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1 Introduction

Nonabelian gauge theories, including QCD and the SUw(2) weak sector of the Standard
Model, feature gauge groups which can have topologically nontrivial configurations in 4
spacetime dimensions [1–3]. Specifically, the spacetime integral of the contraction of the
field strength tensor1 Gµν with the dual field strength tensor G̃µν ≡ εµναβGαβ/2, satisfies:

q(x) ≡ TrGµνG̃µν

16π2 , QI =
∫

d4x q(x) ∈ Z . (1.1)

1Our conventions are: we use natural units, ~ = 1 and c = 1. The Euclidean metric is positive and
the Minkowski metric is mostly-positive gµν = Diag[−1,+1,+1,+1]; the QCD/electroweak gauge fields are
Gµ = GaµT

a and Wµ = W a
µT

a with T a the Hermitian fundamental representation Lie algebra generators,
normalized to TrT aT b = δab

2 ; the fields take their geometrical normalization such that the gauge coupling
does not appear in the covariant derivative Dµ = ∂µ − iGµ but as a denominator in the gauge action
L = . . .− TrGµνGµν/2g2.
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That is, the integral of q(x) the “topological charge density” always returns an integer,
provided the integral is carried out over a compact domain without boundaries or with
boundaries where the field strength goes to zero. (For the case of the SUw(2) sector,
replace Gµν →Wµν .)

These topological structures are important because they lead to anomalies in axial
quark number currents: according to the Adler-Bell-Jackiw anomaly [4, 5], each fundamen-
tal-representation fermionic species suffers a nonconservation of its axial charge in the
amount

∂µJ
µ
5 (x) = . . .+ 2q(x) , ∆Q5 = 2QI . (1.2)

Here Jµ5 is the Nöther current associated with axial quark number and Q5 is the associated
axial number. In the electroweak sector the effect is dramatic: because only left-handed
species couple to SUw(2), both baryon number and lepton number are violated, [3]: ∂µJµB =
Ng

TrWµνW̃µν

16π2 with Ng = 3 the number of generations. Topological transitions in real time
can be stimulated if the fields can go over the so-called sphaleron barrier [6], and this
process becomes efficient at high temperatures [7] and may explain the baryon number of
the Universe (see for instance [8, 9] and references therein).

In Quantum Chromodynamics topological transitions in real time are also relevant for
interesting high-temperature dynamics. They are responsible for the equilibration between
right- and left-handed quark number in electroweak baryogenesis scenarios [10, 11]. In
the context of relativistic heavy ion physics, noncentral collisions contain intense magnetic
fields, which can combine with axial quark number imbalances to provide interesting new
physics signals — the so-called chiral magnetic effect [12]. This proposal has inspired a
great deal of work, including a deeper appreciation of the hydrodynamics of systems with
axial quark number [13, 14].

Such chiral dynamics in QCD are very dependent on the decay rate of chiral imbalances.
Close to equilibrium, a net axial charge abundance is described by a chemical potential
for axial quark number µA; at leading order and in each quark species, the axial number
density nA is related to µA through [11]

nA = µAT
2 . (1.3)

The coefficient is determined by the quark number susceptibility, which is known [15] to
be within 10% of the leading-order value already at T = 2Tpc with Tpc the pseudocritical
temperature, Tpc ' 155MeV [16, 17]. The axial chemical potential biases thermal transi-
tions and thereby acts to create a net GµνG̃µν value which drives down the axial number.
The Minkowski time tm derivative of nA due to this thermal relaxation effect is:

dnA
dtm

= −
∑
f µA,f

T
Γsphal,s = −nA

nfΓsphal,s
T 3 , (1.4)

where nf is the number of light fermionic species and Γsphal,s, the so-called strong sphaleron
rate, describes the equilibrium diffusion rate of topology due to random, real-time topo-
logical processes at temperature T :

Γsphal,s ≡
1

V tmax

〈(∫ tmax

0
dtm

∫
V

d3x q(x, tm)
)2〉

=
∫

d4x〈q(x)q(0)〉 . (1.5)
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That is, Γsphal,s is the mean-squared topology per unit Minkowski 4-volume.2 The definition
is similar to the topological susceptibility χtop, except that χtop refers to correlators in
Euclidean spacetime, while the time appearing in eq. (1.5) is real Minkowski time. As we
will discuss below, these two rates have different physical interpretations and relevance and
at high temperatures they strongly differ from each other.

In order to understand the dynamics of chiral imbalances, it is imperative to have at
least a decent determination of the sphaleron rate Γsphal,s. If it is large, chiral imbalances
relax quickly and are unlikely to lead to interesting dynamics. On the other hand, if it
is small, it may be a good approximation to treat axial quark number as approximately
conserved, at least for light species.

Unfortunately, the state of the art in determining Γsphal,s is not very advanced. The
equivalent SUw(2) rate is relatively well understood. The relevant dynamics involves
soft (wave number small compared to T ) gauge fields which should behave like classi-
cal fields [18], though the relevant dynamics are subtle [19–21]. Building on early work by
Ambjørn et al. [22], a fairly complete picture for the sphaleron rate in the SUw(2) sector
emerged by the end of the 1990s [21, 23–28]. This success is based on the fact that the
SUw(2) sector of the Standard Model has a rather small gauge coupling, g2N/4π ' 1/15,
which ensures that the relevant dynamics is quite infrared and the classical-field approxima-
tion is well under control. In comparison, even at electroweak temperatures T ∼ 1000Tpc,
the strong coupling is of order g2N/4π ∼ 0.3, and the classical-field approximation is not
very reliable. There are only two attempts to determine the strong sphaleron rate nonper-
turbatively using lattice techniques [29, 30], and the latter concludes that the results are
no better than factor-of-2 estimates even at T = 100 GeV ∼ 700Tpc. The rate below this
temperature is not even estimated.

We need a new approach to compute the strong sphaleron rate — one which does not
rely on an approximation of QCD dynamics in terms of 3+1 dimensional classical fields.
The approach must be nonperturbative, because the temperatures achieved in the early
stages of heavy ion collisions are at most a few times higher than Tpc, where the theory
is fully nonperturbative. Therefore the approach must involve our only rigorous tool for
understanding QCD in this regime, which is 4-dimensional Euclidean lattice gauge theory.

One approach proposed recently [31, 32] is to measure q(x) q(0) correlators as a func-
tion of Euclidean time and to attempt an analytic continuation to obtain the real-time
spectral function, whose low-frequency limit determines Γsphal,s. This is an interesting ap-
proach, but it is very challenging, particularly because of our ignorance of the expected
low-frequency behavior of the spectral function and the challenge in reconstructing non-
trivial low-frequency structures in such analytical continuations.

We will provide a completely new approach for estimating Γsphal,s from Euclidean
lattice path-integral data. Our approach is based on the picture of thermal activation
developed by Langer [33] and further developed by Affleck [34] and Linde [35, 36]. The next
section (section 2) will review this picture. Thermal activation is controlled by Euclidean

2Some older sources define the sphaleron rate such that dnA/dtm = −
∑

f,s
µA,fsΓ/T where the sum

also runs over spins s — that is, the sum is over all species which would be created by a sphaleron. This
definition is half as large as the one we use, that is, Γ = Γsphal,s/2.
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configurations which are balanced at a saddlepoint between two (topological) minima, with
a rate determined by the prevalence of saddlepoint configurations times the real-time rate
that the fields move through such saddles. In subsection 2.2 we show that this rate is
related to the size of fluctuations in the Euclidean direction, such that different Euclidean-
time slices lie on different sides of the saddle. This is something which can be measured
purely within Euclidean simulations. We formulate how to do this specifically for the QCD
sphaleron rate (that is, SU(3) gauge theory with or without fermions) in section 3, and
show how to really carry out such calculations in section 4.

With the method in hand, we make the usual checks for lattice spacing, lattice volume,
and gradient-flow depth dependence, within pure-glue QCD (SU(3) Yang-Mills theory) in
section 5. Having passed all tests, we explore what range of temperatures we can investigate
in section 6, finding that the method breaks down below about T = 1.3Tc. Our final results
for temperatures above this threshold are presented in section 7, followed by a discussion
and outlook.

2 Thermal activation: a review

The theory of thermal activation was pioneered by Langer [33] and put into field-theoretical
language by Affleck [34] and by Linde [36]. The canonical example is the problem of
bubble nucleation in a system with a stable and a metastable vacuum. At low or zero
temperatures, this is controlled by a 4-dimensional bubble configuration, as argued by
Coleman and Callan [37, 38]. At higher temperatures (roughly, when 1/T is of order or
smaller than the diameter of the would-be 4D bubble), the relevant solution is instead a
bubble which is constant in the (periodic, β = 1/T -extent, Euclidean) time direction and
varies as a function of spatial radius. The field theoretical justification is worked out by
Affleck [34] and by Linde [35, 36].

However, for our purposes this example is confusing and involves extraneous details.
Instead, we will outline the key ideas, and motivate the approach we will take, with a much
simpler toy example, proposed by Arnold and McLerran.

2.1 Simple example: pendulum under gravity

Consider a rigid pendulum in a gravitational potential. There is one degree of freedom ϕ,
and the Lagrangian is

L(ϕ, ϕ̇) = m

2 ϕ̇
2 − V0 (1− cosϕ) . (2.1)

Arnold and McLerran used this problem to illustrate the difference between instantons and
sphalerons and the physical role each plays [39], and we are guided by their considerations.

First, note that the energy spacing between the low-lying quantum excitations for this
system is ω0 =

√
V0/m, whereas the energy required to spin the pendulum over the top

of its potential is 2V0. We will consider the case 2V0 � ω0 and will consider temperatures
T < ω0, where the vacuum dominates, and 2V0 � T � ω0, where a range of thermal states
participate but states with E > 2V0 are still rare. To make the thermal ensemble make
sense and the real-time behavior be more similar to a hot, chaotic system, we will couple ϕ
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to a thermal bath of oscillators. We assume that this bath causes a negligible modification
of the above Lagrangian, but that it leads to noisy, dissipative real-time dynamics. We will
not specify these couplings in detail, since this is only an illustrative example for us and
not our main item of study.

Let us understand the distinction between instantons and sphalerons, and the role of
each. First the instanton. The classical Lagrangian does not actually specify our problem
completely, because the values ϕ = 0 and ϕ = 2π (or any pair of values separated by
2π) are physically equivalent, and the wave function must be periodic up to a phase,
Ψ(ϕ+2π) = Ψ(ϕ)eiθ. Here θ is a parameter, analogous to the Θ-parameter of QCD, which
only plays a role in the quantum theory. Instantons are configurations which answer the
question:

Instantons: how strongly does the free energy depend on θ?

We can address the θ-dependence of the free energy by considering its calculation with
the Euclidean path integral. Naively we expect in the Euclidean path integral that ϕ is
periodic, ϕ(t = 0) = ϕ(t = β), but in fact we only require periodicity modulo 2π. However,
configurations with ϕ(t = β) = ϕ(t = 0) + 2πn should be weighted with a factor einθ, such
that the thermal partition function is:

Z(T ) =
∑
n∈Z

einθ
∫ π

−π
dϕ0〈ϕ0|e−βH |ϕ0 + 2πn〉 =

∑
n

einθZn(T ) . (2.2)

The ϕ0 integral is a trace over all states, with the n-sum reflecting the fact that these states
are 2π-periodic but allowing us to write a path integral in terms of states which do not
have this periodicity. We name the configurations contributing to Zn (n 6= 0) n-instantons.

At low temperature Z(T ) = e−βE0 is dominated by the vacuum energy and the in-
stantons determine how much the vacuum-energy depends on the boundary condition. For
θ = 0 all Zn add and E0 is minimized, as we expect for a periodic boundary, whereas for
θ = π E0 takes its maximal value because the vacuum wave function is forced to have a
node at ϕ = π. At higher temperature the behavior is more complex. Even-parity (at
ϕ = 0) states have the lowest energy for θ = 0, but odd-parity states have the highest
energy for θ = 0 and the lowest energy for θ = π. At temperatures well above T = ω0,
the free energy is determined by a mixture of these states and the effects of θ tend to
cancel out. In the Euclidean path integral, this happens because the characteristic t-
width (Euclidean time width) over which ϕ varies in an instanton is t ∼ 1/ω0. When
βω < 1, the ϕ value must change very rapidly in order to complete an instanton, such that
Sinst ≥

∫ β
0 dtm(∂tϕ)2/2 ≥ 2π2mT . The instanton action rises linearly at large T , rendering

θ irrelevant. This point is illustrated in figure 1.
Now consider the same system, but distinguishing between ϕ = 0 and ϕ = 2π as

physically distinct configurations. In this case, we can consider a setup where the initial
conditions are close to thermal, but with ϕ always close to the minimum at 0, and ask the
completely different question:

Sphalerons: How fast does ϕ diffuse over the range of available ϕ = 2πn minima
over very long periods of Minkowski time?
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ϕ=0 ϕ=2πϕ=π

τ

ϕ=0 ϕ=2πϕ=π

τ

τ

ϕ=0 ϕ=2πϕ=π ϕ=0 ϕ=2πϕ=π

High−T

Med−high T

Med−low T

Low−Temp

Figure 1. Instantons as a function of temperature. At low temperatures, ϕ transitions from
0 to 2π along a smooth characteristic curve. With increasing T , as the range of t-periodicity is
narrowed, the instanton must “hurry” between ϕ = 0 and ϕ = 2π, increasing the associated action.

We can define this rigorously in terms of the long-time diffusion of ϕ’s value, distinguishing
between 2π-copies, as Γ = limtm→∞

1
(2π)2tm

〈(ϕ(tm)− ϕ(0))2〉. This is controlled by transi-
tions over ϕ = π and its periodic copies because the potential has a maximum there and
this represents the principal barrier to ϕ evolution.3

Intuitively, the sphaleron rate is the product of three factors (see figure 2):

1. How likely is ϕ to take a value near the top of the barrier? That is, what is dP (ϕ)/dϕ
at ϕ = π, where dP (ϕ)/dϕ is the probability density to find ϕ in some narrow range
about a specific value. In the toy model we expect dP/dϕ ∼ exp(−2V0/T ).

2. How fast does ϕ change values when it is at the top of the barrier? For our problem
this is 〈|dϕ/dtm|〉. Note that a rescaling of the variable ϕ changes both 1 and 2, but
the change cancels such that the product of the two terms is rescaling invariant. In
the toy model we expect mϕ̇2 ∼ T , so 〈|dϕ/dtm|〉 ∼

√
T/m.

3. How correlated are successive crossings of ϕ = π? This is a pure number, usually
close to 1, which we will call d.

The total transition rate is then

Γ = dP (ϕ)
dϕ

∣∣∣∣
ϕ=π
×
〈∣∣∣∣ dϕ

dtm

∣∣∣∣〉× d . (2.3)

3The definition of Γ described in footnote 2 is the rate of forward transitions, ϕ < π transitioning to
ϕ > π. The analogous rate is the relevant one for the bubble nucleation problem and is therefore the one
considered by Affleck [34]. Again, the rate we consider is for transitions in both directions and is precisely
twice as large. This factor emerges when computing 〈|dϕ/dtm|〉, which is the mean rate of crossing in either
direction. To compute the mean rate of forward crossings only, one should average this mean field velocity
only over the forward-moving cases.
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Crossing Event
V,E

ϕ
occupied basin

Initially initially empty
basin

V,E

ϕ

Figure 2. Cartoon of thermal activation in the pendulum toy model. Left: when one basin
starts filled and one starts empty, the rate to move across is the flux across the top, which is the
probability to be near the top times the rate of crossing. Right: for typical damping, an evolution
bounces in one basin, gains enough energy to cross, and then bounces in the next basin.

Figure 3. Cartoon illustrating the dynamical prefactor d. For extremely strong damping (left),
the trajectory can cross the barrier several times in succession, leading to only one (or zero) true
crossings. For underdamping (right), it can cross several barriers in succession.

The first two points are intuitively clear, but are explained in proper detail in the
seminal paper of Affleck. The last point appears to have been first noticed by Arnold
and McLerran [40], and is illustrated in figure 3. By very weak damping, the system can
cross several barriers in succession. Crossings are positively correlated and the number
of individual crossings underestimates the square of the change in ϕ/2π. In fact, in the
absence of damping as considered by Arnold and McLerran [39], d is infinite and the mean-
squared ϕ value rises quadratically, rather than linearly, with time. But for very strong
overdamping, several crossings may occur in a single “macroscopic” crossing event — as
appears to occur for the electroweak sphaleron rate [20, 21]. In this case, the true rate is
smaller than the count of individual crossings. In a broad intermediate range of damping
strengths, the ϕ̇ direction does not change as it crosses the top of the barrier (say, the
region where Vmax − V < T ), but there is enough damping by the time it reaches the next
barrier that it cannot cross. In this case we expect d ' 1.

We should emphasize that the technique we develop here cannot determine d. Instead,
we will concentrate on determining the product of the first two factors, and will assume
that d is close to 1. This is a weakness of our approach, and it is not clear to us how it
can be overcome.
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In a more general context, the exact location of and distance from the barrier may be
harder to quantify. Therefore, a successful thermal activation calculation typically requires
a few things:

1. Identify the “separatrix” which divides configurations into those closer to one mini-
mum and those closer to another.

2. Identify some measure of distance ϕ from the separatrix.

3. Use a Euclidean path integral to find the probability to be within some narrow
tolerance |ϕ| < ∆ of the separatrix.

4. Determine the mean velocity of the ϕ variable when it is at or very near the separatrix.

We will show how to combine the last 3 steps into a single step, which does not require
determining the value of ϕ.

2.2 Crossing speed and Euclidean fluctuations

How do we estimate 〈|dϕ/dt|〉 (or its equivalent in more complex problems) using only
Euclidean data? The answer lies in the size of the fluctuations in ϕ(t) as a function of the
Euclidean time t. The amplitude of these fluctuations is proportional to the rate at which
ϕ changes in real time. After all, the real-time evolution can be determined by analytical
continuation from the Euclidean-time dependence, as calculated in detail by Arnold and
McLerran [39]. Consider again our toy example, with Lagrange function given in eq. (2.1).
The Hamiltonian is

H = m

2 ϕ̇
2 + V0(1− cos(ϕ)) (2.4)

and classically, the thermal distribution of ϕ̇ values is given by equipartition,

P (ϕ̇) ∝ exp
(
−mϕ̇2/2T

)
〈∣∣∣∣ dϕ

dtm

∣∣∣∣〉 =
∫∞

0 dϕ̇ ϕ̇e−mϕ̇2/2T∫∞
0 dϕ̇ e−mϕ̇2/2T = (2.5)

=

√
2T
πm

.

For comparison, in Euclidean space, the dominant t-dependence in ϕ(t) arises from
fluctuations with Matsubara frequency ω = 2πT :

ϕ(t) ' ϕ0 + c cos(2πtT ) + s sin(2πtT ) (2.6)

with ϕ0 the average of ϕ(t) over t values and c, s coefficients indicating two independent
t-dependent fluctuations with this frequency. The action associated with these fluctuations
is approximately

S(c, s) =
∫ β

0
dt m2 (∂tϕ)2 =

∫ β

0
dt 2π2mT 2

(
c2 cos2(2πtT ) + s2 sin2(2πtT )

)
= π2mT (c2 + s2) .

(2.7)
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We can characterize ϕ’s t dependence by looking at the RMS difference between ϕ(t = β/2)
and ϕ(t = 0), which equals 2c:

〈(ϕ(β/2)− ϕ(0))2〉 = 〈(2c)2〉 =
∫∞
−∞ dc(2c)2e−π

2mTc2∫∞
−∞ dce−π2mTc2 = 2

π2mT
⇒

√
〈(2c)2〉 =

√
2

π2mT

(2.8)
which is smaller than 〈|dϕ/dtm|〉 by a factor of 1/T

√
π. So the side-to-side fluctuations

in ϕ are smaller than |dϕ/dt| by a factor of 1/T , which one could guess on dimensional
grounds, and an order-1 numerical factor.

Is this relation special? We claim it is quite general — the same Hamiltonian controls
real-time evolution and Euclidean-time fluctuations, since the Hamiltonian H equals the
Euclidean-time Lagrangian LE.

To determine the numerical factor precisely, we have to decide precisely what question
we want to ask about the Euclidean ϕ fluctuations. The point ϕ = π separates values closer
to the minimum at 0 and the values closer to the minimum at 2π, so we follow standard
usage and call it a separatrix. In the following, it will be useful to ask how often ϕ(t = 0)
and ϕ(t = β/2) lie on opposite sides of this separatrix. In particular, we expect on the
above reasoning that the first two terms in eq. (2.3) can be recast as:

dP (ϕ)
dϕ

∣∣∣∣
ϕ=π
×
〈∣∣∣∣ dϕ

dtm

∣∣∣∣〉 = order-1 coeff
T

× 2 Prob
(
ϕ(t = 0) < π < ϕ(t = β/2)

)
. (2.9)

Here 2 Prob(...) is the chance that ϕ is on opposite sides of π at the Euclidean times t = 0
and t = β/2; the factor of 2 accounts for ϕ(t = 0) > π > ϕ(t = β/2).

To determine the order-1 coefficient, we must repeat the quick calculation of (2c)RMS
above with more care. We do so in appendix A, accounting for all Matsubara modes,
finding that the real-time rate is 2T times the probability for ϕ(t = 0) and ϕ(t = β/2) to
be on opposite sides of the separatrix.4 The appendix also shows how to include the effects
of gradient flow, which we will need later.

The advantage of this formulation is that it is only necessary to determine which side
of the “separatrix” ϕ = π the field ϕ(t) is on at the two (Euclidean) time values t = 0 and
t = β/2. When we try to apply these ideas to the sphaleron rate of QCD, we don’t know
how to measure the distance from the separatrix, but it is perfectly feasible to determine
which side of the separatrix one is on.

One might worry that, in higher-dimensional problems like quantum field theory, the
separatrix is generally a codimension-1 surface, rather than a single point. Does this
approach still work? We argue that it does. At any point on the separatrix, one can
find a local orthogonal direction and ask about motion, and fluctuations, in that direction.

4Here is a quick way to see why. Compare eq. (2.5) to eq. (2.8). The latter was computed with
only the lowest Matsubara frequency, but all odd frequencies contribute, multiplying it by a factor of√∑

n=1,3,... n
−2 = π2/8. Also, eq. (2.8) is based on an RMS average, but we should compute the mean

absolute value as used in eq. (2.5), which is smaller by
√

2/π for Gaussian distributions. The two effects
correct eq. (2.8) to

√
2/(π2mT )× π2/8× 2/π = (1/2)

√
2/πmT which must be multiplied by 2T to get

eq. (2.5).
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At each such point, the speed a real-time configuration moves through the separatrix
is determined by the same kinetic Hamiltonian as the Euclidean fluctuations orthogonal
to the separatrix. Therefore, their relative amplitudes are proportional. The real-time
Affleck-type calculation involves an integral over the separatrix surface of a local probability
density times the local 〈|dϕ/dt|〉, while our calculation involves the same surface average
of 〈
√

∆c2〉, which is proportional with fixed proportionality constant 1/2T . Therefore, to
the extent that configurations close to the separatrix really control the transition rate, the
two calculations will be equivalent when the factor 1/2T is included.

3 Application to QCD

Let us see how to apply these ideas to the sphaleron rate in QCD. First, we will consider
one more time an evaluation in the toy model:

3.1 Γ in the toy model

Before turning to QCD, suppose we were trying to determine Γ in the toy model, and we
had a nonperturbative method for studying the finite-temperature Euclidean path integral.
However, suppose we somehow could not access the exact value of ϕ, but only which side
of π it lies on. We could perform our study as follows:

1. Generate a sample of typical Euclidean configurations:

2. For each, determine whether ϕ is on the opposite side of ϕ = π at t = 0 as it is
at t = β/2. This can be done by evolving ϕ(t) under gradient-flow or relaxation
dynamics and seeing whether it rolls down to ϕ = 0 or to ϕ = 2π, for instance.

3. Evaluate the sphaleron rate as 2T times the fraction of configurations which make
such a transition.

To understand the approach, consider figure 4, which shows examples of how two
configurations would be evaluated in this procedure.

The section from t = 0 to t = β/2 is cut from a simulation, and one “grafts” the
gradient-flow path from the t = 0 configuration to the vacuum and from the t = β/2
configuration to the vacuum onto the two ends. The full configuration starts and ends at
the zero-energy solution, ϕ = 0, modulo 2π. When the change is by ±2π, it is a sphaleron;
otherwise it is not.

3.2 QCD: Chern-Simons number

Our approach in QCD will be the same: to look for configurations which cross a separatrix
between t = 0 and t = β/2, and therefore settle into distinct vacua when acted on by
gradient flow. There is no easily-measured value ϕ with a separatrix at ϕ = π in QCD.
However, we can use gradient flow and topology to define a separatrix and to give a measure
which determines whether the t = 0 slice and the t = β/2 slice are on opposite sides.
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Figure 4. Cartoon of how two configurations would be evaluated using the gradient-flow approach
described in the text. A segment of a Euclidean simulation, from t = 0 to t = β/2, is cut out of the
simulation, and the starting/ending configurations are gradient-flowed to a zero-energy state. The
whole path (zero-energy to t = 0 to t = β/2 to zero-energy) either has ϕ change by ±2π (left) or
by 0 (right); in the former case it counts as a sphaleron.

Let’s start by defining gradient flow on a 3D configuration, in analogy to its usual 4D
definition [41, 42]:

Bi(t, ~r, τF3 = 0) = Gi(t, ~r) ,
∂

∂τF3

Bi(t, ~r, τF3) = −δ
∫

d3xTrGjkGjk[B]
δBi(~r)

. (3.1)

The fields Bi(t, ~r, τF3), as a function of the 3D coordinate ~r and the 3D flow-time coordinate
τF3 , can be considered a 4D gauge-field configuration in the temporal gauge. One can then
integrate the topological charge density over this 4D configuration:

Q(t) ≡ −
∫ ∞

0
dτF3

∫
d3~r q(t, τF3 , ~r) , q(t, τF3 , ~r) = εijk

8π2 TrGij
∂

∂τF3

Bk(t, ~r, τF) . (3.2)

The result is equivalent to the definition of Chern-Simons number adopted in eq. (5) of
ref. [43], which predates papers discussing 4D gradient flow [41, 42].

To understand Q(t) better, consider an idealized 4D instanton solution centered at the
origin, and consider a series of time slices through the instanton. For t < 0 slices, gradient
flow will make the 3D gauge field roll down towards the vacuum described by the t→ −∞
slice. This will yield Q(t) values which change from 0 at very negative t towards 1/2 for t
close to zero. But on any t > 0 slice, the gauge field will gradient-flow down towards the
vacuum described by the t→ +∞ slice. Therefore, Q(t) as defined above will have a sharp
jump at t = 0 (the middle slice of the instanton), from a value around +1/2 to a value
around −1/2. The slice where this jump occurs is our separatrix, and the property of the
separatrix is that such a 3D slice, under gradient flow, moves to a saddlepoint between 3D
vacua and sticks there.

Now return to the periodic (thermal) Euclidean path integral of time extent β. We
want to know whether the t = 0 and t = β/2 slices are on opposite sides of this separatrix.
We could evaluate Q(t) as defined above at every time slice from t = 0 to t = β/2 and see
if it makes a sharp jump. But this is inefficient. If we only want to know whether the t = 0
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Figure 5. How we define and identify sphalerons in QCD. The topological density is integrated
between t = 0 and t = β/2, and supplemented by its integration as these two boundaries are
gradient-flowed to the vacuum. When the configuration crosses a separatrix, the result is ±1.

and t = β/2 slices are on opposite sides, we can consider the following combination:

QS = Q(t = 0) +
[∫ β/2

0
dt
∫

d3x q(x, t)
]
−Q(t = β/2) (3.3)

≡ Q0 +Qhalf −Qβ/2 .

Here QS stands for the “sphaleron topology,” not to be confused with
∫ β

0 dt
∫

d3x q(x, t) =
QI the instanton topology of eq. (1.1). QS is “almost” the difference between Q(t), defined
above, at the two slices of interest. If we cross the separatrix, we expect Q0 and Qβ/2 to be
approximately ±1/2 and ∓1/2 so the difference is ±1. But by adding the q-integral over
the intervening segment Qhalf , we make the measurement actually topological. Namely,
QS is the integral of q(x, t) over a domain with no space boundaries (our box has periodic
boundary conditions), which begins on a vacuum configuration at t = 0, τF3 =∞ and ends
on a vacuum configuration at t = β/2, τF3 =∞, and has no field discontinuities in between.
Therefore the integral of q, QS, is an integer. When this integer is nonzero, we define the
configuration to be a sphaleron. This idea is illustrated in figure 5.

Lastly, note that the sphaleron rate is technically defined as the number of topology
transitions per unit time and volume. Therefore, in defining the sphaleron rate, we must
find the mean-squared value of QS from eq. (3.3), multiply by 2T , and divide by the space
volume which was studied — that is, 〈Q2

S〉 is expected to be extensive in the lattice volume,
provided the lattice is large enough to see the large-volume behavior.

4 Lattice calculation of the sphaleron rate

As discussed in the last section, we will evaluate whether a given lattice gauge-field config-
uration is a sphaleron by evaluating QS defined in eq. (3.3), determining

ΓEucl
T 3 =

〈
Q2

S
〉

(Ns/Nt)3 , (4.1)
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Figure 6. Sketch of the calculation performed on the lattice to determine the sphaleron rate. One
dimension of the lattice is left not drawn for convenience.

with Ns and Nt the number of lattice points in the space and time directions respectively,
and then rescaling by 2T to convert this into the real-time rate as described in the appendix,
specifically eq. (A.15):

Γsphal,s = 2TΓEucl . (4.2)

There is one additional complication which we must overcome to make the procedure
work. Integrating q(~r, t) on a lattice gauge configuration typically returns a highly noisy
result, because the lattice definition of q(~r, t) is contaminated with high-dimension oper-
ators which are not topological.5 Therefore it is essential to apply some lattice gradient
flow (Wilson flow [42]) on the 4D configuration before the evaluation. This 4D gradient
flow also reduces the size of the fluctuations in the temporal direction which we discussed
in subsection 2.2 and in appendix A. This will reduce how many configurations cross the
separatrix and are counted as sphalerons. Appendix A.2 contains a calculation of the size
of this effect, which we can use to correct for the effects of gradient flow.

Just to summarize the procedure, the steps that we need to take are the following:

1. Generate a valid lattice QCD configuration through a Hybrid Monte-Carlo algorithm.

2. Apply a certain amount τF of 4D gradient flow in order to reduce the UV noise.

3. Calculate the topology enclosed in half the lattice.

4. Extract the 3D slices at t = 0 and t = β/2, and compute Q(0) and Q(β/2) according
to (3.2), using a 3D version of gradient flow all the way to the vacuum.

5. Calculate QS with these quantities, see eq. (3.3). Repeat for many configurations to
extract

〈
Q2

S
〉
.

The procedure for determining QS is illustrated in figure 6.
5We use the clover definition of q(~r, t).
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Nt
6 8 10 12 14 16

T/Tc

1.3 6.04979 6.23700 6.39495 6.53054 6.64889 6.75371
2 6.33718 6.54976 6.72273 6.86803 6.99311 7.10283
3 6.64031 6.86803 7.04966 7.20049 7.32939 7.44187
4 6.86803 7.10283 7.28847 7.44187 7.57254 7.68632
5 7.04966 7.28847 7.47640 7.63126 7.76294 7.87746
7 7.32939 7.57254 7.76294 7.91939 8.05216 8.16748
10 7.63126 7.87746 8.06960 8.22716 8.36070 8.47657
20 8.22716 8.47657 8.67054 8.82926 8.96359 9.08003

Table 1. Value of the lattice coupling βlatt for different values of T/Tc (where Tc is the critical
temperature of the pure-glue Yang-Mills theory, given by Tc = 287.4(70)MeV) and number of sites
in the temporal direction Nt.

In this paper, we have used openQCD [44] for generating the configurations and ap-
plying the 4D gradient flow, and then implemented the calculation of (3.2) separately. We
update with the HMC algorithm with trajectories of length 1.5 (in lattice units), measuring
every 60 updates. The autocorrelation between configurations is then acceptable for the
Ns values we use. For the statistical analysis we have used the Γ-method algorithm as
provided in [45] as a Python module.

When integrating the 3D slices along the flow direction, we have also used blocking-
techniques (as were described in [43]) after the energy had been lowered below a threshold
(chosen such that the blocking did not change the final answer). It is also important to
note that while the integration of the 4D gradient flow discretization needs to be done
as precisely as possible (and for that, we have used the 3rd order Runge-Kutta algorithm
already implemented in openQCD), the integration for the 3D slices can be done with a
much simpler Euler algorithm with bigger step-size, as the most important part is that we
end up in vacuum (where all links are close to unity), and not the precise configuration we
pass through in the middle.

For the scale setting, we have used the fitting parameters found in [46, 47] which allows
us to find the βlatt necessary to equilibrate our lattice to our desired temperature, given
the number of sites in the time direction Nt. For reference, we have included in table 1 the
value of the lattice coupling for different cases we have used in this work.

Before trying to understand the continuum limit of this method, and to be sure we
are on the right track, we first test that the procedure really returns integer values of QS.
We do this on a single lattice size and spacing and a single chosen value of 4D gradient
flow depth and show the results in figure 7. We see that, while the individual components
Q0, Qhalf , Qβ/2 are definitely not topological and take a range of values, the combination QS
is indeed topological up to modest fluctuations caused by O(a2) high-dimension operator
contamination in our definition of topological density. This effect gets smaller as we apply
more 4D gradient flow (see below). In practice we must apply enough 4D gradient flow to
cleanly separate the different integer values, which can be checked by making a histogram
of QS values and seeing that they separate into clear peaks. Then one assigns integer values
by projecting to the closest integer. We illustrate how this works in figure 8, where we see
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Figure 7. Numerical data obtained from 2560 configurations on a lattice with 10 × 323 sites,
equilibrated at a temperature T = 5Tc, where the measurement has been performed at a gradient
flow depth of τF = 1.2a2. The top-left plot is QS of each configuration, and is approximately
an integer. The top-right, bottom-left, and bottom-right plots show the Qhalf , Q0, and Qβ/2,
respectively.

0 1000 2000 3000 4000 5000
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

0 2000 4000 6000 8000 10000

−2

−1

0

1

2

−2 −1 0 1 2

0 2000 4000 6000 8000 10000 12000

Configuration number

−2

−1

0

1

2

−2 −1 0 1 2

QS

Histogram of QS for a lattice 10× 323, with T = 5Tc, different gradient-flow depth

Q
S

Figure 8. Histograms of QS for a lattice with 10×323 sites, at temperature T = 5Tc, and different
gradient flow depths. The amount of flow corresponds to τF = [0.2, 0.4, 0.6] a2, top to bottom. We
see that as we go down the flow path, the peaks are more defined. While for τF/a2 = 0.2 we cannot
see the topological nature of the jumps, that becomes clear for τF/a2 = 0.4. As a remark, the
criterion (4.3) fails for the top case, but is satisfied for the other two.

– 15 –



J
H
E
P
0
1
(
2
0
2
3
)
1
5
5

the histogram of QS at different gradient flow depths, and precisely check that the peaks
get sharper as we go down the flow path.

The quantitative criterion we use to determine whether enough 4D gradient flow has
been used is the following. First, we consider all configurations with |QS| < 0.5 and we
evaluate the standard deviation σ2

data = 〈Q2
S〉|QS|<0.5. Assuming that the true distribution

is Gaussian, we ask how much of the distribution is expected to lie outside the range
|QS| < 0.5, and we require that this be less than 2%:

∫ ∞
1/2

2dz√
2πσ2

data

e
− z2

2σ2
data = erfc

( 1
2
√

2σdata

)
< 0.02 → σdata < 0.215 . (4.3)

5 Volume, lattice spacing, and gradient-flow depth dependence

Now that we have formulated the theoretical framework of the calculation and shown that
it works numerically, we need to analyze how it behaves on the lattice. The three main
topics we should study are:

1. how to correct the rate for the effects of 4D gradient flow,

2. how it changes when we vary the spatial volume of our lattices, and

3. how to take the continuum limit, that is, how it changes when we go to finer lattices
(by varying the number of sites in the time direction, and varying βlatt such that the
temperature is constant).

5.1 Gradient flow dependence

As explained in the previous section, some 4D gradient flow is needed to ensure that QS
is really topological up to fluctuations which are small enough to fix by projecting to the
nearest integer. However, applying this gradient flow can move individual time-slices across
the separatrix and reduces how many configurations are determined to be sphalerons. We
have to correct for this effect. The analytical dependence in the case of a single degree of
freedom has already been explored in section A.2, and here we will check that the same
relationship holds for the case of QCD on the lattice. By taking the quotient between
equations (A.13) and (A.20), we can find that

ΓτFsphal,s
Γsphal,s

= 2
π

√√√√√2
∞∑
n=1
n odd

e−τFn
2

n2 (5.1)

where we have defined τF ≡ 8π2τF/
(
a2N2

t

)
.

We can then explore the accuracy of this correction by examining the same ensemble of
configurations using different amounts of gradient flow. The result can be seen in figure 9,
where the points in the left represent the sphaleron rate ΓτFsphal,s, while on the right they have
been corrected according to (5.1). We see that, for gradient flow depths above a threshold
of about τF = 0.5a2, the correction accurately describes the effect of gradient flow.
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Figure 9. Left: measurement of the sphaleron rate at different gradient-flow depths, where the
points in red (representing different values of ΓτFsphal,s) have been used to find the best fit for Γsphal,s
(see equation (5.1)). The points in blue do not satisfy the criterion explained in a previous section,
equation (4.3). Right: same plot but where each value has been corrected according to (5.1), and
the horizontal line is the best fit described before. We see that the correction successfully accounts
for the effects of 4D gradient flow.

We expect the correction to break down when τF comes of order β2, that is, a2N2
t ,

when the gradient flow starts erasing all information stored in the gauge fields. We have
not explored this regime in detail because we don’t need to — as long as there is a range of
τF values where the correction works well, then we can use this to establish the sphaleron
rate in a τF-independent way. This should be possible whenever Nt is sufficiently large,
which is the same as a requirement that the lattice spacing be sufficiently small.

5.2 Volume dependence

The sphaleron rate has been computed at very high temperatures (or weak gauge couplings)
using classical-field, real-time methods, and it was always found that the rate per unit 4-
volume is suppressed in small boxes but grows to an infinite-volume asymptotic value above
some box size [30, 48, 49]. Intuitively, this means that sphalerons have a typical intrinsic
size, and the box must be larger than this size for a sphaleron to “fit.” At weak coupling, the
size is expected to be parametrically of order 1/g2T [7, 40]. In the 4D Euclidean calculation
we expect something similar to happen: in lattices with Nt sites in the temporal direction
and Ns sites in the spatial direction, for small Ns we will not observe any jumps. As we
make the spatial volume bigger (keeping βlatt and Nt fixed), we will start observing more
and more jumps. Eventually, we would expect 〈Q2

S〉/V to approach a constant.

– 17 –



J
H
E
P
0
1
(
2
0
2
3
)
1
5
5

16 20 24 28 32 36 40 48 64 80

Number of spatial sites on the lattice

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Γ
sp

h
al
,s
/T

4
Volume dependence of the sphaleron rate at T = 5Tc, for Nt = 10

Figure 10. Sphaleron rate as a function of the aspect ratio Ns/Nt, at fixed Nt and temperature.

We can see the result for different values of Ns in figure 10, where we have used a
lattice with Nt = 10 and equilibrated it at T = 10Tc. As expected, we see the increase
in the sphaleron rate as we increase the volume until it reaches the peak. But from that
point forward, we see a decrease in the rate. We did not expect this and it is not analogous
to what occurs in the real-time case. To show this more clearly, we have revisited the
volume dependence of the classical real-time SU(2) rate using the same code as in ref. [49].
Fixing the lattice spacing to a = 0.25g2T and varying the box size, figure 11 shows that
the classical real-time rate saturates to a flat asymptotic value to within a few percent,
without the clear post-peak decrease we observe in the Euclidean method.

We do not yet understand why our sphaleron-rate volume dependence exhibits a peak
and a decrease towards very large volumes. Note that the configurations at larger volumes
than the peak frequently exhibit |QS| > 1, which means that there are multiple sphalerons
in a box or that our single-saddlepoint picture has broken down. Since it is unclear if our
approach is really appropriate in this regime, we will use the peak in the volume-dependence
curve as our sphaleron-rate estimate in the remainder of this work. Clearly it would be
valuable to revisit this decision and to find a clearer understanding of the large-volume
behavior and the meaning of this peak and falloff. We will assume that our results suffer
an O(30%) systematic uncertainty because of this assumption.

5.3 Continuum limit

Now the only thing we need to check is how Γsphal,s approaches the continuum limit a→ 0
at fixed temperature and aspect ratio. We do this by performing the calculation at a series
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Figure 11. Volume dependence of the SU(2) sphaleron rate when the rate is determined using
classical-field, real-time techniques as in ref. [49]. As the volume increases, the rate rises and
saturates to a very clear plateau.

of lattice spacings (or Nt values) and seeing how they scale with a2. As has been explained
in section 4, we use the scale setting as described in [46, 47] in order to relate the lattice
spacing a to the lattice coupling β. Then we can fix the temperature while increasing Nt

and calculate the sphaleron rate at the peak in each case,6 using the previously established
method to correct for 4D gradient-flow effects.

The result can be seen in figure 12. As frequently happens, lattice spacing effects are
large at Nt = 6, but for larger Nt we find a good convergence towards a continuum limit.

Rather than repeat this continuum limit procedure at every temperature, we will fix
to Nt = 10 at all other temperatures, which we see will introduce at most ∼ 20% errors in
our results.

6 Low and high temperatures

Before we proceed to show the final results for the sphaleron rate at different temperatures,
we also need to comment on the limits of our method.

6.1 Low temperatures and instantons

Consider the toy model one more time. In the high-temperature regime, the ϕ field typically
reaches ϕ = π as a result of a Euclidean history which loiters near ϕ = π (a sphaleron),

6We also checked that the aspect ratio Ns/Nt where the rate reaches its peak is independent of lattice
spacing.
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Figure 12. Sphaleron rate calculated at the peak of each volume-dependence curve, extrapolated
to zero gradient-flow-depth, at different values of lattice spacing a, for T = 10Tc. The zero-spacing
extrapolation yields a value of Γsphal,s/T

4 = 0.0035± 0.0002.

rather than a history which transitions from ϕ = 0 to ϕ = 2π (an instanton). But as the
temperature is lowered, the instantons become more important. In this case, the basic
picture — that the real-time rate is controlled by classical thermal fluctuations up to the
barrier and the rate can be computed from the frequency of such transitions over the barrier
— comes into question. Therefore we should not trust our approach if instantons are as
common as sphalerons.

One feature of our approach, as one sees in figure 4 for instance, is that a sphaleron will
give the same answer whether we include the Euclidean path between t = 0 and between
t = β/2 as we would find if we include the Euclidean path between t = β/2 and t = β. We
see this more explicitly in eq. (3.3). If we had chosen t = β/2 and t = β as the lower and
upper boundaries of our region, we would define

Q′S = Q(t = β/2) +
[∫ β

β/2
dt
∫

d3x q(x, t)
]
−Q(t = β)

= Qβ/2 +Qsecond−half −Q0

= −(Q0 +Qhalf −Qβ/2) +
[∫ β

0
dt
∫

d3x q(x, t)
]

= −QS +QI . (6.1)

In passing from the first to second line we use periodicity, which means that the configura-
tion at t = β is the same as at t = 0 so Qβ = Q0. The integral on the third line is the total
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of temperature (in Tc units). Only the sphaleron rate has been extrapolated to zero gradient-flow-
depth, as described in the previous section.

topology in the box, QI. At high temperatures QI is almost always zero, and therefore
Q′S = −QS; the topology we find in the upper half of the box is minus the topology we find
in the lower half. But for configurations with an actual instanton, QI = ±1 = QS + Q′S.
Therefore, true sphalerons (QS = ±1 but QI = 0) will count as a sphaleron whether we use
the top or the bottom half of our box, whereas instantons will either count as a sphaleron
if we use the top half, or if we use the bottom half.

As we just emphasized, the whole approach of counting sphalerons and equating them
to classical transitions becomes suspect when a large fraction of what we find are actually
instantons. Therefore it is useful to investigate the ratio of the instanton density to the
sphaleron rate. When this ratio becomes of order 1/2, we have left the regime where
classical activation makes sense. When the ratio is small, sphalerons dominate instantons
and our approach should make sense.

We present this comparison in figure 13. For values of temperatures above 1.75 Tc
the appearance of instantons is exponentially suppressed and finding one is very rare.
For values between 1.3 and 1.75 Tc, while we can find some instantons, they are rare when
compared to the amount of sphalerons (sphalerons are at least 10 times more common than
instantons). For values lower than 1.3 Tc, the instantons are very common and therefore
we cannot trust our calculation for the sphaleron rate. Therefore, our method will only be
reliable above 1.3Tc, and we will restrict ourselves to this domain.
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6.2 High temperatures and classical fields

At very high temperatures the gauge coupling becomes so weak that g2T � T . In this case,
sphalerons are physically large objects which should be well described in terms of classical
fields, both thermodynamically and (within limits) dynamically. In this regime, both our
methods and previous, classical-field real-time methods should be applicable. Therefore
we will attempt to make contact with the 3D real-time results of ref. [30].

Real-time results are calculated in terms of the effective 3D gauge coupling g2
3, which

equals g2T of the 4D theory at tree level. At the loop level, it can be related to the 4D MS
coupling via a perturbative matching calculation, which has been carried out to 2 loops by
Laine and Schroeder in ref. [50], see eq. (2.34) to (2.37) of that reference.

The MS coupling can in turn can be related to the lattice coupling βlatt by measuring
the gradient-flowed expectation value of the squared field strength E ≡ TrGµνGµν and
using its NNLO relation to the MS coupling at µ = 1/√8τF [51]:

t2 〈E(t)〉 = 3αs
4π

(
1 + k1αs + k2α

2
s

)
(6.2)

where k1 ≈ 1.098 and k2 ≈ −0.982 for SU(3) theory without fermions. We use the Wilson
action, Zeuthen flow [52], and clover definition of the field strength, checking that the
result is stable over a range of flow depths after the 2-loop running of g2(µMS) is taken into
account.

Equipped with this method, we study a lattice with Nt = 8 and βlatt = 15, finding
that it corresponds to g2

3
4π = 0.0406. Since the coupling is small, the box size must be

correspondingly large before the sphaleron rate “turns on.” For this choice of Nt, we find
that we need Ns = 96 to reach the peak in the volume dependence of the sphaleron rate.
Generating many independent configurations of this size is challenging, so our statistical
errors are rather large; we find that Γnew

sphal,s/(α4
sT

4) = 19 ± 7. Based on figure 12, we
expect the real answer to be 20% to 25% lower once the continuum limit is performed.
Going back to [30], we find that for αs(0 flavor) = 0.039, the value is Γold

sphal,s/(α4
sT

4) =
11.5±0.3. Therefore, our method is compatible with the previous 3D calculations, given the
downwards continuum corrections, the rather large statistical errors, and the theoretical
errors present in the calculation in [30].

7 Results, discussion, and conclusions

The results obtained with our method for the sphaleron rate in the range of temperatures
[1.3−20]Tc are shown in figure 14 and summarized in table 2. We emphasize that these
results are at Nt = 10; we have not taken a continuum limit.

The main application of these rates is to use them in eq. (1.4) to see how quickly or
slowly a chiral imbalance relaxes via thermal sphaleron processes. Using Γsphal,s/T

3 '
0.04T over the range [1.3Tpc, 2Tpc] and treating the up and down flavors as light (nf =
2), we estimate that the exponential decay lifetime for axial number is of order 12/T .
This is slow enough to allow axial number to play a role in early dynamics during heavy
ion collisions, but marginally fast enough for axial number to relax before the system
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Sphaleron rate as a function of temperature

Figure 14. Results for the sphaleron rate for different temperatures. The left plot presents the
dimensionless ratio found by scaling with T 4, while on the right we have reintroduced dimensions,
using Tc ≈ 280MeV for SU(3) theory. Errors are statistical only; all data are at Nt = 10 without a
continuum extrapolation.

T/Tc Γsphal,s/T
4 Γsphal,s [GeV4] Num. configs.

1.3 0.061± 0.002 0.00119± 0.00003 5520
2.0 0.029± 0.002 0.0031± 0.0002 1970
3.0 0.016± 0.001 0.0089± 0.0006 1280
4.0 0.0115± 0.0006 0.020± 0.001 2260
5.0 0.0080± 0.0003 0.034± 0.001 7680
7.0 0.0069± 0.0007 0.11± 0.01 1280
10.0 0.0043± 0.0002 0.29± 0.01 4560
20.0 0.0027± 0.0003 2.9± 0.3 1280

Table 2. Results presented in figure 14 in tabular form. Errors are statistical only.

hadronizes. Note that this estimate involves using pure-glue results in full QCD, and it
therefore still has rather large theory errors.

We have also calculated the sphaleron rate at the electroweak scale, where the coupling
is approximately αs ∼ 0.1. For that we have used the same techniques as in section 6.2 to
find the 4D coupling from gradient flow. For βlatt = 9, we have found that it corresponds to
αs = 0.108± 0.002 (where the uncertainty shown is not statistical but comes from having
to pick a flow depth such that equation (6.2) is valid but lattice errors are small). In this
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case, we obtain
Γsphal,s(αs ∼ 0.108) = 14± 1α4

sT
4. (7.1)

We emphasize again that the error is statistical only; we have not taken a continuum limit
and that the result is for pure glue, so there are still much larger systematic effects to be
included.

The main breakthrough of this paper is to show how real-time processes mediated by
semiclassical saddlepoints, like thermal bubble nucleation or the sphaleron rate, can be cal-
culated using exclusively Euclidean and fully nonperturbative tools. We have applied this
technique to the sphaleron rate in SU(3) gauge theory partly because of its phenomeno-
logical interest and partly because it is particularly clear in this case how to define the
separatrix and how to determine whether the t = 0 and t = β/2 time slices of the Eu-
clidean path integral lie on opposite sides of the separatrix. The same approach should be
applicable to other saddle-controlled tunneling processes such as bubble nucleation, though
identifying the saddlepoint in this case may be more challenging. Our approach also has
the weakness that it does not give us a way to determine a dynamical prefactor d which
appears in the tunneling rate. Note that this same defect is present in analytical Euclidean
approaches such as Affleck’s method as well. We currently don’t see a way to overcome
this limitation.

It should be straightforward to extend the current approach to full QCD with 2+1 light
flavors of fermions. The only change needed is to include the fermions when performing
the HMC lattice updates, so that the configurations are drawn from the full, rather than
pure-glue, lattice ensemble. We have already begun work on this project.

There are a few points where it would be useful to deepen our understanding of the
technique and our results. The unexpected scaling with lattice volume needs to be better
understood. And it would also be interesting to better understand lower temperatures
where instantons start to play a role. To what extent can we incorporate instantons into a
determination of axial number relaxation? And to what extent does axial quark number
make sense in a regime where the system is moving towards a description in terms of
hadronic degrees of freedom? We consider these to be interesting open issues.
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A Size of Euclidean fluctuations

We have argued that the sphaleron rate can be determined by finding which Euclidean
configurations “span” the separatrix, in the sense that the spatial slice at t = 0 and the
slice at t = β/2 are on different sides of the separatrix.
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Here we present the details of the calculation comparing the likelihood for a Euclidean
configuration to satisfy this condition to the real-time rate for transitions as determined
by the Affleck method. We also incorporate the effect of 4D gradient flow applied to the
Euclidean configuration before the measurements are carried out.

The main assumption behind the method is that the sphaleron, critical bubble, or
other object responsible for tunneling is a robust high-action object. Even though the
transition rate may not be dominated by configurations close to the saddle point, it will
be dominated by configurations in the vicinity of the (codimension-1) separatrix surface.
At every point on the separatrix there is a direction orthogonal to the separatrix, and we
assume that fluctuations along this direction, when comparing 3D slices at different t values,
are small relative to the overall size of the sphaleron. In this case the degree of freedom φ(t)
associated with this direction can be treated as a single variable with a kinetic term whose
strength is approximately φ-independent and a potential which can be approximated as
quadratic. (We do not need this kinetic term or this potential to be the same everywhere
on the separatrix — we only need to know that there is little variation orthogonal to
the separatrix, over the field-space distances explored by the higher Matsubara modes of
this degree of freedom.) If these assumptions are far from correct, the entire saddlepoint
approach we use will not be applicable and we have no theoretical tools to establish the rate
from Euclidean methods (and probably real-time methods will also not be applicable since
they also rely on a scale separation between the size and evolution time scale of sphalerons
and the intrinsic thermal size and time scales).

A.1 Calculation without gradient flow

We are interested in a configuration close to some point on a separatrix surface, and in the
degree of freedom orthogonal to the separatrix. We will write this degree of freedom as φ(t)
with φ = 0 representing the separatrix, and we take it to have a canonically normalized
kinetic term (recall that a rescaling of φ(t) does not affect our answers). For the toy model,
φ(t) =

√
m(ϕ(t)−π). The probability that the Euclidean fluctuations carry φ across φ = 0

between t = 0 and t = β/2 are given by:

ΓEucl ≡
∫
φ(t=0)=φ(t=β)

Dφ e−SE
[
θ(φ(t=0))θ(−φ(t=β/2)) + θ(−φ(t=0))θ(φ(t=β/2))

]
.

(A.1)
The two θ(..)θ(..) factors represent cases where φ goes from positive to negative and where
it goes from negative to positive, respectively. Here the Euclidean action SE is

SE =
∫ β

0
dt
(

1
2 (∂tφ)2 − m2

2 φ2
)
, (A.2)

with m2 representing a possible potential, favoring φ to leave the separatrix (the curva-
ture in the unstable direction of the saddlepoint). We insert the following Matsubara
decomposition, which satisfies the periodicity condition but is otherwise general:

φ(t) = φ0 +
∞∑
n=1

(cn cos(2πnt/β) + sn sin(2πnt/β)) . (A.3)
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With this substitution, the measure of the path integral becomes simply

Dφ = Ndφ0

∞∏
k=1

dckdsk (A.4)

where N is a constant, and we can explicitly evaluate the action

SE = −β m
2

2 φ2
0 +

∞∑
n=1

(c2
n + s2

n)A(n,m) , (A.5)

A(n,m) ≡ β

4

[(2πn
β

)2
−m2

]
.

Introducing ceven and codd as the sum over the even and odd ck coefficients through

1 =
∫

dceven dcodd δ

ceven −
∑

k=2,4,...
ck

 δ
codd −

∑
k=1,3,...

ck

 (A.6)

we can rewrite the Heaviside theta-functions as:

θ(φ(t = 0)) = θ

(
φ0 +

∑
k

ck

)
= θ(φ0 + ceven + codd) ,

θ(−φ(t = β/2)) = θ

(
−φ0 −

∑
k

(−1)kck

)
= θ(−φ0 + ceven − codd) .

(A.7)

so that the path integral we have to perform is given by

ΓEucl = 2
∫

dφ0

∫
dcevendcodd

∞∏
k=1

dckdsk exp
(
m2

2 φ2
0β −

∞∑
n=1

(c2
n + s2

n)A(n,m)
)

(A.8)

× δ

ceven−
∑

k=2,4,...
ck

 δ
codd−

∑
k=1,3,...

ck

 θ(φ0+ceven+codd)θ(−φ0+ceven−codd).

The factor of 2 accounts for the other θ-function combination, which gives precisely the
same answer as the one shown.

Exponentiating the delta functions

δ

(
ceven −

∑
k

ck

)
=
∫ dλ

2π exp
(
iλceven − i

∑
k

λck

)
(A.9)

makes all integrals either Gaussians or modified Gaussians, and it is straightforward to
evaluate them.

This calculation suffers from an unknown overall scaling, but recall that we are in-
terested in the ratio of this result to the standard result, which is 〈|dφ/dtm|〉 times the
probability density for φ0 = 0. Equipartition tells us that 〈|dφ/dtm|〉 =

√
2T
π , see eq. (2.5).

To evaluate the probability density, we compute the same path integral, but with the two
Heaviside functions replaced by a single delta function δ(φ0) — essentially, this determines
the normalization factor N :

N =
∫
φ(t=0)=φ(t=β)

Dφ exp
(
−
∫ β

0
dt12 (∂tφ)2

)
δ(φ0) , (A.10)
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which means that
N =

∞∏
n=1

A(n, 0)
π

. (A.11)

With this, by defining 

Sodd (even) ≡
∑

n odd (even)

1
4A(n,m)

C ≡ 1
4Seven

− m2β

2

b ≡ m2β

2

(
1 + m2β

8C

) (A.12)

the final result for the integral (A.1) is

ΓEucl = e−
m2β

2
mβ

2 sin(mβ/2)

√
1

πSevenbC
arctanh

(
2
√
Soddb

)
. (A.13)

When the saddlepoint is a strongly semiclassical configuration, the action should not
change too quickly as we move away from it, meaning that m/2πT � 1. If we expand the
result in this limit, it simplifies:

ΓEucl = 4e−m2β/2

√
Sodd
π

+O
(√

β(mβ)2
)

=

√
β

2π +O
(√

β(mβ)2
)
. (A.14)

This is the rate divided by the probability density to be on the separatrix. To fully
normalize it by the real-time rate, we should divide by

√
2T/π which we found above,

to find:

ΓEucl
real-time rate =

√
1

2πT

√2T
π

−1

= 1
2T , or

Real-time rate = 2T ΓEucl . (A.15)

This provides the desired relation between the Affleck real-time rate and the Euclidean
sphaleron density which we have defined.

A.2 Calculation with flow

In practice it is necessary to modify the φ(t) field inside the Euclidean path integral through
the application of gradient flow, before performing any evaluations on it. How does this
affect the probability that φ(t = 0) and φ(t = β/2) are on opposite sides of the separatrix?
We will answer this now. Gradient flow changes the measurables, not the path integral
or path integral variables. In our case, it damps the t-dependent fluctuations through
application of the heat equation. Define the depth of heat-equation flow to be τF . Then we
set the τF = 0 boundary conditions to be φ(τF = 0, t) = φ(t), and the gradient flow itself is
described by

∂τFφ(τF , t)− ∂2
t φ(τF , t) = 0. (A.16)
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Using the same Fourier-series expansion for φ(t) as before, one easily finds that

φ(τF , t) = φ0 +
∞∑
n=1

(cn cos(2πnt/β) + sn sin(2πnt/β)) exp
(
−τF (2πn/β)2

)
. (A.17)

Now we can proceed as we did in the unflowed case, but taking the flow into account
on our theta functions, while the action remains the same as in (A.5). The Heaviside
functions become

θ(φ(τF , 0)) = θ

(
φ0 +

∑
k

ck exp
(
−τF (2πn/β)2

))

θ(−φ(τF , β/2)) = θ

(
−φ0 −

∑
k

(−1)k ck exp
(
−τF (2πn/β)2

))
.

(A.18)

Proceeding as we have done before, and defining in this case

S
τF
odd (even) ≡

∑
n odd (even)

exp
(
−2τF (2πn/β)2

)
4A(n,m) (A.19)

we find

ΓτFEucl = e−
m2

2 β mβ

2 sin(mβ/2)

√
1

πS
τFevenbC

arctanh
(

2
√
S
τF
oddb

)

⇒

√
β

2π

√√√√ 8
π2

∑
n=1,3,...

e−8π2τFT
2n2

n2

'

√
β

2π ×

√√√√1− 8
√

2τF
πβ2 .

(A.20)

As before, the quantity after ⇒ is the result when taking m → 0. The last line is the
result of a small τF expansion, with errors which are exponentially small provided that
τF � 1/(8π2T 2). In practice we will use the unexpanded expression shown in the middle
line. The final expression is useful because it shows that the correction goes to 1 as τF → 0
but only as a square root, that the behavior is monotonic, and that the domain over which
the gradient flow can be viewed as “small” is roughly τF � 1/(8π2T 2).

The best way to use this result is:

Real-time rate = 2T ΓτFEucl√
1− 8

√
2τFT 2

π

. (A.21)
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