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1 Introduction

Superstring perturbation theory, based on the path integral of worldsheet supergravity
coupled to matter fields, has two incarnations: the super Riemann surface (SRS) formalism
in which the scattering amplitude is expressed as an integral over the supermoduli space of
SRS with punctures [1, 2], and the picture changing operator (PCO) formalism in which the
amplitude is expressed as an integral over the moduli space of ordinary Riemann surfaces
with punctures and PCO insertions [3, 4]. An important ingredient of the PCO formalism is
the vertical integration prescription [5, 6], which allows for evading spurious singularities. In
a previous paper [7], we explained how the vertical integration arises from a specific choice
of the supermoduli integration contour, thereby establishing the equivalence between the
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two formalisms. In this follow-up paper, we will illustrate the general construction of [7]
through the example of genus two vacuum amplitudes.1

Every genus two Riemann surface Σ can be realized as a hyperelliptic curve, namely
a double cover Σ→ CP1 branched at six points x1, · · · , x6. Furthermore, such a branched
covering of Σ is unique up to the PSL(2,C) automorphism of CP1. This leads to a con-
venient parameterization of the bosonic moduli space M2, namely {x1, · · · , x6} ⊂ CP1

modulo the action of S6 permutation group and PSL(2,C). A spin structure ε on Σ can
be specified by partitioning the six branch points into two subsets {x+

i } and {x−j }. The
spin structure is odd for a (5, 1) split and even for a (3, 3) split. The construction of a gen-
eral super-Riemann structure over (Σ, ε) will be reviewed in section 2. The corresponding
supermoduli space will be denoted M2,ε.

In the PCO formalism, two holomorphic PCOs would need to be placed on Σ in the
absence of punctures. If we place both PCOs at the branch points of the majority type in
the odd spin structure case (e,g. x+

1 and x+
2 ), or one PCO at a branch point of each type in

the even spin structure case (e.g. x+
1 and x−1 ), spurious singularities are avoided. However,

due to monodromies that permute the branch points and constraints on the locations of
PCOs near the boundary of the moduli space, there isn’t a single assignment of the PCOs
to branch points that is valid globally. Thus the interpolation between different fermionic
directions in M2,ε that arise from different PCO placements, and the corresponding vertical
integration, must be considered.

We give an explicit parameterization of super coordinate patches on the moduli space
of genus two SRS, that correspond to PCO insertions at branch points of the underlying
hyperelliptic curve, for odd spin structure in section 3 and even spin structure in section 4.
We demonstrate the transition maps between super coordinates that correspond to different
PCO arrangements, and their relations to vertical integration. In section 5, we exhibit the
relation between the super coordinates based on PCOs and those defined through the
period matrix projection map in the genus two, even spin structure case.

We conclude with some remarks on applications and future perspectives in section 6.

2 SRS from hyperelliptic curves

2.1 Hyperelliptic curves

A genus g hyperelliptic curve Σ is defined as the locus{
(x, y) ∈ C2 : y2 = f(x)

}
(2.1)

where f(x) is a degree 2g + 2 polynomial, completed by adding two points at infinity. A
patch containing the points at infinity is parameterized by (x̃, ỹ) = (x−1, x−g−1y), subject
to the equation

ỹ2 = f̃(x̃) ≡ x̃2g+2f
(
x̃−1

)
. (2.2)

The curve admits an order two “parity” automorphism that takes (x, y) to (x,−y). There-
fore, functions on the curve can be split into even and odd parity components.

1See [8–18] for previous studies of genus two superstring amplitudes.
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A weight k holomorphic form on Σ can be described as g(x)(dx)k if parity even or
yg(x)(dx)k if parity odd, where g(x) is a meromorphic function with possibly poles at the
branch points. Near infinity, we can write dx = −x̃−2 dx̃, and so

g(x)(dx)k = g
(
x̃−1

)
(−1)kx̃−2k(dx̃)k. (2.3)

Therefore, g(x) or yg(x), depending on parity, must decay at least as fast as x−2k as x→∞.
Near the branch points, i.e. (simple) zeros of f(x), we change the coordinate from x to y,

g(x)(dx)k = g(x)
( 2y
f ′(x)

)k
(dy)k. (2.4)

If k = 2j is even, then g(x) can have an up to order j pole at every branch point, regardless
of parity. There are 2j(g−1) + 1 such linearly independent g’s in the even parity case, and
(2j− 1)(g− 1) + 1 in the odd parity case. If k = 2j+ 1 is odd, in the even parity case g(x)
has up to order j pole at every branch point, with a total number of 2j(g − 1)− 1 modes;
in the odd parity case g(x) has up to order j + 1 pole at every branch point, and a total
number of (2j + 1)(g − 1) + 1 modes.

In particular, weight k = 2 holomorphic forms, i.e. zero modes of b ghost, are in 1-1
correspondence with cotangent vectors at the point Σ inMg. There are 2g− 1 parity even
modes and g − 2 parity odd ones. In the genus two case, all three moduli deformations
have even parity, preserving the hyperelliptic form of the curve. For higher genera, parity
odd deformations destroy the hyperelliptic structure.

It will be useful to consider a moduli deformation of Σ defined by cutting out a disc
that contains a branch point xi, and gluing in a new disc parameterized by the coordinate
yd, with the transition map

yd = y + εy−1 (2.5)

on the boundary of the disc, for infinitesimal ε with ε2 = 0. Writing f(x) ≡ (x− xi)h(x),
we could equivalently replace y−1 on the r.h.s. of (2.5) by y−1 h(x)

f ′(xi) = y−1 + O(y), as the
higher order terms in y can be absorbed by a redefinition of the coordinate on the disc.
Such a transition map can then be extended to the rest of the curve outside of the disc,
giving the deformed equation

y2
d = y2 + 2ε h(x)

f ′(xi)
=
(
x− xi + 2ε

f ′(xi)

)
h(x). (2.6)

Therefore, the moduli deformation (2.5) is equivalent to moving the branch point from xi
to xi − 2ε

f ′(xi) .

2.2 Spin structure

A spin structure on Σ can be specified by choosing a factorization f(x) = p(x)q(x), where
p(x) is a degree n polynomial with n − g − 1 even, and q(x) is a degree m = 2g + 2 − n
polynomial.

α := y

p(x) = q(x)
y

(2.7)
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(y, η) (y, η) (y, η)

(y, τ) (y, τ) (y, τ)

q(x) = 0

p(x) = 0

(x, η)

Figure 1. An illustration of coordinate charts on the super Riemann surface C. The circles represent
boundaries of the discs containing the branch points of the underlying hyperelliptic curve, where
f(x) = 0. Away from the branch points, the super coordinates are taken to be x together with
either η or τ . At the branch points, x degenerates and y is used instead. Near the branch point
where q(x) = 0, the disc is parameterized by (y, η) whereas τ degenerates. On the other hand, near
the branch point where p(x) = 0, the roles of η and τ are switched.

is a parity odd meromorphic function on the curve, with a simple pole at every zero of
p(x), and simple zero at every zero of q(x).

We now promote Σ to a complex supermanifold by introducing a fermionic coordinate
η where p(x) 6= 0, and τ where q(x) 6= 0, with the transition map

τ = αη. (2.8)

Near infinity, we pass to the coordinates (x̃, ỹ) that obey (2.2). Factoring f̃ = p̃q̃, where
p̃(x̃) = x̃np(x̃−1) and q̃(x̃) = x̃mq(x̃−1), we can then define the fermionic coordinates η̃ and
τ̃ related by

η̃ = x̃
1
2 (n−g+1)η, τ̃ = x̃

1
2 (m−g+1)τ, (2.9)

with the transition map τ̃ = α̃η̃ between them, where α̃ = x̃g+1−nα. In particular, in the
genus two odd spin structure case where n = 1 and m = 5, we have η̃ = η and τ̃ = x̃2τ . In
the even spin structure case, with n = m = 3, we have η̃ = x̃η and τ̃ = x̃τ . Note that the
spin structure is invariant under exchanging p with q.

2.3 Super-Riemann structure

A super-Riemann structure can be specified by a totally non-integrable rank 0|1 sub-bundle
of the tangent bundle TΣ. In other words, there is a fermionic derivative operator D,
defined locally up to rescaling such that {D,D} is linearly independent from D at every
point. For instance, we can choose

Dη = ∂η + αη∂x, p(x) 6= 0,
Dτ = ∂τ + α−1τ∂x, q(x) 6= 0.

(2.10)
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Note that when both are defined, Dη = αDτ . Also note that these are well defined at a
branch point, say with p(x) 6= 0, where α has a simple zero and ∂x has a simple pole, and
we can write

Dη = ∂η + f ′(x)
2p(x)η∂y. (2.11)

Similarly, Dη and Dτ are well-defined derivative operators at infinity. (2.10) defines a split
super-Riemann surface C0 over Σ.

One should be cautious that (2.11) is not of the standard form Dθ = ∂θ+θ∂z associated
with the canonical (z, θ) coordinates. Suppose we have a super coordinate chart (z, ζ) in
which the super-Riemann structure corresponds to the fermionic derivative

Dζ = ∂ζ + u(z)ζ∂z, (2.12)

then Dθ is related (up to overall rescaling) by θ =
√
u(z)ζ. A superconformal transforma-

tion from (z, θ) to (z′, θ′) takes the standard form

z′ = f(z) + θg(z)h(z),
θ′ = g(z) + θh(z), with h2 = ∂f + g∂g.

(2.13)

In terms of the non-canonical coordinates (z, ζ) and (z′, ζ ′), the latter associated with
the fermionic derivative Dζ′ = ∂ζ′ + ũ(z′)ζ ′∂z′ where ũ(f(z)) = u(z), the superconformal
map (2.13) is expressed as

z′ = f(z) + u(z) ζ g̃(z)h(z),
ζ ′ = g̃(z) + ζ h(z), with h2 = ∂f + ug̃∂g̃,

(2.14)

where g̃(z) = g(z)√
u(z)

. A useful formula for the Berezinian relating the integral form [dz| dζ]
to [dz′| dζ ′] is

[dz′| dζ ′] = Dζ (u(z)ζ ′)
u(z) [dz| dζ]. (2.15)

In later sections we will make frequent use of superconformal maps of the form (2.14) to
avoid proliferation of new coordinates.

2.4 Automorphism and β zero modes

The parity of Σ lifts to an order 4 automorphism of the SRS C0 that squares to (−)F , where
F is the “fermion number”. This automorphism, which we will still refer to as parity, maps
(x, y, η) 7→ (x,−y, iη) and Dη 7→ −iDη.

Let us examine the parity of weight 3
2 holomorphic forms, which are in correspondence

with zero modes of β ghost. Such a form of parity −i can be written as the degree 1|1
differential y−1g(x) dx dη, where g(x) is a holomorphic function away from the branch
points. At a q = 0 branch point, y−1 has a simple pole, dx dη has a simple zero, g(x) is
regular and the form is generically nonzero. At a p = 0 branch point, dx dη = α−1 dx dτ
has a double zero, g(x) must again be regular and the form has a simple zero. At infinity,
y grows as xg+1, dx dη grows as x2+ 1

2 (n−g+1), and so g(x) must be a polynomial of degree
at most g − 1− 1

2(n− g + 1).
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In the genus two case, this means that for odd spin structure with (n,m) = (1, 5), we
have two β zero modes of parity −i, both of them vanishing at the single p = 0 branch
point, and none of parity +i. For even spin structure with (n,m) = (3, 3), we have one
β zero mode of each parity, −i and +i, one of them vanishing at the p = 0 branch points
and the other vanishing at the q = 0 branch points. If we are to place the two holomorphic
PCOs at two of the branch points, say x1 and x2, to avoid spurious singularity we need the
vectors (β(x1), β(x2)) for the two β zero modes to be linearly independent. This requires
choosing x1, x2 to be among the 5 roots of q(x) in the odd spin structure (n,m) = (1, 5)
case, or q(x1) = 0 and p(x2) = 0 in the even spin structure (n,m) = (3, 3) case.

3 Genus two with odd spin structure

We now give an explicit parameterization of the supermoduli space M2,o of a genus two
SRS C with odd spin structure, by connecting to the PCO formalism following the construc-
tion of [7]. The underlying ordinary Riemann surface Σ is represented as a hyperelliptic
curve (2.1), with f(x) = p(x)q(x), where p has degree 1 and q has degree 5, and the spin
structure is specified by the split of branch points according to (2.7).

3.1 The PCO coordinates on M2,o

Starting with the split SRS C0 described in the previous subsection, we can cut out a disc
that contains the branch point x = xa, and glue in the superdisc Da parameterized by
(wa, ηa) with the transition map

wa = y − f ′(x)
2p(x) η

f ′(x)νa
y

,

ηa = η − f ′(x)νa
y

,

(3.1)

for a = 1, 2. Here ν1, ν2 are a pair of Grassmann-odd parameters. Note that (3.1) is of
the required form (2.14) for a superconformal transformation.2 It is also equivalent to
the standard disc gluing map given by (2.4) of [7] up to a constant rescaling of νa and a
superconformal coordinate change on Da.

The gluing (3.1) defines a new SRS Cν . Furthermore, it gives an explicit parameter-
ization of a super chart ϕ : U × R0|∗2 → U of the moduli space M2,o, where the bosonic
coordinates of U ⊂M2 can be taken as the branch points modulo PSL(2,C) action, and the
fermionic coordinates are (ν1, ν2). The projection π : U → U simply forgets the fermionic
coodinates. As explained in section 5.1 of [7], integration over the fiber of π, i.e. in ν1, ν2,
amounts to inserting a pair of PCOs at the branch points x1, x2.

3.2 Transition map between PCO coordinates

Now consider a different family of SRS’s C′ν , constructed as above but with x1 replaced by
another q = 0 branch point x3, and the corresponding super chart ϕ′ : U × R0|∗2 → U′,

2The fermionic derivative operator Dηa = ∂ηa + f ′(ua)
2p(ua)ηa∂wa , where w2

a = f(ua), is related to Dη of (2.11)
up to rescaling.
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along with the projection π′ : U′ → U . Integration over the fiber of π′ amounts to inserting
PCOs at x3 and x2. The transition map from U to U′ takes the form

ϕ′−1 ◦ ϕ : (xi, ν1, ν2) 7→ (x′i, ν ′1, ν ′2), (3.2)

where x′i are shifted branch point locations, that may in principle differ from xi by an
(“infinitesimal”) amount proportional to ν1ν2. The fermionic coordinates of U′, denoted
ν ′1, ν

′
2, are associated with the gluing maps analogous to (3.1) for the discs that contain x′3

and x′2 respectively.
To find the explicit expression of the transition map (3.2), let us begin by considering

the following reparameterization of coordinates on Cν ,

x′ = x− ηh(x)q(x)ν1,

y′ = y − f ′(x)
2p(x) ηh(x)yν1,

η′ = η − h(x)yν1,

(3.3)

with
h(x) = x12x13

(x− x1)(x− x2)(x− x3) . (3.4)

Passing from η to τ , one can see that (3.3) is regular at the zero of p(x). Regularity at
infinity is ensured due to h(x) decaying like x−3. Thus (3.3) is regular for x 6∈ {x1, x2, x3}.
The expression for the fermionic derivative remains Dη′ = ∂η′ + y′

p(x′)∂x′ .
As y′2 = f(x′) is still obeyed, the branch point positions are unchanged in the x′

coordinate. The gluing map (3.1) for the disc D1, expressed in terms of the new coordinates
(y′, η′), is

w1 = y′ + f ′(x′)
2p(x′)η

′
[
h(x′)− f ′(x′)

f(x′)

]
y′ν1,

η1 = η′ +
[
h(x′)− f ′(x′)

f(x′)

]
y′ν1.

(3.5)

The r.h.s. is regular at x′ = x1 by design of (3.4), and thus the coordinate system (y′, η′)
can be extended to D1, erasing the said gluing map.

On the other hand, we can view (y, η) as the coordinates on a disc D′1 containing x3,
whose relation to (y′, η′) via (3.3) amounts to the gluing map for D′1. Comparing this to
the analog of (3.1) that defines the coordinate map ϕ′ for the chart U′, we can read off

ν ′1 = −h(−1)(x3)ν1 = x12
x32

ν1. (3.6)

Similarly, re-expressing the gluing map for D2 in terms of (y′, η′) gives, to first order in ν1
and ν2,

w2 = y′ + f ′(x′)
2p(x′)η

′y′
[
h(x′)ν1 −

f ′(x′)
f(x′) ν2

]
+O(ν1ν2),

η2 = η′ + y′
[
h(x′)ν1 −

f ′(x′)
f(x′) ν2

]
+O(ν1ν2).

(3.7)
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q(x) = 0 p(x) = 0

(x, y, η)
(w1, η1) (w2, η2)

x1 x2 x3

q(x) = 0 p(x) = 0

(x′, y′, η′)
(w2, η2) (y, η)

x1 x2 x3

Figure 2. The top and bottom diagrams illustrate two different sets of coordinates charts on
the SRS Cν in the odd spin structure case. The six branch points of the underlying hyperelliptic
curve are marked with crosses, with the five q(x) = 0 branch points grouped together on the left,
and the remaining p(x) = 0 branch point on the right. Top: the unprimed coordinate system
becomes singular near the branch points x1, x2, whose neighborhoods are coordinatized by (w1, η1)
and (w2, η2) respectively. Bottom: the primed coordinate system becomes singular near the branch
points x2 and x3, whose neighborhoods are parameterized by (w2, η2) and unprimed coordinates
(y, η).

From the residue at x2 we read off

ν ′2 = ν2 − Resx→x2h(x)ν1 = ν2 + x13
x23

ν1. (3.8)

Therefore, the transition map (3.2) takes the form

(
x′i, ν

′
1, ν
′
2
)

=
(
xi + diν1ν2,

x12
x32

ν1, ν2 + x13
x23

ν1

)
, (3.9)

where the coefficients di are yet to be determined functions of the xj ’s.
Under the order 4 parity automorphism introduced in section 2, the xi’s are parity

invariant, whereas ν1, ν2 are of the same imaginary parity −i. It follows that ν1ν2 is parity
odd, while di in (3.9) is parity even, and therefore we must have di = 0, leaving

(
x′i, ν

′
1, ν
′
2
)

=
(
xi,

x12
x32

ν1, ν2 + x13
x23

ν1

)
. (3.10)

The complete change of coordinates that identifies the SRS Cν with C′ν′ is given in ap-
pendix A.

3.3 The vanishing vertical integral

As explained in [7], the interpolation between the fermionic fibers of the projections π :
U → U and π′ : U′ → U considered in section 3.2 amounts to the vertical integration
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corresponding to moving a PCO from x1 to x3 on the underlying Riemann surface Σ.
According to (3.10), however, the fermionic fibers of the two coordinate patches in fact
agree (up to a linear change of fermionic coordinates ν1, ν2), and the interpolation is trivial.
Indeed, we will see below that the vertical integration gives a vanishing result in this case.

The vertical integration in question produces a bosonic moduli integrand of the form〈
eB [ξ(x3)− ξ(x1)] [X (x2) + dξ(x2)]

〉
Σ,ε

, (3.11)

where we have omitted the anti-holomorphic operators insertions which do not affect the
analysis here. The PCO X is given in the re-bosonized form by

X = QB · ξ = −1
2e

φGmatter + c∂ξ − 1
4e

2φ∂ηb− 1
4∂(e2φηb). (3.12)

Note that in the (φ, ξ, η) representation of βγ-system correlators, there is implicitly an
extra ξ-insertion of the form ξ(x∗), where x∗ is an arbitrarily chosen point, that serves to
absorb the unique zero mode of ξ in its functional integration [3].

As we have chosen to parameterize the bosonic moduli deformations through those of
the branch points xi, B can be represented as

B =
∑
i

dxi

∮
Cxi

dy

2πib
(y)(y)

(
−f
′(xi)
2y

)
, (3.13)

where Cxi is a small circular contour enclosing xi, and b(y) stands for the b ghost defined
in the conformal frame associated with the y-coordinate.

Due to the bc and βγ ghost number anomaly, the only potentially non-vanishing part
of (3.11) is〈

eB [ξ(x3)− ξ(x1)]
[
−1

4e
2φ∂ηb(x2)− 1

4∂(e2φηb)(x2)
]〉

Σ,ε

=
〈
eB [Θ(β(x1))−Θ(β(x3))]

[1
2 : βγδ′(β) : b(x2)− 1

4δ
′(β)∂b(x2)

]〉
Σ,ε

.

(3.14)

This correlator is invariant under the parity automorphism (x, y) 7→ (x,−y) of Σ. On
the other hand, under parity both zero modes of β(z) pick up a factor −i, and thus the
functional integral for (3.14) picks up a minus sign. We conclude that (3.14) vanishes, as
anticipated.

4 Genus two with even spin structure

4.1 The PCO coordinates on M2,e

Next we turn to the supermoduli space M2,e of genus two SRS with even spin structure.
The underlying hyperelliptic curve is given by (2.1) with f(x) = p(x)q(x), where p, q are
both degree 3 polynomials, and the spin structure is specified as in (2.7). As discussed at
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the end of section 2, by placing one PCO at a branch point x = x1 with q(x1) = 0, and
another PCO at x = x2 with p(x2) = 0, one constructs a SRS Cν with the gluing map

w1 = y − f ′(x)
2p(x)η

f ′(x)ν1
y

,

η1 = η − f ′(x)ν1
y

,

(4.1)

for a super disc D1 parameterized by (w1, η1) that contains the branch point at x1, and

w2 = y − f ′(x)
2q(x)τ

f ′(x)ν2
y

,

τ2 = τ − f ′(x)ν2
y

,

(4.2)

for D2 paramererized by (w2, τ2) that contains x2. Note that in writing (4.2) we have
passed to the fermionic coordinate τ = y−1q(x)η which is non-singular at x = x2. The
family of SRS’s parameterized by the branch points and ν1, ν2 defines a coordinate patch
ϕ : U × R0|∗2 → U of the supermoduli space.

4.2 Transition map between PCO coordinates

Similarly, we can construct another family of SRS C′ν , and the corresponding supermoduli
patch ϕ′ : U × R0|∗2 → U′, by replacing D1 with a disc D′1 that contains another branch
point x3 where q(x3) = 0, whose gluing map still takes the form (4.1).

As η has parity i, τ has parity −i, ν1 and ν2 have parity −i and i respectively. It
follows that transition map between U and U′, of the form (3.2), must be such that

x′i = xi + diν1ν2, ν ′1 = a1ν1, ν ′2 = a2ν2, (4.3)

where di and a1, a2 are functions of the xj ’s.
To proceed, consider the following superconformal reparameterization of the coordi-

nates on Cν ,

x′ = x+
( 1
x− x3

− 1
x− x1

)
q(x)ην1, y′ = y +

( 1
x− x3

− 1
x− x1

)
f ′(x)
2p(x)yην1,

η′ = η +
( 1
x− x3

− 1
x− x1

)
yν1, τ ′ = τ +

( 1
x− x3

− 1
x− x1

)
q(x)ν1.

(4.4)

This transformation is regular for x 6∈ {x1, x3}, including at infinity as well as at the other
branch points, and is constructed so that the transition map between the coordinates
(w1, η1) on the disc D1 (4.1) and (y′, η′) can be extended regularly to x = x1, thereby
erasing the gluing map for D1. On the other hand, it introduces a nontrivial transition
map for a disc D′1 containing x3, parameterized by (y, η), from which we can read off
ν ′1 = ν1, or a1 = 1 in (4.3).
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Near x2, the transition map that expresses the coordinates (w2, τ2) on the disc D2 (4.2)
in terms of (y′, τ ′) is

w2 = y′ − (f ′(x′))2τ ′ν2
2q(x′)y′ + 1

2f
′(x′) x31

(x′ − x3)(x′ − x1)

[
f ′(x′)
y′

ν1ν2 − τ ′ν1

]
,

τ2 = τ ′ − f ′(x′)ν2
y′

+ x31
(x′ − x3)(x′ − x1)

[(
f ′′(x′)− (f ′(x′))2

2f(x′)

)
τ ′ν1ν2 − q(x′)ν1

]
.

(4.5)

We can put this back in the standard form of the gluing map (4.2) by a further change of
coordinates from (y′, τ ′) to (y′′, τ ′′), with

y′′ = y′ + (f ′(x′))2

y′
x31

(x′ − x3)(x′ − x1)ν1ν2,

τ ′′ = τ ′ − (f ′(x′))2

2f(x′)
x31

(x′ − x3)(x′ − x1)τ
′ν1ν2,

(4.6)

as well as a change of coordinates on D2 from (w2, τ2) to (w′′2 , τ ′′2 ) defined by

w′′2 = w2 + f ′(x′)
2

x31
(x′ − x3)(x′ − x1)τ

′ν1,

τ ′′2 = τ2 + t′(x′)
[
q(x′)ν1 − f ′′(x′)τ2ν1ν2

]
.

(4.7)

We conclude that ν ′2 = ν2, or a2 = 1 in (4.3). Up to regular terms at (x′, y′) = (x2, 0), the
transformation between y′′ and y′ is of the form (2.5), and leads to a shift of the branch
point x2 to

x′2 = x2 − 2f ′(x2) x31
x23x21

ν1ν2. (4.8)

In conclusion, the transition map from U to U′ takes (x2, ν1, ν2) to

(x′2, ν ′1, ν ′2) =
(
x2 − 2f ′(x2) x31

x23x21
ν1ν2, ν1, ν2

)
, (4.9)

while leaving all other branch points xi (i 6= 2) invariant.
A subtlety arises when moving both PCOs, say from x1, x2 to x3, x4, where q(x3) =

p(x4) = 0. Following the above procedure, if we first move one PCO from x1 to x3, and
then the other PCO from x2 to x4, the final branch point positions are

x′1 = x1, x′2 = x2−2f ′(x2) x31
x23x21

ν1ν2, x′3 = x3 +2f ′(x3) x42
x34x32

ν1ν2, x′4 = x4. (4.10)

If we exchange the order of the two moves, the final branch point positions are

x̃′1 = x1+2f ′(x1) x42
x14x12

ν1ν2, x̃′2 = x2, x̃′3 = x3, x̃′4 = x4−2f ′(x4) x31
x43x41

ν1ν2. (4.11)

However, the resulting SRS should be independent of the order of the PCO moves. Indeed,
the branch points x′i appearing in (4.10) and x̃′i in (4.10) are related by an infinitesimal
PSL(2,C) transformation

x̃ = x− 2x31x42f(x)
(x− x1)(x− x2)(x− x3)(x− x4)ν1ν2, (4.12)

which leaves the remaining two branch points x5, x6 invariant, as expected.
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q(x) = 0 p(x) = 0

(x, y, η)
(w1, η1) (w2, η2)

x1 x2x3

(x′, y′, η′)
(w2, η2)(y, η)

x1 x2x3

(x′, y′, η′)
(w′′2 , η′′2)

(y′′, η′′)

(y, η)

x1 x2x3

Figure 3. The top, middle, and bottom diagrams illustrate the unprimed, primed, and double-
primed coordinate systems on Cν in the even spin structure case. The six branch points are marked
with crosses, with the three q(x) = 0 branch points grouped together on the left, and the other
three p(x) = 0 branch points on the right. Top: the unprimed coordinate system, with (w1, η1) and
(w2, η2) parameterizing the discs containing x1 and x2 respectively. Middle: the primed coordinate
system, which is regular away from x2 and x3. Bottom: the double-primed coordinate system on an
annulus surrounding x2, whose transition maps into the disc coordinates (w′′

2 , η
′′
2 ) take the standard

form.

4.3 The corresponding vertical integral

The vertical integral corresponding to moving the PCO from x1 to x3 produces an integrand
of the form (3.11), or simply (3.14), except that the spin structure ε is even as specified in
section 4.2. The correlators in question can be obtained from a more general correlator of
the (φ, ξ, η) system of the form 〈

ξ(z1)ξ(z2)eφ(u)eφη(v)
〉
. (4.13)

Here we work in the large Hilbert space and it is necessary to keep track of the dependence
on the position of the extra ξ insertion [3].

Using the general formula for the correlators of ξ, η and eαφ in terms of theta functions
and prime forms [4], one deduces that the spurious poles of (4.13) are the same as those
of 〈δ(β(z1))δ(β(u))〉 and 〈δ(β(z2))δ(β(u))〉. There are further OPE poles as v → z1, z2, u,
an OPE zero as z1 → z2, and extra “spurious zeros” that occur at the same loci as the
spurious poles of 〈δ(β(z1))δ(β(z2))δ(β(u))δ(γ(v))〉. In the limit u → v, in particular, the
spurious poles of (4.13) are the same as those of

〈δ(β(z1))δ(β(u))〉 〈δ(β(z2))δ(β(u))〉
〈δ(β(z1))δ(β(z2))〉 (4.14)
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Specializing to the hyperelliptic curve Σ, we will be interested in the limit u, v → x2, where
p(x2) = 0. We will further take z2 to be another branch point x4 with p(x4) = 0. As seen in
section 2.4, one of the β zero modes vanishes at the p = 0 branch points, the other vanishes
at the q = 0 branch points. It follows that both 〈δ(β(x))δ(β(x2))〉 and 〈δ(β(x))δ(β(x4))〉
have simple poles at precisely the roots of p(x). Consequently, the following correlators3

F (x) =
〈
ξ(x)(e2φη)(y)(x2)ξ(x4)

〉βγ
Σ,ε

,

G(x) =
〈
ξ(x)(∂φe2φη)(y)(x2)ξ(x4)

〉βγ
Σ,ε

,

H(x) =
〈
ξ(x)(e2φ∂η)(y)(x2)ξ(x4)

〉βγ
Σ,ε

(4.15)

have no spurious poles in x; their only poles in x are due to the OPE singularity as x→ x2.
Combining with the single-valuedness in x, and regularity at infinity,4 we conclude that

F (x) = G(x) = 0,

H(x) = 1
f ′(x2)(x− x2)

〈
(e2φ)(y)(x2)ξ(x4)

〉βγ
Σ,ε

+H(∞).
(4.16)

We can compare this with

K(x) =
〈
δ(β)(y)(x)δ(β)(y)(x2)

〉
= (f ′(x))

3
2√

p(x)q(x2)(f ′(x2))3

〈
(e2φ)(y)(x2)ξ(x4)

〉βγ
Σ,ε

, (4.17)

and deduce

H(x3)−H(x1) = 1
2(f ′(x2))2 x13

x32x12

[ 2p(x1)
(f ′(x1))3

] 1
2
[ 2q(x2)

(f ′(x2))3

] 1
2
K(x1)

= 1
2(f ′(x2))2 x13

x32x12

[ 2p(x3)
(f ′(x3))3

] 1
2
[ 2q(x2)

(f ′(x2))3

] 1
2
K(x3).

(4.18)

The result of vertical integration thus contributes to the moduli integrand〈
eB
[
−2(f ′(x2))2 x13

x32x12
b(x2)

] [ 2p(x1)
(f ′(x1))3

] 1
2
δ(2β(x1))(y)

[ 2q(x2)
(f ′(x2))3

] 1
2
δ(2β(x3))(y)

〉
Σ,ε

.

(4.19)
This is precisely the result of integrating out the fermionic parameters ν1, ν2 over the
interpolation between the fibers of π : U → U and π′ : U′ → U related by the bosonic
shift (4.9), as a special case of the consideration of section 5 of [7].

5 Comparison with period matrix projection

The moduli space M2,e of genus two SRS with even spin structure admits a projection onto
its reduced space via the period matrix [1, 12]. The latter gives rise to a natural coordinate

3The superscript “(y)” indicates that the operator is defined in the conformal frame associated with the
y-coordinate, which is regular at the branch point.

4For instance, the OPE singularity indicates that F (x) must be proportional to y
x−x2

, which cannot be
regular at infinity unless its coefficient vanishes.
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system on M2,e in terms of the bosonic moduli and fermionic coordinates parameterizing
the fiber of the projection. In this subsection we explain the relation between the period
matrix projection and the PCO coordinates.

Recall that the period matrix of an ordinary Riemann surface is defined through the
integrals of a basis of holomorphic 1-forms along 1-cycles. On a SRS C, one can consider
a weight 1

2 integral form J , written in a canonical local coordinate system (z, θ) as

J = (k(z) + θj(z))[dz| dθ]. (5.1)

On a split SRS C0, j(z) is a weight 1 form and k(z) a weight 1
2 form. In the case of even

spin structure, there are no global weight 1
2 forms, and (5.1) reduces to the weight 1 form

j on the underlying ordinary Riemann surface. The period matrix defined by integrals
of (5.1) along cycles can be extended to a general non-split SRS. In the case of odd spin
structure, on the other hand, there is a mode for k(z) which interferes with the extension
of this notion of period matrix to non-split SRSs.

We henceforth focus on the case of a genus two SRS with even spin structure. Consider
Cν constructed by deforming from the split SRS with the gluing maps (4.1), (4.2), corre-
sponding to PCOs placed at the branch points x1, x2. In (x, η) coordinates, the integral
form J can be written as

J = (B + ηC)[dx|dη]. (5.2)

It is shown in appendix B that B,C are constrained to be of the form

B = −a(x1)ν1
x− x1

− a(x2)ν2
x− x2

α−1,

C = y−1a(x) + y−1
[
− f ′(x1)a(x2)

2x12(x− x1) −
f ′(x2)a(x1)
2x12(x− x2) + c̃(x)

]
ν1ν2,

(5.3)

where a(x) and c̃(x) are linear polynomials in x.
The fiber of the period matrix projection over Σ, specified by the branch point locations

xi, consists of SRSs of the form

ϕ(xi + si(xj)ν1ν2, ν1, ν2), (5.4)

where ϕ : U × R0|∗2 → U is the coordinate map of the supermoduli space defined in
section 4. The deformation of the branch point locations δxi = siν1ν2 is such that we can
find a corresponding deformed weight 1

2 form J + δJ , whose periods are independent of
ν1, ν2. The calculation of appendix B gives

s1 = f ′(x1)
x12

−A(x1),

s2 = f ′(x2)
x12

−A(x2),

si = −A(xi), i = 3, 4, 5, 6,

(5.5)

where A(x) is a degree 3 polynomial whose leading coefficient is fixed to be A(3) = f (6)x12.
Similarly to the discussion in section 4.2, the shift due to the quadratic part of A(x) can
be undone by an infinitesimal PSL(2,C) transformation.
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Alternatively, we can represent the fiber (5.4) of the period matrix projection in terms
of the coordinate map ϕ′, defined with one PCO moved from x1 to x3 as in section 4, as

ϕ′(xi + s̃i(xj)ν1ν2, ν1, ν2), (5.6)

where
s̃3 = f ′(x3)

x32
− Ã(x3),

s̃2 = f ′(x2)
x32

− Ã(x2),

s̃i = −Ã(xi), i = 1, 4, 5, 6,

(5.7)

and Ã(x) is a degree 3 polynomial with Ã(3) = f (6)x32. Comparing (5.4) with (5.6), we see
that the transition map ϕ′−1 ◦ ϕ takes (xi, ν1, ν2) to (xi + δxi, ν1, ν2), with

δxi = (s̃i(xj)− si(xj))ν1ν2. (5.8)

In particular, if we choose the quadratic terms of Ã(x) to be such that

Ã(x) = A(x) + f(x)x31
(x− x1)(x− x2)(x− x3) , (5.9)

the only non-vanishing shift in (5.8) is δx2 = −2f ′(x2) x31
x12x32

, in agreement with (4.9).

6 Discussions

Let us summarize the results of this paper. We explicitly parameterized the supermoduli
spaceM2,ε of a genus two SRS C, with either odd or even spin structure ε, by identifying the
fermionic moduli ν1, ν2 with deformation parameters of gluing maps for a pair of discs cut
out around a pair of branch points x1, x2 of the underlying hyperelliptic curve Σ. Spurious
singularities are avoided provided that x1, x2 are branch points of the appropriate types
specified by the spin structure. The resulting super coordinates on Mε, which we refer to
as “PCO coordinates”, is closely related to the insertion of a pair of PCOs at the branch
points in the PCO formalism. Said equivalently, the PCO coordinates specifies a projection
π from a supermoduli chart U of M2,ε to its reduced space U , π : U → U , whose fiber is
parameterized by the fermionic coordinates (ν1, ν2).

Crucially, the super chart U and the projection π depend on the choice of branch points
x1, x2, We shall emphasize this dependence with the notations Ux1,x2 and πx1,x2 . Changing
x1, for instance, to another branch point x3 of the same (admissible) type, results in a
different chart Ux3,x2 along with its projection πx3,x2 . We have explicitly computed the
transition map between the two sets of super coordinates on the overlap Ux1,x2 ∩ Ux3,x2 ,
given by (3.10) in the case of odd spin structure, and (4.9) in the case of even spin structure.

The results for the transition maps indicate that the (fermionic) fibers of πx1,x2 and
πx3,x2 in fact coincide in the odd spin structure case, but differ in the even spin structure
case. In the context of genus two superstring vacuum amplitudes, the supermoduli integra-
tion can be performed by integrating out the fermionic fibers of the projections defined over
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a set of cells of the reduced space, while making up for the mismatch between the fibers of
adjacent cells by a set of interpolation integrals. The latter was shown in [7] to reproduce
the vertical integration prescription [5, 6] in the PCO formalism. Here we see explicitly
that, as the PCO configuration is changed from {x1, x2} to {x3, x2}, the corresponding
vertical integral vanishes in the odd spin structure case, and is nontrivial in the even spin
structure case. The latter produces a correction to the bosonic moduli integrand (4.19)
that is precisely equivalent to the interpolation integral between the fibers of πx1,x2 and
πx3,x2 .

In the even spin structure case, there is a global projection of the supermoduli space
defined by the period matrix, which results in a super coordinate system that is differ-
ent from the PCO coordinates. The explicit transition map between the period matrix
coordinates and the PCO coordinates is determined in (5.4) with (5.5).

While the exercise performed in this paper primarily serves to illustrate the general
construction of [7], it reveals a number of interesting features of the supermoduli space
M2 that may be useful for explicit computations of superstring amplitudes, with arbitrary
worldsheet matter SCFT and any types of GSO projection. For instance, the explicit
construction of non-singular PCO coordinates based on the branch points and the corre-
sponding vertical integrals is applicable for the evaluation of genus two free energy of the
2D type 0 string theory at finite temperature, that would serve as a highly nontrivial test of
the conjectured duality with the matrix quantum mechanics [19–22]. It is also straightfor-
ward to generalize the analysis in this paper to include NS punctures, which may provide
a convenient setup for computing n-point genus two superstring amplitudes for both odd
and even spin structures (see [16–18] for recent progress on the subject).
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A Details of coordinate transformations on the SRS with odd spin struc-
ture

In this appendix we give further details of the superconformal coordinate transformation
that identifies the SRS Cν and C′ν′ of section 3.2.

The original coordinates on Cν consist of (two out of) the four variables x, y, η, τ
subject to the conditions (2.1) and (2.8). The fermionic derivatives Dη and Dτ that define
the super-Riemann structure satisfy

Dηη = 1, Dηx = αη, Dηy = f ′(x)
2p(x)η,

Dττ = 1, Dτx = α−1τ, Dτy = f ′(x)
2q(x)τ,

Dτ = α−1Dη.

(A.1)
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These coordinates are regular everywhere except near the branch points x1 and x2, where
the disc coordinates

(wa, ηa) =
(
y − f ′(x)

2p(x)νa, η −
f ′(x)
y

νa

)
(A.2)

respectively for a = 1, 2, are regular instead. The fermionic derivatives Dηa on the discs
satisfy

Dηaηa = 1, Dηawa = f ′(x)
2p(x)ηa,

Dηa =
(

1 + y

p(x)∂x
(
f ′(x)
y

)
ηνa

)
Dη.

(A.3)

Inverting (A.2), we can write

y = wa + (f ′(xa))2

2p(xa)
1
wa
ηaνa +O(waηaνa)

η = ηa + f ′(xa)
wa

νa +O(waνa).
(A.4)

Note that x is regular at wa = 0,

x = xa + f ′(xa)
2p(xa)

ηνa +O(w2
a). (A.5)

Next, we introduce the primed coordinates as in (3.3). They satisfy relations identical to
those of in (2.1), (2.8), (A.1), with the unprimed variables replaced by the primed variables.
For instance, the fermionic derivative Dη is replaced by Dη′ , related by

Dη′ =
(

1 + ∂x (h(x)y) y

p(x)ην1

)
Dη, (A.6)

where h(x) is given in (3.4). The primed coordinates are regular everywhere except at the
branch points x2 and x3. Note that regularity at x1 comes from cancelation of poles. Near
x3, the singular part of the transformation between (y, η) viewed as coordinates on the disc
D′1 containing x3, and (y′, η′) as coordinates outside of D′1, is

y′ = y + (f ′(x3))2

2p(x3)
1
y
ην ′1 +O(yην1),

η′ = η + f ′(x3)
y

η′1 +O(yη1),
(A.7)

where ν ′1 is defined in (3.6). This is the same form as that associated with a PCO insertion.
At x2, the singular part of the relevant coordinate transformation is

y′ = w2 + (f ′(x2))2

2p(x2)
1
w2
η2ν
′
2 + (f ′(x2))3

2p(x2) h(−1)(x2) 1
w2

2
ν1ν2 +O(ν1ν2, w2η2ν1, w2η2ν2),

η′ = η2 + f ′(x2)
w2

ν ′2 + w2
2p(u2)f

′(u2)h′(u2)η2ν1ν2 +O(w2ν1, w2ν2),

(A.8)
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where ν ′2 is as in (3.8), and u2 is the analog of the x-coordinate on the disc, related to w2
by w2

2 = f(u2). This matches (A.2) up to regular terms and terms proportional to ν1ν2.
To put this in the standard form of the disc gluing map associated with a PCO insertion,
we need to perform a further bosonic coordinate redefinition

x′′ = x′ + r(x′)y′ν1ν2,

y′′ = y′ + 1
2f
′(x′)r(x′)ν1ν2,

(A.9)

where

r(x) = −f
′(x2)
p(x2) h

(−1)(x2) 1
x− x2

= q′(x2)x13
x23

1
x− x2

. (A.10)

Note that Dη′ acts on x′′ as

Dη′x
′′ = y′′

p(x′′)

(
1 + y′′

p(x′′)∂x
′′
(
r(x′′)p(x′′)

)
ν1ν2

)
η′. (A.11)

Now introducing the double-primed fermionic coordinates and the fermionic derivative

η′′ =
(

1 + y′′

2p(x′′)∂x
′′
(
r(x′′)p(x′′)

)
ν1ν2

)
η′,

τ ′′ =
(

1 + y′′

2q(x′′)∂x
′′
(
r(x′′)q(x′′)

)
ν1ν2

)
τ ′,

Dη′′ =
(

1− y′′

2p(x′′)∂x
′′
(
r(x′′)p(x′′)

)
ν1ν2

)
Dη′ ,

(A.12)

we find that (x′′, y′′, η′′, τ ′′) satisfy relations identical to (2.1), (2.8), and (A.1), where all
variables are replaced with their double-primed counterparts.

The double-primed coordinates are still regular away from x2 and x3. The singularity
of these coordinates at x3 remains the same as that of the single-primed coordinates. At
x2, on the other hand, the singularity of the double-primed coordinates is given by

y′′ = w2 + f ′(x2)
2p(x2)

1
w2
η2ν
′
2 +O(ν1ν2, w2η2ν1, w2η2ν2),

η′′ = η2 + f ′(x2)
w2

ν ′2 + w2
2p(u2)

(
f ′(u2)h′(u2) + ∂u2 (r(u2)p(u2))

)
η2ν1ν2 +O(w2ν1, w2ν2).

(A.13)
where ν ′2 is given by (3.8), and u2 obeys w2

2 = f(u2). One can verify that (A.13) can be
put in the standard form (A.2) by a regular redefinition of the coordinates (w2, η2) on the
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disc D2.5 In conclusion, the map

x′′ = x− q(x)
2 ηh(x)ν1 + r(x)yν1ν2,

y′′ = y − f ′(x)
2p(x)ηh(x)yν1 + 1

2f
′(x)r(x)ν1ν2,

η′′ = η − h(x)yν1 + 1
2

y

p(x)∂x (r(x)p(x)) ην1ν2,

τ ′′ = y′′

p(x′′)η
′′

(A.14)

together with its extension to the discs gives the desired isomorphism between Cν and C′ν′ .

B Calculating the fiber of the period matrix projection

We would like to identify a SRS Cν defined via (4.1) and (4.2), that has the same period
matrix as a split SRS C′. The integral form J (5.2) on Cν is constrained by parity to be of
the form

J =
(
ν1b1(x) + ν2α

−1b2(x) + ηy−1 (a(x) + c(x)ν1ν2)
)

[dx| dη]. (B.1)

Regularity demands that a(x) is linear in x. At infinity, b1(x) and b2(x) must decay as
x−1, whereas c must grow at most linearly in x. Near the branch point x1, we pass to the
coordinates (w1, η1) (4.1), with (using the Berezinian formula (2.15))

[dw1| dη1] =
(

1− η∂y

(
(f ′(x))2

2p(x)y

)
ν1

)
[dy| dη], (B.2)

and

η1[dw1| dη1] =
(
η − f ′(x)ν1

y

)
[dy| dη] = f ′(x)

2

(
−f
′(x)
f(x) ν1 + η

y

)
[dx| dη]. (B.3)

The regularity of (B.1) at x1 thus requires b1(x) to have a pole at x1 with residue b(−1)
1 (x1) =

−a(x1). Near x2, a similar analysis with η and τ flipped gives b(−1)
2 (x2) = −a(x2). Thus,

b1, b2 are constrained to be

b1(x) = − a(x1)
x− x1

, b2(x) = − a(x2)
x− x2

. (B.4)

The non-vanishing of b2(x) at x1, however, introduces a singularity that must be cancelled
by a pole of c(x) at x1. Indeed, it follows from (B.2) that

ν2[dw1| dη1] ∼ f ′(x)
2p(x)

(
α−1ν2 + f ′(x)

2y
ην1ν2
x− x1

)
[dx| dη] (B.5)

5Note in particular that the term proportional to h′(u2) in the second line of (A.13), which is singular
at the center of the disc, can be absorbed by a redefinition of w2 that is regular on the disc.
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near x1. Comparing with (B.1), we find the residue of c(x) at x1, c(−1)(x1) = f ′(x1)
2 b2(x1).

A similar analysis near x2 gives c(−1)(x2) = −f ′(x2)
2 b1(x2). Combining with (B.4), and the

behavior at infinity, we conclude that

c(x) = − f ′(x1)a(x2)
2x12(x− x1) −

f ′(x2)a(x1)
2x12(x− x2) + c̃(x), (B.6)

where c̃(x) is a linear polynomial.
Let us turn to the split SRS C′, parameterized by the supercoordinates (x′, η′), whose

underlying hyperelliptic curve is

y′2 = f̃(x′) = p̃(x′)q̃(x′), (B.7)

with fermionic derivative

Dη′ = ∂η′ + f̃ ′(x′)
2p̃(x) η

′∂y′ . (B.8)

The fermionic coordinate τ ′ is related by the transition map τ ′ = (p̃(x′))−1y′η′. We will
assume that f̃ is related to f by the infinitesimal shift

f̃(x′) = f(x′)−m(x′)ν1ν2 = (p(x′) + n(x′)ν1ν2)(q(x′) + t(x′)ν1ν2). (B.9)

Now suppose that there is an integral form J ′ on C′,

J ′ = η′y′−1ã(x′)[dx′| dη′], (B.10)

where ã(x′) is linear in x′, that has the same periods as those of J on Cν . We would like
to determine m(x′), and the relation between ã(x′) and a(x).

To calculate the periods of J ′, it will be convenient to define unprimed coordinates
x, y, η, τ , related by

x′ = x, y′ = y − m(x)
2y ν1ν2,

η′ =
[
1 + 1

4

(
n(x)
p(x) −

t(x)
q(x)

)
ν1ν2

]
η, τ ′ =

[
1− 1

4

(
n(x)
p(x) −

t(x)
q(x)

)
ν1ν2

]
τ,

(B.11)

that obey y2 = f(x) and τ = (p(x))−1yη. The fermionic derivative in the unprimed
coordinates is Dη = ∂η + f ′(x)

2p(x)η∂y. Note that the coordinate transformation (B.11) is
(necessarily) singular at the branch points and at infinity, but this will not affect the
calculation of periods which can be defined by integration along paths that avoid the
singular points. In the unprimed coordinates, (B.10) is written as

J ′ = ηy−1
(

1 + m(x)
2f(x)ν1ν2

)
ã(x)[dx| dη]. (B.12)

The requirement that J (B.1) has the same periods as J ′ amounts to

y−1
[
a(x) + c(x)ν1ν2 −

(
1 + m(x)

2f(x)ν1ν2

)
ã(x)

]
dx = d

(
u(x) + v(x)ν1ν2

y

)
, (B.13)
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for some polynomials u(x) and v(x). It follows that

ã(x) = a(x) + `(x)ν1ν2,

f(x) (c(x)− `(x))− 1
2m(x)a(x) = f(x)v′(x)− 1

2f
′(x)v(x),

(B.14)

where `(x) is linear in x, and u(x) necessarily vanishes. At the branch points xi for i 6= 1, 2,
the condition reduces to

m(xi)a(xi) = f ′(xi)v(xi) (B.15)

At x1 and x2, we have

m(x1)a(x1) = −(f ′(x1))2

x12
a(x2) + f ′(x1)v(x1),

m(x2)a(x2) = −(f ′(x2))2

x12
a(x1) + f ′(x2)v(x2).

(B.16)

Let us define

v0(x) = −f(x) (a(x1)− a(x2))
(x− x1)(x− x2) , m0(x) = −f(x)

x12

(
f ′(x1)
x− x1

+ f ′(x2)
x− x2

)
, (B.17)

and
v(x) ≡ v0(x) + r(x), m(x) = m0(x) + h(x). (B.18)

The condition (B.14) at all branch points can be expressed as

h(xi)a(xi) = f ′(xi)r(xi). (B.19)

The l.h.s. of (B.14) has degree at most 7, and it follows that v(x) has degree at most
3.6 Since we have separated from v(x) the degree 4 polynomial v0(x), r(x) must also
have degree 4. In particular, r(x) is fixed by its value at the branch points, determined
through (B.19).

We can use the Euclidean algorithm to decompose

h(x) = A(x)f ′(x) +B(x)f(x), (B.20)

where A(x) has degree at most 5, and write (B.19) equivalently as

A(xi)a(xi) = r(xi). (B.21)

Since A(x)a(x) has degree at most 6, it is fixed by (B.21) to be

A(x)a(x) = r(x). (B.22)

It follows that A(x) in fact has degree 3, and takes the form

A(x) = A0 +A1x+A2x
2 + x12f

(6)x3. (B.23)

The branch points of f̃(x) are

x′i = xi − siν1ν2, with si = −m(xi)
f ′(xi)

. (B.24)

The result for m0 and h(x) given by (B.17) and (B.20), (B.23) then gives (5.5).
6Note that in this case, the degree 8 terms on the r.h.s. of (B.14) cancel.
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