are then used in the next section to define an approximation to
the complete fermion sector of the DASM that is sufficient for applications to collider
phenomenology.

We assume all entries of the SM-like mass matrix (mkl) to be of the scale mν representing
the generic scale of the SM-like neutrino masses, mkl = O(mν). Inspired by the experimental
evidence for very small neutrino masses we consider the case

mν ≪ m̃ ≡ max{ỹ, mfd}, ỹ2 ≡ |ỹe|2 + |ỹµ|2 + |ỹτ |2, ỹ ≥ 0. (2.67)
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The four neutrino masses are obtained as the square roots of the (non-negative) eigenvalues
of the matrices M′†

fdM′
fd or M′

fdM′†
fd . The latter has the structure

M′
fdM′†

fd =


O(m2

ν)
O (mνm̃)
O (mνm̃)
O (mνm̃)

O (mνm̃) O (mνm̃) O (mνm̃) m2
fd + ỹ2

 . (2.68)

Note that in the notation used in eq. (2.68) the symbol O(m2
ν) should be read as a 3× 3

matrix with elements of order O(m2
ν). From this form, we read that the neutrino masses

obey the hierarchy

mνk
= O(mν), k = 1, 2, 3, mν4 =

√
m2

fd + ỹ2 +O(mν), (2.69)

and that the mixing matrix UL, which is the unitary matrix diagonalizing M′
fdM′†

fd ,

U†
LM′

fdM′†
fdUL = diag(m2

ν1 , m2
ν2 , m2

ν3 , m2
ν4), (2.70)

has the form

UL =


0
0ÛL
0

0 0 0 1

+O
(

mν

m̃

)
, ÛL = O(1), (2.71)

where ÛL is a unitary 3 × 3 matrix ruling the mixing in the sector of the light SM-like
neutrinos. The unitary matrix UR, which diagonalizes M′†

fdM′
fd ,

U†
RM′†

fdM′
fdUR = diag(m2

ν1 , m2
ν2 , m2

ν3 , m2
ν4), (2.72)

is more complicated and leads to mixing between the right-handed SM-like neutrino fields
and f ′R

d which is, in contrast to the respective case for the left-handed fields, not suppressed
by mν . Motivated by the hierarchy of the coefficients in M′

fd ,

M′
fd =


0
0O(mν)
0

ỹe ỹµ ỹτ mfd

 , (2.73)

we decompose UR into two factors, UR = UR,1UR,2, where UR,1 aligns the vector (ỹe, ỹµ, ỹτ )
along the (0, 0, 1) direction and UR,2 takes care of the remaining rotation in the ν3-ν4 plane.
In detail, we define

UR,1 =


e′ e′′ e′

0
0
0

0 0 0 1

 , (ỹe, ỹµ, ỹτ ) = ỹ e†, ỹ ≥ 0, (2.74)
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with {e, e′, e′′} forming an orthonormal system of 3-vectors, i.e. |e| = |e′| = |e′′| = 1,
e†e′ = 0, etc., so that

M′
fdUR,1 =


0
0O(mν)
0

0 0 ỹ mfd

 . (2.75)

The second matrix UR,2 rotates the 2-vector (ỹ, mfd) in the ν3-ν4 plane into (0, mν4),

M′
fdUR,1UR,2 =


0
0O(mν)

O (mν)
0 0 0 mν4

 . (2.76)

Thus, while UR,1 simply aligns the SM-like right-handed neutrino fields, the rotation UR,2
dictates the mixing of the right-handed SM-like neutrino fields with the fermion from the
dark sector.

2.4.2 Simplified fermion sector of the DASM

The results of the previous section illustrate that it is possible to restrict any analysis
of observables that are not sensitive to SM-like neutrino masses to the case mij = 0
(i, j = 1, 2, 3). After aligning the right-handed SM-like neutrino fields with the help of (2.74)
the Lagrangian (2.62) simplifies to

Ladd
Fermion = f̄ ′

d
(
i /Dd − mfd

)
f ′

d −
(
yρρf̄ ′L

d ν ′R
3 + h.c.

)
+

∑
j=1,2,3

[
ν̄ ′R

j i/∂ν ′R
j

]
, (2.77)

with yρ =
√
2ỹ/v1. The resulting mass matrix for the SM-like neutrinos and the dark

fermion f ′
d reads

M′
fd =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 ỹ mfd

 . (2.78)

Note that both ỹ and mfd can be assumed real and non-negative as became clear in the
discussion of the previous section. The very simple form of M′

fd allows for the ansatz

UL =


1 0 0 0
0 1 0 0
0 0 cos θl sin θl

0 0 − sin θl cos θl

 , UR,2 =


1 0 0 0
0 1 0 0
0 0 cos θr sin θr

0 0 − sin θr cos θr

 , (2.79)
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for the rotation matrices leading to the fields ν
L/R
i , i = 1, 2, 3, 4, that correspond to mass

eigenstates. The diagonalization conditions then read

0 = sin θl (ỹ sin θr + mfd cos θr) , 0 = cos θl (ỹ cos θr − mfd sin θr) . (2.80)

Equations (2.80) have the solution

sin θl = 0, tan θr =
ỹ

mfd
, (2.81)

so that we can choose

θl = 0, sθr ≡ sin θr =
ỹ√

ỹ2 + m2
fd

, cθr ≡ cos θr =
mfd√

ỹ2 + m2
fd

. (2.82)

In particular, we have UL = 14. This means that in the approximation of neglecting
mν1,ν2,ν3 the flavour eigenstates for each of the left-handed fields are already aligned to the
mass eigenstates, but the right-handed flavour eigenstates need to be rotated to correspond
to mass eigenstates. The masses are given by

mν1 = mν2 = mν3 = 0, mν4 =
√

ỹ2 + m2
fd . (2.83)

Moreover, it should be noted that for mν1,ν2,ν3 = 0 any further unitarity transformation
of the SM-like neutrino fields (provided by some UL of the form (2.71) with mν = 0) is
unobservable as in the SM, so that there is no CKM-like mixing in the charged-current
interaction of the leptons. As an intuitive set of input parameters we choose the mass mν4

of the heavy neutrino ν4 and the mixing angle θr ∈ [0, π
2 ] for the right-handed fields. Using

eqs. (2.81) and (2.83) we find

ỹ = sθrmν4 , mfd = cθrmν4 (2.84)

for the additional parameters introduced in the fermion part of the Lagrangian.
Rewriting eq. (2.77) in terms of νi (i = 1, 2, 3, 4) leads to

Ladd
Fermion = ν̄4

(
i/∂ − mν4

)
ν4 +

∑
j=1,2,3

ν̄R
j i/∂νR

j

+ sθrmν4

v1

(
sθrsαhν̄L

4 νR
4 + cθrsαhν̄L

4 νR
3 − sθrcαHν̄L

4 νR
4 − cθrcαHν̄L

4 νR
3 + h.c.

)
− ẽ

(
sγZµ + cγZ ′

µ

) (
ν̄L

4 γµνL
4 + c2

θr ν̄
R
4 γµνR

4 + s2
θr ν̄

R
3 γµνR

3

−
[
sθrcθr ν̄

R
4 γµνR

3 + h.c.
] )

, (2.85)

from which the couplings of the neutrinos νi (i = 1, 2, 3, 4) can be easily read off.

2.5 Input parameters

For the input parameters originating from the SM part of the DASM we use the precisely
measured masses of the gauge bosons, MW, MZ, the electromagnetic coupling αem = e2/(4π),
the fermion masses, the CKM matrix elements Vij , and the mass of the SM-like Higgs
boson, which can be h or H. The various extensions introduced above lead to additional
free parameters:
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• There are two additional free parameters in the gauge sector. Using eq. (2.47) we
express a and ed in terms of MZ′ and γ and use the latter two as input parameters.

• There are three extra parameters, λ1, λ12, µ2
1, introduced in the Higgs sector in

addition to the SM Higgs parameters. Using eq. (2.24) we express the additional
parameters coming from the Higgs potential in terms of Mh′ , α, and λ12, which are
used as input parameters, where h′ is the non-SM-like Higgs boson of h, H. Note that
the mixing angle α is most directly connected to the “signal strength” of the SM-like
Higgs boson as measured by LHC collaborations.

• The new parameters ỹ and mfd of the fermion sector are expressed in terms of the
input quantities θr and mν4 using eq. (2.84).

In total we use

{MW, MZ, MZ′ , MH, Mh, αem, γ, α, θr, λ12, mf,i, mν4 , Vij} (2.86)

as a particularly intuitive set of input parameters for the DASM.

3 Renormalization of the DASM

In order to match the accuracy of EW precision data from the LHC and previous colliders,
including the (g − 2)µ result, at least NLO predictions for precision observables are needed.
Thus, the theory needs to be renormalized. In this section we introduce two types of
renormalization schemes for the DASM and give the resulting expressions for the various
renormalization constants at NLO. The first scheme is based on on-shell (OS) renormal-
ization conditions as far as possible, the second employs MS conditions for some of the
parameters of the non-SM sectors.

3.1 Renormalization transformation

We choose a multiplicative renormalization procedure for the input parameters and the
fields. To this end, at NLO we define the following renormalization transformations,

M2
h,0 = M2

h + δM2
h , M2

H,0 = M2
H + δM2

H,

M2
Z,0 = M2

Z + δM2
Z, M2

Z′,0 = M2
Z′ + δM2

Z′ ,

M2
W,0 = M2

W + δM2
W, e0 = (1 + δZe) e = e + δe,

γ0 = γ + δγ, α0 = α + δα,

λ12,0 = λ12 + δλ12, mf,i,0 = mf,i + δmf,i,

Vij,0 = Vij + δVij , θr,0 = θr + δθr, (3.1)

for the input parameters of the SM and dark parts of the model. Here we denote the bare
parameters and fields with a subscript “0” to distinguish them from their renormalized
counterparts without this subscript; the quantities δp are the renormalization constants for
the respective parameters p. After the rotation of the fields into a basis corresponding to
mass eigenstates, the renormalization transformation for the fields readsh0

H0

 =
(
12 +

1
2δZS

)h

H

 , δZS =

δZhh δZhH

δZHh δZHH

 ,
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A0

Z0

Z ′
0

 =
(
13 +

1
2δZV

)
A

Z

Z ′

 , δZV =


δZAA δZAZ δZAZ′

δZZA δZZZ δZZZ′

δZZ′A δZZ′Z δZZ′Z′

 ,

W±
0 =

(
1 + 1

2δZW

)
W±,

fL
i,0 =

(
1 + 1

2δZf,L
i

)
fL

i , fR
i,0 =

(
δij +

1
2δZf,R

ij

)
fR

j , (3.2)

where the matrix structures for the Higgs fields h and H, the neutral gauge-boson fields
A, Z, Z ′, and the right-handed fermions fR

i arise due to their possible mixing. For charged
leptons, up-type and down-type quarks, the indices i, j label the three generations. Since
the new fermion f ′

d mixes with right-handed neutrinos, it has to be taken into account in
the renormalization of the neutrino fields and, thus, for f = ν the indices i, j run over the
three SM-like neutrino generations as well as the non-standard fermion ν4. Note that we do
not introduce a matrix structure in the quark sector, since we set the CKM matrix in the
following to the unit matrix.3 For our purposes this is an adequate approximation as we
will not consider flavour-sensitive observables.

Additionally, we introduce renormalization constants for the tadpole parameters, which
were introduced in eqs. (2.9) and (2.14), according to

th,0 = th + δth, tH,0 = tH + δtH . (3.3)

Note that the relation (2.14) is true for the sets of the bare and renormalized quantities,
{t1,0, t2,0, th,0, tH,0} and {t1, t2, th, tH}, respectively. However, the parameter relations ob-
tained from eq. (2.9) only hold for the bare quantities th,0 and tH,0, but not for th and tH .

The renormalization of the unphysical sector, i.e. the renormalization of the would-be
Goldstone-boson fields, ghost fields, and gauge parameters, is not relevant for the calculation
of S-matrix elements and we choose to not renormalize them at all. In particular, this
means that the gauge-fixing functionals do not generate any counterterms at all (for more
details on possible renormalization schemes of the unphysical sector in the SM see, e.g.,
refs. [35] and references therein).

3.2 Renormalization conditions

First we set up a renormalization scheme that, as far as possible, adopts OS renormaliza-
tion conditions that lead to intuitive and direct relations between the input parameters
and physical observables. The only exception is the coupling constant λ12 where no OS
renormalization condition is phenomenologically appropriate as long as the non-SM-like
Higgs boson is not found. Thus, δλ12 will be fixed by an MS renormalization condition.
The dimensionless coupling λ12 is not related to masses, and therefore, its renormalization
does not depend on the details of the tadpole renormalization (see section 3.2.1). As an
alternative to the OS renormalization conditions for the non-SM parameters, we describe MS

3A generalization to a non-diagonal CKM matrix proceeds exactly as in the SM (see, e.g., refs. [31, 35]
and references therein).
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renormalization of the corresponding parameters. Once OS renormalization is established,
the transition to MS renormalization is provided by simply keeping only the standard UV
divergences in the renormalization constants of the respective parameters.

In the following we present the various renormalization conditions and the explicit form
of the renormalization constants.

3.2.1 Tadpole renormalization

In EW renormalization — in particular if MS conditions are involved — the treatment of
tadpoles plays an important role. Historically, the two most popular tadpole schemes are
the Parameter Renormalized Tadpole Scheme (PRTS) [31, 39] and the Fleischer-Jegerlehner
Tadpole Scheme (FJTS) [40]. In addition, recently the Gauge-Invariant Vacuum expectation
value Scheme (GIVS) was proposed in refs. [41, 42] as an alternative to the former two.
Here we briefly sketch the renormalization procedure of the tadpoles, for a more detailed
and comprehensive description we refer, e.g., to refs. [35, 41, 42].

In spontaneously broken gauge theories, like the DASM, explicit 1-loop contributions
originating from tadpole diagrams, i.e. Feynman diagrams of the form

iΓh = iT h =
h

, iΓH = iT H =
H

, (3.4)

where the blobs represent any 1-loop subdiagrams, arise if the effective Higgs potential
does not acquire its minimum at the renormalized vevs v1, v2 (see also appendix C of
ref. [43]). Technically it is desirable to avoid the appearance of these tadpole contributions
in calculations as far as possible. This can be done by an appropriate choice of parameter
and field definitions in the course of the renormalization programme. At LO, tadpole
contributions can be eliminated by demanding th,0 = tH,0 = 0 (see section 2.1). At NLO,
explicit tadpole contributions can be canceled by generating tadpole counterterms δthh and
δtHH in the Lagrangian and demanding for the renormalized 1-point functions Γh

R and ΓH
R

of the physical Higgs fields to vanish,

Γh
R = T h + δth = 0 ⇒ δth = −T h,

ΓH
R = T H + δtH = 0 ⇒ δtH = −T H . (3.5)

There are different ways to introduce the tadpole counterterms δthh and δtHH in the La-
grangian.

In the Fleischer-Jegerlehner Tadpole Scheme (FJTS) [40] the bare tadpoles th,0 and
tH,0 are consistently set to zero, and the tadpole counterterms are introduced via shifts of
the Higgs fields

h → h +∆vFJTS
h , ∆vFJTS

h = −δtFJTS
h

M2
h

,

H → H +∆vFJTS
H , ∆vFJTS

H = −δtFJTS
H

M2
H

. (3.6)

Even though ∆vFJTS
h and ∆vFJTS

H turn out to be gauge dependent, the FJTS does not
destroy the gauge independence in predictions for observables in OS or MS renormalization
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schemes since the field redefinitions (3.6) can be viewed as mere shifts in the integration
variables in the functional integral used to quantize the theory. However, the FJTS tends
to lead to large tadpole contributions to renormalization constants of mass parameters in
MS renormalization schemes, often jeopardizing the perturbative stability of predictions
(see e.g. refs. [41–46]).

In contrast to the FJTS the Parameter Renormalized Tadpole Scheme (PRTS) [31,
39] treats the tadpoles similar to model parameters and introduces the desired tadpole
counterterms simply via the parameter renormalization transformation given in eq. (3.3).
For the renormalized effective Higgs potential to have a minimum at v1, v2, the renormalized
tadpoles are set to zero in the PRTS, th = tH = 0, so that δth = th,0 and δtH = tH,0.
Starting from

δt1 = −v1,0
(
4v2

1,0λ1,0 + v2
2,0λ12,0 − 2µ2

1,0

)
, δt2 = −v2,0

(
v2

2,0
4 λ2,0 + v2

1,0λ12,0 − µ2
2,0

)
,

λ1,0 =
v1,0

(
c2

α,0M2
H,0 + s2

α,0M2
h,0

)
+ cα,0δtH − sα,0δth

8v3
1,0

,

λ2,0 =
2
[
v2,0

(
c2

α,0M2
h,0 + s2

α,0M2
H,0

)
+ cα,0δth + sα,0δtH

]
v3

2,0
, (3.7)

and using eq. (2.24) for the bare (v1,0) and renormalized (v1) vev of the Higgs field ρ, one
finds the simple replacements4

µ2
1,0 → µ2

1,0 +
3
(
cαδtPRTS

H − sαδtPRTS
h

)
4v1

, µ2
2,0 → µ2

2,0 +
3
(
cαδtPRTS

h + sαδtPRTS
H

)
2v2

,

λ1,0 → λ1,0 +
cαδtPRTS

H − sαδtPRTS
h

8v3
1

, λ2,0 → λ2,0 +
2
(
cαδtPRTS

h + sαδtPRTS
H

)
v3

2
,

λ12,0 → λ12,0, (3.8)

for the bare parameters of the Higgs potential to generate all tadpole counterterms from the
bare Lagrangian in which th,0 and tH,0 are set to zero. The PRTS leads to small corrections
to renormalized mass parameters, but in general introduces a gauge dependence in the
parameterization of predictions for observables in MS schemes (there is no such dependence
introduced in OS schemes). Thus, to produce consistent predictions using the PRTS in
combination with an MS scheme, either a gauge has to be fixed once and for all or the
values of the input parameters have to be converted between different gauge choices.

In both tadpole schemes the tadpole counterterms are chosen in such a way that
they cancel the respective contributions from explicit tadpole diagrams in Green functions.
Nevertheless, the tadpole renormalization constants δth and δtH enter the Lagrangian in
different places, and therefore, lead to a dependence of counterterms on the chosen tadpole
renormalization scheme.

4These replacement rules, due to the similar construction of the Higgs sectors, are equivalent to the ones
given in ref. [42] for the pure Higgs singlet extension.
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Combining the benefits of the FJTS and the PRTS — the gauge independence of
the FJTS and the perturbative stability of the PRTS — recently a hybrid version of the
two schemes, the GIVS, was proposed in refs. [41, 42]. The GIVS constructs the tadpole
renormalization constant δtS (S = h, H) from two contributions, δtGIVS

S,1 and δtGIVS
S,2 , where

δtGIVS
S,1 is introduced as in the PRTS and δtGIVS

S,2 as in the FJTS. The GIVS switches to
the non-linear Higgs representation for the calculation of the δtGIVS

S,1 . In the non-linear
representation the scalar components corresponding to CP-even neutral physical Higgs
fields are gauge invariant, rendering the corresponding tadpole functions gauge independent.
These tadpole renormalization constants are given by

δtGIVS
h,1 = −T h

nl, δtGIVS
H,1 = −T H

nl , (3.9)

where the explicit expressions for the NLO Higgs 1-point functions in the non-linear Higgs
representation (see appendix B) are given by

T S
nl =

∑
V =Z,Z′,W

λSV

[
3A0(M2

V)− 2M2
V

]
+

∑
S′=h,H

[
λSS′A0(M2

S′)
]

+ λSF

∑
f=l,u,d

[
NC,f m2

f A0(m2
f )
]
+ λSν4m2

ν4A0(m2
ν4), S = h, H, (3.10)

with the respective color factor NC,f of a fermion f and

λhZ =
c2

wM2
Z

(
v1cαc2

γM2
Z − v2sαs2

γM2
Z′

)
16π2v1v2M2

W
, λHZ =

c2
wM2

Z

(
v1sαc2

γM2
Z + v2cαs2

γM2
Z′

)
16π2v1v2M2

W
,

λhZ′ =
c2

wM2
Z′

(
v1cαs2

γM2
Z′ − v2sαc2

γM2
Z

)
16π2v1v2M2

W
, λHZ′ =

c2
wM2

Z′

(
v1sαs2

γM2
Z′ + v2cαc2

γM2
Z

)
16π2v1v2M2

W
,

λhW = cαM2
W

8π2v2
, λHW = sαM2

W
8π2v2

,

λhh = 3chhh
16π2 , λHh = chhH

16π2 ,

λhH = chHH
16π2 , λHH = 3cHHH

16π2 ,

λhF = − cα

4π2v2
, λHF = − sα

4π2v2
,

λhν4 =
sαs2

θr

4π2v1
, λHν4 = −

cαs2
θr

4π2v1
. (3.11)

The explicit expressions for the Higgs self-couplings cS1S2S2 (S1, S2 = h, H) can be found
in eq. (2.18) of ref. [36]. The function A0(m2) is the standard 1-loop 1-point integral in
dimensional regularization using the conventions of refs. [31, 34, 35]. The 1-point functions
T S

nl are then used in tadpole counterterms that are generated in the course of parameter
renormalization as in the PRTS, i.e.,

µ2
1,0 → µ2

1,0 +
3
(
cαδtGIVS

H,1 − sαδtGIVS
h,1

)
4v1

, µ2
2,0 → µ2

2,0 +
3
(
cαδtGIVS

h,1 + sαδtGIVS
H,1

)
2v2

,
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λ1,0 → λ1,0 +
cαδtGIVS

H,1 − sαδtGIVS
h,1

8v3
1

, λ2,0 → λ2,0 +
2
(
cαδtGIVS

h,1 + sαδtGIVS
H,1

)
v3

2
,

λ12,0 → λ12,0. (3.12)

Apart from the calculation of δtGIVS
S,1 , the whole loop calculation proceeds in the linear

Higgs representation as usual. Therefore, the mere use of δtGIVS
S,1 as tadpole renormalization

constants would not lead to a full cancellation of tadpole loops in the loop calculation.
The “missing” parts in the tadpole renormalization constants, δtGIVS

h,2 and δtGIVS
H,2 (which

are gauge dependent), are introduced by field shifts as in the FJTS,

h → h +∆vGIVS
h , ∆vGIVS

h = −
δtGIVS

h,2
M2

h
,

H → H +∆vGIVS
H , ∆vGIVS

H = −
δtGIVS

H,2
M2

H
, (3.13)

with

∆vGIVS
S = T S − T S

nl
M2

S

= λSχA0(ξVMZ) + λSχ′A0(ξVMZ′) + λSϕA0(ξWMW), S = h, H,

(3.14)

and

λhχ = v1cαc2
x − v2sαs2

x

32π2v1v2
, λHχ = v1sαc2

x + v2cαs2
x

32π2v1v2
,

λhχ′ = v1cαs2
x − v2sαc2

x

32π2v1v2
, λHχ′ = v1sαs2

x + v2cαc2
x

32π2v1v2
,

λhϕ = cα

16π2v2
, λHϕ = sα

16π2v2
. (3.15)

The full tadpole renormalization constants δtGIVS
S , thus, consist of two parts,

δtGIVS
h = δtGIVS

h,1 + δtGIVS
h,2 = −T h, δtGIVS

H = δtGIVS
H,1 + δtGIVS

H,2 = −T H . (3.16)

The GIVS is designed in such a way that the vevs v1, v2 of the Higgs fields are tied to the
minimum of the renormalized Higgs potential, rendering the GIVS a perturbatively stable,
gauge-independent tadpole renormalization scheme.

In the following we give explicit results for OS and MS renormalization constants for all
parameters of the DASM that are related to masses. The OS scheme leads to a systematic
cancellation between tadpole corrections in mass renormalization constants and self-energies
in calculations of observables in all three tadpole schemes so that predictions for observables
in OS schemes do not depend on the tadpole scheme. However, for MS renormalization the
choice of the tadpole scheme matters. By default, we choose the (most commonly used)
PRTS for the renormalization of the DASM (see section 3.1), but the use of each of the
three tadpole schemes described above is straightforward in the DASM. In the following we
give substitution rules for the translation of the PRTS results to the respective FJTS and
GIVS results for all mixing angles of the DASM.
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3.2.2 Mass and field renormalization

We adopt OS renormalization conditions for the masses and fields as, e.g., formulated
in refs. [31, 35, 36, 43] and follow ref. [35] in the notation and conventions for field-
theoretical quantities. This means that the renormalized mass parameters of physical
particles correspond to the locations of the zeroes in the real parts of the respective inverse
propagators, that on-shell fields do not mix with other fields, and that the renormalized
fields are canonically normalized. In terms of renormalized two-point vertex functions Γab

R
of fields a, b the renormalization conditions are given by

ReΓV †V ′
R,µν (−k, k)εν(k)|k2=M2

V
= 0, V, V ′ = A, Z, Z ′, W±, (3.17)

lim
k2→M2

V

1
k2 − M2

V

ReΓV †V
R,µν(−k, k)εν(k) = −εµ(k), (3.18)

ReΓSS′
R (−k, k)|k2=M2

S
= 0, S, S′ = h, H, (3.19)

lim
k2→M2

S

1
k2 − M2

S

ReΓSS
R (−k, k) = 1, (3.20)

ReΓf̄f
R,ij(−p, p)uj(p)

∣∣∣∣
p2=m2

f,j

= 0, (3.21)

lim
p2→m2

f,i

/p + mf,i

p2 − m2
f,i

ReΓf̄f
R,ii(−p, p)ui(p) = ui(p), (3.22)

where εµ(k) and u(k) represent the polarization vectors and spinors for on-shell external
gauge bosons and fermions with momentum k, respectively. Using the covariant decomposi-
tion of the two-point functions for gauge bosons in ’t Hooft-Feynman gauge,

ΓV †V ′
R,µν (−k, k) = −gµν(k2 − M2

V )δV V ′ −
(

gµν − kµkν

k2

)
ΣV †V ′

R,T (k2)− kµkν

k2 ΣV †V ′
R,L (k2), (3.23)

where ΣV †V ′
R,T (k2) and ΣV †V ′

R,L (k2) are the renormalized transversal and longitudinal self-
energies, we find the well-known results

δM2
V = ReΣV †V

T (M2
V ), δZV †V = −Re ∂ΣV †V

T (k2)
∂k2

∣∣∣∣
k2=M2

V

, V = A, Z, Z ′, W±,

δZV V ′ = −2Re ΣV †V ′
T (M2

V ′)
M2

V ′ − M2
V

, V V ′ = AZ, ZA, AZ ′, Z ′A, ZZ ′, Z ′Z, (3.24)

for the renormalization constants in the gauge sector. Note that in our convention all
self-energies include one-particle irreducible (1PI) contributions Σ1PI

(
k2) as well as 1- and

2-point tadpole counterterms Σδt and reducible tadpole loop corrections Σtad (for more
details see section 3.1.7 of ref. [35]),

Σ
(
k2) = Σ1PI

(
k2)+Σδt +Σtad. (3.25)
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In contrast to the SM, the Higgs sector of the DASM contains two physical Higgs bosons.
Higher-order effects lead to mixing between the fields of these two scalar bosons. Therefore,
similarly to the sector of the neutral gauge bosons, the renormalized two-point function with
two external scalar fields S, S′ = h, H is not diagonal and might be decomposed according to

ΓSS′
R (−k, k) =

(
k2 − M2

S

)
δSS′ +ΣSS′

R (k2), (3.26)

with the renormalized self-energies

ΣSS′
R (k2) = ΣSS′(k2) + 1

2(k
2 − M2

S)δZSS′ + 1
2(k

2 − M2
S′)δZS′S − δSS′δM2

S . (3.27)

Using eqs. (3.19) and (3.20) one finds for the mass and field renormalization constants of
the Higgs sector,

δM2
S = ReΣSS(M2

S), δZSS =− Re ∂ΣSS(k2)
∂k2

∣∣∣∣
k2=M2

S

,

δZSS′ = −2Re ΣS′S(M2
S′)

M2
S′ − M2

S

, S ̸=S′. (3.28)

The renormalization procedure of the fermion part of the DASM can be carried out in
analogy to the SM procedure. We parameterize the renormalized two-point function for
fermions by covariants as follows,

Γff̄
R,ij(−p, p) = /pωLΓf,L

R,ij(p
2) + /pωRΓf,R

R,ij(p
2) + ωLΓf,l

R,ij(p
2) + ωRΓf,r

R,ij(p
2), (3.29)

where ωL/R = 1
2 (1∓ γ5) denote the chiral projectors and Γf,L

R,ij(p2), Γf,R
R,ij(p2), Γf,l

R,ij(p2),
and Γf,r

R,ij(p2) are the renormalized left- and right-handed vector and scalar parts of the
fermion two-point vertex function. Adopting this notation for the covariants of the fermion
self-energy we find

Γf,L
R,ij(p

2)= δij+Σf ,L
ij (p2)+ 1

2
(
δZf ,L

ij +δZf ,L†
ij

)
, (3.30)

Γf,R
R,ij(p

2)= δij+Σf ,R
ij (p2)+ 1

2
(
δZf ,R

ij +δZf ,R†
ij

)
, (3.31)

Γf,l
R,ij(p

2)=−mf,iδij+Σf,l
ij (p2)− 1

2
(
mf,iδZf ,L

ij +mf,jδZf ,R†
ij

)
−δijδmf,i, (3.32)

Γf,r
R,ij(p

2)=−mf,iδij+Σf,r
ij (p2)− 1

2
(
mf,iδZf ,R

ij +mf,jδZf ,L†
ij

)
−δijδmf,i, (3.33)

where δZ†
ij = δZ∗

ji. In combination with the renormalization conditions (3.21) and (3.22)
one finds the same form as in the SM [31, 34, 35],

δmf,i =
1
2Re

[
mf,i

(
Σf,L

ii (m2
f,i) + Σf,R

ii (m2
f,i)
)
+Σf,l

ii (m2
f,i) + Σf,r

ii (m2
f,i)
]
,

δZf,L
ii = − ReΣf,L

ii (m2
f,i)− mf,i

∂

∂p2 Re
[
mf,i

(
Σf,L

ii (p2) + Σf,R
ii (p2)

)
+Σf,l

ii (p2) + Σf,r
ii (p2)

]∣∣∣
p2=m2

f,i

,
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δZf,R
ii = − ReΣf,R

ii (m2
f,i)− mf,i

∂

∂p2 Re
[
mf,i

(
Σf,L

ii (p2) + Σf,R
ii (p2)

)
+Σf,l

ii (p2) + Σf,r
ii (p2)

]∣∣∣
p2=m2

f,i

,

δZf,R
ij = 2

m2
f,i − m2

f,j

Re
[
m2

f,jΣ
f,R
ij (m2

f,j) + mf,imf,jΣf,L
ij (m2

f,j) + mf,jΣf,l
ij (m2

f,j)

+ mf,iΣf,r
ij (m2

f,j)
]
, i ̸= j, (3.34)

for the mass and field renormalization constants of the fermion sector.

3.2.3 Renormalization of the mixing angle γ

For the renormalization of the mixing angle γ we follow the OS renormalization approach
that was introduced in ref. [43] for mixing angles in scalar sectors. To this end, we introduce
an extra “fake fermion” field ωd with appropriate infinitesimal couplings which, thus, does
not change any predictions for observables, but still can be used in the formulation of
renormalization conditions. The additional fermionic field ωd is a singlet under the gauge
group of the SM, but is charged under the additional U(1)d gauge group of the DASM. The
relative U(1)d charge of ωd is called q̃ω in the following. The respective Lagrangian for ωd
is given by

Lωd = ω̄d
(
i /Dd − mωd

)
ωd = ω̄d

[
i/∂ − ẽq̃ω

(
sγ /Z + cγ /Z

′)− mωd

]
ωd. (3.35)

The fake fermion ωd is non-chiral, so that we can attribute to it a Dirac mass term with
mass parameter mωd . Moreover, no anomalies are introduced to the theory because of the
non-chirality of ωd. The Feynman rules for the two new vertices introduced by Lωd are
given by

Zµ

ωd

ω̄d

= −iq̃ω ẽsγγµ, Z′
µ

ωd

ω̄d

= −iq̃ω ẽcγγµ. (3.36)

Obviously, the original theory is recovered by taking q̃ω → 0. Following ref. [43] we consider
OS formfactors FV ω̄dωd , (V = Z, Z ′), defined by the decay matrix elements

MZ→ω̄dωd = [ūωd/εvωd ]ZFZω̄dωd , MZ′→ω̄dωd = [ūωd/εvωd ]Z′FZ′ω̄dωd , (3.37)

where ūωd and vωd are the spinors of the final-state fermions, εµ denotes the polarization
vector of the respective gauge boson, and the [. . . ]Z/Z′ indicate the respective decay
kinematics. To fix δγ we demand that higher-order corrections to the ratio of the two
formfactors defined in eq. (3.37) vanish,

lim
q̃ω→0

FZω̄dωd

FZ′ω̄dωd

!= FZω̄dωd
LO

FZ′ω̄dωd
LO

= sγ

cγ
. (3.38)
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Using the OS renormalization scheme we find for the NLO-corrected formfactors FZ/Z′ω̄dωd

FZω̄dωd
NLO = FZω̄dωd

LO

(
1 + δẽ

ẽ
+ δsγ

sγ
+ δZωd + 1

2δZZZ + cγ

2sγ
δZZ′Z + δZω̄dωd

loop

)
,

FZ′ω̄dωd
NLO = FZ′ω̄dωd

LO

(
1 + δẽ

ẽ
+ δcγ

cγ
+ δZωd + 1

2δZZ′Z′ + sγ

2cγ
δZZZ′ + δZ′ω̄dωd

loop

)
, (3.39)

where δ
Z/Z′ω̄dωd
loop represent the unrenormalized relative 1-loop corrections to the Z/Z ′ω̄dωd

vertices and δZωd is the field renormalization constant of the non-chiral field ωd. At NLO
this leads to

FZω̄dωd
NLO

FZ′ω̄dωd
NLO

= FZω̄dωd
LO

FZ′ω̄dωd
LO

[
1 + δsγ

sγ
− δcγ

cγ
+ 1

2

(
δZZZ − δZZ′Z′ + cγ

sγ
δZZ′Z − sγ

cγ
δZZZ′

)

+ δZω̄dωd
loop − δZ′ω̄dωd

loop

]
. (3.40)

The 1-loop vertex corrections are induced by the diagrams

Zµ Z/Z′
ωd

ω̄d

Z′
µ Z/Z′

ωd

ω̄d

(3.41)

and thus the terms δ
Z/Z′ω̄dωd
loop are of O(q̃2

ω) for q̃ω → 0. Similarly we obtain δZωd = O
(
q̃2

ω

)
.

Evaluating the NLO renormalization condition (3.38) in the limit q̃ω → 0 and using
δsγ = cγδγ, thus, leads to

δγOS = 1
2sγcγ (δZZ′Z′ − δZZZ) +

1
2
(
s2

γδZZZ′ − c2
γδZZ′Z

)
. (3.42)

Note that the OS renormalization condition (3.38) has several of the desirable properties
that were discussed in refs. [43, 47]:

(i) The OS renormalization of γ is symmetric in the fields Z and Z ′ of the neutral gauge
bosons.

(ii) The renormalization constant of the mixing angle γ is given by a gauge-independent
combination of field renormalization constants.

(iii) The renormalization does not depend on a specific physical process.

(iv) δγOS is well behaved for exceptional values of γ, i.e. it has smooth limits for sγ → 0
and cγ → 0.

(v) Combining eq. (2.37) for the bare fields with eq. (3.2) and using the NLO expansion

RV(γ0; cw,0) = RV(γ, cw) + δRV(γ, cw, δγ, δcw), (3.43)
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we find to 1-loop accuracy
B′

µ

W 3
µ

C ′
µ

 = RV(γ, cw)
(
1 + RT

V(γ, cw)δRV(γ, cw, δγ, δcw) +
1
2δZV

)
Aµ

Zµ

Z ′
µ

 . (3.44)

This field redefinition leads to explicit δγ terms originating from γ in RV, i.e. from
δRV in eq. (3.43). Similar to the situation for scalar mixing (see ref. [43]) these explicit
δγ terms are always introduced via the combinations

−δγ + 1
2δZZZ′ , δγ + 1

2δZZ′Z . (3.45)

The dependence of (3.45) on δZZ′Z and δZZZ′ in the chosen OS renormalization (3.42)
is, in either case, given by the combination

δZZ′Z + δZZZ′ = 2Re
ΣZZ′

T (M2
Z)− ΣZ′Z

T (M2
Z′)

M2
Z′ − M2

Z
. (3.46)

This combination of renormalization constants is numerically stable for degenerate
masses, i.e. for MZ ≈ MZ′ . Further, all appearances of γ coming from rewriting the
original parameters of the Lagrangian in terms of the chosen input parameters include
a prefactor of M2

Z − M2
Z′ . This shows that no artifacts occur in the degeneracy limit

MZ′ → MZ, i.e. the OS scheme is perturbatively stable in this limit. In the OS scheme
all renormalization conditions for parameters related to masses and mixing are based
on S-matrix elements. Thus, even though δγOS itself depends on the tadpole scheme,
all predictions of observables made within this OS scheme are independent of the
chosen tadpole scheme.

As an alternative to the OS condition (3.38), the mixing angle γ could be renormalized with
an MS prescription. Using eq. (3.42), the MS version of δγ can be obtained according to

δγMS = δγOS
∣∣∣
UV

, (3.47)

where the subscript UV indicates that only the UV-divergent parts of δγOS that are
proportional to the standard UV divergence ∆UV, defined in eq. (C.1), are kept. The
explicit expression for δγMS in the PRTS is given in appendix C. We recall that even though
eq. (3.47) is true in any tadpole scheme, NLO predictions based on γMS are, in contrast
to predictions based on γOS, in general dependent on the tadpole renormalization scheme
(see section 3.2.1). The tadpole contributions to δγMS in the tadpole schemes described in
section 3.2.1 explicitly read

δγPRTS
MS,tad = 0, (3.48)

δγFJTS
MS,tad = −

(
cZZ′h∆vFJTS

h + cZZ′H∆vFJTS
H

)
M2

Z − M2
Z′

∣∣∣∣
UV

, (3.49)

δγGIVS
MS,tad = −

(
cZZ′h∆vGIVS

h + cZZ′H∆vGIVS
H

)
M2

Z − M2
Z′

∣∣∣∣
UV

, (3.50)
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with the shorthands

cZZ′h = −s2γ (cαv1 + sαv2)
M2

C
v1v2

, cZZ′H = s2γ (cαv2 − sαv1)
M2

C
v1v2

(3.51)

for the couplings cZZ′hhZ ′
µZµ + cZZ′HHZ ′

µZµ in the Lagrangian. In contrast to the FJTS,
in the PRTS and GIVS tadpole terms explicitly appear in the relations between the original
bare parameters λ1,0, λ2,0, λ12,0, µ2

1,0, µ2
2,0 of the Higgs potential and the bare masses, vevs,

and mixing angles. Thus, the latter depend on the tadpole scheme. The bare mixing angles
γPRTS

0 and γFJTS
0 are related via

γPRTS
0 = γFJTS

0 − 1
M2

Z − M2
Z′

(
cZZ′h

δtFJTS
h
M2

h
+ cZZ′H

δtFJTS
H
M2

H

)
. (3.52)

For the MS-renormalized mixing angle we find the (gauge-dependent) shift

γPRTS
MS − γFJTS

MS = γPRTS
0 − γFJTS

0 −
(
δγPRTS

MS − δγFJTS
MS

)
= 1

M2
Z − M2

Z′

(
cZZ′h

T h

M2
h
+ cZZ′H

T H

M2
H

)∣∣∣∣
finite

(3.53)

between the PRTS and the FJTS values, where the subscript “finite” indicates that all
UV-dependent parts proportional to ∆UV are dropped. Similarly, we find the (gauge-
independent) shift

γGIVS
MS − γFJTS

MS = 1
M2

Z − M2
Z′

(
cZZ′h

T h
nl

M2
h
+ cZZ′H

T H
nl

M2
H

)∣∣∣∣
finite

(3.54)

for the conversion between the GIVS and the FJTS.

3.2.4 Renormalization of the mixing angle α

Similar to our procedure for the renormalization of γ, we apply OS or alternatively MS
renormalization for the mixing angle α. Further possible schemes based on symmetry-
inspired conditions are described in refs. [43, 46, 48].

If the mass hierarchy Mh > 2mν4 holds (recall Mh ≤ MH), the OS renormalization
condition for the Higgs mixing angle α can be formulated for the OS formfactors of the
decays h/H → ν̄4ν4, defined by

Mh→ν̄4ν4 = [ūν4vν4 ]hFhν̄4ν4 , MH→ν̄4ν4 = [ūν4vν4 ]H FHν̄4ν4 , (3.55)

where again the fermion spinors of the final state are denoted by ūν4 and vν4 and the
decay kinematics are indicated by [. . . ]h/H . As renormalization condition we demand the
higher-order corrections to the ratio of the real parts of the two formfactors defined in
eq. (3.55) to vanish,5

ReFhν̄4ν4

ReFHν̄4ν4

!= Fhν̄4ν4
LO

FHν̄4ν4
LO

= −sα

cα
. (3.56)

5Since we choose an OS renormalization scheme, i.e. α to be real, the absorptive parts on the left side of
eq. (3.55) are not taken into account in the renormalization condition.
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At NLO the two formfactors are given by

Fhν̄4ν4
NLO = Fhν̄4ν4

LO

[
1 + δsα

sα
+ δsθr

sθr
+ δỹ

ỹ
− δv1

v1

+ 1
2

(
2δZν

44 + δZhh − cα

sα
δZHh + cθr

sθr
δZν,R

34

)
+ δhν̄4ν4

loop

]
,

FHν̄4ν4
NLO = FHν̄4ν4

LO

[
1 + δcα

cα
+ δsθr

sθr
+ δỹ

ỹ
− δv1

v1

+ 1
2

(
2δZν

44 + δZHH − sα

cα
δZhH + cθr

sθr
δZν,R

34

)
+ δHν̄4ν4

loop

]
, (3.57)

with δhν̄4ν4
loop and δHν̄4ν4

loop denoting the relative unrenormalized 1-loop corrections to the decays,
respectively, and

δZν
44 = 1

2
(
δZν,L

44 + δZν,R
44

)
. (3.58)

The ratio of the real parts of the two formfactors at NLO is given by

ReFhν̄4ν4
NLO

ReFHν̄4ν4
NLO

= − sα

cα

{
1 + δsα

sα
− δcα

cα
+ 1

2

[
δZhh − δZHH + sα

cα
δZhH − cα

sα
δZHh

]
+ Re

[
δhν̄4ν4

loop − δHν̄4ν4
loop

]}
. (3.59)

Using δsα = cαδα, the renormalization condition (3.56) then finally leads to

δαOS1 = 1
2cαsα (δZHH − δZhh) +

1
2
(
c2

αδZHh − s2
αδZhH

)
+ cαsαRe

[
δHν̄4ν4

loop − δhν̄4ν4
loop

]
,

(3.60)

where OS1 stands for the particular OS condition (3.56) based on the assumed mass hierarchy
Mh > 2mν4 . To relax this mass hierarchy, for mν3 ≪ Mh, MH, mν4 we can formulate an
OS renormalization condition based on the OS formfactors of the h/H → ν̄3ν4 decays or
ν̄4 → h/Hν̄3 depending on the mass hierarchy between h, H, and ν4.6 For Mh > mν4 , e.g.,
we have

Mh→ν̄3ν4 = [ūν4ωRvν3 ]hFhν̄4ν3 , MH→ν̄3ν4 = [ūν4ωRvν3 ]H FHν̄4ν3 , (3.61)

while for MH < mν4 we can write

Mν̄4→hν̄3 = [v̄ν4ωRvν3 ]hFhν̄4ν3 , Mν̄4→Hν̄3 = [v̄ν4ωRvν3 ]H FHν̄4ν3 , (3.62)

with the same formfactors7 FSν̄4ν3 and ωR = 1
2(1 + γ5) denoting the right-handed chiral

projection operator. Here the spinors of the final-state particles are denoted by ūν4 , vν3 and
6In the “collider approximation” for the neutrino sector outlined in section 2.4.2, where mν1 = mν2 =

mν3 = 0, the state ν3, which is specifically aligned to couple to the dark sector maximally, corresponds to a
mass eigenstate, so that OS renormalization conditions can make use of ν3 directly. For non-vanishing neutrino
masses mνj (j = 1, 2, 3), the renormalization of the full neutrino sector becomes way more complicated, an
issue that is, however, not relevant for collider physics and, thus, beyond the scope of this paper.

7Note that in our notation the labels of the formfactors always denote incoming fields.

– 29 –



J
H
E
P
0
1
(
2
0
2
4
)
0
3
7

v̄ν4 , vν3 , respectively, and the decay kinematics are indicated by [. . . ]h/H . As renormalization
condition we now demand the higher-order corrections to the ratio of the real parts of these
two formfactors to vanish,

ReFhν̄4ν3

ReFHν̄4ν3

!= Fhν̄4ν3
LO

FHν̄4ν3
LO

= −sα

cα
. (3.63)

The renormalized NLO formfactors are given by

Fhν̄4ν3
NLO = Fhν̄4ν3

LO

[
1 + δsα

sα
+ δcθr

cθr
+ δỹ

ỹ
− δv1

v1

+ 1
2

(
δZν,R

33 + δZν,L
44 + δZhh − cα

sα
δZHh + sθr

cθr
δZν,R

43

)
+ δhν̄4ν3

loop

]
,

FHν̄4ν3
NLO = FHν̄4ν3

LO

[
1 + δcα

cα
+ δcθr

cθr
+ δỹ

ỹ
− δv1

v1

+ 1
2

(
δZν,L

44 + δZν,R
33 + δZHH − sα

cα
δZhH + sθr

cθR

δZν,R
43

)
+ δHν̄4ν3

loop

]
, (3.64)

where the δ
h/Hν̄4ν3
loop again represent the unrenormalized 1-loop corrections to the respective

decays. Inserting this into the renormalization condition (3.63) leads to

δαOS2 = 1
2cαsα (δZHH − δZhh) +

1
2
(
c2

αδZHh − s2
αδZhH

)
+ cαsαRe

[
δHν̄4ν3

loop − δhν̄4ν3
loop

]
(3.65)

for the renormalization constant of the Higgs mixing angle.
The renormalization conditions (3.56) and (3.63) have various desirable features. Firstly,

they are symmetric in the fields h and H . Secondly, the OS renormalization constants δαOSi

(i = 1, 2) are gauge independent and numerically stable for degenerated masses Mh ∼ MH
and have smooth limits for sα → 0 and cα → 0. In contrast to the OS renormalization of
the Higgs mixing angle α of the SM extension by a real Higgs field considered in ref. [43] or
an MS renormalization of the DASM, the OS renormalization of α in the DASM is process
dependent. This is reflected by the remaining non-vanishing higher-order contributions
δ

hν̄4νj

loop and δ
Hν̄4νj

loop , j = 3, 4, in eqs. (3.60) and (3.63), respectively, and due to the fact that
the complex Higgs field ρ of the DASM cannot be coupled to fully gauge-invariant fake
fermion fields since ρ is not a singlet under the U(1)d gauge group.

As an alternative to OS conditions, the angle α could be renormalized via an MS
prescription. The resulting renormalization constant in the MS scheme can be obtained
from (3.60) or (3.65) via

δαMS = δαOS1
∣∣∣
UV

= δαOS2
∣∣∣
UV

. (3.66)

The explicit expression for δαMS in the PRTS, which does not depend on any mass hierarchy
of the Higgs bosons, is given in appendix C. Note that even though eq. (3.66) is true in
any tadpole scheme, the NLO predictions based on the OS renormalization of α are, in
contrast to NLO predictions based on MS renormalization, not dependent on the tadpole
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scheme (see section 3.2.1). The tadpole contributions to δαMS in the three described tadpole
schemes explicitly read

δαPRTS
MS,tad = 0, (3.67)

δαFJTS
MS,tad = −2chhH∆vFJTS

h + chHH∆vFJTS
H

M2
H − M2

h

∣∣∣∣
UV

, (3.68)

δαGIVS
MS,tad = −2chhH∆vGIVS

h + chHH∆vGIVS
H

M2
H − M2

h

∣∣∣∣
UV

, (3.69)

where chhH and cHHh are the scalar coupling constants given in eq. (2.18) of ref. [36]. As
described in section 3.2.3, tadpole terms explicitly appear in the relations between the
original bare parameters of the Higgs potential and mixing angles. The bare mixing angles
αPRTS

0 and αFJTS
0 are related via

αPRTS
0 = αFJTS

0 − 2
M2

H − M2
h

(
chhH

δtFJTS
h

M2
h

+ chHH
δtFJTS

H

M2
H

)
. (3.70)

For the MS-renormalized mixing angle we find the (gauge-dependent) shift

αPRTS
MS − αFJTS

MS = αPRTS
0 − αFJTS

0 −
(
δαPRTS

MS − δαFJTS
MS

)
= 2

M2
H − M2

h

(
chhH

T h

M2
h
+ chHH

T H

M2
H

)∣∣∣∣∣
finite

(3.71)

between the respective PRTS and the FJTS values. Similarly, we find the (gauge-
independent) shift

αGIVS
MS − αFJTS

MS = 2
M2

H − M2
h

(
chhH

T h
nl

M2
h
+ chHH

T H
nl

M2
H

)∣∣∣∣∣
finite

(3.72)

for the conversion between the GIVS and the FJTS.

3.2.5 Renormalization of the mixing angle θr

For the renormalization of the mixing angle θr in the neutrino sector we consider OS
formfactors for appropriate decays. By default, we assume MH > 2mν4 for the decays
H → ν̄4ν4/ν̄3ν4 to be possible. For MH < 2mν4 we sketch an alternative OS renormalization
condition for θr at the end of this section. The amplitudes for H → ν̄4ν4 and H → ν̄3ν4 read

MH→ν̄4ν4 = [ūν4vν4 ]HFHν̄4ν4 , MH→ν̄3ν4 = [ūν4ωRvν3 ]HFHν̄4ν3 , (3.73)

with the spinors ūν4 and vj , j = ν3, ν4, of the final-state fermions, the right-handed chiral
projection operator ωR = 1

2(1 + γ5) and [. . . ]H denoting the decay kinematics. To fix δθr
we demand that the higher-order corrections to the ratio of the LO formfactors FHν̄4ν4

LO and
FHν̄4ν3

LO vanish up to absorptive parts,

ReFHν̄4ν4

ReFHν̄4ν3

!= FHν̄4ν4
LO

FHν̄4ν3
LO

= sθr

cθr
. (3.74)
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Combining eqs. (3.57) and (3.64) one finds

ReFHν̄4ν4
NLO

ReFHν̄4ν3
NLO

= sθr

cθr

{
1 + δsθr

sθr
− δcθr

cθr
+ 1

2

[
δZν,R

44 − δZν,R
33 + cθr

sθr
δZν,R

34 − sθr

cθr
δZν,R

43

]
+ Re

[
δHν̄4ν4

loop − δHν̄4ν3
loop

]}
(3.75)

for the ratio of the real parts of the two formfactors at NLO. Using eq. (3.74) and
δsθr = cθrδθr, we finally find

δθH
r,OS = 1

2cθrsθr

(
δZν,R

33 − δZν,R
44

)
+ 1

2
(
s2

θrδZν,R
43 − c2

θrδZν,R
34

)
+ cθrsθrRe

[
δHν̄4ν3

loop − δHν̄4ν4
loop

]
.

(3.76)

As an alternative for MH < 2mν4 , one can formulate an OS renormalization condition using
the OS formfactors FZ′ν̄R

3 νR
3 and FZ′ν̄4ν3

1 (defined below) of the Z′ → ν̄R
3 νR

3 and Z′ → ν̄3ν4
decays, respectively. Further, in the case MZ′ < mν4 one can simply switch from Z ′ → ν̄3ν4
to the ν4 → Z′ν3 decay for the formulation of the renormalization condition to cover the
whole parameter space. This will not affect the formal result for the renormalization
constant δθZ′

r,OS (see eq. (3.80)). The amplitudes are given by

MZ′→ν̄R
3 νR

3 = [ūν3/εωRvν3 ]Z′FZ′ν̄R
3 νR

3 , (3.77)

MZ′→ν̄3ν4 = [ūν4/εωRvν3 ]Z′FZ′ν̄4ν3
1 + [ūν4ωRvν3 ]Z′

(
εµpµ

ν3

)
FZ′ν̄4ν3

2 , (3.78)

with the spinors ūνj , j = 3, 4, and vν3 of the final-state fermions, the polarization vector εµ

of the Z′ boson, and the right-handed chirality projector ωR = 1
2(1 + γ5). The momentum

of the neutrino ν3 is given by pν3 , and [. . . ]Z′ denotes the decay kinematics. Note that the
additional formfactor FZ′ν̄4ν3

2 for the Z′ → ν̄3ν4 decay is loop induced, i.e. zero at LO. Due
to the unique decomposition of the matrix element into different covariants spanning the
underlying Z′-truncated Greens function, it is still possible to formulate the renormalization
conditions by only using FZ′ν̄4ν3

1 .
The OS renormalization condition at NLO then reads

ReFZ′ν̄R
3 νR

3
NLO

ReFZ′ν̄4ν3
1,NLO

!= FZ′ν̄R
3 νR

3
LO

FZ′ν̄4ν3
1,LO

= −sθr

cθr
. (3.79)

Following the steps presented above for δθH
r,OS one finds

δθZ′

r,OS = 1
2sθrcθr

(
δZν,R

44 − δZν,R
33

)
+ 1

2
(
c2

θrδZν,R
43 − s2

θrδZν,R
34

)
+ sθrcθrRe

[
δZ′ν4ν3

loop − δZ′ν3ν3
loop

]
(3.80)

at NLO. Here δZ′νiν3
loop , i = 3, 4, represent the unrenormalized, relative 1-loop corrections to

the respective decays.
Both presented OS renormalization conditions (3.74) and (3.79) lead to gauge-independent

renormalization constants δθ
H/Z′

r,OS , which are well behaved for exceptional values of θr. As
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already pointed out for the renormalization of the Higgs mixing angle α in the previous
section, NLO predictions based on θr,OS in an OS scheme are independent of the chosen
tadpole scheme, but a process dependence is introduced in δθ

H/Z′

r,OS via the explicit loop
corrections appearing in (3.76) and (3.80), respectively. Further, (3.76) requires the mass
hierarchy MH > 2mν4 in the DASM.

As an alternative to OS renormalization, the angle θr can be renormalized in the MS
scheme. The MS version of δθr can be obtained via

δθr,MS = δθH
r,OS

∣∣∣
UV

= δθZ′

r,OS

∣∣∣
UV

. (3.81)

Again, this relation is true in any tadpole scheme, but NLO predictions based on θr,MS are, in
general, dependent on the tadpole renormalization scheme (see section 3.2.1). The resulting
explicit expression for δθr,MS in the PRTS can be found in appendix C; note that it does not
depend on any hierarchy of masses of the Higgs bosons, Z′, or the neutrinos. The tadpole
contributions to δθr,MS in the tadpole schemes described in section 3.2.1 explicitly read

δθPRTS
r,MS,tad = 0, (3.82)

δθFJTS
r,MS,tad = 1

mν4

(
chν̄4ν3∆vFJTS

h + cHν̄4ν3∆vFJTS
H

)∣∣∣
UV

, (3.83)

δθGIVS
r,MS,tad = 1

mν4

(
chν̄4ν3∆vGIVS

h + cHν̄4ν3∆vGIVS
H

)∣∣∣
UV

, (3.84)

where we have introduced the shorthands

chν̄4ν3 = 1
v1

sαsθrcθrmν4 , cHν̄4ν3 = − 1
v1

cαsθrcθrmν4 , (3.85)

for the couplings chν̄4ν3hν̄4ν3 + cHν̄4ν3Hν̄4ν3 in the Lagrangian. As described in the previous
sections tadpole terms explicitly appear in the relations between the original bare parameters
of the Higgs potential and θr,0. The bare mixing angles θPRTS

r,0 and θFJTS
r,0 are related via

θPRTS
r,0 = θFJTS

r,0 + 1
mν4

(
chν̄4ν3

δtFJTS
h

M2
h

+ cHν̄4ν3
δtFJTS

H

M2
H

)
. (3.86)

Thus, for the MS-renormalized mixing angle we find the (gauge-dependent) shift

θPRTS
r,MS − θFJTS

r,MS = θPRTS
r,0 − θFJTS

r,0 −
(
δθPRTS

r,MS − δθFJTS
r,MS

)
= − 1

mν4

(
chν̄4ν3

T h

M2
h
+ cHν̄4ν3

T H

M2
H

)∣∣∣∣∣
finite

(3.87)

between the respective PRTS and the FJTS values. Similarly, we find the (gauge-
independent) shift

θGIVS
r,MS − θFJTS

r,MS = − 1
mν4

(
chν̄4ν3

T h
nl

M2
h
+ cHν̄4ν3

T H
nl

M2
H

)∣∣∣∣∣
finite

(3.88)

for the conversion between the GIVS and the FJTS.
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3.2.6 Charge renormalization

The electric unit charge e is defined as the coupling constant of the fermion-photon
interaction with on-shell fermions in the Thomson limit, i.e. in the limit of vanishing photon
momentum transfer. In the following, we make use of the results of ref. [49], where the
charge renormalization of the SM was generalized to SM extensions with gauge groups that
contain an explicit U(1) factor similar to the broken weak hypercharge symmetry of the
SM. While the treatment of charge renormalization in ref. [49] is even valid to all orders,
here we only consider NLO accuracy as throughout this paper.

We briefly sketch the arguments of ref. [49] for the derivation of the electric charge
renormalization constant within the DASM in our notation. The derivation is based
on charge universality. Charge universality states that in the Thomson limit higher-
order corrections to the coupling strength of the photon to any charged particle do not
depend on any specific properties of the charged particle besides its charge, i.e. the charge
renormalization constant does not depend on the specific charged particle (typically taken as
fermion) used to derive it. Charge universality can, e.g., be proven with the background-field
method (see e.g. refs. [34, 49–51]), where the all-order renormalization of electric charge
widely works as in pure QED. Exploiting charge universality we introduce a second “fake
fermion” field8 κ which only carries infinitesimal weak hypercharge, Yw,κ, but no other
quantum numbers, leading to the infinitesimal electric charge Qκ = Yw,κ/2. The most
general gauge-invariant Lagrangian including the new fermion field that has to be added to
the Lagrangian of the DASM is given by

Lκ = κ̄

(
i/∂ − Yw,κ

2 g1 /B − mκ

)
κ

= κ̄

{
i/∂ − eQκ

[
/A + 1

cw

(
(swcγ − ηsγ) /Z − (swsγ + ηcγ) /Z

′)]− mκ

}
κ. (3.89)

The non-chirality of the fermion κ allows for a Dirac mass term with mass parameter mκ

and ensures that no anomalies are introduced into the theory. Further, taking the limit
Qκ → 0 will decouple the introduced fake fermion field κ from any other particles so that
the DASM is recovered. Charge universality now implies that one can use this fake fermion
to restore the desired physical meaning of the electric charge in higher orders by demanding
all relative higher-order corrections to the Aκ̄κ vertex to vanish in the Thomson limit.
Therefore, the imposed renormalization condition for the renormalized Aκ̄κ vertex function
is given by

ū(p)ΓAκ̄κ
R,µ (0,−p, p)u(p)

∣∣∣∣∣
p2=m2

κ

= −Qκeū(p)γµu(p), (3.90)

where mκ denotes the renormalized on-shell mass of the fake fermion. At the 1-loop level,
the renormalized vertex function is given by

ΓAκ̄κ
R,µ (k, p̄, p) =

(
1 + 1

2δZAA + δZκ + δZe

)
ΓAκ̄κ

LO,µ(k, p̄, p) + QκΛAκ̄κ
µ (k, p̄, p)

+ 1
2δZZAΓZκ̄κ

LO,µ(k, p̄, p) + 1
2δZZ′AΓZ′κ̄κ

LO,µ(k, p̄, p), (3.91)

8Note that this “fake fermion” field is equivalent to the field η in ref. [49]. We have renamed it here to
avoid confusion with the parameter η introduced in section 2.2.
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Figure 1. The Feynman diagrams representing muon decay in the DASM (left) and the Fermi
theory (right) at LO.

with the LO vertex functions

ΓAκ̄κ
LO,µ(k, p̄, p) = − Qκeγµ, (3.92)

ΓZκ̄κ
LO,µ(k, p̄, p) = − Qκ

e

cw
(swcγ − ηsγ) , (3.93)

ΓZ′κ̄κ
LO,µ(k, p̄, p) = Qκ

e

cw
(swsγ + ηcγ) , (3.94)

and the unrenormalized vertex corrections ΛAκ̄κ
µ (k, p̄, p). A crucial point in the derivation is

that all possible couplings of the fake fermion to particles within the DASM are proportional
to Qκ which implies

δZκ = O
(
Q2

κ

)
, ΛAκ̄κ

µ (k, p̄, p) = O
(
Q2

κ

)
. (3.95)

Taking the limit Qκ → 0 and keeping only terms linear in Qκ, eq. (3.90) implies

0 =
[
δZe +

1
2δZAA + 1

2cw

{
(swcγ − ηsγ) δZZA − (swsγ + ηcγ) δZZ′A

}]
ū(p)γµu(p),

(3.96)

leading directly to

δZe = −1
2

[
δZAA + swcγ − ηsγ

cw
δZZA − swsγ + ηcγ

cw
δZZ′A

]
. (3.97)

In agreement with charge universality, δZe is independent of the fermion κ used for the
formulation of the renormalization condition and is, similarly to the SM, given by a pure
combination of gauge-boson self-energies. Obviously, the well-known NLO SM result for
the electric charge renormalization constant is obtained by taking the SM limit γ → 0.9

4 Prediction for the W-boson mass from muon decay

In this section we give a first confrontation of the DASM with a high-precision measurement
by investigating the W-boson mass prediction based on muon decay in the OS scheme
introduced above. The relevant LO Feynman diagrams in the DASM (left) and in the Fermi
theory (right) are shown in figure 1. Neglecting terms of order O

(
m2

µ

M2
W

)
, the comparison

between the respective amplitudes leads to the well-known LO relation

GF = αemπ√
2s2

wM2
W

+ . . . , (4.1)

9Note that γ → 0 simultaneously induces η → 0 (see eq. (2.47)).
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µ− νµ

W Z/Z′

e− ν̄e

µ− νµ

Z/Z′ W

e− ν̄e

µ− νµ
W Z/Z′

e− ν̄e

µ− νµ
Z/Z′ W

e− ν̄e

Figure 2. Box diagrams with Z, Z′, and W exchange contributing to muon decay at NLO in
the DASM.

with the electromagnetic coupling constant αem = e2

4π , connecting MW to the precisely
measured Fermi constant GF. Note that even though this looks similar to the relation valid
in the SM, the dependence of sw on the gauge-boson masses differs from the corresponding
SM relation according to eq. (2.47) and thus, the relation between GF and MW in the
DASM differs already at LO from the respective SM relation.

Higher-order corrections to muon decay are usually quantified in terms of the constant
∆r [52]. The generalization of eq. (4.1) to NLO reads

GF = αemπ√
2s2

wM2
W

(1 + ∆r)

= αemπ√
2s2

wM2
W

(
1 + 2δZe −

δs2
w

s2
w

− δM2
W

M2
W

+ ΣW W
T (0)
M2

W
+ δvertex+box

)
, (4.2)

where

δvertex+box = δvertex + δmassive
box + δγW

box (4.3)

contains the relative NLO vertex corrections to the Wµν̄µ and Wνee+ vertices denoted by
δvertex, corrections originating from box diagrams of the muon decay in the DASM as well
as the NLO QED corrections of the Fermi theory, and the bremsstrahlung corrections in
the two theories.

All diagrams needed for the predictions of ∆r in the DASM were generated using
FeynArts [53] and further evaluated using FormCalc [54] and LoopTools [54]. To
have an additional cross-check on the DASM implementation we have constructed two
completely independent FeynArts model files.

The QED parts in the DASM and the SM are identical. Thus, similar to the SM, for
me, mµ ≪ MW the QED contributions originating from bremsstrahlung and virtual photon
exchange between initial- and final-state leptons in the DASM and the Fermi model lead
to [55]

δγW
box = αem

4π

(
log MW

me
+ log MW

mµ
− 2 log me

λ
− 2 log mµ

λ
+ 9

2

)
, (4.4)

where the photon mass λ is used for infrared regularization. The box diagrams induced by
contributions from massive gauge-boson exchange between initial- and final-state particles
in the DASM are shown in figure 2. They yield the corrections
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δmassive
box = αemM2

W
8πc2

ws2
w

 log M2
Z

M2
W

M2
Z − M2

W

(
c2

γ

(
5− 10s2

w + 2s4
w

)
+ 6s3

wηcγsγ − 3s2
wη2s2

γ

)

+
log M2

Z′
M2

W

M2
Z′ − M2

W

(
s2

γ

(
5− 10s2

w + 2s4
w

)
− 6s3

wηcγsγ − 3s2
wη2c2

γ

)  . (4.5)

Combining δmassive
box with (4.4) and the vertex corrections one finally finds

δvertex+box =
αem

16πs2
w

 16
(
∆UV−log M2

W
µ2

)
+24− 1

c2
w

∑
V =Z,Z′

 σV log M2
V

M2
W(

M2
V −M2

W
)

×
(
σV [3M2

W[s2
w(2+η2)−1]+10c4

wM2
V ]+c2γ(3M2

W[1+s2
w(η2−2)]

−10c4
wM2

V )+6ηs2γs3
wM2

W
)   , σZ/Z′ =∓1, (4.6)

where ∆UV is the standard 1-loop UV divergence defined in (C.1) and µ2 denotes the
reference scale of dimensional regularization. There is a strong dependence of ∆r on
the light fermion masses entering through the charge renormalization constant δZe. The
dependence on the light-quark masses results from the non-perturbative effect of the
photonic vacuum polarization at low energies induced by hadronic resonances. To ab-
sorb this non-perturbative contribution to the MW prediction into the input parameters,
the running electromagnetic coupling αem

(
M2

Z
)

is used instead of the fine-structure con-
stant αem(0). Further, the leading SM terms of the top-quark mass dependence, origi-
nating from the correction ∆ρ to the ρ-parameter, can be resummed up to O

(
α2

em
)

to
further reduce the theoretical uncertainty. This can be summarized by the following
replacements [37, 38, 56–58]:

αem → αem(M2
Z) =

αem(0)
1−∆αem

, s2
w → s̄2

w = s2
w + c2

w∆ρ, ∆r → ∆rrem, (4.7)

with

∆αem = ∆α
(5)
had +∆αlep =

∂ΣAA
f ̸=t(k2)
∂k2

∣∣∣∣
k2=0

−
ΣAA

f ̸=t(k2)
k2

∣∣∣∣
k2=M2

Z

, (4.8)

c2
w

s2
w
∆ρ = 3αemm2

t M2
Z

16π
(
M2

W,1 − M2
Z
)2

+
3αems2

γm2
t
[
M2

Z′
(
M2

W,1 + M2
Z
)
− M2

Z
(
M2

W,1 + 2M2
W,2 + M2

Z
)]

16π
(
M2

W,1 − M2
Z
)3 +O(s3

γ), (4.9)

∆r = ∆αem − c2
w

s2
w
∆ρ +∆rrem, (4.10)

where ∆αlep and ∆α
(5)
had summarize the terms with lepton- and light-quark (all other than

the top-quark) mass logarithms introduced by δZe. The leading top-quark mass dependence
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of ∆r up to O
(
s2

γ

)
is absorbed into ∆ρ. The decomposition10

M2
W = M2

W,1 + M2
W,2s2

γ +O(s4
γ), (4.11)

was introduced to keep the expression compact. At NLO, eq. (4.2) is then modified to

GF = αem(M2
Z)π√

2s̄2
wM2

W
(1 + ∆rrem) . (4.12)

The DASM admits two SM limits

1. γ → 0, α → 0, λ12 → 0,

2. MZ′ → MZ, α → 0, λ12 → 0, (4.13)

leading to a complete decoupling of the dark sector from the SM at NLO.11 Therefore, the
DASM can provide at least the same level of agreement between theory predictions and
measurements as the SM for any precision observable (PO). Equation (4.12) can now be
used to obtain the desired prediction for MW at NLO. Therefore, we first eliminate MW in
the radiative corrections ∆rrem and ∆ρ in favour of GF using the LO relation (4.1) and
finally solve eq. (4.12) for MW after expressing sw in terms of MW, MZ, MZ′ , and γ via
eq. (2.47). Assuming the effects of the BSM sectors on the SM predictions to be small, as
clearly favoured by experimental data, we will take the best SM predictions of MSM

W [59]
and add the difference between the NLO DASM and SM predictions according to

MDASM
W = MSM

W +∆MW, ∆MW = MDASM
W,NLO − MSM

W,NLO, (4.14)

where the best SM prediction is given by MSM
W = 80.3536GeV [59], to obtain the best

predictions within the DASM, which includes SM corrections beyond NLO. For the explicit
values of the SM-like input parameters we closely follow ref. [5] and take

αem(0) = 1
137.035999180 , GF = 1.1663788 · 10−5 GeV−2,

∆α
(5)
had = 0.02768, αs(M2

Z) = 0.1179,

∆αlep = 0.0314977, MZ = 91.1876GeV,

Mh = 125.25GeV, me = 0.51099895 · 10−3 GeV,

mµ = 0.1056583755GeV, mτ = 1.77686GeV,

mu = 0.1GeV, md = 0.1GeV,

ms = 0.1GeV, mc = 1.27GeV,

mb = 4.18GeV, mt = 172.5GeV. (4.15)

10The corresponding expression for MW is obtained from solving eq. (4.1) for the W-boson mass.
11This statement holds as long as the masses mνi , i = 1, 2, 3, of the SM-like neutrinos are negligible.

Taking into account neutrino mass effects, SM limits would require a decoupling of f ′
d from the other three

neutrinos. Further, we assume MDASM
h = MSM

h here. For MDASM
H = MSM

h , the decoupling limits are given
by (4.13) with α → π/2.
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Figure 3. Predictions for MW in the DASM for various combinations of γ and MZ′ . The
best SM prediction is given by MSM

W = 80.3536GeV [59], and the measured world average
is M exp

W = 80.377± 0.012GeV [5]. For completeness we show the result of the CDF experiment
M exp

W,CDF = 80.4335± 0.0094GeV [4], which is not included in the world average value quoted above.
The parameters of the fermion and Higgs sectors are set to the benchmark values given in eqs. (4.16)
and (4.17), respectively.

Note that the values for ∆αlep [60] and αs(M2
Z) are only used in the determination of

the best SM value MSM
W . Further, we use αem(M2

Z) throughout the whole calculation and
αem(0) is only needed for the determination of αem(M2

Z). Owing to the use of αem(M2
Z),

the light-fermion masses hardly play a role. In our calculation we assume MH > Mh and
identify the h boson with the SM-like Higgs boson, i.e. MDASM

h = MSM
h .

In eq. (4.2) the newly introduced parameters from the fermion sector mν4 and θr only
enter via δs2

w and are of order O
(
s2

γ

)
. Therefore, we find their influence to be negligible

for the shown predictions for MW and choose the benchmark scenario

mν4 = 10GeV, θr = 0.2. (4.16)

Figure 3 shows the dependence of the DASM predictions for MW as a function of the mixing
angle γ for various Z′ masses MZ′ . Due to the appearance of renormalization constants
in eq. (4.12) all additional parameters of the theory implicitly appear in the prediction
of MW. However, the prediction for MW is most sensitive to γ and MZ′ , because these
parameters already enter the LO prediction for MW via sw. The additional parameters
introduced in the Higgs sector lead to a small shift of the W-boson mass prediction towards
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MZ′ [ GeV] 40 50 100 300 600 1000
|γ|/10−2 – – 4.06− 6.10 0.59− 0.88 0.28− 0.43 0.17− 0.26

|γ|CDF/10−2 – – 8.22− 9.16 1.19− 1.32 0.58− 0.64 0.35− 0.38

Table 1. The intervals of the values of |γ| for several exemplary values of MZ′ that show agreement
between the theoretical prediction of MW and the 1σ uncertainty band of the measurements in
the benchmark scenarios (4.16) and (4.17) for the fermion and Higgs sector, respectively. Here we
distinguish between the values |γ| that lead to agreement with the experimental world average M exp

W
and the values |γ|CDF that lead to agreement with the measured value of the CDF collaboration
M exp

W,CDF.

smaller values for MH > Mh. This shift manifests itself in the results shown in figure 3 as
the deviation from the SM result (black dashed line) at γ = 0. To further illustrate the
effects of the Higgs sector extension we give more results for various values of MH, α, and
λ12 in figure 4. As expected, the dependence of the prediction on the parameters from the
Higgs sector extension compared to the MZ′ and γ dependence, already present at LO, is
small. Therefore, we choose the benchmark scenario

MH = 2000GeV, α = 0.2, λ12 = 0.2, (4.17)

for the further investigation of the influence of the gauge-sector extension on the W-boson
mass prediction in the DASM. Figure 3 shows that for MZ′ > MZ the DASM prediction
for MW rises and intersects the 1σ uncertainty bands for various combinations of MZ′

and γ. The larger the difference between the Z- and the Z′-boson masses the steeper this
rise becomes. For MZ′ < MZ the predicted values for MW decreases in the DASM, so
that the DASM shows in these regions of the parameter space a worse compatibility with
measurements than the SM. As a first rough estimate for the parameter regions of the
DASM that can explain the measured value of MW we give the intervals for the γ values
where the theory predictions intersect with the 1σ uncertainty band of the measured values
in table 1. Generally the confrontation of the DASM with a measured value of MW only
constrains |γ|, and the sign of γ has to be determined by including additional observables
in a fit of the DASM to data. To estimate the uncertainty of the predicted ∆MW in the OS
scheme (see eq. (4.14)) coming from BSM effects in the missing higher-order contributions
we proceed in two different ways. For a global estimate, we take typical values for the
two-loop correction in the SM, which are of the order of ∼ 40MeV (see ref. [59]) and
correct them by the typical scaling behaviour of the corresponding BSM contributions to
the amplitudes introduced in the DASM (e.g. s2

α, s2
γ) leading to a rough estimate for the

∆MW uncertainty of 1MeV. To further confirm this, we assess the renormalization scheme
uncertainty by evaluating MW with γ renormalized in the MS scheme, i.e. we assess the
corresponding renormalization scheme dependence of the NLO prediction in the BSM sector.
After proper scheme conversion of γ, the predicted value for MW changes by less than
1MeV when switching the renormalization scheme for γ from the OS to the MS scheme
(with µ = MZ) in the benchmark scenarios shown in figure 3. We will further elaborate on
this in a future publication, where we will investigate the phenomenology of the DASM in
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Figure 4. The dependence of the DASM prediction for MW on MH (top), α (middle), and λ12
(bottom). The red line represents the prediction for a decoupled scalar sector extension. For the blue
lines all parameters that are not specified in the plots are set to their values according to eqs. (4.16)
and (4.17).
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greater detail. Thus, mainly due to the small values of γ, the uncertainty resulting from
the BSM sector of the DASM is suppressed with respect to the uncertainty from the SM
sector, i.e. the dominant theoretical uncertainty in the MW prediction originates from the
SM prediction MSM

W , estimated to be about 4MeV [59]. To account for missing higher-order
corrections of the BSM sector, we add an additional uncertainty of ∼ 1MeV.

5 Conclusions

In the absence of any spectacular direct signal of physics beyond the SM, “discovery via
precision” seems to be the potential path to BSM physics, so that the need for precise
theoretical predictions is greater than ever, not only in the SM but also for BSM physics. In
order to achieve these highly accurate predictions, higher-order corrections, at least to NLO,
need to be taken into account. Moreover, to parameterize the theory by an intuitive and
phenomenologically sound set of input parameters, a judicious choice of the renormalization
scheme is important in the SM and its extensions. While the renormalization of the SM is
well understood since about 30 years, most of the extensions of scalar, gauge-boson, and/or
fermion sectors introduce further subtleties in the renormalization procedure, especially by
introducing mixing angles.

In this work we have given a full theoretical setup of the DASM in Rξ gauge and defined
a particularly intuitive and experimentally easy accessible set of input parameters. The
DASM extends the SM by a widely generic dark abelian sector containing a spontaneously
broken U(1)d gauge group. This U(1)d gauge group is broken by a Higgs field that carries
only dark charge and, thus, is a singlet under the SM gauge group. Further, introducing
right-handed SM-like neutrinos as well as a fermion to the dark sector allows for three
portals from the SM to this possible dark sector. The influence of these portal terms should
be quite generic, so that the DASM provides a quite generic extension of the SM to study
the sensitivity of EW precision data to a broad range of BSM models.

The DASM inherits mixing of fields in the scalar, fermion, and gauge sectors, giving
rise to mixing angles in each of the three sectors mentioned above. We have performed a
full renormalization of the model at NLO and derived explicit results for renormalization
constants in OS and MS renormalization schemes. The proposed OS renormalization
schemes for mixing angles have several desirable properties:

• All renormalization conditions (besides the one for the scalar self-coupling λ12) are
based on S-matrix elements. Thus, all NLO predictions based on these OS parameters
are gauge independent.

• The complete OS renormalization of all parameters related to masses leads to a
systematic cancellation between tadpole corrections in mass counterterms and self-
energies in the calculation of predictions for observables, making the presented OS
prescription independent of the chosen tadpole scheme.

• The proposed OS renormalization conditions render predictions for observables pertur-
batively stable for degenerate masses of the particles involved in the mixing process,
respectively.
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• All mixing-angle renormalization constants have smooth limits for exceptional values
of the respective mixing angles.

On the other hand, MS renormalization schemes have the benefit of being very simplistic
and symmetric in the fields that mix. Further, the variation of the renormalization scale
offers a simple way to estimate the perturbative stability of predictions. Nevertheless,
MS renormalization of mixing angles suffers from severe downsides, such as issues with
perturbative stability in certain parameter regions, for instance for degenerate masses of the
particles corresponding to the mixing fields or for extreme values of the respective mixing
angles. In addition, MS renormalization schemes for mixing angles are prone to introduce
gauge dependences in the parameterization of predictions for observables. Having both OS
and MS renormalization prescriptions available is an ideal situation to asses perturbative
uncertainties from missing higher-order corrections by studying renormalization scale and
scheme uncertainties. The formulation of the renormalization done in this work may serve
as a proposal for the renormalization of models including mixing angles, e.g., due to kinetic
mixing in the gauge-boson sector or similar phenomena.

As a first application of our OS scheme we have presented NLO predictions for MW in
the DASM. Assuming the influence of new physics on the prediction of MW to be small,
we include state-of-the-art corrections in the SM limit to further improve the precision of
our prediction. We find a large part of the parameter space of the DASM that is capable of
describing the experimental results better than the SM does. The DASM prediction for
MW is independent of the sign of γ and large Z′ masses MZ′ > MZ are preferred for all
values of γ. For several values of MZ′ and γ the full region between the experimental world
average M exp

W and the measured value of the CDF collaboration M exp
W,CDF can be covered by

the DASM prediction. For MZ < MZ′ < 1TeV, |γ| ranges from ∼ 10−1 to ∼ 10−3, where
M exp

W,CDF needs larger |γ| than M exp
W . Thus, the DASM, as generic extension of the SM,

remains a promising candidate for the search of possible BSM physics.
With the complete NLO setup for the DASM provided in this work the next logical

step is the confrontation of NLO predictions within the DASM with EW precision data.
These precision tests can then be used to resolve the correlation between γ and MZ′ and
might further clarify whether the generic extensions introduced in the DASM are capable of
significantly loosening the tensions between some SM predictions and measurements, e.g.,
for (g − 2)µ, while keeping the good agreement of the SM between most predictions and
data, and, thus, whether these types of SM extensions remain promising candidates in the
search for BSM physics.
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A Explicit form of the ghost Lagrangian

In this appendix we list the infinitesimal gauge transformations of the fields in the DASM
as well as the explicit expression of the ghost Lagrangian LFP, adopting the conventions of
ref. [35] for the field-theoretical SM quantities.

The infinitesimal gauge transformations of the gauge fields W a
µ , Bµ, and Cµ are given by

δW a
µ = ∂µδθa + g2fabcW b

µδθc, δBµ = ∂µδθY, δCµ = ∂µδθC, (A.1)

where δθa, δθY, and δθC are the gauge group parameters of the SU(2)W, U(1)Y, and U(1)d
gauge groups, respectively. For the Higgs doublet and singlet we have

δΦ =
(
− ig1

2 δθY + ig2τa

2 δθa
)
Φ, δρ =

(
−iedδθC

)
ρ. (A.2)

For the fields corresponding to the gauge and scalar bosons we find

δW± = ∂µδθ± ± ie

sw

[
W±

µ

[
cw(cγδθZ − sγδθZ′)− swδθA

]
(A.3)

+
[
swAµ − cw(cγZµ − sγZ ′

µ)
]

δθ±
]

, (A.4)

δAµ = ∂µδθA + ie
(
W +

µ δθ− − W−
µ δθ+

)
, (A.5)

δZµ = ∂µδθZ − iecγ
cw
sw

(
W +

µ δθ− − W−
µ δθ+

)
, (A.6)

δZ ′
µ = ∂δθZ′ + iesγ

cw
sw

(
W +

µ δθ− − W−
µ δθ+

)
(A.7)

δϕ± = ∓ ieϕ±
[
δθA + δθZ

[
−cwsγη + s2

w − c2
w

2swcw
(cγ − swsγη)

]

−δθZ′
[
cwcγη + s2

w − c2
w

2swcw
(sγ + swcγη)

]]

± ie
2sw

[
v2 + cαh + sαH ± i

(
cxχ − sxχ′)] δθ±, (A.8)

δh = − ẽsα

(
cγδθZ′ + sγδθZ

) (
cxχ′ + sxχ

)
+ ecα

2swcw

(
cxχ − sxχ′)

×
[
δθZ (cγ − swηsγ)− δθZ′ (sγ + swηcγ)

]
+ iecα

2sw

(
ϕ+δθ− − ϕ−δθ+

)
, (A.9)

δH = ẽcα

(
cγδθZ′ + sγδθZ

) (
cxχ + sxχ′)+ sαe

2swcw

(
cxχ − sxχ′)

×
[
δθZ (cγ − swηsγ)− δθZ′ (sγ + swηcγ)

]
+ iesα

2sw

(
ϕ+δθ− − ϕ−δθ+

)
, (A.10)

δχ = δθZ
[
−ẽsγsx (cαH − sαh + v1)−

ecx

2swcw
(v2 + cαh + sαH) (cγ − swηsγ)

]
+ δθZ′

[
ecx

2swcw
(v2 + cαh + sαH) (sγ + swηcγ)− ẽcγsx (cαH − sαh + v1)

]
+ ecx

2sw

(
ϕ+δθ− + ϕ−δθ+

)
, (A.11)
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δχ′ = δθZ
[

esx

2swcw
(v2 + cαh + sαH) (cγ − swηsγ)− ẽsγcx (cαH − sαh + v1)

]
− δθZ′

[
esx

2swcw
(sγ + swηcγ) (v2 + cαh + sαH) + ẽcγcx (cαH − sαh + v1)

]
− esx

2sw

(
ϕ+δθ− + ϕ−δθ+

)
, (A.12)

where the variations of the gauge group parameters

δθ± = δθ1 ∓ iδθ2
√
2

, (A.13)

δθA = acwδθC + cwδθY − swδθ3, (A.14)

δθZ =
(
acγsw + sγ

√
1− a2

)
δθC + cγswδθY + cγcwδθ3, (A.15)

δθZ′ =
(√

1− a2cγ − asγsw
)

δθC − sγswδθY − sγcwδθ3 (A.16)

have been used.
With the help of this transformation behaviour of the fields as well as eqs. (2.59)

and (2.60) one finds the following Faddeev-Popov ghost Lagrangian,

LFP =−ūA∂µ∂µuA+ie(∂µūA)
(
W +

µ u−−W−
µ u+)

−ūZ
(
∂µ∂µ+ξVM2

Z
)
uZ− iecγcw

sw

(
∂µūZ

)(
W +

µ u−−W−
µ u+)

+cxe

2sw
ξVMZūZ

(
ϕ+u−+ϕ−u+)

−ūZξVMZ

{[
ecxcα

2swcw
(cγ−swηsγ)−ẽsγsxsα

]
h+
[
ẽsγsxcα+

ecxsα

2swcw
(cγ−swηsγ)

]
H

}
uZ

+ūZξVMZ

{[
ẽcγsxsα+

ecxcα

2swcw
(sγ+swηcγ)

]
h−
[
ẽcγsxcα−

ecxsα

2swcw
(sγ+swηcγ)

]
H

}
uZ′

−ūZ′(
∂µ∂µ+ξVM2

Z′
)
uZ′

+ iesγcw

sw

(
∂µūZ′)(

W +
µ u−−W−

µ u+)
−ūZ′ sxe

2sw
ξVMZ′

(
ϕ+u−+ϕ−u+)

−ūZ′
ξVMZ′

{[
esxcα

2swcw
(sγ+swηcγ)−ẽcγcxsα

]
h+
[

esxsα

2swcw
(sγ+swηcγ)+ẽcγcxcα

]
H

}
uZ′

+ūZ′
ξVMZ′

{[
esxcα

2swcw
(cγ−swηsγ)+ẽsγsαcx

]
h+
[

esxsα

2swcw
(cγ−swηsγ)−ẽsγcxcα

]
H

}
uZ

+
{
−ū+(∂µ∂µ+ξWM2

W)u++ie(∂µū+)
[
Aµ−

cw

sw
(cγZµ−sγZ ′

µ)
]

u+

−ū+ e

2sw
ξWMW [cαh+sαH+i(cxχ−sxχ′)]u+−ie

(
∂µū+)W +

µ uA

+ū+ξWMWeϕ+uA+ iecw

sw

(
∂µū+)W +

µ

(
cγuZ−sγuZ′

)
+ū+ξWMWeϕ+

[(
cγ

(
s2

w−c2
w
)

2cwsw
− sγη

2cw

)
uZ−

(
sγ

(
s2

w−c2
w
)

2swcw
+ cγη

2cw

)
uZ′

]

+(u+ →u−, ū+ → ū−,W + →W−,ϕ+ →ϕ−, i→−i)
}

. (A.17)
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B The non-linear Higgs representation of the DASM

Here we give a brief account of the chosen non-linear Higgs representation of the DASM
used in the calculation of the tadpole renormalization constants of the GIVS. For the
SM-like Higgs doublet Φ we closely follow refs. [41, 42, 61, 62]. Therefore, we introduce the
2× 2 matrix notation for the linearly represented Higgs doublet

Φ ≡
(
ΦC,Φ

)
= 1√

2
[(v2 + h2) 1 + 2iϕ] , ϕ ≡ ϕjσj

2 . (B.1)

In our notation we use bold symbols to denote matrices. The quantities σi, i = 1, 2, 3, are
the Pauli matrices and ϕi the three real would-be Goldstone-boson fields. They are related
to the would-be Goldstone-boson fields of eq. (2.6) according to

ϕ± = 1√
2
(ϕ2 ± iϕ1) , χ2 = −ϕ3. (B.2)

In the matrix representation the gauge-invariant mass operator of the Higgs doublet Φ†Φ,
appearing in the Higgs potential, is simply given by

Φ†Φ = 1
2 Tr

[
Φ†Φ

]
, (B.3)

and, similarly, the kinetic terms for the Higgs doublet are given by the trace

LΦ,kin = 1
2 Tr

[
(DµΦ)† (DµΦ)

]
. (B.4)

A matrix formulation for the Higgs field ρ is not needed since it is only charged under a
U(1)d gauge group. Now we can easily switch to the non-linear representations of the Higgs
fields

Φ = 1√
2

(
hnl

2 + v2
)
exp

( iζjσj

v2

)
, ρ = 1√

2

(
hnl

1 + v1
)
exp

(
iχnl

1
v1

)
, (B.5)

where hnl
1 , hnl

2 are the physical, gauge-invariant Higgs fields of the non-linear representation
and ζi, χnl

1 , i = 1, 2, 3 represent real would-be Goldstone-boson fields. With this choice of
non-linear representation the component fields of the linear and non-linear representations
are connected via

h1 =
(
hnl

1 + v1
)
cos

(
χnl

1
v1

)
− v1, h2=

(
hnl

2 + v2
)
cos

(
|ζ⃗|
v2

)
− v2, (B.6)

χ1 =
(
hnl

1 + v1
)
sin
(

χnl
1

v1

)
, ϕi=

(
hnl

2 + v2
)
sin
(
|ζ⃗|
v2

)
ζi

|ζ⃗|
. (B.7)

Note that the respective fields of the linear and non-linear representations agree to linear
order in the Goldstone-boson fields.12

12Therefore, the respective interaction terms of the Lagrangian containing at most one Goldstone field are
identical in the linear and non-linear representation.
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C Explicit expressions for MS renormalization constants of mixing angles

Here we list the explicit expressions for the MS renormalization constants of the mixing
angles γ, α, and θr in the ’t Hooft-Feynman gauge. They are obtained by keeping only
terms proportional to the standard 1-loop UV divergence

∆UV = 2
4− D

− γE + log 4π, (C.1)

where γE is the Euler-Mascheroni constant and D = 4 − 2ϵ is the number of space-
time dimensions used to calculate loop integrals in dimensional regularization, from the
respective OS renormalization constants. In the PRTS the renormalization constants are
given by

δγPRTS
MS =∆UV

{
αem

[
s2γ

(
1−s2

wη2)+2swηc2γ
]

16πc2
ws2

wM2
ZZ′−

∑
l,u,d

[
m2

l +3(m2
u+m2

d)
]

−
c2

ws2
ws2γs2

θr
λ2

12m2
ν4M2

ZM2
Z′

αemπ3s2
2αM2

ZZ′−M4
Hh−

+ 1
768π3αems2

wc4
wM2

W

{
π2α2

em

{ 2
M2

ZZ′−

×
[
c2γ

(
3c2αc2

wM2
Hh−

[
4swηM2

W−2swc2
wηM2

ZZ′++s2γc2
wM2

ZZ′−

(
s2

wη2−1
)]

−2swη
[
3c2

wM2
Hh+(2M2

W−c2
wM2

ZZ′+)+2c4
w

[
M4

ZZ′+−2M2
ZM2

Z′

]
+2c2

wM2
ZZ′+M2

W(82s2
w−1)+48M4

W

(
2c2

ws2
w+s2

wη2+1
)])

+s2γ

(
3c2αc2

wM2
Hh−

(
s2

wη2−1
)
(c2

wM2
ZZ′+−2M2

W)

−3c2
wM2

Hh+

(
s2

wη2−1
)
(c2

wM2
ZZ′+−2M2

W)+c4
wM4

ZZ′+

(
s2

wη2−1
)

+2c2
wM2

ZZ′+M2
W

[
81s2

wη2+4s2
w(5−23s2

w)−9
]

+48M4
W

[
2c2

w

(
s2

wη2−2s2
w+1

)
+s4

wη4−1
])]

+2swc2
wη
(
3c2

w(M2
Hh+−M2

ZZ′+)

−6c2αc2
2γc2

wM2
Hh−+c4γc2

w(3M2
Hh+−M2

ZZ′+)

+4M2
W(7c2

w−75s2
w−6)

)
−
[
s4γc4

w

(
s2

wη2−1
)
(3M2

Hh+−M2
ZZ′+)

]}
+
8s2γs4

wc6
wλ2

12M2
ZM2

Z′

c2
αs2

αM2
ZZ′−M4

Hh−

[
−3c2αM2

Hh−(c2
wM2

ZZ′++c2γc2
wM2

ZZ′−

−2M2
W)+c2γc2

wM2
ZZ′−(M

2
ZZ′+−3M2

Hh+)−3c2
wM2

Hh+M2
ZZ′+

+6M2
Hh+M2

W+c2
wM4

ZZ′++8M2
ZZ′+M2

W+48c2
wM2

ZM2
Z′

]}}
. (C.2)

Here we introduced the shorthands

M2
ij± ≡ M2

i ± M2
j , M4

ij± ≡
(
M2

ij±

)2
. (C.3)

Note that the explicit expressions for δγMS in the FJTS and the GIVS are easily obtained
from (C.2) using eqs. (3.48), (3.49), and (3.50). For the MS-renormalization constant of
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the Higgs mixing angle we find

δαPRTS
MS = ∆UV

{
αems2αΛ2

ZZ′

32πM2
WM2

Hh−(Λ2
ZZ′ − 2M2

W)
∑

f=l,u,d

NC,f

[
m2

f (M2
Hh+ − 8m2

f )
]

+
s2

θr
λ2

12m2
ν4M2

W

(
2M2

W − Λ2
ZZ′

) (
2c2θrm

2
ν4 − 6m2

ν4 + M2
Hh+

)
4αemπ3sαcα

(
M2

Hh−

)3
Λ2

ZZ′

+ 1
512π3M4

W

{
αemπ2M2

W
s2

wΛ4
ZZ′

( 2sαcα

M2
Hh−

[
2c4αM4

Hh−Λ4
ZZ′

− 24c2αM2
Hh+M2

Hh−Λ4
ZZ′ + c4γM4

ZZ′−

[
11M4

Hh+ + 48M4
ZZ′+

− 16M2
hM2

ZZ′+ + 4M2
HM2

h − 32M2
hM2

W + 96M4
W

]
+ 4c2γ

[
11M2

ZZ′+M2
ZZ′−M4

Hh+

+ 4M2
ZZ′+M2

ZZ′−

[
M2

HM2
h + 8M2

W

(
3M2

W − M2
h

)]
+ 16

[
M2

h

(
M6

Z′ − M6
Z

)
+ 3

(
M8

Z − M8
Z′

)]]
+
(
11M4

Hh+ + 4M2
HM2

h

)
×
(
2M2

ZM2
ZZ′+ + M4

Z + 3M4
Z′

)
+ 16M2

h

[
8M2

ZM2
Z′

(
M2

ZZ′+ + M2
W

)
− 3M4

ZZ′+

(
M2

ZZ′+ + 2M2
W

)]
− 2s2

wc2
w

[
21
(
M2

ZZ′+

)4
− 136M2

ZM2
Z′M4

ZZ′+

+ 80M4
ZM4

Z′

]
+ s4

w

[
136M2

ZM2
Z′M4

ZZ′+ − 21
(
M2

ZZ′+

)4
− 80M4

ZM4
Z′

]
+ 96M4

W

(
2M2

ZM2
ZZ′+ + M4

Z + 3M4
Z′

)
+ 3

(
55− 7c4

w

) (
M8

Z + M8
Z′

)
+ 6M4

ZM4
Z′

(
5 + 11c4

w

)
− 52s2

wM2
ZM2

Z′(1 + c2
w)
(
M4

Z + M4
Z′

)]
− 16s2αΛ2

ZZ′

[
c2γM2

ZZ′−

(
M2

ZZ′+ + 2M2
W

)
+ 2M2

WM2
ZZ′+ + M4

Z + M4
Z′

])
+ 16λ2

12M2
Ws2

w

αemsαcα

(
M2

Hh−

)3

[
M4

W

[
4M2

HM2
h − 11M4

Hh+

]
− M4

WM2
Hh−

×
[
12c2αM2

Hh+ + c4αM2
Hh−

]
+ 4c2γc4

wM2
ZM2

Z′M2
ZZ′−M2

Hh+

+ 4c4
wM4

ZM2
Z′M2

Hh+ + 4c4
wM2

ZM4
Z′

(
M2

Hh+ − 12M2
Z

)]
+ 2πλ12

Λ4
ZZ′M4

Hh−

[ 1
cαsα

[
−2c6αM4

WM4
Hh−Λ4

ZZ′

+ c2α

[
M2

ZZ′−

(
M2

ZZ′−

[
c4γ

(
M4

WM4
Hh− − 16M2

ZM2
Z′

[
c4

wM4
ZZ′+

− c2
wM2

WM2
ZZ′+ + 4M4

W

])
+ 8c6γc2

wM2
ZM2

Z′M2
ZZ′−

(
M2

W − 2c2
wM2

ZZ′+

)]
+ 4c2γ

[
M4

WM2
ZZ′+M4

Hh− − 2c2
wM2

ZM2
Z′M4

ZZ′−

(
M2

W − 2c2
wM2

ZZ′+

)])
+ 2M2

WM2
ZM2

ZZ′+

[
M2

WM4
Hh− − 8c2

wM2
Z′M4

ZZ′−

]
+ 4M2

ZM2
Z′M4

ZZ′−

[
c4

w

(
5M4

ZZ′+ − 4M2
ZM2

Z′

)
+ 16M4

W

]
+ M4

WM4
Hh−

(
M4

Z + 3M4
Z′

)]
+ 4M2

ZM2
Z′M4

ZZ′−

(
c4

w

[
5M4

ZZ′+ − 4M2
ZM2

Z′

]

– 48 –



J
H
E
P
0
1
(
2
0
2
4
)
0
3
7

− 4c4
w

(
M2

ZZ′+

[
c4γM2

ZZ′+ + c6γM2
ZZ′−

]
− c2γM2

ZZ′+M2
ZZ′−

)
+ 16c4γM4

W − 16M4
W

)]
− 8cα

sα
c8γc4

wM2
ZM2

Z′

(
M2

ZZ′−

)4
]}}

, (C.4)

where NC,f is the respective colour factor of the fermions. In addition to eq. (C.3), we have
introduced the abbreviations

Λ2
ZZ′ = M2

ZZ′+ + M2
ZZ′−c2γ , Λ4

ZZ′ ≡
(
Λ2

ZZ′

)2
, (C.5)

to further compactify the result. The explicit expressions for δαMS in the FJTS and
the GIVS are easily obtained from (C.4) using eqs. (3.67), (3.68), and (3.69). The MS
renormalization constant for the mixing angle in the fermion sector is given by

δθPRTS
r,MS = ∆UVλ2

12s2
wsθrcθr

64π3αemc2
αs2

α(M2
H − M2

h)2

{
56c2

wM2
ZM2

Z′

+ 2m2
ν4s2

θr

[
3c2

wc2γ(M2
Z′ − M2

Z)− 3c2
w(M2

Z + M2
Z′) + 10M2

W
]}

. (C.6)

Again, the explicit expressions for δθr,MS in the FJTS and the GIVS are easily obtained
from (C.6) using eqs. (3.82), (3.83), and (3.84).
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