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Abstract: We investigate the effect of superradiant scattering of gravitational perturbations
on the stability of rotating black strings, focusing on the six dimensional equal-spinning
Myers-Perry black string. We find that rapidly rotating black strings are unstable to
gravitational superradiant modes within a bounded range of string lengths. The instability
occurs because momentum along the string direction creates a potential barrier that allows
for the confinement of superradiant modes. Yet, five dimensional Myers-Perry black holes
do not have stable particle orbits so, unlike other known superradiant systems, these black
strings remain stable to perturbations with sufficiently high azimuthal mode number —
this is a ‘finite-m’ superradiant instability. For some parameters, this instability competes
with the Gregory-Laflamme instability, but otherwise exists independently. The onset of
this instability is degenerate and branches to multiple steady-state solutions. This paper
is the first of a trilogy: in the next two, we construct two distinct families of rotating
strings emerging from the superradiant onset (the ‘black resonator strings’ and ‘helical
black strings’). We argue that similar physics is present in 5-dimensional Kerr black strings,
but not in D > 6 equal-spinning Myers-Perry black strings.
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1 Introduction

Despite its simplicity, the product spacetime of a Schwarzschild black hole and a circle,
known as the Schwarzschild black string [1], manages to capture a wealth of physical
phenomena affecting black holes in higher dimensions. Notable are the Gregory-Laflamme
instability [2, 3], its associated violation of the weak cosmic censorship conjecture [4–6],
and its neighbouring solutions (non-uniform strings and localized black holes) which violate
black hole uniqueness (see e.g. [7–13]). It is now known that the same physics is ubiquitous
among black holes with extended horizons, including those of particular interest to string
theory and holography [14, 15].

It is therefore natural to consider rotating black strings, as they are more generic
generalizations of static black strings and can express behaviours that require the presence
of angular momentum. Of particular interest to us are superradiant instabilities. Like the
Gregory-Laflamme instability, the superradiant instability often also comes with violations
of uniqueness with time-periodic black holes [16–20], a possible violation of the weak cosmic
censorship conjecture [16, 17, 21–23], and has wide applications to astrophysics, string
theory, and holography (see review [24]).
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But the Gregory-Laflamme and superradiant instabilities are triggered by different
mechanisms. The Gregory-Laflamme instability is driven by horizon dynamics and the
propensity for horizons to increase in area when there is a hierarchy of length scales. By
contrast, the superradiant instability occurs when waves are amplified by an ergoregion and
then reflected back towards the horizon, leading to an exponentially growing instability.
For black strings, momentum along the string direction produces an effective mass term,
which can potentially provide enough confinement to trigger a superradiant instability that
would not otherwise exist without this extra dimension [25–28]. Indeed, such an instability
exists for scalar field perturbations of Kerr black strings through this mechanism [26, 27].

Yet, the story changes for higher dimensional rotating (Myers-Perry) black strings [29,
30]. Indeed, unlike Kerr black strings, singly spinning1 Myers-Perry black strings are stable
to scalar field perturbations [27]. Furthermore, there are no stable bounded orbits around
a wide variety of Myers-Perry black holes [31, 32],2 preventing particle-like waves from
experiencing repeated amplification. Consequently, no superradiant instability should exist
for such black holes in the eikonal limit (i.e. point-particle limit), where the azimuthal wave
number m→∞.

Despite the lack of stable orbits, we demonstrate that rotating black strings might, in
certain cases, still be unstable to superradiance in the most universal sector: gravitational
perturbations. For simplicity, we will focus only on the six-dimensional equal-spinning
Myers-Perry black string (i.e. with equal angular momenta along two rotation planes) [35, 36],
for which the associated gravitational perturbation equations reduce to ODEs. The five-
dimensional equal-spinning Myers-Perry black hole lacks stable orbits [37], which implies
that its associated asymptoticallyM1,4×S1 black string cannot be unstable to superradiant
perturbations in the eikonal limit m→∞. Nevertheless, we will find that the instability
exists for any finitem, with the unstable region approaching measure zero in parameter space
as m→∞. To our knowledge, this is the first system where such a ‘finite-m’ superradiant
instability is observed.3 Because of this property, this instability is not expected to progress
indefinitely to smaller and smaller length scales and lead to a violation of the weak cosmic
censorship conjecture, unlike what was conjectured for ‘infinite-m’ rotational superradiance
seen in other systems [16, 17, 21].

As mentioned earlier, the Gregory-Laflamme and superradiant instabilities are distinct
physical phenomena and exist independently. In this paper, we will also compare both of
these instabilities. Depending on the black hole and wave parameters, none, only one of
them, or both instabilities can be present. Where both instabilities coexist, we find that

1Recall that in five or higher dimensions there is more than one plane of rotation.
2Some higher dimensional black holes admit stable bounded orbits, e.g. 6-dimensional singly spinning

Myers-Perry black holes [33] or 5-dimensional black rings [34].
3Indeed, take the prototype example of a scalar field with mass µ in the Kerr black hole. In the limit

of very large ` = m the growth rate of the superradiant instability scales as e−4m ln (m) [38]. Thus, for any
value of µ or black hole rotation a, there is always a value of m = m? ≡ dµ/ΩHe above which the instability
switches on. Thus all Kerr black holes are superradiant unstable to massive scalar field perturbations, no
matter the value of ΩH ≤ Ωext

H and µ [38]. On the other hand, unlike in the previous case, in our MP string
we will find that as m grows, the critical rotation (above which the superradiant instability can be present)
increases and this value approaches extremality (i.e. the instability switches off) when m→∞.
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the Gregory-Laflamme instability typically has a much higher growth rate and we discuss
possible scenarios for the time evolution of the system.

We further find linear evidence that this superradiant instability, much like those
affecting rotating black holes, leads to a branch of new steady-state solutions [16–18, 20, 39–
45] (these new solutions are often called ‘hairy’ or ‘resonator’ solutions). Like the case for
black holes [17, 18, 41, 44], the onset frequency (where Im(ω) = 0) for superradiant modes
has nonzero real part (Re(ω) 6= 0), so the branching solutions are usually time-periodic,
but not time independent nor axisymmetric. The onset of the instability in black strings
can be degenerate, implying that multiple solutions branch from this onset (i.e. more than
a one-parameter family). We will argue that it is natural to coin these solutions ‘black
resonator strings’ and ‘helical black strings’, and we present perturbative evidence for their
existence. Then, in a sequel of two papers [46, 47], we will construct them nonlinearly
(using higher order perturbation theory and fully nonlinear numerical methods) and study
their properties in detail.

The rest of the paper is structured as follows. Section 2 reviews the equal-spinning
Myers-Perry black string. Section 3 studies the onset and growth rate of the Gregory-
Laflamme instability. We then investigate the superradiant instability in section 4, finding
its onsets, associated instability regions and growth rates. We highlight that the onset of
this instability provides perturbative evidence for the existence of novel (resonator and
helical) black strings. We end with a discussion of our results in section 5. In the appendices
we argue that the gravitational superradiant instability is not present for spin 0 and 1 fields
and that it also does not extend to D > 6 equal-spinning black strings.

2 Equal-spinning Myers-Perry black strings

The Myers-Perry black hole [29, 30] is an exact solution describing an asymptotically flat,
rotating black hole in any dimension. In odd dimensions and with all angular momenta
set equal, the Myers-Perry black hole has an enhanced symmetry group permitting the
solution to be written in a cohomogeneity-1 way (i.e. depending nontrivially only on a single
coordinate) [35, 36]. We will be working with the six-dimensional (D = 6) black string
given by the product of an equal-spinning five-dimensional Myers-Perry black hole and a
circle. Hereafter, unless otherwise specified, the Myers-Perry (MP) black string refers to
this specific solution. Its metric can be written4

ds2
MP string = −F

H
dt2 + dr2

F
+ r2

[
H

(
σ3
2 −

Ω
H

dt
)2

+ 1
4
(
σ2

1 + σ2
2

)]
+ dz2 , (2.1)

where
F (r) = 1− r2

0
r2 + a2r2

0
r4 , H(r) = 1 + a2r2

0
r4 , Ω(r) = a r2

0
r4 , (2.2)

and
σ1 = − sin(2ψ) dθ + cos(2ψ) sin θ dφ ,
σ2 = cos(2ψ) dθ + sin(2ψ) sin θ dφ ,
σ3 = 2 dψ + cos θ dφ

(2.3)

4The radial coordinate used here can be converted to the standard Boyer-Lindquist radial coordinate
in [29] through r2 → r2 + a2.
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are left-invariant one-forms that satisfy the Maurer-Cartan equation dσi = 1
2εijkσj∧σk. The

Euler angles (θ, φ, ψ) are coordinates on a squashed S3 with ranges 0 ≤ θ < π, 0 ≤ φ < 2π,
and 0 ≤ ψ < 2π. We take the coordinate z ∈ (0, L) to be periodic with circle length L.
Killing vectors of this spacetime are given by

∂t, ∂z, ∂ψ ,

ξ1 = cosφ∂θ + 1
2

sinφ
sin θ ∂ψ − cot θ sinφ∂φ ,

ξ2 = − sinφ∂θ + 1
2

cosφ
sin θ ∂ψ − cot θ cosφ∂φ ,

ξ3 = ∂φ ,

(2.4)

and thus the isometry group of this spacetime is Rt × U(1)ψ × SU(2) × U(1)z, with ξi
(i = 1, 2, 3) being the generators of the SU(2)-symmetry group, [ξi, ξj ] = εijkξk. The
one-forms σi are invariant under ξj , i.e. £ξj σi = 0 (where £ stands for Lie derivative).

The solution has 3 dimensionful parameters: the mass radius r0, the rotation parameter
a, and the circle length L. The horizon radius r+ is defined as the largest real root of
F which can be used to express the mass radius as r0 = r+/

√
1− (a/r+)2. The energy,

angular momentum, tension along z, temperature, angular velocity and entropy of the
Myers-Perry string are, respectively:5

E = 3πr2
0L

8G6
, J = πr2

0aL

4G6
, Tz = πr2

0L

8G6
,

TH = 1
2πr+

1− 2(a/r+)2√
1− (a/r+)2 , S = L

2G6

π2r3
+√

1− (a/r+)2 , ΩH = a

r2
+
,

(2.5)

where G6 is the six-dimensional Newton’s constant. In horizon radius units (equivalent to
set r+ ≡ 1), Myers-Perry black strings have two dimensionless parameters, which we will
take for convenience to be ΩHr+ and kr+, where the wavenumber k = 2π/L. Note that
the temperature vanishes at a/r+ = 1/

√
2, where the Myers-Perry black string is extremal

with angular frequency Ωext
H r+ = 1/

√
2.

We will show that the Myers-Perry black string is unstable to at least two sectors
of gravitational perturbations. One is the familiar Gregory-Laflamme instability, first
studied in the context of Schwarzschild black strings/branes [2, 3] and then extended to
rotating black strings in [48–52]. The other is the superradiant instability whereby the
Kaluza-Klein momentum along the string direction provides an effective mass term that
confines superradiant bound states. This confinement mechanism for the instability was
first proposed in [25] and the perturbative analyses of the associated timescale, for Kerr
strings, were done in [26, 28]. Numerical superradiant analysis of Kerr and single-spinning
Myers-Perry black strings for scalar fields where also done in [27].

Our linear mode stability analysis requires studying linearised gravitational perturba-
tions. Let hAB be a linear metric perturbation about the Myers-Perry black string. We will

5Note that we have defined J and ΩH with respect to a canonically normalised periodic variable
ψ ∼ ψ + 2π, in accordance with the work of Myers and Perry [29] (another option that is often taken would
be ψ ∼ ψ + 4π); in these conventions, the superradiant factor (also known as resonant or synchronization
factor) is given by ω − 2mΩH . The non-standard factor of 2 reflects the fact that we have equal rotation
along the two planes and we are using the period of 2π for ψ.
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choose to work in the traceless-transverse gauge defined by6

hAA = 0 , ∇AhAB = 0 . (2.6)

In this gauge, the linearised Einstein equation reduces to

(∆Lh)AB ≡ −∇C∇ChAB − 2RACBDhCD = 0 , (2.7)

where ∆L is the Lichnerowicz operator, and all curvatures and covariant derivatives are
computed with respect to the Myers-Perry black string background.

3 The Gregory-Laflamme instability on Myers-Perry black strings

We now review the Gregory-Laflamme (GL) instability and study its properties in the
(equal-spinning) Myers-Perry black string. Generally, the Gregory-Laflamme instability is
present when there are one or more directions where the horizon is elongated. Intuitively,
the Gregory-Laflamme instability is driven by the horizon’s tendency to maximise its
area (entropy) when there is a hierarchy of scales, while keeping the mass and angular
momentum of the black hole fixed. Often, the entropically preferred configuration with
the same mass and angular momenta (and fixed Kaluza-Klein circle length) is a ‘localized’
black hole with spherical horizon topology (or an array of such spherical black holes).
Moreover, the dynamical transition from the black string into the localized black hole
configuration necessarily comes with a change in horizon topology, which violates the weak
cosmic censorship conjecture. These are all fairly general qualitative features of gravitational
systems with a hierarchy of horizon length scales, though specific details can differ.

In the case of the (equal-spinning) Myers-Perry black string, the two lengthscales
are r+ and L and we expect the instability to occur at least for L � r+. The resulting
Gregory-Laflamme instability was already briefly studied in [48, 50], although in [50] more
emphasis was given to the so-called ultraspinning instability of the equal angular momenta
Myers-Perry black hole.7 We also note that the Gregory-Laflamme instabilities of single-
spinning and arbitrarily spinning Myers-Perry black strings were also discussed in [49, 51]
and [52], respectively.

3.1 Linear perturbations

As stated above, we will work in the transverse-traceless gauge (2.6) which, in the present
case, amounts to working in the gauge hAz = 0. Then for convenience, we will only
consider the components hµν with (µ, ν) running only over the 5-dimensional coordi-
nates (t, r, θ, φ, ψ).8

6Greek indices µ, ν, . . . run only over the 5-dimensional coordinates (t, r, θ, φ, ψ), capital Latin indices
A,B, . . . run over these plus the extended direction z, and the lower case indices i, j, k, . . . run over the Euler
angles {θ, φ, ψ}.

7The ultraspinning instability affects rapidly rotating black holes in D ≥ 6 and their associated black
strings in D ≥ 7, and do not affect the Myers-Perry black string studied here. We study the Gregory-
Laflamme mode that is unstable for all values of the rotation, including in the Schwarszchild string limit.
In the rotating Myers-Perry strings, there are axisymmetric Gregory-Laflamme instabilities that are only
present for rotations above a critical value [50] that we do not discuss here.

8To make contact with [50], note that the transverse-traceless gauge conditions (2.6) reduce to hµµ =
0 ,∇µhµν = 0 and the linearised equation reads (∆Lh)µν ≡ −∇ρ∇ρhµν − 2Rµρνσhρσ = −k2hµν .
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The Gregory-Laflamme perturbations of the Myers-Perry string (2.1) that we investigate
have the form ds2 = ds2

MP string + δds2
GL with

δds2
GL = hµνdXµdXν (3.1)

= eikze−iω t
(
− F

H

(
Q1dt+ 2Q6dr

)
dt+ dr

F

(
Q2dr +Q7σ3

)

+ r2
[
H

(
σ3
2 −

Ω
H

dt
)(

Q3

(
σ3
2 −

Ω
H

dt
)
− 2 Ω

H
Q5dt

)
+ Q4

4
(
σ2

1 + σ2
2

)])
,

where Qi (i = 1, . . . , 7) are unknown functions of r and we have introduced the mode
frequency ω and the Kaluza-Klein momentum or wavenumber k = 2π/L.

Note that this ansatz does not encompass the most general set of gravitational perturba-
tions that trigger a Gregory-Laflamme instability. We have set the azimuthal wave number
m associated to the Killing vector ∂ψ of the background to zero, as the Gregory-Laflamme
instability is strongest in the axisymmetric sector of perturbations. We have also not
included any θ and φ dependence.9 Gregory-Laflamme instabilities with such angular
dependence (i.e. with m 6= 0) [50] only exist above a critical rotation and typically have a
smaller growth rate. The modes that we study exist even without rotation.

The linearised Einstein equation (2.7) and the gauge conditions (2.6) can be reduced
to a system of three second order equations for {Q2, Q3, Q5}. This can be accomplished
as follows. Using the gauge conditions (2.6), Q1 and Q4 can be expressed algebraically in
terms of the other functions and their derivatives. The linearised Einstein equation (2.7)
then reduces to a second order equation for Q2 and four first order equations for Q3,5,6,7.
We can further use the first order equations for Q3 and Q5 to get two algebraic equations
for Q6 and Q7, which finally converts the equations to a system of three second order
equations for {Q2, Q3, Q5} (when ω = 0, we get a similar system of 3 coupled ODEs but
with Q6 = Q7 = 0).

We now discuss boundary conditions. The asymptotic behaviour of the functions
is Qi|r→∞ ∼ e±

√
k2−ω2 r. We keep only the exponentially decaying solution to preserve

Kaluza-Klein asymptotics (M1,4 × S1). In more detail, the Gregory-Laflamme modes
decay as Q2,3,5|r→∞ ∼ e−

√
k2−ω2 rr α2,3,5 where αi are constants.10 At the horizon, we have

Qi|H ∼ (r − r+)±i ω
4πTH . We keep the solution with the minus sign as it is the one that is

regular in ingoing Eddington-Finkelstein coordinates. In more detail, the Gregory-Laflamme
modes behave as Q2,3,5|r→r+ ∼ (r − r+)β2,3,5−i ω

4πTH with β2 = −1 and β3 = β5 = 0.11

9These can be introduced by decomposing the perturbations into charged harmonics on CP1 ' S2 [50, 53–
55]. There are scalar, vector and tensor harmonics on CP1 but only the scalar describes Gregory-Laflamme
instabilities [18, 50, 53–55].

10For time dependent perturbations (ω 6= 0) one has α2 = α3 = −3/2 and α5 = 3/2 while for the zero
mode problem (ω = 0) one has α2 = −5/2, α3 = −3/2 and α5 = 3/2.

11The Myers-Perry string background is smooth across the event horizon if we use ingoing Eddington-
Finkelstein coordinates (v, r, θ, φ,Ψ) given by: v = t +

∫
H1/2F−1 dr ,Ψ = ψ + 2

∫
ΩH−1/2F−1 dr . For

time-dependent perturbations (ω 6= 0) one has β2 = −1 and β3 = β5 = 0, while for the zero mode problem
(ω = 0) one has β2 = β3 = 0 and β5 = 1.
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For numerics, it is convenient to introduce a radial coordinate

y =
√

1− r+
r
, (3.2)

which ranges y ∈ (0, 1) with the horizon r = r+ being at y = 0 and the asymptotic region
r →∞ at y = 1.

We will work in units of the horizon radius (equivalent to r+ ≡ 1), where the dimen-
sionless quantities are given by

ã = a/r+ , L̃ = L/r+ Ω̃H = ΩHr+ , T̃H = THr+ , k̃ = kr+ , ω̃ = ωr+ . (3.3)

In these units, the Myers-Perry black string can be parametrised by Ω̃H and k̃.
Our numerical study of the Gregory-Laflamme instability proceeds in two parts, each

of which require separate numerical computations. First, while scanning through Ω̃H , we
obtain a critical wavenumber k̃ = k̃(0)|GL that yields the onset zero mode value ω̃ = 0.
Second, we solve the general problem for ω̃ 6= 0 while scanning through parameter space
(Ω̃H , k̃).

In the zero mode case with ω = 0, the boundary conditions can be enforced by the
field redefinitions

Q2(y) = e
− k̃

1−y2
(
1− y2

)5/2
q

(0)
1 (y) ,

Q3(y) = e
− k̃

1−y2
(
1− y2

)3/2
q

(0)
2 (y) , (3.4)

Q5(y) = e
− k̃

1−y2
(
1− y2

)−3/2
y2q

(0)
3 (y) ,

and requiring that the q(0)
i ’s are smooth functions. From the equations of motion, it follows

that the q(0)
i ’s now obey Neumann conditions at the horizon and Robin conditions at infinity.

With ω̃ = 0, the critical wavenumber k̃ = k̃(0)|GL appears as a quadratic eigenvalue
problem. For any given rotation below extremality 0 ≤ Ω̃H ≤ 1/

√
2, there is a unique

solution with real, positive k̃ = k̃(0)|GL, which we identify as the critical wavenumber for
the onset of the Gregory-Laflamme instability. This gives us the onset curve k̃(0)|GL(Ω̃H).
Note there is also a trivial k̃ = 0 solution.

As a result of this analysis, we will find that unstable Myers-Perry black strings lie in the
rectangular region of parameter space given by 0 ≤ Ω̃H ≤ 1/

√
2 and 0 < k̃ < k̃(0)|GL(Ω̃H).

With the zero mode solution in hand, we can then proceed to the second part of our
numerical study, this time with ω̃ 6= 0. For this case, boundary conditions can be imposed
by the field redefinitions

Q2(y) = e
−
√
k̃2−ω̃2
1−y2

(
1− y2

)3/2
y
−2− i ω̃

2πT̃H q1(y) ,

Q3(y) = e
−
√
k̃2−ω̃2
1−y2

(
1− y2

)3/2
y
− i ω̃

2πT̃H q2(y) , (3.5)

Q5(y) = e
−
√
k̃2−ω̃2
1−y2

(
1− y2

)−3/2
y
− i ω̃

2πT̃H q3(y) ,

again with the requirement that the qi’s are smooth functions.
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Figure 1. Onset mode wavenumber (left) and growth rate (right) of the axisymmetric (m = 0)
Gregory-Laflamme instability for Myers-Perry black strings. In the left panel, unstable modes
have k̃ < k̃(0) (i.e. L̃ > 2π/k̃(0) are unstable). The vertical dashed line marks extremality with
Ω̃H = 1/

√
2 ' 0.707107. Critical wavenumbers are k̃(0) ' 1.268916 at Ω̃H = 0 [2] and k̃(0) ' 3.767342

at ΩH ' 0.999996 Ωext
H ' 0.707104 (extrapolates to k̃(0) ' 3.783201 at ΩH = Ωext

H ). In the right
panel, we only show solutions up to Ω̃H ∼ 0.6 < 1/

√
2. In this range, the growth rate increases with

increasing Ω̃H and fixed k̃. For higher Ω̃H , the growth rate falls: see discussion of right panel of
figure 2 for further details). All modes here have purely imaginary frequency, Reω = 0.

Now, the aim is to compute the frequency ω̃ for any given k̃ and Ω̃H in the unstable
region. This is a non-polynomial eigenvalue problem in ω̃, which can be approached by
using a Newton-Raphson algorithm with the zero mode solution as an initial seed. To fix
the normalization of the eigenvalue problem, we set Q5|y=0 = 1. (See e.g. [43, 56] for details
on using the Newton-Raphson method for non-polynomial eigenvalue problems).

Since Gregory-Laflamme modes have purely imaginary frequencies, Re ω̃ = 0, it is
convenient to redefine the frequency as Γ̃ = i ω̃, which reduces the domain of the eigenvalue

problem from the complex plane to the real line. Further note that one then has e−
√
k̃2−ω̃2
1−y2 =

e
−
√
k̃2+Γ̃2
1−y2 and asymptotic decaying modes should exist for any k̃, although only long

wavelengths with k̃ ≤ k̃(0)|GL, should be unstable.
Numerically, we discretise the differential equations using pseudo-spectral methods on a

Chebyshev grid. As expected for pseudospectral method, our results converge exponentially
with the number of grid points. All the frequencies that will be presented in our plots are
accurate up to at least the eighth decimal digit. Moreover, our results match those of [50].12

3.2 Gregory-Laflamme unstable region and growth rates

We now present our results for the Gregory-Laflamme instability. The zero mode wavenum-
ber k̃(0) ≡ k̃(0)|GL and growth rates Im ω̃ are shown in the left and right panels of
figure 1, respectively.

12The numerical codes used were developed independently.
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Figure 2. Growth rate for the Gregory-Laflamme instability of the Myers-Perry black string with
fixed Ω̃H = 0.66 (left), and with k̃ = 1

2 k̃
GL
(0) (right). Note that in the right plot, k̃GL

(0) changes
with Ω̃H according to figure 1, so k̃ varies as well. The yellow diamond in the right panel at
(Ω̃H , ω̃) ' (1/

√
2, 0.101756) is the extrapolated value of the growth rate at extremality (vertical

dashed line).

From the left panel, one sees that the critical wavenumber k̃(0) exists for all values of the
angular velocity up to extremality, 0 ≤ Ω̃H ≤ 1/

√
2. For zero rotation, the unstable region

is 0 < k̃ . 1.268916, which agrees with the instability of the Schwarzschild-Tangherlini
black string [2]. As rotation is increased towards extremality, the unstable region grows to
0 < k̃ . 3.783. In this sense, we can state that rotating black strings are more prone to the
Gregory-Laflamme instability.

The right panel of figure 1 displays the Gregory-Laflamme growth rate Γ̃ = Im(ωr+)
across the dimensionless parameters Ω̃H and k̃. The onset zero mode curve with k̃ =
k̃(0)|GL(Ω̃H) and Im ω̃ = 0, is also displayed in the right panel of figure 1 as the orange
curve. The fact that the growth rate computation returns Im ω̃ = 0 along the same line
k̃ = k̃(0)|GL(Ω̃H) as the independent zero mode numerical code is a non-trivial check of
our computations.

From figure 1, we see that Myers-Perry black strings are Gregory-Laflamme unstable
for the whole rotation range 0 ≤ Ω̃H ≤ 1/

√
2 whenever the wavenumber is below critical

0 < k̃ < k̃(0)|GL(Ω̃H), that is, whenever the length is higher than the zero mode critical
length, L̃ ≥ L̃(0)|GL. For most range of parameters (aside from those close to extremality
which we will discuss later in figure 2), the growth rate of the Gregory-Laflamme instability
increases as the rotation increases at fixed L̃. Moreover, for a given Ω̃H the maximum
growth rate is higher than the one for the Schwarzschild-Tangherlini black string. Thus, in
this sense, we see that the Gregory-Laflamme instability can get stronger with rotation.

For completeness, in the left panel of figure 2 we focus our attention on Myers-Perry
black strings with Ω̃H = 0.66 and describe how the Gregory-Laflamme growth rate changes
as 0 ≤ k̃ ≤ k̃(0)|GL ' 2.533565. This is a curve that is qualitatively similar to that of the
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Schwarzschild string. On the right panel, we select Myers-Perry strings that have a length
that is twice as large as the critical onset length, L̃ = 2L̃(0)|GL, for each rotation (note L̃
is not constant as Ω̃H changes). We see that starting at zero rotation, the growth rate
first increases, attains a maximum, and then decreases substantially in a short window of
angular velocity as extremality is approached. Note that in the right panel of figure 1 this
sharp decrease is not visible because we do not show the solutions too close to extremality
where the fall occurs, i.e. we just display solutions up to Ω̃H ∼ 0.6 < 1/

√
2.

Summarizing our results, as long as we are not too close to extremality, adding rotation
tends to increase the parameter range of unstable black strings, as well as increase the
unstable growth rate. In both these senses, the Gregory-Laflamme instability tends to get
stronger with added rotation. Our results are qualitatively consistent with previous results
found in [50].

4 The superradiant instability of Myers-Perry black strings

In this section, we will show that the Myers-Perry black string is unstable to gravitational
superradiance and compare the associated unstable region and growth rate to those of the
Gregory-Laflamme instability.

Superradiant instabilities require two primary ingredients. The first is the existence of
superradiant scattering, i.e. an amplification mechanism of incident waves that enter an
ergoregion. This is present in the Myers-Perry string. The second is a confining mechanism
whereby the amplified waves are reflected back to the ergoregion and can continue to extract
energy and angular momenta until they back-react on the spacetime geometry. At the
outset, it is unclear whether the Myers-Perry black string satisfies this second criterion.

Heuristically, non-trivial Kaluza-Klein modes (i.e. modes with frequency ω and momen-
tum k along the string direction) decay asymptotically as e−

√
k2−ω2 r, with the momentum k

providing an effective mass proportional to
√
k2 − ω2. This effective mass creates a potential

barrier along the radial direction that might provide enough of a confining mechanism, as
first proposed in [25] (see also [26–28]). Though this argument applies for generic (integer
spin) perturbations, the fact is that no such instability has been found for scalar and
Maxwell fields on the (equal-spinning) Myers-Perry black string. Indeed, we have explicitly
checked that there is no superradiant instability for these perturbations and, actually,
we can provide an analytical argument for the absence of the instability as discussed in
appendix A. For the scalar field on the single spinning Myers-Perry black string, [27] also
observed the lack of a superradiant instability. Furthermore, the lack of stable orbits around
5-dimensional equal-spinning Myers-Perry black holes also strongly suggests that there
should not be a superradiant instability in the associated six-dimensional Myers-Perry black
string in the eikonal limit (where the azimuthal mode number m→∞).

Yet, despite the above negative results, we will nevertheless find a superradiant insta-
bility for gravitational perturbations in six-dimensional equal-spinning Myers-Perry black
strings, for any finite azimuthal number m. Perhaps surprisingly, this result appears to
be valid only for D = 6 equal-spinning Myers-Perry black strings. Indeed, in appendix B,
we provide an argument suggesting the absence of the instability in D = 2N + 4 dimen-
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sional equal-spinning Myers-Perry black strings for N ≥ 2 (i.e. for D ≥ 8). So D = 6 is
very special.

4.1 Wigner D-matrices

Unlike the Gregory-Laflamme instability, superradiant instabilities that are sourced by
rotation require non-axisymmetric (m 6= 0) modes. It is known on fairly general grounds
that superradiant modes satisfy Re(ω) < 2mΩH , where m is the azimuthal mode number,
in this case for the coordinate ψ (recall footnote 5). We seek special sectors of perturbations
that are decoupled and induce the superradiant instability in the Myers-Perry black string.

To describe decoupled perturbations in these conditions, we use the Wigner D-matrices
Dj
`′`(θ, φ, ψ). We ask the reader to see [20] for a detailed review of the Wigner D-matrices

in the context of black hole perturbations and here we just highlight key aspects that are
fundamental for our study.

Let us define the angular momentum operators Li ≡ iξi and R3 ≡ i1
2∂ψ. They satisfy

the commutation relations, [Li, Lj ] = iεijkLk and [Li, R3] = 0. We can take the set of
mutually commutative operators (L2, L3, R3) where L2 ≡ L2

1 +L2
2 +L2

3. Wigner D-matrices
are defined as eigenfunctions of these operators:

L2Dj
`′` = j(j + 1)Dj

`′` , L3D
j
`′` = `′Dj

`′` , R3D
j
`′` = `Dj

`′` . (4.1)

The quantum numbers can take the values

j = 0, 1
2 , 1,

3
2 , . . . , `′, ` = −j,−j + 1, . . . , j . (4.2)

There are convenient formulae for the derivatives of Wigner D-matrices:

∂θD` = − i
2
(
ε−e
−2iψD`−1 + ε+e

2iψD`+1
)
,

∂φD` = −i` cos θD` + 1
2ε− sin θ e−2iψD`−1 −

1
2ε+ sin θ e2iψD`+1 ,

∂ψD` = −2 i`D` ,

(4.3)

where ε± ≡
√

(j ∓ `)(j ± `+ 1) and the common indices (j, `′) were suppressed to simplify
the notation. We ask the reader to see [45, 57] for a derivation of these results.

For the following perturbation analysis, it is convenient to introduce 1-forms σ±
defined by

σ± = 1
2(σ1 ∓ iσ2) = 1

2e
∓2 iψ(∓i dθ + sin θdφ) , (4.4)

where σ1,2 were defined in (2.3). The one-forms σ± are “eigen 1-forms” of R3, i.e.
£R3σ± = ±σ±.

The eigenvalue of −R3 is the azimuthal mode number m. For example, we say that Dj
`′`

has azimuthal mode number m = −`. We can also define the azimuthal mode number for
tensors. For example, tensors Dj

`′`σ
2
−, D

j
`′`σ+σ− and Dj

`′`σ
2
+ have m = −`+ 2,−`,−`− 2,

respectively.
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4.2 Linear perturbations

This time we focus our attention on a traceless-transverse perturbation of (2.1) that has
the form ds2 = ds2

MP string + δds2
SR where

δds2
SR = hMNdxMdxN = r2ei k ze−iω tDj

`′`Q(r)σ2
− with `′ = ` = −j ,

= 1
4e

i k ze−iω tei (m−2) (φ+2ψ) cos2(m−2)
(
θ

2

)
Q(r)

(
σ2

1 − σ2
2 + 2 iσ1 σ2

)
(4.5)

which describes a superradiant perturbation with a charged scalar CP1 harmonic de-
pendence in ψ corresponding to azimuthal quantum number m = j + 2, and thus m ∈
{2, 5/2, 3, 7/2, . . .}; see (4.2). Since this is the maximum azimuthal wavenumber for a given
j, this perturbation decouples from other perturbations and it is the simplest disturbance
that permits superradiance in the Myers-Perry black string.

The perturbation (4.5) is trivially in the traceless-transverse gauge (2.6) and reduces
the Lichnerowicz equation (2.7) to a second order ODE for Q(r):

(
r3FQ′

)′
+ r

[
Hr2

F

(
ω − 2mΩ

H

)2
− 4m2

H
+ 4m− k2r2

]
Q = 0 . (4.6)

Using the tortoise coordinate, dr∗ =
√
H/Fdr, and redefining the perturbation variable as

Φ = (rH)1/4Q, (4.6) can be rewritten in the Schrödinger form

d2Φ
dr2
∗
− V Φ = 0 , (4.7)

where its potential reads:

V ≡ F

H
k2−

(
ω − 2mΩ

H

)2
+ 4F
r2H

[
(m− 1)m−m2

(
1− 1

H

)]
+ 1
r3/2H1/4

d2

dr2
∗

(
r3/2H1/4

)
.

(4.8)
Near infinity, the Schrödinger potential V behaves as

V |r→∞ ' k2 − ω2 +
[
4m(m− 1) + 3

4 −
k2r2

+
1− Ω2

Hr
2
+

]
1
r2 +O

(
r−4

)
. (4.9)

Note that the coefficient of 1/r2 becomes negative for a sufficiently large k. This suggests that
the gravitational perturbation might get confined near the horizon (inside the ergoregion)
and thus there might be room for a superradiant instability [27] (note that in the scalar field
perturbation case, there is no Schrödinger potential barrier that confines the superradiant
modes which is consistent with the fact that there is no superradiant instability; see
appendix A). Moreover, for m → ∞, the 1/r2 term in (4.9) becomes positive. This is
related to the fact that there are no stable particle orbits in the five-dimensional Myers-
Perry black hole [31, 32]. So if the superradiant instability happens to be present for
the Myers-Perry black string at finite m, it should definitely shut down in the eikonal
(m→∞) limit.
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The analysis above suggests the possible existence of a superradiant instability for finite
m, which we now attempt to find. To search for possible unstable modes of (4.7), we need to
impose the relevant physical boundary conditions. At infinity, an asymptotic analysis of the
ODE (4.6) indicates the existence of two independent solutions: Q ∼ r−3/2e±

√
k2−ω2 r. We

discard the exponentially growing mode to preserve the Kaluza-KleinM1,4×S1
z asymptotics.

Near the horizon, the ODE has again two independent solutions: Q ∼ (r−r+)±i ω−2mΩH
4πTH . We

impose boundary conditions that retain only the solution with the minus sign to maintain
regularity in ingoing Eddington-Finkelstein coordinates (see footnote 11). Introducing, as
we have for the Gregory-Laflamme instability, the compact radial coordinate y =

√
1− r+

r

and working in units of r+ as in (3.3), these boundary conditions can be imposed by setting

Q(y) = e
−
√
k̃2−ω̃2
1−y2

(
1− y2

)3/2 [(
2− y2)y2

]−i ω̃−2mΩ̃H
4πT̃H q(y) (4.10)

and requiring that q is a smooth function. Smoothness of q and the equations of motion
now yield a Neumann condition at the horizon and a Robin condition at infinity for q(y).
Given parameters Ω̃H and k̃, our ODE and its boundary conditions describe a quadratic
eigenvalue problem for ω̃.

To find the onset of the instability we will set ω̃ = 2mΩ̃H and k̃ = k̃(0) (recall footnote 5).
The above discussion on boundary conditions still holds in this particular case, but the
problem becomes a quadratic eigenvalue problem for κ̃ ≡

√
k̃2

(0) − 4m2Ω̃2
H .

Our numerical computation now proceeds as follows. As before, we find the onset curve
first, and then find the growth rates. We first fix m ∈ {2, 5/2, 3, 7/2, . . .} (we will start with
m = 2 and later consider higher m). Then, scanning over Ω̃H , we attempt to find the onset
modes by setting ω̃ = 2mΩ̃H (the condition for the onset of superradiance), relabelling
k̃ = k̃(0), then solving the corresponding quadratic eigenvalue problem for κ̃ on a Myers-Perry
black string family, which also ultimately gives us a value for k̃(0). We expect real, positive
solutions for κ̃ to exist for a range of dimensionless rotations Ω̃H |c < Ω̃H < Ω̃ext

H = 1/
√

2,
which gives us an onset curve k̃(0)|SR(Ω̃H) for this range of Ω̃H .

Having found the critical k̃(0)(Ω̃H) for a given m, we then expect that for values of k̃ just
critical value k̃ . k̃0, the mode will be unstable with frequency Im ω̃ > 0. We can find this
frequency by solving the aforementioned quadratic eigenvalue problem for ω̃. We can then
continue to vary Ω̃H and k̃ to explore the regions where Im ω̃ > 0. Numerically, we again
rely on pseudospectral methods with a Chebyshev grid and use a Newton-Raphson method
to track modes as we vary parameters. We follow the strategy described in [43, 56] to solve
eigenvalue problems using Newton-Raphson, fixing the normalization by setting q|y=0 = 1.

4.3 Superradiant unstable regions and growth rates

Let us discuss the results in detail for m = 2 before proceeding with higher values of m. We
begin with the critical superradiant onset curve k̃(0)(Ω̃H), where ω̃ = 2mΩ̃H (and is critical
because Im ω̃ = 0). This curve is the blue cA curve in figure 3, and exists for a range of
rotation Ω̃H |c < Ω̃H < Ω̃ext

H = 1/
√

2. Within this range, wavenumbers just below critical
k̃ . k̃0 are unstable.
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Figure 3. The blue disk curves with endpoints A and c corresponds to the m = 2 onset mode
(with ω̃ = 2mΩ̃H) of the superradiant instability of the Myers-Perry black string. This curve
exists in the window Ω̃H |c ≤ Ω̃H ≤ Ω̃H |A where Ω̃H |c = 3/5 and Ω̃H |A ≡ Ω̃ext

H = 1/
√

2 is the
angular velocity at extremality (the vertical dashed line identifies this extremality). Left: Myers-
Perry black strings are superradiant unstable in the triangular region ABc bounded by the shown
curves. Besides the onset curve (Ac), we also show the green curve k̃?(Ω̃H), which describes
modes with Re ω̃ = k̃ (and Im ω̃ = 0). This green curve k̃?(Ω̃H) begins at point c where it
intersects the magenta dashed line k̃ = 2mΩ̃H (with m = 2), and ends at point B where Ω̃H =
Ω̃ext
H = 1/

√
2. For reference, point A has (Ω̃H , k̃(0), L̃(0))A ' (1/

√
2, 3.805857, 1.650925), point B

has (Ω̃H , k̃(0), L̃(0))B = (1/
√

2, 3/
√

2, 2
√

2π/3), and point c has (Ω̃H , k̃(0), L̃(0))c = (3/5, 12/5, 5π/6),
where L̃(0) = 2π/k̃(0). Right: this plot demonstrates that the onset curve Ac satisfies k̃2

(0)−4m2Ω̃2
H ≥

0, which implies that these onset modes decay exponentially in the radial direction.

For reasons that will later become clear, we wish to demonstrate that the onset modes at
k̃(0)(Ω̃H) decay exponentially in the radial direction (as argued previously when discussing
the asymptotic boundary condition of the problem). Since, by the known asymptotic
behaviour and our boundary conditions, the solutions have a falloff given by e−

√
k2−ω2 r and

this onset curve cA satisfies ω̃ = 2mΩ̃H , we simply need to show that k̃2− 4m2Ω̃2
H > 0. We

can easily see from the right panel of figure 3 that this condition is satisfied within the given
range Ω̃H |c < Ω̃H ≤ Ω̃ext

H = 1/
√

2, and appears to be marginal, k̃ → 2mΩ̃H , at Ω̃H = Ω̃H |c.
After finding this onset curve k̃(0)(Ω̃H), we can then explore the range of parameters

where an instability exists (i.e. where Im ω̃ > 0). The real and imaginary parts of ω̃ for
parameters with such an instability are shown in figure 4. We see that the unstable region
in (Ω̃H , k̃) parameter space is triangular, and lies between the blue onset curve k̃(0)(Ω̃H),
extremality Ω̃H = Ω̃ext

H = 1/
√

2, and a new green curve which we will call k̃?(Ω̃H). This
unstable triangular region is the same as the triangular region ABc shown in the left
panel of figure 3. The blue and green curves (both with Im ω̃ = 0) of figure 4 correspond,
respectively, to the blue onset curve cA and green cB curve of figure 3. On other hand the
extremal AB curve in figure 3 corresponds to a curve with Im ω̃ > 0 at Ω̃H = Ω̃ext

H .
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Figure 4. Frequency for m = 2 unstable superradiant modes, as a function of parameters of
Myers-Perry black strings. The instability is present (i.e. Im ω̃ > 0) for Ω̃H |c ≤ Ω̃H ≤ 1/

√
2, with

Ω̃H |c = 3/5, and k̃?(Ω̃H) ≤ k̃ ≤ k̃(0)(Ω̃H). The critical curve k̃(0)(Ω̃H) (and Im ω̃ = 0) was also
computed independently in figure 3 and we show it as a continuous blue line in the Im ω̃ = 0 plane.
On the other hand, the green curve represents the line k̃?(Ω̃H) as defined parametrically in (4.12). It
meets the merger blue curve at Ω̃H |c = 3/5. The Im ω̃ = 0 plane matches the left panel of figure 3.

Let us now explain the physical origin of this new green curve k̃?(Ω̃H). As we have
mentioned earlier, superradiant instabilities require two ingredients: amplification from
an ergoregion, and a confining mechanism. The blue onset curve k̃(0)(Ω̃H) we have found
satisfies the superradiant condition ω̃ = 2mΩ̃H , which corresponds to the place where the
amplification mechanism shuts off. It is natural, then, to suggest that the green curve
k̃?(Ω̃H) corresponds to where the confining mechanism shuts off. This occurs when the
exponential fall-off of e−

√
k2−ω2 r becomes marginal with k̃ = ω̃ (recall that the curve k̃?(Ω̃H)

already has Im ω̃ = 0).
We have already seen evidence for this idea from the right panel of figure 3 and the

discussion a few paragraphs ago, where we show that the modes on the onset Ac curve
k̃(0)(Ω̃H) have this exponential fall-off and that this fall-off becomes marginal at Ω̃H = Ω̃H |c,
which is precisely the location where the onset curve k̃(0)(Ω̃H) intersects this new green cB
curve k̃?(Ω̃H).

To gather more evidence, we focus our attention on Myers-Perry black strings with a
fixed Ω̃H and compute the frequency ω̃ while scanning over k̃. The results for Ω̃H = 0.66
are shown in figure 5. The left panel demonstrates that the instability is shutting off as k̃
approaches k̃?(0.66) = 3

√
1411
50 ' 2.253797 from above (which is the point in the curve cB of

figure 3 with Ω̃H = 0.66). The right panel demonstrates that as this occurs, the exponential
falloff e−

√
k2−ω2 r is becoming marginal.

With this evidence at hand, we can now attempt to find the green curve (hereafter
referred to as the confining cutoff curve) k̃?(Ω̃H) directly by enforcing ω̃ = k̃ in our ODE.
This requires that we revisit the asymptotic Frobenius analysis of (4.6). Indeed, from (4.10),
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Figure 5. Frequency for the unstable superradiant mode of Myers-Perry black strings with fixed
Ω̃H = 0.66, as a function of wavenumber kr+. Left: the imaginary part of the frequency Im(ωr+)
is positive for kr+ ∈ (k̃?, k̃(0)) where the system is unstable to superradiance. The blue diamond
on the right with kr+ = k̃(0) ' 2.673761 corresponds to the superradiance onset found in figure 3.
One has Im(ωr+)→ 0 as kr+ → k̃? = 3

√
1411
50 (green diamond on the left side of the plot). Right:

the magenta dashed line describes the curve Re(ωr+) = kr+. We see that Re(ωr+) < kr+, and
that Re(ωr+) → kr+ as kr+ → k̃? from above (this is best seen in the inset plot which displays
k̃2−(Re ω̃)2 as a function of k̃). This demonstrates that when the instability shuts down at kr+ = k̃?,
the fall-off e−

√
k2−ω2 r ceases to be exponential.

we know that generic superradiant modes decay as e−
√
k̃2−ω̃2
1−y2 . However, when Re ω̃ = k̃ and

Im ω̃ = 0, the argument of this exponential vanishes. For generic m, a Frobenius analysis
now gives the asymptotic decays Q ∼ (1− y)1±γ with

γ =

√√√√(2m− 1)2 − k̃2

1− Ω̃2
H

. (4.11)

It is not clear which combination of these modes we should take as a boundary condition.
However, note that there is a further special case: if γ = 0, then the two decays above
degenerate to Q ∼ (1− y) and the second independent solution now decays logarithmically.
For reasons that are not completely understood, the curve k̃(m)

? (Ω̃H) satisfies this degenerate
case.That is to say, apparently, γ = 0 is the borderline behaviour for whether the asymptotic
behaviour is oscillatory or not and turns out to be the condition for k̃(m)

? (Ω̃H). We have
verified this empirically by directly solving for such modes, and by verifying that such
modes are approached as k̃ → k̃

(m)
? (see again figure 5). From this evidence, and solving for

k̃ from the condition γ = 0, we conclude that

k̃
(m)
? = (2m− 1)

√
1− Ω̃2

H , (4.12)

which is an explicit analytic expression for k̃(m)
? (Ω̃H) that is fully consistent with our

numerical results. For m = 2 this gives the cutoff curve cB of figure 3 (and for m = 2, 3, 4
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this gives the curves cB, c′B′ and c′′B′′, respectively, of later figure 6). Note, though that
the analytic expression (4.12) is based on an assumption on the asymptotic behaviour of
the linear solution for which we can only justify empirically. Furthermore, obtaining this
result does not actually require us to solve a full boundary value problem, for which the
boundary conditions remain unclear. It remains a possibility that the actual linear solution
in the limit of the cutoff curve might not be regular. Indeed, to obtain (4.12) we did not
have to require, as a boundary condition, that the logarithmic solution must vanish.

Now we can also determine the frequency Ω̃(m)
H where k̃(m)

(0) and k̃(m)
? intersect; for m = 2

this is point c in figure 3 where the zero mode cA and cutoff cB curves meet. Recall that
k̃

(m)
(0) satisfies ω̃ = 2mΩ̃H and k̃(m)

? satisfies ω̃ = k̃. Combining these with (4.12), we find
that these curves meet at

Ω̃(m)
H = (2m− 1)√

8m2 − 4m+ 1
⇔ Ω(m)

H

Ωext
H

=
√

2(2m− 1)√
8m2 − 4m+ 1

. (4.13)

The superradiant onset in the extremal Myers-Perry limit can be also obtained an-
alytically (for m = 2, this is point A in figure 3). In the extremal Myers-Perry limit
Ω̃H = Ω̃ext

H = 1/
√

2 and at the onset of the superradiant instability ω̃ = 2mΩ̃H , the
perturbation equation (4.6) becomes

Q′′ +
3r2 + r2

+
r
(
r2 − r2

+
)Q′ − r2 {(k2r2

+ − 2m2) r2 − 4mr2
+
}

r2
+(r2 − r2

+)2 Q = 0 . (4.14)

At the horizon, Q behaves as Q = (r − r+)η with η =
(
−1±

√
k̃2 − (2m2 + 4m− 1)

)
/2.

For reasons that are again not completely understood, the onset of instability at extremality
seems empirically to be located at the boundary of the oscillating and non-oscillating
behaviors, when we have the degenerate case η = −1We therefore have

k̃
(m)
(0) |ext =

√
2m2 + 4m− 1 , (4.15)

which gives an analytic expression for the onset mode wavenumber at extremality. For
m = 2, we have k̃ =

√
15 ' 3.873 which is point A in figure 3 where we also see that

our numerical results for the onset curve k̃(m)
(0) (Ω̃H) approach A as given by (4.15) in the

extremal limit. Moreover, for m = 3 and m = 4 equation (4.15) also gives the points A′

and A′′ in later figure 6.
We can now show the superradiant onset curve and confining cutoff curves k̃(m)

(0) and
k̃

(m)
? also for other values of m. The left panel of figure 6 show the results for m = 2, 3, 4.

(We also obtained qualitatively similar curves for half-integer modes m = 5/2, 7/2, but
do not show them to avoid clutter.) The unstable regions A′B′c′ and A′′B′′c′′ for m = 3
and m = 4, respectively are qualitatively similar to the unstable region ABc for m = 2
but transported to higher values of k̃ as m grows. The cutoff curves cB, c′B′ and c′′B′′

are described by (4.12) with m = 2, 3, 4, respectively, and points c, c′ and c′′ are described
by (4.13) with m = 2, 3, 4, respectively. The zero mode curves cA, c′A′ and c′′A′ for
m = 2, 3, 4 were obtained numerically solving the eigenvalue problem for k̃(m)

(0 (Ω̃H), which
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Figure 6. Left panel: regions ABc, A′B′c′, and A′′B′′c′′ where Myers-Perry black strings are
unstable to m = 2, 3, 4 superradiant modes, respectively. The orange squares correspond to the
onset of the Gregory-Laflamme instability already shown in figures 1 and 3 (the region below
this curve is unstable). Right panel: zoom-in of region unstable to both Gregory-Laflamme and
superradiance. α and β mark where the Gregory-Laflamme onset curve intersects with the m = 2
unstable superradiant region. α lies at (Ω̃H , k̃(0), L̃(0))α ' (0.69054, 2.95350, 2.12737), where to
the left of α one has k̃(0)

∣∣
SR > k̃(0)

∣∣
GL, while to the right of α one has k̃(0)

∣∣
SR < k̃(0)

∣∣
GL. β lies at

(Ω̃H , k̃(0), L̃(0))β ' (0.63478, 2.31810, 2.71049).

approach the points A, A′ and A′′ at extremality as given by (4.15). Perturbations with
adjacent m’s also overlap in some small regions of parameter space close to extremality.
So there are Myers-Perry strings that are superradiant unstable to a few m’s (but not an
infinite number of them like in other superradiant black hole systems).

We also see that the unstable regions (ABc, A′B′c′, A′′B′′c′′, . . . ) decrease as m
increases. Essentially, this occurs because the intersection points c, c′, c′′, . . . described
by (4.13) have an angular velocity that is increasingly close to Ω̃ext

H as m increases, being
exactly Ω̃ext

H in the limit m → ∞. So in the eikonal limit (m → ∞), the unstable region
becomes a measure zero region in parameter space and the eikonal limit of points A,B and
c all collapse to a common single point at Ω̃H = Ω̃ext

H and k̃ → ∞, as follows from (4.13)
and (4.15) in the limit m→∞. That is to say, the superradiant instability for Myers-Perry
black strings shuts down as m→∞, which is in agreement with the fact that the Myers-
Perry black string has no stable circular geodesics [31, 32]. In this precise sense, this is
a ‘finite-m’ superradiant instability that occurs in black strings, but is not observed in
(known) superradiant black holes (see also the discussion in footnote 3).

In figure 6, we also include the onset curve (orange squares) for the Gregory-Laflamme
instability that we have already computed in section 3. We see that there are regions of
parameter space where either, none, or both types of instabilities are present.

For completeness, in figures 7 and 8, we show the real and imaginary parts of the
frequency for m = 3 and m = 4 superradiant instabilities (in the same manner as the m = 2
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Figure 7. Frequency for m = 3 unstable superradiant modes, as a function of parameters of
Myers-Perry black strings. The instability is present (i.e. Im ω̃ > 0) for Ω̃H |c′ ≤ Ω̃H ≤ 1/

√
2, with

Ω̃H |c′ = 5√
61 , and k̃?(Ω̃H) ≤ k̃ ≤ k̃(0)(Ω̃H). The zero mode curve k̃(0)(Ω̃H) (and Im ω̃ = 0) was

computed independently (see c′A′) in figure 6 and we show it as a continuous brown line in the
Im ω̃ = 0 plane. On the other hand, the light-brown curve represents the confining cutoff line k̃?(Ω̃H)
as defined parametrically in (4.12) for m = 3 (i.e. the cutoff curve c′B′ in figure 6). It meets the
zero mode curve at Ω̃H |c′ .

Figure 8. Frequency for m = 4 unstable superradiant modes, as a function of parameters of
Myers-Perry black strings. The instability is present (i.e. Im ω̃ > 0) for Ω̃H |c′′ ≤ Ω̃H ≤ 1/

√
2, with

Ω̃H |c′′ = 7√
113 , and k̃?(Ω̃H) ≤ k̃ ≤ k̃(0)(Ω̃H). The zero mode curve k̃(0)(Ω̃H) (and Im ω̃ = 0) was

computed independently (see c′′A′′) in figure 6 and we show it here as a continuous black line
in the Im ω̃ = 0 plane. On the other hand, the gray curve represents the line k̃?(Ω̃H) as defined
parametrically in (4.12) for m = 4 (i.e. the cutoff curve c′′B′′ in figure 6). It meets the zero mode
black curve at Ω̃H |c′′ . It is very difficult to obtain solutions in the neighborhood of the cutoff gray
line k̃?(Ω̃H) so we do not attempt to find them in the present m = 4 case; hence we find a gap
between when the surface approaches this gray borderline.
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case in figure 4). We find that for each m, increasing the rotation also (typically) increases
the growth rate. We also see that increasing m by one roughly reduces the growth rate by
two orders of magnitude.

Until now, we have parametrised the Myers-Perry black strings using Ω̃H and k̃. This
was for the convenience of computation and presentation. However, for the purposes of
discussing the time evolution of the instabilities, as well as the associated novel black string
solutions that branch from the onset of these instabilities, it is more convenient to use the
conserved quantities of energy and angular momenta as parameters. In time evolution, it is
natural to keep the Kaluza-Klein circle fixed (i.e. we fix its length L = L̃r+), so it is natural
to express quantities in units of L.

From (2.5), the dimensionless energy, E ≡ E/L3, and dimensionless angular momenta,
J ≡ J/L4, are given by

E = 1
G6

3π
8L̃2

1
1− ã2 = 1

G6

3k̃2

32π
(
1− Ω̃2

H

) , J = 1
G6

π

4L̃3
ã

1− ã2 = 1
G6

k̃3Ω̃H

32π2
(
1− Ω̃2

H

) .
(4.16)

At extremality, we have

J ext(E) = 23/2

33/2π1/2G
1/2
6 E

3/2 . (4.17)

We can now use (4.16) to translate the onset and cutoff curves of figures 3 and 6 into
the E-J phase diagram. For example, the m = 2 superradiant onset cA curve k̃(0)(Ω̃H)
of figure 3, for Ω̃H |c ≤ Ω̃H ≤ 1/

√
2, defines via (4.16) the onset curve for the m = 2

superradiant instability of Myers-Perry strings in the E-J phase diagram. This curve turns
out to be very close to the curve that describes extremal Myers-Perry strings described
by (4.17). Therefore, to have a plot where the various unstable regions can be presented
clearly, it is convenient to plot instead E vs ∆J ≡ (J −J ext)|same E where the latter describes
the angular momentum difference between a given solution − e.g. the superradiant onset
or cutoff Myers-Perry family − and the extremal Myers-Perry string at the same E . This
phase diagram E-∆J is displayed in figure 9.

In figure 9, Myers-Perry black strings exist with E > 0 for arbitrarily large E , and
for any angular momenta at or below extremality ∆J ≤ 0. The triangular region ABc

(respectively, A′B′c′ and A′′B′′c′′) is unstable to m = 2 (m = 3 and m = 4) superradiant
modes.13 The region above the orange squares line Aαβ . . . (and below the red horizontal
extremal line) in the right panel of figure 9 are Gregory-Laflamme unstable.

13The horizontal red line with ∆J = 0 represents the 1-parameter family of extremal Myers-Perry
strings with Ω̃H = 1/

√
2. It extends to arbitrarily large E . Non-extremal Myers-Perry strings exist below

this line. On the other hand, the blue disk curve Ac represents Myers-Perry strings at the onset of the
m = 2 superradiant instability, as described by (4.16) with k̃ ≡ k̃(0)(Ω̃H), for Ω̃H |c ≤ Ω̃H ≤ 1/

√
2. The

endpoints of this zero mode cA curve are determined by the solutions (4.16) with (Ω̃H , k̃(0))|c = (3/5, 12/5)
and (Ω̃H , k̃(0))|A = (1/

√
2,
√

15), as follows from (4.13) and (4.15). The confining cutoff curve for m = 2
superradiant family, namely the curve cB in figure 3 or 6 is described by k̃(m)

? (Ω̃H) in (4.12). This translates,

after using (4.16), into a curve with constant G6E = 27/(32π) and G6J = 27Ω̃H
√

1− Ω̃2
H/(32π2) with

3/5 ≤ Ω̃H ≤ 1/
√

2 in the E-J phase diagram. This gives the vertical line Bc in the phase diagram E vs ∆J
of figure 9. We can now repeat this exercise for the Gregory-Laflamme and m = 3, 4 superradiant curves of
figure 6 to find the associated onset/cutoff curves for these modes in the E vs ∆J phase diagram of figure 9.
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Figure 9. Onset/cutoff curves for the m = 2, 3, 4 superradiant instability and the zero mode curve
of Gregory-Laflamme instability (orange squares on right panel). The vertical axis describes the
difference between a given solution and the extremal Myers-Perry solution that has the same energy,
∆J ≡ (J − J ext) |same E . Equally-spinning Myers-Perry black strings are unstable to m = 2, m = 3
and m = 4 superradiant perturbations if they lie inside the regions ABc, A′B′c′ and A′′B′′c′′,
respectively. They are unstable to the m = 0 Gregory-Laflamme instability if they are contained
above the orange square curve (and below the horizontal extremal curve with ∆J = 0) in the right
panel. All the points in this figure are in a 1-to-1 correspondence to the same points in figure 6.

Finally, recall that although we have obtained qualitatively similar curves for m =
5/2, 7/2 but do not show them to avoid clutter. Also, recall from the discussions of section 3.1
that while there are Gregory-Laflamme type instabilities with angular dependence [50],
they only exist above a critical rotation parameter and typically have lower growth rate.
Additionally, Myers-Perry black strings that are unstable to these other Gregory-Laflamme
modes, are also unstable to the one we consider in figure 9).

4.4 The many faces of the superradiant onset

The superradiant perturbation δds2
SR in (4.5) breaks some of the isometries of the Myers-

Perry black string, which recall from (2.4) is Rt×U(1)z×U(1)ψ×SU(2), where the direction
z along the string is assumed to be Kaluza-Klein compactified. In (4.5) one can see that
SU(2) is manifestly broken if we consider a perturbation with m > 2. However, for m = 2,
we have ω = 2mΩH = 4ΩH at the onset of the superradiant instability and, in these
conditions, the gravitational perturbation (4.5) can be written as

hMNdxMdxN = r2e−4 i ΩH t+i k z Q(r)σ2
− . (4.18)

This is clearly invariant under SU(2) and hence, when we extend the analysis nonlinearly,
one expects that the m = 2 superradiant onset may be a bifurcation line for a new family of
black string solutions that preserve SU(2). However, it is less obvious what other isometries
are preserved or broken by the perturbation (4.18) and this deserves further discussion. In
fact, some linear combinations of the isometries of the original background can be preserved,
as we discuss next.
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To find which isometries are broken by the perturbation (4.18), it is convenient to
change to a coordinate frame {T, Z,Ψ} such that14

T = t , Z = z , Ψ = ψ − ΩHt+ k

4z . (4.19)

Their dual vectors are

∂T = ∂t + ΩH∂ψ , ∂Z = ∂z −
k

4∂ψ , ∂Ψ = ∂ψ . (4.20)

In these coordinates, the isometry group of the background Myers-Perry black string is
RT × U(1)Z × U(1)Ψ × SU(2). But now we explicitly see that, using also the r.h.s. of (4.4),
the t- and z- dependence in (4.18) is totally absorbed in Ψ by the coordinate transformation.
That is to say, let Σi denote the invariant 1-forms for (θ, φ,Ψ), i.e. with ψ in σi of (2.3)
replaced by Ψ. Then, after the coordinate transformation (4.19), one finds that the m = 2
onset superradiant perturbation (4.18) simply reads

hMNdxMdxN = r2Q(r)Σ2
− , (4.21)

where Σ± ≡ (Σ1 ∓ i Σ2)/2. This breaks U(1)Ψ because Σ2
− depends explicitly on Ψ.

Including also the complex conjugate contribution to make the perturbation real, the m = 2
perturbation (4.21) at the onset of instability finally reads

hMNdxMdxN = r2

2 Q(r)Σ2
− + c.c. = r2

4 Q(r)
(
Σ2

1 − Σ2
2

)
, (4.22)

which preserves all the original Myers-Perry symmetries except axisymmetry. This suggests
that the onset of the m = 2 instability might be a branching line to a new family of nonlinear
solutions with RT × SU(2)×U(1)Z symmetry. The null generator of the horizon of such
solution would be given by K = ∂T = ∂t + ΩH∂ψ, which corresponds to the “helical” Killing
vector generating U(1)T .

There is however another important observation. Indeed, note that the perturbation
equation (4.6) is invariant under k → −k. Thus, left and right mover modes along the string
are absolutely equivalent and thus the onset (4.18) of the m = 2 superradiant instability
can be equivalently written as

hMNdxMdxN = r2e−4 i ΩH t
(
c1 e

i k z + c2 e
−i k z

)
Q(r)σ2

− , (4.23)

where c1 and c2 are arbitrary constants. We can assume c1, c2 ∈ R without loss of generality
by using a symmetry that allows for constant shifts of t and z.

The interesting observation is that by applying the coordinate transformation (4.19),
one concludes that (4.23) breaks U(1)Z unless c1 = 0 or c2 = 0. This means that the m = 2
superradiant onset Ac, that we identify in figures 3 and 9, describes the onset of two distinct
sectors of perturbations: one preserves U(1)Z while the other breaks U(1)Z .

14In this frame {T,Z,Ψ}, the background Myers-Perry string is rotating at infinity, and the angular
velocity at the horizon vanishes.
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It follows that each point of the onset line Ac that we found in figures 3 and 9 should
be, when we extend the analysis beyond linear order, a degenerate bifurcation line to a
two-parameter family of new black string solutions. The two parameters correspond to c1
and c2 in (4.23) at linear order. One special case of this family is when c1 = 0 or c2 = 0.
The resulting one-parameter family preserves U(1)Z . As this U(1)Z describes a spatially
helical symmetry that mixes ∂z and ∂ψ, we call the U(1)Z-preserving solutions helical black
strings.15 All other cases break the U(1)Z , while still preserving the RT × SU(2) isometry
group. As it preserves a U(1)T temporal helical symmetry that mixes ∂t and ∂ψ, but breaks
other spatial symmetries, we call these black resonator string family by analogy to similar
black hole solutions (without extended directions) [16–18, 20, 41, 45].

Of course these novel nonlinear solutions can exist because at the onset of the instability,
and only here, the mode perturbation is regular not only on the future horizon but also on
the past horizon; hence there is room for the existence of a novel family of rotating black
strings that are regular simultaneously at the future and past horizons, and that bifurcate
from the Myers-Perry black string at the onset of the m = 2 superradiant instability. To
confirm the existence of these two new families of black strings, we must solve the Einstein
equations nonlinearly, i.e. beyond the linear analysis done in the present paper. We will do
so and find the black resonator strings and the helical black strings in the future companion
papers [46, 47], respectively.

Finally, let us comment on the prospect of additional solutions that branch from the
confining cutoff curve k̃(m)

? . Here, we indeed have an onset in the sense that Imω = 0,
but the boundary conditions for the linear problem on this curve remain unclear, and it is
possible that they are not regular (recall the discussion about the logarithmic behaviour
below (4.12)). We therefore do not seek solutions that branch from this curve.

5 Discussion

We have analysed gravitational instabilities on the six-dimensional equal-spinning Myers-
Perry black string, i.e. the cohomogeneity-1 black strings with equal angular momenta
along the two rotation planes of asymptotically Kaluza-Klein spacetimes (M1,4 × S1). We
find instances of both the Gregory-Laflamme instability and the superradiant instability,
determined their unstable regions in the 2-dimensional Myers-Perry string parameter space,
and computed their growth rates.

Our results on the Gregory-Laflamme instability complement the previous results
in [48, 50] (see also [49, 51] and [52]) and supports the broad idea that rotation typically
enhances the Gregory-Laflamme instability.

Our results on the superradiant instability are new. As we have argued, it would be
difficult to anticipate the existence of this instability within this system without doing the
actual computation. On one hand, Myers-Perry black strings certainly have an ergoregion
where superradiant amplification can occur, and nontrivial superradiant Kaluza-Klein
modes are effectively massive and, in some cases, can be confined as first proposed in [25]

15Existence of black strings with helical symmetry has been first found in [58] using the blackfold effective
worldvolume theory.
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(see also [26–28]). On the other hand, we were unable to find scalar field and Maxwell
perturbations that are superradiant unstable (see appendix A), and the scalar field instability
is similarly absent in the single spinning Myers-Perry black string [27]. Furthermore, the
lack of stable particle orbits about five dimensional equal-spinning Myers-Perry black holes
suggests that the instability in the associated black string cannot exist in the eikonal
(m → ∞) limit. In spite of these less optimistic hints, we did find what we call ‘finite-
m’ superradiant instabilities in the tensor harmonic sector of gravitational perturbations.
Consistent with the lack of particle orbits, this instability shuts-down in the eikonal limit,
unlike known (uncharged) superradiant instabilities in black holes (see also discussion in
footnote 3). Here, the scalar field system is thus not a good toy model for the gravitational
system (unlike in previously studied superradiant systems for black holes).

Let us now examine the gravitational superradiant instability in the equal-spinning
Myers-Perry black string in more detail in light of our results and the above arguments.
We have found that this instability is generally bounded by extremality and two curves
with Imω = 0. One of these curves (the superradiant onset curve) satisfies ω = 2mΩH , and
follows the standard criterion for the onset of superradiance required for the amplification of
waves (the factor of 2 reflects the fact that we have equal rotation along the two planes; see
footnote 5). However, the second curve with Imω = 0 (that we now call the confining cutoff
curve) satisfies ω = k, which suppresses the exponential falloff of fields, e±

√
k2−ω2 r, and stops

the superradiant instability due to a lack of confinement. That is, at this cutoff curve, the
Schrödinger potential barrier that confines bound states ceases to exist. Ultimately, in the
eikonal limit, both of these mechanisms conspire to eliminate the superradiant instability.

As far as we are aware, this mechanism of cutting off confinement is absent in other
gravitational superradiant instabilities in black hole systems, such as in those with a
potential barrier sourced by a massive field. The prototypical example is a massive scalar
field in a Kerr black hole [59–61]. In this case, superradiant instabilities exist as long as the
mass of the scalar field perturbation is below an upper bound. But there is no (non-zero)
lower bound for the mass of the scalar field for existence of superradiant bound states. In
our case, the momentum of the perturbation along the extended black string direction
provides an effective mass term to the system. Like the massive scalar on Kerr, we still
find a maximum effective mass (i.e. momentum k

(m)
(0) r+) for the existence of an unstable

superradiant bound states. But, surprisingly, we also find a non-zero lower bound for this
effective mass (i.e. the momentum k

(m)
? r+) below which we no longer have bound states

and thus the system becomes stable to superradiance.
How general is the finite-m superradiant instability that we found? What circumstances

allow this phenomenon to occur? Our superradiant gravitational instability of the equal-
spinning Myers-Perry black string should also be present in the Kerr black string, though
the Kerr case should instead be a more typical ‘infinite-m’ superradiant instability as it
contains bound particle orbits. Although a detailed study of perturbations in the Kerr
black string requires solving PDEs, not ODEs. However, we argue around (4.9) and in
appendix B that it should not be present in D > 6 equal-spinning Myers-Perry strings,
so D = 5 and D = 6 strings seem to be very special cases. What is also clear is that the
gravitational superradiant instability of the six-dimensional equal-spinning Myers-Perry
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black string does not extend to scalar field nor Maxwell perturbations, even in D = 6 (see
appendix A). Moreover, in the single-spinning case, [27] argues that the effective potential
of the scalar field also fails to allow for bound states. Away from the eikonal limit, the
status of superradiant instabilities in the single-spinning or more generally-spinning case
remains unclear, and will again require PDEs to study in detail.

Our linear instability should have important consequences for the phase diagram of
rotating black strings. Indeed, our linear results suggest that novel rotating black string
solutions, that break the same rotational U(1)ψ isometry as our linear perturbation, should
bifurcate from the onset of our superradiant instability. That is, new solutions with fewer
isometries (those of our linear perturbation) than the Myers-Perry black string should
exist. Fortunately, for m = 2, our perturbations still preserve the SU(2) isometry of the
equal-spinning Myers-Perry solution, which indicates that these new solutions should be
feasible to construct at the full nonlinear level. Actually, in section 4.4, we argued that the
onset of our m = 2 superradiant instability should be a degenerate bifurcation line to a
new two-parameter family of black string solutions. In general, the U(1)Z isometry of the
system is broken, while this isometry is preserved for a special family. In two companion
manuscripts, we will confirm this is the case. We will solve the full nonlinear problem
(perturbatively to higher order and numerically) and find cohomogeneity-2 black resonator
strings with isometry group RT ×SU(2) [46], and cohomogeneity-1 helical black strings with
isometry group RT × SU(2)×U(1)Z [47], where the coordinates T, Z are defined in (4.19).

Finally, let us comment on the endpoint of equal-spinning Myers-Perry black strings
that are afflicted by one or both (Gregory-Laflamme and superradiant) instabilities. There
have only been a limited number of studies of the evolution of the Gregory-Laflamme
instability in black strings, and all for the non-rotating case [4–6, 62] (see also [63] for
the evolution of the Gregory-Laflamme instability of black rings). Thus far, these results
are consistent with entropic expectations. If non-uniform string solutions are entropically
preferred, which is the case for high spacetime dimensions [7–13], then they provide a natural
endpoint [62]. Otherwise, evolution proceeds to a “localised” black hole configuration with
spherical horizon topology, and the evolution process goes through a horizon pinch-off
phase that necessarily violates the weak cosmic censorship conjecture [5, 6]. Of course,
classical evolution stops to be valid before reaching the naked singularity, so the ultimate
classical endpoint as predicted by entropy arguments requires that the naked singularity be
resolved in a sufficiently mild way. The evolution of the Gregory-Laflamme instability for
the rotating black string should proceed in a similar way. That is, that the most entropic
solution is the preferred endpoint, whether this may be some non-uniform string or localized
black hole.16

What about the endpoint of equal-spinning Myers-Perry black strings that are only
unstable to superradiance? The time evolution of the gravitational superradiant instability
is best understood for small rotating black holes in global anti de-Sitter (AdS) space.
In this context, it was argued that the unstable Kerr-AdS black holes develop towards

16Note that it is not yet known whether the D = 6 non-uniform equal-spinning black strings of [48] are
entropically favored over the uniform strings.
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‘black resonators’, which are black holes (of pure Einstein-AdS gravity) with gravitational
hair that have a single Killing vector field (the horizon generator). That is, they are not
time independent nor axisymmetric, but are time-periodic [17] (see [16–18, 20, 41, 45]
for more details). However, black resonators are themselves unstable to superradiant
instabilities with arbitrarily higher azimuthal numbers m (unlike the case for Myers-Perry
black strings). The ultimate endpoint remains an open problem but if, as conjectured
in [16, 17, 21, 43], the cascade continues to ever increasing m’s, then a significant amount
of energy will be pushed towards microscopic length scales, violating the weak cosmic
censorship conjecture [17, 21]. The numerical time evolution of this instability is currently
consistent with this picture [22, 23].

Note that arguments for the existence of this cascade largely comes from the fact that
there are an infinite number of unstable modes with arbitrarily high azimuthal numbers
m affecting the original black hole superradiant system. The superradiant instability for
the equal-spinning Myers-Perry black string does not have this property. Indeed, a given
Myers-Perry black string can be unstable to only a few modes with different m’s (not an
infinite tower of them, unlike Kerr-AdS). This is ultimately related to the fact that the
finite-m superradiant instability shuts down in the eikonal limit. For this reason, it is
expected that no continuous cascade to higher m’s should be present in the time evolution
of the superradiant instability of the Myers-Perry black string. Rather, it seems more
plausible that the superradiant instability will just drive the solution to a particular black
resonator string or helical string with a given m, whichever has the most entropy at the
same energy E and angular momenta J .

Thus far, we have discussed the Gregory-Laflamme and superradiant instabilities in
isolation, but as we have shown, both instabilities can be present and thus compete for
certain parameters of the Myers-Perry black string. The typical growth rate for the Gregory-
Laflamme instability (in units of the horizon radius) is 10−1 while that of the superrradiant
instability is 10−5. This large separation is not surprising, given the vastly different origins
of the instabilities. One is governed primarily by horizon dynamics while the other is
driven by the amplification and confinement of gravitons, and these typically have very
different timescales. Given the disparity of growth rates, it should be the case that the
Gregory-Laflamme instability will likely dominate the early dynamics in cases where both
instabilities are present. We stress, though, that our linear analysis will quickly cease to
be valid in mid to late times in the evolution. It is also unclear if one instability remains
present even when the other has settled down. We do not know, for instance, if rotating
localised Kaluza-Klein black holes have a superradiant instability (although the typical
arguments for superradiance suggest that they should). There will be various interplay of
the Gregory-Laflamme and superradiant instabilities, which would be interesting to address
in future work.
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A Scalar field and Maxwell perturbations

As described in the main text, we also attempted to find, numerically, superradiant insta-
bilities in the sector of scalar field and Maxwell perturbations about the equal-spinning
Myers-Perry black string. But, unlike for the gravitational sector, we have found no super-
radiant instability in these sectors of perturbations. To complement this negative search,
in this appendix, we give analytical arguments in favour of the absence of superradiant
instability for scalar field and Maxwell perturbations. These arguments are similar to those
employed in section 4.3 − in the discussion between (4.11)–(4.13) − to argue in favour of
the gravitational instability. Here we show only the calculations for massless fields; for
massive fields the analysis and conclusion are similar.17

A.1 Scalar field

Consider the Klein-Gordon equation, �Π = 0, for a massless scalar field Π on the equal-
spinning Myers-Perry black string background. Introducing the separation ansatz

Π(t, r, θ, φ, ψ, z) = eikze−iωtΠ(r)Dj
`′`=−m(θ, φ, ψ) , (A.1)

where Dj
`′`=−m are the Wigner D-matrices introduced in section 4.1, the Klein-Gordon

equation decouples for each m and the radial equation one needs to solve reads(
r3FΠ′

)′
+ r

[
Hr2

F

(
ω − 2mΩ

H

)2
− 4m2

H
− 4

(
j2 + j −m2

)
− k2r2

]
Π = 0 . (A.2)

Defining Φ = (rH)1/4Π, we can rewrite this equation in the Schrödinger form (4.7) where
in the present case the effective potential is

V = F

H
k2 −

(
ω − 2mΩ

H

)2
+ 4F
r2H

[
j(j + 1)−m2

(
1− 1

H

)]
+ 1
r3/2H1/4

d2

dr2
∗

(
r3/2H1/4

)
.

(A.3)
Near infinity, this Schrödinger potential reads

V |r→∞ ∼ k2 − ω2 +
[
4j(j + 1) + 3

4 −
4k2r2

+
4− Ω2

Hr
2
+

]
1
r2 +O(r−4) . (A.4)

17The mass µ can be introduced simply by replacing k2 → k2 + µ2 in our analysis, while the final results
for the condition of Ω(m)

H /Ωext
H are not altered. For gravitational perturbations in the main text, a graviton

mass would affect the value of k for the instability, but we are interested only in Einstein gravity.
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Alike for the gravitational perturbation (4.9), the scalar field perturbation can be confined
near the horizon for a sufficiently large k. Yet, unlike the gravitational case, a simple
analytical analysis of our radial equation suggests absence of scalar field superradiant
instabilities as described next.

At infinity, the asymptotic behaviour of the field is given in general by Π|r→∞ ∼
r−3/2e±

√
k2−ω2 r. But for ω = k, the exponential decay is absent and we have to follow an

analysis similar to the one described in (4.11)–(4.13) for the gravitational sector. Namely,
for ω = k, the asymptotic behaviour of the scalar field is instead Π|r→∞ ∼ r−1±γ with
γ =

√
(2j + 1)2 − 4k̃2/(4− Ω̃2

H). As for the gravitational case, the special γ = 0 degenerate
case should select the confining cutoff condition k̃

(m)
? (Ω̃H) for the scalar superradiant

instability. So setting γ = 0, we obtain

k̃
(m)
? = 1

2(2j + 1)
√

4− Ω̃2
H . (A.5)

So this should define the scalar field counterpart of the superradiant cutoff line cB of the
gravitational case observed in figure 3. Actually, we can also proceed and apply the same
argument leading to (4.13) to get the scalar field counterpart of the critical point c where the
onset curve for k̃(m)

(0) (Ω̃H) and cutoff curve k̃(m)
? (Ω̃H) should intersect. Recall from figure 3,

that c is a vertex point for the superradiant unstable region, i.e. instability is present only
for rotation above the one of this point. In this context, the onset of the scalar superradiant
instability must certainly satisfy the condition ω = 2mΩH (this follows from the equation
of motion at the horizon). Combining this with ω = k

(m)
? given in (A.5), we find that the

scalar field superradiant instability should only exist for horizon angular velocities higher
than the critical value

Ω(m)
H

Ωext
H

=
√

2(2j + 1)√
(2j + 1)2 + 4m2 > 1 , (A.6)

where the last inequality follows from |m| ≤ j, and the ratio approaches 1 from above
as m → ∞. So the minimum angular velocity required for the scalar field instability is
larger than the velocity at extremality. Effectively, this argument rules out the existence
of a superradiant instability in the scalar field sector. Our arguments did rely on some
assumptions that are only known to be valid empirically for the gravitational sector. But,
as stated above, we have also searched directly for instabilities of the scalar field by solving
the scalar field eigenvalue problem numerically but found no instability.

A.2 Maxwell field

For the Maxwell field, we focus on the perturbation given by

aMdxM = eikze−iωtA(r)Dj
`′`=−j(θ, φ, ψ)σ− , (A.7)

where Dj
`′`=−m are again the Wigner D-matrices introduced in section 4.1. The azimuthal

mode number for this perturbation is m = j + 1 and it is a half-integer multiple satisfying
m ≥ 1. This mode decouples from other Maxwell perturbations and it is expected to
be the most superradiant unstable mode for a given j. The gauge transformation of the

– 28 –



J
H
E
P
0
1
(
2
0
2
3
)
1
4
7

Maxwell field is aM → aM + ∂Mλ. The gauge parameter λ is also expanded by the Wigner
D-matrices as λ = eikze−iωtΛ(r)Dj

`′`. The maximal azimuthal mode number of the gauge
parameter λ is m = j for a given j. It follows that the Maxwell perturbation (A.7) which
has m = j + 1 is invariant under the gauge transformation.

The Maxwell equation �aM = 0 takes the form

(
rFA′

)′ + 1
r

[
Hr2

F

(
ω − 2mΩ

H

)2
− 4m2

H
− k2r2

]
A = 0 . (A.8)

Defining Φ = r1/2H1/4A, we recast this as a Schrödinger equation (4.7) with the effective
potential

V = F

H
k2 −

(
ω − 2mΩ

H

)2
+ F

r2H

[
4m2

H
− (rF )′

]
+ 1
r3/2H1/4

d2

dr2
∗

(
r3/2H1/4

)
. (A.9)

Its asymptotic behaviour is

V |r=∞ ∼ k2 − ω2 +
(

4m2 − 1
4 −

4k2r2
+

4− Ω2
Hr

2
+

)
1
r2 +O(r−4) , (A.10)

which indicates that Maxwell perturbations can be confined for a sufficiently large k.
However, there is no room for the existence of a superradiant instability as argued next
(following again a line of reasoning similar to the one employed in the gravitational discussion
of (4.11)–(4.13)).

Typically, Maxwell perturbations decay exponentially as A|r=∞ ∼ r−1/2e±
√
k2−ω2 r.

But for ω = k, the exponential decay is absent and the asymptotic behaviour of the Maxwell
field is instead A|r→∞ ∼ r±γ with γ =

√
4m2 − 4k̃2/(4− Ω̃2

H). As for the gravitational
case, the special γ = 0 degenerate case should select the confining cutoff condition k̃(m)

? (Ω̃H)
for the Maxwell superradiant instability. This γ = 0 condition yields

k̃
(m)
? = m

√
4− Ω̃2

H , (A.11)

which should define the Maxwell field counterpart of the superradiant cutoff line cB of
the gravitational case observed in figure 3. Very much like for the gravitational discussion
leading into (4.13), the endpoint c of this cutoff curve can be obtained from the condition
that the cutoff curve (A.11) intersects the onset curve k̃(m)

(0) (Ω̃H) with ω = mΩ. This
condition concludes that the superradiant instability for Maxwell fields should only exist
for horizon angular velocities higher than the critical value

Ω(m)
H

Ωext
H

= 1 , (A.12)

i.e. for equal-spinning Myers-Perry strings rotating with a velocity above the extremal
value (which are not regular). Thus non-extreme Myers-Perry black strings do not develop
superradiant instabilities for the Maxwell field. This conclusion is supported by the fact
that we directly searched numerically for instabilities but found none.
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We can repeat the same analysis for massive scalar and Proca fields and obtain the
same conclusion that these fields do not induce superradiant instability. This suggests that
the mass of the fields is not essential, and spin dependence is important for the existence of
the superradiant instability for Myers-Perry black strings.

B Absence of superradiant instability in equal-spinning Myers-Perry
strings in D > 6

In the main text we found that D = 6 equal angular momenta Myers-Perry black strings
are unstable to the finite-m superradiant instability (in addition to being unstable to the
Gregory-Laflamme instability). In particular, we also found a criterion − detailed in the
discussion of (4.11)–(4.13) of section 4.3 − to find, almost only resorting to analytical
computations, the superradiant unstable region ABc in the phase diagrams of figure 3
and figure 9. We also argued that D = 5 Kerr black strings should also be superradiant
unstable since it has superradiant bound states. However, in this appendix we employ
a line of reasoning that follows the discussion of (4.11)–(4.13) of section 4.3 to argue
that superradiant instabilities should not be present for D > 6 equal angular momenta
Myers-Perry black strings. In short, although there are superradiant modes, there is no
potential that can confine them as bound states in a region of the parameter space that is
contained inside the boundary set by the extremal (zero temperature) Myers-Perry black
string configuration. So the D = 6 case studied in the main text is very special.

Consider D = 2N + 4 dimensional equal-spinning Myers-Perry black strings, i.e. the
product of an equal-spinning (2N + 3)-dimensional Myers-Perry black hole and a circle.
Unlike for the N = 1 case, we argue that the gravitational superradiant instability is absent
for N ≥ 2. The metric of the equal-spinning Myers-Perry black string in D = 2N + 4
dimensions is

ds2
MP string = −F

H
dt2 + dr2

F
+ r2

[
H

(
dψ +Aadx

a − Ω
H

dt
)2

+ ĝabdx
adxb

]
+ dz2 ,

(B.1)
where

F (r) = 1− r2N
0
r2N + a2r2N

0
r2N+2 , H(r) = 1 + a2r2N

0
r2N+2 , Ω(r) = a r2N

0
r2N+2 , (B.2)

and ĝab is the Fubini-Study metric on CPN and Aa is the Kähler potential. In [54], “doubly
transverse” gravitational perturbations of the equal-spinning Myers-Perry black hole have
been considered for D = 2N + 3 dimensions with N ≥ 2. A unified form of the perturbation
equation was given for decoupled gravitational and scalar field perturbations. While their
study was limited to N ≥ 2, the corresponding perturbation was examined in detail for
N = 1 in [64]. Below we will check that the unified form of [54] also applies to N = 1.

The scalar-gravitational unified treatment of [54] can be generalized straightforwardly
to the D = 2N + 4 dimensional Myers-Perry black string with N ≥ 1 since one just needs
to add an extra dimension to the formalism which introduces a Kaluza-Klein mass term
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to the perturbation equations. The unified perturbation equation can be written in the
Schrödinger form

− d2

dr2
∗

Φ + VΨ = 0 , (B.3)

where dr∗ =
√
H/Fdr denotes the tortoise coordinate. The unified Schrödinger potential

for scalar field and anti-hermitian gravitational perturbations is given by

V = F

H
k2 −

(
ω − 2mΩ

H

)2
+ 4F
r2H

[
l(l +N)−m2

(
1− 1

H

)]
+ 1
rN+1/2H1/4

d2

dr2
∗

(
rN+1/2H1/4

)
, (B.4)

where l = n+ |m| (n = 0, 1, 2, . . . ) for the scalar field, while l is restricted to l ≥ 1 for the
gravitational perturbation, and m takes either integer or half-integer values.18 We have
checked that (B.3) reproduces the perturbation equation we have been using for N = 1.
Indeed, setting l = j, the scalar field perturbation (A.2) is reproduced. Moreover, for
l = m− 1 one recovers (4.6).19

For N ≥ 2, the asymptotic behaviour of the potential V becomes

V |r→∞ ' k2 − ω2 + 4l(l +N) +N2 − 1/4
r2 +O(r−4) . (B.5)

Unlike for the N = 1 case of (4.9), the 1/r2 term is always positive. Moreover, because
F/H|r→∞ ' 1 − r2N

0 /r2N in (B.4), k2 does not appear in the coefficient of the 1/r2.
Altogether, this suggests that for N ≥ 2, the scalar field and gravitational perturbations
cannot be confined inside the ergoregion and thus we should not expect the existence of a
superradiant instability. We actually searched numerically for the onset of the instability for
N = 2, 3, 4, but we did not find evidence of its existence, consistent with the above analysis.

We can also repeat the same line of arguments detailed in the discussion of (4.11)–(4.13)
of section 4.3 (and further explored in appendix A) to arrive to the same conclusion. For
k 6= ω, the asymptotic solutions of (B.3) decay exponentially as Ψ|r→∞ ∼ e−

√
k2−ω2 r.

However, for k = ω, the two possible decays are instead polynomial. Concretely, for N ≥ 2,
they read

Ψ ∼ r
1
2±(l+N) . (B.6)

Unlike the N = 1 counterpart case discussed around (4.11), there is no room for the
two solutions of (B.6) to become degenerate since l +N > 0 (and more importantly the
exponents are not a function of k and ΩH). Hence, this analysis also gives no evidence for
the existence of a superradiant instability (be it in the scalar or gravitational sector) for
N ≥ 2 (D ≥ 8) equal-spinning Myers-Perry black strings, unlike for the N = 1 (D = 6)
case discussed in the main text.

18The quantum numbers in [54] are related to ours as mtheirs = 2mours and ltheirs = 2lours. Also, the
perturbations we focus on corresponds to “σ = 1” in [54].

19Also, the range of l is consistent. In [54], the range of ltheirs was restricted to ltheirs ≥ 2, which would
also applied to the case of N = 1. This condition is translated to l ≥ 1 for our l. Meanwhile, we have m ≥ 2,
which gives l = m− 1 ≥ 1.
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