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1 Introduction

It has been established that higher-form symmetries [1] (see also refs. [2–12]) provides us
with a powerful tool for studying nonperturbative aspects of quantum field theory [13–22].
A first attempt to utilize higher-form symmetries to quantum chromodynamics(QCD) with
massless flavor degrees of freedom is made in [23] on the basis of a careful analysis of faithful
group action of the symmetries for the case of a certain ratio of the number of the flavors
to that of the colors. The paper [24] studies QCD-like theories of gauge group SU(Nc) with
the quark fields belonging to an irreducible representation R. It is found there that the
QCD-like theories admit discrete one-form symmetries for generic R and flavors as well.
Furthermore, turning on the background gauge fields for the flavor and one-form symme-
tries, the associated ’t Hooft anomaly is worked our and called the baryon-color-flavor(BCF)
anomaly. For recent studies of the BCF anomaly, see [25–28]. In particular, by coupling the
QCD-like theories with a neutral and complex Higgs field, the paper [25] focuses on an RG
flow to an axion system that is triggered by the Higgs vev. It is shown that the low energy
effective theory is given by a BF-type action and reproduces the BCF anomaly as expected
from the ’t Hooft anomaly matching condition. It is also pointed out that three-group struc-
ture is manifested as a Green-Schwarz(GS) transformation [29] of a dynamical three-form
gauge potential under a discrete one-form gauge transformation. It is known that the math-
ematical structure of higher-form symmetries is naturally formulated in terms of higher-
group. Roughly speaking, the higher-group is a set of the groups that describe higher-form
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symmetries including correlations among them. For recent developments in understanding
the QFT dynamics from the viewpoint of higher-group structure, see [30–42] for instance.

It is a long-standing problem to determine the phase structures of the QCD-like the-
ories such as spontaneous chiral symmetry breaking, unbroken chiral symmetry leading to
massless baryons, conformal window, etc. In this paper, we assume that the QCD-like the-
ories exhibit spontaneous chiral symmetry breaking. Then, the low energy effective theory
is given by nonlinear σ-models that are constructed from nonlinear realization of the asso-
ciated chiral symmetry breaking. The ’t Hooft anomaly matching condition for the chiral
flavor symmetry requires that the Wess-Zumino-Witten(WZW) term [43, 44] be added to
the nonlinear σ-model. It is found that a naive generalization of the WZW term to the cases
in the presence of the BCF background fields is insufficient because the BCF anomaly con-
tains a mixed ’t Hooft anomaly between a discrete axial symmetry and a discrete one-form
symmetry. It is argued that the mixed anomaly can be reproduced by adding an interaction
term between a U(1) meson and a background two-form gauge field. This term is not left
unchanged under a one-form gauge symmetry transformation. It is found that the one-form
symmetry is restored by introducing a background three-form gauge field that makes a GS-
type transformation under the one-form gauge symmetry transformation. This is a manifes-
tation of three-group structure in the low energy effective action of the QCD-like theories.

We also examine a quantum inconsistency associated with the U(1) meson, which is re-
alized as an ambiguity of how the low energy effective action is uplifted to a five-dimensional
one that has manifest gauge invariance. We call it an operator-valued ambiguity. This is
required to vanish for the consistency of the quantum QCD-like theories. It is discussed
that in the presence of the BCF background gauge fields, both the WZW term and the
U(1) meson term suffer an operator-valued ambiguity. However, no ambiguity arises in the
total effective action because of cancellation of the ambiguities from the two terms.

The organization of this paper is as follows. In section 2, we review the BCF anomalies
in the QCD-like theories. Section 3 is devoted to a derivation of the low energy effective ac-
tion of the QCD theories that reproduces the BCF anomaly, assuming that a quark bilinear
condensate gives rise to spontaneous chiral symmetry breaking. We also show cancellation
of the operator-valued ambiguity associated with the U(1) meson. We end this paper with
discussions in section 4. In appendix A, we demonstrate in detail how to obtain the low
energy effective action when the quark fields belong to a real representation of SU(Nc).

2 Review of BCF anomaly

In this section, we review the BCF anomaly [24].
We consider a QCD-like SU(Nc) gauge theory coupled with massless fermions in (3+1)-

dimensional spacetime. The matter content of the QCD-like theory we analyze reads

SU(Nc) U(Nf )L U(Nf )R
ψ ai
Lα R �1 10

ψα̇ai
′

R R 10 �1
a adj. 10 10

(2.1)

– 2 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
5

Here, (ψ ai
Lα, ψ

α̇ai′
R ) are fermions, and a = aµdx

µ is an su(Nc)-valued 1-form gauge field. R
denotes a representation of SU(Nc) to which the fermions belong. adj. means the adjoint
representation of SU(Nc). The undotted and dotted indices α, α̇ are the left- and right-
handed spinor indices for the Lorentz symmetry, α, α̇ = 1, 2. The index a runs over the
dimension of the gauge group SU(Nc), a = 1, 2, · · · , dimR. The indices i, i′ = 1, . . . , Nf

are the chiral flavor indices of U(Nf )L and U(Nf )R, respectively. The action is given by

S=
∫
d4x

(
− 1

2g2 trfµνfµν + ψ̄(i∂µ+aRµ )ψ+ θ

32π2 ε
µνρσ trfµνfρσ

)
, ψ=

(
ψLα
ψα̇R

)
. (2.2)

Here, aR is the dynamical SU(Nc) gauge field that couples with the matter fields in the rep-
resentation R. It may be complex (e.g., fundamental) or real (e.g., adjoint) representation.
When R is real, the chiral flavor symmetry enhances as

U(Nf )L ×U(Nf )R → U(2Nf ) . (2.3)

This is because we can define an undotted spinor Ψ as

ΨaI
α = (ψaiLα, ψ̄ a

Rαi′) , (I = 1, 2, · · · , 2Nf ) (2.4)

where
ψ̄ αa
Ri′ =

(
ψα̇ai

′
R

)∗
= εαβ ψ̄ a

Rβi′ . (2.5)

This fermion Ψ belongs to the defining representation of U(2Nf ). U(1)V is identified with
the Cartan part of SU(2Nf ) with the generator given by INf ⊕ (−INf ). U(1)A is the U(1)
subgroup of U(2Nf ) that is orthogonal to the semi-simple SU(2Nf ).

2.1 ABJ and mixed ’t Hooft anomalies

We turn on the background gauge fields for the flavor subgroup SU(Nf )V ×U(1)B×U(1)A,
which are denoted by A, AB and χ, respectively. Here, SU(Nf )V is the vector-like subgroup
of SU(Nf )L × SU(Nf )R, and U(1)L ×U(1)R = (U(1)B ×U(1)A)/Z2 with Z2 acting as

Z2 : (eiαV , eiγ5αA) ∈ U(1)V ×U(1)A → −(eiαV , eiγ5αA) .

Then, the fermionic part of the Lagrangian becomes

Lf = ψ̄γµ
(
i∂µ + aRµ ⊗ INf + Id(R) ⊗Aµ − (ABµ − γ5χµ) Id(R) ⊗ INf

)
ψ

= ψ̄γµ (i∂µ + Lµ)PL ψ + ψ̄γµ (i∂µ +Rµ)PR ψ , (2.6)

where PL,R = (1∓ γ5)/2 and

L = aR ⊗ INf + Id(R) ⊗A− (AB + χ) Id(R) ⊗ INf = aR ⊗ INf + Id(R) ⊗ ĀL ,
R = aR ⊗ INf + Id(R) ⊗A− (AB − χ) Id(R) ⊗ INf = aR ⊗ INf + Id(R) ⊗ ĀR . (2.7)

Here,

ĀL = A− (AB + χ)INf = Ā− χINf , ĀR = A− (AB − χ)INf = Ā+ χINf , (2.8)
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with Ā = A − ABINf being the SU(Nf )V × U(1)B gauge field. I is an identity matrix of
rank equal to the suffix and d(R) = dimR. We regard aR as a background gauge field for
the moment and define the effective action

eiΓ[L,R] =
∫
DψDψ̄ ei

∫
d4xLf .

The consistent chiral anomaly, which is written in the L-R form, reads

δΓ = −1
24π2

∫
Tr
[
λL d

(
LdL − i

2L
3
)
− λR d

(
RdR− i

2R
3
)]

, (2.9)

where the infinitesimal gauge transformations for L and R are given by

δL = dλL − iLλL + iλLL , δR = dλR − iRλR + iλRR .

Here, the symbol “Tr” is a trace taken over the product space of the representation R

of su(Nc) and the fundamental representation of su(Nf ). The consistent anomaly can be
rewritten into a covariant form by adding the local counter term [45, 46]

Y[L,R] = −1
48π2

∫
tr
[
(FR + FL)(RL− LR) + i(R3L − L3R)− i

2RLRL
]
, (2.10)

with
FL = dL − iL2 , FR = dR− iR2 .

This makes the vector-like flavor symmetry anomaly free. It is easy to verify that

Y[L,R] = Yc[a, χ] + Yf [Ā, χ] . (2.11)

Here,

Yc = −2NfT (R)
24π2

∫
χ tr

(
4fa+ ia3

)
, Yf = −d(R)

24π2

∫
χ tr

(
4F̄ Ā+ iĀ3

)
. (2.12)

a is the dynamical SU(Nc) gauge field for R = �, and with

f = da− ia2 , F̄ = dĀ− iĀ2 .

Here, the symbol “tr” is a trace taken over the fundamental representation of either su(Nc)
or su(Nf ). Throughout this paper, we assume dχ = 0, which suffices for later purposes.
With the local counter term Y, the chiral anomaly takes the form

δ(Γ + Y) = 1
4π2

∫ [
2T (R) tr(α̂) tr(f ∧ f) + d(R) tr(α̂ F̄ ∧ F̄ )

]
. (2.13)

Here, α̂ is a U(Nf )L ×U(Nf )R rotation angle given by

1
2(λR − λL) = Id(R) ⊗ α̂ . (2.14)

The U(1)A rotation angle αA is equal to the trace part of α̂:

α̂ = αAINf + α , trα = 0 . (2.15)
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The chiral anomaly for the U(1)A transformation is given by

δA(Γ + Y) = 1
4π2

∫
αA
[
2NfT (R) tr(f ∧ f) + d(R) tr(F̄ ∧ F̄ )

]
= 1

4π2

∫
αA
[
2NfT (R) tr(f ∧ f) + d(R) tr(F ∧ F ) +Nfd(R)FB ∧ FB

]
. (2.16)

It follows from the quantization condition

1
8π2

∫
tr(f ∧ f) ∈ Z ,

that the Adler-Bell-Jackiw(ABJ) anomaly [47, 48] leaves Z4NfT (R) ⊂ U(1)A unbroken such
that

αA = 2πnA
4NfT (R) , (2.17)

with nA ∈ Z mod 4NfT (R). We also note that the subgroup Z2 ⊂ Z4NfT (R) acts as

(ψL, ψR)→ −(ψL, ψR) , (2.18)

which is an element of the vector-like U(1)B. As found above, Y makes the vector-like
flavor group anomaly free so that the anomaly free U(1)A subgroup is given by Z2NfT (R) =
Z4NfT (R)/Z2 with nA ∈ Z mod 2NfT (R).

As we will see shortly, the BCF anomaly is obtained by incorporating the background
gauge potentials for one-form symmetries into (2.16) in a manner consistent with the gauge
symmetries.

2.2 BCF anomaly

We have discussed conventional anomalies between axial, baryon, and flavor symmetries.
In addition, this system can have a ZNc center symmetry for the gauge group SU(Nc) if
the fermions belong to a real representation of SU(Nc). The center symmetry for the gauge
group can be recently understood as a one-form symmetry associated to a ZNc rotation of
a Wilson loop in the fundamental representation. Furthermore, we can also have one-form
symmetries even if the fermions belong to the (anti-)fundamental representation using a
simultaneous rotation of the baryon symmetry. The one-form symmetry also have a mixed
’t Hooft anomaly with the baryon and flavor symmetries, which is called the BCF anomaly.

To work out the anomaly, we need to specify faithful group action of the symmetries
on the quark fields ψL and ψR. As noted in [24], it is given by

SU(Nc)× SU(Nf )V ×U(1)B
ZNc × ZNf

, (2.19)

where the identifications of the elements in SU(Nc) × SU(Nf )V × U(1)B by the discrete
group ZNc × ZNf are given by

ZNc : (g, gV , gB)→ (e2πi/Ncg, gV , e
−2πin/NcgB) ,

ZNf : (g, gV , gB)→ (g, e2πi/Nf gV , e
−2πi/Nf gB) , (2.20)
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with
(g, gV , gB) ∈ SU(Nc)× SU(Nf )V ×U(1)B . (2.21)

Here, the elements g and gV are realized in the fundamental representation. The quantity
n is the N -ality of the representation R. Let gR be the SU(Nc) transformation matrix in
the representation R. Then, gR ⊗ gV ⊗ gB is left invariant under ZNc ×ZNf , showing that
the quotient (2.19) leads to faithful group action on ψL and ψR.

Now, we define the gauge fields for (2.19). They are obtained by starting with the direct
product of the SU(Nc)/ZNc and SU(Nf )V /ZNf bundles, and then requiring the constraints
to be explained shortly. As discussed in [12], the SU(Nc)/ZNc and SU(Nf )V /ZNf bundles
are constructed by lifting a and A to a U(Nc) and a U(Nf ) gauge fields

â = a+ 1
Nc
CINc , Â = A+ 1

Nf
CV INf , (2.22)

respectively. â and Â are realized in the fundamental representations of u(Nc) and u(Nf ),
respectively. C and CV are one-form gauge fields which are assumed to be properly nor-
malized by the flux quantization conditions on a closed surface S,∫

S
dC ,

∫
S
dCV ∈ 2πZ . (2.23)

The field strengths for â and Â are defined as

f̂ = dâ− iâ ∧ â , F̂ = dÂ− iÂ ∧ Â . (2.24)

Note that a, 1
Nc
C, A, and 1

Nf
CV in (2.22) are not properly normalized one-forms, but â

and Â are properly normalized,

1
2π

∫
S

tr f̂ ∈ Z ,
1

8π2

∫
tr(f̂ ∧ f̂) ∈ Z ,

1
2π

∫
S

tr F̂ ∈ Z ,
1

8π2

∫
tr(F̂ ∧ F̂ ) ∈ Z , (2.25)

on a spin manifold.
SU(Nc)/ZNc and SU(Nf )/ZNf gauge fields are obtained by considering U(Nc) and

U(Nf ) gauge fields that are defined to obey the gauge transformation laws at double
overlaps of the coordinate patches:

âj = ĝji âi ĝ
−1
ji + iĝji dĝ

−1
ji + ΛjiINc , Âj = ĝV ji Âi ĝ

−1
V ji + iĝV ji dĝ

−1
V ji + ΛV jiINf . (2.26)

This implies that C and CV transform as

C → C +NcΛ , CV → CV +NfΛV . (2.27)

The gauge fields â and Â can be regarded as SU(Nc)/ZNc and SU(Nf )V /ZNf gauge fields
respectively because (2.27) gauges away U(1) parts of the U(Nc) and U(Nf ) gauge fields.

The transformation law (2.26) can be extended to that of a gauge potential for the
representation R of u(Nc):

âRj = ĝRji âi ĝ
R−1
ji + iĝRjidĝ

R−1
ji + nΛjiId(R) , (2.28)
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with gR being a U(Nf ) gauge transformation for the representation R. For the purpose of
constructing the gauge fields for (2.19), we consider

Ã = âR ⊗ INf + Id(R) ⊗ Â− ÂB Id(R) ⊗ INf (2.29)

We require that Ã obey the gauge transformation law,

Ãj = (ĝRĝV gB)ji Ãi (ĝRĝV gB)−1
ji + i(ĝRĝV gB)ji d(ĝRĝV gB)−1

ji , (2.30)

or equivalently,

Ã→ (ĝRĝV gB)Ã (ĝRĝV gB)−1 + iĝRdĝR−1 + iĝV dĝ
−1
V + igBdg

−1
B . (2.31)

This is achieved by setting

ÂB := AB + n

Nc
C + 1

Nf
CV , (2.32)

which shows that ÂB transforms under (2.27) as

ÂB → ÂB + nΛ + ΛV . (2.33)

Ã couples to the fermion ψ in a gauge invariant manner, and hence the group (2.19) is a
symmetry of the theory (2.1).

Let (B,C) and (BV , CV ) be the sets of two- and one-form gauge fields of ZNc × ZNf
group that arises in (2.19). They satisfy by definition

NcB = dC , NfBV = dCV . (2.34)

Eq. (2.27) gives rise to the gauge transformations of B and BV as

B → B + dΛ , BV → BV + dΛV . (2.35)

The origin of the two-form gauge fields can be understood as follows. We formally rewrite
the field strengths f and F in terms of the gauge field â and Â:

f = da− ia ∧ a = d

(
â− 1

Nc
CINc

)
− i

(
â− 1

Nc
CINc

)
∧
(
â− 1

Nc
CINc

)
= f̂ − 1

Nc
dCINc , (2.36)

F = dA− iA ∧A = dÂ− iÂ ∧ Â− 1
Nf

dCV INf = F̂ − 1
Nf

dCV INf . (2.37)

By noting that (2.27) acts on the field strength f̂ and F̂ as

f̂ → f̂ + dΛINc , F̂ → F̂ + dΛINf , (2.38)

respectively, f̂ − 1
Nc
dCINc and F̂ − 1

Nf
dCV INf are interpreted as Stückelberg couplings.

Therefore, 1
Nc
dC and 1

Nf
dCV INf are naturally regarded as two-form gauge fields with the

– 7 –
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transformation law (2.35). The ZNc × ZNf gauge fields are characterized by the vanishing
field strength and non-trivial Aharonov-Bohm phase. In fact, the field strength of the two-
form B vanishes locally, dB = 1

Nc
ddC = 0 and B has ZNc-valued Aharonov-Bohm phase,∫

S B = 1
Nc

∫
S dC ∈

2π
Nc

Z. Similar arguments hold for BV .
Now we derive the BCF anomaly [24, 25]. This is obtained from the U(1)A anomaly

in (2.16) by replacing

tr(f ∧ f)→ tr((f̂ −B) ∧ (f̂ −B)) = tr(f̂ ∧ f̂)−NcB ∧B (2.39)
tr(F ∧ F )→ tr((F̂ −BV ) ∧ (F̂ −BV )) = tr(F̂ ∧ F̂ )−Nf BV ∧BV (2.40)

FB → F̂B − nB −BV , (2.41)

where tr f̂ = dC = NcB and tr F̂ = dCV = NfBV . It is found that

δA(Γ + Y) = −2πNcnA

∫ 1
8π2B ∧B

+ 2π d(R)nA
2NfT (R)

∫ 1
8π2

(
tr(F̂ ∧ F̂ )−NfBV ∧BV

)
+ 2π d(R)nA

2T (R)

∫ 1
8π2

(
F̂B − nB −BV

)2
, (2.42)

mod 2πZ. The first term is a manifestation of the mixed ’t Hooft anomaly between the
axial Z2NfT (R) = Z4NfT (R)/Z2 and the one-form ZNc symmetry.

It is possible to remove the first term by adding the local counter term

YB = 4NfT (R)
2π (1 + kNc)

∫
χ ∧

(
C3 −

1
4πB ∧ C

)
, (2.43)

with k ∈ Z. Here, C3 is a background three-form gauge field with a gauge transformation
by a two-form gauge parameter Λ2,

C3 → C3 + dΛ2. (2.44)

The three-form gauge field is normalized by the flux quantization condition,∫
dC3 ∈ 2πZ . (2.45)

Further, C3 is defined to make a GS transformation

C3 → C3 + Nc

4π
(
2B ∧ Λ + Λ ∧ dΛ

)
, (2.46)

under the one-form ZNc gauge transformation

B → B + dΛ , C → C +NcΛ . (2.47)

The field strength of C3 can be defined as

G4 := dC3 −
Nc

4πB ∧B (2.48)

This guarantees that YB is left invariant under the one-form ZNc gauge transformation. C3
plays an essential role in exploring the higher-group structure in the low energy effective
theory in the QCD-like theories. Hereafter, we set k = 0 for simplicity, since the term
proportional to k does not contribute to cancel the anomaly.
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3 BCF anomaly from low energy effective action

In this subsection, we discuss how the BCF anomaly is reproduced by the low energy
effective theories of pions in the QCD-like theories.

3.1 Vacuum structure and construction of chiral Lagrangian

We assume that the QCD-like theories develop a fermion bilinear condensate. Then, the
low energy effective theory is described by a nonlinear σ-model constructed from nonlin-
ear realization of the spontaneous chiral symmetry breaking. We refer to it as a chiral
Lagrangian with the degrees of freedom given by the pions.

When R is complex, the order parameter reads

SU(Nf )L SU(Nf )R U(1)V U(1)A
ψaiLαψ̄

α
Rai′ � �̄ 0 2

(3.1)

The bilinear condensate
〈ψLψ̄R〉 = Λ3INf , (3.2)

gives rise to spontaneous symmetry breaking for the nonabelian chiral symmetry

SU(Nf )L × SU(Nf )R → SU(Nf )V . (3.3)

Furthermore, the bilinear condensate breaks the discrete axial symmetry as

Z4NfT (R) → Z2 , (3.4)

where Z2 acts as ψL,R → −ψL,R. Then, the vacuum manifold due to the bilinear condensate
is given by

Z4NfT (R)/Z2 × (SU(Nf )L × SU(Nf )R)/SU(Nf )V
ZNf

. (3.5)

Here, ZNf is the center of either SU(Nf )L or SU(Nf )R, which identifies two distinct phases
of the condensate that are generated by the Z2NfT (R) = Z4NfT (R)/Z2 action. The low
energy dynamics of the corresponding Nambu-Goldstone(NG) bosons are described by a
chiral Lagrangian

L = −f
2
π

4 tr(Û †∂µÛ)2 . (3.6)

Here,
Û(π) = exp

(2iπ
fπ

)
∈ U(Nf ) , (3.7)

is the exponentiated pion field, which transforms as

U(Nf )L ×U(Nf )R : Û → gLÛg
†
R . (3.8)

Note that the U(1) part of Û , the η′ meson, is not massless because it is associated with
the spontaneously breaking of the discrete symmetry Z2NfT (R) ⊂ U(1)A. This fact is
understood by a dynamically generated potential for the η′ meson as discussed shortly.

– 9 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
5

In the presence of the background gauge fields for the gauge group (2.19) as well as
Z4NfT (R) ⊂ U(1)A, the derivatives in the chiral Lagrangian must be written in terms of
the covariant derivative defined by

DÛ = dÛ − iĀLÛ + iÛ ĀR , (3.9)

where ĀL,R is defined in (2.8) and rewritten in terms of the uplifted gauge fields as

ĀL = Ā− χINf = Â−
(
ÂB −

n

Nc
C + χ

)
INf ,

ĀR = Ā+ χINf = Â−
(
ÂB −

n

Nc
C − χ

)
INf . (3.10)

When R is real, a gauge invariant fermion bilinear is given by

εαβ ΨaI
α ΨaJ

β . (3.11)

This is symmetric under the exchange I ↔ J . We assume that the QCD-like theory
exhibits the nonabelian chiral symmetry breaking

SU(2Nf )→ SO(2Nf ) , (3.12)

due to the vacuum condensate

〈εαβ ΨaI
α ΨaJ

β 〉 = Λ3δIJ . (3.13)

As a consistency check for this assumption, this is in accord with the Vafa-Witten the-
orem [49], which states that vector-like global symmetry is unbroken for any vector-like
gauge theory with the vacuum angle θ = 0. We note that SU(Nf ) ⊂ SO(2Nf ) is identified
with SU(Nf )V . For recent studies of the chiral flavor symmetry breaking for the adjoint
QCD, see [50] for instance.

We find that the bilinear condensate (3.13) leads to the vacuum manifold

Z4NfT (R)/Z2 × SU(2Nf )/SO(2Nf )
Z2Nf

, (3.14)

with Z2Nf being the center of SU(2Nf ). The low energy effective is given by the chiral
Lagrangian associated with the spontaneous breaking U(2Nf )→ SO(2Nf )

L = −f
2
π

4 tr(Û †∂µÛ)2 . (3.15)

Here, fπ is the decay constant for the QCD-like theory and

Û(π) ∈ U(2Nf )/SO(2Nf ) . (3.16)

We utilize the same notation of the decay constant and the exponentiated pion field as in
the case of R = complex. Û transforms under U(2Nf ) as

U(2Nf ) : Û → g ÛgT . (3.17)
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For a construction of this action using the Callan-Coleman-Wess-Zumino (CCWZ) proce-
dure, see [51]. The U(1) pion π0 (referred to as the η′ meson too) is massive because it
is associated with the spontaneously broken chiral symmetry Z2NfT (R) ⊂ U(1)A as shown
in (3.14). This fact is accounted for by a dynamically generated potential for the η′ meson.

Let Ā be the background gauge field for U(2Nf ). In the presence of it, the covariant
derivative of Û reads

DÛ = dÛ − iĀÛ − iÛĀT . (3.18)

ĀL and ĀR, the background gauge fields for the U(Nf )L×U(Nf )R subgroup, are embedded
into Ā as

Ā =
(
ĀL 0
0 −Ā∗R

)
. (3.19)

Let us discuss the potential term of the η′ meson for a generic representation R, which
makes the η′ meson massive. We note that the U(1)A symmetry acts on the exponentiated
pion field as

Û → e−2iαAÛ , (3.20)

where αA is defined in (2.15). The U(1) pion is extracted from Û as

Û = e2iπ/fπ = e2iπâT â/fπ = e2iη′T 0/fπe2iπaTa/fπ , (3.21)

with
a =

{
1, 2, · · · , dim SU(Nf ) , (R = complex)
1, 2, · · · , dim SU(2Nf )/SO(2Nf ) . (R = real)

(3.22)

Here, the generators T â are normalized as

tr(T âT b̂) = 1
2δ

âb̂ , (3.23)

with the U(1) generator given by

T 0 =
{
INf /

√
2Nf , (R = complex)

I2Nf//
√

4Nf . (R = real)
. (3.24)

With this choice, η′ is a canonically normalized real scalar. It is also useful to rewrite the
U(1) meson as

Û = eiη̃e2iπaTa/fπ ≡ eiη̃ U , (3.25)

which gives

η̃ =


√

2
Nf

η′

fπ
, (R = complex)√

1
Nf

η′

fπ
. (R = real)

(3.26)

Eq. (3.20) shows that U(1)A acts as a shift of η

η̃ → η̃ − 2αA . (3.27)

We also note that the anomalous U(1)A transformation induces the shift of the vacuum
angle

θ → θ + 4NfT (R)αA . (3.28)
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Then, the potential term for η̃, if exists, is required to depend on a single variable θ +
2NfT (R)η̃, a U(1)A invariant

V (θ + 2NfT (R)η̃ ) . (3.29)
This potential is consistent with the Witten-Veneziano formula [52, 53] for the η′

meson mass for large Nc QCD with R = �. The potential energy is of O(N2
c ) because it

is dominated by the gluon loop effects. The large Nc limit should be defined by regarding
the vacuum angle as of O(Nc). This is explained by noting the gauge theory action

S = · · ·+ θ

∫ 1
8π2 tr f ∧ f = Nc

[
· · ·+ θ

Nc

∫ 1
8π2 tr f ∧ f

]
, (3.30)

with θ/Nc held finite. We also note that η̃ should be ofO(N0
c ) because the chiral Lagrangian

takes the form

− f2
π

4 tr
(
Û †∂µÛ

)2
= f2

π

4

[
Nf (∂µη̃)2 − tr

(
U †∂µU

)2
]
, (3.31)

with f2
π = O(Nc). It then follows that the vacuum energy density as a function of θ and η̃

takes the form
V = N2

c h

(
θ + 2NfT (R)η̃

Nc

)
. (3.32)

The periodicity of the vacuum angle is manifested with a multi-branched function [54].
For a generic value of θ of O(N0

c ), which is consistent with the large Nc limit, h can be
approximated with a quadratic function for each branch because

θ + 2NfT (R)η̃
Nc

= O(N−1
c ) . (3.33)

Then, we obtain

V = 1
2 χg min

k∈Z
(θ + 2πk + 2NfT (R)η̃)2 +O(N−1

c ) . (3.34)

Here, χg is the topological susceptibility, being of O(N0
c ). Rewriting it in terms of η′, the

canonically normalized field, the mass squared of the η′ meson is given by

m2
η′ = 2Nf

f2
π

χg . (3.35)

This is the Witten-Veneziano formula [52, 53]. For a derivation of it using a holographic
dual, see [55].

When R = , and adj., the vacuum energy density takes the same form as in (3.32).
A distinction from the case of R = � is that the quark field makes the O(N2

c ) contribution
to V , which is comparable with the planar effects of the gluon. We have to note that for
a generic θ

θ + 2NfT (R)η̃
Nc

= O(N0
c ) , (3.36)

because
T (R) = O(Nc) . (3.37)

This shows that no approximation of h is allowed, implying that no multi-branch structure
of the potential is there. The η′ mass is of O(N0

c ), and therefore not suppressed in the
large Nc limit.
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3.2 WZW term and η′ term

The ’t Hooft anomaly matching condition states that the low energy dynamics of the QCD-
like theories must reproduce not only the BCF anomaly (2.42) but also the full nonabelian
anomaly that is obtained for a generic rotation angle α̂ defined in (2.14). The anomaly
matching condition for the BCF anomaly only is not powerful enough to determine the low
energy effective theory uniquely, because it is a discrete anomaly. The ’t Hooft anomaly
matching for the nonabelian flavor symmetry requires that the WZW term be added to the
low energy effective theory. With this action, the anomaly matching for the second and
the third terms of the BCF anomaly is satisfied. It is argued that the first term of the BCF
anomaly is reproduced by another interaction term of the η′ meson. For a recent analysis
of WZW terms in the presence of background fields for discrete one-form symmetries, see
also [28]

We first discuss the cases for R complex. The WZW term reads [44]

SWZW = −id(R)
48π2

∫
M4

Z − i d(R)
240π2

∫
M4×R

tr(ÛdÛ−1)5 , (3.38)

with

Z = i tr[(ĀRdĀR + dĀRĀR − iĀ3
R)(Û−1ĀLÛ + iÛ−1dÛ)− p.c.]

− tr[dĀRdÛ−1ĀLÛ − p.c.]− i tr[ĀR(dÛ−1Û)3 − p.c.]

− 1
2 tr[(ĀRdÛ−1Û)2 − p.c.]− tr[Û ĀRÛ−1ĀLdÛdÛ

−1 − p.c.]

− i tr[ĀRdÛ−1Û ĀRÛ
−1ĀLÛ − p.c.] + 1

2 tr[(ĀRÛ−1ĀLÛ)2] . (3.39)

Here, “p.c.” represents the terms obtained by making the exchange ĀL ↔ ĀR and Û ↔ Û−1.
As well-known, this yields the chiral anomaly of L-R form for a generic ĀL and ĀR:

δSWZW = −d(R)
24π2

∫
tr
[
αL d

(
ĀLdĀL −

i

2Ā
3
L

)
− αR d

(
ĀRdĀR −

i

2Ā
3
R

)]
, (3.40)

with gL = eiαL , gR = eiαR . Inserting Û = eiη̃ U and (3.10) into the WZW term gives

SWZW = S
(0)
WZW + i

d(R)
48π2

∫
(dη̃ + 2χ) tr

[
F̄
(
U−1DU + UDU−1

)]
+ d(R)

48π2

∫
dη̃ tr

(
6ĀdĀ− 4iĀ3

)
+ d(R)

48π2

∫
χ tr

(
8ĀdĀ− 6iĀ3

)
. (3.41)

Here,
S

(0)
WZW = SWZW

∣∣
η̃=χ=0 , (3.42)

and
DU = dU − iALU + iUAR , DU−1 = dU−1 − iARU−1 + iU−1AL ,

with AL,R = Ā + ABINf being the background gauge fields for SU(Nf )L and SU(Nf )R,
respectively. It is found that the U(1)A gauge transformation

δAη̃ = −2αA , δAχ = dαA , (3.43)
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with (αR − αL)/2 = αAINf leads to

δASWZW = −d(R)
12π2

∫
αA tr

(
F̄ 2 − i

2 F̄ Ā
2
)

(3.44)

The local counter term Yf given in (2.12) is written only by the background gauge fields
so that it remains to be a local counter term in the IR as well. With this term added, the
variation of the WZW action is changed as

δA(SWZW + Yf ) = d(R)
4π2

∫
αA tr(F̄ ∧ F̄ )

= d(R)
4π2

∫
αA

[
tr(F̂ −BV )2 +Nf

(
F̂B − nB −BV

)2
]
, (3.45)

reproducing the second and the third term of the BCF anomaly in (2.42) upon setting
αA = 2πnA/4NfT (R).

We note that, in the presence of the background gauge fields B and BV , SWZW suffers
an operator-valued ambiguity of how to extend it to a five-dimensional local action. To see
this, suppose that SWZW is defined on five-manifolds X1 and X2 with a common boundary
equal to the four-manifold where the QCD-like theory is defined. The difference of the
actions is obtained by evaluating the action on the compact manifold X1 ∪ X̄2:

− d(R)
8π2

∫
X1∪X̄2

dη̃ ∧
(

tr F̄ 2 + i

6 d tr
[
F̄
(
U−1DU + UDU−1

)])
= −d(R)

8π2

∫
X1∪X̄2

dη̃ ∧ tr F̄ 2 /∈ 2πZ . (3.46)

The integral of d tr
[
F̄
(
U−1DU + UDU−1)] is trivial because tr

[
F̄
(
U−1DU + UDU−1)]

is gauge invariant. As will be shown, this ambiguity is eliminated automatically by adding
an interaction term between the η′ meson and the background B in such a way that the
first term of the BCF anomaly (2.42) can be reproduced in the low energy effective action.

The WZW term for R real is derived in the appendix A. It exhibits the same operator-
valued ambiguity (3.46) as in the case for R complex. This is easy to verify by insert-
ing (3.19) and (3.10) into the WZW term (A.13). This ambiguity can be cancelled as well
by requiring the anomaly matching of the full BCF anomaly.

Now that the WZW term is found to reproduce the second and the third terms of
the BCF anomaly given in (2.42), we discuss how the first term of the BCF anomaly is
matched in terms of the effective action of the pions. We argue that the anomaly matching
is achieved by adding to the effective action1

SηBB = −2NfT (R)
2π (1 + `Nc)

∫
η̃

(
dC3 −

Nc

4πB ∧B
)
. (3.47)

Here, ` is an integer that is not fixed from the discrete anomaly matching condition we are
employing. C3 is the background three-form gauge potential, which is defined in (2.43).
To see why, we first note that the discrete axial symmetry Z2NfT (R) = Z4NfT (R)/Z2 acts as

Z2NfT (R) : η̃ → η̃ − 2π
2NfT (R) . (3.48)

1The local counterterm composed of η′ and B ∧B is considered also in [56].
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This shift reproduces the mixed ’t Hooft anomaly between the Z2NfT (R) and the one-form
ZNc symmetry modulo 2πZ, because C3 gives no contribution to the ’t Hooft anomaly
thanks to the normalization condition (2.45). Furthermore, SηBB is left invariant under
the one-form ZNc gauge transformation (2.47) together with the GS-type transformation
law (2.46). Hereafter, we set ` = 0 for simplicity.

We remark that instead of (3.47), the mixed ’t Hooft anomaly may be obtained from
an interaction term between η̃ and the gluon,

Sηff = −2NfT (R)
8π2

∫
η̃ tr((f̂ −B) ∧ (f̂ −B)) . (3.49)

This term is studied in [57, 58] to derive the Witten-Veneziano formula for the η′ mass.
In this scenario, the background gauge field C3 plays no role in achieving the anomaly
matching condition. Instead, it is assumed that the gluon fields are confined in the low
energy regime. C3 is interpreted as the background gauge field of an emergent two-form
symmetry whose charged object is an η′ vortex. To see this, we note that η′ can have a
winding number, ∫

C
dη̃ ∈ 2πZ , (3.50)

since it may be understood as a (pseudo-)NG boson of the U(1)A symmetry. The integrand
dη̃ obeys the analog of the Bianchi identity,

ddη̃ = 0 . (3.51)

Therefore, the integral (3.50) is topological under a small deformation C → C ∪ ∂S0,∫
C∪∂S0

dη̃ −
∫
C
dη̃ =

∫
∂S0

dη̃ =
∫
S0
ddη̃ = 0 , (3.52)

where S0 is a surface with a boundary. We thus have a unitary topological object param-
eterized by eiγ ∈ U(1),

U2(C, eiγ) = e
iγ
2π

∫
C dη̃ . (3.53)

The topological object is regarded as a symmetry generator for a U(1) two-form symmetry,
because the generator acts on the vortex string operator Vη(S) with the worldsheet S as

U2(C, eiβ)Vη(S) = eiγ Link(S,C)Vη(S) , (3.54)

where Link(S, C) denotes the linking number between S and C. The conserved current for
the two-form symmetry is identified with 1

2πdη̃ and couples minimally to C3.

3.3 Cancellation of the operator-valued ambiguity

SηBB is written in the form of the integral of a local functional on a five-manifold with the
boundary

SηBB = −2NfT (R)
2π

∫
X1
dη̃ ∧

(
dC3 −

Nc

4πB ∧B
)
. (3.55)
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This depends on how the action is extended to five dimensions because

− 2NfT (R)
∫
X1∪X̄2

Nc

8π2 dη̃ ∧B ∧B /∈ 2πZ . (3.56)

This is the manifestation of another operator-valued ambiguity in addition to that from
the WZW term.

The net operator-valued ambiguity associated with the η′ meson reads∫
X1∪X̄2

dη̃ ∧
[
−2NfT (R) Nc

8π2B ∧B + d(R)
8π2 tr F̄ 2

]
. (3.57)

Cancellation of the operator-valued ambiguity requires that this take values in 2πZ. As η̃
is a 2π-periodic boson, this condition is stated in terms of the background gauge fields only∫

X

[
−2NfT (R) Nc

8π2B ∧B + d(R)
8π2 tr F̄ 2

]
∈ Z . (3.58)

X is any compact spin four-manifold. This integral is always integer because this is equal
to the index of the Dirac operator (mod Z) whose gauge field is Ã satisfying the proper
normalization.

This can be verified by taking X = T 2 × T 2 and turning on the ’t Hooft fluxes on it,
whose explicit form is given in [24]. Let (x1, x2) and (x3, x4) be the coordinates of the two
two-tori with x1,2,3,4 ∼ x1,2,3,4 + 2π. Then,

B = 1
2πNc

(
m12 dx

1 ∧ dx2 +m34 dx
3 ∧ dx4

)
. (m12,m34 ∈ Z mod Nc) (3.59)

F̂ = 1
2π
(
mf

12 dx
1 ∧ dx2 +mf

34 dx
3 ∧ dx4

)


1
0
. . .

0

 ,

BV = 1
2πNf

(
mf

12 dx
1 ∧ dx2 +mf

34 dx
3 ∧ dx4

)
. (mf

12,m
f
34 ∈ Z mod Nf ) (3.60)

FB = 1
2π
(
mB

12 dx
1 ∧ dx2 +mB

34 dx
3 ∧ dx4

)
. (mB

12,m
B
34 ∈ Z) (3.61)

As a consistency check, we note F̂ −BV ∈ su(Nf ). It is found that, modulo Z

∫
T 2×T 2

[
−2NfT (R) Nc

8π2B ∧B + d(R)
8π2 tr F̄ 2

]
= −2NfT (R)m12m34

Nc

+ d(R)
Nc

[
n(mf

12m34 +mf
34m12)− nNf (mB

12m34 +mB
34m12) + n2Nf

Nc
m12m34

]
. (3.62)

It is easy to see that this is always an integer.
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3.4 Higher-group structure

It is found that the low energy effective action of the QCD-like theory is given by

SLEET =
∫
d4x

[
−f

2
π

4 tr
(
Û †DµÛ

)2
− V (θ + 2NfT (R)η̃ )

]
+ SWZW + Yf + SηBB . (3.63)

In this subsection, we specify the higher-group structure of the background gauge fields
that is encoded in (3.63) and show that this is identified with a semistrict three-group
(two-crossed module).

A semistrict three-group is defined by the following ingredients [59–62].

1. A triple of groups, (G,H,L).

2. Maps between groups, ∂1 : H → G, and ∂2 : L → H. They are homomorphism
with respect to the group composition, ∂1(h1h2) = (∂1h1)(∂1h2), and ∂1(l1l2) =
(∂1l1)(∂1l2) for h1, h2 ∈ H and l1, l2 ∈ L, respectively.

3. Action . of G on G,H,L: g . g′ := gg′g−1 ∈ G, g . h ∈ H, and g . l ∈ L. This
operation is a generalization of the adjoint transformation.

4. Peiffer lifting, {h1, h2} ∈ L for h1, h2 ∈ H.

5. Consistency between the above operations, e.g., g . {h1, h2} = {g . h1, g . h2}.

For more detail, see e.g., [39].
From the above data, we can construct a gauge theory for the three-group, which

consists of zero-, one-, and two-form gauge field which are valued on the Lie algebra of G,
H, and L, respectively. For the Lie groups G, H, L, the Lie algebra of the three-group can
be introduced as follows.

1. A triple of Lie algebra (g, h, l) of the triple of Lie groups (G,H,L).

2. Maps between groups, ∂1 : h → g, and ∂2 : l → h. They are homomorphism with
respect to the Lie bracket, ∂1([h1, h2]) = [∂1h1, ∂1h2], and ∂2([l1, l2]) = [∂1l1, ∂1l2] for
h1, h2 ∈ h and l1, l2 ∈ l, respectively. They are boundary maps satisfying ∂1 ◦ ∂2 l =
1 ∈ G for all l ∈ L.

3. Action . of g on g, h, l: g . g′ := [g, g′] ∈ g, g . h ∈ h, and g . l ∈ l. This operation is
a generalization of the adjoint transformation.

4. Peiffer lifting, {h1, h2} ∈ l for h1, h2 ∈ h.

5. Consistency between the above operations, e.g., g . {h1, h2} = {g . h1, g . h2}.

We then introduce the gauge fields for the three-group, which consist of g-, h-, and l-valued
one-, two-, and three-form fields A = Aαuα, B = Bava, and C = CAwA, satisfying the
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following gauge transformation laws,2

A→ A′ = g . A+ gdg−1 + ∂1h,

B → B′ = g . B + dh− h ∧ h+A′ . h+ ∂2l,

C → C ′ = g . C + dl +A′ . l + {∂2l, h} − {B′, h} − {h, g−1 . B},
(3.64)

and field strengths,

F = dA+A ∧A,
H = dB +A . B,

G = dC +A . C + {B,B}.
(3.65)

Here, g, h = hava, and l = lAwA are G-, h-, and l-valued zero-, one-, and two-form
parameters. We have taken the bases of g, h, and l as {uα}, {va}, and {wA}, respectively.
The operations ∂1, ∂2, ., and {} on the differential forms are given by the wedge products
with the operations for the Lie algebra:

g . A = Aαg . uα = Aαguαg
−1, (3.66)

∂1h = ha(∂1va), (3.67)

h ∧ h = 1
2h

a ∧ hb[va, vb], (3.68)

{∂2l, h} = lA ∧ ha{(∂2wA), va}, (3.69)

and so on. It is possible to take the following conditions,

F − ∂1B = 0, H − ∂2C = 0, (3.70)

which are called fake curvature vanishing conditions.
Conversely, we can specify the three-group structure of the background gauge fields in

an appropriate class of a gauge theory with given one-, two-, and three-form gauge fields.
We first regard the group SU(Nc) as a global symmetry group. The background gauge
fields â, Â and ÂB, B and BV , and C3 are identified with those for the gauge groups

G0 = U(Nc)×U(Nf )V ×U(1)B ∼=
SU(Nc)×U(1)

ZNc
× SU(Nf )×U(1)

ZNf
×U(1)B, (3.71)

H = ZNc × ZNf , (3.72)
L = U(1). (3.73)

respectively. For convenience, we write the elements of G0 as

(g, eiαc , gV , eiαf , eiαB ) ∈ SU(Nc)×U(1)× SU(Nf )×U(1)×U(1)B, (3.74)

with the identifications by ZNc and ZNf ,

(INc , e2πimc/Nc , INf , 1, 1) ∼ (e2πimc/NcINc , 1, INf , 1, 1), (3.75)

(INc , 1, INf , e
2πimf/Nf , 1) ∼ (INc , 1, e2πimf/Nf INf , 1, 1). (3.76)

2In this subsection, the gauge fields are taken to be anti-Hermitian.
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We determine the structure of the three-group from the gauge transformation laws and
field strengths. Identification of the gauge transformation laws in (2.26), (2.33) and (2.35)
with (3.64) shows that the map ∂1 : H → G0 should read

∂1(e2πimc/Nc , e2πimf/Nf )

= (INc , e2πimc/Nc , INf , e
2πimf/Nf , e−2πinmc/Nce−2πimf/Nf ).

(3.77)

Meanwhile, the map ∂2 : L→ H is trivial,

∂2(eiγ) = (1, 1) ∈ ZNc × ZNf , (3.78)

for eiγ ∈ L. This is because the two-form gauge fields B and BV are not transformed under
the gauge transformation in (2.44). We remark that the constraint tr(f̂) = dC = NcB can
be understood as the fake curvature vanishing condition imposed on the U(1) sector of
U(Nc), i.e., 0 = tr(f̂) − tr(∂1B) = tr(f̂) − tr(BINc). Identification of the four-form field
strength G4 (2.48) with G in (3.65) leads to the Peiffer lifting,

{(e2πimc/Nc , e2πimf/Nf ), (e2πim′
c/Nc , e2πimf/Nf )} = e−i

Nc
4π ·

2πmc
Nc
· 2πm

′
c

Nc = e−iπmcm
′
c/Nc , (3.79)

where (e2πimc/Nc , e2πimf/Nf ) ∈ ZNc × ZNf .3

Now we promote the SU(Nc) gauge field to dynamical degrees of freedom. SU(Nc) ⊂
G0 should be treated as a gauge redundancy, i.e., the elements of SU(Nc) in G0 are regarded
as the identity. In particular, the gauging of SU(Nc) gives rise to further identifications
in (3.75) and (3.77):

(INc , e2πimc/Nc , INf , 1, 1) ∼ (e2πimc/NcINc , 1, INf , 1, 1) ∼ (INc , 1, INf , 1, 1), (3.80)

and

∂1(e2πimc/Nc , e2πimf/Nf )

= (INc , e2πimc/Nc , INf , e
2πimf/Nf , e−2πinmc/Nce−2πimf/Nf )

∼ (INc , 1, INf , e
2πimf/Nf , e−2πinmc/Nce−2πimf/Nf ),

(3.81)

respectively. We find that the kernel of ∂1 is given by

Ker ∂1 = {(e2πimc/Nc , 1) ∈ ZNc × ZNf |e
2πimc/Nc ∈ Zn} ' Zgcd(Nc,n) , (3.82)

ending up with a one-form symmetry group Zgcd(Nc,n). This is identical to the subgroup
of ZNc that acts nontrivially on Wilson loop operators in QCD-like theories [24].

3This definition of the Peiffer lifting has an ambiguity under mc → mc + Nc. In order to define the
Peiffer lifting in an unambiguous way, we may need to include the spin structure of the spacetime. We leave
this issue as future work.
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3.5 Integrating out the η′ meson

We now focus on the low energy scales where the η′ meson is heavy enough to be integrated
out. Then, the potential (3.29) gives rise to the spontaneous breaking of the discrete axial
symmetry Z2NfT (R). The low energy effective action for η′ is given by replacing the kinetic
term of η̃ with a BF action associated with the spontaneous Z2NfT (R) breaking [12]:

2NfT (R)
2π

∫
(dη̃ + 2χ) ∧ c3 , (3.83)

where c3 is a dynamical three-form gauge field with the normalization condition given by∫
dc3 ∈ 2πZ . (3.84)

The resultant low energy effective action is given by

S = −f
2
π

4

∫
d4x tr

(
U †DµU

)2
+ SWZW + Yf + SBF . (3.85)

Here,

SBF = 2NfT (R)
2π

∫
(dη̃ + 2χ) ∧ c3 + SηBB

= 2NfT (R)
2π

∫
(dη̃ + 2χ) ∧

(
c3 + C3 −

1
4πB ∧ C

)
− YB . (3.86)

It is useful to shift the dynamical gauge field as c3 → c3−C3, which keeps the normalization
condition unchanged. Then, the resultant c3 makes a GS transformation under the one-
form ZNc gauge symmetry transformation

c3 → c3 + Nc

4π (2Λ ∧B + Λ ∧ dΛ) . (3.87)

Summarizing the terms that involve the η′ meson, we find

SWZW + Yf + SBF

= −2NfT (R)
2π

∫
(dη̃ + 2χ)

[
dc3 −

Nc

4πB ∧B

+ d(R)
8πNfT (R)

{
tr(F̄ 2) + i

6d tr
[
F̄ ∧

(
U−1DU + UDU−1

)]}]

+ 2NfT (R)
π

∫
χ ∧

[
dC3 −

Nc

4πB ∧B + d(R)
8πNfT (R)tr F̄ 2

]
+ S

(0)
WZW . (3.88)

This reproduces the BCF anomaly evidently. It is interesting to note that part of this
action is equivalent to the effective action of an axion that is constructed in [25].
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4 Discussions

In this paper, we have derived the low energy effective theories of the QCD-like theories
by requiring the ’t Hooft anomaly matching condition for the BCF anomaly. This result is
based on the assumption that the QCD-like theories exhibit spontaneous chiral symmetry
breaking due to the quark bilinear condensate. Use of the BCF anomaly matching seems
not to be powerful enough to specify uniquely the phase structures for a given R and Nf .
However, it might give us an important clue to a classification of the phase structures by
applying the methods employed in this paper. As an example, we assume instead that the
QCD-like theories gives rise to an exotic chiral symmetry breaking due to the condensate
of a gauge invariant operator other than the quark bilinear.4 It would be interesting to
examine if we can find the low energy effective action of the Nambu-Goldstone bosons
such that it satisfies the BCF anomaly matching condition and furthermore any type of
operator-valued ambiguity disappears.

As pointed out before, the effective action (3.88) is reminiscent of the axion effective
action derived in [25]. It would be nice to clarify the relation of the two actions in more
detail. For this purpose, we may couple the QCD-like theory with a neutral and complex
Higgs field as performed in [25] with a difference being that the Higgs coupling is tuned
so that the Higgs vev gives a light quark mass. The light mass is proportional to an axion
phase and generates a mass term of the pions. It is expected that integrating out the
massive pions leads to the axion effective action.
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A Low energy effective action for R real

We derive the low energy effective action of the QCD-like theory for R real in an assumption
that it exhibits the quark bilinear condensate.

A.1 Chiral Lagrangian

This chiral Lagrangian is constructed by using the Callan-Coleman-Wess-Zumino(CCWZ)
procedure [51]. We first divide the generator of SU(2Nf ) into the unbroken and broken
ones respectively.

Ha ∈ so(2Nf ) , (a = 1, 2, · · · dim SO(2Nf ))
Xα ∈ u(2Nf )− so(2Nf ) , (A.1)

with the normalization condition given by

tr(HaHb) = 1
2δ

ab , tr(XαXβ) = 1
2δ

αβ . (A.2)

4Such a scenario has been discussed recently in [27, 28, 63] for instance.
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Since the coset U(2Nf )/SO(2Nf ) is a symmetric space, these obey the commutation
relations of the form

[Ha, Hb] = ifabcHc , [Ha, Xα] = (ta)αβXβ , [Xα, Xβ ] = ifαβcHc . (A.3)

Here, ta is the generators of SO(2Nf ) in the �� representation. Consider an element of
the coset U(2Nf )/SO(2Nf )

ξ(π) = eiπ
αXα/fπ . (A.4)

The left action of U(2Nf ) on ξ leads to

U(2Nf ) : ξ(π)→ g ξ(π) = ξ(π′)h(π, g) , ∃h ∈ H . (A.5)

This defines the transformation law of the pion field π to π′. The exponentiated pion field
Û(π) is given by

Û = ξξT . (A.6)

It is easy to verify that
Û(π′) = g Û(π)gT , (A.7)

and furthermore U(π) is independent of the choice of the representatives of ξ.

A.2 WZW term

The WZW term for R real is obtained as follows. We start with the WZW term for R
complex with Nf flavors. Replace Nf → 2Nf yields the NG boson field

Û ∈ U(2Nf ) . (A.8)

We impose the condition
Û = ÛT , (A.9)

which is consistent with the CCWZ construction as reviewed before. Let ĀL and ĀR be
the background gauge field for U(2Nf )L and U(2Nf )R, respectively. Then Ā, that for the
chiral flavor symmetry U(2Nf ), is obtained by setting

ĀL = Ā , ĀR = −ĀT . (A.10)

To see this, we note that with this embedding, the covariant derivative for R complex (3.9)
becomes that for R real (3.18). The consistency condition of (A.10) with the gauge trans-
formation of ĀL,R

δĀL = dαL + iαLĀL − iĀLαL , δĀR = dαR + iαRĀR − iĀRαR ,

demands
αL = α , αR = −αT ,

with α identified with the infinitesimal gauge transformation parameter for the chiral
U(2Nf ) symmetry. Then, the WZW term for R real is given by

SR=real
WZW = 1

2 S
R=cpx
WZW

∣∣∣
Nf→2Nf , (A.9), (A.10)

.
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This is because the chiral anomaly of L-R form (3.40) is evaluated as

δSR=cpx
WZW

∣∣∣
Nf→2Nf , (A.9), (A.10)

= −2 d(R)
24π2

∫
tr
[
αd

(
ĀdĀ − i

2Ā
3
)]

.

Here, tr is taken for the fundamental representation of u(2Nf ).
It is easy to verify that

SR=real
WZW = −id(R)

48π2

∫
Zr − i d(R)

480π2

∫
tr(ÛdÛ−1)5 , (A.11)

where

Zr = i tr
[
(ĀdĀ+ dĀĀ − iĀ3)(Û−1ĀT Û − iÛdÛ−1)

]
− 1

2 tr
[
dĀ

(
ÛĀTdÛ−1 + dÛĀT Û−1

)]
+ i tr

[
Ā(dÛÛ−1)3

]
+ 1

2 tr
(
Ā dÛÛ−1

)2
+ 1

2 tr
[(
ĀT Û−1ĀÛ − Û−1ĀÛĀT

)
dÛ−1dÛ

]
− i tr

(
ĀdÛÛ−1ĀÛĀT Û−1

)
+ 1

4 tr
(
ĀT Û−1ĀÛ

)2
. (A.12)

Factorizing the η′ meson as

Û = eiη̃ U , U ∈ SU(2Nf ) ,

and extracting from Ā the Z4NfT (R) ⊂ U(1)A gauge field as

Ā = A− χI2Nf , A ∈ su(2Nf ) ,

a bit lengthy computation shows that

Zr =Zr∣∣
χ=η̃=0−

∫
(dη̃+2χ)tr

(
FUDU−1

)
+i
∫
dη̃
(
3AdA−2iA3

)
+i
∫
χ
(
4AdA−3iA3

)
.

(A.13)
Here, F = dA− iA2 and

DU−1 = dU−1 + iU−1A+ iATU−1 ,

is the covariant derivative for the SU(2Nf ) gauge group.
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