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1 Introduction and summary

The cascading gauge theory1 [2] is N = 1 supersymmetric four-dimensional SU(N +M)×
SU(N) gauge theory. It is non-conformal, and has a strong coupling scale Λ. The high-
energy physics of the theory is exotic:2 it undergoes perpetual sequence of Seiberg [4]
dualities, N → N +M , effectively rendering the rank parameter N energy dependent [5],

N = N(E) ∝ M2 ln EΛ , as E

Λ →∞ . (1.1)

In the renormalization group flow to the infrared (IR), the rank parameter N decreases as
N → N −M , with each realization of the Seiberg duality. In Minkowski space-time, R3,1,
the moduli space of vacua of the theory was thoroughly analyzed in [6] — when N is an
integer multiple of M , the cascading gauge theory ends up in the IR as the N = 1 SU(M)
Yang-Mills theory. It confines with a spontaneous breaking of the U(1)R chiral symmetry,

U(1)R → Z2 . (1.2)

When M � 1, the cascading gauge theory has a String Theory holographic dual [7, 8]
realized by a consistent truncation of Type IIB supergravity on warped deformed conifold
with fluxes [9]. Owing to the fact that the cascading gauge theory in the IR shares the
staples of QCD at strong coupling, namely confinement and the chiral symmetry breaking,
the precise holographic dual allows to explore properties of strongly coupled non-conformal
gauge theories which are difficult (and often impossible) to access otherwise: the thermal
phase diagram [9–11]; the hydrodynamic transport [12, 13], the gauge theory dynamics in
curved space [1, 14, 15] and in cosmological setting [16, 17]. The late-time properties of the
cascading gauge theory in de Sitter space-time is the subject of this paper.

Before we present the results of the analysis, we would like to clearly distinguish the
concept of a de Sitter vacuum [18] of a QFT and a de Sitter DFP of a QFT [19]. It is
useful to start with a conformal field theory (CFT). Typically,3 an arbitrary initial state
of an interactive CFT in R3,1 thermalizes. In a dual holographic picture this dynamics is
encoded in the gravitational collapse and the black brane formation [22]. Following the
second law of thermodynamics, as a CFT state equilibrates, its non-equilibrium entropy
density s(t) monotonically increases, ṡ(t) ≥ 0, and reaches at late times the finite thermal
entropy density sthermal, determined by the late-time thermal equilibrium temperature T ,

lim
t→∞

s(t) = sthermal <∞ . (1.3)

The existence of the above limit, equivalently the equilibration of a generic state, implies
that the entropy production rate vanishes at late times, i.e.,

lim
t→∞

ṡ(t)
s(t) = 0 . (1.4)

1See [1] for a recent review.
2Remarkably, the cascading gauge theory remains (holographically) renormalizable as a four-dimensional

quantum field theory (QFT) [3] when formulated on an arbitrary background space-time manifoldM4.
3Some of the counterexamples are the integrable systems, Fermi-Pasta-Ulam-Tsingou problem [20], and

the gravitational collapse in AdS [21].
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Consider now the dynamics of this CFT in Friedmann-Lemaitre-Robertson-Walker (FLRW)
Universe. Since the background geometry

ds2
FLRW = −dτ2 + a(τ)2 dx2 = a2

(
−dt2 + dx2

)
= a2 ds2

Minkowski , (1.5)

where a(τ) is a cosmological scale factor and dt ≡ dτ
a(τ) is the conformal time, is Weyl

equivalent to Minkowski space-time, there is a precise translation of the CFT dynamics in
R3,1 and FLRW. For example, the expectation values of the theory stress-energy tensor are
related as

〈Tµν(τ,x)〉
∣∣∣∣
FLRW

= 1
a4 · 〈Tµν(t,x)〉

∣∣∣∣
Minkowski

+ c

8π2

(
RρσRρµσν −

1
12R

2 · gµν
)
, (1.6)

where c is the central charge of the CFT, gµν and Rρµσν are the metric (1.5) and the corre-
sponding Riemann tensor. When a CFT has a holographic dual, the Weyl equivalence (1.5)
is nothing but a diffeomorphism transformation of the gravitational dual [23]. Furthermore,
when the non-equilibrium entropy is associated with the apparent horizon (AH) of the
gravitational dual, its Minkowski space-time production rate is identical, Weyl invariant, to
the corresponding FLRW comoving entropy production rate with respect to the conformal
time [23]. This implies that the equilibration of a CFT state in Minkowski space-time is
mapped to the evolution of the corresponding state in FLRW, where the comoving entropy
approaches a constant at late-time. This late-time state is a FLRW vacuum of the CFT,
characterized by the asymptotically vanishing comoving entropy production rate.

While it difficult to map dynamics of a massive QFT in Minkowski and FLRW Universe
from the path integral viewpoint, the problem is tractable if the theory has a holographic
dual. From the dual gravitational perspective, a gravitational bulk diffeomorphism relating
the two boundary backgrounds (1.5) acts on a relevant coupling constant λ∆ of a dimension
∆ < 4 operator O∆ as [23]

λ∆ → λ̂∆(t) = a(τ(t))4−∆ λ∆ , (1.7)

i.e., a massive QFT dynamics with a coupling constant λ∆ in FLRW is equivalent to
the quenched dynamics of the same theory in Minkowski space-time, where the coupling
λ̂∆ evolves according to (1.7). When a(τ → +∞) → const, the QFT coupling constant
is quenched as λ̂∆(0) ≡ λ∆ → λ̂∆(+∞). Holographic quenches of just this type were
extensively studied in [24–26]:

• the theory eventually thermalizes at late times;

• the thermalization process is irreversible — the entropy density production rate is
always positive.

The last statement implies that the comoving entropy production rate of the QFT in FLRW
is positive as well. When the FLRW scale factor a(τ) diverges as τ → +∞, the mapped
quenched coupling λ̂∆ diverges at late time as well (1.7) — it is not clear whether or not the
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Figure 1. de Sitter vacua (TypeB) and de Sitter DFPs (TypeAs and TypeAb) of the cascading gauge
theory with a fixed strong coupling scale Λ. The vertical brown lines indicate the existence range
for different phases: TypeAs exists for H ∈ (Hcrit1 ,+∞); TypeAb exists for H ∈ (Hcrit3 , Hcrit4);
TypeB exists for H ∈ (0, Hcrit5). In the range H ∈ (Hcrit3 , Hcrit2), indicated by a vertical dashed
line, TypeAb DFP is the preferred phase.

theory thermalizes; irrespectively, it can be rigorously shown4 that the comoving entropy
production rate is always positive: if s(τ) is the physical entropy density, the entropy current
is given by [19]

Sµ = s(τ) uµ , uµ ≡ (1, 0, 0, 0) , (1.8)

leading to the entropy density production rate R,

R(τ) ≡ ∇ · S = 1
a(τ)3

d

dτ

(
a(τ)3s(τ)

)
= 1
a(τ)3

d

dτ
scomoving(τ) ≥ 0 . (1.9)

If R(τ) vanishes at late times, we say the state of the QFT evolves to a FLRW vacuum; if
the rate approaches a constant, we say that the state of the QFT evolves5 to a Dynamical
Fixed Point [19]. In case the FLRW Universe is de Sitter, i.e.,

a(τ) = eHτ , (1.10)

where H is the Hubble constant, the existence of the late-time limit for the entropy density
production rate implies that there is a late-time limit for a physical entropy density,

lim
τ→∞

(∇ · S) = 3H lim
τ→∞

s(τ) = 3H sent , (1.11)

with the latter being called the vacuum entanglement entropy [30].
de Sitter vacua and DFPs of the cascading gauge theory were analyzed in details

in [17]; we identified the following late-time spatially homogeneous and isotropic phases of
the theory:

4This was done explicitly in case-by-case holographic models [17, 23, 25, 27–29]; we believe though that
the general proof is possible.

5More precisely, both for a vacuum and a DFP we additionally require that one-point correlation functions
of the stress-energy tensor and gauge-invariant local operators are homogeneous and time-independent.
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TypeAs — the de Sitter DFP with unbroken chiral symmetry,

sent(Λ, H)
∣∣∣∣
TypeAs

6= 0 ; (1.12)

TypeAb — the de Sitter DFP with spontaneously broken chiral symmetry,

sent(Λ, H)
∣∣∣∣
TypeAb

6= 0 ; (1.13)

TypeB — the de Sitter vacuum with spontaneously broken chiral symmetry,6

sent(Λ, H)
∣∣∣∣
TypeB

= 0 . (1.14)

These results are summarized in figure 1:

• all phases can be reliably constructed in the supergravity approximation within a
fixed range of the ratio H

Λ , specifically,

TypeAs : H ∈ (Hcrit1,+∞) , Hcrit1 ≈ 0.7Λ ,

TypeAb : H ∈ (Hcrit3 , Hcrit4) , Hcrit3 = 0.92(1)Λ ; Hcrit4 ≈ 0.93Λ ,

TypeB : H ∈ (0, Hcrit5) , Hcrit5 ≈ 0.97Λ , (1.15)

where we used ≈ to indicate that the corresponding value of Hcrit is estimated from
the breakdown of the supergravity approximation, see [17]. The critical value Hcrit3

can be computed with an arbitrary precision within the supergravity approximation,
hence we used the = sign.

• Given the ratio H
Λ , the preferred phase is the one with the larger vacuum entanglement

entropy sent — the latter quantity determines the entropy production rate (1.11) at
late times, and the dual gravitational evolution always proceeds towards the late-time
attractor with the largest apparent horizon comoving area density.7 Thus, whenever
a de Sitter DFP exists, i.e., for

H > Hcrit1 , (1.16)

no state of the cascading gauge theory would evolve to a vacuum (TypeB).

• It was established in [17] that

sent

∣∣∣∣
TypeAb

> sent

∣∣∣∣
TypeAs

for H ∈ (Hcrit3 , Hcrit2) ,

sent

∣∣∣∣
TypeAs

> sent

∣∣∣∣
TypeAb

for H > Hcrit2 ,

(1.17)

6This vacuum is smoothly connected to a supersymmetric Klebanov-Strassler Minkowski vacuum [2] in
the limit H

Λ → 0.
7This is nothing but the restatement of the phase selection principle in approach to thermal equilibrium in

microcanonical ensemble for de Sitter dynamics with multiple dynamical fixed points. The latter statement
was explicitly verified in the holographic setting in [19].
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Figure 2. Diagonal blue shaded regions indicate: perturbative instability of TypeAs cascading
gauge theory DFP for H < Hcrit3 , and perturbative instability of TypeAb cascading gauge theory
DFP, whenever it exists. Horizontal green shading for Hcrit2 < H < Hcrit3 indicates TypeAs
cascading gauge theory DFP which is while perturbatively stable, is unstable to sufficiently large
amplitude chiral symmetry breaking fluctuations. The cascading gauge theory states in de Sitter
with H < Hcrit1 evolve to de Sitter vacuum, TypeB-labeled bordered rectangle. The cascading
gauge theory states in de Sitter with H > Hcrit2 evolve to TypeAs DFP. The late-time dynamics of
the cascading gauge theory states for Hcrit1 < H < Hcrit2 , the yellow rectangle, is unknown.

where
Hcrit2 = 0.92(5)Λ , (1.18)

computable with arbitrary precision within the supergravity approximation. Thus,
TypeAb DFP is the preferred attractor over TypeAs DFP whenever the former exists
and for H < Hcrit2 . For H > Hcrit2 the de Sitter dynamical fixed point with unbroken
chiral symmetry, i.e., TypeAs, is the preferred attractor.

In this paper we analyze perturbative stability of TypeAs and TypeAb DFPs of the
cascading gauge theory. Our main results are summarized in figure 2. We find:

• Precisely at H = Hcrit3 there is a zero mode of TypeAs phase, associated with the
spontaneous breaking of the chiral symmetry [17]. In the limit H → Hcrit3 + 0 the
chiral symmetry breaking order parameters of TypeAb phase, i.e., the expectation
values of the pair of dimension ∆ = 3 operators Oα=1,2

3 and the dimension ∆ = 7
operator O7 of the cascading gauge theory, vanish as ∝ (H −Hcrit3)1/2, typical for a
spontaneous symmetry breaking with a mean-field exponent 1

2 [17]. This zero mode
is purely dissipative away from Hcrit3 , and behaves differently in the two distinct
DFPs. Specifically,

in the TypeAs DFP this mode, we index it with χSB, has8

Im[ wχSB ]
∣∣∣∣
TypeAs

 < 0 , H > Hcrit3 , =⇒ stable
> 0 , H < Hcrit3 , =⇒ unstable

, (1.19)

8We use reduced frequencies in the paper, w ≡ ω
H
.
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and includes fluctuations of Oα=1,2
3 and O7 operators of the cascading

gauge theory;
in the TypeAb DFP, this mode exists only for H > Hcrit3 (there is no TypeAb DFP

for H < Hcrit3) and is unstable,

Im[ wχSB ]
∣∣∣∣
TypeAb

> 0 , H > Hcrit3 . (1.20)

In the symmetry broken TypeAb DFP this mode is much more complicated: it couples
fluctuations of Oα=1,2

3 , Oβ=1,2
4 , O6, O7, and O8 operators of the cascading theory.

• Because of (1.19), TypeAs DFP is perturbatively unstable for H < Hcrit3 , represented
by the diagonal blue shading.

• While TypeAs DFP is perturbatively stable to chiral symmetry breaking fluctuations
for H ∈ (Hcrit3 , Hcrit2) (represented by the horizontal green shading), it can not
be non-perturbatively stable: sufficiently large-amplitude chiral symmetry breaking
fluctuations must force dynamics9 towards the preferred TypeAb DFP attractor,
see (1.17).

• TypeAb is always perturbatively unstable, represented by the diagonal blue shading.

Given the fluctuation spectra stability analysis, we establish that:

• all states of the cascading gauge theory in de Sitter with the Hubble constant H >

Hcrit2 evolve to TypeAs DFP (bordered rectangle);

• all states of the cascading gauge theory in de Sitter with the Hubble constant
H < Hcrit1 evolve to TypeB late-time attractor — the de Sitter vacuum (bor-
dered rectangle).

• We do not know the late-time dynamics of the cascading gauge theory in de Sitter
for H ∈ (Hcrit1 , Hcrit2) (yellow rectangle) — in this range both TypeAs and TypeAb
DFPs are unstable, and the late-time attractor can not be a de Sitter vacuum (TypeB),
which has vanishing entropy density production rate, see (1.14). We expect that in
this case the cascading gauge theory states evolve, spontaneously breaking chiral
symmetry, to a naked singularity, similar to the evolution of the symmetry broken
states in the toy model discussed in [19]

The rest of the paper is organized as follows. In section 2 we review the de Sitter vacua
and dynamical fixed points of the cascading gauge theory [17]. In section 3 we explain
why perturbative stability analysis of the de Sitter dynamical fixed points are difficult.
We explain why the general “master framework” developed in [29] is not suitable for the
cascading gauge theory, and what straightforward modification is required. We highlight
the difficulty of imposing the boundary conditions for the gravitational fluctuations, and

9Identical phenomenon was observed in dynamical simulations in the model covered in [19].
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explain how to overcome it. In section 4 we study perturbative stability of TypeAs DFP.
We separate fluctuations into sets preserving the chiral symmetry of this DFP, and the
fluctuations that spontaneously break the chiral symmetry. We study both sets in the
near-conformal regime, i.e., when ln H

Λ � 1 and partial analytic treatment is possible, and
follow the fluctuation spectra to H ∼ Λ. We identify the unstable mode in the chiral
symmetry breaking sector in TypeAs DFP when H < Hcrit3 . The latter mode is marginal
at H = Hcrit3 , where the two DFP TypeAs and TypeAb are indistinguishable. We establish
that there is no instability in the chiral symmetry preserving sector of fluctuations in
TypeAs DFP, at least for H > Hcrit3 . In section 5 we study perturbative stability of TypeAb
DFP. We show that the marginal chiral symmetry breaking mode at H = Hcrit3 becomes
unstable in TypeAb DFP, perturbatively in (H −Hcrit3) > 0. We demonstrate that this
mode remains unstable at least as H approaches Hcrit2 . Our numerics indicates that the
mode remains unstable even after H > Hcrit2 , but this is physically irrelevant since in
this regime TypeAb DFP is not preferred relative to TypeAs DFP, see (1.17). Finally, we
conclude with open questions and speculations in section 6. Whenever appropriate, we
delegate the technical details to appendices and focus on the physics instead.

Any stability analysis of a gravitational model are necessarily technical. This is
particularly the case for the theory analyzed here10 — many equations are too long to be
presented even in appendices; we collected them as a Maple worksheet available at [31].

2 de Sitter vacua and DFPs of the cascading theory

In this section we summarize the results of [17].
Consider SU(2) × SU(2) × Z2 invariant states of the cascading gauge theory on a

4-dimensional manifoldM4 ≡ ∂M5. In the planar limit and at large ’t Hooft coupling, one
can consistently truncate the theory to a finite number of operators [9]: a stress-energy
tensor Tij , a pair of dimension-3 operators Oα={1,2}

3 (dual to gaugino condensates for each
of the gauge group factors), a pair of dimension-4 operators Oβ={1,2}

4 , and dimension-
6,7,8 operators O6,O7,O8. Effective gravitational action on a 5-dimensional manifoldM5
describing holographic dual of such states was derived in [9]:

S5
[
gµν ↔ Tij , {Ωi, hi,Φ} ↔ {Oα3 ,O

β
4 ,O6,O7,O8}

]
=

108
16πG5

ˆ
M5

volM5 Ω1Ω2
2Ω2

3 ×

×
{
R10 −

1
2 (∇Φ)2 − 1

2e
−Φ
(

(h1 − h3)2

2Ω2
1Ω2

2Ω2
3

+ 1
Ω4

3
(∇h1)2 + 1

Ω4
2

(∇h3)2
)

− 1
2e

Φ
(

2
Ω2

2Ω2
3

(∇h2)2 + 1
Ω2

1Ω4
2

(
h2 −

P

9

)2
+ 1

Ω2
1Ω4

3
h2

2

)

− 1
2Ω2

1Ω4
2Ω4

3

(
4Ω0 + h2 (h3 − h1) + 1

9Ph1

)2
}
,

(2.1)

10For a technically less demanding introduction to the subject of DFPs and their stability the reader is
encouraged to start with [27]; see also the citations to that work.
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where Ω0 is a constant,11 and R10 is given by

R10 = R5 +
(

1
2Ω2

1
+ 2

Ω2
2

+ 2
Ω2

3
− Ω2

2
4Ω2

1Ω2
3
− Ω2

3
4Ω2

1Ω2
2
− Ω2

1
Ω2

2Ω2
3

)
− 2� ln

(
Ω1Ω2

2Ω2
3

)
−
{

(∇ ln Ω1)2 + 2 (∇ ln Ω2)2 + 2 (∇ ln Ω3)2 +
(
∇ ln

(
Ω1Ω2

2Ω2
3

))2
}
,

(2.2)

and R5 is the five-dimensional Ricci scalar of the metric onM5,

ds2
5 = gµν(y)dyµdyν . (2.3)

P is the other constant, and is related to the rank-difference of the cascading gauge theory
group factors M as

M ≡ 2P
9α′ ∈ Z , (2.4)

where α′ = `2s is the string scale. Finally, G5 is the five dimensional effective gravitational
constant

G5 = 27
16π3 G10 , (2.5)

where 16πG10 = (2π)7g2
s(α′)4 is the 10-dimensional gravitational constant of type IIB

supergravity, and gs is the asymptotic string coupling constant, which we set to 1.
de Sitter vacua and DFPs of the cascading gauge theory are holographically dual to

the solutions of the effective action (2.1), when the boundary metric is de Sitter with the
Hubble constant H,

ds2
∣∣∣∣
M4=∂M5

= −dτ2 + e2Hτdx2 , (2.6)

and all the 7 gauge invariant scalar operators of the theory {Oα=1,2
3 ,Oβ=1,2

4 ,O6,O7,O8}
develop a spatially constant, x, and time-independent, τ , expectation values. There
are two equivalent ways to represent these cascading gauge theory states in the dual
gravitational bulk:

Using the Fefferman-Graham (FG) coordinate frame,

ds2
5 = 1

h1/2ρ2

(
−dτ2 + e2Hτdx2

)
+ h1/2

ρ2 (dρ)2 , h = h(ρ) ,

Ωi=1,2,3 = Ωi=1,2,3(ρ) , hi=1,2,3 = hi=1,2,3(ρ) , Φ = Φ(ρ) ,
(2.7)

with the radial coordinate ρ, the ∂M5 boundary is located at ρ→ +0,

ρ ∈ (0,+∞) . (2.8)

Close to the boundary the metric warp factor h takes the form,

h = 1
8b+ 1

4K0 −
1
2b ln ρ+O(ρ ln ρ) , (2.9)

11In the conformal limit of the cascading gauge theory, Ω0 = L4

108 , where L is the asymptotic AdS5 radius.
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where b ≡ P 2 and K0 is related to strong coupling scale Λ of the cascading gauge theory as

Λ2 = 1
b
e−

K0
b . (2.10)

DFPs, TypeA, are such nonsingular gravitational solutions that

TypeA : lim
ρ→∞

1
h1/2ρ2 = 0 , (2.11)

with all the scalars being finite in this limit. There are two distinct types of the cascading
gauge theory DFPs: TypeAs and TypeAb. The former preserve the U(1)R (in the large-N
supergravity approximation) chiral symmetry, while the latter spontaneously breaks it
to Z2,

TypeAs : Ω2 ≡ Ω3 and h1 ≡ h3 and h2 ≡
P

18 ,

TypeAb : Ω2 6≡ Ω3 and h1 6≡ h3 and d

dρ
h2 6≡ 0 .

(2.12)

de Sitter vacua, TypeB, are nonsingular gravitational solutions within the ansatz (2.7),
such that

TypeB : lim
ρ→∞

Ω3 = 0 , (2.13)

with all the other scalars, as well as the gττ ≡ − 1
h1/2ρ2 metric component, being finite in

this limit.

Using the Eddington-Finkelstein (EF) coordinate frame,

ds2
5 = 2dt (dr − a dt) + σ2e2Ht dx2 , a = a(r) , σ = σ(r) ,

Ωi=1,2,3 = Ωi=1,2,3(r) , hi=1,2,3 = hi=1,2,3(r) , Φ = Φ(r) ,
(2.14)

with the radial coordinate r, the ∂M5 boundary is located now at r → +∞,

r ∈ [rAH ,+∞) , (2.15)

and rAH is the location of the apparent horizon in the uplifted 10-dimensional type IIB
supergravity background, see [17] for detailed discussion,[

3H ·
(
σ3Ω1Ω2

2Ω2
3

)
+ a · d

dr

(
σ3Ω1Ω2

2Ω2
3

)] ∣∣∣∣
r=rAH

= 0 . (2.16)

It can be shown that the radial derivative in (2.16), provided σ3Ω1Ω2
2Ω2

3 does not vanish —
which is the case for both TypeAs and TypeAb DFPs, is always positive, thus

TypeA : a

∣∣∣∣
r=rAH

< 0 , (2.17)

which further implies that there must be a point r = r0 > rAH , such that

a

∣∣∣∣
r=r0

= 0 . (2.18)
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Figure 3. From [17]. Vacuum entanglement entropy densities of the chirally symmetric DFP
(TypeAs), and the DFP with spontaneously broken chiral symmetry (TypeAb), as a function
of ln H2

Λ2 .

In the EF frame description of the cascading gauge theory de Sitter vacua, i.e., TypeB, the
apparent horizon is located where Ω3 vanishes; this occurs at positive a,

TypeB : a

∣∣∣∣
r=rAH

> 0 . (2.19)

EF frame description of the DFPs (or de Sitter vacua) links them directly with the late-time
attractors for the evolution of the homogeneous and isotropic states12 of the boundary
gauge theory [23]: specifically, a holographic dual to such an evolution is a gravitational
dynamics of (2.1) with the ansatz

ds2
5 = 2dt (dr −A dt) + Σ2 dx2 , A = A(t, r) , Σ = Σ(t, r) ,

Ω1,2,3 = Ω1,2,3(t, r) , h1,2,3 = h1,2,3(t, r) , Φ = Φ(t, r) ,
(2.20)

leading to13

lim
t→∞

{
A(t, r) , Σ(t, r)

eHt
, Ωi(t, r) , hi(t, r) , Φ(t, r)

}
= {a(r) , σ(r) , Ωi(r) , hi(r) , Φ(r)}

(2.21)
of (2.14).

Note that besides distinct radial coordinates, ρ (FG) and r (EF), we used different bulk
times τ (FG) and t (EF) in the two frames (2.7) and (2.14). There is a simple coordinate

12The restriction to spatially homogeneous and isotropic states, rather than any states, is likely not
necessary for the evolution in de Sitter background, where momentum scale k inhomogeneities are red-shifted
as ke−Hτ .

13See [19, 27] for examples of implementation of such dynamics.
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transformation mapping the full DFP FG frame geometry, i.e., (2.7) with (2.11), to the
r ∈ [r0,+∞) patch of the corresponding EF frame geometry [17],

r − r0 = 1
ρ
, t = τ −

ˆ ρ

0
dz
√
h(z) ,

a = 1
2h1/2ρ2 , σ = 1

ρh1/4 exp
[
H

ˆ ρ

0
dz
√
h(z)

]
.

(2.22)

The r ∈ [rAH , r0) patch of the DFP EF frame geometry is invisible in the FG frame.
Arguably, EF frame description of a dynamical fixed point is more important, as its vacuum
entanglement entropy density, relatedly the late-time limit of the entropy density production
rate of this DFP (1.11), is identified with the comoving gravitational entropy density of the
apparent horizon in the corresponding holographic dual, see eq. (3.9) of [17],

sent = H3b2 ŝent = 1
4G5

108σ3Ω1Ω2
2Ω2

3

∣∣∣∣
r=rAH

. (2.23)

Figure 3 reproduces the main result of the [17]: it compares the vacuum entanglement entropy
densities of the chiral symmetry preserving DFP, TypeAs, and the DFP with spontaneously
broken chiral symmetry, TypeAb. TypeAb exists only for H > Hcrit3 , represented by a
vertical solid brown line, and is the preferred late-time attractor for H < Hcrit2 , represented
by a dashed black line, see (1.15). Outside the range H ∈ (Hcrit3 , Hcrit2), and whenever it
exists, i.e., for H > Hcrit1 , TypeAs DFP is the preferred attractor of the late-time dynamics.

Under the bulk diffeomorphism (2.22), the full EF frame background geometry corresponding
to the cascading gauge theory de Sitter vacua (TypeB) is mapped to its full corresponding FG
frame background geometry. Here, the vacuum entanglement entropy density vanishes [17],

sent = H3b2 ŝent

∣∣∣∣TypeB

r=rAH
= 0 , (2.24)

i.e., at late-times, the entropy density production rate vanishes. Since the vacuum entan-
glement entropy density of a dynamical fixed point is always nonzero, whenever a DFP
exists, it is the preferred late-time dynamical attractor, compare to a de Sitter vacuum
at the same Hubble constant. There are no DFPs of the cascading gauge theory for
H < Hcrit1 , see (1.15).

3 Stability analysis framework of the cascading gauge theory
de Sitter DFPs

Once a de Sitter DFP of a QFT is identified, it is important to analyze its stability to
claim that it is indeed a late-time attractor. A DFP is always the preferred late-time state
compare to a de Sitter vacuum of a QFT, however, a DFP can be unstable [19], in which
case the late-time dynamics is unknown.14

14It is definitely not the de Sitter vacuum though!
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In a holographic setting, it is most natural to analyze stability of a DFP in the Eddington-
Finkelstein coordinate frame of the gravitational dual [27]. Suppose a holographic QFT in
d spatial dimensions has a de Sitter dynamical fixed point,

ds2
d+2 = 2dt (dr − a dt) + σ2e2Ht dx2 , (3.1)

supported by the bulk scalars φj = φj(r). We study, homogeneous and isotropic along the
spatial boundary directions, linearized fluctuations {Fa, Fσ, Fj} about the background (3.1),

a(r)→ a(r) + Fa(r)e−iωt , σ(r)→ σ(r) + Fσ(r)e−iωt , φj(r)→ φj(r) + Fj(r)e−iωt .
(3.2)

Imposing a normalizability of the fluctuations at the asymptotic boundary, and regularity of
the spatial profiles of {Fa, Fσ, Fj} in the background (3.1) as r ∈ [rAH ,∞), we can compute
the spectrum of fluctuations, i.e., the set of frequencies {ω}. Since apparent horizon is
dissipative, the frequencies will be complex. Any fluctuation mode with

Im[ω] > 0 (3.3)

signals an instability of the DFP, represented by (3.1).
Unfortunately, the above prescription can not be applied to the stability analysis of

the cascading gauge theory DFPs, reviewed in section 2. The stumbling block is the
relation between the EF and the FG frame time coordinates (2.22), which, given the
asymptotic expansion for h (2.9), makes the EF frame r → ∞ ⇐⇒ ρ → 0 boundary
asymptotics intractable.15 The prescription to circumvent this difficulty was introduced
in [32]. The cascading gauge theory DFPs are constructed in the FG coordinate frame [17].
To compute the vacuum entanglement entropy, the region of the FG geometry in the vicinity
of r = r0 ⇐⇒ ρ =∞, see (2.22), is mapped into EF coordinate frame, and further extended
in this frame for r ∈ [rAH , r0]. Additional complexities of the EF frame appear when one
studies linearized fluctuations, as in (3.2): here, one needs to solve equations not only
for the bulk scalar fluctuations Fj , but for the fluctuations of the metric components as
well, {Fa, Fσ}.

In [29] we explained how to compute the spectrum of fluctuations about a DFP directed
in the FG coordinate frame, for any holographic model with an arbitrary “d+ 2 dimensional
Einstein gravity plus arbitrary bulk scalars”. The computational framework presented there
is highly efficient: one needs to solve only the fluctuation equations for the bulk scalars,
while the fluctuations of the metric components are determined algebraically from the latter.
Unfortunately, this master equation framework can not be directly applied to the cascading
gauge theory gravitational dual. Here, the issue is that the holographic models of [29] must
have the standard Einstein-Hilbert term in the gravitational action, while in the cascading
gauge theory gravitational dual the Einstein-Hilbert term is warped (2.1):

Sd+2 ∝
ˆ
Md+1

dd+2ξ
√
−g
[
R+ · · ·

]
︸ ︷︷ ︸

master equations

vs. S5 ∝
ˆ
M5

volM5 Ω1Ω2
2Ω2

3

[
R5 + · · ·

]
︸ ︷︷ ︸

cascading gauge theory

. (3.4)

15The presence of high dimension operators of the cascading gauge theory, such as O6, O7 and O8, requires
exquisite control of the asymptotic boundary data.
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Of course, we can always Weyl rescale the metric to remove the Einstein-Hilbert term warp
factor, but this would require a new complicated differential relation between the FG frame
radial coordinates, involving fractional powers of h. This causes the same problems as we
faced in the EF coordinate frame: the boundary ρ → 0 asymptotics become intractable;
additionally, the change of variables dramatically complicates the master equations for
the fluctuations.

Above difficulty is resolved noting that the effective five-dimensional gravitational
action (2.1) is a Kaluza-Klein reduction of Type IIB supergravity on warped deformed
conifold with fluxes. Thus, we should be apply the apply the master equations formalism
of [29], more precisely its obvious variation, in ten dimensions without any problem. This
is what we do in appendix16 A.1.

We finish this section highlighting the subtlety developing the near-boundary ρ→ 0
asymptotic expansions of the equations representing the fluctuations. The equation of
motion for a probe massive bulk scalar field dual to an operator of conformal dimension ∆,
on AdS5 background geometry takes the form,

φ = ρ∆
(
A0 +

∞∑
k=1

Akρ
k
)

+ ρ4−∆
(
B0 +

∞∑
k=1

Bkρ
k
)
. (3.5)

When ∆ ∈ Z or ∆ ∈ Zn+ 1
2
logarithmic terms appear in this asymptotic expansion, i.e., the

series in brackets generalize as

∞∑
k=1

Akρ
k →

∞∑
k=1

ρk
M(k)∑
m=0

Ak;m lnm ρ . (3.6)

It is important that the number of ln ρ terms at each fixed order in k is bounded by M(k).
In fact, the metric ansatz (2.7) for the cascading gauge theory, along with the ansatz for the
scalars Ω1,2,3 ∝ h1/4f

1/2
a,b,c was proposed in [3] precisely so that the asymptotic expansions of

the metric warp factor h, as well as the scalars fa,b,c, have finite number of log-terms at each
given order of ρk. This is evident in the asymptotic expansions of the background geometry
dual to the cascading gauge theory DFPs, reviewed in appendix A.2. Finite number of
log-terms in the asymptotic expansion is a fairly trivial complication. Rather, we find that
the master formalism for the fluctuations, see appendix A.1, leads to an infinite number
of log-terms in their asymptotic expansions at each finite order of ρk. In other words, the
generalization (3.6) is yet further generalized:

∞∑
k=1

ρk
M(k)∑
m=1

Ak;m lnm ρ →
∞∑
k=1

ρk · Ak(ln ρ) , (3.7)

where Ak(z) are now nontrivial functions of z ≡ ln ρ, and in developing the asymptotic
expansions, at each order ρk, we must solve a coupled system (if there is more than one
bulk scalar) of differential equations for Ak(z). This would be a hopeless task in general.

16While the discussion there is attempted to be self-contained, the reader does need familiarity with the
formalism of [29].
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Lucking for the problem at hand, carefully analyzing the structure of log-term differential
equations we find that their solution is given by (schematically)

Ak(z) = 1
(b− 4bz + 2K0)n(k)

M(k)∑
m=0

Ak;m zm , (3.8)

where n(k) and M(k) are some integers ∼ k. The denominator factor in (3.8) is simply the
order O(ρ0) terms of asymptotic expansion of the h factor, see (2.9).

4 Stability analysis of TypeAs DFP

TypeAs dynamical fixed point of the cascading gauge theory preserves the chiral symmetry.
There are two decoupled sets of fluctuations about this DFP: the fluctuations breaking the
chiral symmetry (see section 4.1 with technical details in appendix B), and the fluctuations
preserving the chiral symmetry (see section 4.2 with technical details in appendix C).

TypeAs DFPs were constructed in various computations schemes (see appendix C.1
of [17]): either parameterized by b with K0 = 1, see (2.10),

ln H
2

Λ2 = 1
b

+ ln b , b ∈ (0, 1] , (4.1)

or with b = 1 and
ln H

2

Λ2 = K0 . (4.2)

An excellent agreement was reported in the overlap of the two computational schemes, i.e., for
K0 > 1. The parameterization (4.1) is useful to analyze b→ 0, correspondinglyH � Λ, near-
conformal limit, where perturbative in b treatment is possible. The parameterization (4.2)
is needed to access TypeAs DFP in H < Λ region, not accessible with (4.1). We use the
same strategy in computing the spectra of fluctuations: first we perform the computations
in the near-conformal limit, and further extend the results for H < Λ.

4.1 Chiral symmetry breaking sector

Chiral symmetry breaking fluctuations about TypeAs DFP activate the cascading gauge
theory operators of conformal dimensions ∆ = {3, 7}. Thus, in the near conformal limit,
i.e., for H � Λ, we expect [29] discrete branches indexed with n ∈ Z≥3 and

Re[w(n)
χSB] = 0 , Im[w(n)

χSB] ≡ −Γ(n)
χSB 6= 0 . (4.3)

We use the subscript χSB to indicate that the fluctuations spontaneously break chiral
symmetry of TypeAs DFP. We find that the branches with 3 ≤ n ≤ 6 are doubly
degenerate in the limit b→ 0, while those with n ≥ 7 are triple degenerate in the conformal
limit. In figure 4 dots represent the attenuation Γ(n)

χSB as a function of ln−1 H2

Λ2 for the lowest
n = 3 mode (the left panel) and the n = 4 mode (the right panel). The dashed curves
indicate O(

√
b) analytic leading order corrections, see appendix B.1.1, and the solid lines

include next-to-leading O(b) order corrections:

Γ(3)
χSB = 3±

√
2b− 1.57(5) · b±O(b3/2) ,

Γ(4)
χSB = 4±

√
2b+ 1.93(4) · b±O(b3/2) ,

(4.4)

where b is related to H
Λ as in (4.1).
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Figure 4. Attenuation Γ(n)
χSB ≡ −Im[w(n)

χSB] of the chiral symmetry breaking fluctuations about
cascading gauge theory TypeAs DFP for H � Λ. Dashed and solid curves are correspondingly the
leading and the first subleading order corrections to the conformal spectra, see (4.4).
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Figure 5. Sub-branches of the distinct in the conformal limit branches of the fluctuations coalesce as
H
Λ is lowered. The red dot, see (4.5), highlights this phenomenon for n = 4 and n = 3 sub-branches.

As b increases, we discover that the distinct branches of the fluctuations coalesce, see
figure 5. Specifically we find that the lower sub-branch of the n = 4 branch and the upper
sub-branch of the n = 3 branch combine at

ln−1 H2

Λ2 = 0.217(8) , (4.5)

represented by the red dot, and are removed from the spectrum. This phenomenon is quite
generic, and is observed for higher n branches as well. It can not be universal though: the
lower sub-branch of the n = 3 branch is the lowest mode in the spectrum, thus, it does not
have a partner to combine with.

It becomes numerically challenging to study higher n spectral branches at finite H
Λ . In

particular, we could not stabilize numerics at n = 7 branch where the first triple degeneracy
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Figure 6. Leading order correction to the conformal spectra for the chiral symmetry breaking
fluctuations at higher n. Note that the (perturbative) coalescence of various sub-branches is quite
generic. The red dot (the left panel) is a replot of the red dot from figure 5.

occurs. There is no obstruction to study these branches perturbatively in the small b,
the near conformal limit, e.g., see appendices B.1.2 and B.1.3. In figure 6 we present
leading order correction to the conformal spectra for 3 ≤ n ≤ 6 (the left panel) and for
6 ≤ n ≤ 10 (the right panel). Note that the non-analytic sub-branches, see appendix B.1,
(perturbatively) combine — as the red dot (the left panel), replotted from figure 5, indicates
the perturbative prediction for the coalescence is quite reasonable.17 It appears (the right
panel) that for n ≥ 7 the coalescence point involved three sub-branches — this is not the
case, as the better resolution of the plots demonstrates.

The lower sub-branch of the n = 3 branch is the lowest lying. In figure 5 we followed
this branch all the way to b = 1, correspondingly to ln H2

Λ2 = 1, see (4.1). In figure 7 we
switch the computational scheme to that of (4.2), and follow this sub-branch for H < Λ,
represented by the magenta dots. This mode becomes marginal at

ln
H2

crit3

Λ2 = −0.1636(3) , (4.6)

represented by the vertical red line, reproducing the critical Hubble constant Hcrit3 , corre-
sponding to the origin of the TypeAb dynamical fixed point with the spontaneously broken
chiral symmetry, originally reported in [17]. Note that for H < Hcrit3 this mode becomes
unstable. This establishes our first main result:

The chirally symmetric TypeAs DFP of the cascading gauge theory is
perturbative unstable when H < Hcrit3, given by (4.6).

4.2 Chiral symmetry preserving sector

Chiral symmetry preserving fluctuations about TypeAs DFP activate the cascading gauge
theory operators of conformal dimensions ∆ = {4, 6, 8}. Thus, in the near conformal limit,

17Our numerical work, not reported here, established joining of n = 5 and n = 4, as well as n = 6 and
n = 5 sub-branches.
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Figure 7. The lower sub-branch of the n = 3 branch of chiral symmetry breaking fluctuations about
TypeAs DFP of the cascading gauge theory becomes unstable for H < Hcrit3 (4.6), represented by
the red vertical line.
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Figure 8. Attenuation Γ(n)
χSB ≡ −Im[w(n)

χSB] of the chirally symmetric fluctuations about cascading
gauge theory TypeAs DFP for H � Λ. Dashed and solid curves are correspondingly the leading
and the first subleading order corrections to the conformal spectra, see (4.8).

i.e., for H � Λ, we expect [29] discrete branches indexed with n ∈ Z≥4 and

Re[w(n)
χS ] = 0 , Im[w(n)

χSB] ≡ −Γ(n)
χS 6= 0 . (4.7)

We use the subscript χS to indicate that the fluctuations are chirally symmetric.. We find
that the branches with n = {4, 5} are doubly degenerate in the limit b→ 0, while those with
n ≥ 6 are triple degenerate in the conformal limit. In figure 8 dots represent the attenuation
Γ(n)
χS as a function of ln−1 H2

Λ2 for the lowest n = 4 mode (the left panel) and the n = 4 mode
(the right panel). The dashed curves indicate O(

√
b) analytic leading order corrections, see
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Figure 9. Sub-branches of the distinct in the conformal limit branches of the fluctuations coalesce as
H
Λ is lowered. The red dot, see (4.9), highlights this phenomenon for n = 5 and n = 4 sub-branches.

appendix C.1.1, and the solid lines include next-to-leading O(b) order corrections:

Γ(4)
χS = 4±

√
130b
5 − 1.79(1) · b±O(b3/2) ,

Γ(5)
χS = 5±

√
2b+ 1.45(6) · b±O(b3/2) ,

(4.8)

where b is related to H
Λ as in (4.1).

As in section 4.1, as b increases, the distinct branches of the fluctuations coalesce, see
figure 9. Specifically we find that the lower sub-branch of the n = 5 branch and the upper
sub-branch of the n = 4 branch combine at

ln−1 H2

Λ2 = 0.039(9) , (4.9)

represented by the red dot, and are removed from the spectrum.
In figure 10 we present leading order correction to the conformal spectra for n = {4, 5}

(the left panel) and for 5 ≤ n ≤ 8 (the right panel). Note that the non-analytic sub-branches,
see appendix C, (perturbatively) combine — the red dot (the left panel) is replotted from
figure 9.

In figure 11 we show that the lowest lying mode in the chiral symmetry preserving sector
of fluctuations about TypeAs DFP remains perturbatively stable, at least for H > Hcrit3 ,
represented by the vertical red line (the right panel). The solid green curve is the perturbative
approximation to the mode, see Γ(4)

χS in (4.8). The blue dots are obtained in the computation
scheme (4.1), and the magenta dots are obtained in the computation scheme (4.2).

This establishes our second main result:

The chirally symmetric TypeAs DFP of the cascading gauge theory is
perturbative stable when H > Hcrit3, given by (4.6).
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Figure 10. Leading order correction to the conformal spectra for the chiral symmetry breaking
fluctuations at higher n. Note that the (perturbative) coalescence of various sub-branches is quite
generic. The red dot (the left panel) is a replot of the red dot from figure 9.
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Figure 11. The lower sub-branch of the n = 4 branch of chirally symmetric fluctuations about
TypeAs DFP of the cascading gauge theory remains perturbatively stable for H > Hcrit3 (4.6),
represented by the red vertical line.

5 Stability analysis of TypeAb DFP

TypeAb dynamical fixed point of the cascading gauge theory with spontaneous broken
chiral symmetry [17] exists only for H > Hcrit3 , given by (4.6). Exactly at H = Hcrit3

TypeAs and TypeAb DFPs are indistinguishable. Additionally, at this critical value of
the Hubble constant, the DFP has a marginal chiral symmetry breaking mode — this
is the lower sub-branch of the n = 3 fluctuations about TypeAs DFP, see figure 7. In
figure 12 we present the attenuation of this mode, as a fluctuation about TypeAb DFP.
Note that the mode is always unstable. In the left panel we present ΓχSB with TypeAb

DFP parameterized using the chiral symmetry breaking order parameter A of this DFP,
see (D.2). This is useful, as it provides a ready comparison with the perturbative results of
appendix D, see (D.1), represented by a solid red curve. The translation between the order
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Figure 12. The marginal at H = Hcrit3 chiral symmetry breaking mode becomes unstable in
TypeAb DFP. In the left panel we parameterize this mode with the order parameter A of the chiral
symmetry breaking of TypeAb DFP, see (D.2). In the right panel we show the attenuation ΓχSB of
this mode as a function of ln H2

Λ2 . The solid red curve represent perturbative approximation, close to
criticality, see (D.1). The vertical brown lines represent H = Hcrit3 , and the vertical dashed black
lines represent H = Hcrit2 .

parameter A and the physical label (4.2) of TypeAb DFP is shown in figure 13; the latter is
further used to generate the plot in the right panel of figure 12. The vertical solid brown
lines correspond to H = Hcrit3 , and the vertical dashed black lines correspond H = Hcrit2

— recall that for H > Hcrit2 , chirally symmetric TypeAs DFP is the preferred dynamical
attractor compare to the symmetry broken TypeAb DFP, see figure 3.

Our final main result is:

TypeAb DFP of the cascading gauge theory is perturbative unstable.

6 Future directions and speculations

In this paper we presented comprehensive stability analysis of the de Sitter dynamical fixed
points of the cascading gauge theory. The late-time attractor of the theory is determined by
the ratio of the de Sitter Hubble constant H and the strong coupling scale Λ of the theory.
We presented strong evidence that for H > Hcrit2 , an arbitrary initial state of the gauge
theory would evolve to a chirally symmetric DFP, TypeAs. On the other hand, an arbitrary
state of the theory with H < Hcrit1 is expected to evolve to a de Sitter vacuum, with
vanishing comoving entropy density production rate asymptotically. Since Hcrit1 < Hcrit2 ,
what is the late-time dynamics of the cascading gauge theory state in de Sitter with the
Hubble constant in the range H ∈ (Hcrit1 , Hcrit2) is unknown. In our view, this is the
biggest open question.

Note that all the dynamical fixed points of the cascading gauge theory identified in [17]
have unbroken SU(2)× SU(2) global symmetry. The reason for this limitation is simple:
we do not know the dual holographic description of the cascading gauge theory outside of
this SU(2)× SU(2) symmetric sector (2.1). It is possible that for H < Λ, the above global
symmetry is spontaneously broken as well, and the new DFPs are stable. We can only
imagine how horrendously complicated it would be to analyze such DFPs!
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Another interesting question is the role confinement plays in producing de Sitter DFPs
of non-conformal field theories in the first place. In other non-conformal holographic models,
as discussed in [27] and [19], the late time attractor of the de Sitter evolution of these
models is always a dynamical fixed point, i.e., the state with the non-vanishing comoving
entropy production rate.18 In other words, there is no analogue of the cascading gauge
theory TypeB de Sitter vacuum. Intuitively, the holographic description of confinement
in de Sitter is fairly robust, at least when H � Λ, and thus it is natural to expect that
with a large hierarchy of scales between the confinement scale and the Hubble constant,
as it is in our Universe, there is no dynamical fixed point at late times. Can we find a
holographic model where a dynamical fixed point exists in the limit H

m → 0? Can the idea
that a dynamical fixed point requires deconfinement of the gauge theory be made precise,
or shown to be false?

Clearly it is interesting to explore other holographic models in de Sitter and analyze
the corresponding DFPs.
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A Symmetry broken DFP — TypeAb

In this appendix we discuss the linearized fluctuations about TypeAb dynamical fixed point
of the cascading gauge theory. In section A.1 we apply a straightforward generalization of
the master equation formalism [29] to derive the equations of motion for the fluctuations.
The final equations are too long/complicated to be collected in the paper — they are
available as a Maple worksheet in [31]. In section A.2 we discuss the boundary conditions,
both for the background geometry and for the fluctuations.

A.1 Equations of motion

As explained in section 3, we consider the cascading gauge theory DFPs and linearized
fluctuations about them in ten-dimensional Type IIB supergravity. The detailed discussion
of the uplift can be found in [17].

For the Fefferman-Graham metric ansatz (with spatially homogeneous and isotropic
background metric of the cascading gauge theory ∝ dx2) we take

ds2
10 = −ĉ2

1 dτ
2 + ĉ2

2 dx
2 + ĉ2

3 dρ
2 + Ω̂2

1 g
2
5 + Ω̂2

2

(
g2

3 + g2
4

)
+ Ω̂2

3

(
g2

1 + g2
2

)
︸ ︷︷ ︸

new compare to master formalism

, (A.1)

18We expect that DFPs discussed there will become unreliable then H � m, where m is the mass-scale of
the models.
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with

ĉ1 =

√
Ĝtt

ρ ĥ1/4
, ĉ2 =

√
Ĝxx

ρ ĥ1/4
, ĉ3 = ĥ1/4

ρ
,

Ω̂1 = 1
3 f̂1/2

c

(
ĥ
)1/4

, Ω̂2 = 1√
6
f̂1/2
a

(
ĥ
)1/4

, Ω̂3 = 1√
6
f̂

1/2
b

(
ĥ
)1/4

,

(A.2)

where we highlighted the part of the metric new compare to the general ansatz of [29].
Additionally we set

ĥ1 = 1
P

(
K̂1
12 − 36Ω0

)
, ĥ2 = P

18K̂2 , ĥ3 = 1
P

(
K̂3
12 − 36Ω0

)
, ĝ = eΦ̂ ,

(A.3)
where we use ˆ to indicate that the corresponding functions depend on ρ and τ . In (A.1),
gi (for i = 1, · · · , 5) are the usual one-forms defined on the warped-squashed T 1,1 [33].

Following [29], we introduced linearized fluctuation, δ · · · , on top of the background
solution specified by [17]

{fa,b,c , h , K1,2,3 , g} , (A.4)

specifically,√
Ĝtt = 1 + δĝ11 ,

√
Ĝxx = eHτ (1 + δĝ22) , f̂a,b,c = fa,b,c(ρ) + δf̂a,b,c ,

ĥ = h(ρ) + δĥ , K̂1,2,3 = K1,2,3(ρ) + δK1,2,3 , ĝ = g(ρ) + δĝ .

(A.5)
Notice that the h factor enters both in the definition of the background DFP metric, e.g.,
see ĉ1 in (A.2), and the five-dimensional bulk scalars Ωi (A.2). This is necessary to produce
equations of motion without the fractional powers of h [3].

Assuming the harmonic time-dependence for the fluctuations, i.e.,

δĝ11 = e−iωτH1(ρ) , δĝ22 = e−iωτH2(ρ) , δf̂a,b,c = e−iωτHa,b,c(ρ) ,
δĥ = e−iωτHh(ρ) , δK̂1,2,3 = e−iωτHK1,2,3(ρ) , δĝ = e−iωτHg(ρ) ,

(A.6)
we derive 11 equations19 for 10 fluctuations:{

Ha,b,c , H1,2 , Hh , Hg , HK1,2,3 .
}

(A.7)

These equations are collected in [31]. It is convenient to further introduce

ω = −iHs , (A.8)

effectively measuring all energy scales in Hubble units. To declutter the formulas we set
from now on the Hubble constant to unity H = 1.

The master formalism of [29] allowed to eliminate algebraically — solve their corre-
sponding equations — the fluctuations H1 and H2 as

master : H1 = H2 = (d− 2)Hh

4(d− 1)h

∣∣∣∣
d=3 , in our case

= Hh

8h . (A.9)

19The 11’s equation is the Einstein equation with coordinate indices ρτ .
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Such substitution will not work for the cascading gauge theory gravitational dual: from
the 5d perspective because the Einstein-Hilbert term in the Kaluza-Klein reduced effective
action is warped (3.4), or from the 10d perspective because of extra contributions in the
metric (A.1). Instead, we find that a substitution

H1 = H2 = −Hh

2h −
Ha

2fa
− Hb

2fb
− Hc

4fc
(A.10)

solves the equations for H1,2. Furthermore, much like in [29], the equation for Hh is of
the first-order, and can be solved algebraically in terms of the other fluctuations and their
first-order (radial coordinate) derivatives.

As explained in [29], while the boundary conditions for the fluctuations in the EF
coordinate frame are natural, they are less obvious in the FG coordinate frame:

first, near the boundary we require that the fluctuations are normalizable;

second, the EF frame bulk regularity condition is replaced in the FG frame with the
requirement that all fluctuations behave as

H··· ∼ ρs/2 × finite as ρ→∞ . (A.11)

It is thus convenient to extract this singularity from the radial profiles of the fluctuations,

Ha,b,c = (1 + ρ)s/2 fla,b,c(ρ) , HK1,2,3 = (1 + ρ)s/2 flK1,2,3(ρ) ,
Hg = (1 + ρ)s/2 flg(ρ) , Hh = (1 + ρ)s/2 flh(ρ) ,

(A.12)

where we modified ρ→ (1 + ρ) to avoid introduction of the spurious singularity near the
boundary, i.e., as ρ→ 0. As for Hh, the expression for flh is algebraic,

flh = flh

[
fla,b,c,

d

dρ
fla,b,c ; flK1,2,3 ,

d

dρ
flK1,2,3 ; flg,

d

dρ
flg ; s

]
. (A.13)

We collected the equations for
{
fla,b,c , f lK1,2,3 , f lg , f lh

}
, (A.14)

along with the algebraic expression (A.13) in [31]. These final equations, solved subject
to normalizability of the fluctuations at the boundary, and their regularity in the bulk
ρ ∈ [0,∞), would determine the spectrum {ω}. We would like to stress that the regularity
condition as ρ→∞ is much more stronger than the requirement that the modes fl··· are
finite in this limit; rather, the regularity mandates [29] that we have a standard Maclaurin
series expansion for the profiles fl··· in variable y ≡ 1

ρ , e.g., the terms ρ−17/2 or ρ−7 ln ρ are
not allowed. This is necessary so that the fluctuations can be properly transformed to the
EF coordinate frame in the vicinity of y ∝ (r − r0)→ 0 (see (2.22)), and further extended
in the EF coordinate frame all the way to the apparent horizon, r ∈ [rAH , r0].
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A.2 Asymptotics

In this section we discuss the asymptotics of the DFP background functions (A.4), and
the fluctuations (A.14). Keep in find that the equations of motion for {fa,b, h, K1,2,3, g}
are of the second-order in ρ, the equation for fc is of the first-order; and the equations of
motion for {fla,b,c, flK1,2,3 , flg} are of the second-order. The first-order equation for flh
is not independent, see (A.13). All the equations are nonlinear and coupled. To find a
solution to a DFP background, one needs a single label, corresponding to H

Λ (2.10), and
7× 2 + 1× 1 = 15 parameters (from counting the total order of the background equations
of motion). Likewise, to solve the fluctuation equations, assuming that the radial profile
functions fl··· are real and Re[w] = 0, one needs 7× 2 + 0× 1 = 14 parameters; one of these
parameters must be s (A.8). It is possible to have fluctuations about a DFP which are
not purely imaginary [27]. Their analysis, using the equations of motion derived in this
paper, are straightforward, but it will not be performed here: TypeAb DFP is found to be
unstable to a mode with Re[w] = 0 already; instabilities of TypeAs DFP are anticipated by
the marginal modes, that can be identified independently as in section 5.1 of [17]. Besides
the marginal mode responsible for a branching of TypeAb DFP away from TypeAs DFP
discussed in section 4.1, none exists. Thus, we do not expect any of TypeAs fluctuations
with Re[w] 6= 0, if exist, would become unstable, at least for H > Hcrit3 .

A.2.1 Background

The general UV (as ρ → 0) asymptotic solution of the background equations of motion
describing the phase of the cascading gauge theory with spontaneously broken chiral
symmetry takes the form

fc = 1 + fa,1,0 ρ+
∞∑
n=2

∑
k

fc,n,k ρ
n lnk ρ , (A.15)

fa = 1 + fa,1,0 ρ+
∞∑
n=2

∑
k

fa,n,k ρ
n lnk ρ , (A.16)

fb = 1 + fa,1,0 ρ+
∞∑
n=2

∑
k

fb,n,k ρ
n lnk ρ , (A.17)

h = 1
8b+ 1

4K0 −
1
2b ln ρ+

(
b ln ρ− 1

2K0

)
fa,1,0 ρ+

∞∑
n=2

∑
k

hn,k ρ
n lnk ρ , (A.18)

K1 = K0 − 2b ln ρ+ bfa,1,0 ρ+
∞∑
n=2

∑
k

k1,n,k ρ
n lnk ρ , (A.19)

K2 = 1 +
(
k2,3,0 + 3

4fa,1,0b ln ρ+ 3fa,3,0 ln ρ
)
ρ3 +

∞∑
n=4

∑
k

k2,n,k ρ
n lnk ρ , (A.20)

K3 = K0 − 2b ln ρ+ bfa,1,0 ρ+
∞∑
n=2

∑
k

k3,n,k ρ
n lnk ρ , (A.21)

g = 1− 1
2b ρ

2 +
∞∑
n=3

∑
k

gn,k ρ
n lnk ρ . (A.22)
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It is characterized by 9 parameters:

{K0 , fa,1,0 , fa,3,0 , k2,3,0︸ ︷︷ ︸
Oα3

, g4,0 , fc,4,0︸ ︷︷ ︸
Oβ4

, fa,6,0︸ ︷︷ ︸
O6

, fa,7,0︸ ︷︷ ︸
O7

, fa,8,0︸ ︷︷ ︸
O8

} , (A.23)

where we indicated the dual cascading gauge theory operators which expectation values
these parameters characterize. K0 is related to strong coupling scale Λ of the cascading
gauge theory as (2.10). Finally, fa,1,0 corresponds to a diffeomorphism parameter that
ensures the range of the radial coordinate as in (2.8).

To study the infrared asymptotics, i.e., as y ≡ 1
ρ → 0, we redefine

hh ≡ y−2 h , fha,b,c ≡ y fa,b,c . (A.24)

The IR asymptotic expansions

fha,b,c =
∑
n=0

fha,b,c,ny
n , hh = 1

4 +
∑
n=1

hhny
n ,

K1,2,3 =
∑
n=0

Kh
1,2,3,ny

n , g =
∑
n=0

ghny
n ,

(A.25)

are characterized by 7 parameters:{
fha,0 , f

h
b,0 , f

h
c,0 , K

h
1,0 , K

h
2,0 , K

h
3,0 , g

h
0

}
. (A.26)

Notice that in total we have, (A.23) and (A.26), 9 + 7 = 16 = 1 + 15 parameters,
as expected.

A.2.2 Fluctuations

The general UV (as ρ→ 0) asymptotic solution of the fluctuation equations of motion is
much more complicated:

fla,b,c =
∞∑
n=2

ρn Fa,b,c;n(z) , f lK1,3 =
∞∑
n=2

ρn FK1,3;n(z)

flK2 =
∞∑
n=3

ρn FK2;n(z) , f lg =
∞∑
n=4

ρn Fg;n(z) , f lh =
∞∑
n=2

ρn Fh;n(z) ,

(A.27)
where z ≡ ln ρ. At each fixed order n we have a coupled system of 7 second-order ODEs for{

Fa,b,c;n(z) , FK1,2,3;n(z) , Fg;n(z)
}
, (A.28)

along with the first-order constraint involving Fh;n(z). The complexity of these equations
grows with n. Since the cascading gauge theory has a gravitational scalar dual to a
dimension ∆ = 8 operator, at the very least the series expansions must be developed to
order n = 8 inclusive.
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We present here the simplest set of the equations, i.e., for n = 2:

0 = F ′′a;2 −
b

b− 4bz + 2K0

(
2F ′a;2 + F ′c;2 + 2F ′b;2

)
− 4
b− 4bz + 2K0

(
F ′K1;2 + 3F ′K3;2

)
+ 1

(4bz − 2K0 − b)3

((
6144z2 − 768z + 256

)
b2 + (−6144z + 384)K0b+ 1536K2

0

)
Fh;2

+ 1
2 (4bz − 2K0 − b)2

(((
−1296z2 + 264z − 97

)
b2 + (1296z − 132)K0b− 324K2

0

)
Fa;2

+
((
−1264z2 − 8z − 31

)
b2 + (1264z + 4)K0b− 316K2

0

)
Fb;2 +

((
−512z2 − 24

)
b2

+ 512bzK0 − 128K2
0

)
Fc;2 + ((−320z − 32) b+ 160K0)FK1;2 +

(
(128z − 32) b2

− 64bK0
)
FK2;2 − 192FK3;2

((
z + 1

3

)
b− K0

2

))
, (A.29)

0 = F ′′b;2 −
b

b− 4bz + 2K0

(
2F ′b;2 + F ′c;2 + 2F ′a;2

)
− 4
b− 4bz + 2K0

(
F ′K3;2 + 3F ′K1;2

)
+ 1

(4bz − 2K0 − b)3

((
6144z2 − 768z + 256

)
b2 + (−6144z + 384)K0b+ 1536K2

0

)
Fh;2

+ 1
2 (4bz − 2K0 − b)2

(((
−1296z2 + 264z − 97

)
b2 + (1296z − 132)K0b− 324K2

0

)
Fb;2

+
((
−1264z2 − 8z − 31

)
b2 + (1264z + 4)K0b− 316K2

0

)
Fa;2 +

((
−512z2 − 24

)
b2

+ 512bzK0 − 128K2
0

)
Fc;2 + ((−320z − 32) b+ 160K0)FK3;2 −

(
(128z − 32) b2

− 64bK0
)
FK2;2 − 192FK1;2

((
z + 1

3

)
b− K0

2

))
, (A.30)

0 = F ′′c;2 −
b

b− 4bz + 2K0

(
2F ′a;2 + F ′c;2 + 2F ′b;2

)
− 4
b− 4bz + 2K0

(
F ′K3;2 + F ′K1;2

)
+ 1

(4bz − 2K0 − b)3

((
6144z2 − 768z + 256

)
b2 + (−6144z + 384)K0b+ 1536K2

0

)
Fh;2

+ 1
(4bz − 2K0 − b)2

(((
−512z2 + 160z − 36

)
b2 + (512z − 80)K0b− 128K2

0

)
Fc;2

+
((
−512z2 − 24

)
b2 + 512bzK0 − 128K2

0

)
Fa;2 +

((
−512z2 − 24

)
b2 + 512bzK0

− 128K2
0

)
Fb;2 + ((−160z − 16) b+ 80K0)FK1;2 + ((−160z − 16) b+ 80K0)FK3;2

− 64Fg;2b
((

z − 1
4

)
b− K0

2

))
, (A.31)

0 = F ′′K1;2 + 4b
b− 4bz + 2K0

F ′K1;2 + b

(
2F ′g;2 − F ′a;2 −

1
2F
′
c;2 + 3F ′b;2

)
+ 320b (−2bz +K0)

(b− 4bz + 2K0)2 Fh;2 + 1
b− 4bz + 2K0

(
4b (5K0 − 10bz − b) (2Fa;2 + Fc;2)

+ 24b (K0 − 2bz)Fb;2 + 4b (4bz − 2K0 + b)Fg;2 +
(

34bz − 17K0 −
41
2 b
)
FK1;2

+ 16b (K0 − 2bz)FK2;2 +
(
−18bz + 9K0 −

31
2 b
)
FK3;2

)
, (A.32)
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0 = F ′′K2;2 + 4b
b− 4bz + 2K0

F ′K2;2 + 9 (Fb;2 − Fa;2)

+ 1
b− 4bz + 2K0

(18
b

(K0 − 2bz) (FK1;2 − FK3;2) + (52bz − 26K0 − 5b)FK2;2

)
,

(A.33)

0 = F ′′K3;2 + 4b
b− 4bz + 2K0

F ′K3;2 + b

(
2F ′g;2 + 3F ′a;2 − F ′b;2 −

1
2F
′
c;2

)
+ 320b (−2bz +K0)

b− 4bz + 2K0)2 Fh;2 + 1
b− 4bz + 2K0

(
4b (5K0 − 10bz − b) (2Fb;2 + Fc;2)

+ 24b (K0 − 2bz)Fa;2 + 4b (4bz − 2K0 + b)Fg;2 +
(

34bz − 17K0 −
41
2 b
)
FK3;2

− 16b (K0 − 2bz)FK2;2 +
(
−18bz + 9K0 −

31
2 b
)
FK1;2

)
, (A.34)

0 = F ′′g;2 −
4

b− 4bz + 2K0 + b

(
F ′K3;2 + F ′K1;2

)
− 4
b− 4bz + 2K0

(
Fg;2 (−4bz + 2K0 + 5b)

− 2Fc;2b+ 2FK1;2 + 2FK3;2
)
, (A.35)

0 = F ′h;2 + 6b
b− 4bz + 2K0

Fh;2 + b− 4bz + 2K0
32

(
2F ′a;2 + F ′c;2 + 2F ′b;2

)
+ 1

4 (FK1;2 + FK3;2) + b

8 (2Fb;2 + 2Fa;2 + Fc;2) . (A.36)

It is straightforward to verify that (A.36) is solved using the algebraic expression for Fh,2,
derived from (A.13),

Fh;2 = −(b− 4bz + 2K0)2

640(K0 − 2bz)

(
2F ′a;2 + 2F ′b;2 + F ′c;2 + 4

b

(
F ′K1;2 + F ′K3;2

))
− 4

5b(K0 − 2bz)

((
b

4(z + 1)− 1
8K0

)
(FK1;2 + FK3;2) + b

(((
z + 1

16

)
b− 1

2K0

)
× (Fa;2 + Fb;2) +

((1
4z + 3

32

)
b− 1

8K0

)
Fc;2 + 1

2Fg;2
((

z − 1
4

)
b− 1

2K0

)))
×
((

z − 1
4

)
b− 1

2K0

)
.

(A.37)

Remarkably, above equations can be solved analytically,

Fa,b,c;2 = −2A(3b− 4bz + 2K0)
b(b− 4bz + 2K0)2 , FK1,3;2 = − A

b− 4bz + 2K0
,

FK2;2 = Fg;2 = 0 , Fh;2 = A(5b− 8bz + 4K0)
4b(b− 4bz + 2K0) ,

(A.38)

where A is an arbitrary constant, characterizing an overall normalization of the linearized
fluctuations.
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n Ma;n = Mb;n Mc;n MK1;n = MK3;n MK2;n Mg;n Mh;n
2 1 1 0 − − 1
3 3 2 3 1 − 2
4 4 4 4 1 2 4
5 6 5 6 3 3 5
6 8 8 7 4 5 7
7 10 9 10 7 6 8
8 12 12 11 8 9 12

Table 1. Upper limits of summation in (A.39).

In general, we find that the differential equations for (A.28) are solved with the ansatz

Fa,b,c;n(z) = 1
(b− 4bz + 2K0)n

Ma,b,c;n∑
m=0

fla,b,c;n;m zm , n ≥ 2 ,

FK1,3;n(z) = 1
(b− 4bz + 2K0)n−1

MK1,3;n∑
m=0

flK1,3;n;m zm , n ≥ 2 ,

FK2;3(z) = flK2;3;0 + flK2;3;1 z ,

FK2;n(z) = 1
(b− 4bz + 2K0)n−4

MK2;n∑
m=0

flK2;n;m zm , n ≥ 4 ,

Fg;n(z) = 1
(b− 4bz + 2K0)n−3

Mg;n∑
m=0

flg;n;m zm , n ≥ 4 ,

Fh;n(z) = 1
(b− 4bz + 2K0)n−1

Mh;n∑
m=0

flh;n;m zm , n ≥ 2 ,

(A.39)

where fl··· ;n;m are constants, and the orders of z-polynomials in the numerators of F··· ;n,
i.e., M··· ;n, are collected in the table 1 : The set of independent constants, fully determining
the remaining coefficients fl··· ;n;m, is given by

{ A; fla;3;0 , f lK2;3;0 , f lg;4;0 , f lK3;6;5 , f lK2;7;0 , f lg;8;0; s } , (A.40)

where we also included the frequency parameter s, see (A.8). In the IR, i.e., as y ≡ 1
ρ → 0,

it is convenient to redefine some of the fluctuations as

fla,b,c ≡ y−1 flha,b,c , f lh ≡ y2 flhh . (A.41)

Note that this redefinition mimic the corresponding redefinitions of the related background
scalars fa,b,c and h in (A.24). The IR asymptotic expansions take form:

flha,b,c =
∞∑
m=0

flha,b,c;m ym , f lK1,2,3 =
∞∑
m=0

flhK1,2,3;m ym ,

f lg =
∞∑
m=0

flhg;m ym , f lhh =
∞∑
m=0

flhh;m ym .

(A.42)
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They are uniquely characterized by{
flha;0 , f l

h
b;0 , f l

h
c;0 , f l

h
K1;0 , f l

h
K2;0 , f l

h
K3;0 , f l

h
g;0

}
. (A.43)

Notice that in total we have, (A.40) and (A.43), 8 + 7 = 15 = 14 + 1, i.e., we have
the expected number of parameters, = 14 (corresponding to the total order of the non-
redundant differential equations of motion for the fluctuations), and a single arbitrary
overall normalization amplitude A. We are free to fix A as we wish. We find it convenient
to fix A differently for different branches of the fluctuations.

B Chirally symmetric DFP — TypeAs, χSB fluctuations

In this appendix we discuss the linearized fluctuations about TypeAs dynamical fixed point of
the cascading gauge theory, spontaneously breaking the U(1)R chiral symmetry of this DFP
to Z2. The corresponding background and the fluctuation equations of motion are the special
case, a consistent truncation, of the general equations discussed in appendix A. Specifically,

• for the background we find [17]:

fc ≡ f2 , fa = fb ≡ f3 , K1 = K3 ≡ K , K2 ≡ 1 ; (B.1)

• for the fluctuations, note the rescaling of the fla = −flb modes, we find:

fla = −flb ≡ f3 · F , flK1 = −flK3 ≡ χ1 , f lK2 ≡ χ2 ,

f lc ≡ 0 , f lg ≡ 0 , f lh ≡ 0 .
(B.2)

This particular mode, i.e., {F , χ1, χ2}, is featured prominently throughout the paper, so
we discuss it in some details. The corresponding equations of motion are given by:

0 =F ′′+ 1
16bf3

3 f2g2h2ρ(1+ρ)(f ′3ρ−2f3)

(
f2

3hf2gρ
2 (1+ρ)

(
K ′
)2

+2h2f2f
4
3 bρ

2 (1+ρ)
(
g′
)2+2g2f4

3 f2bρ
2 (1+ρ)

(
h′
)2+20g2h2f2

3 f2bρ
2 (1+ρ)

(
f ′3
)2

+16f3
3h

2f2g
2bρ(ρs−3ρ−3)f ′3+16hg2f4

3 f2bρ(1+ρ)h′−4g3f2
3h(1+ρ)b2

+2g2b
(
−8h2f2

3 (ρ+1)f2
2 +24h2

((
ρ2 (ρ+1)h+1+

(
−2

3s+1
)
ρ

)
f3+2ρ+2

)
f3

3 f2

−K2 (ρ+1)
))
F ′− K ′

2f2
3hgb

κ′1+ 1
32(ρ+1)2 ρ2h2g2f2f3

3 b(f ′3ρ−2f3)

×
(

20bρ3sg2h2f2f
2
3 (ρ+1)

(
f ′3
)2−64g

(1
4ρ

2f2 (ρ+1)2 (K ′)2+g
(((

ρ2sf2 (ρ+1)2 (s−3)h

−((−6+(s−8)ρ)sρf2) 1
4 +9(ρ+1)2

)
hf2

3

)1
2−6hf2 (ρ+1)2 f3+bg (ρ+1)2

)
b
)
f3ρhf

′
3

+((s+32)ρ+32)gf2
3 f2 (ρ+1)ρ2h

(
K ′
)2−4b

(
−ρ3sg2f2f

4
3 (ρ+1)

(
h′
)2 1

2
−4ρ2sg2hf2f

4
3 (ρ+1)h′−ρ3sh2f2f

4
3 (ρ+1)

(
g′
)2 1

2
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+g2
(
−16

(((
s− 9

4

)
ρ+s−3

)
f2s(ρ+1)ρ2h−((−3+(s−5)ρ)sρf2) 1

4 +9(ρ+1)2
)
h2f4

3

−24((s−8)ρ−8)f2 (ρ+1)h2f3
3 +(ρ+1)h

(
((s−32)ρ−32)bg+4ρshf2

2

)
f2

3

+ρsK2 (ρ+1) 1
2
)))

F−κ1f2 (K ′)ρ2s+8κ2g
2b2 (ρ+1)

4(ρ+1)hgf2
3ρ

2f2b
, (B.3)

0 =κ′′1 + 1
16ρ(f ′3ρ−2f3)bf3

3 f2g2h2 (ρ+1)

(
−12bρ2g2h2f2f

2
3 (ρ+1)

(
f ′3
)2

−16gbf3
3 f2

(
ρh(ρ+1)g′+

((
ρ2+ρ

)
h′−h(1+(s+1)ρ)

)
g
)
ρhf ′3

+2bρ2h2f2f
4
3 (ρ+1)

(
g′
)2+32bρgh2f2f

4
3 (ρ+1)g′−4g

(
−bρ2gf2f

4
3 (ρ+1)

(
h′
)2 1

2
−12bρghf2f

4
3 (ρ+1)h′−ρ2hf2f

2
3 (ρ+1)

(
K ′
)2 1

4 +
(
−12f2

(
ρ2 (ρ+1)h+1

+
(
−2

3s+1
)
ρ
)
h2f4

3−24h2f2 (ρ+1)f3
3 +h(ρ+1)

(
4hf2

2 +bg
)
f2

3 +K2 (ρ+1) 1
2
)
gb
))
κ′1

+2K ′F ′+ 1
32(ρ+1)2 ρ2h2g2f2f3

3 b(f ′3ρ−2f3)

(
−12br3sg2h2f2f

2
3 (ρ+1)

(
f ′3
)2

−16gb
(
ρ2shf2 (ρ+1)g′+g

(
ρ2sf2 (ρ+1)h′+2

(
ρ2sf2 (ρ+1)2 (s−3)h−ρs(ρs+2)f2

1
4

+9(ρ+1)2
)
h
))
f3

3ρhf
′
3+2bρ3sh2f2f

4
3 (ρ+1)

(
g′
)2+32bρ2sgh2f2f

4
3 (ρ+1)g′

−4g
(
−bρ3sgf2f

4
3 (ρ+1)

(
h′
)2 1

2−12bρ2sghf2f
4
3 (ρ+1)h′−ρ3shf2f

2
3 (ρ+1)

(
K ′
)2 1

4
+gb

(
−16

(((
s− 9

4

)
ρ+s−3

)
f2s(ρ+1)ρ2h−((−3+(s−5)ρ)sρf2) 1

4
+9(ρ+1)2

)
h2f4

3−24ρsh2f2 (ρ+1)f3
3 +ρsh(ρ+1)

(
4hf2

2 +bg
)
f2

3

+ρsK2 (ρ+1) 1
2
)))

κ1+Ff2
3hf2K

′ρ2s+2bKg (ρ+1)(κ2+2F )
(ρ+1)hf2

3ρ
2f2

, (B.4)

0 =κ′′2 + 1
16ρ(f ′3ρ−2f3)bf3

3 f2g2h2 (ρ+1)

(
−12bρ2g2h2f2f

2
3 (ρ+1)

(
f ′3
)2

+16gbf3
3 f2ρh

(
ρh(ρ+1)g′−

((
ρ2+ρ

)
h′−h(1+(s+1)ρ)

)
g
)
f ′3

+2bρ2h2f2f
4
3 (ρ+1)

(
g′
)2−32bρgh2f2f

4
3 (ρ+1)g′−4g

(
−bρ2gf2f

4
3 (ρ+1)

(
h′
)2 1

2
−12bρghf2f

4
3 (ρ+1)h′−ρ2hf2f

2
3 (ρ+1)

(
K ′
)2 1

4 +
(
−12f2

(
ρ2 (ρ+1)h+1

+
(
−2

3s+1
)
ρ
)
h2f4

3−24h2f2 (ρ+1)f3
3 +h(ρ+1)

(
4hf2

2 +bg
)
f2

3 +K2 (ρ+1) 1
2
)
gb
))
κ′2

+ 1
32(ρ+1)2 ρ2h2g2f2f3

3 b(f ′3ρ−2f3)

(
−12bρ3sg2h2f2f

2
3 (ρ+1)

(
f ′3
)2

+16g
(
ρ2shf2 (ρ+1)g′−g

(
ρ2sf2 (ρ+1)h′+2

(
ρ2sf2 (ρ+1)2 (s−3)h−ρs(ρs+2)f2

1
4

+9(ρ+1)2
)
h
))
bf3

3ρhf
′
3+2bρ3sh2f2f

4
3 (ρ+1)

(
g′
)2−32bρ2sgh2f2f

4
3 (ρ+1)g′
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−4g
(
−bρ3sgf2f

4
3 (ρ+1)

(
h′
)2 1

2−12bρ2sghf2f
4
3 (ρ+1)h′−ρ3shf2f

2
3 (ρ+1)

(
K ′
)2 1

4
+gb

(
−16

(((
s− 9

4

)
ρ+s−3

)
f2s(ρ+1)ρ2h−((−3+(s−5)ρ)sρf2) 1

4
+9(ρ+1)2

)
h2f4

3−24ρsh2f2 (ρ+1)f3
3 +ρsh(ρ+1)

(
4hf2

2 +bg
)
f2

3

+ρsK2(ρ+1)1
2
)))

κ2−
18F
ρ2f2

+ 9κ1K

2bρ2f2ghf2
3
. (B.5)

Since in this sector the fluctuations of flh are not activated (B.2), the asymptotics are
much simpler compare to the general case of section A.2. In the UV, i.e., as ρ→ 0,

F = f3,0ρ
3 +

∞∑
n=4

ρn ·
∑
m

fn,m lnm ρ , (B.6)

κ1 =
(2

3b(f3,0 + κ2;3,0) + 2f3,0b ln ρ
)
ρ3 +

∞∑
n=4

ρn ·
∑
m

κ1;n,m lnm ρ , (B.7)

κ2 = (κ2;3,0 + 3f3,0 ln ρ) ρ3 +
∞∑
n=4

ρn ·
∑
m

κ2;n,m lnm ρ . (B.8)

In the IR, i.e., as y ≡ 1
ρ → 0,

F =
∞∑
n=0

fhn y
n , κ1 =

∞∑
n=0

κh1;n y
n , κ2 =

∞∑
n=0

κh2;n y
n . (B.9)

The mode asymptotics

UV : { s , f3,0 , κ2;3,0 , κ2;7,0 } ,
IR : { fh0 , κh1;0 , κ

h
2,0} ,

(B.10)

are completely specified by 4 + 3 = 1 + 6 parameters. One of the parameters from the set
{f3,0, k2,3,0, k2,7,0}, plays the role of the overall normalization A in (A.40), and the number
of the remaining ones match the total order of the coupled differential equations for the
fluctuations (B.3)–(B.5): 3× 2 = 6. One of the physical parameter, i.e., s, determines the
frequency of this χSB mode about TypeAs DFP, see (A.8).

In the rest of this appendix we analyze the near-conformal b→ 0, equivalently H � Λ,
limit of this mode. Strictly at b = 0 the cascading gauge theory is conformal, and the
spectra can be computed analytically [29]. We discover multiple spectral branches of the
fluctuations. On some branches we are able to compute analytically the leading O(

√
b), and

numerically the first O(b) subleading, corrections to the conformal spectra, sections B.1.1
and B.1.2. On the remaining branches we compute numerically the leading O(b) corrections
to the conformal spectra, section B.1.3. Perturbative results obtained here provide a
valuable check of the finite H

Λ spectra in the near-conformal limit, see figure 4.
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B.1 Near-conformal limit: b→ 0

In the near-conformal limit the background of TypeAs DFP is represented by

f2 = (1+ρ)
(

1+
∞∑
n=1

bn f2;n(ρ)
)
, f3 = (1+ρ)

(
1+

∞∑
n=1

bn f3;n(ρ)
)
,

h= 1
4(1+ρ)2

(
1+

∞∑
n=1

bn hn(ρ)
)
, K = 1+

∞∑
n=1

bn kn(ρ) , g= 1+
∞∑
n=1

bn gn(ρ) .

(B.11)
Explicit equations for {f2n, f3n, hn, kn, gn} for n = 1, 2 along with the UV/IR asymptotics
are presented in appendix D.1 of [17]. There is a useful analytical solution for k1:

k1 = ρ

4 + 1
4 + 4ρ −

1
4 − 4 ln 2 + ρ3 − 6ρ2 − 24ρ− 16

8(1 + ρ)3/2 ln
√

1 + ρ− 1√
1 + ρ+ 1 . (B.12)

The coupled system of the linearized fluctuations (B.3)–(B.5) can be simplified introducing

κ1 = b

3(q3 − q7) , κ2 = 1
2(q3 + q7) . (B.13)

To leading order in b, we find from (B.3)–(B.5):

0 = F ′′ + 2ρs− ρ− 6
2ρ(ρ+ 1) F ′ − 3(ρs− 2ρ− 2)

2(ρ+ 1)2ρ2 F ,

0 = q′′3 + 2ρs− ρ− 6
2ρ(ρ+ 1) q′3 −

3(ρs− 2ρ− 2)
2(ρ+ 1)2ρ2 q3 + 3k′1 F ′ +

3(k′1ρ2s+ 4)
2ρ2(ρ+ 1) F ,

0 = q′′7 + 2ρs− ρ− 6
2ρ(ρ+ 1) q′7 −

3(ρs+ 14ρ+ 14)
2(ρ+ 1)2ρ2 q7 − 3k′1 F ′ −

3(k′1ρ2s+ 28)
2(ρ+ 1)ρ2 F . (B.14)

Solving the decoupled equation for F , we find (up to an overall normalization AF )

F = AF
ρ3

(1 + ρ)s 2F1

(3
2 , 3− s; 3;−ρ

)
, s = 3, 4, · · · . (B.15)

Given (B.15), and using (B.12), it is straightforward to see that it is impossible to solve
the equation for q3 in (B.14), so that this mode is both normalizable as ρ→ 0 and analytic
as ρ→∞ — this means that the amplitude of F must always vanish in the limit b→ 0.
This is precisely what we find, see (B.18) and (B.19).

With F ≡ 0, we find from (B.14) the following leading order as b→ 0 solutions:

q3 = A3
ρ3

(1 + ρ)s 2F1

(3
2 , 3− s; 3;−ρ

)
, s = 3, 4, · · · , (B.16)

and
q7 = A7

ρ7

(1 + ρ)s 2F1

(11
2 , 7− s; 11;−ρ

)
, s = 7, 8, · · · . (B.17)

Extending the leading order solutions (B.16), (B.17) perturbatively in b we identify
three branches:
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A pair of non-analytic20 in b branches, (Ab) and (Bb),

s

∣∣∣∣
A,B

= n+
∞∑
k=1

(±)ksn;k b
k/2 , n ∈ N ≥ 3 , q3

∣∣∣∣
A,B

=
∞∑
k=0

(±)kq3;n;k b
k/2 ,

F

∣∣∣∣
A,B

=
∞∑
k=1

(±)kFn;k b
k/2 , q7

∣∣∣∣
A,B

=
∞∑
k=0

(±)kq7;n;k b
k/2 ,

(B.18)

with q3;n;0 given by (B.16) and q7;n≥7;0 given by (B.17) with s = n. q7;n;0 ≡ 0 for 3 ≤ n < 7.

An analytic in b branch (Cb),

s

∣∣∣∣
C

= n+
∞∑
k=1

sn;k b
k , n ∈ N ≥ 7 , q3

∣∣∣∣
C

=
∞∑
k=0

q3;n;k b
k ,

F

∣∣∣∣
C

=
∞∑
k=1

Fn;k b
k , q7

∣∣∣∣
C

=
∞∑
k=0

q7;n;k b
k ,

(B.19)

where q7;n;0 is given by (B.17) and q3;n;0 is given by (B.16) with s = n.

B.1.1 Details of s = 3±O(
√
b) branches: (Ab) and (Bb)

From (B.16), here

s3;0 = 3 , q3;3;0 = 1 · ρ3

(1 + ρ)s 2F1

(3
2 , 3− s; 3;−ρ

) ∣∣∣∣
s=s3;0

= ρ3

(1 + ρ)3 , (B.20)

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the
latter implies that in the UV, i.e., ρ→ 0, expansion of q3;3;k≥1 the order O(ρ3) terms are
absent. Because the leading order fluctuation spectra (B.15) and (B.16) are degenerate, the
equations for F3;k will necessarily contain zero modes; specifically, if F3;k≥1 is a solution, so
is (F3;k + αk · q3;3;0) for an arbitrary set of constants αk. As we will see shortly, the zero
modes at order k will be completely fixed at order k + 1. We find it convenient to set

F3;k ≡ αk · q3;3;0 + F̂3;k , (B.21)

with the understanding that in the UV expansion of F̂3;k the order O(ρ3) terms are absent.
Using (B.20), (B.21), the perturbative ansatz (B.11) and (B.18), we find from (B.3)

the leading order equation for F̂3;1,

0 = F̂ ′′3;1 + 5ρ− 6
2ρ(ρ+ 1) F̂

′
3;1 −

3(ρ− 2)
2(ρ+ 1)2ρ2 F̂3;1 . (B.22)

The most general solution to (B.22) is specified by two integration constants C1 and C2:

F̂3;1 = C1 ·
ρ3

(1 + ρ)3 + C2 ·
ρ

(1 + ρ)3

(
ρ2 ln

√
1 + ρ+ 1√
1 + ρ− 1 − 2(ρ+ 2)

√
1 + ρ

)
. (B.23)

20Related phenomenon was observed earlier in [15] and [34].
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Normalizability of the fluctuations sets C2 = 0; the boundary condition imposed by (B.21)
further sets C1 = 0, resulting in

F̂3,1 ≡ 0 . (B.24)

Likewise, we find
q7;3;0 = 0 . (B.25)

The subleading set of equations involving constants α1, s3;1, and functions {q3;3;1, q7;3;1,
F̂3;2} reads:

0 = q′′3;3;1+ 5ρ−6
2(1+ρ)ρq

′
3;3;1−

3(ρ−2)q3;3;1
2ρ2(1+ρ)2 + 9α1ρ

2(ρ+2)
2(1+ρ)4 k′1+ 3(4α1(ρ+1)+ρs3;1)ρ

2(1+ρ)5 , (B.26)

0 = q′′7;3;1+ 5ρ−6
2(1+ρ)ρq

′
7;3;1−

3(17ρ+14)
2ρ2(1+ρ)2 q7;3;1−

9α1ρ
2(ρ+2)

2(1+ρ)4 k′1−
42α1ρ

(1+ρ)4 , (B.27)

0 = F̂ ′′3;2+ 5ρ−6
2(1+ρ)ρF̂

′
3;2−

3(ρ−2)
2ρ2(1+ρ)2 F̂3;2−

ρ2(ρ+2)
(1+ρ)4 k

′
1+ (3α1ρs3;1−8(ρ+1))ρ

2(1+ρ)5 . (B.28)

Above set can be solved numerically — and we explain how to do it for the set of equations
at the next order — here instead we show that the most important constant, i.e., s3;1 can
be computed analytically:

• Substituting
F̂3;2 = q3;3;0 G3;2 , (B.29)

and using (B.12), we find a general analytic solution for G′3;2,

G′3;2 = − ρ3

16(1 + ρ)5/2 ln
√

1 + ρ+ 1√
1 + ρ− 1 +

√
1 + ρ

ρ3 C1 −
(3ρ2 + 12ρ+ 8)

ρ3(1 + ρ) α1s3;1

+ (ρ+ 2)(3ρ4 − 8ρ3 + 56ρ2 + 128ρ+ 64)
24(1 + ρ)2ρ3 .

(B.30)

Normalizability of F̂3;2 sets

C1 = −16
3 + 8α1s3;1 . (B.31)

As ρ→∞,

G′3;2 = − 1
48

(
−384

5 + 144α1s3;1

)
ρ−2 − 1

48 (−384α1s3;1 + 256) ρ−5/2 +O(ρ−3) ,
(B.32)

thus analyticity of F̂3;2, and thus G′3;2, in this limit requires

α1 = 2
3s3;1

=⇒ C1 = 0 , (B.33)

which is also evident from (B.30).

– 34 –



J
H
E
P
0
1
(
2
0
2
3
)
1
3
0

• We continue with (B.26), setting

q3;3;1 = 1
s3;1

q3;3;0 J3;3;1 , (B.34)

allows to solve analytically for J ′3;3;1,

J ′3;3;1 = 3ρ3

16(1 + ρ)5/2 ln
√

1 + ρ+ 1√
1 + ρ− 1 −

3ρ2 + 12ρ+ 8
ρ3(1 + ρ) s2

3;1 +
√

1 + ρ

ρ3 C1

− (ρ+ 2)(3ρ4 − 8ρ3 − 72ρ2 − 128ρ− 64)
8(1 + ρ)2ρ3 .

(B.35)

Normalizability of q3;3;1 sets
C1 = 8s2

3;1 − 16 , (B.36)
and analyticity of q3;3;1, and thus J ′3;3;1, in the limit ρ→∞ requires

s2
3;1 = 2 =⇒ s3;1 = ±

√
2 . (B.37)

Note that to determine s3;1, there is no need to solve for q7;3;1 — of course, this solution is
needed for the computation of the higher order corrections s3;k≥2.

The sub-subleading set of equations involving constants α2, s3;2, and functions {q3;3;2,
F̂3;3} reads (we omit the equation for q7;3;2 as it is not need to compute s3;2; it is required
for the computation of s3;k≥3):

0 = q′′3;3;2 + 5ρ− 6
2(1 + ρ)ρq

′
3;3;2 −

3(ρ− 2)
2ρ2(1 + ρ)2 q3;3;2 +

s3;1q
′
3;3;1

1 + ρ
− 3s3;1q3;3;1

2ρ(1 + ρ)2 + 3k′1F̂ ′3;2

+ 3(3k′1ρ2 + 4)
2(1 + ρ)ρ2 F̂3;2 + 3ρα2(3ρk′1(ρ+ 2) + 4)

2(1 + ρ)4 + 3ρ2s3;2
2(1 + ρ)5 −

3ρ3(k′1)2

8(1 + ρ)3 + ρ3k′1
(1 + ρ)4

−
3ρ2(ρ+ 2)f ′3;1

(1 + ρ)4 − 9ρ2(ρ+ 2)h′1
4(1 + ρ)4 + 3ρ

8(1 + ρ)5

(
−3h1(ρ2 + 16ρ+ 16)

+ 4(1 + ρ)(12k1 − 3f2;1 − 20f3;1 + 1)
)
, (B.38)

0 = F̂ ′′3;3 + 5ρ− 6
2(1 + ρ)ρF̂

′
3;3 −

3(ρ− 2)
2ρ2(1 + ρ)2 F̂3;3 + s3;1

1 + ρ
F̂ ′3;2 −

3s3;1F̂3;2
2ρ(1 + ρ)2 −

2
3k
′
1q
′
3;3;1

− k′1ρ
2 + 4

(1 + ρ)ρ2 q3;3;1 + 2
3k
′
1q
′
7;3;1 + k′1ρ

2 − 4
(1 + ρ)ρ2 q7;3;1 + ρ2s3;2

s3;1(1 + ρ)5 −
19ρ3(k′1)2

12s3;1(1 + ρ)3

− ρ3s3;1k
′
1

3(1 + ρ)4 −
ρ2(ρ+ 2)h′1
2s3;1(1 + ρ)4 + 3ρ2s3;1α2

2(1 + ρ)5 + ρ

12s3;1(1 + ρ)5

(
−3h1(ρ+ 4)(3ρ+ 4)

+ 4(1 + ρ)(12k1 + 15f2;1 − 36f3;1 − 13)
)
. (B.39)

Eqs. (B.38) and (B.39) are solved subject to the asymptotic expansions,

in the UV, i.e., as ρ→ 0,

q3;3;2 =
(

0 + 6α2 ln ρ
)
ρ3 +

(
−3α2 −

3
2f2,1,0;1 −

1
2s3;2 + (−3α1s3;1 − 18α2) ln ρ

)
ρ4

+O(ρ5 ln ρ) ,

F̂3;3 = 0 ρ3 +
(
−3

2α1f2,1,0;1 −
1
2α1s3;2 −

1
2s3;1α2

)
r4 +O(ρ5 ln ρ) ,

(B.40)
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it is completely specified by {α2, s3;2}; we further highlighted arbitrary constants, fixed to
zero by the overall normalization (B.20) and the extraction of the zero mode in F3;3 (B.21);

in the IR, i.e., as y ≡ 1
ρ → 0,

q3;3;2 = qh3;3;2;0 +O(y) , F̂3;3 = F̂ h3;3;0 +O(y) , (B.41)

it is completely specified by {
qh3;3;2;0 , F̂

h
3;3;0 , α2 , s3;2

}
. (B.42)

In total, the UV and IR expansions are completely determined by the parameters (B.42),
which is precisely what is needed to find a unique solution for a pair of second order
ODEs (B.38) and (B.39). Solving these equations we find

s3;2 = −1.5748(9) , α2 = 0.7936(8) , qh3;3;2;0 = 4.174(3) , F̂ h3;3;0 = ∓0.40398(7) .
(B.43)

Once the numerical solution for {q3;3;2, F̂3;3} is found, the second order ODE for q7;3;2 —
necessary to determine s3;k≥3 — is solved adjusting two parameters,{

q7;3;2;7,0 , q
h
7;3;2;0

}
, (B.44)

that completely determines its UV and IR asymptotics.

B.1.2 Details of s = 7±O(
√
b) branches: (Ab) and (Bb)

From (B.16), here

s7;0 = 7 , q3;7;0 = 1 · ρ3

(1 + ρ)s 2F1

(3
2 , 3− s; 3;−ρ

) ∣∣∣∣
s=s7;0

=ρ3(21ρ4 + 112ρ3 + 240ρ2 + 256ρ+ 128)
128(1 + ρ)7 ,

(B.45)

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the
latter implies that in the UV, i.e., ρ → 0, expansion of q3;7;k≥1 the order O(ρ3) terms
are absent. Because the leading order fluctuation spectra (B.15), (B.16) and (B.17) are
degenerate at s7;0, the equations for F7;k and q7;7;k will necessarily contain zero modes;
specifically, if F7;k≥1 and q7;7;k≥1 are solutions, so are (F7;k+αk ·q3;7;0) and (q7;7;k+ βk

β0
·q7;7;0),

q7;7;0 = β0 ·
ρ7

(1 + ρ)s 2F1

(11
2 , 7− s; 11;−ρ

) ∣∣∣∣
s=s7;0

= β0 ·
ρ7

(1 + ρ)7 , (B.46)

for an arbitrary set of constants {αk, βk}. As in section B.1.1, the zero modes at order k
will be completely fixed at order k + 1. We find it convenient to set

F7;k≥1 ≡ αk · q3;7;0 + F̂7;k , q7;7;k≥1 ≡ βk ·
1
β0
q7;7;0 + q̂7;7;k , (B.47)
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with the understanding that in the UV expansion of F̂7;k the order O(ρ3) terms are absent,
and in the UV expansion of q̂7;7;k the order O(ρ7) terms are absent.

As in section B.1.1, the equation for F̂7;1 is homogeneous, and the boundary condition
implied by (B.47) sets

F̂7,1 ≡ 0 . (B.48)

The subleading set of equations involving constants α1, β0, s7;1, and functions {q3;3;1,
q3;7;1, F̂3;2} reads:

0 = q′′3;7;1 + 13ρ− 6
2(1 + ρ)ρq

′
3;7;1 −

3(5ρ− 2)
2ρ2(1 + ρ)2 q3;7;1 + 3ρ2(ρ+ 2)α1k

′
1

256(1 + ρ)8

(
147ρ4 + 560ρ3

+ 944ρ2 + 768ρ+ 384
)

+ ρ

256(1 + ρ)9

(
ρ(7ρ4 + 48ρ3 + 144ρ2 + 256ρ+ 384)s7;1

+ 12α1(1 + ρ)(21ρ4 + 112ρ3 + 240ρ2 + 256ρ+ 128)
)
, (B.49)

0 = q̂′′7;7;1 + 13ρ− 6
2(1 + ρ)ρq̂

′
7;7;1 −

21(3ρ+ 2)
2ρ2(1 + ρ)2 q̂7;7;1 −

3ρ2(ρ+ 2)α1k
′
1

256(1 + ρ)8

(
147ρ4 + 560ρ3

+ 944ρ2 + 768ρ+ 384
)
− 21ρα1

64(1 + ρ)8

(
21ρ4 + 112ρ3 + 240ρ2 + 256ρ+ 128

)
+ 11s7;1β0ρ

6

2(1 + ρ)9 , (B.50)

0 = F̂ ′′7;2 + 13ρ− 6
2(1 + ρ)ρF̂

′
7;2 −

3(5ρ− 2)
2ρ2(1 + ρ)2 F̂7;2 −

(ρ+ 2)ρ2k′1
384(1 + ρ)8

(
147ρ4 + 560ρ3 + 944ρ2

+ 768ρ+ 384
)

+ ρ

256(1 + ρ)9

(
α1s7;1ρ(7ρ4 + 48ρ3 + 144ρ2 + 256ρ+ 384)− 8(1 + ρ)

× (21ρ4 + 112ρ3 + 240ρ2 + 256ρ+ 128)
)

+ ρ5β0(7ρ(ρ+ 2)k′1 − 12)
3(1 + ρ)8 . (B.51)

We show here that the most important constant, i.e., s7;1 can be computed analytically:

• Substituting
β0 = α1

s7;1
p , q̂7;7;1 = α1 ·

1
β0
q7;7;0 ·B7;7;1 , (B.52)

and using (B.12), we find a general analytic solution for B′7;7;1,

B′7;7;1 =−3(315ρ4+1400ρ3+2552ρ2+2304ρ+1152)
20480ρ(1+ρ)5/2 ln

√
1+ρ+1√
1+ρ−1

− p

63ρ11(1+ρ)
(
77ρ10−220ρ9+792ρ8−4224ρ7+59136ρ6+709632ρ5

+2365440ρ4+3784704ρ3+3244032ρ2+1441792ρ+262144
)

+ (1+ρ)9/2

ρ11 C1

+ 1
51200(1+ρ)2ρ11

(
4725ρ13+17850ρ12+42480ρ11+193440ρ10+599424ρ9

+985856ρ8+277504ρ7−5945344ρ6−24600576ρ5−49201152ρ4−56229888ρ3

−37486592ρ2−13631488ρ−2097152
)
. (B.53)
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Normalizability of q̂7;7;1 sets

C1 = 1024
25 + 262144

63 p . (B.54)

As ρ→∞,

B′7;7;1 =
( 49

160 −
11
9 p
)
ρ−2 +

(45
16 + 33

7 p
)
ρ−3 +

(141
25 −

121
7 p

)
ρ−4

+
(30242

5775 + 253
3 p

)
ρ−5 +

(
−268984

25025 − 1023p
)
ρ−6

+
(1024

25 + 262144
63 p

)
ρ−13/2 +O(ρ−7) ,

(B.55)

thus analyticity of q̂7;7;1, and thus B′7;7;1, in this limit requires

p = − 63
6400 =⇒ C1 = 0 , (B.56)

which is also evident from (B.53).

• We continue with (B.49), setting

α1 = s7;1v , q3;7;1 = α1 · q3;7;0 · J3;7;1 , (B.57)

allows to solve analytically for J ′3;7;1,

J ′3;7;1 = 9ρ3

32(1 + ρ)5/2 ln
√

1 + ρ+ 1√
1 + ρ− 1 + (1 + ρ)9/2C1

(21ρ4 + 112ρ3 + 240ρ2 + 256ρ+ 128)2ρ3

− 1
15vρ3(21ρ4 + 112ρ3 + 240ρ2 + 256ρ+ 128)2(1 + ρ)

(
245ρ10 + 3140ρ9

+ 18936ρ8 + 73088ρ7 + 243968ρ6 + 715776ρ5 + 1505280ρ4 + 2015232ρ3

+ 1622016ρ2 + 720896ρ+ 131072
)

− ρ+ 2
80(1 + ρ)2(21ρ4 + 112ρ3 + 240ρ2 + 256ρ+ 128)2ρ3

(
19845ρ12 + 158760ρ11

+ 353640ρ10 − 900480ρ9 − 7755456ρ8 − 23990272ρ7 − 45821952ρ6

− 60620800ρ5 − 57819136ρ4 − 39976960ρ3 − 19529728ρ2 − 6291456ρ

− 1048576
)
.

(B.58)

Normalizability of q3;7;1 sets

C1 = −131072
15

3v − 1
v

, (B.59)

and analyticity of q3;7;1, and thus J ′3;7;1, in the limit ρ→∞ requires

v = 1
3 =⇒ C1 = 0 . (B.60)
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• Consider now (B.51): introducing

F̂7;2 = q3;7;0 ·G7;2 , (B.61)

we solve for G′7;2,

G′7;2 =− ρ3

4000(1+ρ)5/2(21ρ4+112ρ3+240ρ2+256ρ+128)2

(
112455ρ8

+1189720ρ7+5688536ρ6+16165632ρ5+30098816ρ4+37888000ρ3

+31744000ρ2+16384000ρ+4096000
)

ln
√

1+ρ+1√
1+ρ−1

−
s2

7;1
45ρ3(21ρ4+112ρ3+240ρ2+256ρ+128)2(1+ρ)

(
245ρ10+3140ρ9

+18936ρ8+73088ρ7+243968ρ6+715776ρ5+1505280ρ4+2015232ρ3

+1622016ρ2+720896ρ+131072
)

+ (1+ρ)9/2C1
(21ρ4+112ρ3+240ρ2+256ρ+128)2ρ3

+ ρ+2
90000(1+ρ)2(21ρ4+112ρ3+240ρ2+256ρ+128)2ρ3

(
5060475ρ12

+40042800ρ11+110307120ρ10+27525120ρ9−600006144ρ8−1699570688ρ7

−1994001408ρ6+24739840ρ5+3575996416ρ4+5505679360ρ3+4226940928ρ2

+1704984576ρ+284164096
)
. (B.62)

Normalizability of F̂7;2 sets

C1 = −35520512
5625 + 131072

45 s2
7;1 , (B.63)

and analyticity of F̂7;2, and thus G′7;2, in the limit ρ→∞ requires

s2
7;1 = 271

125 =⇒ s7;1 = ±
√

1355
25 . (B.64)

B.1.3 Details of s = 7 +O(b) branch: (Cb)

From (B.17), here

s7;0 = 7 , q7;7;0 = 1 · ρ7

(1 + ρ)s 2F1

(11
2 , 7− s; 11;−ρ

) ∣∣∣∣
s=s7;0

= ρ7

(1 + ρ)7 , (B.65)

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the
latter implies that in the UV, i.e., ρ→ 0, expansion of q7;7;k≥1 the order O(ρ7) terms are
absent. Because the leading order spectra (B.15), (B.16) and (B.17) are degenerate at s7;0,
the equations for F7;k and q3;7;k will necessarily contain zero modes; specifically, if F7;k≥1
and q7;7;k≥1 are solutions, so are (F7;k + βk

α0
· q3;7;0) and (q3;7;k + αk

α0
· q3;7;0),

q3;7;0 = α0 ·2 F1

(3
2 , 3− s; 3;−ρ

) ∣∣∣∣
s=s7;0

= α0 ·
ρ3(21ρ4 + 112ρ3 + 240ρ2 + 256ρ+ 128)

128(1 + ρ)7 ,

(B.66)
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for an arbitrary set of constants {αk, βk}. As in section B.1.1, the zero modes at order k
will be completely fixed at order k + 1. We find it convenient to set

F7;k≥1 ≡ βk ·
1
α0
q3;7;0 + F̂7;k , q3;7;k≥1 ≡ αk ·

1
α0
q3;7;0 + q̂3;7;k , (B.67)

with the understanding that in the UV expansion of F̂7;k and q̂3;7;k the order O(ρ3) terms
are absent.

The subleading set of equations involving constants α0, β1, s7;1, and functions {q̂3;7;1,
q7;7;1, F̂7;1} reads:

0 = q̂′′3;7;1 + 13ρ− 6
2(1 + ρ)ρq̂

′
3;7;1 −

3(5ρ− 2)
2ρ2(1 + ρ)2 q̂3;7;1 + 3k′1F̂ ′7;1 + 21k′1F̂7;1

2(1 + ρ) + 7ρ6(ρ+ 2)g′1
2(1 + ρ)8

+ 6F̂7;1
ρ2(1 + ρ) + 12ρ5g1

(1 + ρ)8 −
α0ρ

168(1 + ρ)9

(
ρ2(147ρ4 + 560ρ3 + 944ρ2 + 768ρ

+ 384)(1 + ρ)2(k′1)2 + 2ρ(ρ+ 2)(1 + ρ)(147ρ4 + 560ρ3 + 944ρ2 + 768ρ+ 384)(3h′1
+ 4f ′3;1)− 4ρ(7ρ4 + 48ρ3 + 144ρ2 + 256ρ+ 384)s7;1 − 16(1 + ρ)(273ρ4 + 1232ρ3

+ 2384ρ2 + 2304ρ+ 1152)k1 + (1617ρ6 + 12320ρ5 + 40352ρ4 + 74496ρ3 + 83328ρ2

+ 55296ρ+ 18432)h1 + 4(1 + ρ)((273ρ4 + 1232ρ3 + 2384ρ2 + 2304ρ+ 1152)f2;1

+ (1596ρ4 + 7616ρ3 + 15296ρ2 + 15360ρ+ 7680)f3;1 − (147ρ4 + 560ρ3 + 944ρ2 + 768ρ

+ 384))
)

+ β1ρ

14(1 + ρ)8

(
k′1ρ(ρ+ 2)(147ρ4 + 560ρ3 + 944ρ2 + 768ρ+ 384) + 84ρ4

+ 448ρ3 + 960ρ2 + 1024ρ+ 512
)
, (B.68)

0 = q′′7;7;1 + 13ρ− 6
2(1 + ρ)ρq

′
7;7;1 −

21(3ρ+ 2)
2ρ2(1 + ρ)2 q7;7;1 −

7ρ7(k′1)2

8(1 + ρ)7 − 3k′1F̂ ′7;1

− 21(ρ2k′1 + 4)
2ρ2(1 + ρ) F̂7;1 −

7ρ6(ρ+ 2)f ′3;1
(1 + ρ)8 + α0ρ

2(ρ+ 2)g′1
42(1 + ρ)8

(
147ρ4 + 560ρ3 + 944ρ2 + 768ρ

+ 384
)
− 21ρ6(ρ+ 2)h′1

4(1 + ρ)8 + 11ρ6s7;1
2(1 + ρ)9 + ρ

56(1 + ρ)9

(
−32g1(1 + ρ)(21ρ4 + 112ρ3

+ 240ρ2 + 256ρ+ 128)α0 + ρ4(28(1 + ρ)(35f2;1 + 4k1 + 20f3;1 + 7)− 7(77ρ2 + 16ρ

+ 16)h1)
)
− β1ρ

14(1 + ρ)8

(
k′1ρ(ρ+ 2)(147ρ4 + 560ρ3 + 944ρ2 + 768ρ+ 384) + 6720ρ2

+ 7168ρ+ 3584 + 588ρ4 + 3136ρ3
)
, (B.69)

0 = F̂ ′′7;1 + 13ρ− 6
2(1 + ρ)ρF̂

′
7;1 −

3(5ρ− 2)
2ρ2(1 + ρ)2 F̂7;1 −

ρ2(ρ+ 2)k′1
63(1 + ρ)8

((
147ρ4 + 560ρ3 + 944ρ2

+ 768ρ+ 384
)
α0 − 147ρ4

)
− 4ρ

21(1 + ρ)8

(
α0
(
21ρ4 + 112ρ3 + 240ρ2 + 256ρ+ 128

)
+ 21ρ4

)
. (B.70)

Eqs. (B.68)—(B.70) are solved subject to the asymptotic expansions,
in the UV, i.e., as ρ→ 0,

q̂3;7;1 =
(

0 + 256
7 β1 ln ρ

)
ρ3 −

(128
7 β1 + 64

7 α0f2,1,0;1 + 64
21α0s7;1 + 1280

7 β1 ln ρ
)
ρ4

+O(ρ5 ln ρ) , (B.71)
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q7;7;1 = −128
21 β1ρ

3 + 640
21 β1ρ

4 +
(
−1966

21 β1 + 46
21α0

)
ρ5 +

(4756
21 β1 −

92
7 α0

)
ρ6 +

(
0 +

(
−2− 256

35 α0k4,0;1 + 768
35 β1k4,0;1 + 457

350α0 −
191
350β1

)
ln ρ

+
(18

35β1 −
6
35α0

)
ln2 ρ

)
ρ7 +O(ρ8 ln2 ρ) , (B.72)

F̂7;1 = 0 ρ3 + 0 ρ4 − 88
63α0ρ

5 + 176
21 α0ρ

6 +O(ρ7 ln ρ) , (B.73)

it is completely specified by {β1, α0, s7;1}; we further highlighted arbitrary constants, fixed
to zero by the overall normalization (B.65), and the extraction of the zero modes in F7;1
and q3;7;1 (B.67);

in the IR, i.e., as y ≡ 1
ρ → 0,

q̂3;7;1 = q̂h3;7;1;0 +O(y) , q7;7;1 = qh7;7;1;0 +O(y) , F̂7;1 = F̂ h7;1;0 +O(y) , (B.74)

it is completely specified by{
q̂h3;7;1;0 , q

h
7;7;1;0 , F̂

h
7;1;0 , β1 , α0 , s7;1

}
. (B.75)

In total, the UV and IR expansions are completely determined by the parameters (B.75),
which is precisely what is needed to find a unique solution for three second order ODEs (B.68)–
(B.70). Solving these equations we find

s7;1 = 4.3945(5) , β1 = −3.5047(8) , α0 = 4.2000(0) ,
q̂h3;7;1;0 = −4.4179(7) , qh7;7;1;0 = −1850.3(4) , F̂ h7;1;0 = −1.2222(2) .

(B.76)

Note that equation (B.70) for F̂7;1 is decoupled, and involves k1 for which the analytic
expression is available (B.12); solving this equation using the techniques of section B.1.1,
we find

F̂7;1 = ρ3(21ρ4+112ρ3+240ρ2+256ρ+128)
21(1+ρ)7 G7;1 , α0 = 21

5 ,

G′7;1 =− 7ρ3

10(1+ρ)5/2(21ρ4+112ρ3+240ρ2+256ρ+128)2

(
126ρ8+1519ρ7+7903ρ6

+23520ρ5+44784ρ4+56832ρ3+47616ρ2+24576ρ+6144
)

ln
√

1+ρ+1√
1+ρ−1

+ 7(ρ+2)ρ
5(1+ρ)2(21ρ4+112ρ3+240ρ2+256ρ+128)2

(
126ρ8+1183ρ7+4375ρ6+4976ρ5

−12296ρ4−49280ρ3−68992ρ2−45056ρ−11264
)
,

(B.77)
where the analytic expression for α0 is in perfect agreement with the numerical result (B.76).
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n s
(A)&(B)
n;1 s

(C)
n;1

3 ±
√

2 −

4 ±
√

2 −

5 ±
√

2 −

6 ±
√

2 −

7 ±
√

1355
25 4.39(5)

8 ±
√

73163
175 4.95(1)

9 ±
√

1276274
700 5.32(3)

10 ±
√

604049698
14700 did not compute

Table 2. Leading corrections to the conformal spectra on branches (Ab), (Bb) and (Cb).

B.1.4 Select values of s3≤n≤10;1

Extending the computations of sections B.1.1 and B.1.3, we collect in the table 2 leading
corrections to the conformal spectra on branches (Ab), (Bb) and (Cb) for 3 ≤ n ≤ 10. These
results are used to highlight the features of the spectra presented in figure 6. Notice that the
leading correction to the conformal spectra on branches (Ab), (Bb) is unchanged for n ≤ 6,

− Im[w]
∣∣∣∣
(Ab)&(Bb)

= n±
√

2b+O(b) . (B.78)

C Chirally symmetric DFP — TypeAs, chirally symmetric fluctuations

In this appendix we discuss the linearized fluctuations about TypeAs dynamical fixed point
of the cascading gauge theory, preserving the U(1)R chiral symmetry of this DFP. The
corresponding background and the fluctuation equations of motion are the special case, a
consistent truncation, of the general equations discussed in appendix A. Specifically,

• for the background we find [17]:

fc ≡ f2 , fa = fb ≡ f3 , K1 = K3 ≡ K , K2 ≡ 1 ; (C.1)

• for the fluctuations: we keep {flg , f lh} modes, and further restrict

fla = flb ≡ fl3 , f lK1 = flK3 ≡ flK , f lK2 ≡ 0 , f lc ≡ fl2 . (C.2)

Given (C.1) and (C.2), the corresponding equations for the fluctuations and the boundary
conditions can be deduced from those of the symmetry broken DFP discussed in appendix A.

In the rest of this appendix we analyze the near-conformal b→ 0, equivalently H � Λ,
limit of the chiral symmetry preserving fluctuations in TypeAs DFP. Strictly at b = 0 the
cascading gauge theory is conformal, and the spectra can be computed analytically [29].

– 42 –



J
H
E
P
0
1
(
2
0
2
3
)
1
3
0

We discover multiple spectral branches of the fluctuations. On some branches we are able
to compute analytically the leading O(

√
b), and numerically the first O(b) subleading,

corrections to the conformal spectra, sections C.1.1, C.1.2 and C.1.4. On the remaining
branches we compute numerically the leading O(b) corrections to the conformal spectra,
sections C.1.3 and C.1.5. Perturbative results obtained here provide a valuable check of the
finite H

Λ spectra in the near-conformal limit, see figure 8.

C.1 Near-conformal limit: b→ 0

Introducing
fl2 = (1 + ρ) (flf + 4flw) , f l3 = (1 + ρ)(flf − flw) , (C.3)

to leading order in b, we find21

0 = fl′′K + (2s− 1)ρ− 6
2(1 + ρ)ρ fl′K −

3s
2ρ(1 + ρ)2 flK ,

0 = fl′′g + (2s− 1)ρ− 6
2(1 + ρ)ρ fl′g −

3s
2ρ(1 + ρ)2 flg + 2k′1fl′K + k′1sflK

1 + ρ
,

0 = fl′w + (2s− 1)ρ− 6
2ρ(1 + ρ) fl′w −

3(ρs+ 8ρ+ 8)
2(1 + ρ)2ρ2 flw −

2
5k
′
1fl
′
K −

k′1sflK
5(1 + ρ) ,

0 = fl′′f + (2s− 1)ρ− 6
2ρ(1 + ρ) fl′f −

3ρs+ 64ρ+ 64
2ρ2(1 + ρ)2 flf + 8k′1fl′K

5ρ2(s− 4)(1 + s)
(
ρ2s2 − 3ρ2s

− 9ρ2 − 120ρ− 120
)

+ 4flK
5(1 + ρ)ρ4(s− 4)(1 + s)

(
ρk′1

(
ρ3s(s+ 6)(s− 4) + 10ρs(ρs

− 15ρ− 12) + 480(ρ+ 2)(ρ+ 1)
)

+ 80ρ2s2 − 240ρ2s− 240ρ2 + 1920ρ+ 1920
)
.

(C.4)

Solving the decoupled equation for flK , we find (up to an overall normalization AK)

flK = AK
ρ4

(1 + ρ)s 2F1

(5
2 , 4− s; 5;−ρ

)
, s = 4, 5, · · · . (C.5)

Given (C.5), and using (B.12), it is straightforward to see that it is impossible to solve the
equation for flg in (C.4), so that this mode is both normalizable as ρ→ 0 and analytic as
ρ → ∞ — this means that the amplitude of flK must always vanish in the limit b → 0.
This is precisely what we find, see (C.9) and (C.10).

With flK ≡ 0, we find from (C.4) the following leading order as b→ 0 solutions:

flg = Ag
ρ4

(1 + ρ)s 2F1

(5
2 , 4− s; 5;−ρ

)
, s = 4, 5, · · · , (C.6)

flw = Aw
ρ6

(1 + ρ)s 2F1

(9
2 , 6− s; 9;−ρ

)
, s = 6, 7, · · · , (C.7)

flf = Af
ρ8

(1 + ρ)s 2F1

(13
2 , 8− s; 13;−ρ

)
, s = 8, 9, · · · . (C.8)

21Note (see the equation for flf ) that the leading s = 4 mode is more subtle; it will be discussed in details
in section C.1.1.
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Extending the leading order solutions (C.6), (C.7) and (C.8) perturbatively in b we
identify three branches:

A pair of non-analytic in b branches, (As) and (Bs),

s

∣∣∣∣
A,B

= n+
∞∑
k=1

(±)ksn;k b
k/2 , n ∈ N ≥ 4 , f lg

∣∣∣∣
A,B

=
∞∑
k=0

(±)kflg;n;k b
k/2 ,

f lK

∣∣∣∣
A,B

=
∞∑
k=1

(±)kflK;n;k b
k/2 , f lw

∣∣∣∣
A,B

=
∞∑
k=0

(±)kflw;n;k b
k/2 ,

f lf

∣∣∣∣
A,B

=
∞∑
k=0

(±)kflf ;n;k b
k/2 , (C.9)

with flg;n;0 given by (C.6), flw;n≥6;0 given by (C.7), and flf ;n≥8;0 given by (C.8) with s = n.
flw;n;0 ≡ 0 for 4 ≤ n < 6, flf ;n;0 ≡ 0 for 4 < n < 8, and flf ;4;0 6= 0, see (C.15).

An analytic in b branch (Cs),

s

∣∣∣∣
C

=n+
∞∑
k=1

sn;k b
k , n∈N≥ 6 , f lg

∣∣∣∣
C

=
∞∑
k=0

flg;n;k b
k ,

f lK

∣∣∣∣
C

=
∞∑
k=1

flK,n;k b
k , f lw

∣∣∣∣
C

=
∞∑
k=0

flw;n;k b
k , f lf

∣∣∣∣
C

=
∞∑
k=0

flf ;n;k b
k ,

(C.10)

where flw;n;0 is given by (C.7), flg;n;0 is given by (C.6), and flf ;n≥8;0 given by (C.8) with
s = n. flf ;n;0 ≡ 0 for 6 ≤ n < 8.

C.1.1 Details of s = 4±O(
√
b) branches: (As) and (Bs)

From (C.6), here

s4;0 = 4 , f lg;4;0 = 1 · ρ4

(1 + ρ)s 2F1

(5
2 , 4− s; 5;−ρ

) ∣∣∣∣
s=s4;0

= ρ4

(1 + ρ)4 , (C.11)

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the
latter implies that in the UV, i.e., ρ → 0, expansion of flg;4;k≥1 the order O(ρ4) terms
are absent. Because the leading order fluctuation spectra (C.5) and (C.6) are degenerate,
the equations for flK;4;k will necessarily contain zero modes; specifically, if flK;4;k≥1 is a
solution, so is (flK;4;k +αk · flg;4;0) for an arbitrary set of constants αk. As in section B.1.1,
the zero modes at order k will be completely fixed at order k + 1. We find it convenient
to set

flK;4;k ≡ αk · flg;4;0 + f̂ lK;4;k , (C.12)

with the understanding that in the UV expansion of f̂ lK;4;k the order O(ρ4) terms are absent.
As in section B.1.1, the equation for f̂ lK;4;1 is homogeneous, and the boundary condition

implied by (C.12) sets
f̂ lK;4;1 ≡ 0 . (C.13)
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The leading order equation for flf ;4;0 takes form

0 = fl′′f ;4;0 + 7ρ− 6
2ρ(1 + ρ) fl

′
f ;4;0 −

2(19ρ+ 16)
ρ2(1 + ρ)2 flf ;4;0 + 64(ρ2 + 24ρ+ 24)α1

5(1 + ρ)5s4;1
, (C.14)

and can be solved analytically,

ff ;4;0 = 128α1ρ
2

15s4;1(1 + ρ)3 . (C.15)

The subleading set of equations involving constants α1, s4;1, and functions {flg;4;1, f̂ lK;4;2,
flw;4;1} reads:

0 = fl′′g;4;1 + 7ρ− 6
2ρ(1 + ρ) fl

′
g;4;1 −

6
ρ(1 + ρ)2 flg;4;1 + 4α1(ρ+ 2)ρ3k′1

(1 + ρ)5 + 5ρ3s4;1
2(1 + ρ)6 , (C.16)

0 = f̂ l
′′
K;4;2 + 7ρ− 6

2ρ(1 + ρ) f̂ l
′
K;4;2 −

6
ρ(1 + ρ)2 f̂ lK;4;2 + 2k′1(ρ+ 2)(32α1(ρ+ 1)− 5ρ2s4;1)ρ

5(1 + ρ)5s4;1

+ 1
30(1 + ρ)6s4;1

(
75α1ρ

3s2
4;1 − 240ρ3s4;1 + 2048α1(1 + ρ)2 − 240ρ2s4;1

)
, (C.17)

0 = fl′′w;4;1 + 7ρ− 6
2ρ(1 + ρ) fl

′
w;4;1 −

6(3ρ+ 2)
ρ2(1 + ρ)2 flw;4;1 −

4(ρ+ 2)ρ3k′1α1
5(1 + ρ)5 . (C.18)

Above set can be solved numerically — and we explain how to do it for the set of equations
at the next order — here instead we show that the most important constant, i.e., s4;1 can
be computed analytically:

• Substituting
α1 = s4;1v , flg;4;1 = s4;1 · flg;4;0 · Gg;4;1 , (C.19)

and using (B.12), we find a general analytic solution for G′g;4;1,

G′g;4;1 = 3vρ3

16(1 + ρ)5/2 ln
√

1 + ρ+ 1√
1 + ρ− 1 + (1 + ρ)3/2

ρ5 C1 −
1

24(1 + ρ)2ρ5

(
(ρ+ 2)

× (9ρ6 − 24ρ5 − 152ρ4 + 768ρ3 + 2944ρ2 + 3072ρ+ 1024)v + 8(1 + ρ)(5ρ4

− 40ρ3 − 240ρ2 − 320ρ− 128)
)
. (C.20)

Analyticity of flg;4;1, and thus G′g;4;1, as ρ→∞ sets

C1 = 0 , (C.21)

and normalizability of flg;4;1 identifies

v = 1
2 . (C.22)

• We continue with (C.17), setting

f̂ lK;4;2 = flg;4;0 ·HK;4;2 , (C.23)
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allows to solve analytically for H ′K;4;2,

H ′K;4;2 = −ρ(15ρ2 − 64ρ− 64)
160(1 + ρ)5/2 ln

√
1 + ρ+ 1√
1 + ρ− 1 + (1 + ρ)3/2

ρ5 C1 −
s2

4;1
6(1 + ρ)ρ5

(
5ρ4

− 40ρ3 − 240ρ2 − 320ρ− 128
)

+ ρ+ 2
240(1 + ρ)2ρ5

(
45ρ6 − 312ρ5 + 840ρ4

− 11008ρ3 − 38784ρ2 − 39936ρ− 13312
)
. (C.24)

Analyticity of f̂ lK;4;2, and thus H ′K;4;2, in the limit ρ→∞ requires

C1 = 0 , (C.25)

while normalizability of f̂ lK;4;2 sets

s2
4;1 = 26

5 =⇒ s4;1 = ±
√

130
5 . (C.26)

Note that to determine s4;1, there is no need to solve for flw;4;1 — of course, this solution
is needed for the computation of higher order corrections s4;k≥2.

The sub-subleading set of equations involving constants α2, s4;2, and functions {flf ;4;1,
flg;4;2 and f̂ lK;4;3} reads (we omit the equation for flw;4;2 as it is not need to compute s4;2;
it is required for the computation of s4;k≥3):

0 = fl′′f ;4;1 + 7ρ− 6
2ρ(1 + ρ) fl

′
f ;4;1 −

2(19ρ+ 16)
ρ2(1 + ρ)2 flf ;4;1 −

8(ρ2 + 24ρ+ 24)k′1f̂ l
′
K;4;2

5ρ2s4;1

+
32(ρ2 + 24ρ+ 24)(ρk′1 + 2)f̂ lK;4;2

5s4;1ρ4(1 + ρ) − 4(ρ2 + 24ρ+ 24)(64α1(ρ+ 1)− 5ρ2s4;1)(k′1)2

25s2
4;1(1 + ρ)4

+ 8α1ρ
2(4ρ2 − 3ρ− 12)k′1

5(1 + ρ)5 − 2048(ρ+ 2)(ρ2 + 24ρ+ 24)α1
75s2

4;1(1 + ρ)4ρ

(
f ′3;1 + 1

4f
′
2;1 + 1

4h
′
1

)

− 64α1(ρ2 + 24ρ+ 24)s4;2
5(1 + ρ)5s2

4;1
+ 64(ρ2 + 24ρ+ 24)α2

5(1 + ρ)5s4;1
+ 1

75(1 + ρ)5s2
4;1ρ

2

(
−768(ρ2

+ 24ρ+ 24)α1

(
ρ+ 4

3

)
(ρ+ 4)h1 − 1024α1(1 + ρ)(ρ2 + 24ρ+ 24)(f2;1 + 4f3;1 − 4k1)

+ (24576 + 3968ρ4s2
4;1 + (−4288s2

4;1 + 1024)ρ3 + (−4608s2
4;1 + 25600)ρ2 + 49152ρ)α1

+ 240ρ2s4;1(ρ2 + 24ρ+ 24)
)
, (C.27)

0 = fl′′g;4;2 + 7ρ− 6
2ρ(1 + ρ) fl

′
g;4;2 −

6
ρ(1 + ρ)2 flg;4;2 + 2k′1f̂ l

′
K;4;2 +

4k′1f̂ lK;4;2
1 + ρ

+
s4;1fl

′
g;4;1

1 + ρ
+ 4k′1ρ3(ρ+ 2)α2

(1 + ρ)5 + 4(ρ+ 2)(16α1(ρ+ 1)− 5ρ2s4;1)ρg′1
5(1 + ρ)5s4;1

+ α1ρ
4s4;1k

′
1

(1 + ρ)5

+
(ρ+ 2)ρ3(f ′2;1 + 4f ′3;1)

(1 + ρ)5 − 3s4;1flg;4;1
2ρ(1 + ρ)2 + 1

30s4;1(1 + ρ)6

(
1024α1(2ρ+ 1)− 30h1ρ

4s4;1

+ (75s4;2 − 240)s4;1ρ
3 + (−240s4;1 + 1024α1)ρ2

)
, (C.28)
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0 = f̂ l
′′
K;4;3 + 7ρ− 6

2ρ(1 + ρ) f̂ l
′
K;4;3 −

6
ρ(1 + ρ)2 f̂ lK;4;3 −

3
4k
′
1fl
′
f ;4;1 −

12f̂ l′K;4;2
5(1 + ρ)s4;1ρ2

(
ρ(ρ

+ 2)(1 + ρ)2(k′1)2 − 8
3(1 + ρ)2k′1 −

5
12ρ

2s2
4;1

)
+

48f̂ lK;4;2
5s4;1(1 + ρ)2ρ4

(
ρ2(ρ+ 2)(1 + ρ)2(k′1)2

+ 2
(
ρ+ 2

3

)
ρ(1 + ρ)2k′1 −

5
32ρ

3s2
4;1 −

16
3 (1 + ρ)2

)
+ 1

2(1 + ρ)ρ2

(
−2ρ2

(
(1 + ρ)

× (fl′g;4;1 − 2flw;4;1) + 3
2flf ;4;1 − 4flw;4;1

)
k′1 + 28flf ;4;1 + 32flw;4;1 − 4(ρ2k′1

+ 4)flg;4;1

)
+

192ρ(ρ+ 2)(1 + ρ)2k′1 + 25ρ3s2
4;1 − 512(1 + ρ)2

10s4;1(1 + ρ)6 α2 −
96α1s4;2

5(1 + ρ)6s2
4;1

(
ρ(ρ+ 2)(1 + ρ)2k′1 −

25
192ρ

3s2
4;1 −

8
3(1 + ρ)2

)
+ α1

75ρ2(1 + ρ)6s2
4;1

(
−1152ρ3(ρ+ 2)

× (1 + ρ)4(k′1)3 − 315ρ2
(
ρ4s2

4;1 + 4
7ρ

3s2
4;1 −

1024
105 (1 + ρ)2

)
(1 + ρ)2(k′1)2 − 768(ρ+ 2)

×
(
ρ(ρ+ 2)(ρ+ 1)(f ′2;1 + h′1 + 4f ′3;1) +

(3
2ρ

2 + 8ρ+ 8
)
h1 + 2(ρ+ 1)(f2;1 + 4f3;1

− 4k1 − 1) + 3
8ρ

2s2
4;1

)
ρ(1 + ρ)2k′1 + 75(ρ+ 2)ρ(1 + ρ)

((
ρ4s2

4;1 + 2048
75 (1 + ρ)2

)
f ′2;1

− 2
(
ρ4s2

4;1 −
1024
75 (1 + ρ)2

)
h′1

)
− 2ρ(ρ+ 2)(1 + ρ)(75ρ5s2

4;1g
′
1 − 4096(1 + ρ)2f ′3;1)

+ (−75ρ6s2
4;1 + 1024(ρ+ 4)(3ρ+ 4)(1 + ρ)2)h1 − 600(1 + ρ)

(
−512

75 (1 + ρ)2(f2;1

+ 4f3;1 − 4k1 − 1) + s2
4;1

(
ρ4 − 32

25ρ
2(ρ+ 1)

)))
+ 1

10(1 + ρ)5s4;1

(
4ρ2(1 + ρ)2(k′1)2

× (3ρ(2 + ρ)k′1 − 8) + (−5ρ4s2
4;1 + 48ρ(ρ+ 2)(1 + ρ))k′1 − 128(1 + ρ)

)
. (C.29)

Eqs. (C.27)–(C.29) are solved subject to the asymptotic expansions,

in the UV, i.e., as ρ→ 0,

flf ;4;1 =
(
−

128(α1s
2
4;1 + 5α1s4;2 − 5α2s4;1)

75s2
4;1

− 46592α1
225s2

4;1
+ 64

15s4;1

)
ρ2 + · · ·

+ ρ8
(
flf ;4;1;8;0 + α1

( 17
200 −

32
15k4;0;1

)
ln ρ− 1

20α1 ln2 ρ

)
+O(ρ9 ln2 ρ) , (C.30)

flg;4;2 =
(

0 +
(

4α2 + 2− 1456α1
15s4;1

)
ln ρ

)
ρ4 ln ρ+O(ρ5 ln ρ) , (C.31)

f̂ lK;4;3 =
(
−

64(α1s
2
4;1 + 5α1s4;2 − 5α2s4;1)

75s2
4;1

− 23296α1
225s2

4;1
+ 32

15s4;1

)
ρ2

+ · · ·+
(

0 − 4α1

)
ρ4 ln ρ+O(ρ5 ln ρ) , (C.32)
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it is completely specified by {α2, s4;2, f lf ;4;1;8;0}; we further highlighted arbitrary constants,
fixed to zero by the overall normalization (C.11) and the extraction of the zero mode in
flK;4;3 (C.12);

in the IR, i.e., as y ≡ 1
ρ → 0,

flf ;4;1 = flhf ;4;1;0 +O(y) , f lg;4;2 = flhg;4;2;0 +O(y) , f̂ lK;4;3 = f̂ l
h
K;4;3;0 +O(y) ,

(C.33)
it is completely specified by{

flhf ;4;1;0 , f l
h
g;4;2;0 , f̂ l

h
K;4;3;0 , α2 , s4;2

}
. (C.34)

In total, the UV and IR expansions are completely determined by the parameters (C.34)
and flf ;4;1;8;0, which is precisely what is needed to find a unique solution for three second
order ODEs (C.27)–(C.29). Solving these equations we find

s4;2 = −1.7907(6) . (C.35)

Once the numerical solution for {flf ;4;1, f lg;4;2, f̂ lK;4;3} is found, the second order ODE for
flw;4;2 — necessary to determine s4;k≥3 — is solved adjusting two parameters{

flw;4;2;6,0 , f l
h
w;4;2;0

}
, (C.36)

that completely determine its UV and IR asymptotics.

C.1.2 Details of s = 6±O(
√
b) branches: (As) and (Bs)

From (C.6), here

s6;0 = 6 , f lg;6;0 = 1 · ρ4

(1 + ρ)s 2F1

(5
2 , 4− s; 5;−ρ

) ∣∣∣∣
s=s6;0

= ρ4(7ρ2 + 24ρ+ 24)
24(1 + ρ)6 ,

(C.37)

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the
latter implies that in the UV, i.e., ρ→ 0, expansion of flg;6;k≥1 the order O(ρ4) terms are
absent. Because the leading order fluctuation spectra (C.5), (C.6) and (C.7) are degenerate
at s6;0, the equations for flK;6;k and flw;6;k will necessarily contain zero modes; specifically,
if flK;6;k≥1 and flw;6;k≥1 are solutions, so are (flK;6;k+αk ·flg;6;0) and (flw;6;k+ βk

β0
·flw;6;0),

flw;6;0 = β0 ·
ρ6

(1 + ρ)s 2F1

(9
2 , 6− s; 9;−ρ

) ∣∣∣∣
s=s6;0

= β0 ·
ρ6

(1 + ρ)6 , (C.38)

for an arbitrary set of constants {αk, βk}. As in section B.1.1, the zero modes at order k
will be completely fixed at order k + 1. We find it convenient to set

flK;6;k≥1 ≡ αk · flg;6;0 + f̂ lK;6;k , f lw;6;k≥1 ≡ βk ·
1
β0
flw;6;0 + f̂ lw;6;k , (C.39)
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with the understanding that in the UV expansion of f̂ lK;6;k the order O(ρ4) terms are
absent, and in the UV expansion of f̂ lw;6;k the order O(ρ6) terms are absent.

As in section B.1.1, the equation for f̂ lK;6;1 is homogeneous, and the boundary condition
implied by (C.39) sets

f̂ lK;6,1 ≡ 0 . (C.40)

The subleading set of equations involving constants α1, β0, s6;1, and functions {flg;6;1,
f̂ lK;6;2, f̂ lw;6;1, flf ;6;1} reads:

0 = fl′′g;6;1 + 11ρ− 6
2ρ(1 + ρ) fl

′
g;6;1 −

9
(1 + ρ)2ρ

flg;6;1 + ρ3s6;1(5ρ2 + 24ρ+ 40)
16(1 + ρ)8

+ α1ρ
3(ρ+ 2)(7ρ2 + 16ρ+ 16)k′1

4(1 + ρ)7 , (C.41)

0 = f̂ l
′′
K;6;2 + 11ρ− 6

2ρ(1 + ρ) f̂ l
′
K;6;2 −

9
(1 + ρ)2ρ

f̂ lK;6;2 −
(ρ+ 2)(7ρ2 + 16ρ+ 16)ρ3k′1

8(1 + ρ)7

+ (3α1ρs6;1(5ρ2 + 24ρ+ 40)− (16(7ρ2 + 24ρ+ 24))(1 + ρ))ρ2

48(1 + ρ)8

+ 2β0ρ
4(3ρk′1(ρ+ 2) + 8)

(1 + ρ)7 , (C.42)

0 = f̂ l
′′
w;6;1 + 11ρ− 6

2ρ(1 + ρ) f̂ l
′
w;6;1 −

3(7ρ+ 4)
(1 + ρ)2ρ2 f̂ lw;6;1 + 9ρ5β0s6;1

2(1 + ρ)8

− α1ρ
3(ρ+ 2)(7ρ2 + 16ρ+ 16)k′1

20(1 + ρ)7 , (C.43)

0 = fl′′f ;6;1 + 11ρ− 6
2ρ(1 + ρ) fl

′
f ;6;1 −

41ρ+ 32
(1 + ρ)2ρ2 flf ;6;1

+ 4(5ρ2 + 8ρ+ 8)(7ρ2 + 24ρ+ 24)α1
7(1 + ρ)7 + 4α1ρ

3(ρ+ 2)(3ρ2 + 4ρ+ 4)k′1
5(1 + ρ)7 . (C.44)

We show here that the most important constant, i.e., s6;1 can be computed analytically:

• Substituting
α1 = s6;1 · v , flg;6;1 = s6;1 · flg;6;0 · Jg;6;1 , (C.45)

and using (B.12), we find a general analytic solution for J ′g;6;1,

J ′g;6;1 = 3ρ3v

16(1+ρ)5/2 ln
√

1+ρ+1√
1+ρ−1 + (1+ρ)7/2

ρ5(7ρ2+24ρ+24)2 C1

− 1
40ρ5(1+ρ)2(7ρ2+24ρ+24)2

(
(ρ+2)(735ρ10+3080ρ9−6200ρ8−63104ρ7

−151104ρ6−100864ρ5+233984ρ4+622592ρ3+647168ρ2+327680ρ
+65536)v+8(ρ+1)(75ρ8+624ρ7+1968ρ6−576ρ5−20160ρ4−53760ρ3

−64512ρ2−36864ρ−8192)
)
. (C.46)
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Analyticity of flg;6;1, and thus J ′g;6;1, in the limit ρ→∞ requires

C1 = 0 , (C.47)

while normalizability of flg;6;1 sets

v = 1
2 . (C.48)

• We continue with (C.43), setting

f̂ lw;6;1 = s6;1 ·
1
β0
flw;6;0 ·Hw;6;1 , (C.49)

allows to solve analytically for H ′w;6;1,

H ′w;6;1 =−ρ(35ρ2+96ρ+96)
6400(1+ρ)5/2 ln

√
1+ρ+1√
1+ρ−1 + (1+ρ)7/2

ρ9 C1

− 1
336000(1+ρ)2ρ9

(
(9600(1+ρ))(45ρ8−144ρ7+672ρ6−8064ρ5−80640ρ4

−215040ρ3−258048ρ2−147456ρ−32768)β0−7(ρ+2)(525ρ10+40ρ9

−7000ρ8−11008ρ7−14208ρ6+74752ρ5+560128ρ4+1245184ρ3

+1294336ρ2+655360ρ+131072)
)
. (C.50)

Analyticity of f̂ lw;6;1, and thus H ′w;6;1, in the limit ρ→∞ requires

C1 = 0 , (C.51)

while normalizability of f̂ lw;6;1 sets

β0 = − 7
1200 . (C.52)

• Consider now (C.42): introducing

f̂ lK;6;2 = flg;6;0 ·GK;6;2 , (C.53)

we solve for G′K;6;2,

G′K;6;2 =−3ρ3(3185ρ4+21504ρ3+57504ρ2+72000ρ+36000)
2000(1+ρ)5/2(7ρ2+24ρ+24)2 ln

√
1+ρ+1√
1+ρ−1

+ (1+ρ)7/2

ρ5(7ρ2+24ρ+24)2 C1+ 1
5000ρ5(1+ρ)2(7ρ2+24ρ+24)2

(
(ρ+2)(47775ρ10

+195160ρ9+166200ρ8−164672ρ7+220128ρ6−2597632ρ5−19464448ρ4

−43270144ρ3−44978176ρ2−22773760ρ−4554752)−500(1+ρ)(75ρ8+624ρ7

+1968ρ6−576ρ5−20160ρ4−53760ρ3−64512ρ2−36864ρ−8192)s2
6;1

)
.

(C.54)
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Analyticity of f̂ lK;6;2, and thus G′K;6;2, in the limit ρ→∞ requires

C1 = 0 , (C.55)

while normalizability of f̂ lK;6;2 sets

s2
6;1 = 278

125 =⇒ s6;1 = ±
√

1390
25 . (C.56)

The remaining equation, i.e., (C.44), does not constrain s6;1 — it is required to determine
the higher-order corrections s6,k≥2.

C.1.3 Details of s = 6 +O(b) branch: (Cs)

From (C.7), here

s6;0 = 6 , f lw;6;0 = 1 · ρ6

(1 + ρ)s 2F1

(9
2 , 6− s; 9;−ρ

) ∣∣∣∣
s=s6;0

= ρ6

(1 + ρ)6 , (C.57)

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the latter
implies that in the UV, i.e., ρ→ 0, expansion of flw;6;k≥1 the order O(ρ6) terms are absent.
Because the leading order fluctuation spectra of (C.5), (C.6) and (C.7) are degenerate at
s6;0, the equations for flg;6;k and flK;6;k will necessarily contain zero modes; specifically, if
flg;6;k≥1 and flK;6;k≥1 are solutions, so are (flg;6;k + αk

α0
· flg;6;0) and (flK;6;k + βk

α0
· flg;6;0),

flg;6;0 = α0 ·2 F1

(5
2 , 4− s; 5;−ρ

) ∣∣∣∣
s=s6;0

= α0 ·
ρ4(7ρ2 + 24ρ+ 24)

24(1 + ρ)6 , (C.58)

for an arbitrary set of constants {αk, βk}. As in section B.1.1, the zero modes at order k
will be completely fixed at order k + 1. We find it convenient to set

flg;6;k≥1 ≡ αk ·
1
α0
flg;6;0 + f̂ lg;6;k , f lK;6;k≥1 ≡ βk ·

1
α0
flg;6;0 + f̂ lK;6;k , (C.59)

with the understanding that in the UV expansion of f̂ lg;6;k and f̂ lK;6;k the order O(ρ4)
terms are absent.

The subleading set of equations involving constants α0, β1, s6;1, and functions {f̂ lg;6;1,
f̂ lK;6;1, flw;6;1} reads (we do not discuss the equation for flf ;6;1 — it is needed to determine
s6;k≥2, but it does not affect the computation of s6;1):

0 = f̂ l
′′
g;6;1 + 11ρ− 6

2ρ(1 + ρ) f̂ l
′
g;6;1 −

9
ρ(1 + ρ)2 f̂ lg;6;1 + 2k′1f̂ l

′
K;6;1 +

6k′1f̂ lK;6;1
1 + ρ

+ ρ3k′1(ρ+ 2)(7ρ2 + 16ρ+ 16)β1
4(1 + ρ)7 + 2ρ6(k′1)2

(1 + ρ)6 + 8ρ4

(1 + ρ)7 −
ρ2α0

48(1 + ρ)8

(
−3ρ(ρ+ 2)

× (1 + ρ)(7ρ2 + 16ρ+ 16)(f ′2;1 + 4f ′3;1 − 4g′1) + 9ρ2(7ρ2 + 24ρ+ 24)h1 − 3ρ(5ρ2 + 24ρ

+ 40)s6;1 + 16(1 + ρ)(7ρ2 + 24ρ+ 24)
)
, (C.60)
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0 = f̂ l
′′
K;6;1 + 11ρ− 6

2ρ(1 + ρ) f̂ l
′
K;6;1 −

9
ρ(1 + ρ)2 f̂ lK;6;1 + 2(3k′1ρ(ρ+ 2) + 8)ρ4

(1 + ρ)7

− ρ2(3k′1ρ(ρ+ 2)(7ρ2 + 16ρ+ 16) + 56ρ2 + 192ρ+ 192)α0
24(1 + ρ)7 , (C.61)

0 = fl′′w;6;1 + 11ρ− 6
2ρ(1 + ρ) fl

′
w;6;1 −

3(7ρ+ 4)
ρ2(1 + ρ)2 flw;6;1 −

2
5k
′
1f̂ l
′
K;6;1 −

6k′1f̂ lK;6;1
5(1 + ρ)

+ 9ρ5s6;1
2(1 + ρ)8 −

19ρ6(k′1)2

20(1 + ρ)6 + (7ρ2 + 24ρ+ 24)((k′1)2ρ2(1 + ρ) + 4)ρ2α0
120(1 + ρ)7

− ρ3k′1(ρ+ 2)(7ρ2 + 16ρ+ 16)β1
20(1 + ρ)7 − ρ4

20(1 + ρ)8

(
2ρ(ρ+ 2)(ρ+ 1)(33f ′2;1 − 48f ′3;1

− 5h′1) + 5(7ρ+ 4)(3ρ− 4)h1 + 80(ρ+ 1)
(
k1 + 19

4 f2;1 − 11f3;1 −
3
20

))
. (C.62)

Eqs. (C.60)—(C.62) are solved subject to the asymptotic expansions,

in the UV, i.e., as ρ→ 0,

f̂ lg;6;1 =
(

0 + (2α0 + 4β1) ln ρ
)
ρ4 +O(ρ5 ln ρ) , (C.63)

f̂ lK;6;1 = 0 ρ4 + 0 ρ5 +
(2

3 −
1
72α0

)
ρ6 +O(ρ7) , (C.64)

flw;6;1 =
( 2

15α0 + 4
15β1

)
ρ4 +

(
−2

3α0 −
4
3β1

)
ρ5 +

(
0 +

( 7
120α0 −

1
120β1

)
ln ρ

)
ρ6

+O(ρ7 ln ρ) , (C.65)

it is completely specified by {α0, β1, s6;1}; we further highlighted arbitrary constants, fixed
to zero by the overall normalization (C.57), and the extraction of the zero modes in flg;6;1
and flK;6;1 (C.59);

in the IR, i.e., as y ≡ 1
ρ → 0,

f̂ lg;6;1 = f̂ l
h
g;6;1;0 +O(y) , f̂ lK;6;1 = f̂ l

h
K;6;1;0 +O(y) , f lw;6;1 = flhw;6;1;0 +O(y) ,

(C.66)
it is completely specified by

{f̂ lhg;6;1;0 , f̂ l
h
K;6;1;0 , f l

h
w;6;1;0 , α0 , β1 , s6;1} . (C.67)

In total, the UV and IR expansions are completely determined by the parameters (C.67),
which is precisely what is needed to find a unique solution for three second order ODEs (C.60)–
(C.62). Solving these equations we find

s6;1 = 6.0318(6) . (C.68)

C.1.4 Details of s = 8±O(
√
b) branches: (As) and (Bs)

From (C.6), here

s8;0 = 8 , f lg;8;0 = 1 · ρ4

(1 + ρ)s 2F1

(5
2 , 4− s; 5;−ρ

) ∣∣∣∣
s=s8;0

=ρ4(33ρ4 + 192ρ3 + 448ρ2 + 512ρ+ 256)
256(1 + ρ)8 ,

(C.69)
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where we highlighted the (fixed) overall normalization of the linearized fluctuations; the latter
implies that in the UV, i.e., ρ→ 0, expansion of flg;8;k≥1 the order O(ρ4) terms are absent.
Because the leading order fluctuation spectra (C.5), (C.6), (C.7) and (C.8) are degenerate
at s8;0, the equations for flK;8;k, flw;8;k and flf ;8;k will necessarily contain zero modes;
specifically, if flK;8;k≥1, flw;8;k≥1 and flf ;8;k≥1 are solutions, so are (flK;8;k + αk · flg;8;0),
(flw;8;k + βk

β0
· flw;8;0) and (flf ;8;k + γk

γ0
· flf ;8;0),

flw;8;0 = β0 ·
ρ6

(1 + ρ)s 2F1

(9
2 , 6− s; 9;−ρ

) ∣∣∣∣
s=s8;0

= β0 ·
ρ6(11ρ2 + 40ρ+ 40)

40(1 + ρ)8 ,

f lf ;8;0 = γ0 ·
ρ8

(1 + ρ)s 2F1

(13
2 , 8− s; 13;−ρ

) ∣∣∣∣
s=s8;0

= γ0 ·
ρ8

(1 + ρ)8 ,

(C.70)

for an arbitrary set of constants {αk, βk, γk}. As in section B.1.1, the zero modes at order
k will be completely fixed at order k + 1. We find it convenient to set

flK;8;k≥1 ≡ αk · flg;8;0 + f̂ lK;8;k , f lw;8;k≥1 ≡ βk ·
1
β0
flw;8;0 + f̂ lw;8;k ,

f lf ;8;k≥1 ≡ γk ·
1
γ0
flf ;8;0 + f̂ lf ;8;k ,

(C.71)

with the understanding that in the UV expansion of f̂ lK;8;k the order O(ρ4) terms are
absent, in the UV expansion of f̂ lw;8;k the order O(ρ6) terms are absent, and in the UV
expansion of f̂ lf ;8;k the order O(ρ8) terms are absent.

As in section B.1.1, the equation for f̂ lK;8;1 is homogeneous, and the boundary condition
implied by (C.71) sets

f̂ lK;8,1 ≡ 0 . (C.72)

The subleading set of equations involving constants α1, β0, γ0, s8;1, and functions
{flg;8;1, f̂ lK;8;2, f̂ lw;8;1, f̂ lf ;8;1} reads:

0 = fl′′g;8;1 + 3(5ρ− 2)
2(1 + ρ)ρ fl

′
g;8;1 −

12
ρ(1 + ρ)2 flg;8;1 + s8;1ρ

3

512(1 + ρ)10

(
45ρ4 + 320ρ3 + 960ρ2

+ 1536ρ+ 1280
)

+ k′1α1ρ
3(ρ+ 2)(33ρ4 + 144ρ3 + 272ρ2 + 256ρ+ 128)

32(1 + ρ)9 , (C.73)

0 = f̂ l
′′
K;8;2 + 3(5ρ− 2)

2ρ(1 + ρ) f̂ l
′
K;8;2 −

12
ρ(1 + ρ)2 f̂ lK;8;2 −

(ρ+ 2)ρ3k′1
64(1 + ρ)9

(
33ρ4 + 144ρ3

+ 272ρ2 + 256ρ+ 128
)

+ α1s8;1ρ
3(45ρ4 + 320ρ3 + 960ρ2 + 1536ρ+ 1280)

512(1 + ρ)10

+ ρ4(ρk′1(ρ+ 2)(11ρ2 + 30ρ+ 30) + 22ρ2 + 80ρ+ 80)β0
5(1 + ρ)9 − γ0ρ

6(3ρk′1(ρ+ 2)− 14)
(1 + ρ)9

− ρ2(33ρ4 + 192ρ3 + 448ρ2 + 512ρ+ 256)
32(1 + ρ)9 , (C.74)

0 = f̂ l
′′
w;8;1 + 3(5ρ− 2)

2ρ(1 + ρ) f̂ l
′
w;8;1 −

12(2ρ+ 1)
ρ2(1 + ρ)2 f̂ lw;8;1 + (63ρ2 + 280ρ+ 360)β0ρ

5s8;1
80(1 + ρ)10

− k′1α1(ρ+ 2)(33ρ4 + 144ρ3 + 272ρ2 + 256ρ+ 128)ρ3

160(1 + ρ)9 , (C.75)
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0 = f̂ l
′′
f ;8;1 + 3(5ρ− 2)

2ρ(1 + ρ) f̂ l
′
f ;8;1 −

4(11ρ+ 8)
ρ2(1 + ρ)2 f̂ lf ;8;1 + (ρ+ 2)α1ρ

3k′1
120(1 + ρ)9

(
154ρ4 + 607ρ3

+ 991ρ2 + 768ρ+ 384
)

+ 13s8;1ρ
7γ0

2(1 + ρ)10 + α1(37ρ2 + 24ρ+ 24)
144(1 + ρ)9

(
33ρ4 + 192ρ3 + 448ρ2

+ 512ρ+ 256
)
. (C.76)

We show here that the most important constant, i.e., s8;1 can be computed analytically:

• Substituting
α1 = s8;1 · v , flg;8;1 = s8;1 · flg;8;0 · Jg;8;1 , (C.77)

and using (B.12), we find a general analytic solution for J ′g;8;1,

J ′g;8;1 = 3ρ3v

16(1+ρ)5/2 ln
√

1+ρ+1√
1+ρ−1 + (1+ρ)11/2 C1

ρ5(33ρ4+192ρ3+448ρ2+512ρ+256)2

− 1
840ρ5(1+ρ)2(33ρ4+192ρ3+448ρ2+512ρ+256)2

(
(ρ+2)(343035ρ14

+3076920ρ13+8036280ρ12−17283840ρ11−182325120ρ10−613628928ρ9

−1212027904ρ8−1507459072ρ7−1026850816ρ6+74186752ρ5+1002176512ρ4

+1149239296ρ3+700448768ρ2+234881024ρ+33554432)v+8(1+ρ)
×(14175ρ12+186200ρ11+1114000ρ10+3973568ρ9+9149312ρ8+11880448ρ7

−2265088ρ6−45760512ρ5−98402304ρ4−112459776ρ3−74973184ρ2

−27262976ρ−4194304)
)
. (C.78)

Analyticity of flg;8;1, and thus J ′g;8;1, in the limit ρ→∞ requires

C1 = 0 , (C.79)

while normalizability of flg;8;1 sets

v = 1
2 . (C.80)

• We continue with (C.75), setting

f̂ lw;8;1 = s8;1 ·
1
β0
flw;8;0 ·Hw;8;1 , (C.81)

allows to solve analytically for H ′w;8;1,

H ′w;8;1 =− ρ

7168(1+ρ)5/2(11ρ2+40ρ+40)2

(
7623ρ6+69696ρ5+270400ρ4

+573440ρ3+716800ρ2+516096ρ+172032
)

ln
√

1+ρ+1√
1+ρ−1

+ (1+ρ)11/2

(11ρ2+40ρ+40)2ρ9 C1−
1

225792(1+ρ)2(11ρ2+40ρ+40)2ρ9

(
3584(1+ρ)

×(3969ρ12+28616ρ11+69184ρ10+45824ρ9+27456ρ8−439296ρ7
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−6150144ρ6−24600576ρ5−49201152ρ4−56229888ρ3−37486592ρ2

−13631488ρ−2097152)β0−3(ρ+2)(160083ρ14+1036728ρ13+727608ρ12

−12423936ρ11−51946368ρ10−99511296ρ9−109388800ρ8−48627712ρ7

+163610624ρ6+624689152ρ5+1112276992ρ4+1149239296ρ3+700448768ρ2

+234881024ρ+33554432)
)
. (C.82)

Analyticity of f̂ lw;8;1, and thus H ′w;8;1, in the limit ρ→∞ requires

C1 = 0 , (C.83)

while normalizability of f̂ lw;8;1 sets

β0 = − 3
112 . (C.84)

• Substituting
f̂ lf ;8;1 = s8;1 ·

1
γ0
flf ;8;0 ·Bf ;8;1 , (C.85)

allows to solve analytically for B′f ;8;1,

B′f ;8;1 = 539ρ4+2428ρ3+4220ρ2+3584ρ+1792
35840(1+ρ)5/2ρ

ln
√

1+ρ+1√
1+ρ−1 + (1+ρ)11/2

ρ13 C1

− 1
62092800(1+ρ)2ρ13

(
268800(1+ρ)(273ρ12−728ρ11+2288ρ10−9152ρ9

+54912ρ8−878592ρ7−12300288ρ6−49201152ρ5−98402304ρ4−112459776ρ3

−74973184ρ2−27262976ρ−4194304)γ0+11(ρ+2)(169785ρ14+312060ρ13

+2529660ρ12+17283840ρ11+50552960ρ10+78883328ρ9+71192064ρ8

+63537152ρ7+279535616ρ6+937033728ρ5+1668415488ρ4+1723858944ρ3

+1050673152ρ2+352321536ρ+50331648)
)
. (C.86)

Analyticity of f̂ lf ;8;1, and thus B′f ;8;1, in the limit ρ→∞ requires

C1 = 0 , (C.87)

while normalizability of f̂ lf ;8;1 sets

γ0 = 11
11200 . (C.88)

• Consider now (C.74): introducing

f̂ lK;8;2 = flg;8;0 ·GK;8;2 , (C.89)

we solve for G′K;8;2,

G′K;8;2 =− 3ρ3

9800(1+ρ)5/2(33ρ4+192ρ3+448ρ2+512ρ+256)2

(
373527ρ8

+4265712ρ7+21950064ρ6+66764544ρ5+131942272ρ4+174469120ρ3
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+151818240ρ2+80281600ρ+20070400
)

ln
√

1+ρ+1√
1+ρ−1

+ (1+ρ)11/2

ρ5(33ρ4+192ρ3+448ρ2+512ρ+256)2 C1

+ 1
514500ρ5(1+ρ)2(33ρ4+192ρ3+448ρ2+512ρ+256)2

(
(ρ+2)(

117661005ρ14+1029936600ρ13+3458168280ρ12+4151454720ρ11

−5844802560ρ10−27053374464ρ9−37550953472ρ8−30962548736ρ7

−76202098688ρ6−243316424704ρ5−433231888384ρ4−447628705792ρ3

−272824795136ρ2−91486158848ρ−13069451264)−2450(1+ρ)(14175ρ12

+186200ρ11+1114000ρ10+3973568ρ9+9149312ρ8+11880448ρ7−2265088ρ6

−45760512ρ5−98402304ρ4−112459776ρ3−74973184ρ2−27262976ρ

−4194304)s2
8;1

)
. (C.90)

Analyticity of f̂ lK;8;2, and thus GK;8;2, in the limit ρ→∞ requires

C1 = 0 , (C.91)

while normalizability of f̂ lK;8;2 sets

s2
8;1 = 3116

1225 =⇒ s8;1 = ±2
√

779
35 . (C.92)

C.1.5 Details of s = 8 +O(b) branch: (Cs)

From (C.7), here

s8;0 = 8 , f lw;8;0 = 1 · ρ6

(1 + ρ)s 2F1

(9
2 , 6− s; 9;−ρ

) ∣∣∣∣
s=s8;0

= ρ6(11ρ2 + 40ρ+ 40)
40(1 + ρ)8 ,

(C.93)

where we highlighted the (fixed) overall normalization of the linearized fluctuations; the latter
implies that in the UV, i.e., ρ→ 0, expansion of flw;8;k≥1 the order O(ρ6) terms are absent.
Because the leading order fluctuation spectra (C.5), (C.6), (C.7) and (C.8) are degenerate
at s8;0, the equations for flg;8;k, flK;8;k and flf ;8;k will necessarily contain zero modes;
specifically, if flg;8;k≥1, flK;8;k≥1 and flf ;8;k≥1 are solutions, so are (flg;8;k + αk

α0
· flg;8;0),

(flK;8;k + βk
α0
· flg;8;0) and (flf ;8;k + γk

γ0
· flf ;8;0),

flg;8;0 = α0 ·2 F1

(5
2 , 4− s; 5;−ρ

) ∣∣∣∣
s=s8;0

= α0 ·
ρ4(33ρ4 + 192ρ3 + 448ρ2 + 512ρ+ 256)

256(1 + ρ)8 ,

f lf ;8;0 = γ0 ·2 F1

(13
2 , 8− s; 13;−ρ

) ∣∣∣∣
s=s8;0

= γ0 ·
ρ8

(1 + ρ)8 ,

(C.94)
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for an arbitrary set of constants {αk, βk, γk}. As in section B.1.1, the zero modes at order
k will be completely fixed at order k + 1. We find it convenient to set

flg;8;k≥1 ≡ αk ·
1
α0
flg;8;0 + f̂ lg;8;k , f lK;8;k≥1 ≡ βk ·

1
α0
flg;8;0 + f̂ lK;8;k ,

f lf ;8;k≥1 ≡ γk ·
1
α0
flf ;8;0 + f̂ lf ;8;k ,

(C.95)

with the understanding that in the UV expansion of f̂ lg;8;k and f̂ lK;8;k the order O(ρ4)
terms are absent, and in the UV expansion of f̂ lf ;8;k and the order O(ρ8) terms are absent.

The subleading set of equations involving constants α0, β1, γ0, s8;1, and functions
{f̂ lg;8;1, f̂ lK;8;1, flw;8;1, f̂ lf ;8;1} reads:

0 = f̂ l
′′
g;8;1+ 3(5ρ−2)

2ρ(1+ρ) f̂ l
′
g;8;1−

12
ρ(1+ρ)2 f̂ lg;8;1+2k′1f̂ l

′
K;8;1+

8k′1f̂ lK;8;1
1+ρ

+ ρ3k′1(ρ+2)(33ρ4+144ρ3+272ρ2+256ρ+128)β1

32(1+ρ)9 − ρ
6γ0(3ρ2(k′1)2(1+ρ)−28)

4(1+ρ)9

+ ρ3α0s8;1(45ρ4+320ρ3+960ρ2+1536ρ+1280)
512(1+ρ)10 + 11ρ2

20(1+ρ)10

( 5
352α0ρ(ρ+2)

×(1+ρ)(33ρ4+144ρ3+272ρ2+256ρ+128)(f ′2;1+4f ′3;1−4g′1)+ρ4
(
ρ2

+ 40
11(ρ+1)

)
(1+ρ)2(k′1)2− 75α0ρ

2h1

32

(
ρ4+ 64

11ρ
3+ 448

33 ρ
2+ 512

33 ρ+ 256
33

)
− 15

8 (1+ρ)
(
α0

(
ρ4+ 64

11ρ
3+ 448

33 ρ
2+ 512

33 ρ+ 256
33

)
− 32

15ρ
4− 256

33 ρ
3− 256

33 ρ
2
))

, (C.96)

0 = f̂ l
′′
K;8;1+ 3(5ρ−2)

2ρ(1+ρ) f̂ l
′
K;8;1−

12
ρ(1+ρ)2 f̂ lK;8;1−

ρ2α0

64(1+ρ)9

(
ρk′1(ρ+2)(33ρ4

+144ρ3+272ρ2+256ρ+128)+384ρ3+66ρ4+896ρ2+1024ρ+512
)

− 3ρk′1(ρ+2)−14)γ0ρ
6

(1+ρ)9 + (ρk′1(ρ+2)(11ρ2+30ρ+30)+22ρ2+80ρ+80)ρ4

5(1+ρ)9 , (C.97)

0 = fl′′w;8;1+ 3(5ρ−2)
2ρ(1+ρ)fl

′
w;8;1−

12(2ρ+1)
ρ2(1+ρ)2 flw;8;1−

2
5k
′
1f̂ l
′
K;8;1−

8k′1f̂ lK;8;1
5(1+ρ)

− ρ
3k′1(ρ+2)(33ρ4+144ρ3+272ρ2+256ρ+128)β1

160(1+ρ)9 + ρ5(63ρ2+280ρ+360)s8;1

80(1+ρ)10

+ (33ρ4+192ρ3+448ρ2+512ρ+256)(ρ2(k′1)2(1+ρ)+4)ρ2α0

1280(1+ρ)9 − γ0ρ
6

20(1+ρ)9

(
ρ2(k′1)2(1+ρ)−32ρ(ρ+2)(f ′3;1−f ′2;1)+80(f2;1−f3;1)+12

)
− ρ4

800(1+ρ)10

(
8ρ(ρ+2)(1+ρ)(11ρ2+30ρ+30)(11f ′2;1−16f ′3;1)+209

(
ρ2+ 40

11(ρ+1)
)(
−10

19ρ

×(ρ+2)(1+ρ)h′1+ρ2(1+ρ)2(k′1)2+
(215

19 ρ
2− 80

19(ρ+1)
)
h1+ 80(1+ρ)

19

(
k1

+ 19
4 f2;1−11f3;1−

3
20

)))
, (C.98)
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0 = f̂ l
′′
f ;8;1+ 3(5ρ−2)

2ρ(1+ρ) f̂ l
′
f ;8;1−

4(11ρ+8)
ρ2(1+ρ)2 f̂ lf ;8;1+

2(31ρ2−120ρ−120)k′1f̂ l
′
K;8;1

45ρ2

+
16(k′1ρ(28ρ3−5ρ2+30ρ+60)+185ρ2+120ρ+120)f̂ lK;8;1

45(1+ρ)ρ4 + β1

720(1+ρ)9

(
6ρ3

×(ρ+2)(154ρ4+607ρ3+991ρ2+768ρ+384)k′1+5(37ρ2+24ρ+24)(33ρ4+192ρ3

+448ρ2+512ρ+256)
)

+ α0

11520(1+ρ)9

(
−ρ2(1+ρ)(31ρ2−120ρ−120)(33ρ4

+192ρ3+448ρ2+512ρ+256)(k′1)2+240ρ5(ρ+2)(11ρ2+35ρ+35)g′1+4(149ρ2

+120(ρ+1))(33ρ4+192ρ3+448ρ2+512ρ+256)
)
− 27ρ4γ0

40(1+ρ)10

(
− 2

243ρ(ρ+2)

×(1+ρ)(157ρ2−660ρ−660)(f ′2;1+4f ′3;1)− 830
243ρ(ρ+2)(1+ρ)

(
ρ2− 276

83 (ρ+1)
)

×h′1+
(
ρ2− 20

9 (ρ+1)
)
ρ2(1+ρ)2(k′1)2+

(
−11840

81 + 455
27 ρ

4− 58900
243 ρ3− 94420

243 ρ2

− 23680
81 ρ

)
h1−

20
243(1+ρ)(1331ρ2+732ρ+732)(f2;1+4f3;1)+ 59440

243

(
ρ2

+ 444
743(ρ+1)

)
(1+ρ)k1+ 2000

81 +
(8116

243 −
260s8;1

27

)
ρ3+ 14116

243 ρ2+ 4000
81 ρ

)
+ 187ρ2

600(1+ρ)10

(
−26

17ρ(ρ+2)
(
ρ4+ 1900

429 ρ
3+ 4300

429 ρ
2+ 800

143(2ρ+1)
)

(1+ρ)f ′2;1

+ 328
51

(
ρ2+ 120

41 (ρ+1)
)
ρ(ρ+2)(1+ρ)

(
ρ2+ 30

11(ρ+1)
)
f ′3;1+

(
ρ2+ 40

11(ρ+1)
)

×
(50

51

(
ρ2+ 12

5 (ρ+1)
)
ρ(ρ+2)(1+ρ)h′1+ρ2

(
ρ2− 60

17(ρ+1)
)

(1+ρ)2(k′1)2

+ 25
17

(
ρ2+ 12

5 (ρ+1)
)

(ρ+4)
(
ρ+ 4

3

)
h1−

400
51 (1+ρ)

(
−
(31

4 ρ
2+ 39

5 (ρ+1)
)
f2;1

+
(13

2 ρ
2+ 24

5 (ρ+1)
)
f3;1+

(
ρ2+ 12

5 (ρ+1)
)
k1+ 287

100ρ
2+3(ρ+1)

)))
. (C.99)

Eqs. (C.96)—(C.99) are solved subject to the asymptotic expansions,

in the UV, i.e., as ρ→ 0,

f̂ lg;8;1 =
(

0 + (2α0 + 4β1) ln ρ
)
ρ4 +O(ρ5 ln ρ) , (C.100)

f̂ lK;8;1 = 0 ρ4 + 0 ρ5 +
(2

3 −
1
6α0

)
ρ6 +O(ρ7) , (C.101)

flw;8;1 =
( 2

15α0 + 4
15β1

)
ρ4 +

(
−4

5α0 −
8
5β1

)
ρ5 +

(
0 +

( 3
20α0 −

1
10β1

)
ln ρ

)
ρ6

+O(ρ7 ln ρ) , (C.102)

flf ;8;1 =
(16

27α0 + 32
27β1

)
ρ2 + · · ·+

(
0 −

(32
9 α0k4;0;1 −

32
15β1k4;0;1 + 397

1200α0

+ 9
400β1 − 2γ0

)
ln ρ−

( 1
12α0 + 1

20β1

)
ln2 ρ

)
ρ8 +O(ρ9 ln2 ρ) , (C.103)
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n s
(A)&(B)
n;1 s

(C)
n;1

4 ±
√

130
5 −

5 ±
√

2 −

6 ±
√

1390
25 6.03(2)

7 ±
√

1490
25 5.39(7)

8 ±2
√

779
35 5.06(0)

Table 3. Leading corrections to the conformal spectra on branches (As), (Bs) and (Cs).

it is completely specified by {α0, β1, γ0, s8;1}; we further highlighted arbitrary constants,
fixed to zero by the overall normalization (C.93), and the extraction of the zero modes in
flg;8;1, flK;8;1 and flf ;8;1 (C.95);

in the IR, i.e., as y ≡ 1
ρ → 0,

f̂ lg;8;1 = f̂ l
h
g;8;1;0 +O(y) , f̂ lK;8;1 = f̂ l

h
K;8;1;0 +O(y) , f lw;8;1 = flhw;8;1;0 +O(y) ,

f̂ lf ;8;1 = flhf ;8;1;0 +O(y) ,
(C.104)

it is completely specified by

{f̂ lhg;8;1;0 , f̂ l
h
K;8;1;0 , f l

h
w;8;1;0, , f̂ l

h
f ;8;1;0 , α0 , β1 , γ0 , s8;1} . (C.105)

In total, the UV and IR expansions are completely determined by the parameters (C.105),
which is precisely what is needed to find a unique solution for four second order ODEs (C.96)–
(C.99). Solving these equations we find

s8;1 = 5.0601(3) . (C.106)

C.1.6 Select values of s4≤n≤8;1

Extending the computations of sections C.1.1 and C.1.3, we collect in the table 3 leading
corrections to the conformal spectra on branches (As), (Bs) and (Cs) for 4 ≤ n ≤ 8. These
results are used to highlight the features of the spectra presented in figure 10.

D Critical point H = Hcrit3

The chiral symmetry breaking mode of fluctuations about TypeAs background becomes
marginal at H = Hcrit3 , see figure 7. It signals the origin of TypeAb background [17],
which exists only for H > Hcrit3 . In this section we first construct TypeAb background
perturbatively in A ∝

√
H −Hcrit3 , and then study the H = Hcrit3 marginal mode in this

perturbative TypeAb background geometry. We find that this mode becomes unstable, i.e.,

Im[wχSB]
∣∣∣∣
TypeAb

= 0 + 36.0098(5) ·A2 +O(A4) , (D.1)

where the precise definition of A is given by (D.2).
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D.1 TypeAb background in the vicinity of H = Hcrit3

TypeAs background is a special case of TypeAb background, constraint by (B.1). From (A.16)
and (A.17),

fa−fb =
(

2fa,3,0+ 1
2fa,1,0

)
︸ ︷︷ ︸

≡2A

ρ3− fa,1,02

(
2fa,3,0+ 1

2fa,1,0
)
ρ4

+
(8f2

a,1,0+4K0−9
32

(
2fa,3,0+ 1

2fa,1,0
)

+ 1
4k2,3,0+ 1

8

(
2fa,3,0+ 1

2fa,1,0
)

lnρ
)
ρ5

+O(ρ6 lnρ) , (D.2)

which provides a precise definition of A. A vanishes exactly at22 K0 = K0,crit3

K0

∣∣∣∣
crit3

= ln
H2

crit3

Λ2 . (D.3)

Perturbatively in A, TypeAb background can be represented as

fa = f3(ρ) +
∞∑
k=1

A2k−1 · δfa;2k−1(ρ) +
∞∑
k=1

A2k · δfa;2k(ρ) , (D.4)

fb = f3(ρ)−
∞∑
k=1

A2k−1 · δfa;2k−1(ρ) +
∞∑
k=1

A2k · δfa;2k(ρ) , (D.5)

fc = f2(ρ) +
∞∑
k=1

A2k · δfc;2k(ρ) , (D.6)

K1 = K(ρ) +
∞∑
k=1

A2k−1 · δk1;2k−1(ρ) +
∞∑
k=1

A2k · δk1;2k(ρ) , (D.7)

K3 = K(ρ)−
∞∑
k=1

A2k−1 · δk1;2k−1(ρ) +
∞∑
k=1

A2k · δk1;2k(ρ) , (D.8)

K2 = 1 +
∞∑
k=1

A2k−1 · δk2;2k−1(ρ) , (D.9)

g

∣∣∣∣
TypeAb

= g(ρ)
∣∣∣∣
TypeAs

+
∞∑
k=1

A2k · δg2k(ρ) , (D.10)

h

∣∣∣∣
TypeAb

= h(ρ)
∣∣∣∣
TypeAs

+
∞∑
k=1

A2k · δh2k(ρ) . (D.11)

To compute (D.1) we need perturbative solution of TypeAb background to order
k = 3 inclusive. As we now explain, orders k = {0, 1}, and k = {2, 3} must be solved
simultaneously.

D.1.1 k = {0, 1}

At leading k = 0 order we have TypeAs background, labeled by K0; namely, a coupled
system of 4 second-order ODEs for {f3,K, g, h} and a single first-order ODE for f2. At

22We use computation SchemeI with b ≡ 1, see [17].
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order k = 1, the equations for {δfa;1, δk1;1, δk2;1} are just the equations for the marginal
mode — they are equivalent to (B.3)–(B.5), see also (B.2), with the following identification,

δfa;1 ≡ f3 · F , δk1;1 ≡ χ1 , δk2;1 ≡ χ2 , (D.12)

and with
s = 0 . (D.13)

They are solved subject to the asymptotics:

In the UV, i.e., as ρ→ 0,

δfa;1 = 1 · r3 + · · ·+
(
δfa;1;7,0 +

(275
384 + 3

64δk1;1;3,0

(
K0 −

5
4

)
+ 7

256K0

+ 3fc,4,0
)

ln ρ+
(
− 15

128 −
3
64δk1;1;3,0 + 9

64K0

)
ln2 ρ− 1

8 ln3 ρ

)
ρ7 +O(ρ8 ln3 ρ) ,

(D.14)

δk1;1 = ρ3(δk1;1;3,0 + 2 ln ρ) + ρ4
(
−1

2(3δk1;1;3,0 + 2)fa,1,0 − 3fa,1,0 ln ρ
)

+O(ρ5 ln2 ρ) ,

(D.15)

δk2;1 = ρ3
(
−1 + 3

2δk1;1;3,0 + 3 ln ρ
)
− ρ4

(9
4fa,1,0δk1;1;3,0 + 9

2fa,1,0 ln ρ
)

+O(ρ5 ln2 ρ) ,

(D.16)

it is characterized by 2 parameters

{ δk1;1;3,0 , δfa;1;7,0 } . (D.17)

In (D.14) we highlighted the overall normalization, dictated by our definition of the amplitude
A, see (D.2). Of course, the asymptotic expansions (D.14)–(D.16) depend on the parameters
of the k = 0 order background, i.e.,

{ K0 , fa,1,0 , g4,0 , fc,4 , fa,6,0 , fa,8,0 } . (D.18)

Comparing with (A.23), because of the constraint (B.1), we find that {fa,3,0, k2,3,0, fa,7,0}
are not independent and instead are determined by (D.18):

fa,3,0 = −1
4fa,1,0 , k2,3,0 = 0 ,

fa,7,0 = 431
76800fa,1,0K

2
0 +

(
− 981

1024000 + 1
40fc,4,0 −

53
1920f

2
a,1,0

)
fa,1,0K0 +

(
− 1362319

61440000

+ 1
80f

4
a,1,0 + 77

46080f
2
a,1,0 −

1
320fc,4,0 − 2fa,6,0 −

1
40g4,0

)
fa,1,0 . (D.19)

In the IR, i.e., as y ≡ 1
ρ → 0,

δfa;1 = 1
y

(
δfha;1;0 +O(y)

)
, δk1;1 = δkh1;1;0 +O(y) , δk2;1 = δkh2;1;0 +O(y) ,

(D.20)

– 61 –



J
H
E
P
0
1
(
2
0
2
3
)
1
3
0

it is characterized by 3 parameters{
δfha;1;0 , δk

h
1;1;0 , δk

h
2;1;0

}
. (D.21)

As in UV, the asymptotic expansions (D.20) depend on the parameters of the k = 0 order
background, i.e., {

fha,0 , f
h
c,0 , K

h
1,0 , g

h
0

}
. (D.22)

Comparing with (A.26), because of the constraint (B.1), we find that {fhb,0, Kh
2,0, Kh

3,0} are
not independent and instead are determined by (D.22):

fhb,0 = fha,0 , Kh
3,0 = Kh

1,0 , Kh
2,0 = 1 . (D.23)

In total we have 7 second-order ODEs (4 from k = 0 order and 3 from k = 1 order) and 1
additional first-order ODE from the k = 0 order. Thus in total, we need 7 × 2 + 1 = 15
adjustable parameters to find a solution. This is precisely what we have: 6 + 4 = 10
parameters from order k = 0, see (D.18) and (D.22), and 2 + 3 = 5 parameters from order
k = 1, see (D.17) and (D.21). Note the coupling of orders k = 0 and k = 1 occurs because
we traded the parameter s, we set it zero in (D.13), for a requirement to tune K0 to insure
that the k = 1 order deformation {δfa;1, δk1;1 δk2;1} is normalizable, i.e., the corresponding
fluctuations (see (D.12)) are marginal.
Solving the order k = 0 and k = 1 equations numerically we recover

K0 = K0

∣∣∣∣
crit3

= −0.1636(3) , (D.24)

originally reported in [17].

D.1.2 k = {2, 3}

We will not present the equations for order k = {2, 3} perturbative representation of the
background TypeAb: they can be straightforwardly derived from the general equations
for this background (see appendix B of [17]) using the ansatz (D.4)–(D.11). Since the
equation for fc is of the first-order, so will be the equations for δfc;2k. The equations for
the other functions are always of the second-order. We will discuss the asymptotics and
count the parameters.

At order k = 2 we have a coupled system of 4 second-order ODEs for {δfa;2, δk1;2, δg2,
δh2} and the first-order ODE for δfc;2. They are solved subject to the asymptotics:

In the UV, i.e., as ρ→ 0,

δfa;2 = ρ δfa;2;1,0+ρ2
(1

2δfa;2;1,0fa,1,0−
1
4δk1;2;0,0

)
+· · ·+ρ6

(
δfa;2;6,0+· · ·

+ 3
640δk1;2;0,0 ln3 ρ

)
+O(ρ7 ln4 ρ) , (D.25)

δfc;2 = ρ δfa;2;1,0+ρ2
(1

2δfa;2;1,0fa,1,0−
1
4δk1;2;0,0

)
− 1

4ρ
3δfa;2;1,0+ρ4

(
δfc;2;4,0

+ 1
16δk1;2;0,0 lnρ

)
+O(ρ5 ln2 ρ) , (D.26)
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δk1;2 = δk1;2;0,0+ρδfa;2;1,0+ρ2
(
−1

2δfa;2;1,0fa,1,0+ 1
8δk1;2;0,0

)
+O(ρ3 lnρ) , (D.27)

δg2 = 1
2ρ

3δfa;2;1,0+ρ4
(
δg2;4,0+

(
−3

8δfa;2;1,0fa,1,0−
5
64δk1;2;0,0+3δfc;2;4,0

)
lnρ

+ 3
32δk1;2;0,0 ln2 ρ

)
+· · ·+ρ8

(
δg2;8,0+· · ·− 3

512δk1;2;0,0 ln5 ρ

)
+O(ρ9 ln6 ρ) , (D.28)

δh2 = 1
4δk1;2;0,0+ρ

(
−1

2δfa;2;1,0K0−
1
2δk1;2;0,0fa,1,0+δfa;2;1,0 lnρ

)
+O(ρ2 lnρ) , (D.29)

it is characterized by 6 parameters

{ δk1;2;0,0 , δfa;2;1,0 , δfc;2;4,0 , δg2;4,0 , δfa;2;6,0 , δg2;8,0 } . (D.30)

In the IR, i.e., as y ≡ 1
ρ → 0,

δfa;2 = 1
y

(
δfha;2;0+O(y)

)
, δfc;2 = 1

y

(
δfhc;2;0+O(y)

)
, δk1;2 = δkh1;2;0+O(y) , (D.31)

δg2 = δgh2;0+O(y) , δh2 = y3 ·
( (Kh

1,0)2

(fha,0)4fhc,0

(
−

2(δfha;1,0)2

(fha,0)2 +
4δfha;2,0
fha,0

+
δfhc;2,0
fhc,0

)

+
2Kh

1,0
(fha,0)4fhc,0

(δkh1;1;0δk
h
2;1;0−δkh1;2;0)+

(
− 9

40(fha,0)2fhc,0
+ 3

5(fha,0)3−
fhc,0

10(fha,0)4

− 9gh0
10(fha,0)4fhc,0

)
(δfha;1,0)2+

(
− 3

5(fha,0)2 +
fhc,0

5(fha,0)3 + 3gh0
5(fha,0)3fhc,0

)
δfha;2,0

− 3gh0
10(fha,0)2fhc,0

(δkh2;1;0)2+
(
− 1

10(fha,0)2 + 3gh0
10(fha,0)2(fhc,0)2

)
δfhc;2,0−

3
10(fha,0)2fhc,0

δgh2;0

−
6gh0 δfha;1,0δk

h
2;1;0

5(fha,0)3fhc,0
−

27(δkh1;1;0)2

40(fha,0)2gh0f
h
c,0

)
+O(y4) , (D.32)

it is characterized by 4 parameters

{ δfha;2;0 , δf
h
c;2;0 , δk

h
1;2;0 , δg

h
2;0 } . (D.33)

At order k = 3 we have a coupled system of 3 second-order ODEs for {δfa;3, δk1;3, δk2;3}.
They are solved subject to the asymptotics:

In the UV, i.e., as ρ→ 0,

δfa;3 = 0 · ρ3 − 1
2ρ

4δfa;2;1,0 + ρ5
(1

2δfa;2;1,0fa,1,0 + 1
8δk1;2;0,0 + 3

16δk1;3;3,0

)
+ ρ7

(
δfa;3;7,0 + · · ·+

( 9
64δk1;2;0,0 −

3
64δk1;3;3,0

)
ln2 ρ

)
+O(ρ8 ln3 ρ) , (D.34)

δk1;3 = ρ3δk1;3;3,0 + ρ4
(
−3

2δfa;2;1,0δk1;1;3,0 −
3
2δk1;3;3,0fa,1,0 − δfa;2;1,0 − 3δfa;2;1,0 ln ρ

)
+O(ρ5 ln ρ) , (D.35)

δk2;3 = 3
2ρ

3δk1;3;3,0 −
9
4ρ

4
(
δfa;2;1,0δk1;1;3,0 + δk1;3;3,0fa,1,0 + 2δfa;2;1,0 ln ρ

)
+O(ρ5 ln ρ) ,

(D.36)

– 63 –



J
H
E
P
0
1
(
2
0
2
3
)
1
3
0

it is characterized by 2 parameters

{ δfa;3;7,0 , δk1;3;3,0 } . (D.37)

In (D.34) we highlighted the parameter fixed to zero, as dictated by our definition of the
amplitude A, see (D.2).

In the IR, i.e., as y ≡ 1
ρ → 0,

δfa;3 = 1
y

(
δfha;3;0 +O(y)

)
, δk1;3 = δkh1;3;0 +O(y) , δk2;3 = δkh2;3;0 +O(y) ,

(D.38)
it is characterized by 3 parameters{

δfha;3;0 , δk
h
1;3;0 , δk

h
2;3;0

}
. (D.39)

In total we have 7 second-order ODEs (4 from k = 2 order and 3 from k = 3 order) and 1
additional first-order ODE from the k = 2 order. Thus in total, we need 7 × 2 + 1 = 15
adjustable parameters to find a solution. This is precisely what we have: 6 + 4 = 10
parameters from order k = 2, see (D.30) and (D.33), and 2 + 3 = 5 parameters from order
k = 3, see (D.37) and (D.39). Here the coupling of orders k = 2 and k = 3 occurs because
we have an additional parameter at order k = 2, and we are lacking one parameter at order
k = 3. Specifically, δk1;2;0,0, see (D.30), is needed to parameterize background solutions
TypeAb, away from K0 = K0,crit3 :

K0 −K0,crit3 = ln H2

H2
crit3

= δk1;2;0,0 ·A2 +O(A4) . (D.40)

On the other had, at order k = 3 we have 3 second-order ODEs for {δfa;3, δk1;3, δk2;3},
however we have only 2+3 = 5 adjustable parameter (see (D.37) and (D.39)) — the missing
parameter is the highlighted one in (D.34), that we are forced to set to zero as part of the
definition of the amplitude A (D.2).

Solving the order k = 2 and k = 3 equations numerically we find

δk1;2;0,0 = 6.4889(0) . (D.41)

D.1.3 K0(A) and its perturbative approximation

To identify TypeAb DFP instability it is most convenient to construct numerically the
corresponding TypeAb background by parameterizing it with A, as defined in (D.2), rather
than using K0, as it is done in [17]. This allows us to use the near-critical analysis of
the marginal mode of section D.2 as an approximation for the spectral analysis of this
mode at finite A, see figure 12. In figure 13 we compare K0(A) with its perturbative in A
approximation given by (D.40). We find from numerical interpolation an excellent agreement,[ 1

2δk1;2;0,0

d2K0(A)
dA2 − 1

]∣∣∣∣
A=0

= 1.33 · 10−15 . (D.42)
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Figure 13. We construct TypeAb background geometry parameterizing it with A, defining the
deviation from the critical point Hcrit3 , see (D.2). The same geometry was parameterized with
K0 in [17]. Dots represent K0(A) for select values of A. The solid red curve is the perturbative
approximation (D.40).

D.2 TypeAb background instability in the vicinity of H = Hcrit3

Perturbatively in A, the chiral symmetry breaking, marginal at H = Hcrit3 , mode can be
represented as, see (B.2),

fla = f3(ρ) · F (ρ) +
∞∑
k=1

A2k−1 · fla;2k−1(ρ) +
∞∑
k=1

A2k · fla;2k(ρ) , (D.43)

flb = −f3(ρ) · F (ρ) +
∞∑
k=1

A2k−1 · fla;2k−1(ρ)−
∞∑
k=1

A2k · fla;2k(ρ) , (D.44)

flc =
∞∑
k=1

A2k−1 · flc;2k−1(ρ) , (D.45)

flK1 = χ1(ρ) +
∞∑
k=1

A2k−1 · flK1;2k−1(ρ) +
∞∑
k=1

A2k · flK1;2k(ρ) , (D.46)

flK2 = χ2(ρ) +
∞∑
k=1

A2k · flK2;2k(ρ) , (D.47)

flK3 = −χ1(ρ) +
∞∑
k=1

A2k−1 · flK1;2k−1(ρ)−
∞∑
k=1

A2k · flK1;2k(ρ) , (D.48)

flg =
∞∑
k=1

A2k−1 · flg;2k−1(ρ) , (D.49)

flh =
∞∑
k=1

A2k−1 · flh;2k−1(ρ) , (D.50)

with
− Im[wχSB]

∣∣∣∣
TypeAb

≡ s = 0 +
∞∑
k=1

A2k · s2k . (D.51)
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Figure 14. Dots represent the amplitude of the zero mode β(A) as given by (D.54). The solid red
line is the perturbative approximation (D.53).

The equations of motion for the terms of the perturbative expansion of the fluctuations
can be derived from the general equations of appendix A, using the perturbative TypeAb

background ansatz (D.4)–(D.11), and (D.43)–(D.51). Since flh can always be algebraically
determined from the remaining modes, see (A.13), we find that the same is true for its
perturbative terms flh,2k−1.

We summarize below the salient features of the numerical analysis.

• Order k = 0. Here, the fluctuations are represented by the marginal chiral symmetry
breaking mode, see (B.2), (B.3)–(B.5) with s = 0.

• At any even order in k there is a zero mode: if {fla;2k, f lK1;2k, f lK2;2k} is a solution
of the equations of motion, so is

{ fla;2k + f3F , flK1;2k + χ1 , f lK2;2k + χ2 } , (D.52)

with an arbitrary amplitude f3,0 ≡ β2k, see (B.10). These arbitrary at order 2k
parameters are fixed at order 2k + 1. For example, we find in this manner

β0 = −0.05761(4) . (D.53)

• Order k = 1. At this order the fluctuations are {fla;1, flc;1, flK1;1, flg1}. Since there
is no contribution to s at this order, i.e., s1 = 0 in (D.51), the zero mode amplitude
at the previous order, β0, is needed to find a unique solution.

• Order k = 2. At this order the fluctuations are {fla;2, flK1;2, flK2;2}; addition-
ally, the equations explicitly depend on s2 parameter in (D.51). The equations
for the fluctuations also require the input of the background TypeAb up to order
k = 2 inclusive.
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• In figure 14 we compare the zero mode amplitude β(A), extracted in computing
numerically s(A) in TypeAb DFP at finite A,

β(A) = lim
ρ→0

fla(ρ)− flb(ρ)
2ρ3 ≡

∞∑
k=0

A2k · β2k , (D.54)

with its perturbative approximation at A = 0, see (D.53). Numerically interpolating
the finite A results we find a good agreement,[

β(A)
β0
− 1

]∣∣∣∣
A=0

= −2.0(7) · 10−5 . (D.55)

• Numerical analysis at order k = 2 provide the value of s2,

s2 = −36.0098(5) , (D.56)

which implies that marginal at H = Hcrit3 fluctuations become unstable in TypeAb

for H > Hcrit3 . The frequency of this mode at finite A is presented in figure 12.
Numerically interpolating the finite A results for s(A) we find a good agreement with
the leading nontrivial order perturbative approximation, (D.51),[ 1

2s2

d2s(A)
dA2 − 1

]∣∣∣∣
A=0

= 1.1(7) · 10−3 . (D.57)
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