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1 Introduction

The successes of current gravitational wave (GW) detectors [2], together with the expected
reach of future observatories [3–9], has reinvigorated various efforts to tackle the perturbative
regime of the two-body dynamics in gravity stemming off of “traditional”[10–12] as well
as those inspired by effective field theory (EFT) techniques [13–17]. In a concerted effort
with various other theoretical frameworks, e.g. [18–32], EFT-based approaches — both in
the Post-Newtonian (PN) [33–70] and Post-Minkowskian (PM) regimes [71–87]—in parallel
with amplitudes-based methodologies, e.g. [88–116], have led to major breakthroughs in our
understanding of the (classical) relativistic problem in general relativity. However, albeit
with some notable exceptions, e.g. [49, 50, 68–70, 87], the vast majority of the EFT-rooted
results have occurred in the conservative sector of PN/PM theory, culminating in the recent
derivation of the state-of-the-art knowledge for potential [54, 55, 61, 78, 109] and radiation-
reaction tail effects [56, 57, 62, 79, 110] to 5PN and 4PM order for non-spinning bodies,
respectively. Following pioneering developments in the realm of PN expansions [1, 45–50],
the purpose of this paper is to extend the EFT approach in order to incorporate conservative
and dissipative effects in the PM regime within a unified framework.

In principle, radiative observables at infinity, such as the (source) radiated energy, can be
computed by matching the stress-energy tensor using the trajectories in the conservative PM
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EFT [74] and subsequently squaring the (on-shell) one-point function [85–87]. Mimicking
the simplifications also found in PN theory [41, 67–70], this piecewise derivation—one scale
at a time—thus becomes simpler than constructing the full gravitational integrand, entailing
(for instance for the case of instantaneous interaction) only a single “radiation graviton”
coupled to potential exchanges. This is even more striking if we resort to an adiabatic
approach within a PN multipole expansion [41, 42, 44]. In this case so-called moment
relations (from Ward identities) allow us to trade non-linearities for derivatives of the
multipoles that can then be computed using the conservative potential, e.g. [67–70]. Instead,
for reasons that will become clear momentarily, in this paper we develop a formalism which
allows us to simultaneously derive both conservative and dissipative effects.

One of the major bottlenecks in computations in the PM regime has been the existence
of intricate families of relativistic integrals, e.g. [78, 79, 109, 110]. Remarkably, following key
ideas in particle physics [117–145], a very powerful tool has emerged as a weapon-of-choice
to tackle multi-loop relativistic integration, namely the use of differential equations [75, 113].
One of its main virtues is that only through their boundary values the solution may be
sensitive to whether potential and/or radiation modes are considered, allowing us to tackle
the entire (classical) soft region at once. This was exploited in amplitude-based approaches
to compute the relativistic impulse at 3PM order [105, 112, 114]. In these methodologies
one relies on taking the classical limit of a quantum amplitude, similarly to the derivations
in [99, 100, 109, 110]. However, as we demonstrate here, we can bypass these manipulations
and directly compute the classical total relativistic impulse within a worldline EFT approach.

The use of differential equations has been already implemented in the EFT approach to
solve the conservative dynamics to 4PM order, first using only the potential region for the
boundary conditions [75, 78] and later on incorporating radiation-reaction effects [79]. Yet,
in all cases the standard “in-out” vaccum-to-vaccum amplitude was utilised, together with
Feynman’s prescription for the propagators, which captures conservative-only contributions.
However, the existence of such a powerful machinery in the form of differential equations
— encoding in principle both conservative and radiative contributions to the dynamics —
begs us for a more general framework where all dynamical effects may be incorporated
in unison: feeding two birds with one scone. Fortunately, the Schwinger-Keldysh “in-in”
formalism [146–150] is tailor-made for this purpose. Contrary to in-out boundary conditions,
the in-in approach systematically accounts for the correct causal propagation, while at the
same time the prescription in [1] provides us with a natural separation between conservative
and dissipative terms at the level of the effective action (already implemented in [48, 53] to
obtain unambiguous results at 4PN). As we shall see, the procedure promotes Feynman’s
i0-prescription and cutting rules to a prominent role also at the classical level.

The full integrand including dissipative effects turns out to be a tad more involved than
matching for the stress-energy tensor; however, as we show here it is practically equivalent
to building the in-out counterpart. Hence, the difference between conservative and/or
dissipative terms ultimately arises through the choice of propagators. Nevertheless, as we
shall see, the type of Green’s functions does have an impact in the application of standard
integration tools, notably the use of ‘symmetry relations’, which is essentially the part
of the computation which requires a careful treatment. Yet, bootstrapping the solution
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through differential equations yields powerful constraints, in particular in the radiation
sector, which allow us to read off much of the final answer without the need to compute
all of the boundary constants [79]. As a paradigmatic example we explicitly derive the
full solution of the scattering problem to 3PM order, reproducing previous results in the
literature [75, 85, 99, 105, 112, 114]. For completeness, we also reproduce the leading
radiation-reaction effects in classical electrodynamics [151, 152]. The derivation of the
hitherto unknown total relativistic impulse at 4PM order is discussed in [153].

Throughout this paper we use the following conventions: we use the mostly minus
signature: ηµν = diag(+,−,−,−). The Minkowski product between four-vectors is denoted
as k · x = ηµνk

µxν , and we use k · x = δijkixj for the Euclidean version, with bold
letters representing 3-vectors. We use the shorthand notation

∫
k ≡

∫
dDk/πD/2 and

δ̂(n)(x) ≡ 2πδ(n)(x) for the n-th derivative of Dirac-δ functions. We handle divergent
integrals through dimensional regularization (dim. reg.), with D = 4 − 2ε. We define
M−1

Pl ≡
√

32πG for the Planck mass in ~ = c = 1 units. We denote M = m1 + m2 the
total mass, µ = m1m2/M the reduced mass, ν ≡ µ/M the symmetric mass ratio, and
∆m ≡ (m1 −m2)/M =

√
1− 4ν for the (dimensionless) mass difference, with m1 ≥ m2.

2 Schwinger-Keldysh worldline theory

The initial value formulation of non-conservative classical dynamics at the level of Hamilton’s
action principle was broadly discussed in [1], and more concretely in [45–50] in the context
of the EFT formalism with multipole expanded PN sources introduced in [33]. In this
section we adapt the same formalism to the worldline EFT approach in the PM regime and
encourage the reader to consult [1, 45–50] for further details.

2.1 Basic formalism

The main idea is to compute the effective action imposing only vacuum boundary conditions
for the gravitational field at initial time. This is achieved by performing a ‘closed-time-path’
integral over the field variables, e.g. [148, 149]. To this end it is convenient to introduce
auxiliary fields, both for the metric and worldline sources. In our case at hand, the effective
action for the two-body problem then takes the form (schematically)

exp
(
iSeff [xa(1), xa(2)]

)
=
∫
Dh1Dh2 exp

(
iSEH[h1]− iSEH[h2]+ iSpp[h1, xa,1]− iSpp[h2, xa,2]

)
,

(2.1)
with a doubling of degrees of freedom both for the gravitational field as well as the particles
(a = 1, 2), with the latter treated as external sources. The Einstein-Hilbert action is
given by,

SEH = −2M2
Pl

∫
d4x
√
−g R , (2.2)

while the point-particle action is of the Polyakov form [74]

Spp = −
∑
a

ma

2

∫
dτa

(
v2
a + hµν

MPl
vµav

ν
a

)
, (2.3)
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with vµ ≡ dxµ/dτ the four-velocity. A suitable gauge-fixing term must be added to (2.2) [74].
The path integral in (2.1) over the metric degrees of freedom is then computed via the saddle
point approximation, without including (quantum) ‘loops’ of the gravitational field(s) [74].

In these variables the matrix of propagators for the h1,2 gravitational perturbation(s)
becomes, see appendix A,

GAB(x− y) = i

(
∆F(x− y) −∆−(x− y)
−∆+(x− y) ∆D(x− y)

)
, (2.4)

with A,B ∈ {1, 2}.
The equations of motion follow from Seff [xa(1), xa(2)] via the standard Euler-Lagrange

procedure, and subsequently identifying xαa,1 ⇔ xαa,2.
An alternative representation, often used in the literature, is given by the following

change of variables due to Keldysh [147]

h−µν = 1
2(h1µν + h2µν)

h+
µν = h1µν − h2µν

⇔ h1µν = h−µν + 1
2h

+
µν

h2µν = h−µν − 1
2h

+
µν ,

(2.5)

and likewise to the external worldline sources,

xαa,+ = 1
2(xαa,1 + xαa,2)

xαa,− = xαa,1 − xαa,2
⇔

xαa,1 = xαa,+ + 1
2x

α
a,−

xαa,2 = xαa,+ − 1
2x

α
a,− .

(2.6)

In this basis the matrix of propagators takes the most familiar form dictated by causality,1

KAB(x− y) = i

 0 −∆adv(x− y)

−∆ret(x− y) 1
2∆H(x− y)

 , (2.7)

relax where this time A,B ∈ {+,−}. The ∆H(x) ≡ ∆+(x) + ∆−(x) is the Hadamard
propagator, see appendix A, which does not feature in the classical regime and may be
ignored in the saddle point approximation. In this basis the equations of motion follow
from the condition,

δSeff[xa,+, xa,−]
δxµb,−(τ)

∣∣∣∣∣ xa,−→0
xa,+→xa

= 0 . (2.8)

It is straightforward to show that the effective action is given by the general form

Seff[xa,+, xa,−] =
∑
a

ma

∫
dτa

(
−1

2v
2
a,1(τa) + 1

2v
2
a,2(τa)

)
+ Sint[xa,1, xa,2]

= −
∑
a

ma

∫
dτa va,+ · va,− + Sint[xa,+, xa,−] ,

(2.9)

such that
mb

d

dτ
vµb (τ) = −ηµν δSint[xa,+, xa,−]

δxνb,−(τ)

∣∣∣∣∣ xa,−→0
xa,+→xa

, (2.10)

1Notice the difference between upper and lower indices.
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and the total impulse, e.g. for particle 1, becomes

∆pµ1 = m1∆vµ1 = m1 (vµ1 (∞)− vµ1 (−∞))

= m1

∫ ∞
−∞

dτ1
d

dτ1
vµ1 (τ1) = −ηµν

∫ ∞
−∞

dτ1
δSint [xa,+, xa,−]

δxν1,−(τ1)

∣∣∣∣∣ xa,−→0
xa,+→xa

.
(2.11)

Our task now is to compute the interaction part of the effective action, Sint [xa,+, xa,−],
using the Feynman rules that descend from (2.1). Despite the doubling of degrees of freedom
in the in-in effective theory, we shall demonstrate next that the construction of the full
integrand turns out to be remarkably similar to the computation of the impulse using the
standard in-out Feynman rules [75, 78, 79].

2.2 Feynman rules for the in-integrand

The quantity of interest, once the graviton fields have been integrated out, is the variation
of the effective action which appears in the impulse (2.11). Rather than the effective action,
it turns out to be more efficient in this case to construct Feynman rules directly for its
variation, which features both in the equations of motion and total impulse. The reason
is two-fold. First of all, the physical limit xa− → 0 can be explicitly taken, and moreover
one can readily identify the similarities with the in-out integrand prior to performing
the integration. For notational simplicity throughout this section we suppress sums over
particle’s (a = 1, 2) labels.

Let us start with the propagators. To construct the integrand it turns out to be
convenient to use the Keldysh representation. Hence, since we will be dealing with the
retarded (or advanced) Green’s functions in (2.7), we will depict the graviton propagator as

= iPµν;αβ∆ret(p) , (2.12)

where the arrow on the momentum is associated with the standard momentum routing
whereas the arrow on the wavy line indicates the direction of the time flow. The advanced
propagator, therefore, may be represented by the same arrow on the momentum p but with
the time flowing in the opposite direction.

Next we move onto the interacting part of the point-particle action, which reads

Spp[x±, h±]→ − m

2MPl

∫
dτ
∫
k

{
h+
µν(k)

2

[
ei k·(x++ x−

2 )
(
vµ+ +

vµ−
2

)(
vν+ +

vν−
2

)

+ei k·(x+−
x−

2 )
(
vµ+ −

vµ−
2

)(
vν+ −

vν−
2

)]

+ h−µν(k)
[
ei k·(x++ x−

2 )
(
vµ+ +

vµ−
2

)(
vν+ +

vν−
2

)

−ei k·(x+−
x−

2 )
(
vµ+ −

vµ−
2

)(
vν+ −

vν−
2

)]}
.

(2.13)
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In general, a Feynman diagram will have several insertions of the worldline coupling to the
gravitational field(s). In the computation of the variation of the effective action, however,
only one such insertion at a time will be hit by the derivative in (2.11). Therefore, we can
distinguish two types of worldline vertices. The first is obtained when no variation is acting
on it. In this case we can set the physical condition already at the level of the effective
action such that we have, in Fourier space,

Spp|x−→0
x+→x

= − m

2MPl

∫
dτ h+

µν(k)ei k·xvµvν , (2.14)

which we represent as

= − im

2MPl

∫
dτ ei k·xvµvν , (2.15)

with the arrows defined according to (2.12). Notice that this Feynman rule resembles
the standard in-out scenario, with the Feynman propagator replaced by a retarded one.
For reasons that will become clear momentarily we will refer to these vertices as sources.

The remaining case, which occurs when the variation with respect to x− hits the vertex,
turns out to be surprisingly simple. The key is to notice,

δSpp
δxα−(σ)

∣∣∣∣∣x−→0
x+→x

=− m

2MPl

∫
dτ
∫
k
h−µν(k)eik·x

[
ikαvµvνδ(τ−σ)+(ηµαvν+ηναvµ)δ′(τ−σ)

]
=− m

2MPl

∫
dτ
∫
k
h−µν(k)eik·xδ(τ−σ) [ikαvµvν−ik ·vηµαvν−

ηµαv̇ν−ik ·vηναvµ−ηναv̇µ] ,
(2.16)

which means only one type of time flow — opposite to the previous case — must be
considered. The associated Feynman rule for this particular vertex becomes (evaluated
at xα(σ))

= − im

2MPl
ei k·x [i kαvµvν − i k · v ηµαvν − ηµαv̇ν − i k · v ηναvµ − ηναv̇µ] ,

(2.17)
where the cross, which we will refer to as a sink, indicates this is the worldline vertex where
the δ/δxα derivative of the action has been taken. This is the only rule which differs from
the standard in-out treatment.

Adding to the mix the bulk-type interactions written in the Keldysh representation, it
is straightforward now to construct the in-in integrand. In particular, it is clear that any
graviton vertex that leads to more than one sink can be neglected. Hence, only non-linear
couplings with sources attached to a single sink linked to e.g. particle 1, for instance

(2.18)
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must be considered to compute the total ∆pα. This is also consistent with having a causal
time ordering attached to each diagram, as expected. At the end of the day, this follows
directly from the fact that we are solving classical field equations with iterated retarded
Green’s functions. Notice that, as long as loops of the gravitational field are neglected, this
also precludes the appearance of the Hadamard propagator.

Let us conclude this part with a few useful remarks. First of all, because of the property
we just discussed about sinks and sources and the fact that only tree-level diagrams of
the gravitational field(s) are needed in the classical theory, we notice that non-linear
terms involving more than one h+ in the in-in expansion of the Einstein-Hilbert cannot
contribute to the path integral in (2.1). This is obviously the case for even number of h+’s
(including zero) which identically vanish, and is also the case for odd terms greater than one
simply because there is no K++ component in (2.7). This is a direct consequence of our
in-in Feynman rules yielding a natural causal flow for each (classical) diagram.2 Likewise,
following our conventions in (2.5) and taking into account the relative minus sign in (2.1),
it is also easy to show that the coefficient for the nth order term (schematically) h+[h−]n−1

in the bulk action would become identical to the standard in-out counterpart, provided we
ignore the ± labels. The only apparent difference at the level of the Feynman rules are
symmetry factors. The h+ and h− are indistinguishable in the in-out approach, whereas
these are two separate fields in the in-in framework. This means that, at the level of the
in-out and in-in effective actions, we do not expect to arrive to the same result between the
two by simply replacing propagators. However, at the level of the equations of motion, it is
clear that we must also consider diagrams with sinks at all instances where e.g. particle
1 appears. Moreover, since in the classical theory we only include tree-level connected
Feynman diagrams, it is straightforward to show that the additional Wick contractions over
the metric field in the in-out computation of the impulse are compensated by the sum over
sinks in the in-in formalism.3

From here we conclude that upon replacing ∆ret → ∆F in the in-in integrand for the
impulse we would directly recover the value computed with in-out boundary conditions. The
converse is also manifestly true. After taking into account the time ordering consistently
with the in-in rules, the integrand for the impulse may be equally computed directly from
the in-out approach by replacing Feynman with retarded propagators consistently with a
causal ordering. Another relevant comment has to do with the expression for the vertex
in (2.17). Since the last four terms appear due to time derivatives in the Euler-Lagrange
equations, they only matter for the equations of motion but vanish in the total impulse.

2.3 Conservative vs dissipative

In principle the interaction part of the effective theory, Sint[xa,1, xa,2], includes both dissipa-
tive and conservative terms alike. It is clear, however, that any term in the effective action

2Notice this is no longer the case in the quantum theory once loops of the gravitational field(s) are allowed.
3This is also manifest at the level of PN computations of the effective action in terms of multipole

moments, where different overall factors appear in the in-in and in-out approach but both coincide after the
variations of the respective actions are considered, see e.g. [48].
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which does not mix between the 1 and 2 variables, e.g. of the form

Sint[xa,1, xa,2] ⊃
∫

dτa (V1[xa,1]− V2[xa,2]) , (2.19)

can be combined with the kinetic part yielding

Seff[xa,1, xa,2] =
∑
a

ma

∫
dτa (Lcons[xa,1]− Lcons[xa,2]) + Sdiss[xa,1, xa,2] , (2.20)

with (up to terms that vanish in the limit xa,− → 0)

Lcons[xa] ≡ −
(∑

a

ma

2 v2
a −

V1[xa] + V2[xa]
2

)
, (2.21)

such that the physics described by this Lagrangian — which can be equally described by a
conserved Hamiltonian — naturally falls into the conservative sector. See [1] for a more
detailed discussion.

Notice we do not make any assumption regarding the origin of Va[xa], which in principle
can (and will) receive contributions from both off-shell potential as well as on-shell radiation
modes. Needless to say, if the Green’s functions are expanded in the potential region
around quasi-instantaneous interactions [33], the difference between Feynman, retarded
(or advanced) propagators becomes obsolete. In such case the effective action becomes
entirely of the form in (2.19), as expected. However, that is not the full story. In fact,
radiation-reaction tail terms are known to contribute to the conservative sector through a
term of the form in (2.19) [48].

The obvious follow up question then becomes whether one can identify these pieces in
advance. As we show next, that is indeed the case for most — although not necessarily all
— of conservative terms.

Let us take the matrix in (2.4) and split it as

GAB = GF
AB +Gcut

AB , (2.22)

with

GF
AB = i

∆F(x− y) 0

0 ∆D(x− y)

 , Gcut
AB = i

 0 −∆−(x− y)

−∆+(x− y) 0

 . (2.23)

Given that GF
AB is diagonal, its contribution to both the Dh1 and Dh2 integrals in (2.1)

can be computed independently of each other using the standard in-out rules. Moreover,
since they come with opposite signs, it is straightforward to show that at the end of the
day the contribution from GF

AB to the effective action takes the form

Seff[xa,1, xa,2] ⊃
∫

dτa (VF[xa,1]− VD[xa,2]) , (2.24)

where we have VD[x] = V ?
F [x] (which follows from the properties of the Feynman and Dyson

propagators, see appendix A). Hence, according to (2.21), the in-in effective action contains
a conservative piece given by

Lcons[xa] ⊃
1
2

∫
dτa (VF [xa] + VD[xa]) = R

∫
dτa VF [xa] . (2.25)
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These manipulations then explicitly demonstrate that using the standard in-out Feynman
rules with Feynman’s i0-prescription and keeping only the real part of the resulting effective
action produces a contribution to the dynamical equations which can be always included
as part of a conservative sector. Notably, following our previous reasoning, we can also
obtain this conservative contribution directly from the ±-basis by replacing ∆ret → ∆F in
the integrand for the impulse, thus landing in the in-out result as we demonstrated before.

There are, of course, also dissipative effects. These are obtained by at least one insertion
of Gcut in (2.1), which mixes the xa,1 and xa,2 variables. At the level of the ±-basis,
these terms appear from the mismatch between retarded/advanced and Feynman Green’s
functions, and therefore can be entirely written in terms of ∆± propagators. They are
proportional to δ(p2) in Fourier space, arise due to gravitational radiation, and, as expected,
are only present when on-shell modes are turned on.

A priori, other than those identified through (2.25), we cannot tell in advance whether
the effective action contains more terms of the form in (2.19). In fact, it may not hold for
all types of non-linear radiation-reaction contributions, in particular those involving several
(non-vanishing) insertions of ∆± which may lead to additional contributions of the form
in (2.19) that are not captured by (2.25). In some paradigmatic examples the contribution
from (2.25) does encapsulate the entire conservative sector. This is the case, for instance,
for all potential interactions (for which ∆± vanishes). It is also the case for tail-induced
effects [48, 52, 53, 78, 79]. We will return to this point briefly in section 4, and in more
detail elsewhere [154]. Fortunately, none of the above issues arise at leading order in the
radiation-reaction at 3PM, which involves only a single non-vanishing insertion of ∆−. In
this case there is a clear separation into dissipative and conservative contributions, which
we study next.

3 Scattering to 3PM

3.1 Building the integrand

We can now use the in-in diagrammatic rules to obtain the variation of the effective action
necessary to compute the total impulse. For simplicity, we only display here the arrows
which dictate — according to causality — whether retarded or advanced Green’s functions
appear in the graviton propagators.

At 1PM order there are only two diagrams

δSeff[x+, x−]
δxα−

∣∣∣∣∣
1PM

x−→0
x+→x

= (3.1)

At 2PM, on the other hand, we have

δSeff[x+, x−]
δxα−

∣∣∣∣∣
2PM

x−→0
x+→x

= (3.2)
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Whereas, at 3PM order,

δSeff[x+, x−]
δxα−

∣∣∣∣∣
3PM

x−→0
x+→x

= (3.3)

The ellipsis in the last expression include the same type of self-energy diagrams (with
all sources and sinks on the same worldline) shown above, which are in general needed to
include radiation-reaction effects. Modulo the time routing of each diagram, all of these
resemble the same type in the conservative sector to 3PM [74, 75], except for the self-energy
terms which lead to scaleless integrals in the potential region that in dim. reg. can be set
to zero. More on this below.

Once the integrand for the impulse is constructed via the above Feynman rules we still
need to compute it on solutions to the equations of motion. This entails, as before [74],
adding the iterations of lower order contributions to the effective action evaluated on the
trajectories [74] to a given nPM order,

xµa(τa) = bµa + uµaτa +
n∑
k=1

δ(k)xµa(τa) ,

vµa (τa) = uµa +
n∑
k=1

δ(k)vµa (τa) ,
(3.4)

with ua the incoming velocities and bµ1−b
µ
2 ≡ bµ the (space-like) impact parameter four-vector.

These trajectories can be solved iteratively using (2.10) after the limit: xa,− → 0, xa,+ → xa,
has been taken. Because they are obtained from the variation of the effective action, following
our previous argument it is straightforward to show the resulting equations of motion in
the in-in and in-out formalisms are equally related by replacing retarded and Feynman
propagators, and vice-versa following a causal routing. Hence, the procedure to separate
between conservative and dissipative terms we discussed before is unaltered by the inclusion
of iterations. Moreover, since self-energy diagrams evaluated on unperturbed trajectories
vanish in dim. reg., they can only contribute through iterations on each of the sources.
Therefore, only the extra term in (3.1) is needed to 3PM order.

3.2 Integration problem

After the integrand is assembled, say for the impulse of particle 1, and the tensor reduction
performed following the same steps as in [75, 78, 79], we find the following families of
integrals:

I±±;T5...T9
ν1...ν9 =

∫
`1,`2

δ̂(ν1−1)(`1 · ua)δ̂(ν2−1)(`2 · ub)
(±`1 · u 6a)ν3(±`2 · u 6b)ν4

9∏
j=5

1
D
νj

j,Tj

, (3.5)
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where we use the same notation as in [75, 78, 79], except for the choice of i0-prescription,
determined by sets of square propagators of type Tj ∈ {ret, adv}:

D5,ret/adv =
(
`01±i0

)2−`2
1 , D6,ret/adv =

(
`02±i0

)2−`2
2 ,

D7,ret/adv =
(
`01+`02+q0±i0

)2−(`1+`2−q
)2
,

D8,ret/adv =
(
`01−q0±i0

)2−(`1−q
)2
, D9,ret/adv =

(
`02−q0±i0

)2−(`2−q
)2
.

(3.6)

The integrand itself only contains factors with ν1 = ν2 = 1, i.e. no derivative. However,
because the integrals in (3.5) turn out to be not all independent, derivatives of the Dirac-δ
functions may be introduced by the standard integration-by-parts (IBP) relations [118,
119, 155]. We have used the combination of the automated programs LiteRed [145] and
FIRE6 [136] to relate the integrals appearing in the integrand to a set of O(100) masters.4

The reader will immediately notice the sharp contrast with the number of master
integrals needed for the computation in [75]. The reason is one of the main advantages of
Feynman propagators, and the use of the symmetry relations implemented by these programs,
which are not present for the case of retarded/advanced Green’s functions. Nevertheless,
additional simplifications arise once we restrict ourselves to the conservative and dissipative
sectors, respectively. First of all, for the former we can replace retarded/advanced by
Feynman Green’s functions, essentially returning to the analysis in [75], which we review
below. For the latter, we notice only radiation modes contribute to ∆±. Hence, after
isolating the different kinematical regions of integration via e.g. the asy2.m code included
in the FIESTA package [124, 125, 143], we can show that only the 7th propagator in the
above families has a non-zero radiation region, with all others entering only through
potential modes. This means, as expected, that diagrams with a single insertion of ∆−
contribute to the dissipative sector at 3PM, with the others replaced by Feynman Green’s
functions. In such scenario, there is a subset of symmetry relations that reduce the number
of master integrals to about O(50), which we computed via the method of differential
equations [120, 121, 128, 129, 132, 133, 138].

Since there is only a single scale in the problem, it is convenient to choose the parame-
ter x, defined through [113]

γ = (x2 + 1)/2x , with γ ≡ u1 · u2 . (3.7)

The dependence on the parameter x is then extracted order by order in ε by iterated
integrations. At this order it is straightforward to show the differential equations can
be brought into canonical form [128]. For the problem at hand only three independent
functions appear {

log(x), log(1 + x), log(1− x)
}
, (3.8)

4There is one subtlety due to the presence of self-energy diagrams leading to iterations involving linear
propagators with the same internal momentum but both ±i0 prescriptions, e.g. 1/(`1 · u2 + i0)(`1 · u2 − i0).
(Notice this cannot occur for quadratic propagators in the classical theory.) These are both treated on equal
footing by the IBP programs, irrespectively of the signs. Hence, we would not know how to reassign the
correct signs after IBP relations. Fortunately, we were able to construct a basis of master integrals for which
these type of terms are absent (or appear in the numerator), thus avoiding this problem.
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up to polynomials in the x variable. This uniquely fixes the velocity dependence of the
master integrals up to a series of appropriate boundary conditions, which we choose near
the static limit x→ 1. Notably, the solution to the differential equations allow us to extract
the scaling in (1 − x) for each individual integral in this limit [79, 144], which becomes
extremely useful to set up a series of consistency conditions that allow us to simplify the
number of boundary constants needed to read off the full answer.

Additional consistency requirements may be enforced to reduce the number of in-
dependent constants. The first is the lack of absorption, ∆m2

a = 0, which implies the
conservation of the on-shell condition (pa + ∆pa)2 = p2

a, restricting the impulse to point
in the direction orthogonal to uµa [112, 114]. At a more technical level, we also impose the
cancelation in the final answer of intermediate 1/εk poles. Furthermore, terms proportional
to log(1− x) ∝ log v are uniquely fixed by the universal connection to tail terms [73] (and
therefore do not enter until 4PM order [79]). Finally, as anticipated e.g. [29], we can enforce
continuity of the massless/high-energy limit at 3PM order, thus removing mass singular-
ities.5 Remarkably, all of these properties completely determine the radiation-reaction
impulse in the direction of the impact parameter at 3PM, and only a handful of boundary
integrals for the longitudinal direction are needed.

3.3 Boundary integrals

As we mentioned, once the solution of the differential equations are known, the last input
are integration constants obtained from master integrals in the limit x→ 1. We first review
the procedure for the conservative pieces before discussing radiative contributions.

3.3.1 Conservative

As it was computed in [75], and further established here from the in-in formalism, the
conservative sector is obtained from the full integrand by replacing retarded/advanced
propagators by Feynman counterparts and keeping the real part of the resulting impulse.
In principle, at this stage both potential and radiation modes can be present. However,
as we mentioned earlier, only a single propagator has support on radiation modes and
therefore only the potential region contribute to the real part with time-symmetric boundary
conditions (with an imaginary part consistent with the optical theorem). This also implies
that all self-energy diagrams vanish in dim. reg. for the conservative sector at O(G3).

The result for the potential boundary conditions was already computed in [75]. However,
in order to relate the solution to the master integrals in [75] an additional set of (static)
IBP relations must be used at x = 1. Decomposing the impulse as

∆pµ1 =
∑
n

Gn∆(n)pµ1 , (3.9)

we find at 3PM order,

∆(3)pµ1,cons = 4M4νbµ

3|b|4x2(x2 − 1)5
[
c1(x) + νc2(x) + νc3(x) log(x)

]
− 3πM4νc4(x) ((∆m − 1)ǔµ1 + (∆m + 1)ǔµ2 )

8|b|3x2 (x2 − 1)2 ,

(3.10)

5As we shall see in [153] this is no longer the case at 4PM order.
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with |b| =
√
−bµbµ, where we have introduced

ǔ1 = γu2 − u1
γ2 − 1 , ǔ2 = γu1 − u2

γ2 − 1 , (3.11)

obeying ǔa · ub = δab. The ci’s are polynomials given by

c1(x) = −12x
(
x12 − 2x10 − x8 − x4 − 2x2 + 1

)
,

c2(x) = −(x− 1)2
(
5x12 − 14x11 − 88x10 − 114x9 − 5x8 + 128x7

+ 128x6 + 128x5 − 5x4 − 114x3 − 88x2 − 14x+ 5
)
,

c3(x) = 6
(
x8 − 8x6 − 30x4 − 8x2 + 1

) (
x2 − 1

)3
,

c4(x) =
(
x4 + 1

) (
5x4 + 6x2 + 5

)
.

(3.12)

Using that, for 0<x<1, log(x) = −arccosh(γ), the above result can also be written directly
in γ space, yielding

∆(3)pµ1,cons = bµ

|b|4
(
−2m1m2

(
m2

1 +m2
2
)

(γ2 − 1)5/2

(
16γ6 − 32γ4 + 16γ2 − 1

)
(3.13)

− 4m2
1m

2
2γ

3 (γ2 − 1)5/2

(
20γ6 − 90γ4 + 120γ2 − 53

)
+ 8m2

1m
2
2

γ2 − 1
(
4γ4 − 12γ2 − 3

)
arccosh (γ)

)
+ 3π

2
ǔ1
|b|3

m1m
2
2 (m1 +m2)

(
2γ2 − 1

) (
5γ2 − 1

)
γ2 − 1

− 3π
2
ǔ2
|b|3

m2
1m2 (m1 +m2)

(
2γ2 − 1

) (
5γ2 − 1

)
γ2 − 1 ,

in accordance with the result in [75].

3.3.2 Dissipative

Non-conservative terms are obtained by systematically including the factors of ∆− accounting
for the mismatch between Feynman and retarded propagators. Unlike Feynman Green’s
functions, the ∆− vanishes for off-shell modes and therefore we just need to consider the
single propagator which can have support on the radiation region. Furthermore, as we
discussed in [78, 79], each radiation mode scales with a power of (1− x)−2ε. This already
allows us to individually target radiative contributions.

Surprisingly, most of the integration constants for the dissipative sector can be deter-
mined by the same type of consistency constraints already implemented in [78, 79] to study
radiation-reaction effects in the conservative sector at 4PM. In particular, the contribution
in the direction of the impact parameter bµ turns out to be uniquely fixed. Furthermore, for
the longitudinal term, which must be proportional to ǔµ2 , the master integrals have already
been computed in the literature [85, 112, 114] via Cutkosky rules [156] (see e.g. appendix C
in [85]), which we confirm here in terms of solutions of the differential equations.
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As an example, consider the H-type master integral resulting after IBP relations

IH =
∫
`1,`2

δ̂′(`1 · ua)δ̂(`2 · ub)
`21`

2
2(((`1 + `2 − q)0 + i0)2 − (`1 + `2 + q)2)(`1 − q)2(`2 − q)2 . (3.14)

As we mentioned, only one leg may be taken as a full retarded propagator, with the other
ones having support only on potential modes. After replacing ∆ret → ∆F + ∆− and
identifying the conservative piece from the real part of the Feynman-only computation,6

the dissipative term is obtained by replacing ∆ret → ∆−, yielding for this integral

IcutH =
∫
`1,`2

δ̂′(`1 · ua)δ̂(`2 · ub)δ̂
(
(`1 + `2 − q)2)Θ

(
−`01 − `02 + q0)

`21`
2
2(`1 − q)2(`2 − q)2 , (3.15)

which (up to a sign) corresponds to the master integral f4 in [85] after performing the shift
`i ↔ −`i and q ↔ −q. This integral was computed by resorting to Cutkosky’s rules [156],
including also a cut over hypothetical linear ‘worldline propagators,’ which account for the
Dirac-δ functions already present in IH, and conspicuously everywhere in the worldline
formalism. We may describe the procedure diagrammatically as follows

IcutH = (3.16)

where the dotted lines represent the δ(n) functions as cut linear propagators, with the big
dot on the upper line denoting the case ν1 = 2 (i.e. a derivative) for one of the δ’s. The
cut over the retarded propagator denotes the replacement ∆ret(p) → 2πi δ(p2)Θ(−p0) in
momentum space.7 By Cutkosky’s rules, we can relate the cut integral to the imaginary
part of its uncut version,8

(3.17)

6Remarkably, the resulting imaginary part of the Feynman integrals entering the impulse in the ǔ2

direction vanish. Consequently, the contribution from the remaining cut integrals are real functions such
that the cancelation of imaginary parts becomes trivial in this case.

7Because of the Θ(−p0), we have flipped the arrow on the retarded propagator to illustrate that positive
energy is flowing towards the right of the diagram, as it is standard lore.

8The only subtlety here is the cut over the linear propagator, which relies on the identity∫
d4`

(2π)4
e−i `·x

` · u+ i0 = −2πi
∫

d4`

(2π)4 e
−i `·xδ(` · u)

(
Θ(u0)Θ(x0) + Θ(−u0)Θ(−x0)

)
,

such that the cut propagator is given by 2πi δ(` · u)Θ(u0), as expected. (Note this differs from the version
given in [114] in terms of Θ(`0) which, however, we believe to be a typo.) In this fashion, the δ(` · u) from
the time-integration of the worldline sources — naturally obeying u0 > 1 in the classical theory — can then
be equally described by cut linear propagators.
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with the dotted and straight lines representing the cut and uncut linear propagators,
including higher derivatives of Dirac-δ functions corresponding to higher powers of linear
propagators. The uncut integral, which is now entirely written in terms of Feynman
propagators, can then be computed in the near-static limit x → 1 by direct integration.
See [85] for more details.

Combining all these results we find at 3PM,

∆(3)pµ1,diss = M4ν2(1 + x4)2bµ

3|b|4x2(x2 − 1)5 [d1(x) + d2(x) log(x)]

+ πM4ν2ǔµ2
192|b|3x3(x2 − 1)4

[
d3(x) + d4(x) log

(
x+ 1

2

)
+ d5(x) log(x)

]
,

(3.18)

for the leading order contribution to the dissipative part, with

d1(x) = 4
(
5x6−27x4+27x2−5

)
, d2(x) =−24

(
x6−3x4−3x2+1

)
,

d3(x) = 105x12−552x11+1308x10−6408x9+29471x8−69840x7+93368x6−69840x5

+29471x4−6408x3+1308x2−552x+105 ,

d4(x) =−6
(
x2−1

)3(
35x8+120x7−460x6+968x5−1070x4+968x3−460x2+120x+35

)
,

d5(x) = 6x
(
35x13+60x12−325x11+304x10+198x9−788x8

+446x7−889x5+788x4−217x3−304x2+240x−60
)
. (3.19)

Translating to γ space we have,

∆(3)pµ1,diss = 4m2
1m

2
2 b

µ

3|b|4

(
2γ2 − 1

)2
(γ2 − 1)5/2

(√
γ2 − 1

(
5γ2 − 8

)
+ 3γ

(
3− 2γ2

)
arccosh (γ)

)

+ πm2
1m

2
2 ǔ2

48 (γ2 − 1)3/2 |b|3

[
−3γ

(
70γ6 − 165γ4 + 112γ2 − 33

) arccosh (γ)√
γ2 − 1

+ 6
(
35γ6 + 60γ5 − 185γ4 + 16γ3 + 145γ2 − 76γ + 5

)
log

(
γ + 1

2

)
+
(
−210γ6 + 552γ5 − 339γ4 + 912γ3 − 3148γ2 + 3336γ − 1151

)]
, (3.20)

which (up to an overall sign) reproduces the result in [114]. From here one can extract the
total radiated energy in hyperbolic-like motion in the center-of-mass frame,

∆Ehyp = −(∆p1 + ∆p2) · (m1u1 +m2u2)
|m1u1 +m2u2|

, (3.21)

that can then be further transformed via the boundary-to-bound dictionary [73]

∆Eell(J) = ∆Ehyp(J)−∆Ehyp(−J) , (3.22)

with J the (total) angular momentum, to obtain the radiated energy over one period of a
bound elliptic-like orbit.
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4 Discussion & outlook

Building upon the formalism introduced in [1, 45–50], we developed the in-in framework to
study scattering processes within the worldline EFT approach. Despite the apparent increase
in complexity, we have shown how the computation of the relativistic integrand for the total
impulse can be mapped to the in-out counterpart, and vice-versa, provided a consistent
flow (of time) is assigned to each diagram following the in-in Feynman rules. After reducing
the problem to a series of master integrals involving retarded Green’s functions, these can
then be computed to all orders in velocity through differential equations. In comparison
with standard Feynman propagators, only the issue of symmetry relations (under p→ −p)
must be reevaluated.9 The final solution then follows up to a set of boundary integrals in
the near-static limit. Notably, consistency conditions imposed by the full solution can be
further exploited to bootstrap the final answer up to a handful of constants.

In order to identify the different terms, the identity ∆ret = ∆F + ∆− allows us to split
the total in-in impulse as

∆pµtot = ∆pµF + ∆pµcut , (4.1)

where ∆pµF is obtained by replacing ∆ret with ∆F in the in-in integrand for the total
impulse. As we showed, this procedure agrees with the in-out derivation. The remaining
∆pµcut then involves the insertions of ∆−’s where the time ordering plays an important role.
Following [1] we demonstrated that ∆pµcons ≡ R∆pµF can be obtained from a conservative
Lagrangian/Hamiltonian, such that ∆pµdiss ≡ R∆pµcut includes all the dissipative effects,
yielding for the total impulse a decomposition

∆pµtot = ∆pµcons + ∆pµdiss , (4.2)

which is independent of the nature of the interaction. As expected, the imaginary parts
cancel out in the sum, which must add up to a real value for the impulse. The conservative
piece of the impulse is thus built up entirely in terms of (unoriented) Feynman propagators,
whereas the dissipative part is obtained by systematically replacing the full ∆ret with the
∆− Green’s functions. Diagrammatically, following our previous conventions and up to
iterations from lower order equations of motion, the computation for the variation of the
effective action can then be represented as follows

9In principle, because of the Θ(±p0) in advance/retarded propagators, it may seem these would introduce
extra terms once they are hit by derivatives w.r.t. the momentum. However, one can also think of the
i0-prescription as a choice of contour integration for Green’s function of the box operator. Hence, we do not
expect the ultimate choice to alter the form of the differential equations other than through the boundary
conditions. We thank Ruth Britto for a discussion on this point.
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Let us mention again that, although consistent with the analysis in [1], the separation
through Feynman’s prescription may, however, not be complete. In fact, we cannot rule
out the possibility that additional conservative-like terms, descending from interactions of
the form in (2.19), could remain hidden within the ‘dissipative’ part. This is particularly
relevant for non-linear radiative effects, starting at O(G4) and beyond, which include
even-in-time hereditary contributions, such a tail and memory effects.10 For instance, the
complete result for the impulse at 4PM reported in [153] suggests that conservative-like
hereditary terms may be present — from the point of view of the relative motion—beyond
the Feynman-only prescription, see also [62, 157] for related work in the PN regime. We
will return to this issue in more detail elsewhere [154].

After implementing the methodology of differential equations to compute the resulting
master integrals, the remaining task is reduced to obtaining the necessary boundary
conditions, both in the conservative and dissipative sectors, which may be then further
decomposed using the method of regions [33]. As we have seen, the contribution from
radiation modes to ∆pµF produces only imaginary terms at 3PM so that the conservative
sector is dominated by the potential-only region at this order. The impulse was already
computed in [75] and reproduced here from the full integrand. Radiation modes do enter in
the conservative sector, yet at higher orders. For instance, as discussed in [78, 79, 153], the
above procedure yields a conservative impulse at 4PM which includes both potential and
radiation-reaction effects. On the other hand, because of the presence of δ(p2), radiation
modes are necessary for a non-zero dissipative term.

The associated boundary integrals with the insertion of ∆− propagators can be obtained
either by subtracting from the computation with retarded Green’s functions the radiative
(Feynman-only) conservative part, see [153]; or directly, using Cutkosky’s rules [156], as it
was first implemented in [114] and discussed in here. For the latter one must generalize
the standard cutting rules, such that the Dirac-δ functions for the sources in the worldline
EFT approach may be described in terms of cuts over linear propagators. Once again, in
addition to the incursion of Feynman’s i0-prescription dictated by the path integral, here
we find yet another standard tool from quantum field theory, i.e. unitary relations, playing
a key role at the classical level. Even though all the integral cuts at 3PM may be computed
following the analysis in [85, 112, 114], we have shown a dramatic simplification occurs
after applying a set of consistency conditions to the full answer [79]. Similar simplifications
occur at higher PM orders [153]. This is another instance in which the use of differential
equations turn out to be a powerful tool to solve the entire dynamics.

Let us comment on some important points regarding the above manipulations, and in
particular with regards to the different choices of basis in the in-in formalism, namely either

10Let us emphasize that the distinction between different types of non-linear radiative effects, i.e., tails
(scattering off of the geometry), memory (scattering off of the earlier emission), or second order in the
radiation-reaction force, is only meaningful from the standpoint of the radiation (or far) zone, see e.g. [48, 62].
On the other hand, in a PM scheme as the one here, only the overall scaling associated with the number
of radiation modes involved has a significant meaning [79, 153]. This makes the connection between PM
computations and the more standard derivations of tail and memory effects in the PN literature, e.g. [11],
somewhat less straightforward, with complete results perhaps as the only path to meaningful comparisons,
see e.g. [157].
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using (2.4) or (2.7). On the one hand, the former provides us with a natural identification of
conservative terms via Feynman Green’s functions within the standard in-out prescription;
whereas, on the other hand, the latter makes causality explicit in the form of retarded
propagators. Yet, as we demonstrated here, the map between the in-in and in-out results
for the impulse allows us to implement the split in (4.1) even though, in principle, the
integrand was constructed in the ±-basis. In turn, the choice of basis influences the way
the real part of the impulse computed with Feynman propagators arises. While, as we
discussed, this is straightforward in the 1/2-basis, the cancelation of imaginary parts in the
±-basis becomes manifest only after (A.3) and re-writing ∆ret as the average of Feynman
and Dyson terms.

Let us conclude with a few remarks regarding the connection between the in-in worldline
formalism and the so-called KMOC approach introduced in [97]. Following unitarity of the
S-matrix, the KMOC prescription to compute the impulse is split into two contributions,
denoted as I(1) and I(2) in [97]. The former is constructed in terms of the scattering
amplitude in the standard in-out approach, whereas the latter appears in the form of a
sum over cuts. As in our case, the sum of these two terms must add up to the (real) total
impulse, and therefore intermediate imaginary parts must cancel out. Let us concentrate
first on the conservative sector. Following momentum conservation, the impulse (in general
relativity) can be uniquely determined at any PM order from I⊥, the perpendicular part
introduced in [114]. Hence, after taking the classical limit and subtracting super-classical
terms, the real part of the (time-symmetric) contribution linear in the scattering amplitude
ought to be identified with a conservative contribution.11 Modulo the lack of subtractions
in our formalism, this part then resembles the first term in our decomposition of the total
impulse — provided massive lines are further reduced and combined into Dirac-δ functions
using reversed unitarity [113].

For dissipative terms, on the other hand, both the perpendicular and longitudinal
contributions matter. Moreover, since the real part of the Feynman piece is invariant
under t→ −t, only the cuts contribute to the dissipative sector. The latter therefore must
include, among other things, the remaining terms in our decomposition. However, because
of super-classical pieces and the appearance of cuts over massive lines needed to account
for the conservative impulse in the longitudinal direction (consistently with momentum
conservation), the direct comparison between terms is less transparent. The map also
becomes less straightforward at higher orders once we include iterations of lower order
deflections that include radiation-reaction effects. Hence, although the KMOC and in-in
worldline formalism are clearly tightly related, the identification of terms requires further
study. Yet, understanding the map between the different frameworks, and the relation to the
eikonal phase [112] (see also [101]), can ultimately allow us to freely incorporate techniques
and simplifications that can help us not only fine-tune the computational machinery, but also
help us elucidate the role of quantum-based tools from the theory of scattering amplitudes
in classical computations.

11Notice that due to the pollution from super-classical terms additional subtractions, also in the form of
cuts, may still be needed even with potential-only modes, see e.g. eq. 6.18 in [114], resembling the iterated
terms in [99]. However, these cuts also contain physical information needed to include non-conservative effects.
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Note added. While the results in this paper were prepared for submission we became
aware of the work in [158] which has some overlap with the derivations in our paper.
We thank the authors for sharing a draft prior to submission.

Acknowledgments

We thank Ruth Britto, Christoph Dlapa, Walter Goldberger, Zhengwen Liu, Massimiliano
Riva and Chia-Hsien Shen for illuminating discussions, and in particular to Christoph Dlapa
for invaluable help on the topic of differential equations. J.N. would like to thank Benjamin
Sauer for useful exchanges. We would like to thank also the participants of the program
“High-Precision Gravitational Waves at the KITP (supported in part by the National Science
Foundation under Grant No. NSF PHY-1748958) for useful discussions. The work of G.K.
and R.A.P. received support from the ERC-CoG Precision Gravity: From the LHC to LISA,
provided by the European Research Council (ERC) under the European Union’s H2020
research and innovation programme (grant No. 817791).

A Green’s functions

Throughout this paper we use the following conventions for Feynman/Dyson,
retarded/advanced and Wightman Green’s functions:

∆F(x) =
∫ d4p

(2π)4
e−i p·x

p2 + i0 , ∆D(x) =
∫ d4p

(2π)4
e−i p·x

p2 − i0 ,

∆ret(x) =
∫ d4p

(2π)4
e−i p·x

(p0 + i0)2 − p2 , ∆adv(x) =
∫ d4p

(2π)4
e−i p·x

(p0 − i0)2 − p2 ,

∆±(x) = 2πi
∫ d4p

(2π)4 e
−i p·xδ(p2)Θ(±p0) , (A.1)

obeying, in position space,

∆F(x) = −∆+(x)Θ
(
x0)−∆−(x)Θ

(
− x0) ,

∆D(x) = ∆−(x)Θ
(
x0)+ ∆+(x)Θ

(
− x0) ,

∆ret(x) = −
(
∆+(x)−∆−(x)

)
Θ
(
x0),

∆adv(x) =
(
∆+(x)−∆−(x)

)
Θ
(
− x0) ,

(A.2)

implying the relations

∆ret(x) = ∆F(x) + ∆−(x) = ∆D(x)−∆+(x) ,
∆adv(x) = ∆F(x) + ∆+(x) = ∆D(x)−∆−(x) ,

(A.3)

B Classical electrodynamics

It is straightforward to use the formalism developed in this paper to study the case of
classical electromagnetism, controlled by the worldline action

S = −1
4

∫
d4xFµνF

µν −
∑
a

∫
dτa

(
ma

2 v2
a + e qav

µ
aAµ(xαa )

)
, (B.1)
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where Fµν = ∂µAν − ∂νAµ, Aµ is the four-vector potential, and qa=1,2 are the respective
charges. The computation simplifies drastically compared to the gravity case. The main
reason is the absence of bulk interactions, which implies only two diagram are needed for
the complete, all-order variation of the effective action:

δSeff[x+, x−]
δxα−

∣∣∣∣∣x−→0
x+→x

= (B.2)

Hence, all higher order contributions to the deflection are exclusively coming from iterations
via the equations of motion. The rest of the calculation is unchanged, such that the result
depends on a subset of the master integrals for the gravity case. Expanding the impulse in
powers of α = e2/4π,

∆pµ1 =
∞∑
n=1

∆(n)pµ1α
n , (B.3)

we find for the conservative contribution

∆(3)pµ1,cons = q3
1q

3
2b
µ

8π2|b|4M2ν2(x2 − 1)5

[
4
(
x2 + 1

)
x4 + ν

(
x9 − 8x6 + 14x5 − 8x4 + x

)]
+ q3

1q
3
2x
(
x2 + 1

)
((∆m − 1)ǔµ1 + (∆m + 1)ǔµ2 )

4π|b|3M2(∆2
m − 1)2(x2 − 1)2 ,

(B.4)
whereas the dissipative part becomes

∆(3)pµ1,diss = q2
1q

2
2b
µ

96π3|b|4M2(x2 − 1)2ν2

[ (
x2 + 1

)2 (
q2

1(∆m + 2ν − 1)− q2
2(∆m − 2ν + 1)

)

+ 12νq1q2x
(
x2 + 1

)2 (
x4 − 1− 4x2 log(x)

)
(x2 − 1)3

]

+ q2
1q

2
2ǔ

µ
2

768π2|b|3M2

[(
x2 + 3

) (
3x2 + 1

) (
(∆m − 1)2q2

1
(
x2 + 1

)
+ 2(∆m + 1)2q2

2x
)

(∆2
m − 1)2 x2(x2 − 1)

− 3q1q2
(
3x6 − 8x5 + 45x4 − 48x3 + 45x2 − 8x+ 3

)
ν (x2 − 1)3

+ 12q1q2x
2 (3x4 + 10x2 + 3

)
log(x)

ν (x2 − 1)4

]
,

(B.5)
which agrees with the result in [151, 152].
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