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1 Introduction

Since the Hawking-Page phase transition [1] of an AdS spacetime was proposed by Hawking

and Page in 1983, which was explained to a confinement/deconfinement phase transition in

gauge theory in ref. [2] and could also be understood as a solid/liquid phase transition [3]

by regarding the cosmological constant as pressure P = − Λ
8π = (n−1)(n−2)

16πl2
, black hole

thermodynamics has attracted lots of attention. Subsequently the phase transition in the

extended AdS/dS phase space has been widely considered [4–31]. Based on the similarity

of thermodynamic behaviors for black holes and ordinary systems, the microstructure of

black holes system was investigated by the Ruppeiner scalar curvature [20] following the

Ruppeiner geometry [32]. The number density of the speculative black hole molecules was

introduced to examine its phase transition and microstructure. This method was quickly

generalized to other black holes [33, 34]. Furthermore from the view point of the Gibbs

free energy landscape, the dynamic properties of various black hole phase transitions were

studied in refs. [35–39]. Since the phase transition of black holes is more important in black

hole thermodynamics, there exists a natural question how to probe the information of the

black hole phase transition.

So far although experimental evidences of black hole thermodynamics have not been

found, people still expect that black hole thermodynamics should have some observational

signatures, for example the quasinormal modes (QNMs), which may be detected from as-

tronomical observations in the future. Recently, the authors in refs. [40–50] had found

that QNMs indeed exhibit characteristic behaviours along the black hole phase transition.

Thus QNMs can be use to probe the phase transition of black holes in AdS/dS spacetime.

Especially there is a dramatic change of the slope of QNMs along with the black hole phase

transition [45]. These results indicate that there is a close connection between the dynami-

cal and thermodynamical aspects of black holes. In addition, as we well known that QNMs

are intimately linked to the unstable photon orbits [51–53], then they are playing an impor-

tant role in strong gravitational phenomena (such as the shadow, lensing, and gravitational
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waves) [54–62]. In short, QNMs can be regarded as the vibration frequencies of photon or-

bits and can be derived by the photon orbits [63]. Based on these observations, it is natural

to construct the relation between the photon orbits and black hole phase transitions and

to check out whether properties of photon orbits can signal the black hole phase transition.

Firstly, people proposed that the photon orbits signals a possible York-Hawking-Page

phase transition in refs. [64, 65]. Then the more clearly relation between photon orbits and

phase transitions of Reissner-Nordstrom-AdS black hole and rotating Kerr-AdS black hole

were shown in refs. [66, 67]. Namely, the photon orbit radius and the minimum impact

parameter along with the temperature are both exhibiting non-monotonic behaviours for

the low pressure, whose behaviours are indeed the characters of the phase transition ex-

istence. Particularly, the changes of those two quantities near the critical point could be

treated as the order parameters of phase transition, and they have an universal exponent

1/2. Subsequently, this issue has been extended to other black holes [68] and gravity theory

(Gauss-Bonnet case [69], massive gravity case [70], Born-Infeld case [71, 72]). A general

proof of the existence for these relations between photon orbits and phase transitions were

shown in ref. [73].

The linear charged black holes in AdS spacetime [74, 75] within a second-order phase

transition show a scaling symmetry: at the critical point the state parameters scale re-

spects to charge q, i.e., S ∼ q2, P ∼ q−2, T ∼ q−1 [76, 77]. It is naturally to gauss

whether there exists the scaling symmetry in the non-linear charged AdS black holes. As

a generalization of the charged AdS Einstein-Maxwell black holes, it is interesting to ex-

plore new non-linear charged systems. Due to infinite self-energy of point like charges

in Maxwell’s theory [78–82], Born and Infeld proposed a generalization when the field

is strong, bringing in non-linearities [83, 84]. An interesting non-linear generalization of

charged black holes involves a Yang-Mill field exponentially coupled to Einstein gravity, i.e.,

the Einstein-power-Yang-Mills (EPYM) theory, which possesses the conformal invariance

and is easy to construct the analogues of the four-dimensional Reissner-Nordström black

hole solutions in higher dimensions. Additionally several features of the EPYM gravity in

extended thermodynamics have recently been studied [30, 85, 86].

Inspired by these, we mainly investigate the relation between photon orbits and phase

transitions of the charged EPYM AdS black hole. This work is organized as follows. In

section 2, we would like to briefly review the thermodynamic quantities and the second-

order phase transition of charged EPYM AdS black hole. The null geodesics of this system

and the deflection angle are also analyzed. Furthermore we will qualitatively analyze the

relation of the hawking temperatures as a function of different coordinates (the event hori-

zon radius and photon sphere radius) respectively. In section 3, we present the behaviors

of the photon orbit radius and minimum impact parameter with the temperature nearby

the phase transition point and explore the influence of non-linear YM charge parameter

on the phase transition. A universal exponent for the changes of photon orbit radius and

minimum impact parameter before and after phase transition is also obtained. A brief

summary is given in section 4.
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2 Null geodesics of non-linear charged AdS black holes

The action for four-dimensional Einstein-power-Yang-Mills (EPYM) gravity with a cosmo-

logical constant Λ was given by [86–89] (8πG = 1)

I =
1

2

∫

d4x
√

g (R − 2Λ − Fγ) (2.1)

with the Yang-Mills (YM) invariant F and the YM field F
(a)
µν

F = Tr(F (a)
µν F (a)µν), (2.2)

F (a)
µν = ∂µA(a)

ν − ∂νA(a)
µ +

1

2ξ
C

(a)
(b)(c)A

(b)
µ A(c)

ν . (2.3)

Here, Tr(F
(a)
µν F (a)µν) =

∑3
a=1 F

(a)
µν F (a)µν , R and γ are the scalar curvature and a positive

real parameter, respectively; C
(a)
(b)(c) represent the structure constants of three-parameter

Lie group G; ξ is the coupling constant; and A
(a)
µ represents the SO(3) gauge group Yang-

Mills (YM) potentials defining by the Wu-Yang (WY) ansatz [90–92]. Variation of the

action with respect to the spacetime metric gµν yields the field equations

Gµ
ν + Λδµ

ν = T µ
ν , (2.4)

T µ
ν = −1

2

(

δµ
νFγ − 4γ Tr

(

F
(a)
νλ F (a)µλ

)

Fγ−1
)

. (2.5)

Variation with respect to the 1-form YM gauge potentials A
(a)
µ and implement the traceless

yields the 2-forms YM equations

d
(

⋆F(a)Fγ−1
)

+
1

ξ
C

(a)
(b)(c)F

γ−1A(b) ∧⋆ F(c) = 0, (2.6)

where F(a) = 1
2F

(a)
µν dxµ∧dxν , A(b) = A

(b)
µ ∧dxµ, and ⋆ stands for the duality. It is obviously

that for the case of γ = 1 the EPYM theory reduces to the standard Einstein-Yang-Mills

(EYM) theory [93, 94]. In this work our issue is paid on the role of the non-linear YM

charge parameter γ.

Here we should point out that the non-Abelian property of the YM gauge field is

expressed with its YM potentials

A(b) =
q

r2
C

(a)
(i)(j)x

idxj , r2 =
3

∑

j=1

x2
j , (2.7)

and q is the YM charge, the indices (a, i, j) run the following ranges: 1 ≤ a, i, j ≤ 3. The

coordinates xi take the following forms: x1 = r cos φ sin θ, x2 = r sin φ sin θ, x3 = r cos θ.

Since we have utilized the WY ansatz for the YM field, the invariant for this field takes

the form [95–97]

Tr(F (a)
µν F (a)µν) =

q2

r4
. (2.8)

This form leads to the disappearance of the structure constants which can be described the

non-Abelian property of the YM gauge field. Therefore, under the condition of the WY
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ansatz we may focus on the role of the non-linear YM charge parameter, instead of the

non-Abelian character parameter.

For this system, the EPYM black hole solution with the negative cosmological constant

Λ in the four-dimensional spacetime is obtained by adopting the following metric [98]:

ds2 = −f(r)dt2 + f−1dr2 + r2dΩ2
2, (2.9)

f(r) = 1 − 2M

r
− Λ

3
r2 +

(

2q2
)γ

2(4γ − 3)r4γ−2
, (2.10)

where dΩ2
2 is the metric on unit 2-sphere with volume 4π and q is the YM charge. Note that

this solution is valid for the condition of the non-linear YM charge parameter γ 6= 0.75,

and the power YM term holds the weak energy condition (WEC) for γ > 0 [87]. In the

extended phase space, Λ was interpreted as the thermodynamic pressure P = − Λ
8π . For

γ = 1, the YM charge term in the metric has the same form as the Maxwell charge term

for the Einstein-Maxwell-Yang-Mills (EMYM) theory. Thus the contribution of the YM

charge term on the thermodynamic property should be same as that of the Maxwell charge

term in EMYM theory. The only difference is that they have different gauge groups: the

YM field is of SO(3), while the EM field is of U(1). These comments are consistent with

that in ref. [85]. The black hole event horizon locates at f(r+) = 0. The parameter M

represents the ADM mass of the black hole and it reads

M(S, q, P ) =
1

6



8πP

(

S

π

)3/2

+ 3

(

S

π

)
3−4γ

2

(

2q2
)γ

8γ − 6
+ 3

√

S

π



 . (2.11)

And in our set up it is associated with the enthalpy of the system. The black hole temper-

ature, entropy, and volume were given by [86]

T =
1

4πr+



1 + 8πPr2
+ −

(

2q2
)γ

2r
(4γ−2)
+



 , S = πr2
+, V =

4πr3
+

3
. (2.12)

The YM potential Ψ was given by [80]

Ψ =
∂M

∂q2γ
=

r3−4γ
+ 2γ−2

4γ − 3
. (2.13)

The above thermodynamic quantities satisfy the first law

dM = TdS + Ψdq2γ + V dP. (2.14)

The equation of state P (V, T ) for canonical ensemble (fixed YM charge q) can be obtained

from the expression of temperature as

P =

(

4π

3V

)1/3
[

T

2
− 1

8π

(

4π

3V

)1/3

+

(

2q2
)γ

16π

(

4π

3V

)
1−4γ

3

]

. (2.15)
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It is known that this non-linear AdS black hole exhibits a vdW’s-like phase transition, with

the critical point given by [30, 99]

r4γ−2
c =

(

2q2
)γ

f(1, γ), f(1, γ) = γ(4γ − 1), Sc = π
(

2q2
)

γ

2γ−1 f2(1, γ), (2.16)

Tc =
1

π (2q2)γ/(4γ−2) f1/(4γ−2)(1, γ)

2γ − 1

4γ − 1
, (2.17)

Pc =
2γ − 1

16πγ (2q2)γ/(2γ−1) f1/(2γ−1)(1, γ)
. (2.18)

where the YM charge parameter satisfies the condition 1
2 < γ. It is clear that this critical

point closely depends on the YM charge and the non-linear YM charge parameter. We

can obtain a interesting relation, which is only related with the non-linear YM charge

parameter, from the above quantities as

S2
c T 2

c Pc =
(2γ − 1)3

16πγ(4γ − 1)
. (2.19)

Now we will consider a free photon orbiting around a black hole one the equatorial

hyperplane defined by θ = π/2 and pθ = 0. The Lagrangian takes the form as

H =
1

2
gµνpµpν =

1

2

(

−f−1p2
t + fp2

r + r−2p2
φ

)

. (2.20)

Note that the dot represents the derivative to the affine parameter and pµ are the gener-

alized momentums. For this black hole background, there are two Killing fields ∂t and ∂φ,

which lead two constants, the particle energy E and orbital angular momentum L along

each geodesics

− E = pt = −f(r)ṫ, L = pφ = r2φ̇. (2.21)

The light rays are the solutions to Hamilton’s equations

ṗµ = − ∂H

∂xµ
, ẋµ =

∂H

∂pµ
, (2.22)

which read

ṗt = 0, ṗφ = 0, ṗθ = 0,

ṗr = −1

2

(

f ′p2
t

f2
+ f ′p2

r + 2fprp′

r −
2p2

φ

r3

)

,

ṫ = −pt

f
, ṙ = fpr, φ̇ =

pφ

r2
. (2.23)

With H = 0, we have

ṙ2 + Veff = 0, Veff =
L2f

r2
− E2. (2.24)

As an example, we exhibit the effective potential in figure 1 for the EPYM AdS black hole

with the fixed parameters γ = 1.01, P = 0.003, q = 1.9, M = 2, and different angular

momentums L/E. Since the positive of ṙ2, there exists the condition: Veff < 0. Thus the
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Figure 1. The effective potential for the EPYM AdS black h ole with the parameters γ = 1.01, P =

0.003, q = 1.9, M = 2. The angular momentums L/E of the photon varies from 0.5 to 36 from

bottom to top.

photon can only survive in the range of negative effective potential. When the conserved

quantum L is small, the photon will fall into the black hole from somewhere with a larger

value of r. While, for the larger value of L, the peak of effective potential will increase,

that leads to the reflection of photon before it falls into black hole. Between these two

cases, there exists a critical case which is described by the thickness red line, whose peak

approaches zero at r = 4.3122 and at the same time the radial velocity of photon vanishes.

This point just corresponds to the photon sphere because of the spherically symmetric

static black hole. In the following, we mainly discuss the relation between the photon

sphere radius and phase transition of the EPYM AdS black hole.

The unstable circular photon sphere is determined by

Veff = 0,
dVeff

dr
= 0,

d2Veff

dr2
< 0. (2.25)

From the second equation, we find that the radius rph satisfies

2f(r) |rph
= rf ′(r) |rph

. (2.26)

For given the metric function, we also obtain the radius from the above equation. Solving

the first equation, the impact parameter or the angular momentum of the photon is

µph ≡ L

Ec
=

r
√

f(r)

∣

∣

∣

∣

rph

. (2.27)

From this relation, we have the behaviors of the non-linear YM charge parameter and

the impact parameter with the photon sphere radius, which are shown in figure 2. It is

obviously that there exist the critical curves when given the pressure and mass of black hole.

The corresponding critical values are exhibited in table 1. The critical impact parameter,

radius, and non-linear YM charge parameter are both increasing with the YM charge.

Additionally, we will qualitatively analyze the relation of the phase transition both

in the photon sphere radius coordinate and the event horizon radius coordinate in the

following. The corresponding quantitative results will be presented in the next section.
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critical curve
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rph

Γ

(a) q = 1.9, µ2
ph = 1, 10, 21.6, 27, 28, 28.5.

critical curve

0 2 4 6 8 10 12 14

0

2

4

6
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10

rph

Μ
p

h

(b) q = 2.

Figure 2. γ and µph vs. rph with P = 0.003, M = 2. The non-linear YM parameter is set to

0.85, 0.95, 0.98, 1, 1.005, 1.01 in the rph − µph diagram from the bottom to the top.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Μ

si
n

2
Α

Figure 3. The angle as the function of impact parameter with the parameters γ = 1, P =

0.0003, q = 1.9, M = 2. The observer’s position varies from 1 to 1000 from the red line to the

black one.

Since the photon sphere radius meet the requirements in eqs. (2.26) and (2.27), so we have

rph = rph(r+), or r+ = r+(rph), (2.28)

f ′(rph) =
2rph

µ2
ph

=
df(rph)

drph
=

df(r+)

dr+

dr+

drph
> 0. (2.29)

Because the temperature should be positive, we can obtain

df(r+)

dr+
=

T

4π
> 0. (2.30)

By combining above two expressions, we have

dr+

drph
> 0, (2.31)

which implies that there is a monotonously increasing relation between the event horizon

radius and the photon sphere radius. For the van de Waals-like phase transitions for EPYM

AdS black holes, the critical point is determined by the following equations

dT (r+)

dr+

∣

∣

∣

∣

r+=rc

=
d2T (r+)

dr2
+

∣

∣

∣

∣

r+=rc

= 0, (2.32)
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q 0.85 1 1.5 1.9 2

µ2
phc 7.351515 10.18365 17.91095 21.5645 22.216

rphc 1.06611 1.33639 2.18652 2.74 2.86303

γc 0.804019 0.821639 0.893342 0.960512 0.978177

Table 1. The critical quantities in rph − γ diagram for different YM charges and M = 2.

where rc is the critical event horizon radius of EPYM black holes. We just want to know

whether this relation can be transferred to the photon sphere radius case. As

dT (r+)

dr+

∣

∣

∣

∣

r+=rc

=
dT (rph)

drph

drph

dr+

∣

∣

∣

∣

r+=rc

= 0, (2.33)

we can know that there must exist a critical photon sphere radius rphc that is of the

following form
dT (rph)

drph

∣

∣

∣

∣

rph=rphc

= 0 (2.34)

after considering eq. (2.31). Here the relation T (r+) = T (r+(rph)) = T (rph) has been kept

in mind. From the relation

d2T (r+)

dr2
+

∣

∣

∣

∣

r+=rc

=

[

d2T (rph)

dr2
ph

drph

dr+
+

dT (rph)

drph

d

drph

(

drph

dr+

)

]

× drph

dr+

∣

∣

∣

∣

r+=rc

= 0 (2.35)

together with the conditions eqs. (2.31) and (2.34), we can obtain

dT (rph)

drph

∣

∣

∣

∣

rph=rphc

=
d2T (rph)

dr2
ph

∣

∣

∣

∣

rph=rphc

= 0. (2.36)

From eqs. (2.32) and (2.36), we can know that the critical point in the r+ − T diagram

corresponds to the one in the rph − T diagram. Apart from this, we can also know that

dT (r+)

dr+
=

dT (rph)

drph

drph

dr+
> 0 or < 0 (2.37)

can correspond to
dT (rph)

drph
> 0 or < 0, (2.38)

respectively as we have the relation eq. (2.31), which means that the correspondence be-

tween r+ − T diagram and rph − T diagram exists beyond the critical points.

Next, we will investigate the effect of the angular momentum on the observer’s angle,

especially the critical angle with the maximum impact parameter. Considering light rays

sent from an observer at radius coordinate r0 into the past. These light rays can be divided

into two classes: light rays of the first class go to infinity after being deflected by the black

hole. Light rays of the second one go towards the horizon of the black hole. If there are no

light sources between the observer and the black hole, initial directions of the second class

– 8 –
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correspond to darkness on the observer’s sky. This dark circular disk on the observer’s

sky is called the shadow of the black hole. The boundary of the shadow is determined by

the initial directions of light rays that asymptotically spiral towards the outermost photon

sphere. Note that the light rays in the photon sphere are unstable with respect to radial

perturbations.

We consider a light ray that is sent from the observer’s position at r0 into the past under

an deflection angle α with respect to the radial direction. The deflection angle is given by

cot α =

√

grr

gφφ

dr

dφ

∣

∣

∣

∣

r0

=

√

1

f(r)r2

dr

dφ

∣

∣

∣

∣

r0

. (2.39)

From eqs. (2.20) and (2.23), we have the orbit equation

dr

dφ
=

√

f(r)r2

√

r2µ2

f(r)
− 1 (2.40)

with the impact parameter or the angular momentum µ ≡ L
E . Thus the deflection angle α

satisfies

sin2 α =
f(r0)

r2
0µ2

. (2.41)

Especially, the critical angle reads sin2 αc = f(r0)
µ2

ph
r2

0

. That indicates that µ has a close

relation with the critical deflection angle and the observer’s position, which is just the

phenomenon of the black hole lensing. For the light ray with the large impact parameter,

its deflection angle is small. Gradually decreasing µ to µph, the deflection angle will be

larger and larger, until to the bounded one αc. These behaviors are presented in figure 3.

That is consistent with that showed in ref. [54].

As what we have shown in the above, there are two important quantities rph and µph for

a photon sphere. In the following, we will probe the detailed behaviors of these two quanti-

ties near phase transition, and discuss whether they carry the phase transition information.

3 Behaviors of the photon sphere radius and the minimum impact pa-

rameter near phase transition point

For the EPYM AdS black hole with the non-linear source, the condition of the first-order

phase transition was presented in our work [30] as

χ
2γ − 1

γ1/(4γ−2)(4γ − 1)(4γ−1)/(4γ−2)
=

1

f1/(4γ−2)(x, γ)

(

1 + x − 1 − x4γ

2f(x, γ)(1 − x)x4γ−2

)

,

(2q2)γ

r4γ−2
2

=
1

f(x, γ)
(3.1)

with

f(x, γ) =
(3 − 4γ)(1 + x)(1 − x4γ) + 8γx2(1 − x4γ−3)

2x4γ−2(3 − 4γ)(1 − x)3
, x =

r1

r2
. (3.2)

– 9 –
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Figure 4. The coexistent curve of P − T .

And we also investigated the effect of the non-linear YM charge parameter γ on the phase

transition from two different viewpoints. Firstly, from the viewpoint of the coexistent curve

(P −T ), when fixed the YM electric q we found that for a given temperature (T < Tc) or a

given pressure (P < Pc), the pressure or the temperature and the radius of the coexistent

big black hole phase increase with the increasing of γ; while the radius of the coexistent

small black hole phase decreases with γ. Here the two-phases coexistent curves in the T −P

plane with different values of the non-linear YM charge parameter γ are shown in figure 4.

Secondly, from the viewpoint of the geometry scalar curvature, the absolute values of the

scalar curvature for the coexistent big and small black holes in the range of 3/4 < γ ≤ 1

both decrease with the increasing of γ, while their behavior of the scalar curvature are

just opposite in the range of 1 ≤ γ. In the following, we only exhibit the behaviors of the

photon sphere radius as the function of temperature in two cases of γ = 1 (the analytical

solution) and γ = 1.5 (the numerical Solution), respectively. Since the solutions of the

photon sphere radius with other values of γ are difficult to present, so we cannot give the

relevant analysis and conclusions.

For γ = 1, the photon sphere radius of this system can be expressed as

rph =
1

2

(

3M +
√

9M2 − 8q2

)

. (3.3)

It is clear that this result is exactly equal to that of the asymptotically flat charged black

hole, in which the orbit radius depends on the pressure. However, we need to note that

the mass of eq. (2.11) is related with the pressure. Substituting it into above equation, we

have the photon sphere radius

rph =
3πq2 + S(3 + 8PS) +

√

[3πq2 + S(3 + 8PS)]2 − 32πq2S

4
√

πS
. (3.4)

At the critical point given in eqs. (2.16) and (2.18), the critical radius reads

rphc = (2 +
√

6)q. (3.5)
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Figure 5. The YM charge set to q = 1.9. The pressure varies from Pc − 0.0002 to Pc + 0.00004

from bottom to top.

The temperature in eq. (2.12) can be rewritten as

T (S, P, q) =
1

4
√

πS

(

1 + 8PS − πq2

S

)

. (3.6)

Combining eqs. (3.4) and (3.6), we give the behavior of temperature as a function of the

photon sphere radius with the fixed pressure, which is shown in figure 5a. It is obviously

that for P < Pc, there will be a non-monotonic behavior. However, the temperature

will become only a monotone increasing function of the photon sphere radius when the

pressure is bigger than the critical one. At the critical pressure, there is a deflection point

at rph = rphc. That behavior is very similar to the isobar of the vdW’s system in T − S

plane, which means there exists the first-order phase transition. Thought constructing the

Maxwell’s equal-area law, we also obtain the phase transition point.

The behavior of the temperature as a function of the impact parameter square in

Figs 5b. Interestingly, it also confirms a non-monotonic property for P < Pc. And it

becomes monotonous for P ≤ Pc. These non-monotonic behaviors in rph − T and µ2
ph −

T diagrams indicate the existence of a first-order phase transition. So are these phase

transitions rph − T and µ2
ph − T diagrams just the ones between the high-potential black

hole phase and low-potential black hole phase? We will illustrate this by depicting phase

diagrams in the r+ − T and rph − T planes under the same condition (see figure 6a). From

the figures, we can see that the r+−T and rph−T diagrams share the synchronized variation

trend. The correspondence between T ′(r+) and T ′(rph), as well as between T ′′(r+) and

T ′′(rph), shown in lase part has been conspicuously corroborated. That means that the

correspondence between r+ − T and rph − T diagrams exists beyond the critical points.

Thus the first-order phase transition temperature both in r+ −T and rph −T curves are the

same, which is caused by the coordinate transformation between the horizon radius and

the photon sphere radius. From the physical perspective, this phenomenon is equivalent to

the situation: the observer is a static observer at infinity, and the object of study is EPYM

– 11 –
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Figure 6. The parameters set to q = 1.9 and P = Pc − 0.0002. The red lines stand for the curves

with the event horizon radius coordinate, and the blue lines are the curves with the photon sphere

radius coordinate.

AdS black hole undergoing a phase transition; and neither the observer nor the object of

research has changed, so the thermodynamical properties of the system will not change.

Furthermore, when γ = 1.5 we also present the numerical results of the temperature

with the photon sphere radius and impact parameter for different pressures in figure 7. The

phase transition relationship from two different viewpoints of the photon sphere radius and

the horizon radius is also exhibited in figure 6b. Those behaviors in this case are similar

to that in the case of γ = 1. In other words, in both two cases of γ = 1 and γ = 1.5

rph and µ2
ph have the non-monotonic behavior and exhibit the first-order phase transition

under a certain condition. And the photon sphere radius of two coexistent phases of the

system are both larger than them from the viewpoint of the horizon radius. These results

are the same in these two cases. While the differences shown in figure 8 are that: the phase

transition temperature with γ = 1.5 is high than the one with γ = 1; the photon sphere

radii and impact parameter of two coexistent phases are different in this two cases.

In order to probe the changes of the photon sphere radius and the impact parameter

during the phase transition process, we present the temperature as a function of the photon

sphere radius with different pressure (P < Pc) in figure 9. The dashed lines stand for

the coexistent phases, the corresponding phase transition temperature is determined by

eq. (3.6). With the increasing of photon sphere radius, the phase transitions will emerge

at the dashed lines. And there existences the sudden change of photon sphere radius.

Further increasing the pressure or temperature to the critical values, the sudden change of

photon sphere radius disappears: ∆rph ≡ rph2 −rph1 = 0. Thus if the photon sphere radius

has a sudden change, the black hole must be undergoing a first-order phase transition.

The similar conclusions hold for the case between the impact parameter and temperature.

With the method of numerical drawing, we exhibit the changes of the reduced photon

sphere radius and reduced impact parameter (∆rph/rphc and ∆µph/µphc) as the functions

of the reduced temperature (T/Tc) with the parameters γ = 1, q = 1.9 in figure 10. It
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Figure 7. The YM charge set to q = 1.9. The pressure varies from Pc − 0.0004 to Pc + 0.00003

from bottom to top.

0 10 20 30 40
0.020

0.022

0.024

0.026

0.028

rph

T

Γ=1.0

Γ=1.5

(a) rph − T .

0.08 0.10 0.12 0.14 0.16 0.18 0.20
0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

Μ2

ph

T

Γ=1.0

Γ=1.5

(b) µ2
ph − T .

Figure 8. The pressures set to Pc − 0.0002 and q = 1.9.

is obviously that both the values of ∆rph/rphc and ∆µph/µphc decrease with the reduced

temperature, and they are approach to zero until T
Tc

= 1. At the same time the first-order

phase transition becomes the second-order one. Therefore the changes of reduced photon

sphere radius and reduced impact parameter can be regarded the order parameters for the

black hole phase transition.

It is well known that the critical exponent of the order parameter for a ordinary

thermodynamic system nearby the critical point equals to 1/2, whether these two order

parameters have the same value of critical exponent. Using the numerical fitting method

near Tc, we find

∆rph/rphc ∼ 3.935
√

1 − T/Tc, (3.7)

∆µph/µphc ∼ 1.1423
√

1 − T/Tc. (3.8)
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Figure 10. The YM charge set to q = 1.9.

This result exactly confirms that both the critical exponents of ∆rph/rphc and ∆µph/µphc

equal to 1/2 at the critical point. That indicates from the viewpoint of thermodynamic

black holes have more similar behaviors as the ordinary thermal systems, and they maybe

also have the similar microstructures from the perspective of the statistics [20]. Those

conclusions strongly imply there exist a relationship between the photon sphere radius and

phase transition of black holes.

4 Discussions and conclusions

In this manuscript, we examined the relationship between the photon sphere radius the

thermodynamic phase transition for the four-dimensional charge Einstein-power-Yang-Mills

(EPYM) AdS black hole. This will provide a new way to realize the link between the gravity

and thermodynamics of black holes.
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First, we presented the characters of EPYM AdS black hole phase transition: the

critical point depend on the YM charge and non-linear YM charge parameter with the

condition γ > 1/2 and γ 6= 3/4. Since the critical point stands for the boundary of the

coexistent phases, it is keys to probe the black hole phase structure. Then we investigated

the null geodesics of a photon in the equatorial plane of EPYM AdS black hole back-

ground. By analyzing the effective potential of photon orbits with the certain parameters,

we obtained the photon sphere radius and impact parameter (angular momentum of the

photon sphere). The results showed that the non-monotonic behaviors appear in γ − rph

and µph − rph diagrams. That indicated that there exists a certain relationship between

the photon sphere radius, impact parameter, and EPYM AdS black hole phase transitions.

In addition, we also presented the influence of impact parameter on the reflected angle.

Finally, we further explored the relation between the unstable photon sphere radius,

impact parameter, and thermodynamic phase transition. It mainly contains three aspects

as the following:

• For the isobar and isotherm processes of this system, the photon sphere radius and

impact parameter have the non-monotonic behaviors with the certain parameters.

When the pressure or temperature is less than the corresponding critical value, these

two quantities both have two extremal points. Until the pressure or temperature

approaches to the critical one, two extremal points coincide with each other. When

the pressure or temperature is more than the critical one, there is no extremal point.

Thus, the photon sphere radius and impact parameter are the non-monotonic func-

tions with the pressure or temperature. Those behaviors of the photon sphere radius

and impact parameter are consistent with that of the black hole thermodynamics.

Therefore, the behavior of photon sphere can be regarded a probe to reveal the ther-

modynamic phase transition information of black holes;

• No mater the qualitative analysis and quantitative calculation, the behaviours both

in the r+ − T and rph − T diagrams have the synchronized variation trend. The

correspondence between T ′(r+) and T ′(rph), as well as between T ′′(r+) and T ′′(rph)

have been conspicuously corroborated. In other words, the phase transition informa-

tion (including the first-order transition and the critical point) of the EPYM AdS

black hole can be reflected by its surrounding particle’s circular orbit (photon sphere

orbit);

• At the first-order phase transition point, the photon sphere radius and impact pa-

rameter both have a sudden change. The changes of them before and after first-order

phase transition can act as order parameters to describe EPYM AdS black hole phase

transitions. More importantly, at the critical point, the fitting result displays that

they have a same critical exponent of 1/2.

Those analyze firmly enhance our conjecture that there exists the relationship be-

tween the null geometry and thermodynamic phase transition for EPYM AdS black holes.

It further supports the link between the gravity and thermodynamics of black holes, and

also provides a possible way to describe the strong gravitational effect from the thermody-

namic side.
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