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1 Introduction

Dilaton models of two-dimensional gravity allow for good analytic control even in the pres-
ence of semi-classical corrections. However, a priori there are many terms one can write
down, which leads to a wealth of possible actions one can use, which can make it hard to
justify choosing a specific action, see e.g. [1]. On the one hand, to constrain the possible ac-
tions, it can be convenient to view such models as arising as, e.g., near horizon descriptions
of higher dimensional black holes. On the other hand, having a higher dimensional picture
provides a guideline for in which regime or region of parameter space one should (dis)trust a
two-dimensional model and to what higher dimensional quantities certain two-dimensional
quantities can be mapped. In other words, one should be cautious when studying a two-
dimensional model of which one is not aware of their higher dimensional pedigree. In this
note, for the first time, we derive a higher dimensional perspective for a family of two-
dimensional theories, that includes the Jackiw-Teitelboim (JT) model [2, 3], by applying
the approach of considering a large number of dimensions to so-called Lifshitz black holes.

When studying black holes in d+ 2 dimensions with d� 1, it turns out that the non-
trivial, interesting part of gravitational dynamics are strongly localized within a region
close by the horizon [4], see [5] for a review. Beyond the near horizon region black hole
effects are suppressed. Within this near horizon region, [6, 7] pointed out the following. For
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a wide class of black holes, the near horizon dynamics become that of the black hole that
arises in the low energy limit of two-dimensional string theory [8–10], which is governed by
the two-dimensional string effective action.

Meanwhile, in the context of Lifshitz holography1 where one requires the anisotropic
scale invariance t→ λzt, ~x→ λ~x between time t and space ~x, the following was pointed out
in several works [12–15]. Namely, from the gravitational perspective taking the dynamical
critical exponent z � 1 yields physics that is effectively governed by a product space of
two-dimensional Anti-de Sitter space (AdS2) and its transverse space. However, z � 1
theories are unlikely to describe stable phases of matter down to low temperatures due to
their extensive ground state entropy, as can be seen from the following argument. Once
we introduce (uncharged) planar black holes in the Lifshitz bulk in order to obtain a
temperature, we find that the entropy S is related to temperature T as S ∼ T d/z, where
d is the dimension of the transverse space. However, taking z � 1 causes entropy and
temperature to cease being related. In other words, the resulting thermodynamics is limited
to share features of an extremal black hole.

In this note we combine z � 1 in the Lifshitz system from a large d perspective, in
which we can see different two-dimensional asymptotically AdS2 black holes arising as a
near horizon limit, much in the spirit of the aforementioned works [7, 8] where the low
energy string black hole was obtained. To be more specific, we keep α = z/d fixed, we find
S ∼ T 1/α and we show that the following two-dimensional model arises

S = 1
16πG̃N

∫
d2x
√
−γe−2φ

[
Rγ + 4(1− α)(∇φ)2 + 4λ2 − 1

4e
−4αφF 2

]
, α = z

d
, (1.1)

where G̃N is a dimensionless parameter, Rγ the Ricci scalar, φ a dilaton, λ an energy scale
and F an electric two-form. It is emphasized that distinct values of α are not related by
Weyl transformations. We furthermore suppress the boundary terms in this note, as they
will not be relevant for our analysis. Let us turn off the electric field F for now. It turns
out that α = 1 yields the JT model with a negative cosmological constant, although with
the topological term absent, and α = 0 reproduces the two-dimensional string effective
action (which with a slight abuse of nomenclature is also often called the CGHS model
as is explained below).2 For the values of α < 1 or α > 1 we find models with solutions
with running Ricci scalars but that are nevertheless asymptotically AdS2, see table 1 for
an overview.

In absence of the electric field F , this two-dimensional model has extensively been
studied in [16], but we present a higher dimensional pedigree which was lacking. Related
to that, the model can also be framed as a holographic interpretation in the context of IR
descriptions of non-relativistic models. Not only does adding the charge, which also has
a higher dimensional pedigree, enrich the structure of the black holes, it also provides the
opportunity to study the AdS2 throat of these two-dimensional models.

1For a review see [11].
2The topological term usually captures the entropy of the higher dimensional extremal black hole near

which the two-dimensional model arises, consider JT arising near a near extremal Reissner-Nordström black
hole for example. The absence of the toplogical term reflects the fact that the large d procedure does not
involve a near extremal black hole or at least its entropy is vanishing.
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value α = z
d Conformal structure — specific two-dimensional model

α = 0 Schwarzschild, constant Ricci scalar — string effective action or “CGHS”
0 < α < 1 Schwarzschild-AdS, running Ricci scalar
α = 1 Schwarzschild-AdS, constant Ricci scalar — JT without topological term
α > 1 extremal Reissner-Nordström, running Ricci scalar

Table 1. Classification of solutions of model presented in (1.1) with the electric field turned off.
These were first studied in [16]. When turning on the electric field we get a conformal diagram
similar to higher dimensional Reissner-Nordström with appropriate asymptotics.

Callan-Giddings-Harvey-Strominger (CGHS) [17] added c free massless minimally
scalar fields to the two-dimensional string effective action such that their conformal anomaly
dominates the semi-classical approximation when c� 1. Unlike the string effective part of
the action, it is unknown how to motivate c� 1 minimally coupled scalars from a higher
dimensional perspective. We point out that the higher dimensional Lifshitz model allows
for adding higher dimensional massless free non-minimally coupled scalars that become
minimally coupled massless free scalars in two dimensions. To be explicit, this means one
can motivate adding a term like −

∫
d2x
√
−g

∑c
i=1

1
2(∇fi)2 to the action above in (1.1),

amounting to (5.2).
We conclude this note with some comments on hyperscaling violation and dual theories.

The remainder of the note is organized in the following manner. In section 2 we present the
effective picture that arises at large dimensions and derive the two-dimensional effective
model in section 3. In section 4 we charge the Lifshitz black hole and subsequently the
throat. We conclude in section 5 with some further comments and an outlook.

2 The effective picture at large dimensions

In this section we present the geometry and thermodynamics that arises near a Lifshitz
black hole for large dimensions.

2.1 Lifshitz black holes at large d and z

In order to support an asymptotically Lifshitz solution to the Einstein equations it is
necessary to consider the presence of matter. We will postpone introducing the Lagrangian
and first consider the metric of a d+ 2 > 3 dimensional planar Lifshitz black hole [18]

ds2 = −
(
r

L

)2z
f(r)dt2 + L2dr2

r2f(r) +
(
r

L

)2
d~x2

d , f(r) = 1−
(
r0
r

)d+z
, (2.1)

where L is the Lifshitz equivalent of the anti-de Sitter length scale, length scale r0 is related
to the mass parameter of the theory and determines the location of the horizon. The d~xd
denotes the d dimensional transverse hyper planar space. Furthermore z is the dynamical
critical exponent, which can be found to be restricted to z ≥ 1 due to null-energy conditions
where z = 1 reproduces the anti-de Sitter result. We will consider

α = z

d
, (2.2)

where we keep α fixed. As a consequence, large d will be matched with large values of z.
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w = 0 w ∼ d

hor
izon

intermediate

w

near horizon far away

Figure 1. The near horizon region captures the black hole physics for d � 1. This region
corresponds to r − r0 � r0 (or w � d), whereas the far away region corresponds to r − r0 � r0/d

(or w � 1). In the far away region one finds a Lifshitz vacuum with z � 1. This region is not
of interest to us in this note. Notice that there is a range of interpolation, represented by the
intermediate region. The relation between coordinates is given in (2.3).

For convenience we introduce a coordinate w that covers the outside of the horizon
region:

r

r0
= 1 + w

d
. (2.3)

The real w coordinate allows us to discriminate in which radial region we expect influences
of the black hole to remain non-trivial as d� 1. In combination with d� 1 we consider

w ∈ [w1, w2] with 0 ≤ w1 < w2 and w1, w2 ∼ dn . (2.4)

We will be interested in three regions, the far away from the horizon regime n > 1, the
intermediate (or interpolating) regime n = 1 and the near horizon region n < 1. It’s this
last region that will probe black hole physics. See figure 1 for a schematic overview.

Far away from the horizon. For n > 1 we focus on the far away from the horizon
region and obtain3

ds2 = −ν2α
0

(
w

d

)2αd
dt2 + `2d

dw2(
w
d

)2 +
(
w

d

)2
dx2

d , (2.5)

where we introduced the dimensionless number

ν0 =
(
r0
L

)d
, (2.6)

and characteristic length scale
`d = L

d
. (2.7)

The behavior here is vacuum Lifshitz space with z � 1.
3See appendix A for details.
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Intermediate. Taking n = 1 the intermediate region sits between the far and near region.
Its metric reads

ds2 = −ν2α
0

(
1 + w

d

)2αd
f(w)dt2 + `2

dw2(
1 + w

d

)2 +
(

1 + w

d

)2
d~x2

d , (2.8)

f(w) = 1−
(

1 + w

d

)−(1+α)d
. (2.9)

This region interpolates between the vacuum Lifshitz space far away and the near horizon
behavior.

Near horizon region. Near the horizon, for n < 1 we find that the gravitational dy-
namics are governed by

ds2 = −ν2α
0 e2αwf(w)dt2 + `2

dw2

f(w) + d~x2
d , f(w) = 1− e−(1+α)ω . (2.10)

For ω = 0 we reproduce the coordinate singularity at the horizon. We point out that
the space becomes a product of a two-dimensional space and the transverse d-dimensional
hyperplane. The corresponding Ricci scalar is given by

R = e−w(1+α)(1− α)− 2α2

`2
, α = z

d
. (2.11)

We observe that for the asymptotical value w � 1, only the last term, the curvature of
the vacuum, contributes negatively to the Ricci scalar unless α = 0. For α = 0, which
corresponds to z finite and only d � 1, this metric is asymptotically flat and in fact the
metric is the two-dimensional string black hole as was pointed out in [7] for z = 1.

From the behavior of the Ricci scalar it is suggested that the remaining cases 0 <

α < 1, α = 1 and α > 1 all have characteristically different behavior, despite all being
asymptotically Anti-de Sitter. In the case α = 1, the Ricci scalar does not run and we will
in fact show from a reduction that this case is governed by the JT model with a negative
cosmological constant. In the context of Lifshitz holography it was pointed out before
that α = 1 or z = d enjoys extra symmetries, see e.g. [19–21]. Note that in all but the
α = 1 case, the Ricci scalar blows up if we would extend w → −∞, signaling a black hole
singularity.

The proper length of the near horizon region, or throat, is not infinite. We compute
the proper length ∆` of the throat

∆` = `

∫ w2

w1=0

dw√
1− e−(1+α)w

= `
2

1 + α
log

[
e

1+α
2 w2 +

√
e(1+α)w2 − 1

]
, (2.12)

where w2 at its largest is w2 ∼ d. Recalling that `d = L/d, this shows that ∆` is finite
as d � 1. This contrasts the length of the throat of the near horizon near extremal
Reissner-Nordström, which can be extended arbitrarily.

Finally, if we choose α = 0 the metric approaches Schwarzschild gauge. For α > 0 we
can adopt the coordinate ρ = `d

α ν0 exp(αω) to obtain Schwarzschild gauge

ds2 = −F (ρ)dt2 + dρ2

F (ρ) + d~x2
d , F (ρ) =

(
α

`d
ρ

)2
− ν1+α

0

(
α

`d
ρ

)α−1
α

. (2.13)

– 5 –



J
H
E
P
0
1
(
2
0
2
3
)
1
4
1

When performing the reduction of the transverse space, we end up with a consistent trunca-
tion to a two-dimensional solution that will inherit the t and ρ components presented here.

2.2 Thermodynamics

We will establish what thermodynamics we expect in the throat. We take the temperature
and entropy of the original planar black hole [22] and take the d� 1 limit whilst keeping
α = z/d fixed. This results in

T = d+ z

4π
rz0
Lz+1

d�1= 1 + α

4π να0 `
−1
d , S = Vd

4πGN
rd0

d�1= ν0

4G̃N
, (2.14)

where Vd = L−d
∫
ddx is the dimensionless volume factor of the transverse space, GN is the

d+2 dimensional Newton’s constant of the bulk and G̃N = GN/(VdLd) is the dimensionless
Newton’s constant. As is suggestive from the Schwarzschild gauge in (2.13), ν0 as defined
in (2.6) takes the role of the mass parameter. This makes sense as it is related to r0,
which in term again is related to the mass parameter of the higher dimensional black hole.
Notice that for α = 0, temperature T and entropy S cease to be related. This is known
from the classical black hole studied in the CGHS model, see e.g. [23]. In general, the
relation between T and S reflects what was expected in the introduction, i.e.,

T ∼ Sα . (2.15)

The energy becomes

E = Vd
16πGN

rz+d0 L−1−zd
d�1= ν1+α

0
4G̃N

`−1
d , (2.16)

which (using the first law) gives us the Smarr law

E = 1
1 + α

ST , (2.17)

and the free energy F reads
F = −αE . (2.18)

The free energy is always negative and as such the black hole solution dominates, as was
already known for the parent theory. One can modify the planar topology of the horizon to
be spherical. This would amount to adding a term proportional to r−2 to the warp factor,
of which the effect is flushed out when considering large d.

3 Obtaining a two-dimensional model

In this section we introduce the action that we consider and perform dimensional reduction.

3.1 Einstein-Maxwell-dilaton model

The Lifshitz planar black hole (2.1) is a solution of general relativity with in its matter
sector an electric two-form field coupled to a scalar. The charge of the two-form field is
fixed by requiring the asymptotics of the metric to have Lifshitz behavior and as such is not
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interpreted as a usual (electric) charge. The action of interest, dubbed Einstein-Maxwell-
dilaton action, is given by [18]

I = 1
16πGN

∫
dd+2x

√
−g

[
R− 2Λ− 1

2(∇ψ)2 − 1
4e

λ̄ψF̄ 2
]
, (3.1)

where Λ represents the cosmological constant, F̄ the field strength, R the Ricci scalar, gµν
the metric tensor and ψ a scalar field. In particular

Λ = −(d+ z − 1)(d+ z)
2L2

d�1= −(1 + α)2

2`2d
, λ̄ = −

√
2d
z − 1

d�1= −
√

2
α
, (3.2)

where for future purposes we included the large d expressions and recall that α = z/d. The
equations of motion are given by

Rµν −
2Λ
d
gµν −

1
2∂µψ∂νψ −

1
2e

λ̄ψ
[
F̄µσF̄ν

σ − 1
2dF

2gµν

]
= 0 , (3.3)

∇µ
(
eλ̄ψF̄µν

)
= 0 , �ψ − λ̄

4 e
λ̄ψF̄ 2 = 0 . (3.4)

Requiring the metric as in (2.1) we find solutions for the field strength F̄ and dilaton ψ

to be

F̄rt =

√
2(z − 1)(d+ z)

L2 e−λ̄ψ
gttgrr√
−g

, eψ =
(
r

L

)√2d(z−1)
. (3.5)

The explicit expression of the scalar field ψ is important as it will fix a relation with the
dilaton that arises from the process of dimensional reduction.

3.2 Dimensional reduction

In order to isolate the two-dimensional dynamics we perform a reduction of the transverse
to t and r space. Explicitly:

ds2 = γabdx
adxb + e−

4
d
φ(xa)d~x2

d , (3.6)

where a, b run over t, r and by comparing to Ansatz (2.1) and scalar solution (3.5) we
derive

e−2φ =
(
r

L

)d
= e

√
d

2(z−1)ψ d�1= e
ψ√
2α . (3.7)

It is furthermore established that

F̄rt
d�1=

√
2α(α+ 1)`−1

d e2φ+
√

2
α
ψ√−γ . (3.8)

Performing the reduction and taking d � 1 in the Einstein-Maxwell-dilaton action (3.1)
we establish

I2d = Vd
16πGN

∫
d2x
√
−γe−2φ

[
Rγ + 4(∇φ)2 + `−2

d (1 + α)2 − 1
2(∇ψ)2 − 1

4e
−
√

2
α
ψF̄ 2

]
.

(3.9)
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To simplify this action we shall use our higher dimensional insight that ψ and φ are in
fact related (3.7) and we furthermore integrate out field strength F̄ (which is only there to
support the geometry), using expression (3.8), to obtain:4

I2d = 1
16πG̃N

∫
d2x
√
−γe−2φ

[
Rγ + 4(1− α)(∇φ)2 + 4λ2

]
, (3.10)

where G̃N is the dimensionless Newton’s constant as introduced below (2.14) and where
we introduced

4λ2 = `−2
d (1 + α) ≥ 0 . (3.11)

Let us pause and consider the different models, depending on different values of α = z/d ≥
0. For α = 0 we find the two-dimensional string effective action. If one were to add c free
minimally coupled scalars, it is called the CGHS model.

In the case of α = 1, we reproduce the JT model with a negative cosmological constant,
but without the usual topological term that arises when one derives the JT model from
considering, e.g., radially infalling modes near the horizon of a near extremal Reissner-
Nordström black hole in four dimensions. The JT model without topological term, is also
derived when one considers, e.g., a circular reduction of a BTZ black hole for negative cos-
mological constant [24] or a circular reduction of three-dimensional de Sitter for a positive
cosmological constant [25].

In the case where α 6= 0, 1, we find asymptotically anti-de Sitter solutions, which differ
from the usual JT solutions due to a running Ricci scalar. In table 1 in the introduction, we
present the characteristic solutions to this model as obtained in [16]. The explicit solutions
to the model we obtained in (3.10), but, we stress, not a higher dimensional pedigree, are
given by [16]

e−2φ = (aρ)
1
α , ds2 = −

[
a2ρ2 − b(aρ)

α−1
α

]
dt2 + dρ2

a2ρ2 − b(aρ)
α−1
α

, (3.12)

Rγ = −2λ2
[ 4α2

α+ 1 + 2bα− 1
α+ 1(aρ)−

α+1
α

]
, (3.13)

where b is proportional to the ADM mass and where

a = 2αλ√
(α+ 1)

= α

`d
. (3.14)

Note that solving aρ = bα/(α+1) gives the radius of the horizon. Comparing with our
higher dimensional Schwarzschild gauge result (2.13) and the fact that we are considering
a consistent truncation, we establish that

b = ν1+α
0 . (3.15)

Note that α = 0 forms a seperate case that was already analyzed in [7] for z = 1.
4For details see appendix B.
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Furthermore, for ρ → 0 one detects the singularity, as is signaled by e−2φ → 0 or the
Ricci scalar blowing up. For ρ → ∞ we find e−2φ → ∞ and the Ricci scalar becoming
a negative constant, implying a conformal boundary. Let us finally check the resulting
entropy. The gravitational entropy becomes

S = 1
4G̃N

e−2φ
∣∣∣∣
horizon

= ν0

4G̃N
, (3.16)

which reproduces the entropy given in (2.14) as expected.

4 Adding charge to the mix

It is possible to add charge to the Lifshitz black hole, which will be inherited by the two-
dimensional picture. Let us first revisit the higher dimensional picture before reducing to
two dimensions.

4.1 Charging the black hole

Let us start by considering the geometry. Adding charge will only modify the warp factor
of the metric we introduced in (2.1) [22]

f(r) = 1−
(
r0
r

)d+z
+ q2

r2(d+z−1) , (4.1)

where q is the charge parameter of the black hole. We now introduce rh, which is the black
hole horizon that satisfies f(rh) = 0 and in general rh 6= r0. We will now show that we can
nevertheless keep on using the w coordinate as introduced in (2.3), (r/r0)d = 1 + w/d to
analyze the throat region. To do so, we establish that

f(rh) = 0 , ⇒ rd+z
0
rd+z
h

d�1= ξ1+α :=
1±

√
1− 4Q2ν

−2(1+α)
0

2Q2ν
−2(1+α)
0

, (4.2)

where Q = q/Ld+z−1 is the dimensionless charge and we choose the lower sign for ξ as
it corresponds to the outer horizon. We furthermore see that 4Q2ν

−2(1+α)
0 = 1 implies

extremality, as both horizons overlap. Furthermore this implies ξ1+α = 2 at extremality.
It can be checked that this satisfies f ′(rh) = 0. The above teaches us that using the
coordinate w, only (r/r0)d will receive a correction of factor ξ, but otherwise we can use r0
and rh interchangeably. Let us now turn to the expressions for temperature T and entropy
S, of which we use the expressions from [22]. The entropy and temperature now become

S = Vd
4πGN

rdh
d�1= ν0

4G̃N
1
ξ
, (4.3)

T = rzh
4πL1+z

[
(d+ z)− (d+ z − 2) q2

r
2(d+z−1)
h

]
d�1= ξ−α

να0
4π`

−1
d

[
1− ξ2(1+α)ν

−2(1+α)
0 Q2

]
,

(4.4)
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which shows that at extremality, 4Q2ν
−2(1+α)
0 = 1 and ξ1+α = 2, the temperature indeed

vanishes while the entropy remains finite. We now check stability in the free energy F

in the canonical ensemble (fixed charge) and Gibbs free energy W in the grand canonical
ensemble (fixed electric potential):

F
d�1= −ξ

−1ν0

4πG̃

[
ξ−ανα0

4π `−1
d + T

]
, W

d�1= − α

4G̃
ξ−1ν0T , (4.5)

which are, as expected from higher dimensional considerations, both negative for all attain-
able temperatures and where we used expressions obtained from [22]. We do not expect
that taking into account spherical topology will cause phase transitions, as those only arise
for z < 2 and now z � 1.

To conclude this subsection, using ρ = `d
α ν0 exp(αω) in the throat region to obtain

Schwarzschild gauge as before in (2.13) we now find

ds2 = −F (ρ)dt2 + dρ2

F (ρ) +d~x2
d , F (ρ) =

(
α

`d
ρ

)2
−ν1+α

0

(
α

`d
ρ

)α−1
α

+Q2
(
α

`d
ρ

)− 2
α

. (4.6)

Next we consider the dimensional reduction.

4.2 Charging the throat

The way we charge the Lifshitz black hole is by adding a two-form F that is coupled to
scalar ψ in the following specific way [22]

I = 1
16πGN

∫
dd+2x

√
−g

[
R− 2Λ− 1

2(∇ψ)2 − 1
4e

λ̄ψF̄ 2 − 1
4e

λQψF 2
]
, (4.7)

where exponent

λQ =

√
2(z − 1)

d
d�1=
√

2α , (4.8)

is not equal to λ̄. We emphasize that the action in (4.7) contains two two-forms, of which
F̄ is only there to support the Lifshitz geometry and F provides the electric charge. The
two-forms can be told apart by their different manners of coupling to the scalar ψ. Solving
the equations of motion one finds

Frt = qL−d−z+1

√
2d(d+ z − 2)

L2 e−λQψ
gttgrr√
−g

d�1= Q
√

2(α+ 1)`−1
d e2φ−

√
2αψ√−γ . (4.9)

Taking the same reduction as in (3.6), d � 1 and the relation between the dilatons (3.7),
as in the uncharged case, we finally obtain

I = 1
16πG̃N

∫
d2x
√
−γe−2φ

[
Rγ + 4(1− α)(∇φ)2 + 4λ2 − 1

4e
−4αφF 2

]
. (4.10)

One could choose to integrate out F using (4.9). Solving the equations of motion in
Schwarzschild gauge and recycling the value for the dilaton we established before, we find

e−2φ = (aρ)
1
α , ds2 = −f(ρ)dt2 + dρ2

f(ρ) , f(ρ) = a2ρ2 − ν1+α
0 (aρ)

α−1
α +Q2ρ−

2
α , (4.11)
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with a = α/`d. Contrasting the uncharged case, this model was not considered by [16].
The global causal structure is (AdS-)Reissner-Nordström. In fact, this model allows one
to study the charged throat of the large d Lifshitz black hole. Curiously, one could study
the extremal limit, so another throat, within the already existing throat solution — a true
nod to inception.

5 Comments and outlook

We studied a charged Lifshitz black hole model for large d while keeping α = z/d fixed. In
this setup, the dynamics near the black hole horizon turn out to be governed by a family of
models (4.10), depending on α, which are all asymptotically AdS2 (apart from α = 0 that
was obtained before in this manner in [7] for z = 1) and include the JT model with α = 1
as a special case. The uncharged case was studied before — but no higher dimensional
derivation was given — in [16]. For α 6= 0, 1 even the uncharged models have a running
Ricci scalar. Below we give some comments on these results.

Minimally coupled scalars. CGHS added c free massless minimally scalar fields to the
two-dimensional string effective action such that their conformal anomaly dominates the
semi-classical approximation when c� 1. Unlike the string part of the action, for c� 1 it
was unknown how to motivate these minimally coupled scalars from a higher dimensional
perspective. Owing to the fact that we are considering a consistent truncation, we know
from (3.7) that e−2φ = exp[

√
d

2(z−1)ψ]. As a result, adding c massless probe scalars fi that
do not depend on the transverse space and are of the following specific form yields the
minimally coupled two-dimensional scalars:

Iprobe = − 1
16πGN

∫
dd+2x

√
−ge

−
√

d
2(z−1)ψ

c∑
i=1

1
2∂µfi∂

µfi

d�1= − 1
16πG̃N

∫
d2x
√
−g

c∑
i=1

1
2∂µfi∂

µfi .

(5.1)

Combining this with (4.10) explicitly gives

I =
∫
d2x
√
−γ

(
e−2φ

[
Rγ + 4(1− α)(∇φ)2 + 4λ2 − 1

4e
−4αφF 2

]
− 1

2

c∑
i=1

(∇fi)2
)
. (5.2)

These probe scalars on the higher dimensional Lifshitz black hole, from a perspective
of model building, generate the CGHS procedure for the broad family of charged and
uncharged black holes parametrized by α = z/d. A two-dimensional topological term
could, perhaps, also be engineered in such fashion.

Hyperscaling violation. One can further deform the Lifshitz metric to also include
an overall term r−2θ/d where θ < d. This modifies the warp factor to be f(r) = 1 +
k (d−1)2

(d−θ+z−2)2 − (r0/r)d−θ+z + q2/r2(d−θ+z−1) [26–28], where k = 0, 1 corresponds to planar
and spherical horizon topology respectively. If one keeps θ of order one, it turns out that
this is equivalent to θ = 0 in the large d approach. Requiring, instead θ ∼ d, the overall
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term in the metric r−2θ/d does not contribute to the near horizon geometry but does modify
the resulting two-dimensional warp factor. However, it is expected that the functional form
of the resulting two-dimensional model is the same. In [29] an approach with large θ was
considered.

Quasinormal modes and AdS/CMT. The two-dimensional model can also be viewed
as a holographic interpretation in the context of IR descriptions of non-relativistic con-
densed matter models. The large dimension approach has successfully been used to analyze
quasinormal modes [30, 31], something that could complement the numerical results of [19]
and connect to (poles of) two-point functions [32].

Holographic dual. The JT model allows for a boundary description through the Schwar-
zian [33]. Meanwhile, it has also been shown that the dual theory allows for the description
as an ensemble average [34], something that is under investigation for higher dimensional
theories. The models with α 6= 0, 1 are asymptotically AdS2, but without a vanishing bulk
term on-shell, implying an extra contribution for the boundary Schwarzian.5 It would be
curious to find out the implication for the matrix model approach of describing this family
of models.
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A Coordinates and their large d behavior

Let y be a real number that is independent of d. We make use of the identity

(
1 + dn

y

d

)−d
d�1=


e−d

ny , if n < 1 ,
(1 + y)−d , if n = 1 ,(
dn−1y

)−d
, if n > 1 ,

(A.1)

where y is a real parameter that is independent of d. As a result, taking w as defined
in (2.3) and (2.4), we find

(
r

r0

)−d
=
(

1 + w

d

)−d
d�1=


e−w , if n < 1 ,(
1 + w

d

)−d
, if n = 1 ,(

w
d

)−d
, if n > 1 ,

(A.2)

where the n = 1 case interpolates between n < 1 and n > 1.
5Despite not stated explicitly in this note, the Gibbons-Hawking-York term takes the same functional

as for JT or CGHS.
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B Integrating out F̄

In order to go from the two-dimensional model in (3.9) to the two-dimensional model
in (3.10), we need to integrate out the field F̄ in the action.We will use the solution of F̄
given in (3.8).∫

d2x
√
−γ

[
−1

4e
−2φ−

√
2
α F̄ 2

]
→ −

∫
d2x
√
−γ

[
−1

4e
−2φ−

√
2
α (−γ)(2grrgtt)F̄ 2

rt

]
= (∗) ,

(B.1)
where the overall minus sign arises because we are integrating out a kinetic term, in order
to ensure that the equations of motions stay the same. We continue the computation by
inserting the on-shell solution of the field strength

(∗) =
∫
d2x
√
−γ

[
−α(α+ 1)`−1

d e2φ+
√

2
α

]
=
∫
d2x
√
−γe−2φ

[
−α(α+ 1)`−1

d

]
, (B.2)

where in the last line we used the relation between ψ and φ from (3.7). Combining this
term with the contribution coming from the cosmological constant we obtain λ2 as given
in (3.10).
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