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ABSTRACT: We study stability of the Dynamical Fixed Points (DFPs) of the cascading
gauge theory at strong coupling in de Sitter space-time. We compute the spectra of the
perturbative fluctuations and identify stable/unstable DFPs, characterized by the ratio
of the strong coupling scale A of the gauge theory and the Hubble constant H of the
background space-time. We discover a new phenomenon in the spectrum of gravitational
fluctuations of a non-conformal holographic model: distinct branches of the fluctuations
for H > A coalesce for sufficiently low %, leading to the removal of some excited modes
from the spectrum. We establish that, at least in a dual supergravity approximation, the
cascading gauge theory does not have a stable DFP for some H ~ A. Initial states of the
theory for H > A evolve to a stable DFP with unbroken chiral symmetry; while for H < A
the states evolve to a de Sitter vacuum with spontaneously broken chiral symmetry.
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1 Introduction and summary

The cascading gauge theory! [2] is N = 1 supersymmetric four-dimensional SU(N + M) x
SU(N) gauge theory. It is non-conformal, and has a strong coupling scale A. The high-

2

energy physics of the theory is exotic:® it undergoes perpetual sequence of Seiberg [4]

dualities, N — N + M, effectively rendering the rank parameter N energy dependent [5],

N=N(E) < M? lng, as E—>oo (1.1)

A A

In the renormalization group flow to the infrared (IR), the rank parameter N decreases as
N — N — M, with each realization of the Seiberg duality. In Minkowski space-time, R,
the moduli space of vacua of the theory was thoroughly analyzed in [6] — when N is an
integer multiple of M, the cascading gauge theory ends up in the IR as the N'=1 SU(M)
Yang-Mills theory. It confines with a spontaneous breaking of the U(1)g chiral symmetry,

U — Zs. (1.2)

When M > 1, the cascading gauge theory has a String Theory holographic dual [7, 8]
realized by a consistent truncation of Type IIB supergravity on warped deformed conifold
with fluxes [9]. Owing to the fact that the cascading gauge theory in the IR shares the
staples of QCD at strong coupling, namely confinement and the chiral symmetry breaking,
the precise holographic dual allows to explore properties of strongly coupled non-conformal
gauge theories which are difficult (and often impossible) to access otherwise: the thermal
phase diagram [9-11]; the hydrodynamic transport [12, 13], the gauge theory dynamics in
curved space [1, 14, 15] and in cosmological setting [16, 17]. The late-time properties of the
cascading gauge theory in de Sitter space-time is the subject of this paper.

Before we present the results of the analysis, we would like to clearly distinguish the
concept of a de Sitter vacuum [18] of a QFT and a de Sitter DFP of a QFT [19]. It is
useful to start with a conformal field theory (CFT). Typically,® an arbitrary initial state
of an interactive CFT in R*! thermalizes. In a dual holographic picture this dynamics is
encoded in the gravitational collapse and the black brane formation [22]. Following the
second law of thermodynamics, as a CFT state equilibrates, its non-equilibrium entropy
density s(t) monotonically increases, $(t) > 0, and reaches at late times the finite thermal
entropy density Sthermal, determined by the late-time thermal equilibrium temperature T,

lim $(t) = Sthermal < 00 . (1.3)

t—o0

The existence of the above limit, equivalently the equilibration of a generic state, implies
that the entropy production rate vanishes at late times, i.e.,

m 20 (1.4)

t—00 s(t)

See [1] for a recent review.

2Remarkably, the cascading gauge theory remains (holographically) renormalizable as a four-dimensional
quantum field theory (QFT) [3] when formulated on an arbitrary background space-time manifold M.

3Some of the counterexamples are the integrable systems, Fermi-Pasta-Ulam-Tsingou problem [20], and
the gravitational collapse in AdS [21].



Consider now the dynamics of this CFT in Friedmann-Lemaitre-Robertson-Walker (FLRW)
Universe. Since the background geometry

ds% g = —dr? + a(r)? dz? = d® (—dt2 + da:2) = a% ds3iowski » (1.5)
where a(7) is a cosmological scale factor and dt = % is the conformal time, is Weyl
equivalent to Minkowski space-time, there is a precise translation of the CFT dynamics in

R3! and FLRW. For example, the expectation values of the theory stress-energy tensor are
related as

(T (7, @)) = L (Tt ) + S (R’"’Rpwl, _ 1l -gW> 1.6)
FLRW @ Minkowski O 12

where c is the central charge of the CFT, g,, and R,y are the metric (1.5) and the corre-
sponding Riemann tensor. When a CFT has a holographic dual, the Weyl equivalence (1.5)
is nothing but a diffeomorphism transformation of the gravitational dual [23]. Furthermore,
when the non-equilibrium entropy is associated with the apparent horizon (AH) of the
gravitational dual, its Minkowski space-time production rate is identical, Weyl invariant, to
the corresponding FLRW comoving entropy production rate with respect to the conformal
time [23]. This implies that the equilibration of a CFT state in Minkowski space-time is
mapped to the evolution of the corresponding state in FLRW, where the comoving entropy
approaches a constant at late-time. This late-time state is a FLRW vacuum of the CFT,
characterized by the asymptotically vanishing comoving entropy production rate.

While it difficult to map dynamics of a massive QFT in Minkowski and FLRW Universe
from the path integral viewpoint, the problem is tractable if the theory has a holographic
dual. From the dual gravitational perspective, a gravitational bulk diffeomorphism relating
the two boundary backgrounds (1.5) acts on a relevant coupling constant Aa of a dimension
A < 4 operator Op as [23]

Aa = Aa(t) = a(r()*™2 Aa (1.7)

i.e., a massive QFT dynamics with a coupling constant Ap in FLRW is equivalent to
the quenched dynamics of the same theory in Minkowski space-time, where the coupling
Aa evolves according to (1.7). When a(r — +00) — const, the QFT coupling constant
is quenched as Ap 0) = Aan — S\A(+oo). Holographic quenches of just this type were
extensively studied in [24-26]:

e the theory eventually thermalizes at late times;

e the thermalization process is irreversible — the entropy density production rate is
always positive.

The last statement implies that the comoving entropy production rate of the QF T in FLRW
is positive as well. When the FLRW scale factor a(7) diverges as 7 — +o0, the mapped
quenched coupling Aa diverges at late time as well (1.7) — it is not clear whether or not the
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Figure 1. de Sitter vacua (TypeB) and de Sitter DFPs (TypeA and TypeAy) of the cascading gauge
theory with a fixed strong coupling scale A. The vertical brown lines indicate the existence range
for different phases: TypeA exists for H € (Heyit,, +00); TypeAy exists for H € (Heritg, Herity );
TypeB exists for H € (0, Heyit; ). In the range H € (Heyity, Herit, ), indicated by a vertical dashed
line, TypeA;, DFP is the preferred phase.

theory thermalizes; irrespectively, it can be rigorously shown? that the comoving entropy
production rate is always positive: if s(7) is the physical entropy density, the entropy current
is given by [19]

St = s(1) u*, u =(1,0,0,0), (1.8)

leading to the entropy density production rate R,

a(lT)g % (a(m)?s(r)) = a(i)g d%scomovmg(f) > 0. (1.9)

R(r)=V-S=
If R(7) vanishes at late times, we say the state of the QFT evolves to a FLRW vacuum; if
the rate approaches a constant, we say that the state of the QFT evolves® to a Dynamical
Fixed Point [19]. In case the FLRW Universe is de Sitter, i.e.,

a(t) = "7, (1.10)

where H is the Hubble constant, the existence of the late-time limit for the entropy density
production rate implies that there is a late-time limit for a physical entropy density,
lim (V-S)=3H lim s(7) =3H Sent , (1.11)
T—00 T30
with the latter being called the vacuum entanglement entropy [30].
de Sitter vacua and DFPs of the cascading gauge theory were analyzed in details

in [17]; we identified the following late-time spatially homogeneous and isotropic phases of
the theory:

4This was done explicitly in case-by-case holographic models [17, 23, 25, 27-29]; we believe though that
the general proof is possible.

5More precisely, both for a vacuum and a DFP we additionally require that one-point correlation functions
of the stress-energy tensor and gauge-invariant local operators are homogeneous and time-independent.



m TypeA; — the de Sitter DFP with unbroken chiral symmetry,

Sent (A, H) #0; (1.12)

TypeA,

m TypeA, — the de Sitter DFP with spontaneously broken chiral symmetry,

Sent(AvH) 7& 0; (113)

TypeA,

= TypeB — the de Sitter vacuum with spontaneously broken chiral symmetry,°

Sent(Aa H)

=0. (1.14)
TypeB

These results are summarized in figure 1:

o all phases can be reliably constructed in the supergravity approximation within a
fixed range of the ratio %, specifically,

TypeA, : H € (Herit, 400) 5 Heyit, = 0.7A,
TypeAb : H e (Hcrit37 Hcrit4) ) Hcrit3 = 092(1)‘/\’ Hcrit4 ~ 093A7
TypeB:  H € (0, Hoiry ) Herits ~ 0.97A | (1.15)

where we used ~ to indicate that the corresponding value of H. is estimated from
the breakdown of the supergravity approximation, see [17]. The critical value Heyit,
can be computed with an arbitrary precision within the supergravity approximation,
hence we used the = sign.

e Given the ratio %, the preferred phase is the one with the larger vacuum entanglement
entropy Sent — the latter quantity determines the entropy production rate (1.11) at
late times, and the dual gravitational evolution always proceeds towards the late-time
attractor with the largest apparent horizon comoving area density.” Thus, whenever
a de Sitter DFP exists, i.e., for

H > Hey, (1.16)

no state of the cascading gauge theory would evolve to a vacuum (TypeB).

o It was established in [17] that

> Sent for H e (Hcrit37Hcrit2) s

TypeA,

Sent

Typed, (1.17)

> Sent
TypeA,

for H > Hgit, ,

Sent

TypeA,

This vacuum is smoothly connected to a supersymmetric Klebanov-Strassler Minkowski vacuum [2] in
the limit & — 0.

"This is nothing but the restatement of the phase selection principle in approach to thermal equilibrium in
microcanonical ensemble for de Sitter dynamics with multiple dynamical fixed points. The latter statement
was explicitly verified in the holographic setting in [19].
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Figure 2. Diagonal blue shaded regions indicate: perturbative instability of TypeA, cascading
gauge theory DFP for H < Hgit,, and perturbative instability of TypeA,; cascading gauge theory
DFP, whenever it exists. Horizontal green shading for Hei, < H < Hgit, indicates TypeA,
cascading gauge theory DFP which is while perturbatively stable, is unstable to sufficiently large
amplitude chiral symmetry breaking fluctuations. The cascading gauge theory states in de Sitter
with H < Hgit, evolve to de Sitter vacuum, TypeB-labeled bordered rectangle. The cascading
gauge theory states in de Sitter with H > H.it, evolve to TypeA, DFP. The late-time dynamics of
the cascading gauge theory states for Heyiy, < H < Heypit,, the yellow rectangle, is unknown.

where
Heyit, = 0.92(5)A, (1.18)

computable with arbitrary precision within the supergravity approximation. Thus,
TypeA, DFP is the preferred attractor over TypeAs DFP whenever the former exists
and for H < Hyt,. For H > Hyit, the de Sitter dynamical fixed point with unbroken
chiral symmetry, i.e., TypeAy, is the preferred attractor.

In this paper we analyze perturbative stability of TypeA; and TypeA, DFPs of the
cascading gauge theory. Our main results are summarized in figure 2. We find:

o Precisely at H = Hit, there is a zero mode of TypeA; phase, associated with the
spontaneous breaking of the chiral symmetry [17]. In the limit H — Hei, + 0 the
chiral symmetry breaking order parameters of TypeA; phase, i.e., the expectation
values of the pair of dimension A = 3 operators (9?:1’2 and the dimension A =7
operator Oy of the cascading gauge theory, vanish as oc (H — Hcrit3)1/ 2 typical for a
spontaneous symmetry breaking with a mean-field exponent 3 [17]. This zero mode
is purely dissipative away from Hcit,, and behaves differently in the two distinct
DFPs. Specifically,

= in the TypeA,; DFP this mode, we index it with ,gg, has®

Jm| 1o ] <0, H > Hgit, , — stable (1.19)
m SB ) .
7 iy pea, >0, H<Hyy,, = unstable

8We use reduced frequencies in the paper, o = -



and includes fluctuations of (’)g‘zl’2 and O7 operators of the cascading
gauge theory;

= in the TypeA, DFP, this mode exists only for H > H_yit, (there is no TypeA, DFP
for H < Heit,) and is unstable,

Jm[ ro,sB | >0, H > Hig, - (1.20)
TypeA,

In the symmetry broken TypeA; DFP this mode is much more complicated: it couples
a=1,2

fluctuations of Oy , Of :1’2, Og, O7, and Og operators of the cascading theory.
o Because of (1.19), TypeA, DFP is perturbatively unstable for H < Hcyit,, represented
by the diagonal blue shading.

e While TypeAs DFP is perturbatively stable to chiral symmetry breaking fluctuations
for H € (Heyity, Herit,) (represented by the horizontal green shading), it can not
be non-perturbatively stable: sufficiently large-amplitude chiral symmetry breaking
fluctuations must force dynamics? towards the preferred TypeA, DFP attractor,
see (1.17).

o TypeA, is always perturbatively unstable, represented by the diagonal blue shading.
Given the fluctuation spectra stability analysis, we establish that:

« all states of the cascading gauge theory in de Sitter with the Hubble constant H >
Hyit, evolve to TypeAgs DFP (bordered rectangle);

o all states of the cascading gauge theory in de Sitter with the Hubble constant
H < Hgit, evolve to TypeB late-time attractor — the de Sitter vacuum (bor-
dered rectangle).

e We do not know the late-time dynamics of the cascading gauge theory in de Sitter
for H € (Heyity , Herit,) (vellow rectangle) — in this range both TypeA; and TypeA,
DFPs are unstable, and the late-time attractor can not be a de Sitter vacuum (TypeB),
which has vanishing entropy density production rate, see (1.14). We expect that in
this case the cascading gauge theory states evolve, spontaneously breaking chiral
symmetry, to a naked singularity, similar to the evolution of the symmetry broken
states in the toy model discussed in [19]

The rest of the paper is organized as follows. In section 2 we review the de Sitter vacua
and dynamical fixed points of the cascading gauge theory [17]. In section 3 we explain
why perturbative stability analysis of the de Sitter dynamical fixed points are difficult.
We explain why the general “master framework” developed in [29] is not suitable for the
cascading gauge theory, and what straightforward modification is required. We highlight
the difficulty of imposing the boundary conditions for the gravitational fluctuations, and

Identical phenomenon was observed in dynamical simulations in the model covered in [19)].



explain how to overcome it. In section 4 we study perturbative stability of TypeAs DFP.
We separate fluctuations into sets preserving the chiral symmetry of this DFP, and the
fluctuations that spontaneously break the chiral symmetry. We study both sets in the
near-conformal regime, i.e., when In % > 1 and partial analytic treatment is possible, and
follow the fluctuation spectra to H ~ A. We identify the unstable mode in the chiral
symmetry breaking sector in TypeAs DFP when H < Hit,. The latter mode is marginal
at H = H,it,, where the two DFP TypeAg and TypeA, are indistinguishable. We establish
that there is no instability in the chiral symmetry preserving sector of fluctuations in
TypeAg DFP, at least for H > H,it,. In section 5 we study perturbative stability of TypeA,
DFP. We show that the marginal chiral symmetry breaking mode at H = H,jt, becomes
unstable in TypeA;, DFP, perturbatively in (H — Heit,) > 0. We demonstrate that this
mode remains unstable at least as H approaches Ht,. Our numerics indicates that the
mode remains unstable even after H > H.s,, but this is physically irrelevant since in
this regime TypeA, DFP is not preferred relative to TypeAs DFP, see (1.17). Finally, we
conclude with open questions and speculations in section 6. Whenever appropriate, we
delegate the technical details to appendices and focus on the physics instead.

Any stability analysis of a gravitational model are necessarily technical. This is
particularly the case for the theory analyzed here!® — many equations are too long to be
presented even in appendices; we collected them as a Maple worksheet available at [31].

2 de Sitter vacua and DFPs of the cascading theory

In this section we summarize the results of [17].

Consider SU(2) x SU(2) x Zy invariant states of the cascading gauge theory on a
4-dimensional manifold M4 = OMs5. In the planar limit and at large 't Hooft coupling, one
can consistently truncate the theory to a finite number of operators [9]: a stress-energy

tensor T;;, a pair of dimension-3 operators (9?:{1’2} (dual to gaugino condensates for each

of the gauge group factors), a pair of dimension-4 operators Of:{m}

, and dimension-
6,7,8 operators Og, O7, Og. Effective gravitational action on a 5-dimensional manifold Mjy

describing holographic dual of such states was derived in [9]:
S5 |:g/U/ e E]a {Q’La hi7 q)} <~ {Ogv Ofa 067 077 08}:| =

108
167TG5

/ volyg, Q10202 x
Ms

2 20203032 * 0l Qi

1 2 1 P\? 1
— fe(b < (Vh2)2 + —=— <h2 — ) + h%)

x {Rm - % (V®)? — Lo <(hl_h3)2 L (Vhi)* + L (Vh3)2> 2.1)

2 \ozn2 0201 9) Tl
1

202010

1 2
(490 + hy (hg — hl) + 9Ph1> } ,

10For a technically less demanding introduction to the subject of DFPs and their stability the reader is
encouraged to start with [27]; see also the citations to that work.



t,ll

where ) is a constan and Rjg is given by

2 2 2
fho = (219% i 53 " 5% N 499?2% - 45{55 - Qg;?%) - 200 (10505) (2.2)
_ {(v 01)” +2(VIns)* +2(VinQy)* + (Vin (919393))2} : |
and Rj is the five-dimensional Ricci scalar of the metric on Ms,
ds? = g (y)dy"dy” . (2.3)

P is the other constant, and is related to the rank-difference of the cascading gauge theory

group factors M as
2P
=— €7, 2.4
9¢/ (2.4)
where o = (2 is the string scale. Finally, G5 is the five dimensional effective gravitational

constant
27

~ 16w

where 1671G19 = (27)7g%(a’)* is the 10-dimensional gravitational constant of type IIB

Gs (2.5)

supergravity, and g, is the asymptotic string coupling constant, which we set to 1.
de Sitter vacua and DFPs of the cascading gauge theory are holographically dual to
the solutions of the effective action (2.1), when the boundary metric is de Sitter with the
Hubble constant H,
ds? = —dr* + 27z (2.6)
My=0Ms

and all the 7 gauge invariant scalar operators of the theory {(’)?:1’2, 0521’2, O¢, 07, 0s}

develop a spatially constant, @, and time-independent, 7, expectation values. There
are two equivalent ways to represent these cascading gauge theory states in the dual
gravitational bulk:

= Using the Fefferman-Graham (FG) coordinate frame,

ds? = 5 (—dr? + *M7da?) + K72 (dp)? h = h(p)
5 h1/2p2 pg P) = np), (27)
Q123 = Qi=123(p) , hi=1,2.3 = hi=12.3(p), o =d(p),
with the radial coordinate p, the M5 boundary is located at p — +0,
p € (0,+00). (2.8)
Close to the boundary the metric warp factor h takes the form,
1 1 1
h=-b+-Ky— -blnp+O(plnp), (2.9)
8 4 2
111 the conformal limit of the cascading gauge theory, Qo = %, where L is the asymptotic AdSs radius.



where b = P? and K is related to strong coupling scale A of the cascading gauge theory as

1
A= e (2.10)

DFPs, TypeA, are such nonsingular gravitational solutions that

_ 1
with all the scalars being finite in this limit. There are two distinct types of the cascading
gauge theory DFPs: TypeA; and TypeA;. The former preserve the U(1)g (in the large-IV
supergravity approximation) chiral symmetry, while the latter spontaneously breaks it

to ZQ,

P
TypeA, : Oy = Q3 and h1 = hs and ho = —,
18
4 (2.12)
TypeA, : Qg # Q3 and h1 # hs and d—hg £0.
p

de Sitter vacua, TypeB, are nonsingular gravitational solutions within the ansatz (2.7),
such that
TypeB : phﬁrgo Q3 =0, (2.13)

with all the other scalars, as well as the g, = —ﬁ metric component, being finite in
this limit.

= Using the Eddington-Finkelstein (EF) coordinate frame,

dst = 2dt (dr — a dt) 4 o>t da? a=a(r), o=o(r), (2.14)
Qiz123 = Qiz123(7), hi=123 = hi=123(r), O =d(r), '
with the radial coordinate r, the 9 M5 boundary is located now at r — +o0,
r € [ram,+00), (2.15)

and g is the location of the apparent horizon in the uplifted 10-dimensional type I1B
supergravity background, see [17] for detailed discussion,

=0. (2.16)

T=TAH

{ 3H - (0*M0303) +a- dii (03919393)]

It can be shown that the radial derivative in (2.16), provided 03Q10303 does not vanish —
which is the case for both TypeA; and TypeA;, DFPs, is always positive, thus

TypeA : a <0, (2.17)

T=TAH

which further implies that there must be a point r = r¢g > r 45, such that

=0. (2.18)
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Figure 3. From [17]. Vacuum entanglement entropy densities of the chirally symmetric DFP
(TypeAs), and the DFP with spontaneously broken chiral symmetry (TypeAy), as a function
of In .

A2

In the EF frame description of the cascading gauge theory de Sitter vacua, i.e., TypeB, the
apparent horizon is located where ()3 vanishes; this occurs at positive a,

TypeB : a > 0. (2.19)

T=TAH

EF frame description of the DFPs (or de Sitter vacua) links them directly with the late-time
attractors for the evolution of the homogeneous and isotropic states'? of the boundary
gauge theory [23]: specifically, a holographic dual to such an evolution is a gravitational
dynamics of (2.1) with the ansatz

ds? = 2dt (dr — A dt) + %? dz? A= At,r), Y =%(t,r), (2.20)
Moz = Qi23(t,r), hi23 = h123(t,r), ¢ =o(t,r), .
leading to'?
. E(t,r)
lim A(ta T) » T _Ht Qz(ta T) ) hz(t7 T) ’ (I)(t’ T) = {G(T) ) U(T) ) QZ(T) ’ hl(’r) ) (I)(T)}
t—o0 e
(2.21)
of (2.14).

Note that besides distinct radial coordinates, p (FG) and r (EF), we used different bulk
times 7 (FG) and ¢ (EF) in the two frames (2.7) and (2.14). There is a simple coordinate

12The restriction to spatially homogeneous and isotropic states, rather than any states, is likely not
necessary for the evolution in de Sitter background, where momentum scale k inhomogeneities are red-shifted
as ke” 7.

13See [19, 27] for examples of implementation of such dynamics.

~ 10 —



transformation mapping the full DFP FG frame geometry, i.e., (2.7) with (2.11), to the
r € [ro, +00) patch of the corresponding EF frame geometry [17],

1 p
r—rg=—, t:T—/ dz \/h(z),
P 0 =)
1 1 P
a:m, U:W exp{H /0 dz\/h(z)}

The r € [ram,ro) patch of the DFP EF frame geometry is invisible in the FG frame.

(2.22)

Arguably, EF frame description of a dynamical fixed point is more important, as its vacuum
entanglement entropy density, relatedly the late-time limit of the entropy density production
rate of this DFP (1.11), is identified with the comoving gravitational entropy density of the
apparent horizon in the corresponding holographic dual, see eq. (3.9) of [17],

1
Sent = H3V? Bent = —— 108020, Q303 : (2.23)
4G

T=TAH

Figure 3 reproduces the main result of the [17]: it compares the vacuum entanglement entropy
densities of the chiral symmetry preserving DFP, TypeAg, and the DFP with spontaneously
broken chiral symmetry, TypeA;. TypeA;, exists only for H > Hct,, represented by a
vertical solid brown line, and is the preferred late-time attractor for H < Hgit,, represented
by a dashed black line, see (1.15). Outside the range H € (Heyity, Herit, ), and whenever it
exists, i.e., for H > Hit,, TypeAs DFP is the preferred attractor of the late-time dynamics.

Under the bulk diffeomorphism (2.22), the full EF frame background geometry corresponding
to the cascading gauge theory de Sitter vacua (TypeB) is mapped to its full corresponding FG
frame background geometry. Here, the vacuum entanglement entropy density vanishes [17],

TypeB
Sent = H3b? Sent =0, (2.24)
T=TAH
i.e., at late-times, the entropy density production rate vanishes. Since the vacuum entan-
glement entropy density of a dynamical fixed point is always nonzero, whenever a DFP
exists, it is the preferred late-time dynamical attractor, compare to a de Sitter vacuum
at the same Hubble constant. There are no DFPs of the cascading gauge theory for
H < Heyit,, see (1.15).

3 Stability analysis framework of the cascading gauge theory
de Sitter DFPs

Once a de Sitter DFP of a QFT is identified, it is important to analyze its stability to
claim that it is indeed a late-time attractor. A DFP is always the preferred late-time state
compare to a de Sitter vacuum of a QFT, however, a DFP can be unstable [19], in which

case the late-time dynamics is unknown.'*

141t is definitely not the de Sitter vacuum though!
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In a holographic setting, it is most natural to analyze stability of a DFP in the Eddington-
Finkelstein coordinate frame of the gravitational dual [27]. Suppose a holographic QFT in
d spatial dimensions has a de Sitter dynamical fixed point,

ds3,, = 2dt (dr —a dt) + o*e*H! dz? (3.1)

supported by the bulk scalars ¢; = ¢;(r). We study, homogeneous and isotropic along the
spatial boundary directions, linearized fluctuations {F,, Fi, F;} about the background (3.1),

a(r) = a(r) + Fy(r)e ™", o(r) — o(r) + F,(r)e ™!, di(r) = ¢;(r) + Fj(r)e ™",

(3.2)
Imposing a normalizability of the fluctuations at the asymptotic boundary, and regularity of
the spatial profiles of {F,, Fi;, F;} in the background (3.1) as r € [r4p, 00), we can compute
the spectrum of fluctuations, i.e., the set of frequencies {w}. Since apparent horizon is
dissipative, the frequencies will be complex. Any fluctuation mode with

Imlw] > 0 (3.3)

signals an instability of the DFP, represented by (3.1).

Unfortunately, the above prescription can not be applied to the stability analysis of
the cascading gauge theory DFPs, reviewed in section 2. The stumbling block is the
relation between the EF and the FG frame time coordinates (2.22), which, given the
asymptotic expansion for h (2.9), makes the EF frame r — oo <= p — 0 boundary
asymptotics intractable.!> The prescription to circumvent this difficulty was introduced
in [32]. The cascading gauge theory DFPs are constructed in the FG coordinate frame [17].
To compute the vacuum entanglement entropy, the region of the FG geometry in the vicinity
of r = rog < p = o0, see (2.22), is mapped into EF coordinate frame, and further extended
in this frame for r € [ram,ro]. Additional complexities of the EF frame appear when one
studies linearized fluctuations, as in (3.2): here, one needs to solve equations not only
for the bulk scalar fluctuations F}, but for the fluctuations of the metric components as
well, {Fy, Fy}.

In [29] we explained how to compute the spectrum of fluctuations about a DFP directed
in the FG coordinate frame, for any holographic model with an arbitrary “d + 2 dimensional
Einstein gravity plus arbitrary bulk scalars”. The computational framework presented there
is highly efficient: one needs to solve only the fluctuation equations for the bulk scalars,
while the fluctuations of the metric components are determined algebraically from the latter.
Unfortunately, this master equation framework can not be directly applied to the cascading
gauge theory gravitational dual. Here, the issue is that the holographic models of [29] must
have the standard Einstein-Hilbert term in the gravitational action, while in the cascading
gauge theory gravitational dual the Einstein-Hilbert term is warped (2.1):

Sd+20</ dd”f«/—g{R—i—'--} vs. S5o</ volp, 919§Q§[R5+-~] . (34)
Maia Ms

master equations cascading gauge theory

15The presence of high dimension operators of the cascading gauge theory, such as Qg, @7 and Og, requires
exquisite control of the asymptotic boundary data.
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Of course, we can always Weyl rescale the metric to remove the Einstein-Hilbert term warp
factor, but this would require a new complicated differential relation between the FG frame
radial coordinates, involving fractional powers of h. This causes the same problems as we
faced in the EF coordinate frame: the boundary p — 0 asymptotics become intractable;
additionally, the change of variables dramatically complicates the master equations for
the fluctuations.

Above difficulty is resolved noting that the effective five-dimensional gravitational
action (2.1) is a Kaluza-Klein reduction of Type IIB supergravity on warped deformed
conifold with fluxes. Thus, we should be apply the apply the master equations formalism
of [29], more precisely its obvious variation, in ten dimensions without any problem. This
is what we do in appendix'® A.1.

We finish this section highlighting the subtlety developing the near-boundary p — 0
asymptotic expansions of the equations representing the fluctuations. The equation of
motion for a probe massive bulk scalar field dual to an operator of conformal dimension A,
on AdS5 background geometry takes the form,

¢ =p> (Ao + k:i Akl)k) +p'72 (Bo + i kak) : (3.5)

=1 k=1

When A€Zor A€Z, 1 logarithmic terms appear in this asymptotic expansion, i.e., the
series in brackets generalize as

o0 o0 M(k)
Z Appt — Z o Z Apr, In™ p . (3.6)
k=1 k=1 m=0

It is important that the number of In p terms at each fixed order in k is bounded by M (k).
In fact, the metric ansatz (2.7) for the cascading gauge theory, along with the ansatz for the
scalars €21 9 3 o hl/4 fi/b?c was proposed in [3] precisely so that the asymptotic expansions of
the metric warp factor h, as well as the scalars f, ., have finite number of log-terms at each
given order of p¥. This is evident in the asymptotic expansions of the background geometry
dual to the cascading gauge theory DFPs, reviewed in appendix A.2. Finite number of
log-terms in the asymptotic expansion is a fairly trivial complication. Rather, we find that
the master formalism for the fluctuations, see appendix A.1, leads to an infinite number
of log-terms in their asymptotic expansions at each finite order of p*. In other words, the
generalization (3.6) is yet further generalized:

o M) o
DoAY Apmln™p = Y pf - Ay(lnp), (3.7)
k=1 m=1 k=1

where A (z) are now nontrivial functions of z = In p, and in developing the asymptotic
expansions, at each order p*, we must solve a coupled system (if there is more than one
bulk scalar) of differential equations for A (z). This would be a hopeless task in general.

16While the discussion there is attempted to be self-contained, the reader does need familiarity with the
formalism of [29].
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Lucking for the problem at hand, carefully analyzing the structure of log-term differential
equations we find that their solution is given by (schematically)

1
(b — 4bz + 2Ko)"

Ak(z) = Z Apen 2™ (3.8)
where n(k) and M (k) are some integers ~ k. The denominator factor in (3.8) is simply the
order O(p°) terms of asymptotic expansion of the h factor, see (2.9).

4 Stability analysis of TypeA, DFP

TypeA; dynamical fixed point of the cascading gauge theory preserves the chiral symmetry.
There are two decoupled sets of fluctuations about this DFP: the fluctuations breaking the
chiral symmetry (see section 4.1 with technical details in appendix B), and the fluctuations
preserving the chiral symmetry (see section 4.2 with technical details in appendix C).

TypeAs DFPs were constructed in various computations schemes (see appendix C.1
of [17]): either parameterized by b with Ky = 1, see (2.10),

H? 1
IDF_B+Inb’ bE(O,l], (4.1)
or with b =1 and
H2

An excellent agreement was reported in the overlap of the two computational schemes, i.e., for
Ky > 1. The parameterization (4.1) is useful to analyze b — 0, correspondingly H > A, near-
conformal limit, where perturbative in b treatment is possible. The parameterization (4.2)
is needed to access TypeAs; DFP in H < A region, not accessible with (4.1). We use the
same strategy in computing the spectra of fluctuations: first we perform the computations
in the near-conformal limit, and further extend the results for H < A.

4.1 Chiral symmetry breaking sector

Chiral symmetry breaking fluctuations about TypeA; DFP activate the cascading gauge
theory operators of conformal dimensions A = {3,7}. Thus, in the near conformal limit,
i.e., for H > A, we expect [29] discrete branches indexed with n € Z>3 and

Relw(Yy] =0,  Imlnlgy] = T, #0. (4.3)

We use the subscript ,sp to indicate that the fluctuations spontaneously break chiral
symmetry of TypeA; DFP. We find that the branches with 3 < n < 6 are doubly
degenerate in the limit b — 0, while those with n > 7 are triple degenerate in the conformal
limit. In figure 4 dots represent the attenuation F;HS)B as a function of In~* I/{—j for the lowest
n = 3 mode (the left panel) and the n = 4 mode (the right panel). The dashed curves
indicate (’)(\/5) analytic leading order corrections, see appendix B.1.1, and the solid lines
include next-to-leading O(b) order corrections:
3
T =3+ V2b— 1.57(5) - b+ O(*?), w
. .
T\0p =44 V2b+1.93(4) - b+ O(b*/?)

where b is related to % as in (4.1).
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Figure 4. Attenuation F;@B = —fim[mggé)B] of the chiral symmetry breaking fluctuations about

cascading gauge theory TypeA; DFP for H > A. Dashed and solid curves are correspondingly the
leading and the first subleading order corrections to the conformal spectra, see (4.4).
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Figure 5. Sub-branches of the distinct in the conformal limit branches of the fluctuations coalesce as
% is lowered. The red dot, see (4.5), highlights this phenomenon for n = 4 and n = 3 sub-branches.

As b increases, we discover that the distinct branches of the fluctuations coalesce, see
figure 5. Specifically we find that the lower sub-branch of the n = 4 branch and the upper
sub-branch of the n = 3 branch combine at

In~! = =0.217(8), (4.5)

represented by the red dot, and are removed from the spectrum. This phenomenon is quite
generic, and is observed for higher n branches as well. It can not be universal though: the
lower sub-branch of the n = 3 branch is the lowest mode in the spectrum, thus, it does not
have a partner to combine with.

It becomes numerically challenging to study higher n spectral branches at finite % In
particular, we could not stabilize numerics at n = 7 branch where the first triple degeneracy
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Figure 6. Leading order correction to the conformal spectra for the chiral symmetry breaking

1/In IK—;
fluctuations at higher n. Note that the (perturbative) coalescence of various sub-branches is quite
generic. The red dot (the left panel) is a replot of the red dot from figure 5.

occurs. There is no obstruction to study these branches perturbatively in the small b,
the near conformal limit, e.g., see appendices B.1.2 and B.1.3. In figure 6 we present

leading order correction to the conformal spectra for 3 < n < 6 (the left panel) and for
6 < n < 10 (the right panel). Note that the non-analytic sub-branches, see appendix B.1,

case, as the better resolution of the plots demonstrates.

(perturbatively) combine — as the red dot (the left panel), replotted from figure 5, indicates
panel) that for n > 7 the coalescence point involved three sub-branches — this is not the

the perturbative prediction for the coalescence is quite reasonable.!” It appears (the right

The lower sub-branch of the n = 3 branch is the lowest lying. In figure 5 we followed
H2
In

crits

switch the computational scheme to that of (4.2), and follow this sub-branch for H < A,
represented by the magenta dots. This mode becomes marginal at

this branch all the way to b = 1, correspondingly to In IX—; =1, see (4.1). In figure 7 we
A2

= —0.1636(3)

unstable. This establishes our first main result:

(4.6)
sponding to the origin of the TypeA; dynamical fixed point with the spontaneously broken
chiral symmetry, originally reported in [17]. Note that for H < Hgit, this mode becomes

represented by the vertical red line, reproducing the critical Hubble constant Hcyit,, corre-

The chirally symmetric TypeAs DFP of the cascading gauge theory is
perturbative unstable when H < Heyity, given by (4.6).
4.2 Chiral symmetry preserving sector

n = 5 sub-branches.

Chiral symmetry preserving fluctuations about TypeAs DFP activate the cascading gauge

theory operators of conformal dimensions A = {4,6,8}. Thus, in the near conformal limit,

7 Qur numerical work, not reported here, established joining of n =5 and n = 4, as well as n = 6 and
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Figure 7. The lower sub-branch of the n = 3 branch of chiral symmetry breaking fluctuations about

TypeA, DFP of the cascading gauge theory becomes unstable for H < H,t, (4.6), represented by

the red vertical line.
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Figure 8. Attenuation F;"S)B = fjm[m;%)B] of the chirally symmetric fluctuations about cascading

gauge theory TypeA; DFP for H > A. Dashed and solid curves are correspondingly the leading
and the first subleading order corrections to the conformal spectra, see (4.8).

ie., for H > A, we expect [29] discrete branches indexed with n € Z>4 and

Rew'Y] =0,  Imlwlgs] =T #0. (4.7)
We use the subscript ,g to indicate that the fluctuations are chirally symmetric.. We find
that the branches with n = {4, 5} are doubly degenerate in the limit b — 0, while those with
n > 6 are triple degenerate in the conformal limit. In figure 8 dots represent the attenuation
Fgé) as a function of In~1 IK—; for the lowest n = 4 mode (the left panel) and the n = 4 mode

(the right panel). The dashed curves indicate O(v/b) analytic leading order corrections, see
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Figure 9. Sub-branches of the distinct in the conformal limit branches of the fluctuations coalesce as

% is lowered. The red dot, see (4.9), highlights this phenomenon for n = 5 and n = 4 sub-branches.

appendix C.1.1, and the solid lines include next-to-leading O(b) order corrections:

T =44 1300 1 7001) - b+ 0(5/2),
X 5 (4.8)
% =5+ V2b+ 1.45(6) - b+ O(b*/?)

where b is related to £ as in (4.1).

As in section 4.1, as b increases, the distinct branches of the fluctuations coalesce, see
figure 9. Specifically we find that the lower sub-branch of the n = 5 branch and the upper
sub-branch of the n = 4 branch combine at

In~! = =0.039(9), (4.9)

represented by the red dot, and are removed from the spectrum.

In figure 10 we present leading order correction to the conformal spectra for n = {4,5}
(the left panel) and for 5 < n < 8 (the right panel). Note that the non-analytic sub-branches,
see appendix C, (perturbatively) combine — the red dot (the left panel) is replotted from
figure 9.

In figure 11 we show that the lowest lying mode in the chiral symmetry preserving sector
of fluctuations about TypeAg DFP remains perturbatively stable, at least for H > Hyit,,
represented by the vertical red line (the right panel). The solid green curve is the perturbative
approximation to the mode, see FS‘S) in (4.8). The blue dots are obtained in the computation
scheme (4.1), and the magenta dots are obtained in the computation scheme (4.2).

This establishes our second main result:

The chirally symmetric TypeAs DFP of the cascading gauge theory is
perturbative stable when H > Heyity, given by (4.6).
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fluctuations at higher n. Note that the (perturbative) coalescence of various sub-branches is quite
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Figure 11. The lower sub-branch of the n = 4 branch of chirally symmetric fluctuations about
TypeAs DFP of the cascading gauge theory remains perturbatively stable for H > Ht, (4.6),
represented by the red vertical line.

5 Stability analysis of TypeA, DFP

TypeA;, dynamical fixed point of the cascading gauge theory with spontaneous broken
chiral symmetry [17] exists only for H > Heits, given by (4.6). Exactly at H = Hepit,
TypeAg and TypeA, DFPs are indistinguishable. Additionally, at this critical value of
the Hubble constant, the DFP has a marginal chiral symmetry breaking mode — this
is the lower sub-branch of the n = 3 fluctuations about TypeAs; DFP, see figure 7. In
figure 12 we present the attenuation of this mode, as a fluctuation about TypeA; DFP.
Note that the mode is always unstable. In the left panel we present I'\sg with TypeA,
DFP parameterized using the chiral symmetry breaking order parameter A of this DFP,
see (D.2). This is useful, as it provides a ready comparison with the perturbative results of
appendix D, see (D.1), represented by a solid red curve. The translation between the order
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Figure 12. The marginal at H = H;, chiral symmetry breaking mode becomes unstable in
TypeA, DFP. In the left panel we parameterize this mode with the order parameter A of the chiral
symmetry breaking of TypeA, DFP, see (D.2). In the right panel we show the attenuation I'ygp of
this mode as a function of In IZ—; The solid red curve represent perturbative approximation, close to
criticality, see (D.1). The vertical brown lines represent H = H,t,, and the vertical dashed black
lines represent H = Hyit, .

parameter A and the physical label (4.2) of TypeA;, DFP is shown in figure 13; the latter is
further used to generate the plot in the right panel of figure 12. The vertical solid brown
lines correspond to H = H,it,, and the vertical dashed black lines correspond H = Hit,
— recall that for H > H,it,, chirally symmetric TypeAg DFP is the preferred dynamical
attractor compare to the symmetry broken TypeA; DFP, see figure 3.

Our final main result is:

TypeAp, DFP of the cascading gauge theory is perturbative unstable.

6 Future directions and speculations

In this paper we presented comprehensive stability analysis of the de Sitter dynamical fixed
points of the cascading gauge theory. The late-time attractor of the theory is determined by
the ratio of the de Sitter Hubble constant H and the strong coupling scale A of the theory.
We presented strong evidence that for H > Ht,, an arbitrary initial state of the gauge
theory would evolve to a chirally symmetric DFP, TypeA;. On the other hand, an arbitrary
state of the theory with H < H.j, is expected to evolve to a de Sitter vacuum, with
vanishing comoving entropy density production rate asymptotically. Since Heyit, < Herits,
what is the late-time dynamics of the cascading gauge theory state in de Sitter with the
Hubble constant in the range H € (Heyity, Herit,) is unknown. In our view, this is the
biggest open question.

Note that all the dynamical fixed points of the cascading gauge theory identified in [17]
have unbroken SU(2) x SU(2) global symmetry. The reason for this limitation is simple:
we do not know the dual holographic description of the cascading gauge theory outside of
this SU(2) x SU(2) symmetric sector (2.1). It is possible that for H < A, the above global
symmetry is spontaneously broken as well, and the new DFPs are stable. We can only
imagine how horrendously complicated it would be to analyze such DFPs!
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Another interesting question is the role confinement plays in producing de Sitter DFPs
of non-conformal field theories in the first place. In other non-conformal holographic models,
as discussed in [27] and [19], the late time attractor of the de Sitter evolution of these
models is always a dynamical fixed point, i.e., the state with the non-vanishing comoving
entropy production rate.'® In other words, there is no analogue of the cascading gauge
theory TypeB de Sitter vacuum. Intuitively, the holographic description of confinement
in de Sitter is fairly robust, at least when H < A, and thus it is natural to expect that
with a large hierarchy of scales between the confinement scale and the Hubble constant,
as it is in our Universe, there is no dynamical fixed point at late times. Can we find a
holographic model where a dynamical fixed point exists in the limit % — 07 Can the idea
that a dynamical fixed point requires deconfinement of the gauge theory be made precise,
or shown to be false?

Clearly it is interesting to explore other holographic models in de Sitter and analyze
the corresponding DFPs.
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A Symmetry broken DFP — TypeA,

In this appendix we discuss the linearized fluctuations about TypeA; dynamical fixed point
of the cascading gauge theory. In section A.1 we apply a straightforward generalization of
the master equation formalism [29] to derive the equations of motion for the fluctuations.
The final equations are too long/complicated to be collected in the paper — they are
available as a Maple worksheet in [31]. In section A.2 we discuss the boundary conditions,
both for the background geometry and for the fluctuations.

A.1 Equations of motion

As explained in section 3, we consider the cascading gauge theory DFPs and linearized
fluctuations about them in ten-dimensional Type IIB supergravity. The detailed discussion
of the uplift can be found in [17].

For the Fefferman-Graham metric ansatz (with spatially homogeneous and isotropic
background metric of the cascading gauge theory oc dz?) we take

dsly = &t dr* + G da? + F dp* + OF 2+ OF (g +67) + O3 (o1 +63), (A1)

new compare to master formalism

18We expect that DFPs discussed there will become unreliable then H < m, where m is the mass-scale of
the models.
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with

A \/ Gtt N émw N _iLl/4
&1 = N i/’ Y SV7S “= p ’ (A.2)

f1/2( )1/4’ Q ffl/Q( )1/47 Q3 7 1/2< )1/4,

where we highlighted the part of the metric new compare to the general ansatz of [29].
Additionally we set

A~ 1 K1 A 2 1 Kd PN &
hi=— |- —36Q ha —K hs = = | — — 3602 =
1 P<12 360>, 3 K2 3 P<12 360>7 g=e,
(A.3)
where we use " to indicate that the corresponding functions depend on p and 7. In (A.1),
gi (for i =1,---,5) are the usual one-forms defined on the warped-squashed 7! [33].
Following [29], we introduced linearized fluctuation, d - --, on top of the background
solution specified by [17]
{fa,b,c7 ha K1,2,37 g} 3 (A4)
specifically,
V étt =1+ 5.@11 5 V éwx = eHT (1 + 5&22) ) fa,b,c = fa,b,c(p) + 5fa,b,c>
h=h(p) + 6h, Kia3=Ki23(p) +0K123, g=y9(p)+93.
(A.5)

Notice that the h factor enters both in the definition of the background DFP metric, e.g.,
see ¢1 in (A.2), and the five-dimensional bulk scalars ; (A.2). This is necessary to produce
equations of motion without the fractional powers of h [3].

Assuming the harmonic time-dependence for the fluctuations, i.e.,

g1 = e “THi(p), 022 = € “THy(p) , S fape=e"“THapc(p),
5i]’ = eiinHh(P) ) 5K1,2,3 = eiiw‘rHKLzﬁ (p) ) 6.@ = eiiw‘ng(p) )
(A.6)

we derive 11 equations'? for 10 fluctuations:
{Ha,b,c, Hy,, Hy, H,, HKLQ,?).} (A.7)
These equations are collected in [31]. It is convenient to further introduce
= —iHs, (A.8)

effectively measuring all energy scales in Hubble units. To declutter the formulas we set
from now on the Hubble constant to unity H = 1.

The master formalism of [29] allowed to eliminate algebraically — solve their corre-
sponding equations — the fluctuations Hy and Hs as

(d—2)Hp _Hy

ter : Hy =Hy = =
fuaster LT T Y@ sh

(A.9)

d=3,in our case

9The 11’s equation is the Einstein equation with coordinate indices or-

- 29 —



Such substitution will not work for the cascading gauge theory gravitational dual: from
the 5d perspective because the Einstein-Hilbert term in the Kaluza-Klein reduced effective
action is warped (3.4), or from the 10d perspective because of extra contributions in the
metric (A.1). Instead, we find that a substitution

Hy=Hy=-—-h_—“e_ b “fc (A.10)

solves the equations for Hj . Furthermore, much like in [29], the equation for Hj, is of
the first-order, and can be solved algebraically in terms of the other fluctuations and their
first-order (radial coordinate) derivatives.

As explained in [29], while the boundary conditions for the fluctuations in the EF
coordinate frame are natural, they are less obvious in the FG coordinate frame:

m first, near the boundary we require that the fluctuations are normalizable;

m second, the EF frame bulk regularity condition is replaced in the FG frame with the
requirement that all fluctuations behave as

H.. ~ p*? x finite as p— 0. (A.11)

It is thus convenient to extract this singularity from the radial profiles of the fluctuations,

Ha,b,c = (1 + p)s/2 fla,b,c(p) ) HK1,2,3 = (1 + p)S/Q flK1,2,3 (,0) >

A.12
Hy = (1+p)*? fly(p), Hy = (14 p)*? flu(p), (412

where we modified p — (1 + p) to avoid introduction of the spurious singularity near the
boundary, i.e., as p — 0. As for Hj, the expression for flj is algebraic,

d d d
flh = flh [fla,b,w dipfla,b,c ; flKlyz,g’ dipflKL?ﬁ ; flg7 dipflg 5 S| - (Al?’)

We collected the equations for

{ fla,b,ca flK1,2,3 ’ flg ) flh } s (A14)

along with the algebraic expression (A.13) in [31]. These final equations, solved subject
to normalizability of the fluctuations at the boundary, and their regularity in the bulk
p € [0,00), would determine the spectrum {w}. We would like to stress that the regularity
condition as p — oo is much more stronger than the requirement that the modes fI... are
finite in this limit; rather, the regularity mandates [29] that we have a standard Maclaurin

17/2 or p="Inp are

series expansion for the profiles fl... in variable y = %, e.g., the terms p~
not allowed. This is necessary so that the fluctuations can be properly transformed to the
EF coordinate frame in the vicinity of y o< (r — 79) — 0 (see (2.22)), and further extended

in the EF coordinate frame all the way to the apparent horizon, r € [ram, ro].
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A.2 Asymptotics

In this section we discuss the asymptotics of the DFP background functions (A.4), and
the fluctuations (A.14). Keep in find that the equations of motion for {f, s, h, K123, g}
are of the second-order in p, the equation for f. is of the first-order; and the equations of
motion for { flop.ec, fli, .5, flg} are of the second-order. The first-order equation for fI,
is not independent, see (A.13). All the equations are nonlinear and coupled. To find a
solution to a DFP background, one needs a single label, corresponding to % (2.10), and
7 x 2+ 1 x 1= 15 parameters (from counting the total order of the background equations
of motion). Likewise, to solve the fluctuation equations, assuming that the radial profile
functions f1... are real and PRe[to] = 0, one needs 7 x 240 x 1 = 14 parameters; one of these
parameters must be s (A.8). It is possible to have fluctuations about a DFP which are
not purely imaginary [27]. Their analysis, using the equations of motion derived in this
paper, are straightforward, but it will not be performed here: TypeA; DFP is found to be
unstable to a mode with fe[to] = 0 already; instabilities of TypeAg DFP are anticipated by
the marginal modes, that can be identified independently as in section 5.1 of [17]. Besides
the marginal mode responsible for a branching of TypeA, DFP away from TypeA; DFP
discussed in section 4.1, none exists. Thus, we do not expect any of TypeA; fluctuations
with Relro] # 0, if exist, would become unstable, at least for H > Heyit,.

A.2.1 Background

The general UV (as p — 0) asymptotic solution of the background equations of motion
describing the phase of the cascading gauge theory with spontaneously broken chiral
symmetry takes the form

(0.)
fe=14far0p+ D fems p"In"p, (A.15)
n=2 k
o0
fa:1+fa,1,0 p+ZZfa,n,k pnlnkp’ (A~16)
n=2 k
oo
fo=14 far0p+ D fomk p"In"p, (A.17)
n=2 k
1 1 1 1 >
h= gb + ZKO — §blnp + (blnp — 2K0> fa10p+ Z Z hon i P In*p, (A.18)
n=2 k
(0.)
Ki=Ko—2blnp+0bfa10 p+ ZZkLn’k Pt In* p, (A.19)
n=2 k
3 o0
Ky =1+ (1@,3,0 + 7 fanoblnp 4 3foz0n p) PP Y kowk Pt p, (A.20)
n=4 k
(0]
K3 =Ko—2bInp+bfarop+ Y. > kynk p"InFp, (A.21)
n=2 k
1 2 .- n ..k
g:l—gbp +ZZgn7kp In"p. (A.22)
n=3 k
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It is characterized by 9 parameters:

{Ko, fa1,0, fa30, k230, 940, fea,0, fa60, far0, fago}, (A.23)
N e e
Og‘ Of Og O7 Og

where we indicated the dual cascading gauge theory operators which expectation values
these parameters characterize. Kj is related to strong coupling scale A of the cascading
gauge theory as (2.10). Finally, f, 10 corresponds to a diffeomorphism parameter that
ensures the range of the radial coordinate as in (2.8).

To study the infrared asymptotics, i.e., as y = % — 0, we redefine

W =y2 h, e =Y fabe- (A.24)

The IR asymptotic expansions

fa’},b,c = Z fc};ib,c,nyn ) hh n + Z hny )
n=0 . (A.25)
Kias=Y Klys,y", 9= Z Iny"
are characterized by 7 parameters:
h h h h h h h
{fa,o> fb707 fc707 KLOa K2,07 K3,0> 90} . (A.26)

Notice that in total we have, (A.23) and (A.26), 9+ 7 = 16 = 1 + 15 parameters,
as expected.

A.2.2 Fluctuations

The general UV (as p — 0) asymptotic solution of the fluctuation equations of motion is
much more complicated:

fla,bc Z P Fabcn )7 flKLg = Z Pn FKl,B%"(Z)
n=2
fle = Z pn FKz;n(Z) ) flg = Z pn Fg;n(z) ) flh = Z pn Fh;n(z) )
n=3 n=4 n=2

(A.27)
where z = In p. At each fixed order n we have a coupled system of 7 second-order ODEs for

{ Fupen(), Ficiogn(2), Fyn(2) | (A.28)

along with the first-order constraint involving F}.,(z). The complexity of these equations
grows with n. Since the cascading gauge theory has a gravitational scalar dual to a
dimension A = 8 operator, at the very least the series expansions must be developed to
order n = 8 inclusive.
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We present here the simplest set of the equations, i.e., for n = 2:

b

4
_ /! _ / / / _ / /
0= to2 =y . 1 oRg (2 + Fla 2F) = =y 2K, (i + 3Fi2)
1
+ 614422 — 7682 + 256 ) b® + (—61442 + 384) Kob + 1536 K2) F),.
(4bz — 2Ky — b)® (( ) ( ) Ko 0) h;2
1

+ —12962% + 2642 — 97) b* + (12962 — 132) Kob — 324K ) F,.
2(4bz—2K0—b)2<(( )b+ ) Ko 3) Fus

+ (126422 — 82 = 31) b + (12642 + 4) Kob — 316K3) Fio + (51222 — 24)

+512b2Ko — 128K3 ) Fua + ((—3202 — 32) b+ 160K0) Fic, 2 + (1282 — 32) b2

1 K
— 64bK0> FK%Q — 192FK3;2 ((Z + 3) b— 20>> R (A.29)
b 4
. /! _ / / / _ / /
0=Fo2 =y T 1o, (2B + Flo - 2F00) = 2K, (Fieso + 3F52)
1
+ 61442% — 768z + 256) b2 + (—6144z + 384) Kob + 1536 K2 ) Fy,
(4bz — 2K — b)? (( ) ( ) Ko 0) hi2
1

+ —129622 + 264z — 97) b% + (12962 — 132) Kob — 324K2) F},
2(4bz—2K0—b)2<(< J¥ ) Ko ORE

+ (126422 — 82 — 31) b + (12642 + 4) Kob — 316K3 ) Fup + ( (51257 — 24) 12
+ 512b2K — 128K§)Fc;2 + ((—3202 — 32) b + 160K¢) Fgy0 — ((128z — 32) b

1 K,
- 64bK0)FK2;2 —192Fk, ((z + 3) b— 0)) , (A.30)

2
" _¥<2F/ + F 4+ 2F! )_$(F/ + B )
G2 h—dbz + 2K\ @2 T a2 b2) b —dbz + 2K, \ K2 T T K2

1
+ 614427 — 768z + 256) b + (—6144z + 384) Kob + 1536K3) Fj,
(4bz — 2K — b)° (( L ) Ko §) Fio
1
+
(4bz — 2K0 — b)

+ (=512 = 24) 2 + 512bsKg — 12853 ) Fa + ((—5122% — 24) 0% + 51202 K,

0:

. (((—51222 + 1602 — 36) b + (5122 — 80) Kob — 128K3) Fusp

— 128K3) Fp + (1602 — 16) b + 80K) Fic,2 + ((—1602 — 16) b + 80K) Ficyzo

1 K
— 64Fy.0b ((z - 4) b— ;’)) : (A.31)
_ F// 4b F/ b 2F/ / 1F/ F/
0= K1;2+ b—4bz—|—2K0 K1;2+ g;2 a;2_§ c;2+3 b;2

3200 (—2b= + Ko)
5 L'h;2 +
(b—4b2+2K0) b—4bZ+2K0

(4b (5K() — 10bz — b) (2Fa;2 + Fc;g)
41
+24b (Ko — 2b2) Fyg + 4b (4bz — 2K + b) Fjo + (34bz — 17Ky — 2b) Fre,2

1
+ 16b (K() — 2()2) FK2;2 + (—18b2 + 9Ky — 32[)) FK3;2> , (A32)
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4b

o / N _
0= Fin T b—4bz+2K0FK2%2+9(F”?2 Fa2)
1 18
S — Ko — 2b2) (Fre,0 — Fre.,. %z — 26Ky — 5b) Fe,.
+b—4b2+2K0<b ( 0 Z)( Ki;2 K3,2)+(5 z 6 0 5) K2,2>3
(A.33)
0=FJ o+ 4—bF}( o+ b <2F’.2 4 3F .y — Fly— 1F"2)
3277 p —4bz + 2K, K 9 % 27 9
3206 (—2bz + Ko) 1 (
Fhot — (4b(5Ky — 10bz — b) (2Fy.0 + F..
b— 4bz + 2K()? R Ty (5Ko — 1062 = b) (2Fp2 + Foz)
41
+ 24b (K() — 2bz) Fa;g + 4b (4bz — 2Ky + b) Fg;Q + (341)2 — 17Ky — 2b> FK3;2
1
— 16b (K() — 2bz) FKQ;Q + (—1sz + 9Ky — 32[)) FK1;2> , (A34)
0= A (Phsz + Fieyi2) — $( 2 (—4bz + 2K, + 5b)
52 b—4bz + 2K + b \ K2 T VK2 Ty up s 10K, 0
— 2Fesb + 2Fiy0 + 2Ficya ) (A.35)
6b b— 4bz + 2K,
= [ F), 2F) o + Fly+ 2F,
0 h’2+b—4bz—|—2K0 hi2 + 3 ( ;2 2t b2)
1 b
+ 3 Friz + Frz) + 3 (2Fb;2 + 2Fq0 + Fep2) (A.36)

It is straightforward to verify that (A.36) is solved using the algebraic expression for Fj, o,
derived from (A.13),

(b — 4bz + 2K;)?
Fh;2 = -
640(Ko — 207)

(- ) s ()0 1)
e (34 2)o- ) (-~ o )
()

4
2Fz;;2 + 2Fl;;2 + Fc,;2 + g (F;('lﬂ + FI,(3;2))

(A.37)
Remarkably, above equations can be solved analytically,
7 ~ 2A(3b— 4bz + 2K)) I B A
G0G2 T T (b — dbz 4 2K)2 K2 = ) " dbz + 2K, (A38)
A(5b — 8bz + 4K, ’
Fiyo = Fyo =0, Fio = ( 0)

4b(b — 4bz + 2Ky)

where A is an arbitrary constant, characterizing an overall normalization of the linearized
fluctuations.
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n | Mon = My | Men | Miyin = Migin | My | Mgin | Mpn
2 1 1 0 — — 1
3 3 2 3 1 — 2
4 4 4 4 1 2 4
5 6 ) 6 3 3 5
6 8 8 7 4 5 7
7 10 9 10 7 6 8
8 12 12 11 8 9 12

Table 1. Upper limits of summation in (A.39).

In general, we find that the differential equations for (A.28) are solved with the ansatz

M{Lbc‘n
1 12, C5
Fopen(z) = labenm 27, n>2,
a,b,c,n( ) (b— 4bz + QKO)" mz::() f a,b,c;nym
1 MK1,3?TL
F . = l n: m >2
K1,3,n(z) (b — 4bz + 2K)"1 mz::() f Kigmm 2 nzz,
FK2;3(z) = flK2;3;0 + flK2;3;1 Z,
1 MKQ;n (A?)g)
Fr.,. = Licy .. m >4
K2,n<z) (b— Abz + 2K0)n—4 mZZ:O f Kamnym 270 nz4a,
1 Mgin
Fon(z) = lgmm 2™, n>4,
97774( ) (b_4bz+2K0)n_3 Tnzzo f%mm
1 Mh;n
Fyn(2) = Flhem 2™ n>2,
n2) = Gl r ok mzo imsm

where fl.. ;.. are constants, and the orders of z-polynomials in the numerators of F'...,,
i.e., M...,, are collected in the table 1 : The set of independent constants, fully determining
the remaining coefficients fl....p.,, is given by

{ A; fla;3;0 5 flK2;3;0 ; flg;4;0 5 flK3;6;5 5 flK2;7;0 ’ flg;S;O; S } ; (A4O)

where we also included the frequency parameter s, see (A.8). In the IR, i.e., as y = % =0,
it is convenient to redefine some of the fluctuations as

flape=y" fllye, fla=9* fly. (A.41)

Note that this redefinition mimic the corresponding redefinitions of the related background
scalars fop . and h in (A.24). The IR asymptotic expansions take form:

flg,b,c = Z flg,b,c;m ymv ﬂK1,2,3 = Z fl?(1,2,3;m ym’
o m=o (A.42)
flg= 2 flgm v Fl =3 flhm v™
m=0 m=0
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They are uniquely characterized by
{ le;O ) fll})L,O ) fl?,[) ) fl}ILﬁ;O ) fl?(g;o ) fl?{g;o ’ fl;l;(] } : (A43)

Notice that in total we have, (A.40) and (A.43), 8 +7 = 15 = 14+ 1, i.e., we have
the expected number of parameters, = 14 (corresponding to the total order of the non-
redundant differential equations of motion for the fluctuations), and a single arbitrary
overall normalization amplitude A. We are free to fix A as we wish. We find it convenient
to fix A differently for different branches of the fluctuations.

B Chirally symmetric DFP — TypeA;, xSB fluctuations

In this appendix we discuss the linearized fluctuations about TypeA ; dynamical fixed point of
the cascading gauge theory, spontaneously breaking the U(1)g chiral symmetry of this DFP
to Zg. The corresponding background and the fluctuation equations of motion are the special
case, a consistent truncation, of the general equations discussed in appendix A. Specifically,

o for the background we find [17]:

fe = f2, fa=Tv =13, Ki=K;=K, Ky =1; (B.1)
o for the fluctuations, note the rescaling of the fl, = — fl;, modes, we find:
flo=—fly=f3-F, e, = —flig = X1 flry, = X2, (B.2)
fle=0, fly,=0, fl,=0. '

This particular mode, i.e., {F, x1, x2}, is featured prominently throughout the paper, so
we discuss it in some details. The corresponding equations of motion are given by:

1 o |
1663 f292h2p (1+p) (fip—2f3) (fS hfagp® (1+p) (K')

+2h2 o f3bp? (1+p) (9/)° +29 f3 f2bp® (1+p) (W) +209%h2 f3 fabp? (1+p) (£3)°
+16£5h” f2g7bp (ps—3p—3) f3+16hg> f3 fabp (14p) W —4g” fFh (14 p) b°
2
+29°b(—8h” 3 (p+-1) f3+240° ((p2 (p+1)h+1+4 (—3s+ 1) p) f3+2p+2) fif2
K N 1
K
2f3hgb " " 32(p+1)° p2h2g fo f3b (fip—2f3)

x <20bp3592h2f2f§ (p+1) (f§)2*649(ip2f2 (1) (K')*+g(( (s 2 (p+1)* (s=3) B

0=F"+ 2

~K? (p+1)>>F’—

SO+ =930 )+ JASE) 5 =60 a o 1) F by 1) )0) oon
+((5+32) p+32) g f3 fo (p+1) p*h (K') = 4b( = p*sg fo f3 (p+1) (h/)%

1
— 402562 hfo 4 (p+1) ' —pPsh® fafi (p+1) (¢')° 3
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4
—24((s=8) p—8) fo (p+ 1) B2 3+ (p+ 1) b (((s—32) p—32) by-+4psh 3 ) £

1 k1 fa (K') p?s+8kog?b? (p+1)
K?(p+1)=)) |F—
£k (1) 5))) Lo+ 1) hg 307 fab

g2 (<16 (( (53 ) pt5=3) fas (0 1) b (=3+ (5= ) ) spf2) § +9(p+ 1)) 2SS

(B.3)

1 _ 2 212 2 N2
16p (f4p—2f3) b3 f2g2h? (p+1)< 12bp°g°h* fo f5 (p+1) (f3)

—16gbf3 f2 (ph (p+1)g'+ ((02+p) W —h(1+(s+1) p)) g) ph fs
PP o (p1) ()2 320pgh? o (o 1)~ g (b0 fold (1) ()

—12bpghfafs (p+1) b —p*hfaf3 (p+1) (K')? i+ (=122 (p* (p+1) h+1

+(=55+1) p) B F =202 a0+ 1) £ +h (p+1) (4073 +b9) £+ K2 (p+1) 3 )9b) ) st

Ozf@/{—k

32(p+1)° p2h2921f2f§’b (f4p—2f3)
— 1696(pzshf2 (p+1) g’+g(p28f2 (p+1) ' +2 (pQsz (p+1)* (s—3) h—ps (ps+2) f%
+9(p+1)) 1) ) 2 phfs-+200°sh” fof3 (p+1) (9')*+ 32007 sgh o f3 (p+1)
—4g(~bp s fofi (p+1) (h’)zé—mbp?sghfzfg‘ (p+1) W' =p*sh 2 f3 (p+1) (K’)Qi
+gb(—16(<<s—i> p—l—s—3> Fo5 (1) ph—((=3+(5—5) p) spfg)i

+9(p+1)° ) B2 f3 = 24psh? fo (p+1) 3+ psh (p+1) (4hf3 +bg) 3
Ff2hfoK'p?s+2bKg(p+1) (ka+2F)
(p+1) hf3p* f2 ’

+2K'F'+

(-12br3sg2h2f2f§ (p+1) (f5)°

(B.4)

+psK? (p+1) ;))>m+
! (~12500°02 o3 (1) ()

16p (f5p—2f3)bf3 fag?h? (p+1) ’ ’

+16gbf3 f2ph (ph (p+1)g'— ((p2+p) W —h(14(s+1) p)) g) /3

+2bp%h? o f1 (p+1) (g') ~ 32bpgh? fo f1 (p+1) ' —4g(~bp?9 fo 4 (p+1) (h’)zé

—12bpghfafs (p+1) b —p*hfaf3 (p+1) (K')? i+ (—12£:(p* (p+1) h+1

+ <§s+1) p) I F3=240° f (p+1) f+h (p+1) (40 f3+bg ) F3+K> (p+1) bgb))”’é

0 =Ko+

1
i (p+1)° 2122 f2£3b (fip—2fs)
+169(p2shf2 (p+1) g —g(p*s o (p+1) W +2(p%sf2 (p+1)° (s—3) h—ps (ps-+2) f%

+9(p+1)° ) ) )bfSoh fi+20p°sh> fo £ (p+1) (9)° =32bp>sgh® fof4 (p+1) o

(-12bp3592h2f2f§ (p+1) (f5)°
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—4g(—bp’sgfafi (p+1) (h')2%_1250289hf2f§1 (p+1) I =pPshfaf3 (p+1) (K/)Qi
+ab(—16(((s=7) p+5-3) fas o D= (=3+(s=5) p)so)
+9(p+1)° ) B2 f = 24psh? fo (p+1) f3+psh (p+1) (4hf3 +bg) 3

9 1 18F Ik1 K
FpsKp+l) 2>)>“2_p2f2+2bp2fzghf§‘ .

Since in this sector the fluctuations of fl;, are not activated (B.2), the asymptotics are
much simpler compare to the general case of section A.2. In the UV, i.e., as p — 0,

o0
F:JCS,OP37L Z pn'an,m lnmpv (B'6)
n=4 m
2 3 . n m
K1 = gb(f:s,o + K2:30) + 2f300Inp ) o7 + 3" "> Kipm M p, (B.7)
=4 m
- n
ko = (K230 +3f30Inp) p° + > "> Komm I p. (B.8)
n=4 m

In the IR, ie., as y = % — 0,

oo o o
F= Z fhoyn, K| = Z /i}fm ", Ko = Z mgm y". (B.9)
n=0 n=0 n=0
The mode asymptotics

Uv: { s, f3,0, K230, k270 },

IR : { f[?a ’{111;07 “}5,0}’ (B‘lo)
are completely specified by 4 + 3 = 1 + 6 parameters. One of the parameters from the set
{f3,0, k2,30, k2.7,0}, plays the role of the overall normalization A in (A.40), and the number
of the remaining ones match the total order of the coupled differential equations for the
fluctuations (B.3)—(B.5): 3 x 2 = 6. One of the physical parameter, i.e., s, determines the
frequency of this ySB mode about TypeA; DFP, see (A.8).

In the rest of this appendix we analyze the near-conformal b — 0, equivalently H > A,
limit of this mode. Strictly at b = 0 the cascading gauge theory is conformal, and the
spectra can be computed analytically [29]. We discover multiple spectral branches of the
fluctuations. On some branches we are able to compute analytically the leading (’)(\/5), and
numerically the first O(b) subleading, corrections to the conformal spectra, sections B.1.1
and B.1.2. On the remaining branches we compute numerically the leading O(b) corrections
to the conformal spectra, section B.1.3. Perturbative results obtained here provide a
valuable check of the finite % spectra in the near-conformal limit, see figure 4.
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B.1 Near-conformal limit: b — 0

In the near-conformal limit the background of TypeA, DFP is represented by

fo=(14p) (1+§b" f2;n(p)> L h=(4p) (1+§ b fg;m)) ,
n=1 n=1
1 = n = n _ = n
h= T <1+nz::1b hn(p)>, K:1+n§::1b kn(p) g—1+n§::1b gn(p) -

(B.11)
Explicit equations for { fon, fn, hn, kn, gn} for n = 1,2 along with the UV /IR asymptotics
are presented in appendix D.1 of [17]. There is a useful analytical solution for ki:

1 1 3 _6p2—24p—1 V1 -1
k=24 L g b =216 VI (B.12)
4 4+4p 4 8(1 + p)3/2 VI+tp+1

The coupled system of the linearized fluctuations (B.3)—(B.5) can be simplified introducing

b

1
K1 = g(% -q7), Ko = §(Q3 +qr7) . (B.13)

To leading order in b, we find from (B.3)—(B.5):

20s—p—6 _, 3(ps—2p—2)

0=F"+ - F,
2p(p+1) 2(p +1)%p?
2ps —p—06 3(ps —2p —2) 3(kip?s + 4)

0=q5+ 5 — +3k P+ 2T

B2 +1) BT 2z BT 20%(p + 1)

2ps —p—6 3 14p + 14 3(kip?s + 28

0=ql+ PP - (ps + Pr )qung’f—( 1p5+2)F. (B.14)
2p(p+1) 2(p+1)%p 2(p+1)p

Solving the decoupled equation for F', we find (up to an overall normalization Ar)
o
(1+p)°

Given (B.15), and using (B.12), it is straightforward to see that it is impossible to solve

F=Ar

3
oI (2,3—3;3; —p> ;os=34 (B.15)

the equation for g3 in (B.14), so that this mode is both normalizable as p — 0 and analytic
as p — oo — this means that the amplitude of F must always vanish in the limit b6 — 0.
This is precisely what we find, see (B.18) and (B.19).

With F =0, we find from (B.14) the following leading order as b — 0 solutions:

3 3
Q3:A3 (1j-p)5 2F1<2,3—S;3;—p>, 823,4,-", (Blﬁ)
and
P’ 11
q7:A7 szl <2,7S,11,p> y 827,8,"' . (B]_?)

Extending the leading order solutions (B.16), (B.17) perturbatively in b we identify
three branches:
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= A pair of non-analytic?’ in b branches, (4;) and (By),

oo o
s =n-+ Z(i)ksn;k bk/z, neN>3, qs3 = Z(i)kqgm;k bk/Z,
A,B k=1 AB k=0
- - (B.18)
F = Z(i)an;k bk/2a q7 = Z(i)kcﬁ;n;k bk/2a
AB k=1 AB k=0

with g3.n:0 given by (B.16) and g7.,>7,0 given by (B.17) with s = n. grp0 =0for 3 <n < 7.

= An analytic in b branch (Cp),

S :nJFZSn;kbka neN>T, q3 :Zq3;n;kbka
C = C _
N k=1 kooo (B.19)
F| = Z Fn;k bk R qr| = Z q7in;k bk )
C k=1 C k=0
where g7.n.0 is given by (B.17) and g¢3.,0 is given by (B.16) with s = n.
B.1.1 Details of s = 3 £ O(v/b) branches: (Ap) and (By)
From (B.16), here
3 3
p 3 ) P
0=3, 0= ———2F1(=,3—53;— = — B.20
53:0 3,30 = [l L 201 (2 s P e ( )

5=53,0

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the
latter implies that in the UV, i.e., p — 0, expansion of g3.3.x>1 the order O(p?) terms are
absent. Because the leading order fluctuation spectra (B.15) and (B.16) are degenerate, the
equations for F3.; will necessarily contain zero modes; specifically, if F3.;>1 is a solution, so
is (F3.; + o - g3:3:0) for an arbitrary set of constants ay. As we will see shortly, the zero
modes at order k will be completely fixed at order k + 1. We find it convenient to set

Fap =00 ¢330 + Fape, (B.21)

with the understanding that in the UV expansion of F3,, the order O(p®) terms are absent.
Using (B.20), (B.21), the perturbative ansatz (B.11) and (B.18), we find from (B.3)

the leading order equation for Fg;l,

5p —6 nld 3(:0 — 2) 7

0=Fy + P2 pp, - 2P0 By B.22
2+ 1) T 2(p 122 (522

The most general solution to (B.22) is specified by two integration constants C; and Cs:
3
i P p 9, VI+p+1
F30.=0C - ———+C- ——— In ——— —2(p+2)/1 . B.23
3;1 1 1+ ) 2 1+ ) (P JIrp—1 (p+2) P ( )

20Related phenomenon was observed earlier in [15] and [34].
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Normalizability of the fluctuations sets Co = 0; the boundary condition imposed by (B.21)
further sets C1 = 0, resulting in
F371 =0. (B24)

Likewise, we find
q73,0 = 0. (B.25)

The subleading set of equations involving constants o, s3.1, and functions {g3.3.1, ¢7:3.1,
Fg;g} reads:

5p—6 ,  3(p—2)azz1 | 9aup*(p+2),, | 3(dai(p+1)+pssi)p

0= g 14— hgy — ., (B.26
Bt o B T 22 T 2kt T a1y (B:20)
5p—6 3(17p+14) 91 p?(p+2) ,  42a1p
0=q31+=——ahs — 5 5 94731 — , B.27
TELT2(14p)p T 202 (14p)2 2(1+p)t " (14p)? (B27)
R 5p—6 - 3(p—2) = 2(p+2 3a1ps3 —8(p+1
0= Fffpt —2F ‘o 2(p )2 3;27p(p 4)ki+( 1983;1 (g )p (B.28)
2(1+p)p 2p*(1+p) (1+p) 2(1+p)

Above set can be solved numerically — and we explain how to do it for the set of equations
at the next order — here instead we show that the most important constant, i.e., s3,1 can
be computed analytically:

e Substituting
Py = q330 Gz, (B.29)

and using (B.12), we find a general analytic solution for Gj.,,

, 0 VIitp+1l VI+p (3p? +12p + 8)
3.9 = — 573 In + 3 Ch — 3 Qa153:1
’ 16(1+p)52 " VT+p—1 p P31+ p) (B.30)
N (p+2)(3p* — 8p® + 56p* + 128p + 64) '
24(1 + p)2p? '
Normalizability of Fg;g sets
16
Cl == —E + 80&153;1 . (B.?)l)
As p — 0,
1 384 1
ho = —— == + 144153, | p~2 — — (3840531 + 256) p~ /2 + O(p~3
32 18 ( 5 + 04183,1) p T ( 1831 + 256) p +0(p™),
(B.32)
thus analyticity of Fg;g, and thus Gg;z, in this limit requires
2
= o Ci=0, (B.33)
383;1

which is also evident from (B.30).
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o We continue with (B.26), setting

1
331 = —— 43530 J3:3:1 (B.34)

)

allows to solve analytically for J3 3.1,

g 3p3 nﬁ+p+1_3p2+12p+8S2 \/1+pC
BT+ p) 2 Ik p -1 pPitp) T

(p+2)(3p* — 8p> — 72p% — 128p — 64) (B:35)
- 8(1+ p)2p? '
Normalizability of gs3.3.1 sets
Cy = 8s3,, — 16, (B.36)
and analyticity of ¢3.3.1, and thus J§;3;1, in the limit p — oo requires
$3q =2 — 3.1 = +V2. (B.37)

Note that to determine s3.1, there is no need to solve for g7.3.1 — of course, this solution is
needed for the computation of the higher order corrections ss.>2.

The sub-subleading set of equations involving constants as, s3.2, and functions {gs3.2,
Fg;g} reads (we omit the equation for ¢r;3.2 as it is not need to compute s3.9; it is required
for the computation of s3.>3):

0= gl 50— 6 G — 3(p—2) - 53,105:3,1 38314331
2T+ p)p P 20214 p)2 T T 2p(14 )2
3(3k1p* +4) o 3paz(3pki(p+2)+4) = 3pPssp  3p%(k)*  pPK]

+ 3k F.y

2(1+p)p? 2(1+p)* 2(1+pP° 8149 " (1+p)*
30%(p+2)f51 9p%(p+ 2R 3p 2
— = + —3hy(p® + 16p + 16
(1+p)* A1+p)t 81 +p)° ( e p+16)
+4(1+ p)(12k1 — 3fa1 — 20f31 +1)) (B.38)
~ o5p—6 3(p—2) = 531 £ 3s3.1[50 2
O=Ffg+ g — — = _Fhap o R, O TRl
B4 p)p BT 221 p)2 P T 2T 214 ) 31
/2 / 2 2 3(1.\2
1~ +4 2., kip®—4 P~83;2 19p° (k1)
AP TR s+ SR gy + 2 grg + 2
<1+p)pQQ3,371 3 IQ7,3,1 (1+p)p2q7,371 S3;1(1+p>5 1283;1(1+p)3
3 / 2 / 2
poszaky  pT(p+2)hy | 3pTszaan p
- AT ; —3hy(p+4)(3p+4
31+p)%  2s3.(1+p)% " 200 +p)  12s3.(1 +p)5( 1(p+4)(3p+4)
+4(1+ p)(12k1 + 15 fo1 — 36f51 — 13)) . (B.39)

Egs. (B.38) and (B.39) are solved subject to the asymptotic expansions,
m in the UV, i.e., as p — 0,

3 1
q3;3:2 = (. + 6a In P) P>+ <—3a2 - §f2,1,0;1 — 3532 + (—3ai1s31 — 18a) In P) p*

+0(p°Inp),
1 1

~ 3
F33 =10 P+ <—2@1f2,1,0;1 T 1832 283;1@2) 4+ 0> Inp),

(B.40)
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it is completely specified by {2, s3.2}; we further highlighted arbitrary constants, fixed to
zero by the overall normalization (B.20) and the extraction of the zero mode in F3.3 (B.21);

m in the IR, i.e., as y = % — 0,

q3;3:2 = qg;g;z;o +O(y), Fy3 = F??;?,;o +O(y), (B.41)
it is completely specified by

{q§;3;2;0’ Filag, az, 33;2} : (B.42)

In total, the UV and IR expansions are completely determined by the parameters (B.42),
which is precisely what is needed to find a unique solution for a pair of second order
ODEs (B.38) and (B.39). Solving these equations we find

sz = —1.5748(9), a2 =0.7936(8),  qhsn0 =4.174(3),  Ffsg = F0.40398(7).
(B.43)

Once the numerical solution for {gs.3.2, F3;3} is found, the second order ODE for g7.3.0 —
necessary to determine s3.;>3 — is solved adjusting two parameters,

{Q7;3;2;7707 q]71;3;2;0} ) (B44)
that completely determines its UV and IR asymptotics.

B.1.2 Details of s = 7 £ O(v/b) branches: (Ap) and (By)
From (B.16), here

3 3
st0=17, gm0 =0 - % 2 F1 (2,3 — 535 —P>
(1+p) s—smo (B.45)
~ pP(21p* + 1129 + 240p* + 256p + 128)

B 128(1 + p)7 ’
where we highlighted the (fixed) overall normalization of the linearized fluctuations; the
latter implies that in the UV, i.e., p — 0, expansion of ¢3.7.;>1 the order O(p?) terms
are absent. Because the leading order fluctuation spectra (B.15), (B.16) and (B.17) are
degenerate at s7.0, the equations for F7; and g7.7.; will necessarily contain zero modes;
specifically, if F7.;>1 and g7.7.x>1 are solutions, so are (F7.;+ - ¢3.7,0) and (Q7;7;k+% “q7:7:0),5

7
p 11
q7.7:0 = Bo - m o (2, 7—s;11; —p>

(B.46)

S$=S7:0

for an arbitrary set of constants {ag, Sr}. As in section B.1.1, the zero modes at order k
will be completely fixed at order k + 1. We find it convenient to set

. 1 R
Frip>1 =M@ - q3.7.0 + Fre qrr:k>1 = |Pr| - %%7;0 + Q778 5 (B.47)
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with the understanding that in the UV expansion of ﬁ’7;k the order O(p?) terms are absent,
and in the UV expansion of §7,7.; the order O(p") terms are absent.

As in section B.1.1, the equation for F7;1 is homogeneous, and the boundary condition
implied by (B.47) sets

Fr1=0. (B.48)
The subleading set of equations involving constants aq, 5o, 7.1, and functions {¢3.3.1,

Q3;7;1, Fg;g} reads:

13p— 6 3(5p0 —2) 3p* (p+2)a1k1(
0=d el S el VY -/ /- 2 147 560p°
BT T30 1 ) p BT T 221+ 2 BT T T o561 1 ) e

+ 944p% 4+ 768p + 384> + Lg <p(7,04 + 48p% 4 144p* + 256 + 384)s7.1

256(1 + p)
+ 12a1 (1 + p)(21p" 4 112p° + 2400 + 256p + 128)) : (B.49)
13p — 21 2 2ark
0= oy + 3p—6 (3p+2) . 3p%(p+2)a 1(147 + 56053

a1 971 T 554 0 04771 —
2(14p)p 1 2p2(1 + p)? 256(1 + p)®

21
+ 94402 + T68p + 384> L <21p4 111203 + 24002 + 256p + 128)
64(1 + p)
11571 80p°
~o5TPoP B.50
2(1+ p)? (B:50)
. 130 — 6 - 3(5p—2) - (p+2)pk
0=Fl,+ P2 fr, o — 147p* + 5603 + 944>

P 4 3 2
768p + 384 1p(7p* + 48 144p° 4 256p + 384) — 8(1
+ 768p + >+256(1+p)9 <a187,1p( p" +48p” 4 144p” + 256p + 384) — 8(1 + p)

Tp(p+2)k] —12)
3(1+ p)8

We show here that the most important constant, i.e., s7,1 can be computed analytically:

5
x (21p% + 11297 + 24092 + 256p + 128)) A (B.51)

e Substituting

« R 1
Bo=—p, qr;11 = 1 - —qr70 - Bz, (B.52)
57:1 Bo
and using (B.12), we find a general analytic solution for B,
B 3(315,04+1400p3—|—2552p2+2304p+1152) w/1+ +1
(S

20480p(1+p)5/2 B/ TTp—1
p 10 9 8 5
- (77p" —220p" +792p° — 4224p" + 59136 p° + 709632
63p11(1+p)( p p°+792p pT+591360%+ p

4 3 2 (1+P>9/ 2
+2365440p" 4 3784704p% 4 324403297 + 14417929+ 262144) + -~ C
pl

1
4725p" +17850p'2 +42480 0" +193440'° 4599424 5°
T 5120011 0)%0 1T (472501* +178500 " 424800+ pe P

+9858560° +277504p" —5945344p% —24600576° —49201152p" — 562298889
— 374865922 — 13631488p— 2097152) . (B.53)
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Normalizability of g7.7.1 sets

1024 262144

Ci=—— B.54
T 5 T 63 (B:54)
As p — o0,
49 11 45 33 141 121
Bhot =2~ p) p 24 (24 22)) p3 <_>—4
7Tl (160 9p>p +<16+7p>p 25 T’
30242 253 _5 268984 _6
—_— — — 1023 B.55
(55 + 73 2) 7+ (o — 102%) 0 (B.55)
1024 | 262144 \ i3 .
+(25 + %3 P)P +0(™"),
thus analyticity of §7,7.1, and thus B7.7.4, in this limit requires
63
= — Ci=0 B.56
p 6400 1 ’ ( )
which is also evident from (B.53).
o We continue with (B.49), setting
a1 = S7.10, q3;7:1 = 1 - q3;7:0 - 3,71 (B.57)

allows to solve analytically for J3.7.1,

g 9% VIEptl (14 p)%2C,
STLT32(14 )52 T+p—1 ' (21pt 4+ 112p3 + 240p2 + 256p + 128)2p3

1
— 24500 + 3140p°
150p3(21p% + 11293 + 240p2 + 256p + 128)2(1 + p) ( P P

+ 18936° 4 73088p" 4 243968p° + T15776p° 4 1505280 4 2015232p°

+ 1622016 + 720896 + 131072)

p+2
80(1 4 p)2(21pt + 112p3 + 240p2 + 256p + 128)2p3
+353640p'° — 900480p° — 7755456p°% — 23990272p" — 45821952p°
— 60620800p° — 57819136p* — 39976960p> — 19529728 — 6291456

(19845/)12 + 158760p!!

— 1048576 .
(B.58)
Normalizability of g3,7,1 sets
131072 3v —1
Cy=- , B.59
! 15 v ( )
and analyticity of g3.7,1, and thus Jéﬁ;l, in the limit p — oo requires
1
v = 3 — C,=0. (B.60)
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o Consider now (B.51): introducing
Frp = g370 - Gra (B.61)

/
we solve for G7.,

/ P3

G = 4000(1+p)>/2(21p* 41123 +240p2 + 256 p+ 128)2
+1189720p" 4+5688536° +16165632p° +30098816p* +37888000°

VItp+1

VItp-1

(245,010 1+3140p°

(112455p8

+31744000p2+16384000p+4096000) In
o S%;l
4503(21p*+112p3+240p% 4256 p+128)2(1+p)
118936 +73088p" 4243968p° + 715776p° +1505280p +2015232p°
(1+p)°2Cy
(21p*+112p34240p2 +256p+128)2p3
(5060475;)12

+1622016p>+ 720896+ 131072) +

p+2
+ 90000(1+p)2(21p4+112p3 +240p2 +256p+128)2p3
+40042800p! +110307120p'°+275251200° — 600006144 % — 1699570688 p”
—1994001408° 4-24739840,° 4+ 3575996416 p* + 5505679360 p° +4226940928 p*

+1704984576p+284164096) . (B.62)

Normalizability of 13'7;2 sets

35520512 131072 ,

_ , B.63
= 5625 | 45 L (B.63)

and analyticity of F7;27 and thus G/7;2’ in the limit p — oo requires

271 v 1355
2
571 = o5 = 57,1 5 (B.64)
B.1.3 Details of s =7 4+ O(b) branch: (Cy)
From (B.17), here
7 7
p 11 ) p
0="1, 7.0 =M - Pl —=,7—s11;— = ) B.65
57:0 arro <M s 2 < 5 p tp7 (B65)

$=87.0

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the
latter implies that in the UV, i.e., p — 0, expansion of g7.7.x>1 the order O(p") terms are
absent. Because the leading order spectra (B.15), (B.16) and (B.17) are degenerate at sz,
the equations for Fr.; and gs.7., will necessarily contain zero modes; specifically, if F7.;>1
and ¢7.7.x>1 are solutions, so are (Fr; + o% - q3;7:0) and (gz.7.k + % ©q3:7:0),

p2(21p* 4 112p3 + 240p? + 256p + 128)

128(1 + p)7 ’
(B.66)

:ao-

3
q3;7.0 = a2 I <2, 3 —5;3; P)

S$=S7:0
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for an arbitrary set of constants {ayg, S;}. As in section B.1.1, the zero modes at order k
will be completely fixed at order k 4+ 1. We find it convenient to set

1 .
Frp>1 = [Brl - *Q3 70+ Fr, a7z = O - 0370 + 43,7 » (B.67)

with the understanding that in the UV expansion of F7;k: and ¢3.7,; the order O(p?) terms
are absent.

The subleading set of equations involving constants ag, 51, 7,1, and functions {{s7,1,
qr:7:1, p'y;l} reads:

A 13p—6 3(50-2) 21k Fry | Tp%(p + 2)g]
0=0Q471+——Ghrg — ——s +3k:’F + !
BT 21+ p)p ™7 T 22 (14 p P T T (1) T 214 )8
67,1 12p°g; app

2 4 3 2
- 14 44

+384)(1 4 p)2 (k)% + 2p(p + 2)(1 + p)(147p* + 560p° + 944p> + 768p + 384) (3R}
+4f51) — 4p(Tp" + 48p° + 144p” + 256p + 384)s7.1 — 16(1 + p)(273p" + 1232p°

+ 2384p% + 2304p + 1152)k; + (161705 + 123200° + 40352p* 4 74496 + 833282

+ 55296 + 18432)hy + 4(1 + p)((273p" + 1232p> 4 2384p? + 2304p + 1152) fo,y

+ (1596p* + 7616 + 15296p* 4 15360p + 7680) f3.1 — (147p* + 560p> 4 944p* + 768p

- 384))) - M(ffp)s( 1p(p +2)(147p" 4 5600 + 944p? + T68p + 384) + 84p?

14483 + 960p% + 1024p + 512) , (B.68)
0=q77q+ mq/nm - mqﬂﬁl TR+ Tk )) - 3’“’1%;1

_ 2;[()5?153:5) ey - 7/)6((1/) :j))gfé” azf; ((10 : 2)) % (1475 + 560p° + 944p? + T68p

- 384) - Qljjipjji“ 21(11/)18;)19 56(11 PE (—3291(1 +p)(21p* + 112°

+ 240p% + 256 + 128) g + p*(28(1 + p) (35 fa.1 + 4k +20f31 +7) — 7(77p* + 16p

Bip / 4 3 2 2
16)hy)) — — 2 2)(147p% + 56003 + 9440% + 768p + 384) + 6720
+16) 1)) 14(1+p)8( 1p(p +2)(147p" + 560p° + 944p~ + T68p + 384) + 6720p
+ 7168p + 3584 + 588p* + 3136p3) , (B.69)
R 13p—6 - 3(5p—2) - P2(p+2)K,
O=F + " —F — 0 " [, — =" 2((147p* + 560p°> + 944
A T 2R T 63<1+ o (1470456097 + 9447

4
+768p + 384) ag — 147p") — 21(17‘[‘1)‘@8 (a0 (219" + 1120° + 240p* + 256 + 128)

+21p%). (B.70)
Egs. (B.68)—(B.70) are solved subject to the asymptotic expansions,

m in the UV, ie.,as p—0,

R 256 128 64 64 128
g371 = (0 + 751 In P) p* - <,51 + 7040]62,1,0 1 + 5 (0571 +

f11n P>
+0(p°Inp), (B.71)

40 —



128 640 1966 46 4756 92
qr71 = —751 + 751/) ( B1+ = 0)05 + ( B1 — ao)P + (

21 7
256 768 457 1
2~ 2% okiot + o Bikion + e — s
.+( 35 0 4o1+ 51 4o1+350a0 35051>
18 6 2 \ .7 872

+ 31— 3500 ) In%p Jp + O(p°In"p), (B.72)
A 88 176
Fr =000% + 00" - @040,05 + HO(OP6 +0(p"Inp), (B.73)

it is completely specified by {51, ao, s7;1}; we further highlighted arbitrary constants, fixed
to zero by the overall normalization (B.65), and the extraction of the zero modes in Fr;;
and q3;7:1 (B.67);

m in the IR, i.e., as y = % — 0,

Q371 = Q710 + OY) qrim1 = Qi + Oy) Fra=Flo+0(y), (B74)

it is completely specified by

~h h [h
{q3;7;1;07 q7:7:1;0 > F7;1;07 B, ao, 37;1} : (B75)

In total, the UV and IR expansions are completely determined by the parameters (B.75),
which is precisely what is needed to find a unique solution for three second order ODEs (B.68)—-
(B.70). Solving these equations we find

s7.1 = 4.3945(5) , By = —3.5047(8),, ap = 4.2000(0) ,

" \ . (B.76)

Note that equation (B.70) for F7;1 is decoupled, and involves ky for which the analytic
expression is available (B.12); solving this equation using the techniques of section B.1.1,

we find
N p3(21pt +112p3 +240p2 +256p+128) 21
Frq= - Gri, ao=—,
21(1+p) 5
73
Gh, =— 126p%+1519p" +7903p°
7l 10(1+p)5/2(21p4+112p3+240p2+256p+128)2( prorlolip +1d0op

VItp+1
+235200° +44784p" +56832p° +47616p +24576p+6144) F+1

T(p+2 )
(p£2)p (126" +1183p7 443750 +4976p°

5(14p)2(21p*+112p%+240p% +256p+128)2
—12296p* —49280° —68992p? — 45056 — 11264) ,

_l’_

(B.77)
where the analytic expression for ag is in perfect agreement with the numerical result (B.76).
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+v2 -
+ V1355 4.39(5)
+ VT8 4.95(1)

+y 127627 5.32(3)

4V 604049698
14700

Ol | N | |o kx| w3

[
(e

did not compute

Table 2. Leading corrections to the conformal spectra on branches (A4p), (Bp) and (Ch).

B.1.4 Select values of s3<,<10;1

Extending the computations of sections B.1.1 and B.1.3, we collect in the table 2 leading
corrections to the conformal spectra on branches (A;), (Bp) and (Cp) for 3 < n < 10. These
results are used to highlight the features of the spectra presented in figure 6. Notice that the
leading correction to the conformal spectra on branches (A4p), (Bp) is unchanged for n < 6,

— Jm[r] =n+V2b+ O(b). (B.78)
(Ap)&(Bp)

C Chirally symmetric DFP — TypeA,, chirally symmetric fluctuations

In this appendix we discuss the linearized fluctuations about TypeA dynamical fixed point
of the cascading gauge theory, preserving the U(1)g chiral symmetry of this DFP. The
corresponding background and the fluctuation equations of motion are the special case, a
consistent truncation, of the general equations discussed in appendix A. Specifically,

o for the background we find [17]:
fe = J2, fa=hHh=fi, K=K=K, Ky=1; (C.1)
o for the fluctuations: we keep {fl,, fl;} modes, and further restrict
fla = fly = fl3, flk, = fls = flg . flk, =0,  fle=fla. (C2)

Given (C.1) and (C.2), the corresponding equations for the fluctuations and the boundary
conditions can be deduced from those of the symmetry broken DFP discussed in appendix A.

In the rest of this appendix we analyze the near-conformal b — 0, equivalently H > A,
limit of the chiral symmetry preserving fluctuations in TypeAs DFP. Strictly at b = 0 the
cascading gauge theory is conformal, and the spectra can be computed analytically [29].
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We discover multiple spectral branches of the fluctuations. On some branches we are able
to compute analytically the leading O(v/b), and numerically the first O(b) subleading,
corrections to the conformal spectra, sections C.1.1, C.1.2 and C.1.4. On the remaining
branches we compute numerically the leading O(b) corrections to the conformal spectra,
sections C.1.3 and C.1.5. Perturbative results obtained here provide a valuable check of the
finite % spectra in the near-conformal limit, see figure 8.

C.1 Near-conformal limit: b — 0

Introducing
flo = +p) (fly +4flw),  fls=0+p)(fly = flw), (C.3)

to leading order in b, we find?!

2s—1)p—6 3s
(2s-1)p—6  fix,

O:fl”+ fl e
BT 2(+pp 75 20(1+p)

2s—1)p—6 s hsfli
0 _ l//+ ( I l +2]€, ll + 1 ,
Mot =aspp Mo gparpp ot 2l 0,
CT2(1+p) T 20+ T BT B(1+p)
25 —1)p — 6 3ps + 64p + 64 8k 1/
0= l"+(— [ ) R K 2,2 3.2
R L v W LU ey s G

Aflx

—9p% —120p — 120) + 50+ p)pi(s — (1 1 5) (pk’l (p35(s +6)(s —4) + 10ps(ps

— 15p—12) +480(p + 2)(p + 1)) 1 80p2s2 — 240p%s — 2400 + 1920p + 1920) :
(C.4)

Solving the decoupled equation for flx, we find (up to an overall normalization Ag)

4

flic = Ak o B (5a-s5-p). s=45-. (C5)

_r
(I+p
Given (C.5), and using (B.12), it is straightforward to see that it is impossible to solve the
equation for fl, in (C.4), so that this mode is both normalizable as p — 0 and analytic as
p — oo — this means that the amplitude of flx must always vanish in the limit b — 0.
This is precisely what we find, see (C.9) and (C.10).

With flg =0, we find from (C.4) the following leading order as b — 0 solutions:

4 5

flg=A4, (lip)s o Fy (2,4—3;5; —p) , s=4,5---, (C.6)
6

flu = Ay iz 0P (56— s:9:=0) | s=670, (O
8 13

2INote (see the equation for fly) that the leading s = 4 mode is more subtle; it will be discussed in details
in section C.1.1.
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Extending the leading order solutions (C.6), (C.7) and (C.8) perturbatively in b we
identify three branches:

= A pair of non-analytic in b branches, (As) and (Bs),

s| =n+ > (E) s b2, neN>4, flgl =3 (2)F flgm 0772,
A,B k=1 AB k=0
flel = () flicng 072, flo] =) flumg 02,
AB k=1 AB k=0
el =3 () flpmg 072, (C.9)
AB k=0

with flg.n.0 given by (C.6), flu:n>60 given by (C.7), and fl.,>g.0 given by (C.8) with s = n.
flwno =0 for 4 <n <6, flyno=0for 4 <n <8, and flpao # 0, see (C.15).

= An analytic in b branch (Cy),

s| =n+Y sux b, neN>6, Flgl =" flgma b,
c k=1 C k=0
o0 o0 o0
flie| =" fli V- flu =3 o ¥, fly| =3 flg O
C k=1 C k=0 C k=0

(C.10)

where fly:n;0 is given by (C.7), flgno is given by (C.6), and flf.,>s.0 given by (C.8) with
s=mn. flno=0for 6 <n <8

C.1.1 Details of s = 4 & O(v/b) branches: (A;) and (Bj)

From (C.6), here

4
:(1ipﬁ’ (C.11)

4
p 5

0=4 lga.0 =" F{-,4—s;5;—

$4;0 ) flga0 . 1+ p)° 2 1<27 559; P)

§=84;0

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the
latter implies that in the UV, i.e., p — 0, expansion of fls4x>1 the order O(p?) terms
are absent. Because the leading order fluctuation spectra (C.5) and (C.6) are degenerate,
the equations for flg.4., will necessarily contain zero modes; specifically, if flx.4.1>1 is a
solution, so is (flx .4k + o - flgua0) for an arbitrary set of constants . As in section B.1.1,
the zero modes at order k will be completely fixed at order k + 1. We find it convenient
to set

flK;4;k = 0 - flg;4;0 + flK;4;k ; (012)

with the understanding that in the UV expansion of fI K4k the order O(p*) terms are absent.
As in section B.1.1, the equation for f lc.4;1 1s homogeneous, and the boundary condition
implied by (C.12) sets

flgan =0. (C.13)
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The leading order equation for fly.4.o takes form

Tp—6 2(19p + 16) 64(p% +24p + 24) oy
0= fllfyo+—— flrso— ——5" flrao+ , C.14
ff74’() 2p(1+p) f f34;0 p2(1+p)2 f £34;0 5(1—|—p)584;1 ( )
and can be solved analytically,
1281 p?
Fran = - (C.15)

15841 (1 + p)3

The subleading set of equations involving constants a1, s4.1, and functions {flg.4.1, fl K:4:2>
Sl } reads:

0= flg;4;1 + 2;([)1:_(;) f ;;4;1 - ,0(1—?—p)2 Flyan + 4041((f1—35p3k'1 2??1941;1)6 (C.16)
0= flysn + Mﬁ}w - p(lip)szm;g e Ghs 2)(3(2104;(2;;)1— 50%541)p
+ M (75a1p3si;1 — 240p%s4;1 + 2048011 (1 + p)* — 24op234;1> : (C.17)

Above set can be solved numerically — and we explain how to do it for the set of equations
at the next order — here instead we show that the most important constant, i.e., s4,1 can
be computed analytically:

e Substituting

o1 =410, flgan = san - flgao - Ggan s (C.19)
and using (B.12), we find a general analytic solution for G;;4;17
3 3/2
Gl = 16(13:/)/))5/2 . %J—fi (1 +p§) / ' Jip)2p5 ((p +2)
x (9p5 — 24p° — 152p* + 768p> + 2944 + 3072p + 1024)v + 8(1 + p)(5p*
— 40p® — 240p* — 320p — 128)) . (C.20)

Analyticity of flg.4.1, and thus G’g;4;1, as p — oo sets
Cy =0, (C.21)

and normalizability of flg.4.1 identifies

1
=—. .22
v=1 (€22
o We continue with (C.17), setting
flK;4;2 = flgao - Hxa2, (C.23)
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allows to solve analytically for H }(; 42>

g PP —6lp—64) VIFp+l (1+p)*? sh (50"
K2 = 7601 4 ppp2 T rp—1 P L6+ ) P
+2
— 40p% — 240p® — 320p — 128) + — L2 (45,5 — 312p° + 840p*
p p p )+240(1+p)2p5( p p° + 840p
—11008p® — 38784p% — 39936p — 13312) . (C.24)

Analyticity of flK;4;2’ and thus H}C4;2’ in the limit p — oo requires

C1 =0, (C.25)
while normalizability of fI K42 Sets
26 V130
8421;1 = g - S4:1 = + 5 (C.26)

Note that to determine s4.1, there is no need to solve for fl,.4;1 — of course, this solution
is needed for the computation of higher order corrections s4.;>2.

The sub-subleading set of equations involving constants ao, s4.2, and functions { fif.4.1,
flg:a:2 and flK;4;3} reads (we omit the equation for fl,.4.2 as it is not need to compute s4;2;
it is required for the computation of s4.;>3):

NV
p—6 2(19p + 16 8(p? + 24p + 24) K} flyc.a.
0= flfs1+ LA Flpa — 2190 + 16) Jlpan — G - i Sl
T 2p(L4p) T p2(L4p)? T 5p%s4;1
32(p% +24p + 24) (pk + 2) flgan  4(p* + 24p + 24) (6401 (p + 1) — 5p2s4.1) (K))?
+ 4 o 2 4
5s4;1p* (1 + p) 25531 (1 + p)
S8a1p?(4p? — 3p — 12)k;  2048(p + 2)(p? + 24p + 24)ay 1 1
+ ( 5 ) L— ( g( 4 ) (fé;l + 7fé;1 + hll)
5(1+ p) 75511 (14 p)ip 4 4
 64a1(p® +24p + 24)s40 | 64(p + 24p + 24) g 1 (—768( 2
5(1+ p)7s7, 5(1+ p) s 75(1+ p)Ps3.10? g

4
+24p + 24)ay (p + 3> (p + 4)h1 — 102401 (1 + p)(p? + 24p + 24)(fo1 + 4f31 — 4k1)

+ (24576 + 3968p™ s, + (—4288s].; + 1024)p® + (—4608s3,; + 25600)p* + 49152p) vy

+240p% 541 (p? + 24p + 24)) : (C.27)
Tp—6 6 A AR, flye.a0
0= f1! yg+ — " FU g — ————— Flois + 2K, flreguy + — 202
f g;4;2 2,0(1 + p) f g;4;2 p(l + p)g f g;4;2 1f K;4;2 1+ p
sutflgan 4K pP(p+2)as | 4(p+2)(16c1(p +1) = 5p°san)pgy | c1p'saik
L+p (1+p)° 5(1+ p)°san (1+p)°
(p+2)p*(fo1 +4f41)  3s4a1flgan 1 4
] 1) o4 g 102401 (2p + 1) — 30k p*ss,
1+ p)? 2p(1+ p)2 ' 30s41(L + p)P ( 12p+1) 1P 541
+ (75542 — 240)s4:1° + (~ 240541 + 102401)p?) (C.28)
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A// T0—6 6 A P
0= + ——— flyns— ——— flicas — k1 flrgq —
flicas 2p(1 1 p) flicas o+ )2 Flrcas = gFaflpan
48 fly 40
5s41(1+ p)?p?

Al
12flK;4;2 (p p
5(14 p)sap?

FL+ PR - S (14 p)H - 13psh ) + (o D1+ 92 w2

2 5 16 1
+ (p+3>p( +p)°ky — 327 Sk 3( +p) +2(1+p)p2 p~( (1+p)

3
(flg 41 T 2flw;4;1) + 7flf;4;1 - 4flw;4;1)k/1 + 28flf;4;1 + 32flw;4;1 - 4([)2](5/1

192p(p + 2)(1 + p)?k] + 25p°s3,; — 512(1 + p)? 96011 54:9
+ 4)flg;4;1) Qg —
10s41(1 + p)° 5(1+ p)Ssiy
5 8 a7
2)(1 2k — 352, —-(1 2) (—1152 3 2
plo+2)(A+p)ky — 1P sia — 5 (1 +p) +75p2(1+,0)653;1 p°(p+2)

1024
105

e +8p+8> B+ 200+ 1) (fo + 4fau

4
X (L4 ) () = 31557 sk 20%5% — oo (1 9 ) (L4 pP(K))? = 7680+ 2)

< (plo+ 20+ DS + 11+ 4850 + (5

3 2048
—dky — 1)+ 8/)28?1;1)/)(1 +p)?K) + 75(p + 2)p(1 + p) ((p48421;1 + (1 +p) ) fa1

75
1024 2 / 5.2 ./ 2 ¢l
—-2(p! 34 1= ?(1 +p)7 ) By ) —2p(p +2)(1 + p)(75p" 55197 — 4096(1 + p)~ f3.1)

512
+ (=75p%s51 +1024(p + 4)(3p + 4)(1 + p)*) . — 600(1 + p) (—75(1 +0)%(f21

32, 1
Afsy —dky — 1) + s, - = 1 ——————(4p*(1 + p)*(K})*
+4f50 — 4k — 1) + 53, (p 55 (Pt )))) + 10(1+p)554;1< p (1 +p)"(k)
x (3p(2+ p)k; — 8) + (—5p*si.y + 48p(p + 2)(1 + p))k} — 128(1 + p)) . (C.29)
Egs. (C.27)-(C.29) are solved subject to the asymptotic expansions,

m in the UV, ie.,as p— 0,

7557, 22553, 1554,

128(0‘13:21;1 + 50 sa0 — Baosa1) 465920 64 9
flf 4;1 = - P + .-

17 32 1
<flf74,1,8 0+ o ( — ka0, 1> Inp— —ayIn? P) +O(p’In? p), (C.30)

200 15 20
14560

Flgaa = (. + <4a2 +2- o 1) In p) p'Inp+O(p°Inp), (C.31)
4;1

P [ 64(a1siy + Sarsan — Sagss) 23296a1+ 32 5
K3 = 553, 22557, 15541 )"

+-~+(0 —4a1>p4lnp+0(p5lnp), (C.32)
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it is completely specified by {2, sa;2, flf.4:1:8:0}; we further highlighted arbitrary constants,
fixed to zero by the overall normalization (C.11) and the extraction of the zero mode in
fli.a3 (C.12);

m in the IR, i.e., as y = % — 0,
A ~h
flf;4;1 = fl;”l;zl;l;(] + O(y) ’ flg;4;2 = flg;4;2;0 + O(y) ) flK;4;3 = flK;4;3;0 + O(y) ’

(C.33)
it is completely specified by

A h
{fl?;4;1;0> flg;4;2;07 Flicaz0, 02, 54;2} . (C.34)

In total, the UV and IR expansions are completely determined by the parameters (C.34)
and flf.4.1.8.0, which is precisely what is needed to find a unique solution for three second
order ODEs (C.27)-(C.29). Solving these equations we find

sS40 = —1.7907(6) . (C.35)

Once the numerical solution for {fl.4.1, flga;2, flK;4;3} is found, the second order ODE for
flw:a;2 — necessary to determine s4.>3 — is solved adjusting two parameters

{flw;4;2;6,0 y flﬁz;4;2;0} ) (C36)
that completely determine its UV and IR asymptotics.

C.1.2 Details of s = 6 + O(+v/b) branches: (A,) and (B;)
From (C.6), here
4

560 =6, flgeo =M (1i7p)s

_pH(Tp 4 24p + 24)
B 24(1 + p)b ’
(C.37)

5
2 F (2, 4 —;5; —,0>

5=56,0

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the
latter implies that in the UV, i.e., p — 0, expansion of flg.6.1>1 the order O(p*) terms are
absent. Because the leading order fluctuation spectra (C.5), (C.6) and (C.7) are degenerate
at sg,0, the equations for flx.e.; and fly.6., will necessarily contain zero modes; specifically,
if fli.6.6>1 and fly.6.6>1 are solutions, so are (flx.6.k+ 0 - flg:6:0) and (flye:k + %-flw;ﬁ;o),

P

9
luo=Po- ————oF1 [ =,6—59; —
flws:0 = Bo (it p) 2 1(2 $ P)

0

e

5=56;0

(C.38)

for an arbitrary set of constants {ay, S;}. As in section B.1.1, the zero modes at order k
will be completely fixed at order k + 1. We find it convenient to set

A~ ]_ A
flK;G;k21 = Qg - flg;G;O + flK;G;k ) fl'wgﬁ;kZI = ﬂk ’ %flwﬁ;o + flw;G;k ) (C39>
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with the understanding that in the UV expansion of fI K6, the order O(p*) terms are
absent, and in the UV expansion of flw;G;k the order O(p%) terms are absent.
As in section B.1.1, the equation for fI K:6;1 s homogeneous, and the boundary condition
implied by (C.39) sets
flger =0. (C.40)

The subleading set of equations involving constants o, fo, Se;1, and functions { flge.1,
flK;6;27 flw;6;17 flf;G;l} reads:

11p—6 9 0356.1(5p? + 24p + 40)
0=l +——— fll o — ——— floe1 + ;
Poor ¥ 3oy Tlomn = W pyzp o 16(1+ p)°
a1p’(p +2)(7p* + 16p + 16)k] (C.A1)
A1+ p)" ’ '
Al 1p—6 4/ 9 5 (p+2)(7Tp? + 16p + 16) >k}
0= fliego+ ——— flrgo— ——— flicgo —
B02 5 2p(L 4 p) 7O (L4 p)2p 7RO 8(1+p)
(a1 pse1(5p° + 24p + 40) — (16(7p* + 24p + 24)) (1 + p))p*
+ 8
48(1+ p)
(1+p)7 ’ '
Ny 11p -6 . 3(Tp+4) 905 Bose:1
0= flooq+ b g — LT o D P06
Pt 5,5y won = gz Tlosa 54 s

a1 (p+2)(7p* + 16p + 16)ky

C.43
20(1 + p)7 ’ (C.43)
11p—6 41p + 32
0= fllp +—2 — - 07" 4.
4(5p2 24 24p+ 24 4o p? 2)(3p2% + 4p + 4)K!
L 45p" + 80+ 8)(Tp" + 24p + 24)on | daap(p +2)Bp" + dp + 4)ky (C.A4)

7(1+p)7 5(1+p)7

We show here that the most important constant, i.e., s¢;1 can be computed analytically:

e Substituting

a1 = S6;1° 0, flg;ﬁ;l = S6;1 ° flg;G;O : Jg;6;1 s (C45)
and using (B.12), we find a general analytic solution for Jé;ﬁ;l,
o 3pPv n\/1+p+1+ (14p)7/? o
GG T 16(1+p)5/2 JI+p—1  po(Tp2+24p+24)2 !

1
R TP R Ty ((p+2)(735""+3080p° — 62000" — 63104

—151104p° —100864p° + 233984 +622592° +647168p? +-327680p
+65536)v+8(p+1) (758 +624p" +1968p° —576p° —20160p* —53760p°

—64512,02—36864,0—8192)) . (C.46)
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Analyticity of flg.6.1, and thus J!/];G;l, in the limit p — oo requires

C; =0, (CA47)
while normalizability of flg.6.1 sets
1
v=1. (C.48)
We continue with (C.43), setting
A 1
flw;6;1 = S6;1 ° %fl’w;ﬁ;() : Hw;6;1 ) (049)
allows to solve analytically for Hj, .1,
0o ~ p(35p*+96p+96) L VIEptl (14p)7/? o
wibl T 6400(14p)52 T Itp—1 P !

1
~336000(14p)2p?
—215040p> — 258048 — 147456p—32768) 80— 7(p+2) (5250 +40p°
—700008—11008p" —14208p° +74752p° +560128p* +1245184°

11294336 + 6553600+ 131072)) . (C.50)

((9600(1+p)) (45p° ~ 14457 +6720° — 8064p° — 80640p"

w

Analyticity of flw;ﬁ;l, and thus Hy 4., in the limit p — oo requires

C; =0, (C.51)
while normalizability of flw;&l sets
7
_ _ 52
o= —1500 (C.52)
Consider now (C.42): introducing
flK;6;2 = flge0 - Gri6:2 (C.53)

!
we solve for G 6.9,

3p°(3185p" +21504p% +57504p° +72000p+36000) | /I Fp+1

/ - —
62 2000(1+ p)5/2(7 2+ 241 24)° V]
(14p)7/? 1 y
2)(47775
P (Tp%+24p+24)? 1+5000/)5(1+p)2(7,02—|—24p—|—24)2<(p+ It P

+195160p° +166200p% — 164672p" +220128p5 —2597632° — 19464448 "
—43270144p3 — 44978176 —22773760p— 4554752) —500(1+p) (7505 +624p"

+1968p6—576p5—20160p4—53760p3—64512p2—36864p—8192)s%;1) .
(C.54)
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Analyticity of flK;G;Q, and thus G’K;&Q, in the limit p — oo requires

C1 =0, (C.55)
while normalizability of fI K6;2 Sets
278 V1390
S = o5 = se1 = E— (C.56)

The remaining equation, i.e., (C.44), does not constrain s¢;; — it is required to determine
the higher-order corrections sg j>2.

C.1.3 Details of s = 6 + O(b) branch: (C;)
From (C.7), here

_ 0 (C.57)

6 9
s6,0 = 0, flweo =1 - (1_/;7,0)5 2 F1 (2,6—8;9; —P> T+ )6

5=56;0

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the latter
implies that in the UV, i.e., p — 0, expansion of fl,..x>1 the order O(p%) terms are absent.
Because the leading order fluctuation spectra of (C.5), (C.6) and (C.7) are degenerate at
56,0, the equations for flg.¢., and flx.., Will necessarily contain zero modes; specifically, if
flg6:>1 and fli.6.1>1 are solutions, so are (flg.e., + Z—‘S - flg6;0) and (fli.6. + g—’; - flg6:0),

pH(Tp? + 24p + 24)
24(1 + p)© ’

5=56;0

5
flg:6:0 = ag -2 I (234 — 8355 —P) (C.58)

for an arbitrary set of constants {ag, Sk }. As in section B.1.1, the zero modes at order k
will be completely fixed at order k 4+ 1. We find it convenient to set

1 s 1 A
flg;G;kzl = Q- ;Oflg;G;O + flg;G;k ) flK;G;kZI = ﬂk ’ ;Oflg;ﬁ;o + flK;G;k ) (059)

with the understanding that in the UV expansion of flg;ﬁ;k and flK;&k the order O(pt)
terms are absent.

X The subleading set of equations involving constants «g, f1, s¢;1, and functions { fl :6:15
fli.6.1> flwe;1} reads (we do not discuss the equation for fly,1 — it is needed to determine
S6:k>2, but it does not affect the computation of sg.1):

Ny 11p—6 4 9 A At 6k’1fAlK.6.1
0=flogq+—t—— fl o1 — s flogq + 2K, flygq + — 8L
Hooa+ gy Hlosn = Sy Hlesn T2l lcen + =70
PR p+2)(Tp +16p+16)81  20°(K)* | 8p* pPag (_3p(p L)
41+ p)7 (L+p)8  (1+p)7 48(1+p)?®

X (1+ p)(Tp® + 16p + 16)(fhy + 4f4y — 4gl) + 9% (Tp? + 24p + 24)hy — 3p(5p° + 24p

40561 + 16(1+ p)(7p? + 24p + 24)) , (C.60)
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Al 1p—6 9 5 2(3kip(p +2) + 8)p?
0= flyg1+=— flcgs — ———5 fligr +
Tion 5,15y Thoen = e Tl (1+p)7
~ PPBkip(p +2)(Tp* + 16p + 16) + 56p> +192p + 192)ag
241+ p)7 ’

11p—6 . 3(7p+4) 7l 2 o 6k) i
2p(L+p) 7O (L p)2 T TG TS (1 4 p)

9p°ss1  19p%(K)* | (7p* + 24p 4 24)((K1)*p*(1 + p) +4)p*ag
2(1+p)®  20(14 p)8 120(1 + p)”

31./ 2 4

P’ k1(p +2)(7p° +16p + 16) 51 p ( / /

- -~ 2 2 1 ., — 48[4
20(1 + p)7 2001 + ) p(p+2)(p+1)(33f2, f31

C5HY) 4 5(7p + 4)(3p — A)hy + 80(p + 1) (k1 + %fm U1 fer — ;))) L (C62)

(C.61)

0= fZZJ;G;l +

Egs. (C.60)—(C.62) are solved subject to the asymptotic expansions,
m in the UV, ie.,as p— 0,

flyea = ( 0 + (200 +4p1) In p> pt+O(p°Inp), (C.63)
. 2 1
Flice =Wt + " + (5 — 700) 6° + 06", (C.64)
(2 AN (L2 ) ( (7 b ) ) 6
flwe = (1500 + 1551) P+ ( 50 351> p°+ (Il + 12040 120ﬁ1 Inp|p
+O(p"Inp), (C.65)

it is completely specified by {ao, 81, s6;1}; we further highlighted arbitrary constants, fixed
to zero by the overall normalization (C.57), and the extraction of the zero modes in flg.6.1
and flK;G;l (C.59);

m in the IR, i.e., as y = % — 0,

~ ~h N h
flg;G;l = flg;G;l;O + O(y) ’ flK;G;l = flK;6;1;0 + O(y) ’ flw;fi;l = flzlf);&l;[) + O(y) )
(C.66)
it is completely specified by

o h s h
{610 Flrcssno s Flisans @0, Bis e} (C.67)

1ty

In total, the UV and IR expansions are completely determined by the parameters (C.67),
which is precisely what is needed to find a unique solution for three second order ODEs (C.60)—
(C.62). Solving these equations we find

s6:1 = 6.0318(6) . (C.68)

C.1.4 Details of s = 8 & O(v/b) branches: (A;) and (Bj)
From (C.6), here

4
p )
88,0 ’ f 97870 . (1 + p)s 2t (2, S’ , p) 5§=58:0 (C 69)

_ p*(33p" 4+ 192p% + 448 + 512p + 256)
N 256(1 + p)8 ’
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where we highlighted the (fixed) overall normalization of the linearized fluctuations; the latter
implies that in the UV, ie., p — 0, expansion of fl,.g.>1 the order O(p*) terms are absent.
Because the leading order fluctuation spectra (C.5), (C.6), (C.7) and (C.8) are degenerate
at sg0, the equations for fli.s.x, flus:x and flr.g., will necessarily contain zero modes;
specifically, if flx.g:k>1, flwsk>1 and flr.gp>1 are solutions, so are (flx.s.k + o - flgs:0),
(flwsssk + % + flwgo) and (flpse + %’5 fly80);

6 6112
p 9 p°(11p~ + 40p + 40)
Slws;o = Po - 2 Fy (,6—8;9;—0) =PBo- )
“ (1+p)® 2 N 40(1 + p)®
, . pg (C.70)
lr.8.0="0" l—=,8—s513;— = - ,
Hrso =10 G 5 2 1(2 p) LN

§=88;0

for an arbitrary set of constants {ay, Ok, 7k }. As in section B.1.1, the zero modes at order
k will be completely fixed at order k 4+ 1. We find it convenient to set
o 1 o
g1 = [0 - flgso + flgsge,  flusk>1 = [Pe - Fflw;g;o + flugik
. 0 (C.71)
flrge>1 = W %flf;s;o + flygs

with the understanding that in the UV expansion of fI K8, the order O(p*) terms are
absent, in the UV expansion of flw;&k the order O(p%) terms are absent, and in the UV
expansion of fI f.s: the order O(p®) terms are absent.
As in section B.1.1, the equation for fly.gs.; is homogeneous, and the boundary condition
implied by (C.71) sets
flis =0. (C.72)

The subleading set of equations involving constants a1, By, 70, ss:1, and functions
{flg;&la flK;8;2a flw;8;17 flf;&l} reads:

3(5p — 2) 12 58,10°
0= fllg 4+ 2l o — ——— flogg + ———(45p* + 320p° 4 960p>
Koy p?(p 4+ 2)(33p* + 144p° + 272p% + 256p + 128)
1536p + 1280 C.73
+1536p + 1280 ) + B0+ ) . (CT)

3(5p — 2) . 12 il _(p+2)p°K
20(1+p) " p(14p)2 TR 641+ p)?
1881 0% (45p* + 320 4 960p% + 1536p + 1280)

512(1 + p)10
p*(pk1(p +2)(11p° 4+ 30p + 30) 4 22p* +80p +80)B0  Y0p°(3pki(p +2) — 14)

0= flicsa+ (33p4 + 14455

+272p" + 256p + 128) +

+

5(1+ p)? (1+p)?
_ PP(33p" +192p° 4 448p” + 512p + 256) (c74)
32(1+ p)? ’ '
a1 3(5p—2) 12(2p+1) ; (63p% 4 280p + 360) Bop°ss:1
0= Tlusa * 5o p) Thosn ~ g gy Twsa ® 80(1 + p)10
 Krai(p +2)(33p" + 144p® + 272p% + 256p 4 128)p° (.75)
160(1 + p)? ’ '
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o 3(5p—2) 4(11p+38) » (p+2)oup’k) 4 3
0= flpgq+ b = fro o — 0220 g4 L 20 P54 4 607
ff,8,1 20(1 + p) f f38:1 p2(1_|_p)2 f f381 120(1+p)9 ( p p
1388-1p7"}/0 a1(37p2 + 24p + 24) 4 3 2
991p% + 768p + 384 ’ 33 192 448
MG )+2(1—|—p)10 144(1+ p)° (330" + 192" + dasy
+512p + 256) . (C.76)

We show here that the most important constant, i.e., sg.1 can be computed analytically:

e Substituting
o1 =sg1°v,  flgsn = ss1 - flgso - Jgsi, (C.77)

and using (B.12), we find a general analytic solution for J g1,

J o = 39311 . VI+p+1 (1+,0)11/2 4
81— 16(1+p)5/2 VIFp—1 ' pP(33p*+192p3+448p2+512p+256)2
1
B 2)(343035p™
84005 (1+p)2(33p*+192p3 +448p% 4-512p+256)2 ((p+ A P

430769203 480362802 — 17283840 —182325120p'° — 613628928"
—1212027904p% —1507459072p" — 10268508165 4+ 74186752p° +1002176512p*
41149239296 p° + 700448768 p 4234881024 p+33554432)v+8(1+p)

x (14175p2 4-186200p™ 41114000 +3973568p° +9149312° +11880448)"
—2265088p5 —45760512p° — 98402304 p* — 112459776 — 74973184 >

—27262976p— 4194304) ). (C.78)

Analyticity of flg.g.1, and thus J;;B;l, in the limit p — oo requires

Ch =0, (C.79)
while normalizability of fl,s.1 sets
1
v=3g- (C.80)
o We continue with (C.75), setting
flw;&l =881 ;Oflw;&ﬂ “Huysgn, (C.81)

allows to solve analytically for H}, g,

H/ — p
WS LT 7168(1+4p)5/2(11p2 +40p+40)2

(7623p6+69696p5+270400p4

Vi+p+1
5734400° + 7168000 +516096p+172032) In Y—L——
+ P+ P+ p+ ) N
<1+p)11/2 o 1
(11p2+40p+40)20° ' 225792(1+p)2(11p2+40p+40)2p°

X (3969p"2 +28616p" + 691840 +45824p° + 27456 p° — 439296 "

(3584(1 +p)
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—6150144p° —24600576p° —49201152p* — 56229888 p> — 37486592
—13631488p—2097152) 8y — 3(p+2) (1600834 +1036728p3 + 727608 p*2
—12423936p"! — 51946368 — 99511296 " — 109388800 —48627712p"
+163610624° +624689152p° + 1112276992 + 1149239296 p° + 700448768 p°

+234881024p+33554432) ). (C.82)

Analyticity of flw;&l, and thus Hy,g 1, in the limit p — oo requires

Cy =0, (C.83)
while normalizability of fAlw;&l sets
3
-2 .84
fo =113 (C-84)
Substituting
R 1
flf;S;l = 88;1 - %flf;S;O : Bf;8;1 ) <085)

allows to solve analytically for B¢,

. 539p% +2428 3 + 4220 + 3584 p+ 1792 1 VIFp+1 (1+4p) /2
Q.1 = n
181 35840(1+p)3/2p VItp—1 p13

1
- 268800(1 97312 — 798 )11 4 998810 _9152,°
62092800(1+p)2p13< (1+p)(273p ot p P

+54912p% —878592p" —12300288°% —49201152p° — 98402304 p* —112459776°
—74973184p” —27262976p—4194304)y0+11(p+2)(169785p"* +312060p"?
+2529660p'2 4172838400 +50552960'0 478883328 p” 471192064
+63537152p" +279535616p5 +937033728p° + 1668415488 p* + 1723858944

—|—1050673152,02+352321536p+50331648)) . (C.86)

Cy

Analyticity of fl f£:8:1, and thus B};&l, in the limit p — oo requires

Cy =0, (C.87)
while normalizability of fl £.8,1 sets
11
Consider now (C.74): introducing
flisa = flgso - Grisz s (C.89)

we solve for G.g.,
Glgo=— o
K;8;2 9800(1+p)5/2(33p% +192p3 +448p2 +512p+256)2
+4265712p" +21950064p° +66764544p° + 131942272 +174469120p°

(373527°
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VItp+1

1518182402 +80281600p+ 20070400 ) In Y —E——
+151818240p> +80281600p+ )m\/m_1

N (14p)'1/2 ¢

PP (33p%+192p3 44482 +512p+256)2
* 514500p5(1+p)2(33p4+1;2p3+448p2+512p+256)2 ((r+2)(
117661005 +1029936600p"3 43458168280 +4151454720p*!
— 584480256000 — 27053374464 —37550953472p° — 30962548736"
—76202098688° —243316424704p° —433231888384p" —447628705792p°
— 272824795136 —91486158848p— 13069451264) —2450(14 p) (141752
+186200p't +1114000p'° 43973568 +9149312p5 411880448 p" — 2265088 p°
—45760512p° —98402304p* — 112459776 — 74973184 p? — 27262976

—4194304) 53,1 ) . (C.90)

Analyticity of flK;S;Za and thus G .2, in the limit p — oo requires

C1 =0, (C.91)
while normalizability of fI K:8;2 Sets
3116 2V 779
2
1T 1225 0 %8 35 (C.92)

C.1.5 Details of s = 8 + O(b) branch: (C;)
From (C.7), here
~ p%(11p% + 40p + 40)

40(1 + p)® ’
(C.93)

6 9
ss:0 =8, fluso =l (1ip)5 2 F1 (2,6 —59; —P)

5=58,0

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the latter
implies that in the UV, i.e., p — 0, expansion of fl,.8.1>1 the order O(p%) terms are absent.
Because the leading order fluctuation spectra (C.5), (C.6), (C.7) and (C.8) are degenerate
at sg0, the equations for flgs.x, fli.sr and flyg will necessarily contain zero modes;
specifically, if flg.gr>1, flisx>1 and flyg.p>1 are solutions, so are (flg.g.x + Z—’S - flg80),
(flsik + % + flgso) and (flps + % fly80);

5
flgso = ao -2 F1 <2,4 — 8;9; —P)

5=58;0
pt(33p* + 19293 + 448p? + 512p + 256)
256(1 + p)® ’

13
flyg.0 =702 F1 (2,8 — 8;13; —P)

= Op (0.94)

,08

(1+p)8°

5=58.0
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for an arbitrary set of constants {ay, Ok, 7k }. As in section B.1.1, the zero modes at order
k will be completely fixed at order k 4+ 1. We find it convenient to set

1 A 1 A
flg;&kzl = Qg - Eflg;S;O —+ flg;S;k ) flK;S;kzl = ﬂk : ;flg;8;0 + flK;S;k ’

10 ) 0 (C.95)
flf;S;kzl = Y% - Eoflf;S;O + flf;&k )

with the understanding that in the UV expansion of flg;&k and flK;&k the order O(pt)
terms are absent, and in the UV expansion of fI .8, and the order O(p®) terms are absent.

The subleading set of equations involving constants ag, 31, 70, ss:1, and functions
{flg;&l’ flK;S;lv Slws;1, flf;S;l} reads:

s 3(5p—2) 4y 12 ) 8K, flyc.s1
0=fl o1+ ——t2F o —— fl o 42k g, +——in
f g;8;1 2p(1+p)f 9;8;1 p(1+p)2f 9;8;1 lf K;8;1 1+p
N 03K, (p+2)(33p +144p3 +272p% +256p+128) 3 %030 (k) (1+p)—28)
32(1+p)° 4(14-p)?
3.1 (45p* +320p +960p% 41536 p+1280 11p2 5
il 8;1(45p p 1§ p ) p 10( aop(p+2)
512(1+p) 20(1+p)t0 \ 352

x (14p) (33p" +144p° +272p° +-256p+128) ( f5., +4 f5.1 —4g7) +p" (p2

40 75a0p2h1 64 448 512 256
1 1 2 k/ 2_7 4 el 3 - 2 - -
+ 2o >)< o) ()2 ( P e B

15 64 , 448 , 512 256\ 32 , 256 ; 256
—(1+p)( (p + s +) 4—p3—p2>), (C.96)

8 33 33 33 15 33 33

~ (5,0 2) 12 A p2a0 ’ 4
0= flpg, +——= —_——flpg———— | pk 2)(33

f K,8,1+2p(1+ )f K:8:1 p(H_p)Qf K817 64(14 p)? pk1(p+2)(33p

+144p° +272p% 4+ 256 p+ 128)—|—384p3+66p4+896p2+1024p+512>

3pkh (p+2)—14)v0p®  (pk}|(p+2)(11p%+30p+30)+22p%+80p+80)p*
- (1+p)° 5(1+p)? ’
=
0= flw81+;)§§_i_i;fliu;8;1 mﬂwm kifl;(;m—w
PPk (p42)(33p* +144p7 +-272p> +256p+128) 31 p° (639> +280p+360) 58,1

B 160(1+p)° 80(1+4p)t0
(33p +192p3 +448p% +512p+256) (p2 (K} )2 (14p) +4)p*c0  y0p°

1280(1+p)? ~20(1+p)° (

(C.97)

4
P00 (149) =320 D) f = P +80Ufan = ) +12) ~ ot
10

EP

215 80 80(1+
><<p+2><1+p>ha+p2<1+p>2<k’1>2+(19 = S+ i+ 2O (i

4+ f21—11f31—230>>> (C.98)

8p(p+2)(1+p)(11p>+30p+30) (11 f4, — 16f31)+209<p +11(1)(p+1)> (—
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8(5p=2) ¢y 4(11p+8) 2(31p%—120p—120)k flyc.5.1
flisa flyga+

Al
OzzflﬁSJ_F

2p(1+p) p?*(1+p)? 45p?
N 16(k p(28p° —5p% +30p+60) + 1850 +120p+120) fl ¢ 5.1 B (6 5
15(1+p)p? 720(1+p)° \ ¥

x (p+2)(154p* +607p> +991p% +768p+384) k| +5(37p* +24p+24) (33p* +192p°
+448p2+512p+256)) TR (fp2(1+p)(31p2—120p7120)(33p4

11520(1+p)?
+192p° +448p% +512p+256) (k1 )% +2400° (p+2) (11p? +35p+35) g, +4(149p>

27p*0
T 40(1+p)10 (243p(”+2)
830 276
x (14p) (157p* —660p—660) (f3., +4f§;1)—§3p(p+2)(1+p) (02—83(0+1))

20 11840 455 58900 94420
xh’1+(p2—(p+1)) p2(1+p)2<k1>2+<—+ BTl yrald

+120(p+ 1))(33p4+192p3+448p2+512p+256))

9 81 27" T o3
23680 ) 20 59440 ( )

-~ —— (1 133102 2 2)(foi+4fqq)+—nou
T h1 243( +p)(1331p" +732p+732)(fo1 +4/3.1) + 515 \?

2000 (8116 260ss.)\ 5 14116 , 4000
== 1) ) (1 _ ; =" -
MErilas )>( okt =g (243 27 ) 243 ¥ T g1

1872 26 4 1900 4 4300 , 800 ,
(2 p(p+2 S 2 (2p+1) ) (1 .
+600(1+p)10< Pt )(p 20 Pt e P T 1320t 1) |(4p) fan

444

328 120 30 40
28 (4D ) olo (0 (54 310+ ) ) i+ (54 T+ )

y (50 (p2+12<p+1>) p(p+2) (14 p)h} -+ p? (pg—mwl)) (L+p)(ky)?

o1 5 17
25 12 4 400 31 39

+17 (p2+5(p+ 1)> (p+4) (p+ 3> == (1+p) (— (4p2+ 5<p+1)> 1

- <:L23p2+254(p+1)> fan+ <p2+152(p+1)) k1+%02+3(p+ 1)))) : (C.99)

Egs. (C.96)—(C.99) are solved subject to the asymptotic expansions,
m in the UV, ie.,as p—0,

flysa = (0 + (2a —|—4,31)1np)p4—|— O(p°Inp), (C.100)
2 1 5, (2 1 6 7
flgg1 = 00" + 00" + 3 gMN)P +0(p"), (C.101)
2 4 4 8 3 1
lw. 1 =|— — 4 J— _ — 5 ( < o )1 ) 6
flwg <15a0+ 15ﬁ1>ﬂ +( £ 0 5ﬂ1>ﬂ + (I + 5020 1051 np|p
+0(p"Inp), (C.102)
16 32 32 32 397
lrgqg=|— = 24 ... — | Zagkso1 — —Brksoq + —
flrsa (27(10 + 27&1) P+ (0 < o Coksoa 1551 101 + 1200
9 1 1 2 8 91..2
+ 400ﬁ1 27()) Inp (12a0+ 20ﬂ1> In p)p + O(p’ In* p), (C.103)
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+V390 1 6.03(2)

£V 1 5.39(7)
+24T9 | 5.06(0)

0 | NN | O | Ot

Table 3. Leading corrections to the conformal spectra on branches (4,), (Bs) and (Cs).

it is completely specified by {ao, 81, 0, ss;1}; we further highlighted arbitrary constants,
fixed to zero by the overall normalization (C.93), and the extraction of the zero modes in

flgsa, flxsa and flpga (C.95);

m in the IR, i.e., as y = % — 0,

~ ~h PN ~h
flg;S;l = flg;&l;(] + O(y) ) flK;S;l = flK;&l;O + O(y) ) fl'w;S;l = fl]J);S;l;[) + O(y) )
flf;S;l = fl?;&l;o + O(y) )
(C.104)
it is completely specified by

~h ~h ~h
{flg;&l;[) ’ flK;8;1;0 ) le);S;l;Ou ’ flf;S;l;O y Q0 ﬁl y Y0, 38;1} . (0105)
In total, the UV and IR expansions are completely determined by the parameters (C.105),

which is precisely what is needed to find a unique solution for four second order ODEs (C.96)—
(C.99). Solving these equations we find

ss:1 = 5.0601(3) . (C.106)

C.1.6 Select values of sy<n<s;1

Extending the computations of sections C.1.1 and C.1.3, we collect in the table 3 leading
corrections to the conformal spectra on branches (Ay), (Bs) and (Cs) for 4 < n < 8. These
results are used to highlight the features of the spectra presented in figure 10.

D Critical point H = H,jt,

The chiral symmetry breaking mode of fluctuations about TypeA; background becomes
marginal at H = Hcyt,, see figure 7. It signals the origin of TypeA; background [17],
which exists only for H > Hcit,. In this section we first construct TypeA; background
perturbatively in A o< \/H — Herity, and then study the H = He,iy, marginal mode in this
perturbative TypeA; background geometry. We find that this mode becomes unstable, i.e.,

Jm[r,sp] =0+ 36.0098(5) - A% + O(AY), (D.1)
TypeA,

where the precise definition of A is given by (D.2).
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D.1 TypeA; background in the vicinity of H = H,it,

TypeA; background is a special case of TypeA; background, constraint by (B.1). From (A.16)
and (A.17),

1 1

fa—Jfo= <2fa,3,0+2fa,1,0) P3—% (Qfa,3,o+2fa,1,o> pt
=2A

8f2, 0 +4Ky—9

+< a’1’032 <2fa30+ fa10>+ kazo+= (Qfa30+ fa,1,0>1np)

+0(p%1np), (D.2)

which provides a precise definition of A. A vanishes exactly at?? Ky = Ko crits

HZ
= |p —tits (D.3)

Ky A2

crits

Perturbatively in A, TypeA; background can be represented as

fa= f3(p +ZA% Y6 faszi—( +ZA O fas2k(p (D.4)
k=1
fo=f3(p) =Y A5 funr1(p) + Z AP -6 faon(p) (D.5)
k 1 k=1
) + ZA -0 feon(p (D.6)
K = K(p) + Z AL 5k1;2k 1 —|— Z A%k - 0k, Qk ) (D?)
k=1
K3=K(p)— Y A" 6kion_1(p) + Z AR k() (D.8)
k=1
Ko=1+ A1 §kyon_1(p), (D.9)
k=1
o0
g =g(p) + > A% Sga(p), (D.10)
TypeAy TypeA, k=1
h = h(p) + > A% Sha(p) . (D.11)
TypeA, TypeA, k=1

To compute (D.1) we need perturbative solution of TypeA;, background to order
k = 3 inclusive. As we now explain, orders k = {0,1}, and k& = {2,3} must be solved
simultaneously.

D.1.1 k= {0,1}

At leading k = 0 order we have TypeA; background, labeled by Kj; namely, a coupled
system of 4 second-order ODEs for {fs3, K, g,h} and a single first-order ODE for f;. At

*2We use computation Schemel with b = 1, see [17].
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order k = 1, the equations for {0 f4.1, k1.1, 0ko,1} are just the equations for the marginal
mode — they are equivalent to (B.3)—(B.5), see also (B.2), with the following identification,

Ofa1 = f3- F, 0k11 = x1, 0k = X2, (D.12)
and with
s=0. (D.13)
They are solved subject to the asymptotics:
m In the UV, ie., as p — 0,

275 3 5 7
5for =00 >+ - S fart. 2 T Sk Ko— = —
for = 2+ + ( fa1;7,0 + (384+64 1,1,3,0( 0 4) +256K0

15 3
+ 3fc,4,0> Inp+ (- —

9 2 1 3 7 81.,,3
128 645k1§1§3a0 + KO) In P 81n p>10 +O(p In p)?

64
(D.14)

(30k1:1:3,0 +2) fa,1,0 — 3fa1,01n p> +0(p°1n?p),
(D.15)

1
Sk11 = p°(6k1i1:3,0 + 21n p) + p? (—2
3 3 (9 9 5. o
Ok =p° | -1+ 561@1;1;3,0 +3lnp) —p Zfa,1,05k1;1;3,o + §fa,1,0 Inp )+ O(p°In?p),
(D.16)

it is characterized by 2 parameters

{ 0k11:30, 0 fas1m0 }- (D.17)

In (D.14) we highlighted the overall normalization, dictated by our definition of the amplitude
A, see (D.2). Of course, the asymptotic expansions (D.14)—(D.16) depend on the parameters
of the £ = 0 order background, i.e.,

{ K07 fa,l,Oa 94,0, fC,47 fa,6,07 fa7870 } (D18)

Comparing with (A.23), because of the constraint (B.1), we find that {f, 30, k2,30, fa,7,0}
are not independent and instead are determined by (D.18):

1
faso=—7far0, k230=0,
431 981 1 53 1362319
= K? 4 T g2 > K, <_
Ja70 = 76300 10K +< 1024000 T 20740 ™ Tgz07e10 ) e 1o Fo {56000
1, T 1 1 )
— 2= et — 2fag0 — — . D.19
+ 80fa,1,0 + 46080 a,l,O 320 f07470 fa,6,0 4094,0 fa,l,O ( )

m In the IR, ie.,, as y = % — 0,

1
5fll;1 = y(5ff;1;0 + O(y)) ) 5k1§1 - 5]{?;1;0 + O(y) ) 5k2;1 = 6k3;1;0 + O(y) )
(D.20)
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it is characterized by 3 parameters
{ 5fz?;1;07 51{?;1;07 61{73;1;0 } : (D21)

As in UV, the asymptotic expansions (D.20) depend on the parameters of the k = 0 order
background, i.e.,

{ faos foos Klos a6 } : (D.22)

Comparing with (A.26), because of the constraint (B.1), we find that {flffo, Kéﬁo, K?I},O} are
not independent and instead are determined by (D.22):

In total we have 7 second-order ODEs (4 from k = 0 order and 3 from k = 1 order) and 1
additional first-order ODE from the £ = 0 order. Thus in total, we need 7 x 2+ 1 = 15
adjustable parameters to find a solution. This is precisely what we have: 6 +4 = 10
parameters from order k = 0, see (D.18) and (D.22), and 2 4+ 3 = 5 parameters from order
k=1, see (D.17) and (D.21). Note the coupling of orders k = 0 and k = 1 occurs because
we traded the parameter s, we set it zero in (D.13), for a requirement to tune Ky to insure
that the k = 1 order deformation {0 fy.1, dk1,1 0ko,1} is normalizable, i.e., the corresponding
fluctuations (see (D.12)) are marginal.

Solving the order k£ = 0 and k£ = 1 equations numerically we recover
Ko =Ky = —0.1636(3), (D.24)
crits

originally reported in [17].

D.1.2 k= {2,3}

We will not present the equations for order k = {2,3} perturbative representation of the
background TypeAy: they can be straightforwardly derived from the general equations
for this background (see appendix B of [17]) using the ansatz (D.4)—(D.11). Since the
equation for f. is of the first-order, so will be the equations for ¢ f..or. The equations for
the other functions are always of the second-order. We will discuss the asymptotics and
count the parameters.

At order k = 2 we have a coupled system of 4 second-order ODEs for {§f,.2, dk1.2, 092,
dho} and the first-order ODE for 6 f... They are solved subject to the asymptotics:

m In the UV, ie., as p — 0,
21 1 6
dfa2=p dfa210tp §5fa;2;1,0fa,1,0_16k1;2;0,0 +-+p” | 0 fa260t
3
+@5";1;2;0,0 In® P) +O(p71n4p), (D.25)
0fe2=p 0fa21,0+p §5fa;2;1,0fa,170_Zékl;Q;O,O 1 0 fa2:1,0t0° | 0 fe2540

1
+1g0k1200 1DP> +0(p’In?p), (D.26)
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1 1
5k1;2 = 51{31;2;070 +P5fa;2;1,0+P2 <_25fa;2;1,0fa,1,0+86]{;1;2;0,0) +O(P3 lnp) ) (D27)

1 3 5
0g2 = 5;035fa;2;1,0+,04 (592;4,0+ (—85fa;2;1,ofa,1,o — M5k1;2;0,0+35fc;2;4,0> Inp
3

5125k1§2§0,01n5p> +O(p91n6p) ’ (D28)

3
+3*25k1;2;070 In? P) 4. '+P8 (592;8,0+' ..

1 1 1
Ohg = 451€1;2;0,0+P<—25fa;2;1,0K0— 50k12:0,0fa1,0 0 fa2i1.0 hlp) +0(p’Inp), (D.29)
it is characterized by 6 parameters
{ 0k1,2:0,05 0fa;2:1,05 0fe;2:40 5 092:4.0, 0 fa:2:6,0 5 092:8.0 } - (D.30)

m In the IR, ie.,, as y = % — 0,

1 1
5fa;2=y(5f$2;0+0<y>), 5fc;2:y(5f§2;o+0(y)>, Shia =0kl +OW),  (D31)
R \2 R \2 h h
¢ h 3 (Kl,O) 2(5fa;1,0) 45fa;2,0 6fc;2,0
592 - 592;0—1_0(:[/)7 6h2 =y - ((fh0)4fh0 <_ ( h0)2 fho + ho
2K 9 3 h
O (SKM 0D — Ok, +(— + -
( 30)4‘]@0}1’,0( 1;1;0 2;1;0 1,2,0) 40( a}io)zfgo 5( £0)3 10( 20)4
99 > hoy2 ( T 3¢ ) h
- (0f2 +— + = Sfa
10(f20)2 1R (airo) 5(FR0)2 " 5(FEg)®  B(flg)3fly ) W20
3gt b2 ( 1 394 > h 3 h
- 5k} )+ — + Sfro0——F—095.
10(f£o)2fifo( zi10) 10(f20)2 " 10(fL0)2(fR)2) 720 10(fhg)2fly %0
_6935f$1,05k§;1;0_ 27(5]5?;1;0)2 >—|—(9(y4) (D.32)
5(f£,0)3f£0 40(f£,0)29gfc}fo ’

it is characterized by 4 parameters
{ 5fz]11;2;07 5fc}§2;07 5klf;2;0a 593;0 } (D33)

At order k = 3 we have a coupled system of 3 second-order ODEs for {6 fo.3, dk1.3, 0k2.3}.
They are solved subject to the asymptotics:

m In the UV, ie., as p — 0,

1 1 1 3
5fus =M 0° - 5045fa;2;1,0 +p° (25fa;2;1,0fa,1,0 + §5k1;2;0,0 + m5k1;3;3,0>
9 3
+p' (5fa;3;7,0 ot (M5’f1;2;0,0 - 645161;3;3,o> In® p) +0(p°In’ p), (D.34)

3 3
k1,3 = p*0k1;3.30 + pt (25fa;2;1,05k1;1;3,0 - §5k1;3;3,0fa,1,0 — 6 fa;21,0 — 30 fa;2;1,0 In P)

+0(p°Inp), (D.35)

3 9
Okaz = §P35k1;3;3,0 - 104 <5fa;2;1,05k1;1;3,0 + 0k1.3.3,0fa,1,0 + 20 fa;2,1,0 In P) +O(p°Inp),
(D.36)
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it is characterized by 2 parameters

{ 6fa370, 0k1;330 } - (D.37)

In (D.34) we highlighted the parameter fixed to zero, as dictated by our definition of the
amplitude A, see (D.2).

m In the IR, ie., as y = % — 0,

1
5fa;3 = y(5fc]f;3;0 + O(y)) ’ 5k1§3 = 6]{?;3;0 + O(y) ’ 6k2;3 = 5k3§3;0 + O(y) ’

(D.38)
it is characterized by 3 parameters

{ 6fhs0, OKla0, OR3s0 | - (D.39)

In total we have 7 second-order ODEs (4 from k = 2 order and 3 from k = 3 order) and 1
additional first-order ODE from the k = 2 order. Thus in total, we need 7 x 2+ 1 =15
adjustable parameters to find a solution. This is precisely what we have: 6 +4 = 10
parameters from order k = 2, see (D.30) and (D.33), and 2 + 3 = 5 parameters from order
k =3, see (D.37) and (D.39). Here the coupling of orders k = 2 and k = 3 occurs because
we have an additional parameter at order k = 2, and we are lacking one parameter at order
k = 3. Specifically, 0k1.2.00, see (D.30), is needed to parameterize background solutions
TypeAy, away from Ko = Ko crity:
H2?
Ko — Ko crit; = In 2 = 5k1;2;070 CA? 4 O(A4) . (D.40)

crits

On the other had, at order k = 3 we have 3 second-order ODEs for {0 f4.3, dk1.3, dka;3},
however we have only 243 = 5 adjustable parameter (see (D.37) and (D.39)) — the missing
parameter is the highlighted one in (D.34), that we are forced to set to zero as part of the
definition of the amplitude A (D.2).

Solving the order k = 2 and k£ = 3 equations numerically we find

Sk1.2:00 = 6.4889(0) . (D.41)

D.1.3 Kjy(A) and its perturbative approximation

To identify TypeA, DFP instability it is most convenient to construct numerically the
corresponding TypeA; background by parameterizing it with A, as defined in (D.2), rather
than using K, as it is done in [17]. This allows us to use the near-critical analysis of
the marginal mode of section D.2 as an approximation for the spectral analysis of this
mode at finite A, see figure 12. In figure 13 we compare Ky(A) with its perturbative in A
approximation given by (D.40). We find from numerical interpolation an excellent agreement,

=1.33-107%. (D.42)

1 dKo(4) 1]
A=0

2(5k1;2;070 dA?
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Figure 13. We construct TypeA;, background geometry parameterizing it with A, defining the
deviation from the critical point Heit,, see (D.2). The same geometry was parameterized with

Ky in [17]. Dots represent Ky(A) for select values of A. The solid red curve is the perturbative

approximation (D.40).

D.2 TypeA; background instability in the vicinity of H = H .y,

Perturbatively in A, the chiral symmetry breaking, marginal at H = Ht,, mode can be

represented as, see (B.2),

fla - f3(p) : F(P) + Z Azk_l : fla;Qk—l(p) + Z AQk : fla;Zk(p) )

k=1 k=1

fly=—=Fs(p) - Fp) + > A* ' flagp1(p) = > A* - flaoi(p)

k=1 k=1
fle= Z AL flc;Qk’—l(p) )
k=1

flic, = xalp) + > A* 1 flion-1(p) + ZA “flr, 2k (p) s
k=1

Fliy = x2(p) + Y A% - flicyk(p)
k=1

Flic, = —x1(p) + DA flicon1(p) = Y A% flicon(p)

k=1 k=1

flg = Z AL flg2e-1(p) ,
k=1

=Y A% flyon_1(p),
k=1
with

00
— TJm[mXSB] =s=0+ Z AQk © Sok
TypeA,
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(D.44)
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(D.A47)
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(D.50)

(D.51)
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Figure 14. Dots represent the amplitude of the zero mode B(A) as given by (D.54). The solid red
line is the perturbative approximation (D.53).

The equations of motion for the terms of the perturbative expansion of the fluctuations
can be derived from the general equations of appendix A, using the perturbative TypeA,
background ansatz (D.4)-(D.11), and (D.43)—(D.51). Since fl; can always be algebraically
determined from the remaining modes, see (A.13), we find that the same is true for its
perturbative terms flj ox—1.

We summarize below the salient features of the numerical analysis.

e Order k = 0. Here, the fluctuations are represented by the marginal chiral symmetry
breaking mode, see (B.2), (B.3)—(B.5) with s = 0.

o At any even order in k there is a zero mode: if {fls.ok, flx, .2k, fli,:2k} 1S a solution
of the equations of motion, so is

{ flaok + f3F, flgon+ X1 fliyor +x2 1, (D.52)

with an arbitrary amplitude f3o = Bo, see (B.10). These arbitrary at order 2k
parameters are fixed at order 2k + 1. For example, we find in this manner

Bo = —0.05761(4) . (D.53)

o Order k = 1. At this order the fluctuations are {flq.1, fle1, fli,.1, flg, }- Since there
is no contribution to s at this order, i.e., s; = 0 in (D.51), the zero mode amplitude
at the previous order, g, is needed to find a unique solution.

o Order k = 2. At this order the fluctuations are {fl..2, flk, .2, flk,:2}; addition-
ally, the equations explicitly depend on sy parameter in (D.51). The equations
for the fluctuations also require the input of the background TypeA; up to order
k = 2 inclusive.
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o In figure 14 we compare the zero mode amplitude 3(A), extracted in computing

numerically s(A) in TypeA, DFP at finite A,

B(A) = lim flalo) = fble) i A% Bo (D.54)

p—0 2p3 =0

with its perturbative approximation at A = 0, see (D.53). Numerically interpolating
the finite A results we find a good agreement,

[ﬁ (4)

5 !

= —2.0(7)-107°. (D.55)
A=0

Numerical analysis at order & = 2 provide the value of so,
s9 = —36.0098(5) , (D.56)

which implies that marginal at H = H, fluctuations become unstable in TypeA,
for H > Hgit,. The frequency of this mode at finite A is presented in figure 12.
Numerically interpolating the finite A results for s(A) we find a good agreement with
the leading nontrivial order perturbative approximation, (D.51),

—1 =1.1(7) - 1073. (D.57)

A=0

[ 1 d*s(A)
2s9 dA2?
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