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1 Introduction

A few puzzles remained to be addressed by the Standard Model (SM) of particle physics, such
as the origin of neutrino masses and matter-antimatter asymmetry in the Universe. A notable
solution is to complete the SM with the right-handed counterparts of the left-handed neutrinos

— heavy neutral leptons (HNL). With such a minor adjustment, it is possible to explain the
current neutrino oscillation data through the seesaw mechanism [1–7], while simultaneously
providing the HNLs with a neutrino-like weak interaction, suppressed by a tiny mixing angle
U2

α ≪ 1, α = e, µ, τ . At the same time, the new particles may produce the observed amount
of baryon asymmetry in the Universe [8–22] or be a portal into a more complex dark sector
with successful baryogenesis [23–25]. Both these goals may be achieved with GeV-TeV scale
HNLs that can be probed by the current and proposed future experiments [26–45].

The project of a muon collider [46, 47] is a possible way forward to explore physics at the
TeV scale, an alternative to future pp and ee colliders: future Circular Collider (FCC) [48, 49],
Circular Electron-Positron collider (CEPC) [50], Compact Linear Collider (CLIC) [51], and
International Linear Collider (ILC) [52]. Muons can be accelerated to high energies up to
1− 10TeV, equivalent to a 10− 100TeV proton collider [46, 53]. At the same time, muons
are fundamental particles and provide a clean environment, allowing for a simple description
in high-energy scatterings. Finally, new physics in the lepton sector may be probed more
efficiently in processes with muons, as compared to hadron colliders.

We consider the two standard setups with the energies
√

s = 3, 10TeV and integrated
luminosities L = 1, 10 ab−1, respectively. Throughout the paper, we assume that the muon
beams are fully polarized, with muons having negative helicity and antimuons having positive
helicity correspondingly. The detector apparatus coves the angles above θdet = 10◦ relative
to the beam axis.

In these setups, the muon collider may be a powerful instrument in searching for feebly
interacting HNLs in the region above the electroweak scale. The reason behind it relies on
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the following considerations. The naive scaling of the cross-section for processes involving a
new physics particle of mass M , either produced or appearing as an off-shell mediator, is

σM ∼ g4

16πM2 = 102 fb× g4
(10TeV

M

)2
, (1.1)

where g is the coupling constant of the considered interaction. The luminosity for different
runs is assumed to scale as L ∝ s to account for the suppression of the cross-section at higher
energies. The corresponding number of events is

Lσ ∼ 106g4 ∼ 104 events (1.2)

for g2 ∼ 0.1 (electroweak coupling). However, this is not the case for TeV-scale HNLs,
which are produced mainly in the t channel process, mediated by the W -boson [45]. The
propagator that may carry a light-like transferred momentum q2 → 0 introduces a divergence
in the differential cross-section, which is regularized by the mediator mass. Therefore, the
cross-section avoids the suppression by the new physics scale and is enhanced to

σ ∼ U2
µσweak, σweak ∼ g4

16πm2
W

∼ 200 pb (1.3)

with the expected number of produced HNLs being

Nev ∼ U2
µLσweak ∼

U2
µ

10−8 × L
10 ab−1 events. (1.4)

The studies of the sensitivity to HNLs of an experiment at the muon collider have recently
been performed in [54–56], with the obtained sensitivity down to U2

µ ∼ 10−6. The potential
to explore HNLs above the electroweak scale with many events provides a unique opportunity
to study the properties of the new particles. The possibility of inferring the underlying
physics model of HNLs, if detected, and linking it to the origin of neutrino masses and
baryon asymmetry has attracted significant attention [18, 57–61]. In the minimal leptogenesis
scenario with two quasi-degenerate HNLs, the range of the mixing angles is beyond the
expected sensitivity reach. However, the existence of the third HNL may significantly alter
the dynamics of the production of matter-antimatter asymmetry, yielding a much larger
parameter space [62, 63], which may be probed by an experiment hosted at the muon
collider, see figure 1.

In this paper, we discuss the possible implications of the muon collider to reveal the
underlying properties of the HNLs. Namely, we analyze the possibility of probing the
leptogenesis scenario with 3 HNLs. In section 2, we complement the previous simulation-
based result with simple analytical estimates for the signal yield for HNLs. Additionally,
we discuss caveats and limitations associated with probing HNL couplings to e, τ lepton
flavors by vector boson fusion (VBF). In section 3, we obtain the sensitivity to observations
of lepton number violation and the implications of such measurement to a model of 3 HNLs.
We discuss our findings in section 4.
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Figure 1. Constraints on heavy neutral leptons from [64], see reference therein. The shaded areas are
excluded regions by direct detection and electroweak precision measurements (above) or seesaw limit
(below). The parameter space with HNL mass above 100GeV is consistent with 3 HNL leptogenesis [63]
and is a target for searches at multi-TeV colliders.

2 Analytic estimate of the sensitivity reach

In the framework of the type-I seesaw mechanism, the Lagrangian with n right-handed
neutrinos has the following form [64]:

L = LSM + iN Iγµ∂µNI − FαILαNIH̃ − 1
2MIJN

C
I NJ + h.c., (2.1)

where NI , I = 1, n are HNL states with Majorana mass matrix MIJ ; FαI are Yukawa
couplings to active lepton flavors α = e, µ, τ ; Lα = (να, lα)T is the lepton left doublet; and
H is the Higgs doublet.

Due to the mixing with heavy sterile neutrinos, the active neutrino flavor eigenstates
become

να = UPMNS
αj νj + θαINC

I , (2.2)

where νj and NI are mass eigenstates, and UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata
matrix [65]. The small parameters θαI control the interaction strength of the HNLs with
the W , Z, and H bosons. Their explicit form is given by

θαI = v√
2
∑

I

FαJ(M−1)IJ (2.3)

with v = 246GeV being the Higgs vacuum expectation value.
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Figure 2. Feynman diagram for µ−µ+ → νN with W -boson exchange in the t-channel.

It is convenient to define the mixing angles, characterizing HNL interactions:

U2
αI = |θαI |2, U2

α =
∑

I

U2
αI , U2

I =
∑

α

U2
αI , U2 =

∑
αI

U2
αI . (2.4)

At high-energy colliders, the detection of an HNL occurs by reconstructing a fully visible
decay N → lW → lqq, without a neutrino in the final state. For all relevant masses and
mixing angles (see eq. (1.4)), the decay length cannot exceed µm, and only prompt decays
can be searched for. Expressions for the decay width of right-handed neutrinos are presented
in appendix A.

The total number of events can be estimated by

Nev = 2L ×
∑

α

U2
ασNα × Br(N → W (qq)l)× ϵeff. (2.5)

Here, the factor 2 takes into account the Majorana nature of the HNLs, and σNα represents the
production cross-section of a Dirac HNL-particle (i.e., excluding charge-conjugated channels)
with unit mixing angle U2

β = δαβ . The detection efficiency ϵeff is the probability of observing
an HNL decay when it occurs. The branching ratio of the HNL decay is

Br(N → lW → lqq) = Br(N → lW ) · Br(W → qq)︸ ︷︷ ︸
=0.676

. (2.6)

In the TeV mass range, the branching ratio of HNL decay into a W boson approaches
Br(N → lW ) ≈ 1

2 .

2.1 µ-mixing

The dominant production channel is mediated through the mixing U2
µ with the muon neutrino,

the diagram is shown in figure 2. The cross-section of production of an HNL with mass
mN is given by

σNµ ≈ g4W
16πm2

W

(
1− m2

N

s

)
= σweak︸ ︷︷ ︸

∼200 pb

(
1− m2

N

s

)
. (2.7)

The production in the collinear process comes at the cost that the produced particles
move at small angles to the axis, which may suppress the detection efficiency. Suppose we
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assume that the detector system covers angles above θdet. In that case, the detection efficiency
can be estimated by the fraction of HNL whose decay products can deviate by angles θ > θdet
from the initial beam axis. We choose the reference value θdet = 10◦ (corresponding to the
pseudo-rapidity cut η = 2.44). There are two limiting cases for the calculation of efficiency:

1. If HNLs are not too light, they are produced with small boosts, and their decay products
are not focused on the beam line. The typical opening angle between the decay products
of a boosted particle may be estimated as θdec. ∼ 1/γN , where γN is the gamma factor
of the HNL. The detection efficiency, that is, the probability of emitting decay products
in the detector coverage, is:

ϵeff ∼ 1−
(

θdet
θdec.

)2
∼ 1− θ2det

4sm2
N

(s + m2
N )2

. (2.8)

2. If HNLs are sufficiently light, such that 1/γN < θdet, the decay products do not deviate
significantly from the initial direction of the HNL motion. Therefore, it becomes
necessary to account for the nonzero angle of the HNLs itself, easily computed from
the angular dependence of the cross-section dσ

dt ∝ (m2
W − t)−2 with the requirement of

HNL deflection by an angle larger than θdet.

ϵeff ∼ σNν [θ > θdet]
σNν

=
[
1 + s

m2
W

(
1− m2

N

s

)
sin2

(
θdet
2

)]−1

. (2.9)

It should be noted that this effect becomes relevant in the regime when m2
N ≪ s.

Therefore, the detection efficiency approaches a constant value independent of HNL
mass. This approximation might be inaccurate for very light HNLs, where the separation
of the decay products and reconstruction of the kinematics become challenging. Hence,
we restrict ourselves to mN > 200GeV.

In our discussion, we omit direct cuts on the pT of the decay products because in both
scenarios it is limited by pT ≳

√
s
2 θdet > 100GeV. Therefore, we approximate the detection

efficiency with the two simple formulas (2.8), (2.9), keeping the maximal of the two.

ϵeff(mN |s, θdet) = max

1− θ2det
4sm2

N

(s + m2
N )2

,

(
1 + θ2det

s

4m2
W

)−1
 . (2.10)

To verify our estimates, we made a toy Monte-Carlo generator of the decay of an HNL
into two massless particles. The HNL is produced at various angles θ with the weights
proportional to dσ

d cos θ . The decay products are created in HNL’s reference frame and boosted
to the lab frame. The fraction of decays where both decay products have θ > θdet is shown
in figure 3, together with the estimate (2.10).

To estimate the sensitivity of an experiment at the muon collider, it is necessary to know
the number of expected SM background events Nbkg. Then, the exclusion region (at 1σ

confidence level) corresponds to the expected number of HNL events

Nev =
√

Nbkg. (2.11)
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Figure 3. Comparison of the detection efficiency, computed with a simple formula (2.10), and the
results of a toy Monte-Carlo generator. The generator simulates HNL production and decay into
two massless particles and estimates the decay fraction with both daughter particles moving into
the detector.

The number of background events lacks a simple analytical estimate. Therefore, we
extract it from the simulations performed in the previous studies. For this purpose, we
used the results of the previous simulation-based studies [54–56]. By fitting the background
spectrum from [54] and choosing 100 GeV bins, equal to the size of a peak for the reconstructed
mass, we found that for a 3 TeV muon collider Nbkg can be approximated as

Nbkg = 4.0 · 104
(
exp

[
− 1.6 · mN

1TeV

]
+ 0.03

)
. (2.12)

To validate our estimates, we compared (2.12) with the results from [55] and [54]. Our
calculations indicate roughly ∼ 104 events in the 100 GeV bin.

For the 10 TeV collider, the background is dominated by µ+µ− → qqlllν for mN ≲ 5TeV
and µ+µ− → qqlν for mN ≳ 5TeV. Additionally, there is a contribution from µ+µ− → qqll,
uniform in the invariant mass. To determine the background in this scenario, we used
the ratio between cross sections of those three processes (0.40 pb, 0.21 pb, and 0.46 pb
correspondingly) to the total cross section from [55] assuming a linear Nbkg(mN ) dependence.
Our derived equation is

Nbkg = 1.5 · 105
(
1− 0.07 · mN

1TeV

)
. (2.13)

In addition, we performed a check with [54] and [56]. Here, we noticed a disagreement
between the latter and previously mentioned papers, where the background is ten times
larger. Unfortunately, we are unable to explain this discrepancy.

The sensitivity to HNLs obtained by the presented simple estimates is shown in figure 4.
Given the somewhat arbitrary estimates for the background, we plot the sensitivity as a band,
allowing for variation in the background by a factor of two. We note that the consistency of our
estimates with the previous results is at the same level as the (dis)agreement between them.
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Figure 4. The Nev map in the (mN , U2) parameter space. The black band represents the sensitivity
reach using the background fits (2.12), (2.13), allowing them to vary by a factor of two. The gray area
at the level ∼ 10−3 is excluded by constraints from the electroweak precision observables [66, 67]. The
FCC sensitivity is taken from [45]. The current charge lepton flavor violation constraints (cLFV) [68–
73] may in principle exclude mixing angles up to 10−4. However, they rely on the simultaneous mixing
of a HNL with electron and muon neutrinos. While not directly probing U2

µ, these constraints are
nevertheless relevant for realistic HNL scenarios.

Figure 5. Feynman diagrams of HNL production through vector boson fusion.

2.2 Feasibility of vector boson fusion for e, τ -mixings

A natural process that may experience collinear enhancement of the cross-section and produce
HNL through mixing with νe/ντ is vector boson fusion (VBF), see figure 5. This type of
interaction has been identified as a promising process for the muon collider to probe new
physics [53, 74, 75]. In this section, we demonstrate that this process does not provide an
advantage compared to the s-channel annihilation process into Nν. Moreover, we highlight
the caveats of the effective V approximation when considering HNL production.

The relevant reactions for HNL production are W−W+ → νN , ZW± → l±N , γW± →
l±N , and ZZ → νN , shown in figure 5. Their cross-sections can be estimated using the
effective V approximation. The two necessary ingredients of the computations are the
probability distribution fV (ξ, Q2) to emit a vector boson with energy fraction ξ ≡ EV

Eµ
and

virtuality q2 = −Q2 < 0, and the fusion cross section σ(ŝ, Q2
1, Q2

2), with the center of mass
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energy ŝ = ξ1ξ2s. A detailed treatment of the emission of V may be found elsewhere, see
e.g. [53, 76–79].

For our purposes, we capture the general behavior of the emission probability by ap-
proximating

fV (ξ, Q2) ∼ g2V
16π2

1
ξ

1
Q2 + m2

V

, (2.14)

which results in

σVBF ∼ g4V
256π4

∫
dξ1
ξ1

dξ2
ξ2

dQ2
1

Q2
1 + m2

V

dQ2
2

Q2
2 + m2

V

× θ(ŝ − m2
N )σ(ŝ, Q2

1, Q2
2) (2.15)

with θ being the Heaviside step-function.
The next step of the effective V approximation is to replace the off-shell cross section

by its value for on-shell vector bosons σ(ŝ,−m2
V ,−m2

V ). However, this step becomes invalid
for the specific process of HNL production. For instance, consider a process W−W+ → νN .
The total cross-section for real W bosons is divergent because of the t-channel singularity.
Namely, the range of variable t in the limit m2

W ≪ m2
N , s is

m2
W − s

(
1− m2

N

s

)
≤ t ≤ m2

W

[
1− 1

4

(
1− m2

N

s

)]
. (2.16)

Therefore, this variable crosses the zero value, i.e., contains an on-shell lepton in the t-channel
propagator, for HNL masses

m2
N < s − m2

W . (2.17)

The singularity appears for almost all HNL masses except for a narrow region near the
kinematic threshold s ≈ m2

N .
This type of singularity has been first noticed in the context of hadron collisions [80–82],

and has received attention for applications in cosmology [83, 84] and the context of the
processes at a muon collider [85–88]. It had been suggested to regularize the singularity by
accounting for the decay width of the incoming particles or the transversal size of the beam in
the case of the muon collider. Both suggestions rely on the fact that the initial state particles
cannot be treated as well-defined plane waves. This violation of the energy-momentum
conservation prevents the particle in the propagator from being exactly on-shell.

It is essential to recognize that in the context of HNL production, the singularity cannot
be resolved by implying kinematic cuts on the final particles. As discussed in section 2.1,
sufficiently heavy HNLs may be produced with small boosts, and their decay products
can be detected with ≈ 1 efficiency. The critical parameter is the total number of HNLs
created in the process.

Therefore, the cross-section σ(ŝ, Q2
1, Q2

2) should be evaluated strictly for off-shell vector
bosons with negative invariant mass m2

W → −Q2. In this case, there is no zero crossing in
the t range (2.16). Using the unitarity constraints that forbid σ from growing with energy,
we can estimate the upper bounds on the cross-section by:

σ(s, Q2
1, Q2

2) ≲
g4

16π


1

mW ΓW
, Q2 ≲ mWΓW ,

1
Q2 , mWΓW ≲ Q2 ≲ m2

W ,

1
m2

W
, m2

W ≲ Q2,

(2.18)
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where Q2 represents any of the quantities Q2
1, Q2

2. The estimate for the case Q2 ≲ mWΓW

accounts for the instability of the incoming particles, essentially employing the same argument
that was used for the t-channel singularity [86].

The integration over Q2
1,2 in eq. (2.15) can be split into three ranges, listed in eq. (2.18).

This results in the following upper bound

σ̂(ŝ) ≡
∫

dQ2
1

Q2
1 + m2

W

dQ2
2

Q2
2 + m2

W

σ(ŝ, Q2
1, Q2

2) ≲ (2.19)

≲
g4

16π

π
(mWΓW /m2

W )2

mWΓW
+ π

1− ΓW /mW

m2
W

+ 1
m2

W

(
ln ŝ

m2
W

)2
 . (2.20)

The first two terms are negligible compared to the third term, which is the usual σweak
cross-section enhanced by the collinear emission of the vector bosons. Therefore, the final
VBF cross-section for HNL production (2.15) is bounded by

σVBF ≲ σweak × g4

256π4 ×
(
ln s

m2
W

)2

× ln s

m2
N

≈ 10−3 × σweak. (2.21)

For comparison, the cross-section of s-channel production is

σs ∼ m2
W

s
σweak = (10−4 — 10−3)× σweak (2.22)

for the center-of-mass energies
√

s = 3 — 10TeV.
Therefore, we conclude that the account for the VBF processes does not provide a

significant improvement in sensitivity compared to the s-channel. Moreover, in the most
optimistic scenario, the sensitivity contour can reach U2

α ∼ 10−3, while the current constraints
on e and τ mixing are U2

e ≲ 10−3 and Uτ ≲ 10−2 [67].
At the same time, vector boson fusion may become the dominant process for the

production of νe- and ντ -mixing HNLs at muon colliders of much higher energy above 10TeV.
An accurate analysis of the effective boson approximation would be required in this case.

3 Probing lepton number violation and leptogenesis

The muon collider is a perfect instrument to measure the Majorana vs. Dirac nature of
the HNL. Similar studies at various collider and beam-extracted experiments have been
performed in [45, 57, 89–91]. The specific advantage of the muon collider stems from the
fact that the HNL momentum tends to point in the same forward direction θ < π/2 as
the muon it originated from.

Each reconstructed signal event can be classified by the initial lepton number, which
is labeled according to the corresponding hemisphere containing the total momentum of
the decay products. This lepton charge is then compared with the charge of the produced
muon in the N → µqq decay to eventually label the process as lepton number violating
(LNV) or conserving (LNC).

– 9 –
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3.1 Sensitivity to lepton number violation

To quantify the measure of lepton number violation, we define the parameter A, being
twice the probability that HNL, produced in the mixing with a lepton, decays into the
opposite-charge lepton:

A = 2× Br(Nl → l̄ . . . ).

With this definition, a Dirac HNL corresponds to A = 0, while for a purely Majorana
HNL A = 1.

Given the total number of detectable HNL decays Nev, the counts of observed LNV-like
and LNC-like events contain three contributions: from correctly and incorrectly classified
signal events and background events:

NLNV = A

2 · (1− f)Nev +
(
1− A

2

)
· fNev + NLNV, bkg,

NLNC =
(
1− A

2

)
· (1− f)Nev + A

2 · fNev + NLNC, bkg.

Here, f is the probability of incorrect classification of the reconstructed HNL decay, NLNV/C, bkg
are contributions of the SM background to each event class.

Incorrect signal classification may happen due to backward production of an HNL at large
angles θ > π/2, and because of poor reconstruction of the total momentum. The probability
fB of backward production (θ > π/2) can be approximated numerically as

fB ≈ 0.07m2
W

s
× (1 + m2

N /s)2

1− m2
N /s

≈ 5 · 10−5 (3TeV)2

s
, s − m2

N ≫ m2
W , (3.1)

where the prefactor is computed by accounting for both W and Z-boson-mediated processes.
The total momentum of the HNL is pN ∼ 1

2
√

s(1− m2
N /s). Assuming that the uncertainty

of momentum reconstruction is not too large, i.e. ≲ mW , both effects are negligible in the
large range of HNL masses up to the production threshold s − m2

N ≲ m2
W . For the sake of

simplicity, we ignore this specific case and set f = 0.
We assume that the contribution of the SM background is symmetric for LNV/LNV-

like events: NLNV, bkg = NLNC, bkg = Nbkg/2. This assumption needs to be verified by
background simulations, given that the SM processes with the initial muons may be more
likely to produce the same sign lepton in the forward direction. In this case, the background
for the LNV-like events becomes lower, improving the overall sensitivity. Therefore, we
consider our assumption conservative.

The sensitivity to A is estimated using the χ2 test. For a model that is parametrized
(Nev, A), we may test an alternative model (Ñev, Ã) by defining the quantity

χ2(Ñev, Ã|Nev, A, Nbkg) =
(ÑLNV − NLNV)2

ÑLNV
+ (ÑLNC − NLNC)2

ÑLNC
. (3.2)

We define the precision of the A determination as the interval ∆A of variation of Ã, in
which χ2(Ã) does not exceed the 1σ quantile of the chi-squared distribution with 2 degrees
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of freedom χ2 < 2.30, after marginalization over Ñev. Using the estimates for the number
of signal and background events, we show this sensitivity in figure 6.

The numerical results for the precision ∆A of the determination of A may be approximated
by a simple relation

∆A ≈
√

Nev · A + Nbkg
Nev

. (3.3)

If the background fluctuations dominate uncertainty, the sensitivity scales as ∆A ∼ 1/U2.
This relation always holds for the Dirac case A = 0. Conversely, once NevA > Nbkg, the
sensitivity starts to grow with the mixing angle at a smaller pace ∝ 1/

√
U2.

3.2 Implications for leptogenesis

In the scenario with two degenerate HNLs N1, N2, the coupling matrix θαI and mass matrix
has the form

θαI = 1√
2

Ue iUe

Uµ iUµ

Uτ iUτ

 , MIJ =
(

mN − ∆M
2 0

0 mN + ∆M
2

)
. (3.4)

The two HNLs form a quasi-Dirac pair, Ψ = 1√
2(|N1⟩+ i|N2⟩), Ψ̄ = 1√

2(|N1⟩ − i|N2⟩).
This pair violates the lepton charge only due to the relative oscillations between the HNLs
arising from a slight difference in their mass ∆M .

The expression for the parameter A has the form:

A = 2
∫∞
0 |g−(t)|2 dt∫∞

0 (|g+(t)|2 + |g−(t)|2)dt
, (3.5)

where g± are the matrix elements for LNC/LNV transitions, defined as

g+(t) = Ψ†U(t)Ψ, g−(t) = Ψ̄†U(t)Ψ, (3.6)

where U(t) is the evolution matrix. In the 2 HNL model, it has the form

U(t) = exp
(
−itMIJ − Γ

2 t

)
, (3.7)

and the lepton number violation parameter is given by the ratio [93, 94]:

A = ∆M2

Γ2 +∆M2 . (3.8)

In the 3 HNL scenario, the coupling and mass matrix can be rewritten as

θαI = 1√
2

Ue iUe 0
Uµ iUµ 0
Uτ iUτ 0

 , MIJ = mN · 13×3 + Γ

 0 0 ξ1
0 µ2 ξ2
ξ1 ξ2 µ3

 , (3.9)

assuming that the couplings to the active neutrino sector explicitly respect the lepton
symmetry. All deviations in the mass matrix are defined as normalized to the decay width.
In this case, the evolution matrix has the form

U(t) = e−imN t exp

−Γt


1
2 0 iξ1
0 1

2 + iµ2 iξ2
iξ1 iξ2 iµ3


 . (3.10)
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Figure 6. Constraints on lepton number violation ∆A deviations for the pure Dirac A = 0 (left)
and Majorana A = 1 (right) cases for the

√
s = 3TeV (top) and

√
s = 10TeV (bottom) muon collider.

The gray area is the excluded region. The green shaded area represents the parameter space where
successful leptogenesis with neither thermal nor vanishing initial conditions is possible [63]. The green
dashed line represents the scale above which the 3 HNLs in the Majorana-like case would produce
large loop corrections to active neutrino masses [92].

The larger number of independent parameters adds two difficulties in relating the LNV
parameter to the underlying model. First, a simple analytic expression of the form (3.8)
is missing, and in general, A should be evaluated numerically. Second, the measurement
of A adds only one constraint to the set of splitting parameters {µi, ξi}, insufficient for
reconstructing all the parameters.

To quantitatively explain the way LNV occurs, we need to separate the two main effects.
If the oscillations between the interacting states |N1⟩ and |N2⟩ are rapid enough µ2 ≳ 1, we
return to the case of 2 HNLs that exhibit Majorana-like behavior A ∼ 1. If, in contrast,
these oscillations are suppressed µ2 ≪ 1, the third HNL starts to play a role. If |ξ| ≫ |µ3|,
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Figure 7. The minimal and maximal values of A for given pair of mass splittings ∆M12 and ∆M3,
see text for conventions.

the massive states of sterile neutrinos become entirely misaligned with the initial interacting
states, and the mass splittings become of order ∼ Γξ. Finally, if |ξ| ≪ |µ3|, a situation similar
to the seesaw mechanism occurs: the interacting states Ψ acquire a small admixture of the
third HNL with an amplitude of order ξ

µ3
. Then the production and decay processes with a

Dirac-like HNL with mixing angles U2 are accompanied by the processes with a Majorana
HNL |N3⟩ with mixing angles suppressed to U2 · ξ

µ3
.

If the parameters that define the scale of the probability of LNV to happen are sufficiently
small |µ2|, |ξ| ≪ 1 (but arbitrary µ3), the leading term expansion may be written explicitly:

A = µ2
2 +

2(ξ21 + ξ22)
1 + 4µ2

3
. (3.11)

In general, this expression cannot be directly linked to the mass splittings. To fix the
convention, we define the “third” massive state with mass M3 as the eigenstate of the mass
matrix that is closest to the initial third state in the basis of eq. (3.9), and the first two
as M2 > M1. Then, there are two mass splittings ∆M12 ≥ 0 and ∆M3 = M3 − M1+M2

2 .
To show the variation in A for various combinations of masses, we performed a scan in the
parameters {µi, ξi}. The minimal and maximal values of A that can be achieved for given
∆M12, |∆M3| are shown in figure 7.

While A is not fixed for given mass splittings, one can estimate the order of magnitude
of the mass splittings ∆M ∼ ∆M12, |∆M3|.

A ∼ ∆M2

Γ2 : ∆M

mN
∼ Γ(mN )

√
A

mN
≈

√
A U2

(
mN

1TeV

)2
, mN ≳ 200GeV. (3.12)

This relation has been confirmed by a numerical scan, which shows that the approximate
variation range of the parameter A is [0.5∆M2

12, max(∆M2
12,∆M2

3 )]/Γ2 for the mass splittings
that differ less by an order of magnitude.
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Figure 8. The lower bounds on the scale of mass splitting ∆M/mN (defined as eq. (3.12)) that
may be probed by the LNV measurements at a muon collider, assuming an approximately Dirac-like
scenario A ≪ 1. The black dashed line represents the sensitivity ∆A = 0.1, for which measurements
of the mass splitting via (3.12) is possible. Below it down to ∆A = 0.9 (black solid line), the precision
of the A measurement is insufficient, and only a preference towards the Majorana/Dirac nature can
be established. In this region, (∆M/mN ) represents the transition point between the two cases.

Given these relations, for a specific measurement of A, one can reduce the parameter
space of the models with 3 HNL, which may explain the baryon asymmetry of the Universe.
A scan of the values of A with a mapping onto the sensitivity map of the muon collider
experiments may reveal some potential benefits of this measurement. The lower bounds
of ∆M/mN defined by eq. (3.12) that may be probed by a muon collider (replacing A by
∆A) are shown in figure 8.

4 Conclusions

In this paper, we examined the potential of future muon colliders to measure lepton number
violation in searches for heavy neutral leptons. This probe may address the role played by
the newfound particles in explaining the matter-antimatter imbalance. The sensitivity of the
muon collider down to U2

µ ∼ 10−6 provides a unique probe of the TeV-scale HNL, superior to
the competing FCC, CEPC, CLIC, and ILC projects. It enters the parameter space where
these sterile neutrinos might account for the observed value baryon asymmetry.

We discussed the procedure for measuring lepton number violation in HNL decays and
estimated the sensitivity to such searches. With the potential to observe up to 105 events
in the unexplored region, an experiment at the muon collider affords a sensitivity to the
ratio of lepton number violating decays that can reach a percent level, as shown in figure 6.
This sensitivity is crucial for deciphering the true nature of the HNL — be it Majorana,
Dirac, or situated in a non-minimal framework involving multiple nearly degenerate heavy
neutral leptons.
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In the sensitivity range of the muon collider, the minimal scenario of leptogenesis with
two HNL fails to produce the observed matter-antimatter imbalance, and three degenerate
species are needed. We relate the properties of these HNLs to the lepton number violation
parameter A. We showed the absence of a direct link between the LNV ratio and the mass
splittings, contrary to the minimal case of two HNLs. This distinction is attributed to more
parameters responsible for breaking the approximate lepton symmetry. Nevertheless, the
overall scale of the largest mass splitting between the HNLs is bounded by the measurements
of LNV processes. The most stringent lower bounds on the (∆M/mN ) ratio that could be
attained at the muon collider are shown in figure 8.

The values of ∆M/M required for successful leptogenesis with three TeV-scale HNLs
are missing in the literature. At the GeV scale, the relative mass splittings can vary by
orders of magnitude from 1 down to 10−10 [62]. Our findings underscore the need for a
joint analysis to establish whether the parameter space of possible models can be probed
by future experimental searches.

Lastly, we complemented the previous simulation-based estimates of the sensitivity reach
of an experiment at the muon collider to sterile neutrinos. Moreover, we demonstrated the
failure of the vector boson fusion processes to probe couplings to electron- and tau-neutrinos
beyond the excluded bounds, as well as highlighted theoretical nuances accompanying the
description of these processes.

Note: after the completion of the analysis, we became aware of the decoherence effects
in HNL oscillations [95], which may drastically modify the relation of the LNV parameter
to the mass splittings. These effects depend on the details of the experimental resolution
and require an additional study.
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A HNL decay width

There are three decay channels for HNLs. Their partial decay widths are [98, 99]:

Γ(N → Wlα) =
g2

64π
U2

α

m3
N

M2
W

(
1− M2

W

m2
N

)2(
1 + 2M2

W

m2
N

)
, (A.1)

Γ(N → Zνα) =
g2

128π
U2

α

m3
N

M2
W

(
1− M2

Z

m2
N

)2(
1 + 2M2

Z

m2
N

)
, (A.2)

Γ(N → Hνα) =
g2U2

α

128π

m3
N

M2
W

(
1− M2

H

m2
N

)2
, (A.3)
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and approach the ratio Γ(N → Wl) : Γ(N → Zl) : Γ(N → Hν) = 2 : 1 : 1 in the limit
mN ≫ MZ,W,H .

We should note that the apparent strong dependence on particle mass Γ ∼ U2m3
N /m2

W

is an artifact of the parametrization. In terms of the initial Yukawa couplings F of the
Lagrangian (2.1), the scaling is Γ ∼ F 2mN . The perturbative unitarity constraint F ≲

√
4π

assures that the decay width does not exceed half the particle mass [100–102]. The correspond-
ing constraint on the mixing angle becomes relevant for HNL masses only above 106GeV.
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