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1 Introduction

Our current picture of the string Landscape is tightly connected to the different mechanisms
for moduli stabilization. This is because a simple procedure to generate an ensemble of vacua
is to consider an effective field theory (EFT) with a perturbative multi-dimensional moduli
spaceM, and implement one or several moduli-fixing mechanisms that select a discrete
set of points inM. In string theory compactifications, this philosophy can be realized by
means of background fluxes threading the internal dimensions [1–10], so that the discretum
of vacua is a consequence of flux quantization. Particularly simple is the case of type IIB
Calabi-Yau (CY) orientifolds with three-form fluxes. In the absence of strongly warped
regions [11], the main effect of these fluxes is to generate a superpotential for the axio-dilaton
and complex structure fields [12]. Thus, from a single Calabi-Yau geometry and below the
scale of flux-induced masses, one obtains an ensemble of 4d EFTs indexed by the three-form
flux quanta,1 whose physics can be extracted from the same parent (fluxless) 4d EFT.

Despite its relative simplicity, in practice there is not much analytic control when
describing this setup. In particular, as soon as there are several complex structure moduli
stabilized by fluxes, the analytic description of the set of vacua is typically lost, except
in some special cases where the use of discrete isometry groups allows for a consistent
reduction of the complex structure sector [14–23] possibly down to a single field [24–33].
The same statement applies to the mass spectrum of the fields that are stabilized by fluxes,
which depends on the scalar potential and the vacuum expectation values (vevs) of the
fields. These two ingredients, vevs and mass spectra, are crucial in order to implement full
moduli stabilization, and therefore to develop an overall picture of the ensemble of vacua
and to extract its phenomenological features.

The aim of this paper is to improve the current state of affairs, by providing a class
of type IIB flux configurations where the vevs and mass spectrum in the axio-dilaton
and complex structure sector can be described analytically.2 This analytic description is
independent of the number of complex structure fields, and the key ingredient to implement
it is a simplified description of the Calabi-Yau holomorphic three-form periods in some
asymptotic region. We focus on the region of Large Complex Structure (LCS), where such
periods can be expressed as polynomials of the complex structure fields, up to exponential
terms that can be neglected. It is precisely in this region where recent progress in describing
the flux-induced mass spectrum [33, 34] and the flux potential [35] analytically and for an
arbitrary number of fields has been made, so it is a particularly promising regime to look
at. In this work we show how these two different set of results are connected to each other,
and how they can be merged into a single framework that leads to a more detailed analysis
of such flux vacua.

1Note that a 4d EFT of this sort has fixed NS three-form flux quanta [13], so there is an ensemble of 4d
EFTs even at the scale of flux-induced masses, giving rise to a larger ensemble at lower scales.

2In most type IIB CY schemes that implement full moduli stabilization, the flux-induced vevs and masses
are independent of the Kähler moduli stabilization details, and can therefore be seen as properties of the
final vacuum. In this paper we will not discuss Kähler moduli stabilization, and we will dub as flux vacua
those vevs in the axio-dilaton and complex structure sector that solve their equations of motion at tree-level
in 4d Minkowski.
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Indeed, as pointed out in [35–38], in order to find vacua in the LCS limit, the flux
contribution to the D3-brane tadpole must grow with the field vevs, unless certain flux
quanta are set to zero. A particular family of flux configurations avoiding this problem
was proposed in [35], and dubbed IIB1 scenario therein. As we show in this work, this
family corresponds to a set of compactifications in which the flux-induced superpotential is
quadratic in the axio-dilaton and complex structure fields. It follows from here that the set
of flux vacua splits into three distinct classes, that can be classified according to the nature
of the field directions that are unfixed by fluxes.3 In the first class, in which supersymmetry
is broken in the Kähler sector, all fields in the complex structure/axio-dilaton sector are
stabilized. Moreover, the simplest choice of fluxes leads to the no-scale aligned vacua of [33].
In this case, one can describe the field vevs in terms of quadratic and cubic equations, and
apply the techniques of [33] to obtain the flux-induced mass spectrum analytically, for an
arbitrary number of complex structure moduli. The second class also breaks supersymmetry
in the Kähler sector, but now contains one or more axion-like fields that are flat directions
of the flux potential. Finally, in the third class, vacua are fully supersymmetric and,
remarkably, they always contain some complexified flat directions.

These results can be compared to other strategies in the literature employed to analyze
the same setup. For instance, one may compute the flux-induced mass spectrum by first
extracting the Hessian from the analytic expression for the scalar potential provided in [35].
While this analysis is in general quite involved, one can see that for the axionic sector of the
IIB1 scenario one obtains a perfect match with our analytic expressions. A different, more
direct method is to perform a numerical analysis of the flux vacua solutions and their mass
spectra. When applying this approach to the IIB1 scenario the result is two-fold: on the
one hand, it shows that the analytical control inside the IIB1 setup allows to very efficiently
find flux configurations yielding consistent vacua. On the other hand, various features of
the numerical vacua are shown to precisely match the analytical results developed in the
paper, supporting the robustness of the analysis.

The paper is organized as follows: in section 2 we define usual notations and conventions
for type IIB flux compactifications at LCS. In section 3, we provide a coarse-grained
classification of vacua that can arise from a quadratic superpotential and uncover the
supersymmetric and the two non-supersymmetric families mentioned above. We detail
here what is the IIB1 scenario for which, precisely, the superpotential takes a bilinear
form. In section 4, we explore the non-supersymmetric vacua highlighted in the generic
classification in more detail. We focus on a specific branch of vacua by assuming an ansatz
for the saxions, where, upon further refinement to two cases, we can express analytically the
vacuum expectation values of the axio-dilaton and all complex structure moduli. We prove
here that one of these two cases falls into the no-scale aligned class described in [33], so that
we are able to determine their complete tree-level mass spectra analytically. Details about
the computation of these masses are presented in appendices A and B. In section 5, we
briefly investigate the supersymmetric family exhibited from the generic classification. In

3More precisely, these are flat directions at the approximation level in which all polynomial corrections
to the leading behaviour of the periods are included, while exponential corrections are neglected.
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section 6, we numerically generate and analyze an ensemble of IIB1 vacua that fits into the
no-scale aligned branch in a toy two-parameter model. We end up with some conclusions
and prospects in section 7.

2 Generics of type IIB flux compactifications

In this section, we review some usual definitions and notations about the effective super-
gravity of type IIB string theory compactified on a Calabi-Yau 3-fold X3.

2.1 The prepotential

In a symplectic basis {AI , BI}, I = 0, . . . , h2,1 of H3(X3,Z), the periods of the Calabi-Yau
(3, 0)-form Ω are encoded in the vector

Πt ≡ (FI , XI) =
(∫

BI

Ω,
∫
AI

Ω
)
, (2.1)

where t stands for the transpose. The complex structure moduli fields are defined to be
zi ≡ Xi/X0, i = 1, . . . , h2,1 and the FI components are expressed as derivatives of the
prepotential F . Setting the gauge X0 = 1, the period vector takes the following form:

Π =


2F − zi∂iF

∂iF
1
zi

 . (2.2)

In the LCS regime the prepotential reads

F = −1
6κijkz

izjzk − 1
2aijz

izj + ciz
i + 1

2κ0 + Finst . (2.3)

The instanton contribution Finst is subleading in the LCS regime and can be expressed
as sum of polylogarithm Lip(q) ≡

∑
k>0

qk

kp ponderated by Gopakumar-Vafa invariants n~d
labeled by ~d ∈ (Z+)h2,1 [23],

Finst = − i

(2π)3

∑
~d

n~d Li3[e−2πdiz
i ] . (2.4)

The coefficients κijk, aij and ci can be computed from topological data of the mirror
manifold Y3 of the Calabi-Yau X3, while κ0 depends on the Euler characteristic of X3. More
precisely, we have [39]

κijk ≡
∫
Y3
ωi ∧ ωj ∧ ωk , aij ≡ −

1
2

∫
Y3
ωi ∧ i∗ch1(P.D[wj ]) ,

ci ≡
1
24

∫
Y3
ωi ∧ ch2(Y3) , κ0 ≡

ζ(3)χ(X3)
(2πi)3 = i

ζ(3)
4π3 (h1,1 − h2,1) ,

(2.5)

where ωi, i = 1, . . . , h1,1(Y3) form a basis of H2(Y3,Z), i∗ denotes the pushforward of the
embedding i of the divisors into Y3, P.D stands for Poincaré Dual and ch1 and ch2 denote
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the first and second Chern classes respectively. It can further be shown [23] that aij can be
rewritten in terms of the triple intersection numbers as follows

aij = −1
2

∫
Y3
ωi ∧ ωj ∧ ωj mod Z . (2.6)

Finally, it is important to note that both ci and aij are defined only modulo Z, since shifts
on these parameters correspond to different choices for the symplectic basis of 3-cycles of
X3. This leads to important restrictions on their values, when considered in terms of the
transformation properties of the period vector under monodromies zi → zi + vi, vi ∈ Z
at LCS. More concretely, the coefficients of the prepotential must satisfy the following
conditions [39]:

aij + 1
2κijj ∈ Z and 2ci + 1

6κiii ∈ Z . (2.7)

The first equation can also be generalized to take the form

aijv
j + 1

2κijkv
jvk = 0 mod Z . (2.8)

Note that we can make use of the redundancy of aij to shift its value like aij → aij + nij ,
nij ∈ Z so that the l.h.s. of (2.8) is actually 0.

2.2 Kähler potential

The tree-level Kähler potential is given by

K = Kk +Kdil +Kcs = −2 log(V)− log(−i(τ − τ̄))− log(−iΠ† · Σ ·Π) , (2.9)

where V is the volume of X3, τ is the axio-dilaton and we have defined the canonical
symplectic (2h2,1 + 2)× (2h2,1 + 2) matrix

Σ ≡
(

0 1

−1 0

)
. (2.10)

The Kähler potential at the approximation of large complex structure can be shown to read

Kcs = − log
(
i

6κijk(z
i − z̄i)(zj − z̄j)(zk − z̄k)− 2 Im (κ0)

)
= − log

(4
3κijkt

itjtk − 2 Im (κ0)
)
, (2.11)

where we have defined zi ≡ bi + iti and, for later use, we also introduce τ ≡ b0 + it0.
It will be important to develop some of the derivatives of the Kähler potential, for

future reference. The most relevant ones are the following:

Kτ = − 1
τ − τ̄

= i

2t0 , (2.12)

Kτ τ̄ = − 1
(τ − τ̄)2 = 1

4(t0)2 , (2.13)

Ki = − i2 κ̊ijk(z
j − z̄j)(zk − z̄k) = 2i̊κijktjtk , (2.14)

Kij̄ = i̊κijk(zk − z̄k) + 1
4 κ̊imnκ̊jpq(z

m − z̄m)(zn − z̄n)(zp − z̄p)(zq − z̄q)

= −2̊κijktk + 4̊κimnκ̊jpqtmtntptq , (2.15)
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where we have defined κ̊ijk ≡ eKcsκijk and the indices τ and i denote derivatives of the Kähler
potential with respect to the axio-dilaton and the complex structure moduli zi respectively
(barred indices naturally denote derivatives with respect to the complex conjugate fields).

Intuitively, the LCS regime establishes how the cubic term inside the previous logarithm
compares with the constant contribution κ0. Thus, we introduce the following LCS parameter
to measure how close to the LCS point a given solution is:

ξ ≡ −2 Im (κ0)
4
3κijkt

itjtk
= −2eKcsIm (κ0)

1 + 2eKcsIm (κ0) . (2.16)

By definition, the Large Complex Structure limit is the regime where ti → ∞, ∀i ∈
{1, . . . , h2,1}. This implies that the LCS point is located at ξ = 0. In what follows, we will
regard the limit ξ → 0 as the LCS limit; however, one should note that this correspondence
may not be always applicable, since one may obtain ξ ≈ 0 with some saxions remaining
small, giving rise to non-negligible exponential corrections. In any case, we consider the
condition ξ → 0 to be sufficiently constraining as to become a good indicator of how close to
the LCS point a vacuum can be located and, thus, how small exponential corrections can be.

On the other hand, it can be checked that in those geometries where h2,1 > h1,1, we
obtain negative eigenvalues in the field-space metric Kij̄ if ξ > 1/2, thus rendering those
solutions unphysical; as for geometries with h2,1 > h1,1, solutions with ξ < −1 will suffer
from the same problem4 [33].

2.3 Flux superpotential

With these definitions, we can express the usual Gukov-Vafa-Witten (GVW) superpotential
W [12], induced by fluxes threading the compact geometry. We first introduce the flux vector

N ≡ f − τh with f ≡
(∫

BI F3∫
AI
F3

)
≡


fB0
fBi
f0
A

f iA

 and h ≡
(∫

BI H3∫
AI
H3

)
≡


hB0
hBi
h0
A

hiA

 . (2.17)

These fluxes induce a D3-tadpole Ramond-Ramond charge in the compact space, which has
to be cancelled by negatively charged objects, like orientifold planes. The full D3-charge
Nflux induced by these fluxes is shown to be

Nflux = fT · Σ · h = −N
† · Σ ·N
τ − τ̄

. (2.18)

The GVW superpotential can then be easily expressed as5 [12]

W ≡
∫

(F3 − τH3) ∧ Ω = NT · Σ ·Π . (2.19)

4Note that for the definition (2.16) to be useful, we require κ0 to be non-zero, which implies χ(X3) 6= 0
or, equivalently, h1,1 6= h2,1. In what follows, we will assume the models under study to satisfy this property.

5Note that we deliberately forget a factor 1/
√

4π since it will be irrelevant for the vacuum equations and
everything we will compute.
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From this equation we can obtain the full expression for the superpotential, which reads

W = −1
6N

0
Aκijkz

izjzk + 1
2κijkN

i
Az

jzk +
(
N j
Aaij +NB

i −N0
Aci
)
zi

− κ0N
0
A −N i

Aci +NB
0 .

(2.20)

2.4 Vacuum equations

At tree-level, type IIB Calabi-Yau compactifications with three-form fluxes yield 4d
Minkowski vacua. Since the 4d EFT features a no-scale structure in the Kähler sec-
tor (KρσKρKσ = 3 where ρ, σ run over Kähler moduli), the corresponding vacua equations
are given by DAW ≡ ∂AW +KAW = 0, A ∈

{
τ, zi

}
. Let us write these equations explicitly:

DτW =
[
−h− 1

τ − τ̄
(f − τh)

]T
· Σ ·Π = − 1

τ − τ̄
N̄T · Σ ·Π = 0 , (2.21)

DiW = NT · Σ ·DiΠ = 0 , (2.22)

which translate into

− 1
6N̄

0
Aκijkz

izjzk + 1
2κijkN̄

i
Az

jzk +
(
N̄ j
Aaij + N̄B

i − N̄0
Aci
)
zi − κ0N̄

0
A − N̄ i

Aci + N̄B
0 = 0 ,

− 1
2N

0
Aκijkz

jzk + κijkN
j
Az

k +
(
N j
Aaij +NB

i −N0
Aci
)

+KiW = 0 . (2.23)

Supersymmetric vacua are realized if, in addition, the covariant derivatives of the superpo-
tential with respect to the Kähler moduli are zero. Since they are proportional to W , the
superpotential should vanish to yield a supersymmetric vacuum. Namely, with σ referring
to the Kähler sector:

Supersymmetric condition: DσW = KσW = 0⇐⇒W = 0 . (2.24)

2.5 Various contractions with triple intersection numbers

We define here several notations we use in the paper to describe the triple intersection
number κijk contracted with various quantities. They will be redefined in the sequel at the
appropriate moment but we find useful to have them summarized here. We denote

κij ≡ κijktk , κi ≡ κijktjtk , κ ≡ κijktitjtk ,

Sij ≡ κijkfkA , Si ≡ κijkf jAf
k
A , S ≡ κijkf iAf

j
Af

k
A ,

κHij ≡ κijkSknhBn , κHi ≡ κijkSjmhBmSknhBn , κH ≡ κijkSilhBl SjmhBmSknhBn ,

(2.25)

where Sij is such that SijSjk = δik.

3 Vacua from a quadratic superpotential

In this section, we present a generic classification of type IIB flux vacua at large complex
structure arising from superpotentials that take a generic bilinear form, i.e., that are of the
following kind:

W = 1
2
~ZtM ~Z + ~L · ~Z +Q , (3.1)

– 6 –
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where ~Z ≡ (τ, ~z) and where the (h2,1 + 1)-dimensional matrix M , the vector ~L and the
scalar Q are real flux-dependent quantities. Note that the matrix M is symmetric by
construction. As we will see in section 3.3, the IIB1 scenario that is of interest in this paper
is precisely designed to get a quadratic structure from the superpotential (2.20). In the rest
of the paper, we will apply the general formulas derived here in more detail and push the
analytical developments. Note that generically the superpotential is cubic in the complex
structure/axio-dilaton sector, as shown in the previous section.

Let us denote the covariant derivatives with respect to τ and zi in a vector notation
~D ≡ (Dτ , Di). Likewise, we package the first derivatives of the Kähler potential within
the vector ~∂K ≡ (Kτ ,Ki), which is pure imaginary and axion-independent (see eqs. (2.12)
and (2.14)). The vacuum equations then take the form

~DW = 0 ⇐⇒ M ~Z + ~L+ (~∂K)W = 0 . (3.2)

The superpotential at vacua enjoys a reality property. Indeed, decomposing ~Z ≡ B + i~T

into eq. (3.1) yields
Im (W ) = ~BtM ~T + ~L · ~T . (3.3)

On the other hand, and thanks to this expression for Im (W ), the real part of (3.2) contracted
with ~T gives

Im (W )
(
1 + i~T · ~∂K

)
= − 4 + ξ

2(1 + ξ)Im (W ) = 0 . (3.4)

Here, we made use of eq. (2.14) and the definition of the LCS parameter ξ introduced in
eq. (2.16) to express ~T · ~∂K. Since ξ cannot be equal to −4, as explained below (2.16), we
deduce that Im (W ) vanishes at vacua so that the superpotential is real on-shell. With this
result at hand, the vacuum equations (3.2) split into

M ~B = −~L , (3.5)
M ~T = i(~∂K)W , (3.6)

which in particular imply that ~L should be in the image of the matrix M in order to find
a vacuum solution, which is a non-trivial requirement on the flux quanta when M is not
invertible. For this reason it is natural to discuss separately those cases in which the matrix
M is regular and when it is not. In both cases, using (3.5), we can write the superpotential
at vacua like

W = −1
2
~T tM ~T +Q′ , (3.7)

where Q′ is a flux-dependent quantity defined by

Q′ ≡ Q− 1
2
~LtM+~L , (3.8)

and M+ is the generalized inverse of M , whose explicit expression we give below. Then,
from (3.6) and (3.7) we deduce that

W = Q′

1− i
2
~T · ~∂K

= 4
3

1 + ξ

ξ
Q′ = −2

3e
−Kcs Q′

Im κ0
. (3.9)

Therefore, when approaching the LCS point at ξ = 0, the superpotential diverges. Also,
notice that supersymmetric vacua are only possible if Q′ = 0.

– 7 –
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3.1 When M is invertible

When M has an inverse then M+ = M−1, and so eq. (3.5) stabilizes all the axions at

~B = −M−1~L . (3.10)

On the other hand, eq. (3.6) is implicit on the saxions since ~∂K and W depend on ~T . This
is summed up in the following expression for ~Z:

~Z = −M−1
(
~L+ (~∂K)W

)
. (3.11)

The superpotential at vacua reads as (3.9) with Q′ given by

Q′ = Q− 1
2
~LtM−1~L . (3.12)

As noted above, supersymmetric vacua only arise if Q′ = 0. But with M invertible this
would imply that ~T = ~0 due to (3.6). Supersymmetric vacua are thus forbidden when M is
regular.

3.2 When M is singular

As mentioned earlier, eq. (3.5) tells us that ~L lies in the image of M since ~L = M(− ~B). As
a consequence, the field directions inside the kernel of M do not enter the superpotential.
Thus, in the LCS approximation, the axionic directions that correspond to ker(M) do
not enter the scalar potential at all, implying a number of flat directions. To describe
the number of these flat directions one must distinguish between supersymmetric and
non-supersymmmetric vacua:

• When W 6= 0, which corresponds to flux choices such that Q′ 6= 0, we have that
rank (M) of the axions are stabilized, while h2,1 + 1− rank (M) constraints on the flux
quanta must be satisfied in order for vacua to exist. To see this, we can diagonalize the
matrix M to a matrix D ≡ diag(λ0, . . . , λr−1, 0, . . . , 0) with λ0, . . . , λr−1 representing
the r ≡ rank (M) non-zero eigenvalues of the matrix, and where there are as many
zeroes as the dimension of the kernel. We write the similarity transformation with a
matrix N like

M = N tDN and N t = N−1 . (3.13)

Defining ~B′ ≡ N ~B and ~L′ ≡ N~L, the axionic system of equations (3.5) becomes

D~B′ = −~L′ . (3.14)

We now split the h2,1 + 1 indices {0, i} like α ∈ {0, . . . , r − 1} and β ∈ {r, . . . , h2,1}
to get the following vacuum expectation values and constraints:

b′α = −
~L′α

λα
and ~L′β = 0 . (3.15)

– 8 –
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The superpotential at vacua (3.9) involves the quantity Q′ which again is flux-
dependent-only and reads

Q′ = 1
2
~L′ · ~B′ +Q = −1

2
∑
α

(~L′α)2

λα
+Q = −1

2
~LtM+~L+Q , (3.16)

where M+ = N tD+N and D+ ≡ diag(λ−1
0 , . . . , λ−1

r−1, 0, . . . , 0). As for the saxions,
they satisfy the non-linear implicit relation (3.6), where the superpotentialW takes the
saxion-dependent form (3.9). Since all axions enter in this condition, one generically
expects that its solution stabilizes all of them.

• When W = 0, we read from (3.2) that the vacuum solutions are

~Z = ~B + ker (M) , (3.17)

and so only rank (M) complex moduli are stabilized. As in the previous case, the
same h2,1 +1−rank (M) constraints on the flux quanta should hold. Moreover, Q′ = 0
provides one additional constraint on the fluxes. In total, we expect the fluxes to satisfy
h2,1 + 2− rank (M) relations in order to fall into this supersymmetric class of vacua.

3.3 The IIB1 family

In this subsection, we introduce the IIB1 scenario described in [35]. There, the starting
point of the authors is F-theory compactifications at large complex structure. They develop
analytical expressions of the scalar potential in full generality and recast it with a bilinear
structure V = ρAZ

ABρB , which is found to be very useful to express the vacuum equations
and systematically characterize the possible families of vacua (see [40–46] for applications of
this strategy). Requiring the tadpole not to diverge at LCS, two distinct families of vacua
are uncovered and, in the type IIB limit of F-theory, they yield two scenarios, one of them
being the IIB1 setup on which we focus here. It is characterized by putting some specific
flux quanta to zero:

IIB1 flux configuration: f0
A = 0 , h0

A = 0 and hiA = 0 , i ∈ {1, . . . , h2,1} . (3.18)

We can motivate the interest on this ansatz by looking at its effects on the type IIB
superpotential (2.20). The choice f0

A = h0
A = 0, i.e. N0

A = 0, has important consequences.
We see that it removes the “pure complex structure” cubic, highest-order term zizjzk,
from the superpotential. This ends up being quite a non-trivial effect, since it leads to
solutions arbitrarily close to the LCS point, as opposed to the N0

A 6= 0 case [36–38]. In
one-parameter models, this choice of fluxes has been proven to lead to completely different
mass spectra than in the generic N0

A 6= 0 case, along with its own statistical ensembles of
vacua [33]. Following a similar reasoning as to the statements above, we remark that with
the additional choice hiA = 0 we get N i

A = f iA, which removes the mixed (complex structure
and axio-dilaton) cubic term zizjτ from the superpotential, and only leaves a quadratic
one on zizj .
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Thus, the IIB1 flux choice ensures that the superpotential takes the bilinear form (3.1)
with ~Zt = (τ, ~zt) and the following flux-dependent quantities:

M ≡
(

0 −~hB t

−~hB Sij

)
, ~L ≡ (−hB0 , fBi + aijf

j
A) , Q ≡ fB0 − cif iA , (3.19)

and where the matrix S is defined as Sij ≡ κijkfkA. We further write ~L ≡ (L0, Li) so that
L0 ≡ −hB0 and Li ≡ fBi + aijf

j
A. Note that in the following sections, we will focus on flux

configurations for which the matrix S is invertible. When it is the case, the invertibility of
M is determined by the value of det(M)/ det(S) ≡ H = hBi S

ijhBj .
In [35], the authors expressed the vacuum equations descending from the F-theory

ones and wrote them at first order in the LCS parameter ξ. In the following, we will
generalize this analysis and extend it to the full LCS region, i.e. for arbitrary ξ, by
applying the generic results of the present section. We consider the non-supersymmetric
(section 4) and supersymmetric (section 5) vacua highlighted above and, in both cases, fully
analytical relations for the axions and saxions vacuum locations are displayed. In the non-
supersymmetric case, the analytical control over the saxions comes at the cost of restricting
to a particular branch of solutions that we know is not unique thanks to numerics. Moreover,
yet in a further subclass, we are able to express the vacuum expectation values with formulas
that are exact in ξ and we are able to uncover the scalar mass spectrum analytically.

4 Non-supersymmetric vacua

We study here the non-supersymmetric flux vacua exhibited in the previous section, that
can arise both with M invertible or singular. We recall that the vacuum equations reduce
to (3.5) and (3.6), where the superpotential at vacua takes the form (3.9). We thus have

M ~B = −~L , (4.1)

M ~T = −2
3 ie
−Kcs Q′

Im κ0
(~∂K) . (4.2)

We first focus on the saxionic system which can be recast as

−3hBi tit0 = e−Kcs Q′

Im κ0
= 4

3
Q′

Im κ0
κijkt

itktk − 2Q′ , (4.3)

−hBi t0 + Sijt
j = 4

3
Q′

Im κ0
κijkt

jtk , (4.4)

from which it seems natural to define the following rescaled variables:

x0 ≡ 4
3

Q′

Im κ0
t0 , xi ≡ 4

3
Q′

Im κ0
ti . (4.5)

In terms of these rescaled variables, the above equations read

−3hBi xix0 = κijkx
ixkxk − Sα , (4.6)

−hBi x0 + Sijx
j = κijkx

jxk , (4.7)
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where
α ≡ 25Q′3

32(Im κ0)2S
, S ≡ κijkf iAf

j
Af

k
A . (4.8)

Notice that eq. (4.7) only depends on triple intersection numbers and fluxes bounded
by the D3-brane tadpole. Therefore, one expects xA ∼ O(N1/2

flux), with A ∈ {0, i} and
Nflux = −f iAhBi . To generate larger values for the saxions tA, one may consider flux choices
such that

Q′

Im κ0
� 1 . (4.9)

When it is the case,
1� |α| ' |ξ| , (4.10)

so vacua satisfying this condition may be compatible with a large complex structure regime
description.

The system of equations (4.6) and (4.7) is rather involved as it is, so we will propose
an ansatz to make analytical progress, that we will further refine into two cases in which
we are able to obtain concrete results. Our working assumption will be that the matrix
S is invertible, and we will oftentimes also assume that S 6= 0, in order to define α as
above. To build the ansatz we take inspiration from the analysis performed in [35]. There, a
decomposition of the flux quanta f iA and hBi in terms of saxion vevs was introduced as follows

f iA = Ati + Ci , hBi = Bκijkt
jtk + Ci , (4.11)

with Ciκijktjtk = Cit
i = 0. This fully general decomposition was helpful in the study of the

equations of motion, which required the relations A = t0B and −Cit0 = κijC
j . However,

in order to provide concrete expressions for the vacuum expectation values of the moduli
including first order polynomial corrections, the authors restricted the flux space to the
case Ci = Ci = 0 and linearized the equations in ξ. We now aim to extend this ansatz and
to consider the effect of polynomial corrections at all orders. To do so we turn on the vector
Ci but demand a concrete relation with the flux quanta. We thus propose the ansatz

ti ≡ t̂f iA + t̃SijhBi =⇒ xi ≡ x̂f iA + x̃SijhBi . (4.12)

The vacua equations then read

3x0 (Nfluxx̂−Hx̃) = x̂3S − 3Nfluxx̂
2t̃+ 3Hx̂x̃2 + x̃3κH − Sα , (4.13)

hBi (x̃− x0) + Six̂ = x̂2Si + 2x̂x̃hBi + x̃2κHi , (4.14)

where we have defined

κHi ≡ κijkSjlSkmhBl hBm , κH ≡ κijkSilSjmSknhBl hBmhBn , (4.15)

and recall that H ≡ det(M)/ det(S) = hBi S
ijhBj . Upon contracting (4.14) with f iA and with

SijhBj , and plugging back into (4.14), we obtain a consistency flux condition that reads(
N2

flux − SH
)
κHi +

(
SκH +HNflux

)
hBi +

(
κHNflux +H2

)
Si = 0 , (4.16)

where Si ≡ κijkf jAfkA.
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As evoked above, progressing without further refining the branch under consideration
seems very involved. However, we notice that the constraint (4.16) is compatible with the
relation H = 0, which will define our first subclass of interest developed in section 4.1.
This case falls into the kind of non-supersymmetric vacua described in section 3.2 where
the matrix M is singular. The other subclass to be studied in the sequel assumes the
ansatz (4.12) with the simplification t̃ = 0, and will be discussed in section 4.2

4.1 A subcase with M singular

In this subsection, we push the analytics sketched above with the further flux condition

H = hBi S
ijhBj = 0 . (4.17)

In this case, the matrix M has a one-dimensional kernel generated by 〈(1, SijhBj )〉. From
the generic discussion of section 3.2, we then expect one constraint to arise from the axionic
system (4.1) as well as one flat direction. More precisely, we have

hBi S
ijLj = hB0 and bi = −SijLj + b0SijhBj . (4.18)

The saxionic system given by eqs. (4.13) and (4.14) reduces to the following one when
H = 0:

3Nfluxx̂x
0 = x̂3S − 3Nfluxx̂

2t̃+ x̃3κH − Sα , (4.19)
hBi (x̃− x0) + Six̂ = x̂2Si + 2x̂x̃hBi + x̃2κHi , (4.20)

and the flux condition (4.16) becomes6

N2
fluxκ

H
i + SκHhBi + κHNfluxSi = 0 . (4.21)

One can manipulate the system of equations to arrive at an expression giving x̃ as a function
of x̂, a relation giving x0 as a function of x̂ and x̃ and an equation involving only x̂. Indeed
we have7

x̃2 = Nflux
κH

x̂(x̂− 1) , (4.22)

x0 = Sx̂(x̂− 1)
Nflux

+ x̃− 2x̂x̃ , (4.23)(
2x̂3 − 3x̂2 + α

)2
= 16 N

3
flux
S2κH

x̂3(x̂− 1)3 . (4.24)

The last equation involving only x̂ is polynomial of sixth order. To proceed, we can
neglect α to find approximate solutions valid close to the LCS point. The polynomial then
becomes only of third order and can be written like

x̂3 − 3x̂2 + 3β − 3/4
β − 1 x̂− β

β − 1 ' 0 , with β ≡ 4 N
3
flux
S2κH

. (4.25)

6Notice that this condition is automatically satisfied for models with two complex structure moduli where
H = 0, because then the vector in (4.21) is always orthogonal to f i

A and SijhB
j .

7These expressions assume κH 6= 0 and S 6= 0. If not, we find x̂ = 1, x̃ = −x0 and one saxion is left
unstabilized. When κH = 0 and S 6= 0, the flux relation α = 1 should also be satisfied.
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This cubic equation admits three roots, either one real and two complex or three reals. If
we label them x̂0, x̂1 and x̂2, they are given by

x̂k = 1 + jkγ

2 − 1
2jkγ(β − 1) , k ∈ {0, 1, 2} and j ≡ −1 + i

√
3

2 , (4.26)

and where γ is such that

γ3 ≡ 1
β − 1

(
1 +

√
β

β − 1

)
. (4.27)

Note that we cannot determine in full generality which of these solutions correspond to the
real ones. With a solution for x̂, eq. (4.22) allows to compute x̃ so that we can deduce xi
from the ansatz. On the other hand, eq. (4.23) allows to compute x0. From the definitions
of the rescaled variables, one can then deduce the vacuum expectation values of the saxions
t0 and ti.

We can refine this approximate solution, valid near the LCS point, by using a pertubative
approach. Indeed, if we denote the above approximate solution x̂(0), we can write

x̂ = x̂(0) + δx̂ , (4.28)

with δx̂ ∼ O(α) � 1. Plugging this into the full equation (4.24) and restricting to first
order in α yields

δx̂ = (2x̂(0) − 3)S2κHα

6(x̂(0) − 1)
[
4N3

flux(x̂(0) − 1)(2x̂(0) − 1)− S2κHx̂(0)(2x̂(0) − 3)
] +O(α2) . (4.29)

One can plug this refined value of x̂ into (4.24), and again linearize the equation to obtain
its value to the next order in α. The procedure can be repeated to provide an analytic
expression up to any order in α.

4.2 A simpler ansatz for full analyticity

Another very interesting subclass of vacua arises when one considers a particular restriction
of the ansatz proposed in (4.12). This restriction consists in assuming t̃ = 0, so that we are
left with

ti ≡ t̂f iA =⇒ xi ≡ x̂f iA . (4.30)

For reasons that will be clearer later, we call this branch of vacua the no-scale aligned
branch. The vacuum equations for this branch reduce to

3Nfluxx̂x
0 = x̂3S − Sα , (4.31)

−hBi x0 + Six̂ = Six̂
2 . (4.32)

Contracting (4.32) with f iA we obtain

S(x̂2 − x̂) = Nfluxx
0 , (4.33)

so we deduce that S 6= 0. Plugging this equation back into (4.32), we obtain a condition for
the flux vector ~hB:

hBi = −Nflux
Si
S

=⇒ hBi = −ĥB Si
q
, (4.34)
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where ĥB ∈ Z and q ≡ gcd(Si). This flux relation can be thought of as a simpler version
of (4.16) for this particular ansatz. It is worth noting that in the language of [35], (4.30)
and (4.34) correspond to the choice Ci, Ci = 0 using the decomposition (4.11). If we assume
that the matrix S is invertible, the above relation implies that H ≡ hBi SijhBj 6= 0, and so
M is regular. We are thus in the generic case described in section 3.1. In the sequel, we
will solve the axionic and saxionic systems of equations.

4.2.1 Moduli stabilization

Axions. The axions are stabilized at ~B = −M−1~L. The inverse of the matrix M defined
in eq. (3.19) cannot be expressed in full generality but it can under the assumption that
the matrix S is invertible.8 When it is the case, we have [35]

M−1 = 1
H

(
−1 −SjkhBk

−SikhBk HSij − SikSjlhBk hBl

)
. (4.35)

This yields

b0 = hBi S
ijLj − hB0
H

,

bi = Sij
(
b0hBj − Lj

)
.

(4.36)

Note that the quantity Q′ in this case is given by

Q′ = fB0 − f iAci + (hBi SijLj − hB0 )2

2hBi SijhBj
− 1

2LiS
ijLj . (4.37)

Saxions. For the saxions, the relation (4.33) allows to solve for x̂ as a function of x0.
We find

x̂ = 1
2

1±
√

1 + 4Nflux
S

x0

 . (4.38)

We now plug (4.31) into this expression, to obtain

2x̂ = 1±
√

1 + 4
3

(
x̂2 − α

x̂

)
, (4.39)

which yields the following cubic equation:

2x̂3 − 3x̂2 + α = 0 . (4.40)

The discriminant ∆ of the cubic can be expressed simply as a function of α like

∆ = 4α(α− 1) . (4.41)

When α < 0 or α > 1, the discrimant is positive and there is a single real root given by

x̂ = 1
2

(
1 + Γ + 1

Γ

)
where Γ3 ≡ 1− 2

(
α+

√
α(α− 1)

)
. (4.42)

8And in this case we saw above that H 6= 0.
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When α ∈ [0, 1], the discriminant is negative and there are three real roots. The formula
above is still valid to describe one of them if one defines the square and cubic roots as
principal values. A (unique or not) solution for t̂ is thus always given by

t̂ = 3
8

Im κ0
Q′

(
1 + Γ + 1

Γ

)
. (4.43)

We will show below that this expression for t̂ with roots defined as principal values always
gives the unique physical solution. With this exact expression for t̂ at hand, we can use (4.38)
to isolate t0. With the help of eq. (4.3) that we repeat here

3Nflux t̂t
0 = e−Kcs Q′

Im κ0
, (4.44)

we arrive at

t0 = q

ĥB
2S t̂3 − 3Im κ0

4S t̂3 + 3Im κ0
t̂ . (4.45)

Using (4.43), we can express a useful relation between the LCS parameter ξ and the
quantity α:

ξ

(ξ − 2)3 = α

27 . (4.46)

Physical solutions. Let us now take a more detailed look at the physical solutions
depending on the sign of α. From eq. (4.44) above, we see that the sign of t̂ is the same as
that of the ratio Q′/Im κ0. We thus have:

• When α < 0, then if t̂ > 0 we deduce Q′ < 0 from the definition of α and thus
Im κ0 < 0 from (4.44). If t̂ < 0 we deduce Q′ > 0 from the definition of α and still
Im κ0 < 0 from (4.44). Thus, α negative corresponds exclusively to models with a
negative Im κ0. For those models, we mentioned in section 2 that ξ should be in the
range [0, 1/2] for the Kähler metric to be well-defined with positive eigenvalues. By
solving ξ < 1/2, we can deduce a lower bound that the solution x̂ of the cubic should
satisfy. We find

x̂ > 21/3|α|1/3 . (4.47)

Equivalently, (4.46) yields α > −4.

• When α > 0, same arguments lead to conclude that no matter what the sign of t̂ is,
Q′ has the same and Im κ0 is positive. For those models, we should have ξ ∈ [−1, 0].
Solving ξ > −1, we find

x̂ > |α|1/3 , (4.48)

and equivalently, (4.46) yields α < −1.

Figure 1 shows the values of the roots of the cubic equation (4.40) as a function of α
as well as the bounds derived above. We observe that for α < 0, the Kähler cone bound is
violated when α < −4 and when α > 1, there is no physical solution as expected. When
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Figure 1. The roots of the cubic (4.40) with respect to the parameter α.

0 < α < 1, we observe that only one root is compatible with the Kähler cone condition.
Moreover, it turns out that this is the one that can be expressed like (4.42) with the proper
principal value definitions of the roots.

Apart from the full analytical expressions for the moduli vacuum expectation values,
valid at arbitrary ξ, the simpler ansatz under consideration here also allows to uncover the
scalar mass spectrum. Computing these masses is the purpose of the next subsection.

4.2.2 Mass spectrum

To uncover the mass spectrum, we make use of the symplectic decomposition of the flux
vector introduced in [47], which reads

N =
√

4πeKcs
(
−iW Π̄ + 2t0Dτ̄Dj̄W̄K j̄iDiΠ

)
. (4.49)

Inserting the flux constraints of the IIB1 setup f0
A = h0

A = hiA = 0 inside the above
expression yields two relations

W = −2it0Dτ̄ j̄W̄K j̄iKi and f iA = 2eKcs
(
t0Dτ̄ j̄W̄K j̄i − tiW

)
, (4.50)

from which we deduce

DτiW = 1
2t0Kij̄

(
e−Kcsf jA + 2tjW̄

)
. (4.51)

Now we can make use of the proportionality relations (4.30) that defines the ansatz to
replace f jA in the above formula and factor a term Kij̄t

j . From eqs. (2.14) and (2.15), this
factor reads

Kij̄t
j = −2̊κijktjtk + 4̊κimnκ̊jpqtmtntjtptq = i (1− 2̊κ)Ki , (4.52)
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where we have defined κ̊ ≡ eKcsκijkt
itjtk. Plugging this result back into eq. (4.51) yields

DτiW = i (1− 2̊κ)
2t0

(
2W̄ − e−Kcs

t̂

)
Ki . (4.53)

These steps show that under the IIB1 flux configuration and for our branch of solution
of interest, the two-derivative of the superpotential with respect to the axio-dilaton and
some complex structure field is proportional to the first derivative of the Kähler potential
with respect to this latter modulus. As such, the IIB1 scenario fullfills the prerequisite for
the derivation of the no-scale aligned mass spectrum, introduced in [34] and reviewed in
appendix A. The tree-level mass spectrum is thus given by (A.16) that we repeat here:

µ2
±λ

m2
3/2

=



(
1±

√
1−2ξ

3 m̂(ξ)
)2

λ = 0(
1±

√
1−2ξ

3 (m̂(ξ))−1
)2

λ = 1(
1± 1+ξ

3

)2
λ = 2, . . . , h2,1

(4.54)

where we have defined the quantities

m̂(ξ) ≡ 1√
2

(
2 + κ(ξ)2 − κ(ξ)

√
4 + κ(ξ)2

)1/2
,

κ(ξ) ≡ 2(1 + ξ)2/
√

3(1− 2ξ)3 .

(4.55)

The evolution of this normalized mass spectrum is displayed in figure 2. Expanded around
the LCS point at ξ = 0, the spectrum reads

µ2
±λ

m2
3/2

=


16
9 +O(ξ) , 4

9 +O(ξ) λ = 0

4 +O(ξ) , 9
4ξ

2 +O(ξ3) λ = 1
16
9 +O(ξ) , 4

9 +O(ξ) λ = 2, . . . , h2,1

(4.56)

Notice that the mode labeled by −1 becomes rapidly massless as ξ → 0, as can also be seen
from figure 2. This is also true in Planck units, since the gravitino mass dependence on ξ is
given by

m2
3/2 = 3

2V2
SĥB

q(2− ξ)M
2
P = 3

2V2
Nflux
2− ξM

2
P . (4.57)

This nicely matches the expectations put forward in [35]. There it was found that given the
choice of fluxes (4.34), polynomial corrections are required to stabilize all moduli, and that
otherwise a field is left unstabilized. It is thus natural to identify such a field with the lightest
mode of the spectrum, whose mass goes proportional to ξ as we approach the LCS point.

All these results are verified by appendix B, which develops a different approach to the
computation of the mass spectrum. This method works directly with the scalar potential
derived from the results of [35], from where the Hessian can be obtained. One can see
that in terms of the Hessian, the axion-like fields and their saxionic partners are decoupled.
Therefore, by analyzing one of these two sets, it enables us to distinguish between axions
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Figure 2. Evolution of the scalar mass spectrum (4.54) with respect to the LCS parameter ξ. The
correspondence between the curves and the labels ±λ of the different modes is as follows: blue curve
is +1; orange curve is +λ, λ = 2, . . . , h2,1; green curve is +0; red curve is −0; purple curve is −λ,
λ = 2, . . . , h2,1 and Brown curve is −1.

and saxions in (4.54). In particular, appendix B works out explicit analytic expressions for
the axionic masses of the no-scale aligned branch, obtaining a perfect match with half of
the spectrum in (4.54). One can then check that the lightest field of (4.54) is not one of
the axion-like fields and that it instead belongs to the saxionic sector, in agreement with
the expectations of [35].

4.2.3 Generating flux vacua

In the previous paragraphs we have studied how a choice of fluxes which satisfies

f0
A = h0

A = hiA = 0 , hBi = −Nflux
Si
S
, (4.58)

admits an analytical solution for the real and imaginary parts of the axio-dilaton and all of
the complex structure moduli, as long as the rest of the fluxes satisfy the constraints outlined
above. Indeed, given such a choice of fluxes, one may compute the axionic components
using eqs. (4.36). On the other hand, we have seen that given the ansatz ti ≡ t̂f iA for the
complex structure saxions, one may use eq. (4.43) to compute t̂ and, finally, use (4.45) to
determine the value of t0. As a consequence, the search for flux vacua in the branch we
have described here can be completely automatized.

Note that once f iA and hBi are fixed, one is free to choose fB0 , hB0 and fBi without
changing the D3-tadpole. Thanks to the relation (4.46), the definition of α (4.8) and the
definition of Q′ in (4.37), these flux quanta may be easily tuned to generate vacua at the
desired distance from the LCS point. This procedure has been explicitly carried out in the
two-parameter example explored in section 6.
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In particular, this can also be useful to easily generate tuples of fluxes which yield
vacua close to the LCS point, where exponentially suppressed corrections to the tree-level
prepotential may be neglected. From (4.46), we find that vacua close to the LCS point
where |ξ| � 1 satisfy

ξ ≈ − 28

35(Im κ0)2S
Q′3 , (4.59)

where we recall that S ≡ κijkf iAf
j
Af

k
A and Q′ has been defined in (4.37). Thus, we need Q′ to

be small and negative. An easy way to satisfy such a condition is by choosing fBi = −f jAaij ,
so that Li = 0. In that case, Q′ is simplified to

fBi = −f jAaij =⇒ Q′ = fB0 − f iAci + 1
2S

(
ShB0
Nflux

)2

. (4.60)

Thus, having chosen f iA and Nflux, we can easily generate pairs of fB0 and hB0 which yield
vacua with small ξ.

5 Supersymmetric vacua

We now turn our attention to supersymmetric vacua which, as already mentioned, always
contain a number of complex flat directions at the level of approximation to which we are
working. One important feature of these vacua is that the flux quanta need to satisfy a
series of constraints, in agreement with recent results in the literature. While obtaining
the vevs for the stabilized fields is straightforward, working out the mass spectra for these
vacua turns out to be more involved than in the no scale aligned case.

5.1 Moduli stabilization and flat directions

Here we describe the supersymmetric class of vacua defined in section 3.2. As already
said there and similarly to the case above, the requirement that M ~B = −~L generates
h2,1+1−rank (M) constraints that the fluxes must satisfy to fall into this case. The solutions
for the moduli are expressed like ~Z = ~B + ker(M) such that there are h2,1 + 1− rank (M)
complex flat directions, and the additional requirement W = 0 at vacua provides one more
constraint on fluxes. If we put this back into the vacuum equations (3.6), we obtain a
simple linear system of equations where axions and saxions are decoupled:

M ~B = −~L ,
M ~T = 0 .

(5.1)

The equation regarding the saxions can be further decomposed in the following relations

hBi t
i = 0 , Sijt

j = hBi t
0 . (5.2)

Remembering now the decomposition discussed in (4.11), we observe that supersymmetric
vacua require A = B = 0 and Ci, Ci 6= 0, which contrasts with the set of non-supersymmetric
solutions described by (4.30).
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In order to make analytical progress, let us study again the subclass when the matrix S
possesses an inverse denoted Sij in components. When this is the case, then rank of M is at
least h2,1 and for M not to be invertible, it cannot be more than that. The non-invertibility
of M translates into the requirement

H = hBi S
ijhBj = 0 . (5.3)

When solving M ~B = −~L, as expected we derive one constraint and one axion is left
unstabilized (this is the same situation as in section 4.1):

hBi S
ijLj = hB0 , (5.4)
bi = −SijLj + b0SijhBj . (5.5)

Besides, the kernel of M is one dimensional and given by

ker(M) = 〈(1, SijhBj )〉 . (5.6)

We thus have
~Z = ~B + ker(M) ⇐⇒

 τ = b0 + λ

zi = bi + λSijhBj
, (5.7)

where λ is some complex number that we can fix using the first equation of the system:

Re (λ) = 0 and Im (λ) = t0 . (5.8)

The second set of equations then gives expressions for ti with t0 as a free parameter.9
Summarizing, we have

bi = −SijLj + b0SijhBj , (5.9)
ti = SijhBj t

0 . (5.10)

These relations define the two real flat directions that we expected from the general analysis.
One last constraint arising from the requirement of a vanishing superpotential is to be

uncovered. Demanding Q′ = 0 from eq. (3.8) yields

f0 − cif iA −
1
2LiS

ijLj = 0 . (5.11)

Following similar arguments to the ones presented in section 4.2.3, a straightforward
choice of fluxes which satisfy all the above conditions, eqs. (5.3), (5.4) and (5.11), is based
on picking f iA and fBi such that

cif
i
A ∈ Z , aijf

j
A ∈ Z , fBi = −aijf jA . (5.12)

This automatically implies

fB0 = cif
i
A , hB0 = 0 , (5.13)

9Note that here we applied naively the generic relation of section 3 but we could have expressed ti easily
from eq. (5.2).
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so all that is left to do is to find hBi such that

hBi S
ijhBj = 0 . (5.14)

Notice that the flux constraints (5.3) and (5.11) agree with the tree-level conditions
exposed in [48, 49] where the authors further consider exponentially suppressed corrections
in order to generate small flux superpotentials. The complex flat direction we found here
when S is invertible also seems to generalize the supersymmetric vacua uncovered in [50] to
arbitrary Calabi-Yau geometries.

5.2 Towards the mass spectrum

In this section we push the computation of the mass spectrum for the supersymmetric
vacua as far as we can. In the end, however, we will not be able to express it analytically in
full generality like for the non-supersymmetric vacua with the simple saxionic ansatz. It is
still interesting to understand what prevents us from doing so.

As we proved in the section above, the supersymmetric vacua satisfy

ti = vit0 , vi ≡ SijhBj , with hBi v
i = hBi S

ijhBj = 0 . (5.15)

We will follow the same logic as in the derivation of the mass spectrum for no-scale aligned
vacua presented in appendix A. This means we want to simplify the Kähler metric as best
as we can, in order to obtain the simplest form possible for the matrix ZAB ≡ eK/2DADBW

where the indices A, B run into {τ, zi}. As reviewed in appendix A and shown in [36],
the scalar masses µ±λ, λ = 0, . . . , h2,1 are simply given in the supersymmetric case by the
fermion masses mλ:

µ±λ = mλ , (5.16)

which correspond to the eigenvalues of the matrix Z.
To start orthonormalizing the Kähler metric (2.15), we can introduced two vielbeins

inspired by the two preferred directions of the supersymmetric vacua: ti = t0vi and f iA.
Notice, as we will explicitly see shortly, that in the non-supersymmetric branch studied
earlier, these two vectors are aligned, which implies the alignment of DiDτW with Ki and
hence the “no-scale aligned” property of the vacua, which enabled us to uncover the mass
spectrum. We thus define the two vielbeins ei1 and ei2 like

ei1 ≡
ti

x
and ei2 ≡

f iA
y
, (5.17)

where x and y are normalization factors that can be straightforwardly expressed like

x =
√

3(2− ξ)
2(1 + ξ) , y =

√
2t0NfluxeKcs , (5.18)

with Nflux = −f iAhBi . These two vielbeins are indeed orthogonal since we can show that

ei1Kije
j
2 ∝ h

B
i S

ijhBj = 0 . (5.19)
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Plugging the vielbeins into the Kähler metric (2.15), we can obtain expressions for the
rescaled Yukawa couplings κ̊abc involving the direction 1 similar to (A.5):

κ̊111 = 2(1 + ξ)2√
3(1− 2ξ)3 , κ̊a′11 = 0 , κ̊a′b′1 = −(1 + ξ)√

3(1− 2ξ)
δa′b′ , (5.20)

where the prime indices run from 2 onwards.
With this, we are now ready to see the special role played by these two directions:

direction 1 is aligned with the no-scale direction while direction 2 is aligned with Z0a. Indeed,
making use of (2.14) and the symplectic decomposition of the flux vector (4.49) we find

Ka = eiaKi = 2ix2κ̊a11 ∝ δ1
a and Z0a = yeK/2−Kcsδ2

a . (5.21)

Finally, using eq. (A.9), the expression for Zab is

Zab = −iyeK/2−Kcs κ̊ab2 . (5.22)

Precisely because directions 1 and 2 are not aligned, we lack information to characterize
the rescaled Yukawa couplings κ̊ab2 and the only matrix elements we have control of are

Z0a = yeK/2−Kcsδ2
a , Z11 = 0 ,

Z1a = iy

2xe
K/2−Kcsδ2

a , Z22 = −ieK/2y−2S ,
(5.23)

while the elements Z2ã and Zãb̃ are unknown for ã, b̃ running from 3 onwards. The
canonically normalized fermion mass matrix then reads

Z =


0 0 Z02 0
0 0 Z12 0
Z02 Z12 Z22 Z2ã
0 0 Z2ã Zãb̃

 . (5.24)

Remember that the scalar masses correspond to the fermion ones, only doubled. The
mass matrix (5.24) cannot be diagonalized in full generality but it is easy to see that it
features a massless mode, which thus translates into two massless directions in the scalar
potential. This matches the expectations of the previous subsection.

6 A numerical set of vacua in a two-parameter model

The goal of this section is to provide a numerical cross-check of the analytical results exposed
in the previous section for the non-supersymmetric class of vacua following the no-scale
aligned branch with ti ∝ f iA. To this end, we generate an ensemble of IIB1 flux vacua in a
two-parameter model by solving the vacuum equations numerically and then check various
properties of these vacua. The model in question is the one arising from a symmetric point
in the moduli space of the Calabi-Yau hypersurface CP4

[1,1,1,6,9]. We will first see how the
analytical control of the IIB1 scenario enables us to generate a large number of vacua in the
LCS regime very efficiently and we then show the perfect agreement between the features
of these numerical vacua and the expectations from the analytics presented in section 4.2.
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6.1 Generating flux tuples

The first step to generate a numerical ensemble of vacua is to create a set of flux tuples
meant to be run through in search for solutions of the vacuum equations. In order to reduce
a bit the number of parameters, we consider the following restriction on the flux quanta f iA,
i = 1, 2:

f1
A = f2

A ≡ f̂A . (6.1)

If we trust our ansatz (4.30), this means that at the vacua we will have t1 = t2.
We want flux configurations that do not overshoot the tadpole D3-charge bound QD3.

With an O7-plane/D7-brane configuration identical to the one used in [48] and described
in [22], the induced D3-charge is restricted to satisfy QD3 ≤ 138. The flux contribution to
the tadpole Nflux depends only on f̂A and ĥB and thus we first generate a set of tuples for
these flux quanta subject to the tadpole constraint. More precisely, we consider all flux
entries in the range [−6, 6] and produce 14 configurations satisfying the tadpole bound.

The fluxes remaining to be fixed at this point are fB0 , fB1 , fB2 and hB0 . For the sake
of efficiency, instead of generating a random set of tuples for them, we make use of our
analytical expectations derived in section 4.2. This is done by expressing the flux-dependent
quantity α defined in (4.8) in terms of the unfixed flux quanta and by ensuring a choice of
the latter such that α lies in the range [−4, 0]. Since we want to cross-check our ξ-dependent
analytics, we can do more than that and produce flux tuples that we expect to span the
whole allowed range for ξ. To this end, we subdivide the α range [−4, 0] into 200 pieces and
try to find fluxes fB0 , fB1 , fB2 , hB0 to fall into each piece, for each of the 14 configurations
f̂A, ĥ

B previously generated. This results into a set of 2650 full flux configurations that will
use in the next subsection.10

6.2 Vacua analysis

We numerically implemented the vacuum equations and searched for solutions for each flux
configuration of our ensemble. The two-parameter model is characterized by the following
topological quantities that fully define the prepotential (2.3) (neglecting exponentially
suppressed corrections):

κ111 = 9 , κ112 = 3 , κ122 = 1 , κ222 = 0 ,

κ11 = −9
2 , κ22 = 0 , κ12 = −3

2 ,

κ1 = 17
4 , κ2 = 3

2 , κ0 = −540 ζ(3)
(2iπ)3 .

(6.2)

As expected from our careful choice of fluxes guided by the analytics, each flux tuple yields
a consistent vacuum inside the Kähler cone. The vacua are displayed in the (t1, t0)-plane
in figure 3.

10Note that all these steps are very easy and quick to implement so that a much bigger set of flux
configurations could be generated effortlessly.
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Figure 3. This plot shows the locations of the numerically generated IIB1 vacua in the (t1, t0)-plane.
The vacua are depicted with different colors corresponding to different values of f̂A, with different
branches corresponding to different values for ĥB, present in the ensemble. For a given color,
the expression (6.3) is displayed on top of the numerical data. We observe a perfect agreement.
More precisely, the colors correspond to the following fluxes: blue: f̂A = 1, ĥB = 1, . . . , 6; orange:
f̂A = 2, ĥB = 1, . . . , 3; green: f̂A = 3, ĥB = 1, 2; red: f̂A = 4, ĥB = 1; purple: f̂A = 5, ĥB = 1; and
Brown: f̂A = 6, ĥB = 1. As explained in section 6.3, vacua with ξ < 0.17 i.e. with t1, t2 & 1 are
expected to be safe under instanton corrections as the relative changes induced by the corrections
on the moduli space and other quantities are small.

A first analytical relation that we can check is eq. (4.45). In the case at hand with
f1
A = f2

A = f̂A, we have q = (f̂A)2 and S = 21(f̂A)3. The relation then becomes

t0 = − f̂A
ĥB

14(t1)3 − Im κ0
28(t1)3 + Im κ0

t1 . (6.3)

The comparison between this analytical formula and the data of our ensemble of vacua is
displayed in figure 3. We observe a perfect match between the two.

Another non-trivial result we can check is the relation between ξ and the quantity α
(see eqs. (4.8) and (4.46)). Figure 4 shows a nice fit of the data by the analytical expression.

One last important result to be checked is the mass spectrum in the vacua. We have
shown in section 4.2 that the vacua under consideration fall into the definition of the
no-scale aligned setup whose mass spectrum normalized by the gravitino mass m3/2 is given
as a function of ξ by eq. (4.54). The canonically normalized masses, numerically computed
for each vacuum, are displayed in figure 5. We again observe that the numerical results
perfectly match the analytical expectations displayed in figure 2 in section 4.2.2.
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Figure 4. This plots shows the values of ξ against α for the numerical vacua of our ensemble. The
relation (4.46) is plotted in red and fits perfectly the data points.

Figure 5. This plot shows the squared masses, normalized by the gravitino mass squared, numerically
obtained in the set of vacua. They precisely reproduce the analytical behaviour (4.54) displayed
in figure 2.
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6.3 Exponential corrections

Of course we expect exponential corrections in the prepotential (2.3) to become more and
more relevant as the LCS parameter ξ goes away from the LCS point and gets closer to
the boundary at ξ = 1/2. In specific examples and following [33, 34], we can evaluate the
effect of the exponentially suppressed corrections by computing their relative effects on the
geometry of the moduli space and other physical quantities.

For the CP4
[1,1,1,6,9] hypersurface, the dominant exponential corrections are expressed

like [34, 51]

Finst = −135
2π3 ie

2iπz1 − 3
8π3 ie

2iπz2
, (6.4)

and we can use them to numerically compute the relative errors induced on the Kähler
metric, the gravitino mass m3/2 and eKcs . Note that this definition for the validity of the
perturbative result is rather conservative and much more stringent than only requiring the
non-perturbative part of the prepotential to be dominated by the perturbative one. We
find that vacuum expectation values for t1 = t2 slightly above 1 are enough to guarantee
the stability of the perturbative vacua since all the relative corrections are smaller than a
small threshold of 5%. In terms of the LCS parameter, ξ < 0.17 ensures robustness of the
perturbative results.

7 Conclusions and outlook

In this paper, we investigated a specific type IIB family of flux vacua at large complex
structure introduced in [35] and called IIB1 scenario. Arising as a type IIB limit from an
F-theory construction, the vacuum equations were studied there at first order in the LCS
parameter ξ defined in (2.16), i.e., not too far from the LCS point. Our analysis extends
these results by exploring in more detail different classes of vacua allowed by the IIB1 setup,
and by pushing their analytical resolutions (computation of the complex structure and
axio-dilaton vevs as well as mass spectra) as far as possible.

The IIB1 choice of fluxes ensures that all cubic terms disappear from the flux-induced
superpotential such that it is simply quadratic in the axio-dilaton and complex structure
fields. A very generic and coarse-grained classification of vacua arising from such a quadratic
structure reveals the existence of one supersymmetric family and two non-supersymmetric
ones, depending on the definiteness or not of the bilinear form involved in the superpotential.
More precisely, a regular bilinear structure forbids supersymmetric vacua while a singular
one allows vacua that are either supersymmetric or not. In any of these cases, the vacuum
equations nicely split into two separate systems: a very simple one involving only the axions
(thanks to the independence on the axions of the superpotential at vacua), and a more
involved one relating the saxions. Moduli stabilization can then be studied separately for
these two sets of fields.
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We then explored the three classes mentioned above further in detail. The supersym-
metric vacua are described by very simple vacuum equations thanks to the vanishing of
the superpotential on-shell. Restricting to fluxes such that the matrix S, with Sij ≡ κijkfkA
involving the triple intersection numbers of the mirror manifold, is invertible (a recurring
assumption in this paper), we saw that the supersymmetric vacua feature one complex
flat direction and are similar to those used in [48, 49] to achieve small superpotentials.
They also generalize the supersymmetric models studied in [50] to arbitrary Calabi-Yau
compactifications. For these supersymmetric vacua, we addressed the computation of the
scalar masses, and it seems that further analytical progress in obtaining the mass spectrum
for models with h2,1 > 2 requires more definite knowledge of the model under study.

The two non-supersymmetric classes highlighted above differ if the bilinear form involved
in the superpotential is degenerate or not. The effect of a non-trivial kernel is to generate
one flux constraint and one flat direction for each dimension of the kernel of the bilinear
form. As a particular case, when the matrix M representing the form is invertible, all
axions are stabilized. Whether M is regular or not, the saxionic system of equations is
highly non-linear and generically stabilizes all fields. As a counterpart, it is trickier to
handle. To make analytical progress, we proposed an ansatz (4.12) for the saxions and
studied the subsequent vacuum equations. This led us to consider two further refined
branches where we could provide analytic expressions for all the vevs of the axio-dilaton
and complex structure fields, and even express analytically the scalar mass spectrum for
one of these branches.

The first branch is a subcase where the matrix M is singular with a specific uni-
dimensional kernel. One axionic direction is thus left as a flat direction. The saxionic
vacuum equations produce a sixth order polynomial relation, from which we can express
the saxion vevs. The polynomial can be analytically solved using a perturbative expansion
in the LCS parameter ξ. The second branch is uncovered when assuming a simpler sub-
ansatz (4.30) for the saxions. It is shown to be allowed only when M is regular, so that all
axions are fixed. The saxionic system yields a manageable cubic polynomial such that the
vevs can be fully expressed within the LCS region. Moreover, we showed that this branch
falls into the no-scale aligned family studied in [33, 34], for which the scalar mass spectrum
can be fully expressed analytically in terms of the LCS parameter. As already observed
in [35] and expected from the necessity of incorporating polynomial corrections to stabilize
all moduli in this context, these kind of mass spectra feature a mode becoming lighter as
one gets closer to the LCS point.

We checked numerically the validity of our approximations in the non-supersymmetric
no-scale aligned branch, and in particular the accuracy of the mass spectrum. We did this
by investigating a small ensemble of IIB1 vacua in this branch, generated numerically. We
worked with the two-parameter model coming from a symmetric point in the moduli space of
the Calabi-Yau hypersurface CP4

[1,1,1,6,9]. In addition to providing a solid cross-check of the
analytics derived in the paper, the numerical analysis shows that the IIB1 scenario provides
a setup where we can very efficiently generate vacua numerically at (almost) arbitrary
distance of the LCS point desired. We can compactly summarize the analytical results for
this highly controllable branch of vacua as follows.
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7.1 Summary of analytic type IIB mass spectra

If one considers a Calabi-Yau orientifold of IIB string theory described by the tree-level
prepotential

F = −1
6κijkz

izjzk − 1
2aijz

izj + ciz
i + 1

2κ0 , (7.1)

and with fluxes subject to

f0
A = 0 , h0

A = 0 , hiA = 0 , hBi = −q−1ĥBκijkf
j
Af

k
A , (7.2)

where ĥB ∈ Z and q ≡ gcd(κijkf jAfkA). Then, there exist non-supersymmetric no-scale
vacua, i.e. configurations of the moduli that satisfy DτW = DiW = 0 for the axio-dilaton
τ ≡ b0 + it0 and the complex structure moduli zi ≡ bi + iti, such that all moduli are
stabilized at

b0 = − q

ĥBS

[
f iALi + qhB0

ĥB

]
, t0 =

(3|Im κ0|
2S

)1/3 1 + ξ

q−1ĥB(2− ξ)ξ1/3
,

bi = 1
S

[
f jALj + qhB0

ĥB

]
f iA − SilLl , ti =

(3|Im κ0|
2Sξ

)1/3
f iA ,

(7.3)

where we have defined Li ≡ fBi +aijf jA, Sij ≡ κijkfkA and its inverse Sij , and S ≡ κijkf iAf
j
Af

k
A.

In the expressions above, ξ parameterizes the distance of the vacuum to the LCS point
located at ξ = 0, provided all exponential corrections are negligible. It can also be written
entirely in terms of fluxes as

ξ = 2 + 9 + αδ2

αδ
(7.4)

where

α ≡ 32
9|Im κ0|2S

(
fB0 − cif iA + 1

2S

[
f iALi + qhB0

ĥB

]
− 1

2LiS
ijLj

)3

,

δ ≡ 3
[
α2 +

√
α3(α− 1)

]−1/3
.

(7.5)

Furthermore, these vacua correspond to the no-scale aligned class, which implies their scalar
mass spectrum µ2

±λ, normalized by the gravitino mass squared m2
3/2 ≡ eK |W |2, can be

written analytically as

µ2
±λ

m2
3/2

=



(
1±

√
1−2ξ

3 m̂(ξ)
)2

λ = 0(
1±

√
1−2ξ

3 (m̂(ξ))−1
)2

λ = 1(
1± 1+ξ

3

)2
λ = 2, . . . , h2,1

(7.6)

where we have defined

m̂(ξ) ≡ 1√
2

(
2 + κ(ξ)2 − κ(ξ)

√
4 + κ(ξ)2

)1/2
,

κ(ξ) ≡ 2(1 + ξ)2/
√

3(1− 2ξ)3 .

(7.7)
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7.2 Outlook

Our simple ansatz presented in section 4.2 allows for complete analytical control over
both the distance to the LCS point and the vevs of all complex structure moduli and the
axio-dilaton. As such, this setup can be extremely useful to consider further corrections to
the tree-level solutions, either by the inclusion of stringy corrections which would render
more accurate solutions, or by the inclusion of exponentially suppressed corrections to the
prepotential. An interesting line of work in this sense can be the stabilization of the Kähler
sector through different means, either through racetrack potentials [14, 15] or by more
generic mechanisms [52].

The analytics derived in this paper hold for models with an arbitrary number of complex
structure moduli at large complex structure. However, one should keep in mind that when
the number of moduli is large, the flux-induced contribution to the D3-brane tadpole may
go out of control as proposed by the Tadpole Conjecture [53, 54]. In the setup of our simple
ansatz, it is worth noticing that our estimates for the flux-induced tadpole Nflux are in the
same footing as the solutions discussed in [55–58]. This is because, on the one hand, the
ansatz forces the flux quanta f iA to be non-zero and to have a same common sign for the
saxionic vevs to be well-defined. On the other hand, the constraint (4.34) on the fluxes
hBi also imposes these quanta to be non-zero and have the same sign, such that Nflux is a
generically a sum of h2,1 positive terms [35]. As a consequence, the tadpole contribution
indeed grows with the number of moduli in this context. However, we cannot say much
more in this sense for the more involved ansatz (4.12) where flux quanta are less restricted
or even for solutions outside this generic ansatz.

We should also point out that in our numerical analysis we are using a model where
effectively only two moduli play the game thanks to a consistent truncation, and thus, small
tadpoles can be achieved there without too much tinkering. This is also in line with [59],
where a similar reasoning is applied to F-theory compactifications built at loci of discrete
symmetry groups of the moduli space. Even though the tadpole conjecture is generically
very sound, it is also true that such symmetric models may allow for non-generic solutions
where the tadpole is small. We expect to answer such claims in the large complex structure
regime of type IIB string theory in a future work.
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A Mass spectrum of no-scale aligned vacua

The no-scale aligned vacua described in [33] are defined by the following relation between
two-derivatives of the superpotential and one-derivative of the Kähler potential as well as
two constraints on flux quanta:

DτDiW ∝ Ki and f0
A = h0

A = 0 . (A.1)

These vacua feature an analytical mass spectrum expressed solely in terms of the LCS
parameter. In this section, we present the key steps of its derivation.

One of the main difficulties to obtain the mass spectrum in generic points of field-space
is the fact that one has to compute eigenvalues with respect to the field space metric Kij̄ .
In order to overcome this difficulty, it is customary to introduce real vielbein eai which
render the metric to a canonical form [33, 37], such that

Kij̄ = eai δabe
b
j̄ , δab = eiaKij̄e

j̄
b . (A.2)

In what follows, we will reserve letters i, j, . . . to refer to curved indices in field space, while
a, b, . . . will label flat indices.

From the block-diagonal form of the metric in the axio-dilaton and complex structure
sectors, we can easily see that eτ0 = −2t0. On the other hand, since we are free to choose
the first vielbein to diagonalize the metric, we will pick

ei1 ≡
ti

x
, (A.3)

where x is a normalization factor. Plugging this into the field-space metric (2.15), we get

δab = eiaKij̄e
j
b = −2x̊κab1 + 4x4κ̊a11κ̊b11 . (A.4)

Using the definition of the LCS parameter (2.16) and the previous equation, we can obtain
several identities:

x =
√

3(1− 2ξ)
2(1 + ξ) , κ̊111 = 2(1 + ξ)2√

3(1− 2ξ)3 , κ̊a
′11 = 0 , κ̊a′b′1 = −(1 + ξ)√

3(1− 2ξ)
δa′b′ , (A.5)

where the prime indices a′, b′ run from 2 onwards.
The “1” direction in the vielbein turns out to have special significance. Contracting its

corresponding vielbein with Ki given in eq. (2.14), we find

Z0a ∝ Ka = eiaKi = 2ix2κ̊a11 ∝ δ1
a , (A.6)

where the matrix Z is defined below. Thus, the introduction of the vielbein into our problem
not only simplifies expressions involving the field-space metric or its inverse, but it also
aligns the so-called no-scale direction Ki with the 1-direction.

We are now prepared to tackle the computation of the mass spectrum. In order to
do this, we will proceed in the lines of [33]. As explicitly proven in that work, the mass
spectrum can be neatly written as [36]

µ2
±λ = (m3/2 ±mλ)2 , (A.7)
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where λ = 0, . . . , h2,1 and we have defined the gravitino mass m3/2 ≡ eK/2|W | as well as the
fermion masses mλ. The easiest way to obtain the latter ones is through the diagonalization
of the following matrix11

(Z†Z)AB ≡ KAC̄Z̄C̄D̄K
D̄EZEB , (A.8)

where ZAB ≡ eK/2DADBW and the indices A,B, . . . run into {τ, zi}. Thus, eigenvalues of
Z†Z will yield the masses m2

λ.
In order to compute these values we will employ several simplifying schemes. First of

all, it is easy to check that Zττ = 0 at supersymmetric vacua described by the tree-level
LCS prepotential. Another useful identity is [47, 60]

Zij = −(τ − τ̄)eKcsκijkK
kl̄Z̄τ̄ l̄ . (A.9)

This identity can be easily rewritten in terms of the vielbein introduced above:

Zab = i̊κabcδ
cdZ̄0d . (A.10)

On the other hand, since the vacua we are studying have the no-scale-aligned property (A.1),
we have that Z0a ∝ δ1

a and therefore,

Zab = i̊κab1Z̄01 . (A.11)

Note that we have a closed expression in terms of ξ for all the required κ̊ab1 that will appear
when constructing Z. Using eq. (A.5), the matrix reads

ZAB=

 0 Z01 0
Z01 i̊κ111Z̄01 0
0 0 i̊κa′b′1Z̄01

=


0 Z01 0
Z01

2i(1+ξ)2√
3(1−2ξ)3 Z̄01 0

0 0 −i(1+ξ)√
3(1−2ξ)

δa′b′Z̄01

 . (A.12)

The diagonalization of Z†Z gives the following eigenvalues:

m2
λ =


m̂(ξ)2|Z01|2 λ = 0

(m̂(ξ))−2|Z01|2 λ = 1
(1+ξ)2

3(1−2ξ) |Z01|2 λ = 2, . . . , h2,1

(A.13)

where we have defined the quantities

m̂(ξ) ≡ 1√
2

(
2 + κ(ξ)2 − κ(ξ)

√
4 + κ(ξ)2

)1/2
,

κ(ξ) ≡ κ̊111 = 2(1 + ξ)2/
√

3(1− 2ξ)3 .

(A.14)

In order to deal with the dependency on |Z01|, we use the other defining feature of no-scale
aligned vacua, namely f0

A = h0
A = 0. According to the decomposition of the flux vector

11The first metric factor must be introduced due to the kinetic term of the scalar fields being potentially
non-canonical.
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given in eq. (4.49) together with the form of the period vector (2.2), this choice of fluxes
leads to

W = −2it0Dτ̄ j̄W̄K j̄iKi = iD0aWδabKb ⇒ m3/2 =
√

3
1− 2ξ |Z01|. (A.15)

Therefore, when plugging the eigenvalues m2
λ into eq. (A.7), we can factorize an m2

3/2 factor
and obtain the scalar masss spectrum at no-scale-aligned vacua:

NSA mass spectrum:
µ2
±λ

m2
3/2

=



(
1±

√
1−2ξ

3 m̂(ξ)
)2

λ = 0(
1±

√
1−2ξ

3 (m̂(ξ))−1
)2

λ = 1(
1± 1+ξ

3

)2
λ = 2, . . . , h2,1

(A.16)

B Scalar potential and mass matrix

In this section we present a detailed derivation of the scalar potential that describes the IIB1
scenario and use it to directly compute the Hessian of the axionic sector, hence providing
an alternative way to obtain the associated mass spectrum.

B.1 Metric tensor

In the main text we found the vacuum equations using the no-scale structure of type IIB and
working only with the superpotential. This procedure proved to be a powerful simplifying
tool. However we now wish to go back to the results of [35] and write the scalar potential for
the IIB1 scenario with corrections to all orders. The first step in this process is to revisit the
Kähler potential and analyse the moduli space metric in more detail. From (2.11) we have

Kcs = − log
(4

3κijkt
itjtk(1 + ξ)

)
. (B.1)

Taking partial derivatives with respect to the dilaton and complex structure moduli we find

Kττ = 1
4(t0)2 , (B.2)

Kτi = 0 , (B.3)

Kij = 9
4

κiκj
κ2(1 + ξ)2 −

3
2

κij
κ(1 + ξ) = Ko

ij

κ

κ(1 + ξ) −
9
4

κiκj
κ2(1 + ξ)2 ξ , (B.4)

with κij ≡ κijkt
k, κi ≡ κijt

j and κ ≡ κit
i. Finally we denote by Ko

ij the leading order
metric, that is, the metric in the limit ξ → 0.

Using the last expression for Kij , it is straightforward to obtain its inverse in terms of
the inverse of the leading order metric:

Kij = Kij
o (1 + ξ) + 4ξ(1 + ξ)

1− 2ξ titj . (B.5)
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Following the same line of reasoning as in [35, appendix B.3] we also compute

KijKj = 2iti 1 + ξ

1− 2ξ . (B.6)

Finally, note that the metric leading order metric splits in its primitive and non primitive
components as

KoNP
ij = 3

4
κiκj
κ2 ,

KoP
ij = 3

2
κiκj
κ2 −

3
2
κij
κ
.

(B.7)

In particular they satisfy KoP
ij t

j = 0 and Kij
oPκj = 0. We can replicate this split for the full

metric to find

KNP
ij = KoNP

ij

1− 2ξ
(1 + ξ)2 ,

KP
ij = KoP

ij

1
1 + ξ

.

(B.8)

B.2 Scalar potential

The scalar potential of the type IIB1 scenario can be derived following the same steps as
the computation performed in [35, appendix B.3]. We start with the standard Cremmer et
al. formula [61] for the F-term potential in F-theory

e−KVF = Kmn̄DmWDn̄W̄ − 3|W |2 , (B.9)

where DmW = ∂mW + (∂mK)W , Kmn̄ is the inverse field space metric and m,n run over
all moduli. Ignoring corrections to the Kähler sector of the compactification we recover the
standard cancellation of no-scale structure models and the above expression simplifies to

e−KVF = KAB̄DAWDB̄W̄

= KAB̄
[
ReWAReWB̄ + ImWAImWB̄ +

(
(ReW )2 + Im (W )2

)
KAK̄B̄

+KAWW̄B̄ + K̄B̄WAW̄
]
, (B.10)

with WA ≡ ∂AW and now A,B ∈ {0, i} only run over the dilaton and complex structure
moduli.

Using our knowledge of the metric and its properties, the above expression can be
expanded to

e−KVF = 4− 2ε
1− 2ε

(
(ReW )2 + (ImW )2

)
+Kij(ReWiReWj + ImWiImWj)

+ 4ti 1 + ε

1− 2ε [ReW ImWi − ImWReWi] + 4(t0)2[(ReW0)2 + (ImW0)2]

+ 4t0[ReW ImW0 − ImWReW0] . (B.11)
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We proceed to consider the version of the superpotential and the Kähler potential described
in the main text in eq. (3.1):

W = 1
2
~ZtM ~Z + ~L · ~Z +Q . (B.12)

Splitting the real and imaginary parts we see that

ReW = 1
2
~BM ~B + ~L · ~B +Q− 1

2
~TM ~T = ρ− 1

2κif
i
A + t0tihBi ,

ImW = ~T · (M ~B + ~L) = ρAt
A ,

(B.13)

where we have defined

ρ ≡ 1
2
~BM ~B + ~L · ~B +Q ,

ρA ≡MABb
B + LA .

(B.14)

Similarly, the real and imaginary parts of the partial derivatives of the superpotential can
be written as follows:

ReW0 = ρ̄0 , ImW0 = −tihBi ,
ReWi = ρ̄i , ImWi = −t0hBi + κijf

j
A . (B.15)

Substituting, expanding, rearranging and using the expressions found in the previous section
we conclude that

VF e
−K = 4ρ2 + 4(ρ0t

0)2 + (1 + ξ)
(
Kij

o ρiρj + (t0)2Kij
o h

B
i h

B
j + 4

9K
o
ijf

i
Af

j
A + 4

3 t
0κhBi f

i
A

)
+ ξ

1− 2ξ

[
6ρ2 + 6ρκif iA + 1

2(κif iA)2 + 6(ρ0t
0)2 − 2(ρiti)2− 2(t0hBi ti)2 (B.16)

+ 2ξ
[
2(ρiti)2 + 2(tit0hBi )2 + (κif iA)2

] ]
,

which at leading order recovers the result [35, eq. (4.18)] in the IIB1 scenario.

B.3 Hessian

Now that we have the potential, we can compute the second derivatives. We focus only
on the simpler axionic directions. For that mission, the following relations prove to be
very useful.

∂ρ

∂b0
= ρ0 ,

∂ρ

∂bi
= ρi ,

∂ρ0
∂b0

= 0 ,
∂ρ0
∂bi

= −hBi ,
∂ρi
∂b0

= −hBi ,
∂ρi
∂bj

= κijkf
k
A .

(B.17)
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Thanks to them we obtain that the first derivatives can be written as

∂V

∂b0
e−K = 8ρρ0 − (1 + ξ)(2Kij

o h
B
i ρj)

+ 3ξ
1− 2ξ

(
4ρρ0 + 2ρ0κif

i
A + 4

3h
B
i t

iρjt
j − 8

3ξh
B
i t

iρjt
j
)
, (B.18)

∂V

∂bi
e−K = 8ρρi − 8ρ0t

0hBi t
0 + (1 + ξ)(2Kjk

o κijlf
l
Aρk)

+ 3ξ
1− 2ξ

[
4ρρi + 2ρiκjf jA − 4hBi ρ0(t0)2 − 4

3ρjt
jκikf

k
A + 8

3ξρjt
jκikf

k
A

]
.

We proceed with the second derivatives. From the above expressions we can already see
that axions and saxions are decoupled in the vacuum. Noting that the ρ’s do not depend
on the saxions and that the equation of motion (3.5) implies ρA = 0, it is easy to see that
the cross terms involving derivatives of saxions and axions vanish. Therefore, the saxionic
and axionic mass matrices are decoupled. Focusing on the pure axionic sector we find

∂2V

(∂b0)2 e
−K = 8ρ2

0 + (1 + ξ)(2Kij
o h

B
i h

B
j ) + 3ξ

1− 2ξ

(
4ρ2

0 −
4
3(hBi ti)2 + 8

3ξ(h
B
i t

i)2
)
,

∂2V

∂bi∂b0
e−K = 8ρiρ0 − 8ρhBi − (1 + ξ)2Kjk

o κijlf
l
Ah

B
k (B.19)

+ 3ξ
1− 2ξ

(
4ρiρ0 − 4ρhBi − 2hBi κjf

j
A + 4

3h
B
j t

jκikf
k
A −

8
3ξh

B
j t

jκikf
k
A

)
,

∂2V

∂bi∂bj
e−K = 8ρiρj + 8ρκijkfkA + 8hBi hBj (t0)2 + (1 + ξ)(2Kkl

o κikmκjlnf
m
A f

n
A)

+ 3ξ
1− 2ξ

(
4ρiρj + 4ρκijkfkA + 2κijkf jAκlf

l
A + 4hBi hBj (t0)2 − 4

3κikf
k
Aκjlf

l
A

+ 8
3ξκikκjlf

k
Af

l
A

)
.

To evaluate the Hessian in the vacuum, we introduce the equations of motion and restrict
ourselves to the ansatz considered in the main text (4.30). Hence, from now on the results
will be only valid in a particular subranch of the non-supersymmetric vacua with M regular.
The relation for the axions demands ρA = 0 while the ansatz (4.30) in combination with
the equations of motion of the saxions (4.34) implies

f iA = ti

t̂
, hBi = −q

−1ĥB

t̂2
κi . (B.20)

For the sake of convenience we rewrite the last two relations in terms of the coefficients of
the decomposition introduced in (4.11). Then, with the help of (4.45) we have the simple
relations

f iA = −t0rξB , hBi = Bκi , (B.21)

where B = −A/(t0rξ), A = 1/t̂ and we have defined

rξ ≡
2− ξ
1 + ξ

. (B.22)
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Finally, when the axionic equations of motion are satisfied, eq. (3.5) means ρ = Q′ and
using (4.46) and the above definitions we can derive the following equation

ρ = 3
2

ξ

ξ + 1κt
0B . (B.23)

Putting all together, we conclude that the Hessian evaluated in the branch (4.30) takes the
form

∂2V

(∂b0)2 e
−K = 4

3B
2(2− ξ)κ2 ,

∂2V

∂bi∂b0
e−K = 4B2κt0(2− ξ)2

3(1 + ξ) κi , (B.24)

∂2V

∂bi∂bj
e−K = 4B2 (2ξ4 − 16ξ3 + 30ξ2 − 19ξ + 14

)
(t0)2

3(ξ + 1)2(2ξ − 1) κiκj + 8B2(ξ − 2)2k2(t0)2

9(ξ + 1) K0
ij .

The last step is to write the Hessian for canonically normalized fields. We separate the
dilaton and the non-primitive directions by considering an orthogonal basis of the form
B ≡ {e0, e1, eα} where the elements are chosen such that e0

0K00e
0
0 = 1, ei1KNP

ij ej1 = 1 and
eiαK

oP
ij e

j
α = 1 ∀α, with KP

ije
i
1 = 0 = KNP

ij ejα. To make the basis explicit we make use
of (B.8). We have

e0 = {2t0, 0, . . . , 0} ,

ea1 = 2√
3

1 + ξ√
1− 2ξ

ta .
(B.25)

Note that since KP
ije

i
αe
j
β = δαβ , then KoP

ij e
i
αe
j
β = δαβ(1 + ξ). Projecting the Hessian (B.24)

along the directions of our canonically normalized basis, we obtain the final following form:

H = eKB2κ2(t0)2


16
3 (2− ξ) 16(2−ξ)2

3
√

3−6ξ
0

16(2−ξ)2

3
√

3−6ξ
16(2ξ4−16ξ3+30ξ2−19ξ+14)

9(1−2ξ)2 0

0 0 8
9(2− ξ)2

 . (B.26)

Ignoring the global factors, this matrix has the following eigenvalues:

λ1 = 16(ξ − 2)
9(2ξ − 1)3

(
2ξ4 − 25ξ3 + 30ξ2 − 19ξ + 5

+
√

1− 2ξ
√
−(ξ − 2)3 (2ξ4 − 37ξ3 + 30ξ2 − 10ξ + 2)

)
,

λ2 = 16(ξ − 2)
9(2ξ − 1)3

(
2ξ4 − 25ξ3 + 30ξ2 − 19ξ + 5

−
√

1− 2ξ
√
−(ξ − 2)3 (2ξ4 − 37ξ3 + 30ξ2 − 10ξ + 2)

)
,

λ3 = 8
9(ξ − 2)2 .

(B.27)
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The first two eigenvalues have multiplicity one whereas the last one has multiplicity h2,1− 1.
Adding the factors and remembering that the mass spectrum gets and additional factor
1/2, the masses will be given by

m2
i = 1

2e
KA2κ2(t0)2λiM

2
P . (B.28)

To compare with the results found in (A.16), we expand the exponential of the Kähler
potential

eK = 1
V2

1
2t0

1
4
3κ(1 + ξ)

, (B.29)

and the gravitino mass

m2
3/2 = 3

2V2
Nflux
2− ξM

2
P = 3

2V2
B2t0κ

1 + ξ
M2

P . (B.30)

Putting all together we conclude that the eigenvalues coincide with the results in (A.16).
This calculation has the advantage that it enables us to distinguish the axionic and saxionic
masses. The axionic ones under consideration here then correspond to the following choices
of signs in (A.16)

m2
1 = m2

3/2

1 +
√

1− 2ξ
3 (m̂(ξ))−1

2

,

m2
2 = m2

3/2

1−
√

1− 2ξ
3 m̂(ξ)

2

,

m2
3 = m2

3/2

(
1− 1 + ξ

3

)2
.

(B.31)
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