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1 Motivations

de Sitter spacetime (dS) is the simplest example of an accelerating cosmology such as the
one our universe is evolving to [1–3]. Despite this, finding the right theoretical framework
to understand its quantum features has proven to be a challenging problem. The lack of
an S-matrix or a boundary in which to anchor an observer makes the definition of physical
observables, and even computables, in dS a subtle issue. Nevertheless, there has still been
steady progress in the field.

Building on recent ideas developed in the context of the AdS/CFT duality, there has been
a new influx of developments that try to overcome some of these shortcomings. Realising a
portion of de Sitter spacetime within the deep interior of a (d+1)−dimensional anti-de Sitter
gives a natural spatial boundary in which to anchor an observer and even more it might give
the framework in which to try and define a dual holographic model. This idea was realised
for the case of an AdS2 geometry in [4, 5]. Microscopically, a flow between two different
AdS2 regions can be understood by a RG-flow of a deformed SYK model. This also opens
up the possibility of realising the portion of dS2 inside the AdS2 geometry microscopically
by a specific deformation of such RG-flows [6, 7]. Further ideas along these lines both for
SYK models and JT gravity can be found in [8–11]. For D = 2 + 1, a generalisation of the
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T T̄ deformation [12, 13] allows one to reconstruct patches of AdS or dS from a deformed
holographic seed CFT formulated at the boundary of a patch [14–16]. These set of ideas
provide setups to understand de Sitter microstates as a re-organisation of AdS ones.

Macroscopic considerations. While we develop a complete microscopic formulation of dS
spacetime, much can be learned from studying the representation theory of the SO(1, d+ 1)
isometry group of dSd+1.

1 Since the foundational work of Wigner in Minkowski spacetime [17]
we known that Unitary Irreducible Representations (UIRs) of the Poincare group are related
to elementary particles represented as free quantum fields. The UIR labels in 4d Minkowski
space are (m2, s), these are, respectively, the mass and spin of the corresponding field. Similar
ideas have been applied to the SO(2, d) isometry group of (d + 1)−dimensional anti-de
Sitter spacetimes (AdSd+1) [18–21]. In this case the UIRs labels (∆, s) are associated to
the maximal compact subgroup SO(2)× SO(d) ⊂ SO(2, d), they are called scaling dimension
and spin respectively. For the AdS case, the SO(2) quantum number corresponds to the
charge associated to the globally defined time-like Killing vector ∂t in AdS global coordinates.
Thus, on general grounds, the relevant UIRs in AdS are those for which the spectrum of
so(2) is bounded.

The de Sitter spacetime case is more involved. To start, we remark that states in a dS
multiplet cannot, in general, be classified using the maximally compact subgroup SO(d+1) ⊂
SO(1, d+1). Indeed, in odd spacetime dimensions the number of Cartan’s in SO(d+1) are not
enough. Instead, states are classified using SO(1, 1)× SO(d) ⊂ SO(1, d+1) [22, 23] with labels
denoted in the same way as in AdS, i.e. (∆, s) respectively. However, an important difference
as compared to the anti-de Sitter case is that the label ∆ now corresponds to the non-compact
generator of so(1, 1). As a result, complex values for ∆ show up in the classification of
UIRs. Intriguingly, the so(1, 1) quantum number relates to static patch time coordinate. It
is important to remark that de Sitter spacetime does not have a globally defined timelike
Killing vector. This precludes any global definition of conserved energy in the spacetime.

SO(1, d+1) basics. SO(1, d+1) admits UIRs with complex scaling dimension [22]. Although
perhaps a perplexing fact, the simplest case of a scalar field with mass-squared above the de
Sitter scale turns out to correspond to such complex ∆.2 Hence, the single particle Hilbert
space of heavy scalar fields realises what is known as the Principal Series representation. These
representations are seen to appear in numerous physical interesting scenarios (see [25] and
references therein), and they also show up for fermionic and massive spin−s fields [23, 24, 26–
29]. However, we stress that they do not account for the more interesting cases of gauge
fields in de Sitter.

As first noted for the massive spin−2 field in [30, 31], and further studied for higher spin
fields in [32], specific tunings of the mass parameter and the cosmological constant furnish
unitary single particle Hilbert spaces with reduced degrees of freedom. This is achieved by
the appearance of gauge invariance in the equations of motion. From a representation theory
point of view these field equations were shown to generically correspond to UIR of SO(1, d+1)
known as Exceptional Series. In particular, in even spacetime dimensions gauge fields either

1As well known, SO(1, d + 1) is also the d−dimensional Euclidean conformal group.
2Massive fermionic fields also have a complex scaling dimension ∆ (see [24] for recent work).
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belong to the Exceptional or Discrete Series representation. The characteristic feature of
Discrete Series is that their corresponding weight vectors have no vanishing entries, whereas
Exceptional Series UIRs weight vectors have at least one zero component (see [33] for further
details). For lower even dimensions, D = 2, 4, weight vectors have only one component, hence,
spinning Exceptional and Discrete UIRs coincide. From now on we will abuse language and
refer to maximally symmetric traceless tensors generically as Discrete UIRs, since we will be
working in D = 4.3 The characteristic feature of Exceptional/Discrete series is that 2∆ ∈ Z.

The simplest situation where Discrete representations arise is for SO(1, 2) which happens
to be the isometry group of dS2 (see [35–37]). Perhaps surprisingly, a field theoretic realisation
devoid of problems has been elusive till recently. They were shown to arise in arbitrary
dimensions in the single-particle Hilbert space of free tachyonic scalar models [38, 39]. Even
the simplest case corresponding to a massless scalar field suffers from pathologies that can
be traced back to a problematic zero mode [40]. One could then be lead to believe that, at
least in 2−dimensions, these representations shouldn’t be taken seriously. However, further
considerations have shown that this is not the case as discrete series UIRs appear generally
in the multiparticle (tensor-product) Hilbert space of Principal Series fields [22, 41]. Stated
otherwise, Discrete UIR particles can be generated through the decay of two heavy fields
in an interacting QFT [38, 42].

Discrete UIRs can also show up for the case of fermionic fields. The simplest example
being ∆ = 3

2 corresponding to a 2d gravitino. A local action for such a field requires a pure
imaginary mass term. This signals some tension between the field theory, in which a complex
action would render the theory non-hermitian and hence not unitary, and Group Theory,
which demands an imaginary mass to have a UIR. In 2d this tension is alleviated since
the canonical kinetic term for the gravitino exactly vanishes,4 leading to gravitini with no
propagating degrees of freedom [43]. Furthermore, even with imaginary mass, upon properly
treating the gauge invariance, the 2d gravitino renders a sensible Euclidean path integral
that yields at one loop the character of the corresponding UIR [43].

In four dimensional dS4 the situation is even more interesting, as Discrete Series UIR
appears in the single-particle Hilbert space of massless and partially massless s ≥ 1 higher-spin
gauge fields. In particular, Discrete series describe the Hilbert space of the spin−2 field
corresponding to the graviton [44].5 There is still one caveat, fields realising the Discrete
Series representation involve an underlying gauge invariance which has to be properly gauge
fixed to render a sensible theory. As recently shown for the massless scalar field 2d [40],
proper account of the shift symmetry removes the problematic zero at the expense of the
inclusion of new gauge fields. The final result agrees with expectations rendering the single
particle Hilbert space of the theory equivalent to the Discrete Series representation. One of
the motivations of the present work is to extend this approach to higher dimensions. Analysis
of fermionic fields in de Sitter space have been recently considered in [27, 28, 45].

3A relevant point to keep in mind is that a theorem of Harish-Chandra establishes that a real Semisimple
Lie group possesses Discrete Series UIRs if and only if it has a compact Cartan subgroup. Hence Discrete
UIRs only show up in even dimensional de Sitter spacetimes (thm. 12.20 in [34]).

4In 2d there is no rank−3 Clifford algebra element γµνρ ≡ γ[µγνγρ] = 0.
5The 4d gravitino also showcases similar features to the 2d Discrete Series case.
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An Euclidean perspective. Even after furnishing the corresponding UIR field theoretically,
the basic problem of finding a set of sharp observables still persists. There is a calculable
quantity at our disposal that has all the symmetries gauged, it is gauge and field redefinition
invariant and contains physically relevant information, namely the Euclidean path integral.
Following insights from black hole physics [46, 47], Gibbons and Hawking [48] proposed that
the area of the dS cosmological horizon should be interpreted as an entropy.6 This entropy
is then macroscopically defined by the Euclidean path integral7

eSdS =
∑
M

∫
[Dg]e−SE [Λ,gij ;M]Zmatter[gij ;M] , (1.1)

where SE [Λ, gij ;M] is the Euclidean gravitational action in a (d+ 1)−dimensional spacetime
with d ≥ 2, positive cosmological constant Λ > 0 and the sum is over compact manifolds M.
This path integral is schematic at best as gravity is a non-renormalisable theory. In fact, the
path integral measure can’t be properly defined and moreover there is also the problem of
the metric conformal mode being unbounded [50].8 Despite this, the dominant saddle of (1.1)
is given by the (d+ 1)−sphere, i.e. Euclidean (d+ 1)−de Sitter space. Notice that we also
expect the path integral to be summing over geometries with different topologies. Upon
evaluating the on-shell action on the leading saddle we obtain the expected area law

S
(0)
dS = A

4GN
. (1.2)

here GN is the Newton constant in (d + 1)-dimensions. In general, we expect quantum
corrections to the entropy arising from both the geometry and the matter content of the
theory. In particular, if we restrict to the sphere saddle, corrections to S

(0)
dS arising from

quantum fluctuations give rise to logarithmic divergencies which provide unambiguous data
that should be reproduced by any microscopic spacetime proposed model [58]. However, we
should remark that at the formal level, this is a delicate issue. UV-divergences arising in the
regularisation of these corrections should be absorbed into renormalised coupling constants
and common lore tells us that physically meaningful results must be defined in terms of
low-energy physical observables invariant under diffeomorphisms and local field redefinitions.
While in flat space we can always rely on the S-matrix to do so and in AdS we can use the
boundary CFT, for dS we only have S(0)

dS as a gauge and field redefinition invariant quantity.
Additional observables have been elusive in the de Sitter context and therefore it is not clear
how to define sensible coupling constants (see a discussion in appendix I of [58]). Finally, as
we review below, even if we manage to solve this issue, the Euclidean computation showcases
the appearance of edge modes contributions (new degrees of freedom?) beyond the expected
bulk one, that do not have a global Lorentzian analogue. These results show interesting open
questions and interplay between the Group Theory and the Euclidean approaches.

6Recall that a free falling observer following a timelike geodesic in a fixed dS background is only causally
connected to a region of spacetime bounded by past and future horizons, namely the cosmological horizon.

7On general grounds we identify Euclidean path integrals with the Helmholtz free energy of the system,
Z = e−βF where F = E − T S with E the energy, T the temperature and S the entropy. Gibbons and
Hawking [48] argued that the impossibility of defining energy in dS implies that we are computing a
microcanonical partition function, as we are effectively fixing the energy to be zero [49].

8In 2d the Euclidean gravitational path integral can be formulated more precisely [51–54]. In the context
of dS2 this has been studied in [55–57].
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Outline & results. In this note we start an in depth study of the simplest spinning
Discrete Series representation of SO(1,4). We first focus on its group theoretical properties
taking as a working example the case of the spin−1 gauge field. We then path integrate the
theory paying special attention to the gauge symmetry and the zero modes, this allow us
to compute the 1−loop partition function and recast the result in terms of Harish-Chandra
characters of Discrete Series UIRs of SO(1,4). In addition to the character associated to the
bulk degrees of freedom we further identify the edge mode character of [58] with that of two
2−dimensional Discrete Series representations with ∆ = 1. We then study the realisation
of the UIR in the single particle Hilbert space of a Lorentzian gauge field. To this end we
construct the corresponding mode functions and show how the symmetry algebra acts on
them. Finally we show that a proper global gauge invariant treatment of a spin-1 field theory
does not account for the edge degrees of freedom.

The paper is organised as following, in section 2 we review the main geometric properties
of de Sitter spacetimes focusing on the group theoretical structure and give a survey of the
relevant UIRs appearing in SO(1,4), the general SO(1, d+ 1) case is left for the appendix A.
In section 3 we proceed to study the gauge field in a fixed dS background. We first study the
Euclidean picture were computations are clear-cut. Afterwords, we try to reproduce these
features from a Lorentzian perspective by canonically quantising the theory. We find two
Discrete Series modules in the single particle Hilbert space of the theory. Details on how the
Group Theory constraints the mode solution and the specific identification of all the features
is left for the appendix B.2. We end up with some discussion, open questions and possible
resolutions to the features discussed in the main body of the paper.

2 Geometry of dSd+1

In this section we present the basic geometric ingredients needed for discussing de Sitter
spacetime making special emphasis in group theoretic aspects. We consider here de Sitter in
arbitrary dimension, whereas in the following sections we focus on dS4. Our presentation
is kept minimal when possible, further details can be found in [22, 23, 49, 59, 60] and
appendices A and C.

The starting point is to view the (d+ 1)-dimensional de Sitter spacetime (dSd+1) as a
codimension-1 surface Σ embedded in a (d+ 2)-dimensional Minkowski spacetime [61]

−X2
0 +X2

1 + · · ·+X2
d+1 = ℓ2 ↪→ ds2 = −dX2

0 + dX2
1 + · · ·+ dX2

d+1 , (2.1)

here ℓ is the de Sitter radius that we set equal to ℓ = 1 from now on. The metric of dSd+1 is
that induced on Σ from flat ambient space by solving the constraint in (2.1).

From this presentation it is straightforward to recognise the SO(1, d+ 1) isometry group
of dSd+1. As well known, it coincides with the conformal group of d-dimensional Euclidean
space Rd. A traditional basis for the so(1, d+ 1) Lie algebra is in terms of antisymmetric
generators JAB = −JBA (A,B = 0, 1, · · · , d + 1) with commutation relations

[JAB, JCD] = ηBCJAD − ηACJBD + ηADJBC − ηBDJAC , (2.2)
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here ηAB = diag(−+++ ..) is the (d+ 2)-dimensional (ambient) Minkowski metric (2.1).
The quadratic Casimir is defined as

C2 ≡ 1
2JABJ

AB . (2.3)

The generators JAB, when realised on fields, can be decomposed as

JAB = LAB + SAB (2.4)

where
LAB = (XA∂B −XB∂A) , (2.5)

with ∂A = ∂
∂XA is called the orbital part and SAB, which acts on the field indices, is called

the spinorial part [62]. Notice that LAB preserves the hypersurface (2.1).
A unitary representation of SO(1, d+1) requires the Lie algebra generators to be realised

as anti-hermitian operators on some Hilbert space

J†
AB = −JAB , ∀ A,B . (2.6)

It is important to stress that these reality conditions are the ones pertinent for unitary QFTs
on a fixed dSd+1 background and they differ from the reality conditions traditionally imposed
when studying d-dimensional unitary conformal field theories in Lorentzian signature [22, 23,
63].9 The relation between so(1, d+ 1) and the d-dimensional Euclidean conformal algebra
plus further details can be found in appendix A.1.

Global coordinates. This is a coordinate chart that covers the full spacetime. It is found
by solving the constraint in (2.1) as

XA = (X0, X i) = (sinh T, cosh T ni) , i = 1, · · · , d+ 1 , (2.7)

with ni a unit vector in Rd+1. The line element induced from this parametrization is

de Sitterd+1 : ds2 = −dT 2 + cosh2 T dΩ2
d , (2.8)

here T ∈ R and dΩ2
d is the round metric on Sd. In this coordinate system, constant time

slices are compact spheres that shrink for T < 0 and grow for T > 0. The T > 0 part
of the geometry can be seen as a closed exponentially expanding universe. The expansion
rate is set by the de Sitter radius which was set to ℓ = 1 in (2.8). The explicit form of
the ten Killing vectors of dS4 can be worked out from (2.5) and (2.7) and are spelled out
in appendix C. A characteristic feature of de Sitter spacetime is the absence of a globally
defined timelike Killing vector.

9The reality conditions for Lorentzian CFTs are usually worked out in Euclidean signature, they are

P † = −K

Whereas in the context of the present paper our reality conditions are

P † = −P, K† = −K.
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Conformal coordinates. We can conformally compactify dS making

cosh T = 1
sin t . (2.9)

The metric then takes the form

ds2 = −dt2 + dΩ2
d

sin2 t
, t ∈ (−π, 0) . (2.10)

In this way, dS is mapped to a finite strip of Einstein Static Universe (ESU) [64]. The late
time geometry is located in the t→ 0 region while the early time geometry corresponds to
t → −π. This is the coordinate system we will work with.

Static patch. This coordinate system describes the region of spacetime causally accessible
to a free falling observer. It is given by [60]

ds2 = − cos2 ρ dτ2 + dρ2 + sin2 ρ dΩ2
d−1 , (2.11)

here τ ∈ R and ρ ∈ [0, π/2). The observer sits at ρ = 0 and the surface ρ = π
2 corresponds to

the cosmological event horizon surrounding they. Standard horizon arguments10 associate a
temperature to the dS spacetime. Reinserting ℓ, the de Sitter temperature is [48]

TdS = 1
2πℓ .

The amusing feature of (2.11), in contrast to (2.8), is the appearance of the time-like
killing vector ∂τ . From the group theory point of view, motions along it correspond to a
so(1, 1) ⊂ so(1, d+ 1) non-compact generator. Yet, this Killing vector becomes spacelike if
we extend it beyond the cosmological horizon. This fact precludes a global notion of energy
for de Sitter spacetime associated to ∂τ .

Euclidean de Sitter: the sphere. Euclidean de Sitter spacetime can be defined through
a Wick rotation of the embedding time coordinate X0 in (2.1). In the global patch (2.7),
this is achieved writing T = iχ − iπ2 , then

ds2
E = dχ2 + sin2 χ dΩ2

d , χ ∈ (0, π) . (2.12)

Similarly, for the static patch metric, making τ = iϑ in (2.11) one obtains

ds2
E = cos2 ρ dϑ2 + dρ2 + sin2 ρ dΩ2

d−1 . (2.13)

In both cases, after Wick rotation, the obtained Euclidean de Sitter manifold becomes closed
with an induced round Sd+1 metric.

Path integral methods associate an entropy to de Sitter spacetime [48]. Since the leading
saddle point for the gravitational path integral is given by the round sphere Sd+1, the entropy
for (d + 1)-dimensional de Sitter spacetime, is found to be11

S
(0)
dS

⌋
Sd+1

= A

4GN
, (2.14)

10Such as the absence of singularities of the Euclidean metric.
11The absence of any notion of energy in de Sitter spacetime is crucial to the derivation (2.14).
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Representation ∆ s Field Realisation
Principal Series: πν 3

2 + iν, ν ∈ R 0 Heavy Scalar field mℓ > 3
2

Complementary Series: γ∆
3
2 < ∆ < 3 0 Light scalar field 0 < mℓ ≤ 3

2
Discrete Series: U±

s,t 2 + t, 0 ≤ t < s s (Partially) Massless Gauge Field

Table 1. Simplest SO(1,4) bosonic UIRs and their so(1, 1)× so(3) ⊂ so(1, 4) labels.

where A = vol(Ωd−1) ℓd−1 is the area of the cosmological horizon located at ρ = π/2
in (2.11). Computing corrections to the leading entropy of de Sitter spacetime is in general
not straightforward since we do not know how to properly treat the path integral measure
when considering fluctuating geometries. On the other hand, we could study the contribution
to the entropy stemming from the fluctuations of quantum fields in a fixed Sd+1 background.
This procedure amounts to compute the 1-loop partition function of matter fields placed on
a round sphere and will be reviewed below (see [58] for a general discussion).

2.1 Representation theory

The representation theory of the SO(1, d+ 1) group is a rich and deep subject and there are
many classical and recent reviews that describe it in full details [22, 23, 65, 66]. Stemming
from Wigner’s classification in flat space, we expect quantum fields propagating in dSd+1
to furnish UIR’s of SO(1, d + 1). Here we will follow a minimal approach relevant for the
discussion of the main body of the text, leaving some general comments to the appendix A.

We follow the traditional notation stemming from the isomorphism between SO(1, d+ 1)
and the d-dimensional Euclidean conformal group. The irreducible representations are labelled
by weights (∆, s) for the so(1, 1)× so(d) ⊂ so(1, d+ 1) subgalgebras. They are customarily
called conformal weight and highest weight vector respectively (see appendix A for definitions).
It is only for specific values of (∆, s) that one obtains unitary irreducible representations,
UIR’s for short (see appendix A for a review of them).

A set of important paradigmatic bosonic examples which repeatedly show up in discussions
of UIRs in dS4 are (see the table below)12

• The Principal Series πν : ∆ = 3
2 + iν with ν ∈ R.

• The Complementary Series γ∆: 3
2 < ∆ < 3.

• The Discrete Series U±
s,t: s = s, t = 0, 1, · · · , s− 1 and ∆ = 2 + t.

The first two cases displayed here correspond to heavy and light scalar fields respectively,
while the third one corresponds to traceless totally symmetric spin-s partially massless gauge
field with 2(s − t) propagating degrees of freedom [67], [68].

Some comments are in order, the above UIR’s and their extensions to arbitrary s (arbitrary
Young tableuxs), including the possibility of fermionic degrees of freedom (see [33], [45])
have a positive, semi-definite inner product on the space of states (see appendix A). Notice
that the Principal Series representation although labelled by a complex scaling dimension
∆, corresponds to a Unitary representation. It is realised in terms of heavy free scalar fields

12General d-dimensional considerations are left to the appendix A.
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in a fixed de Sitter background. Thus, we stress that from a group theory perspective, a
complex scaling dimension in the de Sitter context does not imply a non-unitary theory as it
would have been the case if we had a bonafide (Lorentzian) CFT.

The spinning Discrete Series representation in dS4 are characterised by their spin-s and
an integer 0 ≤ t < s customary called depth. Fields of maximal depth t = s − 1 have two
propagating degrees of freedom, they are called in the literature massless gauge fields. While
a massive (i.e. non gauge invariant) higher spin field will have in general 2s+ 1 propagating
degrees of freedom, for specific tuning of the mass parameter and the cosmological constant
the field equation develops a gauge invariance that reduces the number of propagating degrees
of freedom to 2(s− t) effectively, these are called partially massless fields. These features of
the wave equations were originally discovered for the spin−2 particle in [30, 69] and later
generalised for higher spin fields in [31, 70]. Furthermore, as originally recognised by Higuchi,
any small deviation from these (discrete) critical masses renders the theory non-unitary
through the appearance of ghost-like kinetic terms. These properties make the representation
theory for de Sitter more involved than those of flatspace or AdS.

Furnishing the Discrete Series representations as free quantum fields in a Lorentzian
picture is far from trivial. Even for d = 1 a realisation of the discrete series13 devoid of
problems was a subtle issue recently solved in [40] (see also footnote 6 in [71]). While less
generic than the Principal Series, Discrete Series in dS2 generically appear in the multi
particle Hilbert space of heavy particles [22].

The main interest of the present note is the field theoretic realisation of the simplest
spinning discrete series of SO(1,4), namely U±

1,0. On general grounds we expect it to be
represented by a spin−1 gauge field in 3 + 1 dimensions (see [72] for previous work). As
discussed above this UIR is characterised by the so(1, 1) × so(3) labels (∆, s) = (2, 1).
Since the Discrete Series UIRs is infinite dimensional, its restriction to SO(4) implies an
infinite tower of representations. Indeed, the SO(4) content of U±

1,0 read off from the induced
representation construction of the UIR results [22, 23]

U±
1,0

⌋
SO(4)

=
⊕
k≥1

Yk,±1 . (2.15)

Here Yk,±1 denotes the SO(4) irreducible representation labelled by the highest weight vector
s = (k,±1), k ∈ N. The ±1 distinguishes the chirality of the representation.14 We remind
the reader that chirality is only present for even dimensional SO(2r) groups, and manifests
in the last component of the highest weight vectors being either positive of negative (see
appendix A for more details). From a physical point of view the full orthogonal group O(4)
also includes space reflections. These reflections map any given representation of SO(4)
to its image (k, h) → (k,−h), thus, any field theoretic realisation of the Discrete Series
should contain both chiral sectors.

In the next section we discuss different ways to realise this representation in a field
theoretic set up. We first discuss the Euclidean formulation of the theory were we compute the
sphere path integral taking into account the contribution of the ghosts and their corresponding

13For d = 1 the discrete series are labelled by D±
∆ with ∆ ∈ N.

14Chirality relates to the sign of the second Casimir of SO(4) as discussed in detail in appendix B.2.
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zero modes. We review how a careful treatment of the Euclidean theory showcases features
of Lorentzian features. We then turn our attention to the Lorentzian realisation putting
special emphasis in the Group theoretical constraints and displaying some tensions with
the Euclidean perspective.

3 Linearised Yang+Mills theory

We will start this section focusing on the Euclidean picture where computations are clear-cut.
We will discuss the sphere path integral quantisation and perform a one-loop computation
of the theory. We will show how Lorentzian physics can be uncovered in an Euclidean
computation through a careful treatment of the gauge symmetry and ghost zero modes.
While the result of path integration is of course UV-divergent, in 4−dimensions a universal
(logarithmic) coefficient can be extracted, exactly matching the well known conformal anomaly
(see [73]). To obtain this result it is crucial to account for the contribution of edge modes,
which are interpreted as degrees of freedom living in a codimension-2 surface. We then turn
our attention to the canonical Lorentzian realisation where we put special emphasis in the
Group theoretical constraints and show some tensions with the Euclidean picture.

We will consider a massless spin−1 Yang-Mills field on an Euclidean dS spacetime. The
Lie algebra anti-hermitian generators T a satisfy

[T a, T b] = fabcT c . (3.1)

The action of this theory is given by

S[A] = 1
2g2

∫
M
dd+1x

√
−gTrF 2 = 1

4g2

∫
M
dd+1x

√
−g F aµνF aµν , (3.2)

where
Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] , Aµ = T aAaµ , (3.3)

and g is the YM coupling of the theory. The action (3.2) is invariant under the gauge
transformations

Aµ → Aµ + ∂µα+ [Aµ, α] , (3.4)

where α = αaT a. Quantising this theory is a standard exercise, in the following we will
review different approaches showcasing relevant features that show up for a fixed de Sitter
background. At 1-loop order the gauge field self-interactions can be neglected, thus, the
abelian and non-abelian cases become equivalent. They differ only by the colour degree of
freedom that amounts simply to a N = dim(G) factor. Effectively we will be computing
a path integral over a U(1) gauge field.

3.1 Path integral approach

As emphasised above, Wick rotating dS to Euclidean signature results in the round sphere
metric (2.12). Our main interest is then the path integral quantisation and the 1-loop partition
function of a Yang+Mills theory Aaµ with gauge group G placed on a round sphere

Z =
∫ DAa

Vol(G)local
e−SE [Aa] . (3.5)
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The Vol(G)local factor is included by hand to quotient the overcounting of field configurations
when performing the Aa-path integral. As we will discuss below the inclusion of this factor
is also fundamental to maintain the locality of the theory.

A proper path integral quantisation of the theory requires gauge fixing to avoid overcount-
ing gauge equivalent configurations. The standard way to proceed is either by introducing
Fadeev-Popov ghosts or by a BRST treatment of the gauge symmetry. Here we will take
proper account of gauge invariance following the geometric approach developed in [74–76].
We start parametrising the field as

Aµ = ATµ + ∂µχ , (3.6)

with ATµ the transverse component of Aµ satisfying ∇µATµ = 0, and ∂µχ the longitudinal (pure
gauge) component of the field. An important observation to be discussed below is that different
constant values χ(x) = χ0 (zero modes of the scalar Laplacian) give the same gauge field
configuration Aµ, hence integration over the zero mode χ0 should be excluded from the χ-path
integral. We will denote with a prime the fact that we are not integrating over these modes.

We exploit the fact that ATµ is transverse by introducing the following operator

Dµν = −∇2
(1)δµν +Rµν , (3.7)

Here ∇2
(1) = ∇µ∇µ is the Sphere Laplacian acting on vectors and Rµν is the Ricci curvature

tensor satisfying

[∇µ,∇ν ]Aν = −RµνAν . (3.8)

All in all the Yang+Mills action reduces to

SE [AT ] =
1
2g2

∫
Sd+1

dd+1x
√
g ATµ

(
−∇2

(1) + d
)
ATµ , (3.9)

where we have used that ATµ is transverse, the operator (3.7), and the fact that Sd+1 is a
maximally symmetric space. The path integral (3.5) is now given by

Z =
∫ DATD′χ

Vol(G)local
J e−SE [AT ] , (3.10)

where J is the Jacobian arising from the change of variables A 7→ (AT , χ) in (3.6). Notice
that the pure gauge modes decouple from the action (3.9) yet they are relevant to fix
the value of J . To do so we demand the parametrisation (3.6) to be consistent with the
normalisation condition

1 =
∫

DAe−
1

2g2 (A,A)
. (3.11)

Performing the change of variables (3.6) in this expression we obtain

J = det ′
(
−∇2

(0)

)1/2
, (3.12)
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Introducing two fermionic fields b, b̄, we can express the determinant (3.12) as the path
integrated result of the following ghost action

Sgh[b̄, b] =
∫
Sd+1

dd+1x
√
g b̄∇′2

(0)b . (3.13)

As a result the path integral reads

Z =
∫ Db̄DbD′χDAT

Vol(G)local
e−(SE [AT ]+Sgh[b̄,b]) . (3.14)

A few comments are in order, the factor Vol(G)local is theory dependent and is formally given
by the volume of the (local) gauge transformations. In general it is given by an integral over
n = dim(G) local scalar fields. The parametrisation (3.6) for the gauge field Aµ decouples
the gauge degrees of freedom χ, thus we expect the measure of χ to exactly cancel the factor
Vol(G)local. However, as discussed previously, we have substracted the constant zero-mode
χ0 from the measure D′χ. As a result, the cancellation is not complete an a mismatch arises
since constant modes are present in the full group volume. In fact, the constant modes
are the ones that generate the global symmetries of the theory. Notice that this in sharp
contrast to the case of AdS of flat space in which standard boundary conditions for the field
configurations forbid such global features to survive.15 We thus expect to have a residual
(global) group volume associated to the global symmetries given roughly by

ZG =
∫
ΠdimG
a=1 D′χa

Vol(G)local
∼ 1

Vol(G)Global
. (3.15)

We will make a few comment on this result below. A detailed discussion can be found in [58].
To compute the path integral (3.14), the ATµ field configurations (transverse spin-1) can

be decomposed in terms of transverse vector spherical harmonics (see [70] and appendix B.2
for the case of the 3-sphere), while the longitudinal (pure gauge) modes and the local scalar
fields generating the Vol(G)local factor can be expressed in terms of scalar harmonics and
derivatives thereof. As a result, the sphere 1−loop partition function becomes

Z = ZG

 det′(−∇2
(0))1/2

det
(
−∇2

(1) + d
)1/2


dim(G)

. (3.16)

In the following we proceed now to compute the determinants following standard Heat
Kernel techniques [77]. We refer the reader to [58] for the computation of the local gauge
group volume ZG.16 We start rewriting the path integral (3.16) as

Z = ZG
(
Z(1)Z(0)

)dim(G)

where

logZ(1) =
∫ ∞

0

dτ

2τ e
−ϵ2/4τ Tre

−τ
(
−∇2

(1)+d
)

logZ(0) = −
∫ ∞

0

dτ

2τ e
−ϵ2/4τ Tr′e

−τ
(
−∇2

(0)

)
.

(3.17)

15In AdS this term also survives if we consider Neumann boundary conditions, see [58].
16While normally overlooked, the volume of the gauge group Vol(G)local plays a crucial role for consistency

with locality and unitarity of the theory.
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Here, the prime ′ in Z(0) denotes the absence of the zero mode contribution when computing
the trace. As usual, the insertion exp(−ϵ2/4τ) regulates the UV-divergence when τ → 0.

To compute the traces in (3.17) we need the details of the complete basis of spin−1 and
spin−0 symmetric traceless spherical harmonic as well as the corresponding degeneracies for
each eigenvalue. The general problem of constructing such basis for arbitrary spin−s tensor
fields on spheres was carried in [31] and we outline the basic ingredients in the appendix B.2.
For the s = 0 case we have

−∇2
(0)ψn = λnψn , λn = n(n+ d) , n = 0, 1, 2, . . . (3.18)

with degeneracies given by

Dd+2
n =

(
n+ d+ 1
d+ 1

)
−
(
n+ d− 1
d+ 1

)
. (3.19)

Now the trace can be performed

logZ(0) = −
∫ ∞

0

dτ

2τ e
−ϵ2/4τ

∞∑
n=1

Dd+2
n e−τn(n+d) , (3.20)

notice that the sum starts at n = 1 since we are instructed to avoid the constant zero
mode associated to n = 0. Completing the square in the exponential and performing a
Hubbard-Stratonovich trick via an auxiliary variable u we obtain

logZ(0) = −
∫ ∞

0

dτ

2τ e
−ϵ2/4τeτ

d2
4

∫
R+iδ

du
e−u

2/4τ
√
4πτ

f(u) , (3.21)

where
f(u) =

∞∑
n=1

Dd+2
n eiu(n+ d

2 ) . (3.22)

This sum can be performed

f(u) = ei
d
2u

[
1 + eiu

(1− eiu)d+1 − 1
]

The second term in the bracket can be interpreted as the subtraction of the zero mode when
computing the trace. Finally, the u-integral contour in (3.21) is done slightly above the real
axis (δ > 0), in order to avoid divergences from the denominators in f(u) .

The τ integral can now be obtained by analytic continuation in d to give

logZ(0) = −
∫
R+iδ

duf(u)e
−i d

2
√
u2+ϵ2

2
√
u2 + ϵ2

, (3.23)

where we have assumed that 0 < δ < ϵ. Calling u = it and deforming the original contour
to the branch cut located at u = iϵ one finds [58]

logZ(0) = −
∫ ∞

ϵ

dt

2tf(q)
(
q

d
2 + q−

d
2
)
, (3.24)

= −
∫ ∞

ϵ

dt

2t

[
1 + q

1− q

q
d
2

(1− q)d − q
d
2

] (
q

d
2 + q−

d
2
)
. (3.25)
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where q = e−t. It is important to remember that the second term in the brackets arises
from the subtraction of the zero mode contribution.

Performing similar steps for the spin-1 piece in (3.17) with λn = n(n+d)−1+d one finds

logZ(1) =
∫ ∞

0

dτ
2τ e

−ϵ/4τeτ(
d
2−1)2

∫
R+iδ

due
−u2/4τ
√
4πt

f1(u) (3.26)

with
f1(u) =

∞∑
n=1

Dd+2
n,1 e

iu(n+ d
2 ) .

Notice (B.3) implies there are no zero modes for transverse vectors on the sphere. The
transverse spin-1 degeneracies Dd+2

n,1 can be found in (B.3) and obey the relation

Dd+2
n,1 = Dd+2

n Dd
1 −Dd+2

0 Dd
n+1 . (3.27)

where Dd+2
n can be read in (3.19). As a result, a closed expression for f1 can be found

f1(q) =
1 + q

1− q

(
d

q
d
2

(1− q)d − q
d−2

2

(1− q)d−2

)
+ q

d−2
2 (3.28)

here we defined q = eiu. The last term in the bracket leads to a 1/t contribution in the
small−t limit and implies that there is a logarithmic UV divergence that can be associated
to the cutoff scale given by the heat-kernel regularisation [58]. As discussed in detail in
that reference, this term cancels against a contribution coming from the longitudinal path
integral, i.e. ZG. Deforming the u-contour, writing u = it and analytically extending in
the dimension, the final result is

logZ(1) =
∫ ∞

ϵ

dt

2t

[
1 + q

1− q

(
d

q
d
2

(1− q)d − q
d−2

2

(1− q)d−2

)
+ q

d−2
2

] (
q

d−2
2 + q−

d−2
2
)

(3.29)

Combining the contributions from the determinants we find

log
(
Z(1)Z(0)

)
=
∫ ∞

0

dt

2t

(
1+q
1−q

[(
d
qd−1+q
(1−q)d −

qd+1
(1−q)d

)
−
(
qd−2+1
(1−q)d−2

)]
+(2+qd+qd−2)

)
.

(3.30)
In the following we will interpret (3.30) from a Lorentzian perspective. To this end the

terms inside the brackets have been split in two pieces: the two terms in the first parentheses
will be associated to d−dimensional contributions coming from the transverse modes and
the ghost fields, while the second piece, originally arising from the transverse modes, will be
associate to a (d− 2)−dimensional contribution whose interpretation will be discussed below.

Harish-Chandra characters of SO(1,d + 1). For any unitary representation R of a
semisimple Lie group G one can associate a Harish-Chandra character χR(g) that encodes
the information of the given representation in a simple function [78–80].17

17For a finite dimensional representation R of G we define the character associated to an element g ∈ G as
the trace of R(g) over the representation space. For infinite dimensional representations the notion of trace is
more subtle and the general theory was developed by Harish-Chandra.
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For SO(1, d + 1) UIRs, the Harish-Chandra characters were computed in [33, 81–83].
That associated to the spin-1 Type II Exceptional Series for d > 3, which in d = 3 reduces
to the s = 1 Discrete Series, is

χII
s=1(t) = d

qd−1 + q

(1− q)d − qd + 1
(1− q)d + 1 , (3.31)

which, from now on, we call the bulk contribution χbulk(q) = χII
s=1(t). It is straightforward

to see it correspond to the first parentheses in (3.30). It is illuminating to define an edge
character as

χedge(t) = qd−2 + 1
(1− q)d−2 − 1 . (3.32)

Then, it is remarkable to notice that if we restrict to d = 3, the edge contribution reduces to

χedge(t)⌋
d=3 = 2 q

1− q
(3.33)

This expression coincides with the Harish-Chandra character of a SO(1,2) representation
R composed of two Discrete Series D±

1 (cf. [40])

χedge(t)⌋
d=3 = χR(t) , RSO(1,2) = D+

∆ ⊕D−
∆ with ∆ = 1.

The Harish-Chandra characters (3.31)–(3.32) correspond to group elements of the form
g = e−itH with H a hermitian so(1, 1) ⊂ so(1, d+ 1) generator. It is important to recognise
that H = iD becomes associated to the timelike Killing vector i∂τ of the static patch of de
Sitter spacetime (cf. (2.11)). Thus, we conclude that the Euclidean path integral on Sd+1

encodes thermal information even without the presence of a thermal cycle.
We can now recast the integrand in (3.30) as

Fχ(q) =
1 + q

1− q

(
χbulk(q)− χedge(q)− 2

)
. (3.34)

While this explicit form in terms of Harish-Chandra characters was discussed just for the
spin-1 field, the result generalises for arbitrary spin-s [58].

The last term of (3.30) is problematic as it has a q0 term which causes the integral
to be logarithmically divergent for t → ∞ even in odd spacetimes dimensions where a
manifestly covariant local QFT path integral on the sphere cannot have such pathologies.
As mentioned before, this contribution stems from zero modes in the original path integral
associated to χ0 = const. As shown in appendices F & G in [58], the log divergencies arising
from these modes cancel against an identical contribution coming from Vol(G)local. The
computation of this volume is far from trivial since it has to be computed with the path
integral induced metric rather than the usual canonical volume of the group that is defined
with respect to the invariant metric (see also [84]). Taking G = U(1), the gauge group
volume contribution gives [58, 84, 85]

ZG exp
(∫ dt

2t (2 + qd + qd−2)
)
= g√

2πVol(Sd+1)
. (3.35)
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All in all, the 1−loop sphere partition function of an U(1) gauge field is given by

ZU(1),d=3 = g√
2πVol(Sd+1)

exp
(∫ dt

2tFχ(q)
)
, (3.36)

with
Fχ(q) =

1 + q

1− q

(
χbulk(q)− χedge(q)− 2NKT

1

)
, (3.37)

here NKT
1 = 1 corresponds to the number of spin-0 Killing on Sd+1.

Let us comment on some features of this result. Even though we started with an Euclidean
path integral on an S4, the final result was shown to contain two different contributions:
one (3.31) associated to the spin-1 Discrete Series representation, the physical propagating
degrees of freedom in the Lorentzian perspective, and the second (3.32), associated to Discrete
UIRs of SO(1, 2). This last contribution is interpreted as degrees of freedom localised in a
co-dimension 2-surface (the cosmological horizon in the Lorentzian perspective).

While this sphere path integral and characters are normally UV-divergent it is still
possible to extract an universal contribution. Taking a t→ 0 expansion will yield terms that
scale as t−r with r > 1 and are associated to local UV divergencies. As it is well known
these coefficients can be modified by a local renormalisation of the theory and are thus
not meaningful. On the other hand, in even dimensions the log-divergent term is scheme
independent and becomes then universal, taking d = 3 and t → 0 in (3.30)

logZ ≃ · · ·+ log ϵ
(
−16
45 − 1

3

)
+ · · · (3.38)

where the contributions stem from the bulk and edge character (3.31) (3.32) respectively.
This result exactly matches the expectation from the study of conformal anomaly of a spin−1
field in curved backgrounds of [73]. Even more, it shows that usual entanglement entropy
computations [86, 87] do not account for the contribution of the edge modes. This contribution
stemming from a co-dimension 2−surface appears naturally from a proper treatment of the
sphere path integral, and is non-zero for general fields with a gauge symmetry [58], yet it is
still an open problem to realise this contribution from a Lorentzian perspective.

3.2 Hilbert space/Lorentzian picture

In this section we discuss the Lorentzian realisation of a U(1) gauge field. Following the
previous sections we expect it to carry the simplest Discrete Series representation of SO(1, 4),
U±

1,0, and as such having the SO(4) content displayed in (2.15). A nice set of coordinates
that makes manifest the maximally compact subgroup are either the conformal (2.10) or
the global ones (2.8). Both choices have a S3 that allows a natural action of the SO(4)
group. In addition, 4−dimensional Maxwell theory is known to be classically invariant
under Weyl transformations

g′µν(x) = e2φ(x)gµν(x), A′
µ(x) = Aµ(x) (3.39)

with φ(x) an arbitrary function. We further exploit this fact by working in the conformal
coordinates (2.10).
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Classical solution. Choosing the de Sitter metric in conformal coordinates (2.10), the
Maxwell action (3.2) in dS reduces to that in ESU,

S[A] =
∫
d4x

√
−h

(
−1
4h

µαhνβFµνFαβ

)
, (3.40)

with hαβ the metric of Einstein Static Universe (ESU4)

ds2
ESU = hµνdxµdxν = −dt2 + dΩ2

3 . (3.41)

Maxwell equations are easily obtained

DµF
µν = 0 ⇝ ∂µ(

√
−hhµαhνβFαβ) = 0 , (3.42)

here Dµ denotes the covariant derivative in ESU. We can rewrite Maxwell equation as

□ESUAν − Dν(DαA
α)−Rνα[h]Aα = 0 (3.43)

with □ESU = hµνDµDν the ESU Laplacian on spin-1 tensors. The ESU Ricci tensor takes
the form

Rµν [h] = diag(0, 2 gab) (3.44)

with a, b = 1, 2, 3 denoting the spatial components and gab is the 3-sphere metric.18

We now turn to the gauge fixing issue. We will choose to work in temporal gauge,

Temporal gauge : At = 0 . (3.45)

This choice does not fix the gauge completely as we still have the possibility of t-independent
(residual) gauge transformations

Aµ → Aµ + ∂µα(x) . (3.46)

here x denotes spatial coordinates. Of course this remaining freedom must be eliminated. To
this end, we consider the At component from (3.43) in the temporal gauge,

∂t
(
∂a(

√
ggabAb)

)
= 0 ⇝ ∂t(∇aA

a) = 0 ⇝ ∇ · A = f(Ω) (3.47)

with ∇a its Levi-Civita connection and f(Ω) an arbitrary function on S3. Here we have
compactly denoted the spatial components of the gauge field as A. We can use the residual
gauge freedom (3.46) to impose

Coulomb gauge : ∇ · A = 0 . (3.48)

In this way we end up with the two expected transverse modes for the gauge field. Note
that imposing At = 0 and ∇ · A = 0 completely fixes the gauge freedom since any gauge
transformations preserving (3.48) requires α̃(Ω) to satisfy

∇2α̃(Ω) = 0 . (3.49)
18For completeness we quote that in ESU: Dt = ∂t and Da = ∇a where ∇a is the covariant derivative on S3.
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On a 3−sphere the only solution to this equation is α̃(Ω) = const. As mentioned in the
paragraph below eq. (3.6), this transformation is not present in the theory as it does not
move Aµ along the gauge orbit.

The equations for the spatial components of the gauge field are found by setting ν = a

in (3.43). Notice that our gauge fixing implies that the Lorentz condition is satisfied
DµA

µ = 0, then

−∂2
tAa +∇2

(1)Aa − 2Aa = 0 , ∇aA
a = 0 , (3.50)

here ∇2
(1) is the 3-sphere Laplacian acting on vectors and we used (3.44). To find the mode

solution to (3.50) we insert the ansatz

A(t,Ω) = e−iωtS(Ω) (3.51)

and find

(−∇2
(1) + 2)S = ω2S . (3.52)

This equation says S must be a vector spherical harmonics on S3. Symmetric tensor spherical
harmonics on the n−sphere are well known and can be found in [70]. For a spin−1 tensor
three independent solutions appear (see appendix B for details). Among these only two
i = 1, 2 satisfy the transversality condition

−∇2
(1)S(i)a = λS(i)a , ∇aS(i)a = 0 , (3.53)

here a = 1, · · · 3 denotes spatial vector components on S3 and

λ = (k + 1)2 − 2 . (3.54)

From a group theory point of view we expect the eigenfunctions S(i) to furnish unitary
irreducible representation of the isometry group of S3, namely SO(4). These are labelled
by the two SO(4) Casimirs that can be written in terms of the anti-Hermitian generators
Kij (see appendix B.2 for further details and definitions) as

C = 1
8KijK

ij , C̃ = 1
32ϵ

ijklKijKkl , i, j, . . . = 1, . . . , 4 (3.55)

where ϵijkl is the 4−index Levi-Civita symbol. As discussed in the appendix, they can be
related to differential operators in terms of the Killing vector fields of S3. For a spin−1
Aa field one finds the relations (B.38), (B.39)

CAa =
(
∇2

(1) − 2
)
Aa , C̃Aa = ϵabc

√
g
∂bAc , (3.56)

where we can recognise C as the equation of motion (3.50) and C̃ as an helicity operator [44].19

From this perspective we learn that the traditional vector harmonics S(i) (i = 0, 1, 2) appearing
19The appearance of a mass-looking term on C for s ̸= 0 is generally expected from the square of the

spinorial matrix Sij in (2.4).
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in the literature [70, 88] are eigenvectors of C, but do not diagonalise C̃. The appropriate
C̃ eigenvectors are [44]

Sklm(±)a(Ω) ≡
1√
2
(Sklm(2)a(Ω)± Sklm(1)a(Ω)) , (3.57)

where k, l,m denote quantum numbers. Defined this way they satisfy

CSklm
(±) (Ω) = −(k + 1)2Sklm

(±) (Ω) , C̃Sklm
(±) (Ω) = ∓(k + 1)Sklm

(±) (Ω) , (3.58)

thus Sklm
(±) carry representations of SO(4) with identical C differing by their chirality which is

computed by C̃, see appendix B.2 for further definitions and derivations.
The relation between the Casimirs quantum numbers and the fact that a transverse

vector A carries two UIRs can be understood by noticing that (3.50) can be written as [89]

(∂t + i∇×)(∂t − i∇×)A = 0, ∇ · A = 0 (3.59)

where

(∇× A)a ≡ ϵabc
√
g
∂bAc . (3.60)

Thus, the general solution to (3.50) is

A = A(+) + A(−) , (3.61)

where
∂tA(±) = ±i∇× A(±) . (3.62)

This equation can be solved by virtue of Sklm
(±) being eigenvectors of ∇× the Separating

variables as in (3.51) the solution is

A(±) = α e−iωtSklm
(±) (Ω) + βeiωtSklm

(∓) (Ω) (3.63)

with α, β arbitrary constants. The second equation in (3.58) implies the dispersion relation

ω(k) = k + 1 . (3.64)

Summarizing, the general solution to the gauge field equations of motion (3.50) results

A(t,Ω) =
∑
σ=±

∑
klm

Nk

(
e−iωtSklm

(σ) (Ω)aklm(σ) + eiωtS∗ klm
(σ) (Ω)a† klm(σ)

)
. (3.65)

with ω(k) = (k + 1). It is now straightforward to check that constructed like this (3.65)
also satisfies the Maxwell equations in de Sitter

[
DµF

µν = 0 ⊕ At = 0 ⊕ ∇ · A = 0
]
⇝ (□dS − 3)Aµ = 0 (3.66)

here Dµ denotes the de Sitter covariant derivative.
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Irreducibility. We now show that the sets

{e−iωtSklm
(+) }, {e

−iωtSklm
(−) }, {e

iωtSklm
(+) }, {e

iωtSklm
(−) } (3.67)

do not mix under the action of the group. Since the SO(1,4) algebra is generated by the
SO(4) generators and the boost generator

D = sin t cosχ∂t + cos t sinχ∂χ ,

it is enough to show that the action of D = dµ∂µ is closed on each set. Since we are
working with gauge fields instead of field strengths, we should take into account that the
Lie derivative along D take the sets away from the temporal gauge (3.45). We can fix this
compensating the Lie derivative action with a gauge transformation. The appropriate gauge
transformation can be read from

δDAt = £DAt = dµ✟✟✟∂µAt +Aµ∂td
µ = ∂t

( ∫ t

dt′Aχ∂t′d
χ︸ ︷︷ ︸

α(t,Ω)

)

here we used that At = dθ = dϕ = 0. Hence, if we subsequently perform the gauge
transformation given by

δαAµ = −∂µα

we return to the temporal gauge. Defining δ̄D ≡ δD + δα, one finds that the first set is
closed under the action of δ̄D

δ̄D

(
e−i(k+1)tSklm

(+)
)
= k + l + 2

2 e−i(k+2)tS(k+1)lm
(+) − k − l

2 e−iktS(k−1)lm
(+)

Notice that positive chiralities do not mix with negative ones. Also, since 1 ≤ l ≤ k we
cannot connect positive with negative energies. Similar equations follows for the rest of
the sets in (3.67).

Quantisation. The normalisation Nk in (3.65) is fixed in the usual way, so that the
mode functions

Aklm(σ)a = Nke
−iωtSklm(σ)a(Ω)

and its (negative energy) conjugates satisfy

(An, Am) = δnm , (A∗
n, A

∗
m) = −δnm , (An, A∗

m) = 0 , (3.68)

here we succinctly denoted n = (σklm). The de Sitter invariant inner product is given by

(A,A′) = −i
∫
d3Ω

√
−ggµνA∗

µ(t,Ω)
↔
DtA′

ν(t,Ω)

= i

∫
d3Ω√ggabA∗

a(t,Ω)
↔
∂tA

′
b(t,Ω) (3.69)
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where dtdΩ√−g is the spacetime volume element and Dµ = gµνDν is the covariant derivative
in de Sitter space. In passing to the second line we restricted to conformal global coordinates
where the conformal factors and Christoffell symbols cancel (see (C.3)). We have also
considered that the gauge field is in the temporal gauge. The result for the normalisation is

Nk =
1√

2ω(k)
. (3.70)

We can now proceed to canonically quantise the theory,

[Âa(t,Ω), Âb(t,Ω′)] = [π̂a(t,Ω), π̂b(t,Ω′)] = 0 ,

[Âa(t,Ω), π̂b(t,Ω′)] = iΠab
δ(3)(Ω− Ω′)

√
g

, (3.71)

where Πab is a projector on the transverse polarizations. The conjugate momentum is defined as

πa = ∂
√
−gL
∂Ȧa

= −
√
−hh0µhaνFµν = √

ggab∂tAb . (3.72)

The canonical commutation relations (3.71) imply

[ân, ân′ ] = [â†n, â
†
n′ ] = 0 , [ân, â†n′ ] = δnn′ . (3.73)

By explicit computation we obtain

[Âa(t,Ω), π̂b(t,Ω′)] = i
∑
k,l,m

∑
σ=±

(
Sklm(σ)a(Ω)S

†klm
(σ)b (Ω

′)
)
, (3.74)

Comparing with (3.71) and using the completeness relation (B.45) we find the expected result

Πab = gab −
∇a∇′

b

−∇′2
(0)

. (3.75)

here ∇′ denotes derivative with respect to Ω′.
Notice that the Euclidean continuation of (2.10), under t→ π

2 + iX, becomes the round
sphere. Since the positive energy modes in (3.65) become regular on the south pole (X → −∞)
in the Euclidean section, we conclude that the vacuum defined as

âklm(σ) |BD⟩ = 0 , ∀ (σ)klm . (3.76)

corresponds to the Euclidean/Bunch-Davies vacuum state [90, 91].

Gauge invariant operators. The gauge invariant Electric Ê and Magnetic fields B̂ follow
from F̂µν . The spatial components Fab read

F̂ab(t,Ω) =
∑
σ=±

∑
klm

Nk

(
e−iωt∇[aSklm(σ)b](Ω) âklm(σ) + eiωt∇[aS

† klm
(σ)b] (Ω) â

† klm
(σ)

)
. (3.77)

From which we obtain the Magnetic field as

B̂a(t,Ω) =
1
2
ϵa
bc

√
g
F̂bc . (3.78)
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The Electric field is given by

Êa(t,Ω) = −∂tÂa(t,Ω) . (3.79)

From (3.62) we recognise that, naturally, on the solutions of the equations of motion Ê and
B̂ are not independent. Taking the magnetic field components as the independent degrees of
freedom, the discussion of the previous section implies that its chiral components

B̂a(t,Ω) = B̂+
a (t,Ω) + B̂−

a (t,Ω) . (3.80)

acting on the Bunch-Davies vacuum state span two Discrete Series modules

B̂+
a |BD⟩+ B̂−

a |BD⟩ ≃ U+
1,0 ⊕ U−

1,0 . (3.81)

The quantum number s = 1 follow from the vector character under SO(3), while the ∆ = 2
scaling dimension can be seen either from the fact that the SO(1, 4) Casimir (C.9) vanishes
(cf. (3.66)) or from the late time expansion of the field [92–94].

For completeness we mention that the SO(4) content of F̂µν is immediate and can be
inferred from the quantum numbers of the mode functions. As discussed in detail in the
appendix B, representations of SO(4) are labelled by the two Casimirs (3.56). Positive energy
mode function therefore give rise to

F̂µν |BD⟩ ≃
∞⊕
k=1

Yk,+1 ⊕
∞⊕
k=1

Yk,−1 (3.82)

where the notation for Young diagrams can be found in appendix A.2. Alternatively, we can
express the content of the single particle Hilbert space in terms of the SO(4) ≃ SU(2)L×SU(2)R
decomposition

F̂µν |BD⟩ ≃
∞⊕
k=1

[
k + 1
2 ,

k − 1
2

]
⊕

∞⊕
k=1

[
k − 1
2 ,

k + 1
2

]
. (3.83)

here [jL, jR] refer to the SU(2)L × SU(2)R quantum numbers.

4 Summary & outlook

In this note we studied the field theoretic realisation of the Discrete Series representation of
SO(1, 4) in terms of a free spin−1 gauge field propagating in a fixed de Sitter background. We
revisited the Euclidean path integral quantisation and computed the 1−loop Sphere partition
function showing how it can be understood in terms of the Harish-Chandra character of
SO(1, 4), and in general of SO(1, d+ 1), UIRs. In addition to the character of the spin−1
Discrete Series UIR we showed how the edge mode character appears. This contributions can
be understood as localised in a co-dimension 2-surface to be associated to the presence of the
cosmological horizon. For the case at hand, we showed that the edge modes of the spin−1
Discrete Series correspond to a Discrete Series representation of SO(1, 2).

We then solved the quantum gauge theory in real time showing the single particle
Hilbert space of the theory furnished the Discrete Series UIR. To this end, we canonically
quantise the theory putting special focus in its group theoretic properties. We elucidate the
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role of the second quadratic Casimir of SO(4) and showed how it allows one to construct
the corresponding mode functions with the appropriate quantum numbers. This allowed
us to identify two Discrete Modules, U±

1,0, of SO(1, 4) in the single particle Hilbert space
of the theory. For the de Sitter global coordinate system, the edge modes that appeared
in the Sphere computation were not found to be present in the modules spanned by the
quantum field strength.

The prefactor (3.35) depending on g might come as a surprise. From a Lorentzian
perspective the path integral should be counting states on the Hilbert space of the theory
and as such this factor spoils this interpretation by being in general non-integer valued. Yet,
this is a general feature of quantum fields in a compact manifold [58, 84, 85, 95]. Even more,
this was seen in Chern-Simons theory by different methods [96] and recently understood in
the context of 3−dimensional de Sitter spacetimes [97] where it was understood as stemming
from a topological entanglement entropy computation [98].

We would like to conclude this note with some comments and outlook regarding the
features that the Discrete Series representation of SO(1, d+ 1) showcases and how we can
further understand them.

Weakly interacting Einstein-Maxwell. The lack of clear, diffeomorphism and field-
redefinition invariant, observables for the Λ > 0 Euclidean low-energy effective field theory
makes the definition of coupling constants subtle. For a 4−dimensional theory the most general
effective action up to order R2 involves also the Weyl tensor Cµνρσ and two corresponding
coupling constants λC2 , λR2 . As discussed before, the Euclidean path integral effectively
defines a gauge invariant, diffeomorphism and field-redefinition invariant quantity SdS (2.14)
that allow us to define the dimensionless coupling (GΛ(d−1)/2)−1 in terms of the on-shell
action. This gives us a way out, if the Euclidean effective action allows for different saddles
gM we can use S(0)

M = −SE [gM ] as defining the corresponding coupling constants.
In 4−dimensional theories the topologies known to admit Λ > 0 Einstein metrics are

S4, S2 × S2,CP2 and the connected sum CP2#kCP2 with 1 ≤ k ≤ 8. Following general
considerations [58] for a saddle M we can repeat the exercise of section 3.1 and expand
the UV-divergent terms as

SM = S
(0)
M − DM

2 logS(0)
M + αM log ℓ0

L
+KM + · · · , (4.1)

where S(0)
M is the on-shell action, DM is the number of Killing vectors of M , and ℓ0 = (3Λ−1)1/2

and KM is a numerical constant obtained by evaluating (3.36). The existence of the different
saddles allow us to define meaningful couplings ΛC2 , λR2 through different combinations
of (4.1).

If we now consider the inclusion of a spin−1 gauge field we need to properly define
one more coupling, namely gYM . Computing (4.1) for S4, S2 × S2,CP2 allows us to define
unambiguously the 2 gravitational couplings λC2 , λR2 . To also define gYM we need to
compute (4.1) on CP2#kCP2. One would then be lead to question, is it possible to define an
infinite number of coupling constants in dS?. Contrary to the S-matrix case in which we have
the S-matrix to provide and infinite number of gauge invariant information to define them,
here we just have a finite set of gauge invariant information to define them. Thus we are
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left with the question of how do we properly define the couplings of a family of interacting
particles in dS spacetime? Already for different families of gauge fields as the one we found
in our universe the answer is not trivial. For k ≥ 5 the connected sum CP2#kCP2 develops a
moduli space of nonzero dimension [99, 100]. We expect that coupling gravity in dS with
different species of gauge fields allows us to probe this moduli space and find the proper way
to define the corresponding gauge couplings. These issues will be discussed somewhere else.

Breathing life into the edge modes. The 1−loop sphere path integral encodes Lorentzian
information in the form of Harish-Chandra characters of the corresponding UIR. In addi-
tion to the bulk degrees of freedom (3.31) there are edge modes (3.32) corresponding to
a 2−dimensional Discrete Series UIR. These UIRs have been shown to arise in the free
theory, thus we want to further understand their dynamics and whether they interact with
the bulk degrees of freedom.

We could envision considering an interacting gauge theory.20 The 2−point structure
of the interacting 2−point function can be studied with the Källén-Lehmann spectral de-
composition [101–108]

⟨O(x)O(x′)⟩I =
∫
C

d∆
2πiρ(∆)⟨O(x)O(x′)⟩Free (4.2)

where the contour C is around the values of ∆ defining the corresponding UIR, ρ(∆) is a non-
negative spectral function and ⟨O(x)O(x′)⟩Free is the corresponding free 2−point function.21

The free 2−point function can readily be computed from the partition function upon
introducing a suitable source term for the field O. Furthermore, since now the theory is
free this 2−point function will in turn be written in terms of (3.36). Thus characterising
the analytic properties of the spectral function ρ(∆) would characterise how, or if, the edge
modes interact with the bulk degrees of freedom.

For the spin−1 field we now know more about the edge modes. They correspond to a
SO(1, 2) Discrete Series representation with ∆ = 1 yielding the unitary character

χD+
∆⊕D−

∆
(t) = 2 q

1− q
,

a field theory realisation devoid of problems was recently constructed as a theory of a massless
scalar field with the shift symmetry gauged [43]. An in depth study of such theory, its
sphere path integral and the connection to BF-theories will also shed light into the physics
of the edge modes of the U(1) gauge field.

Furthermore, any gauge theory has also in its spectrum non-local operators such as
Wilson lines. Such operators might play a role in describing the edge modes of the theory upon
cutting the geometry with the cosmological horizon. This has been discussed in the context
of lattice gauge theories [109], understanding this for 4−dimensional de Sitter spacetime
is another future venue of research.

20For example a weakly interacting Einstein-Maxwell theory.
21Generalisations to operator with space-time indices is straightforward.
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Cornucopia of discrete series. The Discrete Series representation is ubiquitous to
the SO(1, d + 1) representation theory. From a physical point of view, in general, they
correspond to spin−s gauge fields. Furthermore, there are also fermionic counterparts of
these representations whose properties have yet to be fully understood [33, 65, 66]. For the
4−dimensional case the simplest example corresponds to a spin s = 3

2 field [45]. A field
theory realisation of this fermionic Discrete Series UIR requires an imaginary mass, rendering
the unitarity of the theory subtle. Following the discussion of the note, a proper 1−loop
calculation of the s = 3

2 field should yield the Harish-Chandra character of the corresponding
UIR, showing that the tension stemming from the imaginary mass parameter is an artifact
of the Lagrangian formulation [110].

Furthermore, there are also higher spin fermionic generalisation of the Discrete Series
representation (s = 5

2 ,
7
2 , · · · ) and p−form analogues [111]. Bosonic higher spin fields give one

of the most concrete microscopic realisations of de Sitter quantum gravity [112]. Properly
characterising the fermionic higher spin fields will allow to generalise this construction.
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A UIRs of SO(1, d + 1)

In this appendix we spell out the details and conventions we use to characterise irreducible
representations of SO(1, d + 1).

A.1 de Sitter isometry and Euclidean conformal group

The isomorphism between the de Sitter generators (2.2) and the d-dimensional Euclidean
conformal group follows from the identification22

Lij =Mij , L0,d+1 = D , Ld+1,i =
1
2(Pi +Ki) , L0,i =

1
2(Pi −Ki) . (A.1)

Here D is the dilatation operator, Pi correspond to translations, Ki give special confor-
mal transformations and Mij = −Mji are rotation generators in Rd. The commutation
relations (2.2) now take the form

[D,Pi] = Pi , [D,Ki] = −Ki , [Ki, Pj ] = 2δijD − 2Mij ,

[Mij , Pk] = δjkPi − δikPj , [Mij ,Kk] = δjkKi − δikKj ,

[Mij ,Mkl] = δjkMil − δikMjl + δilMjk − δjlMik .

(A.2)

22Embedding space indices are denoted A = (0, i, d + 1) with i, j = 1, 2, . . . , d the CFT indices.
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The generators LAB exponentiate to give SO(1, d + 1) group elements. Near the identity
we have

g(θ) = exp
(1
2θ

ABLAB

)
, (A.3)

with θAB = −θBA real parameters.
There are several subgroups within SO(1, d + 1). They are

K = SO(d+ 1), M = {e
1
2ω

ijMij , ωij ∈ R} = SO(d),
N = {eb·K , bi ∈ R}, Ñ = {ex·P , xi ∈ R}, A = {eλD, λ ∈ R},

(A.4)

K is the maximal compact subgroup of SO(1, d+1) and corresponds to the isometry group of
the constant time slices, namely Sd, in global coordinates. Notice that K differs from M, i.e.
the rotation group of Rd. The construction of the SO(1, d+ 1) UIR’s is similar to what we
do for the Poincare group. UIRs are build from irreps of the stability group of SO(1, d+ 1),
this happens to be the composition the NAM subgroups [22].23 If we realise SO(1, d + 1)
as the conformal group of Rd, the stability group corresponds to the transformations that
leave invariant the origin of Rd.

From (A.2), the quadratic Casimir (2.3) reads

C2 = 1
2LABL

AB = −D(D − d) + PiKi +
1
2M

2
ij . (A.5)

Here, 1
2M

2
ij is the quadratic Casimir of the subgroup M. As an example, for d = 3 we

find 1
2M

2
ij = −s(s + 1).

A.2 Classification of UIRs

Unitary (infinite dimensional) representations of SO(1, d+ 1) are labelled in terms of labels
for SO(1, 1)×SO(d) ⊂ SO(1, d + 1). These are the scaling dimension ∆ ∈ C for SO(1, 1)
and a highest-weight vector s = (s1, s2, · · · , sr) for SO(d). Recall that for SO(d)-groups
the number of components of s is r =

[
d
2

]
. The components of the highest weight vector

s follow the convention

s1 ≥ s2 ≥ · · · ≥ sr−1 ≥ |sr| . (A.6)

with si being all positive integer (or all half-integers) except for the last component sr which is
always positive for odd dimensional SO(2r+1), but can be either positive or negative for even
dimensional SO(2r). This sign is called ‘chirality’ of the representation. To any given highest
weight vector s we associate a Young diagram Ys in the usual way, it consisting of r-rows
such that there are si boxes in the i-th row (in the case of negative sr we ignore the sign). In
the following the relevant highest weight vectors are s = (s, 0, 0, . . . 0) and s = (n,m, 0 . . . 0)
will appear, their Young diagrams will be denoted Ys and Yn,m respectively.

Single-row Young diagrams, i.e. s = (s, 0, · · · , 0), labelled by a non-negative integer s
map to symmetric traceless tensors of SO(d) with s-indices on dSd+1. As customary we will

23For the Poincare group, the stability group is defined as the subgroup H ⊂ ISO(1,d) that leaves invariant
a given reference momentum. It is traditionally called little group.
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refer to them as the spin-s representation (see [23] for a review). More general highest-weight
vectors s correspond to fields of mixed symmetry [27–29, 33]. For any d ≥ 3, there are
four types of SO(1, d + 1) UIRs apart from the trivial representation [22, 23, 33]. Their
decomposition into the maximal compact subgroup SO(d + 1) is

• Principal series P∆,s: ∆ ∈ d
2 + iR and s ≥ 0. The restriction of P∆,s to the maximal

compact subgroup K of (A.4) is given by

P∆,s
⌋

SO(d+1)
=

∞⊕
n=s

s⊕
m=0

Yn,m , (A.7)

here Ym,n denotes a two-row Young diagram with n boxes in the first row and m boxes
in the second row.

• Complementary series C∆,s: 0 < ∆ < d when s = 0 and a < ∆ < d− 1 when s ≥ 1.
It has the same SO(d+ 1) contents as P∆,s

• Type I exceptional series Vp,0: ∆ = d+ p− 1 and s = 0 for p ≥ 1. The SO(d+ 1)
content of Vp,0 only consists of single-row Young diagrams:

Vp,0
∣∣∣
SO(d+1)

=
∞⊕
n=p

Yn (A.8)

• Type II exceptional series Us,t: ∆ = d+ t− 1 and s ≥ 1 with t = 0, 1, 2, · · · , s− 1.
The SO(d+ 1) content is

Us,t
∣∣∣
SO(d+1)

=
∞⊕
n=s

s⊕
m=t+1

Yn,m . (A.9)

The representations labeled by [∆, s] and [d−∆, s] in the principal and complementary series
are actually isomorphic, therefore we only consider ∆ with non-negative imaginary part in
principal series, and ∆ > d

2 in complementary series. Given a scaling dimension ∆ we use
the notation F∆,s for both the principal series or complementary series, each UIR (A.2) is
in a one to one correspondence with a free field in dSd+1

• F∆,s: describes spin−s massive fields of mass

m2 = ∆(d−∆) , for s = 0
m2 = (∆+ s− 2)(d+ s− 2−∆) , for s ≥ 1

(A.10)

• Us,t: describes partially massless gauge fields of spin s and depth t. For t = s− 1 the
field corresponds to an exactly massless gauge field, i.e. photon, graviton, etc.

• Vp,0: is expected to describe scalar fields of mass

m2 = (1− p)(d+ p− 1) , (A.11)

with some shift symmetry being gauged.
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B Eigenfunctions on SD

In this appendix we collect details for the characterisation of the eigenmodes of symmetric
traceless tensor fields of spin-s on Sd+1. For a full derivation we refer the reader to the classic
paper [31]. The S3 solutions needed in the bulk of the text to quantise the Maxwell field
are discussed in full detail in the next subsection.

B.1 Eigenfunctions

A symmetric traceless spherical harmonic (STSH’s) defined on Sd+1 is given by the symmetric
tensor eigenfunctions hµ1µ2···µs of the Laplace operator obeying

−∇2hµ1µ2···µs = λhµ1µ2···µs

∇µhµµ1···µs−1 = 0
gµνhµν···µs−2 = 0 ,

(B.1)

where gµν is the inverse metric on Sd+1. These functions admit an expansion in a complete
basis of STSH that we define by fn,µν···ρs = fn,(s) and satisfy

−∇2
(s)fn,(s) = λn,sfn,(s) , ∇ · fn,(s) = 0 , fαn,α,(s−1) = 0 (B.2)

with eigenvalues and degeneracies given by

λn,s = n(n+ d)− s , n ≥ s

Dd+2
n,s = gs

(n− s+ 1)(n+ s+ d− 1)(2n+ d)(n+ d− 2)!
d!(n+ 1)! ,

gs =
(2s+ d− 2)(s+ d− 3)!

(d− 2)!s! .

(B.3)

Defined like this, these eigenfunctions furnish irreducible representations of SO(d+ 2) corre-
sponding to two-row Young diagrams with n boxes in the first row and s boxes in the second
row. They are normalised with respect to the inner product

(h(s), h
′
(s)) =

∫
Sd+1

dd+1x
√
ghµ1···µsh′µ1···µs

, (B.4)

defined like this (B.2) the eigenmodes satisfy

(fn,(s), fm,(s)) = δnm , (B.5)

there is also a specific set of modes that correspond to the case n = s that obey

∇(µ1εµ2···µs+1) = 0 , (B.6)

it can be seen that defined like this it is a spin−s Killing tensor.
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B.2 Scalar and Vector Harmonics on S3

In this section we consider in detail the 3-sphere case, spelling out the explicit formulæ for
the scalar and vector harmonics. Special attention is paid to the relation between S3 and
the SU(2) group manifold. Group theoretic properties of the construction play an important
role in the representation theory of the gauge field in dS4.

The isometry group of S3 is given by SO(4) whose anti-Hermitian generators satisfy
(Kij = −Kji)

[Kij ,Kkl] = −δikKjl − δjlKij + δilKjk + δjkKil, (i, j = 1, . . . 4) (B.7)

The SO(4) algebra posses two Casimirs, they are given by

C = 1
8KijK

ij , C̃ = 1
32ϵ

ijklKijKkl , (B.8)

where ϵijkl is the 4-index Levi-Civita symbol. As well known, SO(4) ∼ SO(3) × SO(3). This
fact is easily recognised defining

L1 = K14 +K23 , R1 = K14 −K23 , (B.9)
L2 = K24 +K31 , R2 = K24 −K31 , (B.10)
L3 = K34 +K12 , R3 = K34 −K12 , (B.11)

Then,
[Li, Lj ] = −2ϵijkLk, [Ri, Rj ] = 2ϵijkRk, [Li, Rk] = 0 (B.12)

showing that {Li} and {Ri} give two commuting su(2) algebras. This result tells us that
unitary irreducible representations of SO(4) will be labelled by two SU(2) quantum num-
bers, namely

SO(4) labels : [jL, jR]

The Casimirs (B.8) in the {Li, Ri}-basis take the form

C = 1
2
[
(Li)2 + (Ri)2

]
, C̃ = 1

4
[
(Li)2 − (Ri)2

]
= −2 [jL(jL + 1) + jR(jR + 1)] , = −jL(jL + 1) + jR(jR + 1) (B.13)

On the other hand, it is well known that S3 is the group manifold of SU(2) and that we can
obtain the SO(4) Killing vectors from the bi-invariant metric on SU(2). We summarise below
the key concepts relating group theory to geometry. For a general introduction see [113, 114],
and [115] for related work.

S3 geometry and the SU(2) group. Start by parametrising an SU(2) element as

U(χ, θ, ϕ) = exp(iχ (n · σ)) (B.14)

with n = (sin θ cosϕ, sin θ sinϕ, cos θ) a unit vector on R3, and σi the Pauli matrices. The
SU(2)L left invariant 1-forms λ are defined as

λ := −iU−1dU , (B.15)
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they are invariant under L-translations U(χ, θ, ϕ) 7→ VLU(χ, θ, ϕ) for constant VL. These,
allow us to obtain the L-invariant metric as

ds2 = 1
2 tr[λ λ] = dχ2 + sin2 χ(dθ2 + sin2 θdϕ2) , (B.16)

which we recognise as the round metric on S3. Here χ, θ ∈ (0, π) and ϕ ∈ (0, 2π). The Ricci
and scalar curvature for the round S3 metric gab are

Rab[g] = 2gab, R[g] = 6. (B.17)

The enhancement from SU(2)L → SO(4) ∼ SU(2)L × SU(2)R arises from the fact that the
R-action U(χ, θ, ϕ) 7→ U(χ, θ, ϕ)VR is also a symmetry of (B.15). In other words, (B.16)
is bi-invariant under

U(χ, θ, ϕ) → VLU(χ, θ, ϕ)VR ,

for VL, VR independent constant SU(2) matrices.
Writing the Maurer-Cartan 1-forms as λ = λiσi we have

λ1 = sin θ cosϕdχ+
(1
2 sin 2χ cos θ cosϕ− sin2χ sinϕ

)
dθ

− 1
2
(
sin2χ sin 2θ cosϕ+ sin 2χ sin θ sinϕ

)
dϕ ,

λ2 = sin θ sinϕdχ+
(
sin2χ cosϕ+ 1

2 sin 2χ cos θ sinϕ
)

dθ

+ 1
2
(
sin 2χ sin θ cosϕ− sin2χ sin 2θ sinϕ

)
dϕ ,

λ3 = cos θ dχ− 1
2 sin 2χ sin θ dθ + sin2χ sin2 θdϕ .

The su(2)L Killing vectors Lj of the metric (B.16) are found to be duals to these 1-forms,
i.e. ⟨λi|Lj⟩ = δij (i, j = 1, 2, 3). They read

L1 =sin θ cosϕ∂χ + (cotχ cos θ cosϕ− sinϕ)∂θ − (cotχ csc θ sinϕ+ cot θ cosϕ)∂ϕ ,
L2 =sin θ sinϕ∂χ + (cotχ cos θ sinϕ+ cosϕ)∂θ + (cotχ csc θ cosϕ− cot θ sinϕ)∂ϕ ,
L3 =cos θ ∂χ − cotχ sin θ ∂θ + ∂ϕ . (B.18)

One can verify the L-vectors and L-invariant forms satisfy

(Li)a = gab(λi)b

In analogous way we define the right invariant forms

ρ := −idU U−1
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these are invariant under R-translations U 7→ UVR with VR = const. Writing ρ = ρiσi,
one obtains,

ρ1 = sin θ cosϕdχ+
(
sin2χ sinϕ+ 1

2 sin 2χ cos θ cosϕ
)

dθ

+ 1
2
(
sin2χ sin 2θ cosϕ− sin 2χ sin θ sinϕ

)
dϕ ,

ρ2 = sin θ sinϕdχ+
(1
2 sin 2χ cos θ sinϕ− sin2χ cosϕ

)
dθ

+ 1
2
(
sin 2χ sin θ cosϕ+ sin2χ sin 2θ sinϕ

)
dϕ ,

ρ3 = cos θ dχ− 1
2 sin2χ sin θ dθ − sin2χ sin2θ dϕ .

The su(2)R Killing vectors are then given by

R1 =sin θ cosϕ∂χ + (cotχ cos θ cosϕ+ sinϕ)∂θ + (cot θ cosϕ− cotχ csc θ sinϕ)∂ϕ ,
R2 =sin θ sinϕ∂χ + (cotχ cos θ sinϕ− cosϕ)∂θ + (cotχ csc θ cosϕ+ cot θ sinϕ)∂ϕ ,
R3 =cos θ ∂χ − cotχ sin θ ∂θ − ∂ϕ . (B.19)

One can verify that the two sets {Li} and {Ri} commute and that each of them close a
su(2) algebra (cf. (B.12))

[Li,Rj ] = 0, [Li,Lj ] = −2ϵijkLk, [Ri,Rj ] = 2ϵijkRk , (B.20)

Moreover, {Li} and {Ri} provide orthonormal basis in tangent space

Li · Lj = δij , Ri · Rj = δij

here A · B = gabA
aBb denotes scalar product with (B.16).24

It is also important to identify the so(3) ⊂ so(4) which generates the SO(3) stabiliser
in the coset representation S3 ≃ SO(4)

SO(3) . This SO(3) corresponds to the isometries of S2
θ,ϕ

in (B.16) with associated Killing vectors

J1 =sinϕ∂θ + cot θ cosϕ∂ϕ ,

J2 =− cosϕ∂θ + cot θ sinϕ∂ϕ ,

J3 =− ∂ϕ ,

(B.21)

These generators are related to Ri, Li as Ji = 1
2(Ri−Li) (cf. (C.5)). Defining the combination

Pi = 1
2(Ri + Li) we find

P1 =sin θ cosϕ∂χ + cotχ cos θ cosϕ∂θ − cotχ csc θ sinϕ∂ϕ ,

P2 =sin θ sinϕ∂χ + cotχ cos θ sinϕ∂θ + cotχ csc θ cosϕ∂ϕ , (B.22)
P3 =cos θ ∂χ − cotχ sin θ ∂θ .

24Similarly, the set of invariant forms satisfy

λi · λj = δij , ρi · ρj = δij .
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The so(4) algebra (B.20) in the {Ji,Pi}-basis then takes the form

[Ji,Jj ] = ϵijkJk , [Pi,Pj ] = ϵijkJk , [Ji,Pj ] = ϵijkPk ,

Making Pi 7→ ℓPi and taking the ℓ → ∞ limit we obtain the iso(3) isometry algebra of
R3 with Ji and Pi the rotation and momentum generators. The Casimirs (B.8) in the
{Ji, Pi} basis take the form

C =
[
(Pi)2 + (Ji)2

]
, C̃ = − J · P (B.23)

where J · P = JiPi. The second expression shows C̃ plays the role of helicity of the irrep.
Maurer-Cartan identities

dλ + iλ ∧ λ = 0 ⇝ dλi − ϵijkλj ∧ λk = 0 (B.24)
dρ − iρ ∧ ρ = 0 ⇝ dρi + ϵijkρj ∧ ρk = 0

The dragging of the 1-forms λi and ρi along the Killing vectors Li,Ri, using Cartan’s
formula LV = iV d + diV and (B.24), gives

LLiλ
j = −2ϵijlλl, LLiρ

j = 0 , (B.25)

These results imply that ρi are invariant under Li-dragging. Stated otherwise, the Li-
vectors generate right translations on U (and viceversa for Ri) [113, 114]. In terms of SO(4)
representations the [jL, jR] quantum numbers are

Li : [0, 1], Ri : [1, 0]

Killing vectors and the Laplacian. From the Killing vector equation

∇aVb +∇bVa = 0 ⇝ ∇aVa = 0

Contracting with ∇a, using (3.8) and (B.17) one obtains,25

S3 Killing vectors : −∇2
(1)Va = 2Va (B.26)

This means Killing vectors of S3 are transverse eigenfunctions of the Laplacian with eigenvalue
2 (cf. (B.40)).

Casimirs and Laplace-Beltrami operators. The abstract Casimir operators in the
SO(4) algebra can be translated into second order differential operators acting on fields
via the Lie derivative

C = 1
2
[
(Li)2 + (Ri)2] 7→ 1

2
[
£Li£Li + £Ri£Ri

]
(B.27)

25Our conventions for the Riemann tensor are

[∇a,∇b]V c = Rc
dabV d.
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It is a well known fact that for maximally symmetric spaces this operators are related to
the Laplace-Beltrami operator

∇2 = gab∇a∇b

with ∇a the covariant derivative and a, b . . . denoting vector indices. In the following we
quote the relations for scalar and vector fields.

Scalar fields: the S3-Laplace-Beltrami operator on scalars reads

∇2
(0) =

1
√
g
∂a(

√
g gab∂b) =

[
∂2
χ + 2 cotχ∂χ +

1
sin2 χ

∇2
S2(0)

]
, (B.28)

where
∇2

S2(0) =
[
∂2
θ + cot θ∂θ +

1
sin2 θ

∂2
ϕ

]
The Lie derivative on scalars acts as

£V ϕ = V [ϕ] = V a∂aϕ

The Casimir for the so(3) subgalgebra generated by {Ji} coincides with the Laplacian for S2
θ,ϕ

(£Ji)2ϕ = (Ji)2ϕ = ∇2
S2ϕ , (B.29)

Furthermore, the so(4) Casimir C in (B.8) acting on scalars coincides with the Laplace-
Beltrami on S3

Cϕ = 1
2
[
(Li)2 + (Ri)2

]
ϕ = ∇2

(0)ϕ , (B.30)

The remaining Casimir vanishes for scalars leading to26

C̃ϕ = −J · Pϕ = 0 ⇝ (Li)2ϕ = (Ri)2ϕ = ∇2
(0)ϕ (B.31)

Expressing the non-trivial Casimir in the {Ji,Pi}-basis one finds

∇2
(0) = (Ji)2 + (Pi)2 , (B.32)

Scalar harmonics quantum numbers. The eigenfunctions of the scalar Laplace-Beltrami
operator (B.28) are classified with quantum numbers k

2 , l,m associated to (Li)2 = (Ri)2,
(Ji)2 and J3 respectively. Explicitly,27

−∇2
(0)Y

klm = k(k + 2)Yklm

−∇2
S2(0)Yklm = l(l + 1)Yklm

iJ3Yklm = mYklm (B.33)

where
k = 0, 1, · · · , 0 ≤ l ≤ k and − l ≤ m ≤ l ,

26The vanishing of C̃ follows from the spinless character of ϕ.
27The normalisation of the su(2) generators in (B.20) imply that the allowed values for the L-Casimir are

−(Li)2 = 4jL(jL + 1) (similarly for the R-Casimir).
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From (B.30) and (B.31) we conclude that scalar harmonics transform under su(2)L×su(2)R as

Yklm : [jL, jR] = [k2 ,
k

2 ]

The explicit expression for the Yklm can be obtained from the S2 spherical harmonics Y lm

inserting in (B.28) the ansatz

Yklm(χ, θ, ϕ) = 1
√
akl

Rkl(χ)Y lm(θ, ϕ) . (B.34)

The solutions for Rkl(χ), known as Fock harmonics, take the form [70, 88, 115–117],

Rkl(χ) = sinl χ d
l+1(cos(k + 1)χ)
d(cosχ)l+1 , akl =

(k + 1)π
2

(k + l + 1)!
(k − l)! . (B.35)

The orthogonality relations for Yklm read∫
d3ΩYklm(Yk′l′m′)∗ = δkk

′
δll

′
δmm

′
. (B.36)

The harmonics satisfy the following properties under parity on S2 and S3

P̂2(Yklm) ≡ Yklm(χ, π − θ, π + ϕ) = (−1)lYklm(χ, θ, ϕ)
P̂3(Yklm) ≡ Yklm(π − χ, π − θ, π + ϕ) = (−1)k−1Yklm(χ, θ, ϕ)

(B.37)

Vector fields and their quantum numbers. The Lie derivative on vectors is

£V A = [V ,A] = (V a∂aA
b −Aa∂aV

b)∂b

The relation (B.30) now turns into

CAa = 1
2
[
(£Li)2 + (£Ri)2]Aa = (

∇2
(1) − 2

)
Aa (B.38)

whereas for C̃, identified as an helicity operator in [44], one obtains

C̃Aa = −£Pi£JiA
a = ϵabc

√
g
∂bAc =

1
2(⋆dA)a (B.39)

where ϵ123 = +1 is the Levi-Civita tensor and ⋆ denotes de Hodge dual. The appearance of
a “mass”-looking term on the r.h.s. of (B.38) for non-zero spins is generically expected and
arises from squaring the spinorial matrix Sij in the decomposition (2.4).

Traditionally, the vector harmonics are worked out from the scalar harmonics (B.34) [70].
There are three different classes denoted by Sklm(A)a with A = 0, 1, 2. They satisfy

−∇2
(1)S

klm
(0) = (k(k + 2)− 2)Sklm

(0) , ∇ · Sklm
(0) = −

√
k(k + 2)Yklm,

−∇2
(1)S

klm
(1,2) = (k(k + 2)− 1)Sklm

(1,2) , ∇ · Sklm
(1,2) = 0 ,

(B.40)

−∇2
S2(1)S

klm
(A) = l(l + 1)Sklm

(A) ,

i£J3Sklm
(A) = mSklm

(A)
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here ∇2
(1) denotes the vector Laplacian on S3. Notice S(0) represent longitudinal modes while

S(1,2) correspond to transverse modes. In addition, comparing with (B.26) we learn that the
k = l = 1 eigenvectors coincide with the six Killing vectors28 of S3:

{Li,Ri} ∼ {S11m
(1) ,S11m

(2) }, m = 0,±1

Finally notice that the eigenvalues for the transverse modes in (B.40) match the general
expression (B.3) if we make k 7→ n and use d = 2 for the 3-Sphere.

Vector harmonics are completely determined by the scalar ones [70, 88]. The longitudinal
one is given by

Sklm(0)a =
1√

k(k + 2)
∇aYklm, k = 1, 2, . . . , l = 0, 1, 2, . . . (B.41)

while the transverse ones are given by29

Sklm(1)a =
1√

l(l + 1)
εa
bc∇bYklm∇c cosχ (B.42)

Sklm(2)a =
1

k + 1εa
bc∇bS

klm
(1)c k, l ∈ N, 1 ≤ l ≤ k (B.43)

here εabc ≡ ϵabc/
√
g is the covariant Levi-Civita tensor. Their orthogonality relations reads∫

d3Ω√g gabSklm(A)a(Sk
′l′m′

(A′)b )∗ = δAA′δkk
′
δll

′
δmm

′
. (B.44)

While the completeness relation is

∑
A

∑
k,l,m

Sklm(A)a(Ω)
(
Sklm(A)b(Ω̄)

)∗
= δ(3)(Ω− Ω̄)

√
g

gab , A = 0, 1, 2 (B.45)

Thus, any vector field on S3 admits an expansion of the form

V (Ω) =
∑
A

∑
k,l,m

V klm
(A) Sklm

(A) (Ω) . (B.46)

We now discuss the SO(4) representation furnished by (B.40) in terms of su(2)L× su(2)R
quantum numbers. From (B.40) we recognise that S(0) and S(1,2) belong to different irreps
as they have different C = 1

2
[
(£Li)2 + (£Ri)2] eigenvalues

CSklm
(0) = −k (k + 2)Sklm

(0)

CSklm
(1,2) = − (k + 1)2 Sklm

(1,2) (B.47)

It turns out that we need to combine S(1,2) to obtain C̃ eigenstates. Defining30

Sklm
(±) = 1√

2
(Sklm

(2) ± Sklm
(1) ) , Sklm

(0) = Sklm
(0) , (B.48)

28The equivalence of (B.40) and (B.26) was shown in [44].
29Sklm

(1) correspond to V (v;Llm) and Sklm
(2) ↔ V (s;Llm) in the notation of [44].

30Notice there is no relative i factor in (B.48) as compared to the case of circular polarizations in flat space.
This implies that under conjugation (S(±))† = (−)mSkl(−m)

(±) .
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we find for C̃ = 1
2
[
(£Li)2 − (£Ri)2] that,

C̃Sklm
(0) = 0 ,

C̃Sklm
(±) = ∓(k + 1)Sklm

(±) , (B.49)

Comparing (B.48), (B.49) with (B.13) we find [jL, jR] to be

Sklm
(0) :

[
k

2 ,
k

2

]
, Sklm

(±) :
[
k ± 1
2 ,

k ∓ 1
2

]
with k = 1, 2, . . . . (B.50)

Recalling that C̃ gives the projection of Ji on the direction of Pi, the modes Sklm
(±) have opposite

Chirality. The result of vectors transforming in jL = jR, jL = jR+1 and jR = jL+1 UIRs of
SO(4) can be understood as follows. Any vector field can be expanded as a linear combination
of left-invariant vectors Li. These LIV transform in the [0,1] irrep. The coefficients of
an arbitrary vector in the {Li}-basis can in turn be expanded in terms of Yklm, which as
mentioned above transform in the [k2 ,

k
2 ]. Hence, we conclude that

⊕
k

(
[1, 0]⊗

[
k

2 ,
k

2

])
=
⊕
k

([
k

2 − 1, k2

]
︸ ︷︷ ︸

S(−)

⊕
[
k

2 ,
k

2

]
︸ ︷︷ ︸

S(0)

⊕
[
k

2 + 1, k2

]
︸ ︷︷ ︸

S(+)

)

here k = 0, 1, 2, . . .. Notice that when k = 0 the first two terms are absent and when k = 1
first term in the r.h.s. is absent. In this way we recover (B.50).

A word on notation. SO(4) is rank-2 and not simple, hence it is customary to find two
alternative notations to label its irreps:

(i) [jL, jR]: in terms of su(2)L × su(2)R quantum numbers,

(ii) s = (s1,±s2) (Ys1,s2): in terms of the two Cartan of SO(4).

Being rank-2, Young tableaux consist of two rows. Scalar harmonics on Sd correspond to
single-row representations with n-boxes (s = (n, 0)), these correspond to Yn of SO(d+1) in the
text. On the other hand, transverse vector harmonics correspond to two-row representations
with one box in the second row, these are Ys = Yn,±1 in the text. The ± notation in the irreps
relate to the sign of the second Casimir, namely C̃. The relation between the two notations is

s1 = jL + jR, s2 = jL − jR ↭ jL = 1
2(s1 + s2), jR = 1

2(s1 − s2)

C de Sitter geometry

The D = d+ 1 dimensional de Sitter space is a maximally symmetric spacetime with

Rµναβ [g] =
1
ℓ2
(gµαgνβ − gναgµβ), Rµν [g] =

1
ℓ2
(D − 1)gµν , R[g] = D(D − 1)

ℓ2
.

We will denote de Sitter space alternatively as dSD or dSd+1.
The hyperboloid (2.1) can be fully covered with

X0 = ℓ cot t , X i = ℓ
1

sin t n
i , i = 1, . . . , d+ 1 (C.1)
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here t ∈ (−π, 0), and ni ∈ Rd+1 is a unit vector. The induced metric on the hyperboloid is

de SitterD : ds2

ℓ2
= −dt2 + dΩ2

d

sin2 t
, (C.2)

where dΩ2
d denotes the round metric on Sd. Notice that the radius of Sd shrinks for

t ∈ (−π,−π/2) and expands for t ∈ (−π/2, 0).

de Sitter4: we now consider the case D = 4. The isometry group is SO(1, 4), and we
parameterise the unit vector ni in (C.1) as

n1 = sinχ sin θ cosϕ, n2 = sinχ sin θ sinϕ, n3 = sinχ cos θ, n4 = cosχ

With this parametrisation the round 3-sphere metric reads

dΩ2
3 = dχ2 + sin2 χ(dθ2 + sin2 θdϕ2)

Christoffell symbols:

Γttt = Γtχχ = Γχtχ = Γθtθ = Γϕtϕ = Γtθθ
sin2 χ

=
Γtϕϕ

sin2 χ sin2 θ
= − cot t (C.3)

Γχθθ =
Γχϕϕ
sin2 θ

= − cosχ sinχ, Γθχθ = Γϕχϕ = cotχ, Γθϕϕ = − cos θ sin θ, Γϕθϕ = cot θ

Killing vectors:

D = sin t cosχ∂t + cos t sinχ∂χ (C.4)

J1 = sinϕ∂θ + cot θ cosϕ∂ϕ

J2 = − cosϕ∂θ + cot θ sinϕ∂ϕ

J3 = −∂ϕ (C.5)

M±1 =∓ sin t sinχ sin θ cosϕ∂t + (1± cos t cosχ) sin θ cosϕ∂χ

+ (cotχ± cos t cscχ)(cos θ cosϕ∂θ − csc θ sinϕ∂ϕ)
M±2 =∓ sin t sinχ sin θ sinϕ∂t + (1± cos t cosχ) sin θ sinϕ∂χ

+ (cotχ± cos t cscχ)(cos θ sinϕ∂θ + csc θ cosϕ∂ϕ)
M±3 =∓ sin t sinχ cos θ ∂t + (1± cos t cosχ) cos θ ∂ψ

− (cotχ± cos t cscχ) sin θ ∂θ (C.6)

Their algebra is

[Ji,Jj ] = ϵijk Jk, [Ji,M±j ] = ϵijkM±k

[D,M±i] = ∓M±i, [M±i,M∓j ] = 2D δij + 2ϵijk Jk (C.7)

These commutation relations define the SO(1,4) algebra. The (quadratic) Casimir CSO(1,4)
of the algebra is

CSO(1,4) = −D(D − 3) + M−iM+i + J2 (C.8)
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As expected from the previous section, this Casimir acting as Lie derivatives (see (B.27))
relates to the Laplace-Beltrami operator on dS. In particular

Casimir on scalars : CSO(1,4)ϕ = gµνDµDνϕ

whereas for vectors we have

Casimir on vectors : CSO(1,4)A
µ = (gµνDµDν − 3)Aµ (C.9)

here Dµ is the covariant derivative on de Sitter spacetime.
The maximal compact subgroup SO(4)⊂ SO(4,1) acts closely on S3. Their generators

are given by the {Ji,Pi} where (cf. (B.22))

Pi =
1
2(M+i + M−i) ⇝


P1 = sin θ cosϕ∂χ + cotχ cos θ cosϕ∂θ − cotχ csc θ sinϕ∂ϕ
P2 = sin θ sinϕ∂χ + cotχ cos θ sinϕ∂θ + cotχ csc θ cosϕ∂ϕ
P3 = cos θ ∂χ − cotχ sin θ ∂θ .

In a similar way we define the boost operators

Ki =
1
2(M+i − M−i) (C.10)

which give

K1 =− sin t sinχ sin θ cosϕ∂t + cos t cosχ sin θ cosϕ∂χ

+ cos t cscχ cos θ cosϕ∂θ − cos t cscχ csc θ sinϕ∂ϕ (C.11)
K2 =− sin t sinχ sin θ sinϕ∂t + cos t cosχ sin θ sinϕ∂χ

+ cos t cscχ cos θ sinϕ∂θ + cos t cscχ csc θ cosϕ∂ϕ (C.12)
K3 =− sin t sinχ cos θ ∂t + cos t cosχ cos θ ∂χ − cos t cscχ sin θ ∂θ . (C.13)

For completeness we write the algebra in the {D,Ji,Pi,Ki} basis. It reads

[Ji,Jj ] = ϵijk Jk, [Ji,Pj ] = ϵijkPk, [Ji,Kj ] = ϵijkKk

[Pi,Pj ] = ϵijk Jk, [Ki,Kj ] = ϵijkJk

[D,Pi] = −Ki, [D,Ki] = −Pi, [Pi,Kj ] = −D δij

The Casimir (C.8) takes the form

CSO(1,4) = −D2 − (Ki)2 + (Pi)2 + (Ji)2

A couple of comments are in order:

i. Under the identification D 7→ D, M+i 7→ Ki, M−i 7→ Pi the algebra (C.7) coincides
with (A.2). It is important to remark that although M±i act as ladders w.r.t. D, the
reality conditions in de Sitter differ from those implemented in traditional CFT, here

(M±i)† = −M±i

which differs from (M±i)† = −M∓i (equivalently to (Pi)† = −Ki) appearing in
Lorentzian CFT.
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ii. If we evaluate the de Sitter Killing vectors (C.4)–(C.6) on future infinity I+, i.e. t = 0
we obtain the conformal Killing vectors of S3 with non-zero divergence.

iii. It is amusing to notice that the conformal Killing vectors on S3 referred to in ii. are
closed, they can be derived from potentials. Explicitly, in the asymptotic future t = 0,

(D)µ = ∂µ(− cosχ)
(K1)µ = ∂µ(sinχ sin θ cosϕ)
(K2)µ = ∂µ(sinχ sin θ sinϕ)
(K3)µ = ∂µ(sinχ cos θ)

Conserved inner product and de Sitter invariance: given two eigenfunctions A(1,2)
µ of

the Laplace-Beltrami operator possesing the same eigenvalue, namely

□dSA
(1)
µ = λA(1)

µ , □dSA
(2)
µ = λA(2)

µ , (C.14)

an inner product for gauge field configurations is constructed out from the current

jµ[A(1), A(2)] := i
[
(A(1)

ρ )∗DµA
(2) ρ − (A(2)

ρ )∗DµA
(1) ρ

]
⇝ Dµj

µ = 0 . (C.15)

Its conservation follows from (C.14). The expression for the inner product in global co-
ordinates is

(A(1), A(2)) := −i
∫
dΩ

√
−gjt (C.16)

To show the invariance of the inner product under de Sitter isometries we compute the
variation δjµ under the action of a de Sitter Killing vector Kµ

δjµ = £Kj
µ = KρDρj

µ − jρDρK
µ = Dρ(Kρjµ − jρKµ)

in passing to the last expression on the right we used that j and K are conserved. It then
follows that the integrand in (C.16) changes as

√
−g δjt = ∂a(

√
−g(Kajt −Ktja)) .

Being a total derivative, it vanishes upon integration over the closed spatial sections of
de Sitter.

D Glossary

• LAB: anti-hermitian generators of SO(1, d+ 1).

• Kij : anti-hermitian generators of SO(d+ 1).

• gµν : Spacetime metric.

• gab: 3−sphere metric.

• Li,Ri: Generators of SO(4) under the SO(4) ≃SU(2)L×SU(2)R decomposition.

• Ji: Generators of SO(3) in the coset representation S3 ≃ SO(4)
SO(3) .

• D,Ki: de Sitter boosts
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