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1 Introduction

The amplitudes bootstrap exploits the serendipitous fact that many of the theories that
describe nature are actually fixed by simple conditions imposed on the kinematic functions
that encode scattering. For example, while gauge theory and gravity can famously be
derived from high-minded geometric principles or gedankenexperiments, this is not our only
recourse for understanding their origins. Rather, an alternative path to discovering gauge
theory and gravity is to answer a concrete math question about the S-matrix: what is the
space of on-shell scattering amplitudes for massless spin-one and spin-two particles that are
local, Lorentz invariant, and mediate a long-range force?
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It is then natural to ask, what is the analogous question in string theory? In broad
terms, string theory furnishes a working example of how gravity and quantum mechanics can
be rendered consistent. At a more technical level, it addresses the problem that high-energy,
fixed-angle graviton scattering is ill behaved. Unitarizing this behavior requires the addition
of higher-spin degrees of freedom that must be included with care lest they exacerbate
these ultraviolet pathologies. Thus, string theory offers an explicit answer to the concrete
question of how to consistently build an amplitude that exhibits the exchange of higher-spin
modes and is sensible at high energies. In his seminal work [2], Veneziano constructed
precisely such an amplitude,

Astring(s, t) = Γ(−α0 − α′s)Γ(−α0 − α′t)
Γ(−2α0 − α′(s+ t)) . (1.1)

In this paper, we revisit this line of inquiry, in particular asking to what extent string
amplitudes are the unique solutions to this particular math problem.

Concretely, we construct a multi-parameter space of Lorentz invariant, four-particle,
perturbative scattering amplitudes A(s, t) that describe an infinite exchange of higher spins
while conforming to the following conditions:

i) Polynomial Boundedness. The high-energy behavior of the amplitude is polynomially
bounded. If this condition fails, causality and unitarity are generically violated [3–6].1

ii) Finite-Spin Exchange. Each pole in the amplitude describes the exchange of a finite
tower of spins. When this condition fails, the exchanged state is an infinitely extended
object, thus undermining the locality of the theory.

Famously, string theory provides precisely a function A(s, t) that conforms to these criteria
in the form of eq. (1.1). In this case, the amplitude vividly encodes the Regge spectrum
of an infinite tower of stringy excitations, evenly spaced in mass-squared and with an
ever-growing collection of spins.

Perhaps less appreciated is the existence of yet another solution to the above constraints,
discovered — and then sadly forgotten by virtually all — in the remarkable work of
Coon [7]. The Coon amplitude is a deformation of the Veneziano amplitude labeled by a
single parameter q. The most notable attribute of the Coon amplitude is its hydrogen-like
spectrum: a discrete array of mass levels that converge to infinite density at an accumulation
point, followed by a branch cut.2 Recently, a number of works [8–10] have analyzed the
Coon amplitude from the perspective of positivity bounds derived from analytic dispersion
relations. By demanding that the spectral density be nonnegative — i.e., no ghosts — those
authors mapped out a putative consistent region for q.

1Rigorous bounds exist for gapped theories, e.g., the Regge (A < s2) and Froissart (A < s logD−2 s)
bounds, which apply to fixed momentum transfer and scattering angle, respectively.

2A reasonable worry is that an infinite density of states is inconsistent with statistical mechanics because
a thermal ensemble will sample the infinite reservoir of modes near the accumulation point. Similar logic
would imply tension with holographic bounds on degrees of freedom. However, recall that any such pathology
requires that the degenerate states be indistinguishable. If they are not — for example for the case of the
hydrogen atom and some recent string theoretic constructions [1]—then nothing is awry.
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The outline of the present work is as follows. In section 2, we generalize the analysis of
Coon to derive a new multi-parameter family of amplitudes that are cyclic invariant on the
external legs and conform to the criteria described above. These amplitudes exhibit the
same mass spectrum of accumulation points as the Coon amplitude, but differ markedly in
their distribution of spins at each level. Interestingly, they also exhibit customizable Regge
trajectories. We also describe the low- and high-energy limits of these amplitudes. We
emphasize that this multi-parameter class is not an exhaustive solution space but merely
offers an existence proof of such deformations.3

Afterward, in section 3 we derive constraints on this family of amplitudes coming
from partial wave unitarity. This enforces the nonnegativity of every coefficient in the
partial wave decomposition of the amplitude on each residue. We derive both analytic
and numerical positivity bounds and observe that there is a multi-parameter subspace of
putatively consistent amplitudes.

In section 4 we then derive a new family of amplitudes obeying the above criteria
but exhibiting mass spectra that are free from accumulation points and thus unbounded.
We generalize the analysis of section 2 to this case and present a multi-parameter space
of amplitudes exhibiting either cyclic or full permutation invariance on the external legs.
Unfortunately, this alternative class of theories appears to be disfavored by unitarity
constraints.

Finally, we summarize our results and discuss promising future directions in section 5.

2 Amplitude construction

2.1 Product ansatz

In this section we construct a family of amplitudes A(s, t) describing the scattering of
external scalars subject to the constraints of polynomial boundedness and finite-spin
exchange described in section 1. Here we assume cyclic invariance on the external legs, so
A(s, t) = A(t, s) is st-symmetric, like color-ordered amplitudes in gauge theory and open
string theory.

If we view A(s, t) as a tree-level amplitude, then it exhibits simple poles on exchanged
resonances and can be written as a rational function of the form

A(s, t) = N(s, t)
∞∏
n=0

(s−m2
n) (t−m2

n)
. (2.1)

Here m2
n describes an arbitrary spectrum indexed by nonnegative integers n, properly

ordered such that m2
n < m2

n+1. Note that any state degeneracy at a given mass level is
accounted for by multiplicity factors in the numerator.

At this juncture, let us call attention to an important subtlety: infinite products such
as

∞∏
n=0

(s−m2
n) are actually ill defined. In particular, convergence requires each factor in

3In this work we restrict to the case of scalar external states. As is well known, however, the inclusion of
spin is achieved simply by multiplying scalar amplitudes by polarization-dependent prefactors. Unfortunately,
this operation generically worsens the high-energy and Regge behavior of the amplitudes.
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the product to approach unity at large n, which is impossible for all s. To express the
amplitude in a convergent form, one needs to make a binary choice of whether the spectrum
is unbounded or bounded. For the latter case, m2

∞ is finite and there is an accumulation
point in the spectrum. In the subsequent analysis we will assume that this is the case.
Note that precisely for this reason, none of our results will contradict those of ref. [11],
whose analysis argued for the uniqueness of the Veneziano amplitude, but given the explicit
assumption that the spectrum is free from accumulation points.

With a spectrum bounded from above and below, it is convenient to define the auxiliary
kinematic variables σ, τ ,

s =
(
m2

0 −m2
∞

)
σ +m2

∞

t =
(
m2

0 −m2
∞

)
τ +m2

∞,
(2.2)

which are related to the physical Mandelstam variables s, t by an affine transformation.
Here the range 0 ≤ σ ≤ 1 maps to m2

∞ ≥ s ≥ m2
0, which scans through the spectrum of

states. In terms of the auxiliary kinematic variables, the amplitude takes the form

A(σ, τ) = N(σ, τ)
∞∏
n=0

(
1− f(n)

σ

) (
1− f(n)

τ

) , (2.3)

which exhibits an infinite tower of simple poles located at

f(n) = m2
n −m2

∞
m2

0 −m2
∞
, (2.4)

so each factor in the product converges to unity for infinite n.
It appears exceedingly difficult — if not impossible — to derive the general space of

functions A(σ, τ) conforming to the conditions of polynomial boundedness and finite-spin
exchange. For this reason, we now make some highly nontrivial simplifying assumptions
about the form of the numerator. Inspired by the infinite-product form of the Veneziano
and Coon amplitudes, we assume a product ansatz for the numerator, so

A(σ, τ) = W (σ, τ)
∞∏
n=0

1− g(n)
(

1
σ + 1

τ

)
− h(n)

στ(
1− f(n)

σ

) (
1− f(n)

τ

) . (2.5)

Here f(n), g(n), and h(n) are as yet undetermined functions, while W (σ, τ) is a general
prefactor function that is analytic in the region σ, τ ∈ (0, 1). As with f(n), we assume that
g(n) and h(n) vanish in the n→∞ limit so that the numerator product converges on its
own. Note that eq. (2.5) was also the starting point of the original analysis of Coon [7],
who ultimately input additional assumptions that we will relax in the subsequent analysis.

2.2 Polynomial residue constraint

Amplitudes that are expressed as products rather than sums of propagators generically
exhibit the peculiarity of an infinite tower of higher-spin states at a single resonance. For
example, an amplitude of the form

1
(s−m2)(t−m2) (2.6)
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has a residue at s = m2 that is an infinite series in t, thus implying an infinite-spin tower at
a single mass level. Curiously, amplitudes such as this play an important role in extremizing
the positivity bounds derived from the EFT-hedron [12, 13]. More recently, they have been
shown to provide alternative unitarizations of four-point graviton scattering [14].

Clearly, eq. (2.6) strongly violates the condition of finite-spin exchange described earlier.
Physically, the exchange of an infinite-spin resonance suggests a breakdown of locality,
since the object exchanged is unboundedly macroscopic. This scenario contrasts with the
Regge spectrum of string theory, where each mass level supports a finite tower of spinning
states. In the present work, we restrict to a more conservative scenario in which infinite-spin
resonances are forbidden, so locality is guaranteed. Mathematically, the constraint of
finite-spin exchange simply implies that the residue on any pole in the s channel is a finite
degree polynomial in t. We refer to this as the constraint of polynomial residues, and we
now impose this condition on our ansatz.

Returning to the amplitude ansatz in eq. (2.5), consider the s-channel pole at mass
level k, corresponding to the limit σ → f(k). For clarity, let us define numerator and
denominator factors as Nn(σ, τ) = 1 − g(n)

(
1
σ + 1

τ

)
− h(n)

στ and Dn(σ) = 1 − f(n)
σ . The

residue Rk(τ) at this kth pole is then

Rk(τ) = lim
σ→f(k)

(
1− f(k)

σ

)
A(σ, τ)

= W (f(k), τ) lim
σ→f(k)

Dk(σ)
∞∏
j=0

[Dj(σ)]−1
∞∏
n=0

Nn(f(k), τ)
Dn(τ)

= W (f(k), τ)
∏
j, j 6=k

[Dj(f(k))]−1
∏∞
n=0Nn(f(k), τ)∏∞
m=0Dm(τ)

= W (f(k), τ)
∏
j, j 6=k

[Dj(f(k))]−1
∏p(k)−1
l=0 Nl(f(k), τ)

∏∞
n=p(k)Nn(f(k), τ)∏∞

m=0Dm(τ)

= W (f(k), τ)
∏
j, j 6=k

[Dj(f(k))]−1
p(k)−1∏
l=0

Nl(f(k), τ)
∞∏
n=0

Nn+p(k)(f(k), τ)
Dn(τ) ,

(2.7)

where in the second-to-last line we have rearranged the product by peeling off the first p(k)
terms of the numerator. In the final line we have shifted the index of the remaining infinite
tower of numerator factors by p(k). We emphasize that this rearrangement was possible
because of our requirement that the numerator and denominator products in the ansatz in
eq. (2.5) separately converge, allowing us to write the products over the numerator and
denominator separately in the third line above. In the analysis of Coon, it was simply
assumed without fanfare that p(k) = k, in which case the residue on the kth pole exhibits
the cancellation of an infinite set of poles except for k leftover factors from the numerator
product. Here we instead generalize p(k) to an arbitrary monotonic function.

The constraint of polynomial residues is the requirement that the τ -dependence cancels
in the final infinite product in the last line of eq. (2.7), which implies that4

φ(n, k) = 1− g(n+ p(k))
[ 1
f(n) + 1

f(k)

]
− h(n+ p(k))

f(n)f(k) = 0, (2.8)

4Strictly speaking, this constraint does not guarantee that the final answer is a polynomial in τ , but
merely a ratio of polynomials. This subtlety will come into play later.
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where for later convenience we define a function φ whose vanishing enforces the constraint
of polynomial residues. In what follows, let us consider how this requirement constrains the
space of functions p, f , g, and h.

2.2.1 Fixing the p function

Without loss of generality, let us replace n with an equivalent variable r = n + p(k), in
which case the constraint of polynomial residues becomes

φ(r − p(k), k) = 1− g(r)
[ 1
f(r − p(k)) + 1

f(k)

]
− h(r)
f(r − p(k))f(k) = 0. (2.9)

Solving algebraically for f(k), we obtain

f(k) = f(r − p(k))g(r) + h(r)
f(r − p(k))− g(r) . (2.10)

Plugging the left-hand side directly back into the right-hand side, we find

f(k) = f(r − p(r − p(k))). (2.11)

For integer k, well orderedness of the m2
n and the definition in eq. (2.4) imply that f(k) is

invertible, so eq. (2.11) implies that r − k = p(r − p(k)), which in terms of n yields

p(k)− k = p(n)− n. (2.12)

For this relation to hold for any n and k implies that p is linear, with unit slope and
arbitrary offset,

p(k) = k + α. (2.13)

Thus, we have arrived at a new parameter α, which was implicitly assumed to be zero in
the analysis of Coon. Since p(k) and k are nonnegative integers in eq. (2.7), we know that
α is also a nonnegative integer.

2.2.2 Fixing the f, g, h functions

The condition of polynomial residues in eq. (2.8) is an immensely stringent constraint on
the functions f , g, and h when they are evaluated at nonnegative integer values of n and k.
However, following similar logic as ref. [7], we can identify the space of smooth functions
that satisfy eq. (2.8) for arbitrary real values of n and k. This isolates a subclass of functions
of the real numbers for which eq. (2.8) holds.

Starting from the polynomial residue constraint in eq. (2.8), we define new functions
φ(i,j)(n, k), obtained by taking from i derivatives with respect to n and j derivatives with
respect to k. This quantity must vanish for any value of n and k, so in particular we consider

φ(0,0)(n, n) = φ(1,0)(n, n) = φ(2,0)(n, n) = φ(3,0)(n, n) = φ(4,0)(n, n) = 0. (2.14)

The vanishing of the first expression implies that h(2n + α) = f(n) [f(n)− 2g(2n+ α)],
which automatically sets the second expression to zero. Plugging h back into the third

– 6 –
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expression, we find that g(2n+α) =
[
f(n)f ′′(n)− f ′(n)2] /f ′′(n), which also sets the fourth

expression to zero. By finiteness of g, we can further conclude that f ′′(n) 6= 0 unless
f ′(n) = 0, which is forbidden by our requirement that f be strictly monotonic to avoid
repeated poles. Finally, plugging both h and g back into the fifth expression, we obtain the
differential equation

f ′(n)2f ′′′′(n)− 4f ′(n)f ′′(n)f ′′′(n) + 3f ′′(n)3 = 0, (2.15)

which can be compactly written as

{f, n} = constant, (2.16)

where {f, n} = f ′′′(n)
f ′(n) −

3f ′′(n)2

2f ′(n)2 is the Schwarzian derivative of f with respect to n. Without
loss of generality, we set the right-hand side of eq. (2.16) to −(log q)2/2 for some arbitrary
constant q. The solution to this equation is

f(n) = a+ bqn

c+ dqn

g(n) = bdqn − acqα

d2qn − c2qα

h(n) = −b
2qn − a2qα

d2qn − c2qα
,

(2.17)

where f is a Möbius transformation of qn parameterized by the constants a, b, c, d, which are
defined modulo rescaling such that ad−bc 6= 0, so the possible spectra span a representation
of SL(2,R). As expected from the fact that eq. (2.15) is a fourth-order differential equation,
eq. (2.17) describes a four-parameter space of solutions.

As described in eq. (2.4), f(n) interpolates between the boundary points f(0) = 1
and f(∞) = 0. Monotonicity of f(n) implies that q > 0 and q 6= 1. Meanwhile, since
sending q → 1/q is equivalent to swapping a↔ b and c↔ d, we take that q < 1 without
loss of generality. The boundary conditions then fix a = 0 and d = b − c, reducing the
four-parameter space of solutions down to a two-parameter expression. Defining c as (1+ξ)b
for later convenience, we obtain

f(n) = qn

1 + ξ(1− qn)
g(n) = ξh(n)

h(n) = 1
qα−n(1 + ξ)2 − ξ2 ,

(2.18)

which is our general solution to the polynomial residue constraint.

2.2.3 Fixing the W function

By construction, on the residue of the amplitude at σ → f(k), an infinite tower of τ -
dependent factors exactly cancels between the numerator and denominator. However, as is
clear from eq. (2.7), the residual τ -dependence in the residue yields a polynomial of degree
k+α in the variable 1/τ . Thus the highest inverse power of τ in the residue at σ → f(k) is

Rk(τ) ∝ τ−(k+α)W (f(k), τ) + · · · . (2.19)
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To maintain locality of the amplitude, any inverse powers of τ must be cancelled, so the
prefactor W (f(k), τ) has to contain a compensating factor of τk+α or even higher powers
of τ . While this function can in principle be a polynomial in τ , we assume for simplicity
that it is monomial, so

W (f(k), τ) = eM(f(k))τN (f(k)), (2.20)

where N (f(k)) ≥ k + α is an integer controlling the power of τ and M(f(k)) is a real
number controlling the size of the numerical coefficient. By definition, W (σ, τ) = W (τ, σ)
since this prefactor multiplies an st-symmetric function in eq. (2.5). This implies that
W (σ, τ) = eM(σ)τN (σ) = eM(τ)σN (τ), or equivalently that

M(σ) +N (σ) log τ =M(τ) +N (τ) log σ. (2.21)

The unique solution to this constraint is N (σ) = Y + X log σ andM(σ) = Z + Y log σ, so

W (σ, τ) = eZ+Y(log σ+log τ)+X log σ log τ . (2.22)

Now, in order to make sure that the function

N (f(k)) = Y + X log
[

qk

1 + ξ(1− qk)

]
ξ=0= Y + Xk log q = α+ β + (1 + γ)k ≥ k + α,

(2.23)

is integer-valued, we henceforth require that ξ = 0, as inserted in the second line. Demanding
that the resulting monomial in τ is of degree at least k + α, we then require that X =
(1 + γ)/ log q and Y = α+ β, where β and γ are nonnegative integers. In conclusion, the
final expression for the prefactor is

W (σ, τ) = cαβγ(στ)α+βq(1+γ) logσ
log q

log τ
log q , (2.24)

for nonnegative integers α, β, γ. Here we have recast the overall constant normalization as
eZ = cαβγ , which can in principle depend on the other parameters.

Note that the parameter β is actually somewhat trivial: unlike α and γ, it simply
multiplies the amplitude by a power of στ . Nevertheless, we will see later that this relatively
innocuous addition will modify the consistency properties of the amplitudes, in particular
regarding partial wave unitarity.

2.3 Final amplitude

To summarize, after fixing the f, g, h, and W functions in our ansatz in eq. (2.5), we obtain
our final expression for the amplitude,

A(σ, τ) = cαβγ(στ)α+βq(1+γ) logσ
log q

log τ
log q

∞∏
n=0

(1− qn−α

στ )(
1− qn

σ

) (
1− qn

τ

) . (2.25)

Here α, β, γ ∈ N0 ∈ {0, 1, 2, · · · } are nonnegative natural numbers and 0 < q < 1, yielding a
four-parameter space of amplitudes modulo overall normalization.
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2.3.1 Physical spectrum

As described in eq. (2.2), the auxiliary kinematic variables σ and τ are related by an
affine transformation to the physical Mandelstam variables s and t. Consistent with
eq. (2.2), we now define a convenient parameterization that has been employed in previous
analyses [1, 8–10],

σ = 1 + (q − 1)
(
s

µ2 − δ
)

τ = 1 + (q − 1)
(
t

µ2 − δ
)
.

(2.26)

The variables δ and µ2 technically constitute fifth and sixth physical parameters for our
amplitudes. These quantities did not make an appearance in our earlier analysis because
they have no effect on the constraint of polynomial residues and only appear when mapping
σ and τ to s and t. Since µ2 simply controls the overall scale of masses, it is largely
irrelevant. In contrast, δ sets the offset of the lightest mass from zero and hence will be
crucial in our analysis of partial wave unitarity.

The mapping in eq. (2.26) implies that our amplitude in eq. (2.25) has the exact same
mass spectrum as the Coon amplitude,

m2
n = µ2 (δ + [n]q) , (2.27)

where [n]q is the q-deformed integer,

[n]q = 1− qn

1− q = 1 + q + q2 + · · · qn−1. (2.28)

As in the case of the Coon amplitude, we will assume that the mass-squared of the external
states is equal to that of the lowest state in the spectrum, m2

0 = µ2δ. Also, note that the
q → 1 limit generates the evenly spaced and unbounded Regge spectrum in masses, m2

n ∼ n,
of the Veneziano amplitude of string theory.

On the other hand, in our amplitude, the pattern of exchanged spins differs markedly
from that of string theory. Recall that on the kth pole at σ → qk, the residue Rk is a
polynomial in τ with powers ranging from γk + β to (1 + γ)k + α+ β. After recasting τ in
terms of t using eq. (2.26), we see that Rk becomes a polynomial in t with powers ranging
from 0 to5

`max(k) = (1 + γ)k + α+ β. (2.29)

In summary, we have constructed a family of amplitudes in which the intercept and slope
of the Chew-Frautschi plot for the (α, β, γ) theory — plotting the highest-spin state as
a function of pole number k — is customizable. As in the Coon amplitude, the Regge
trajectory, in terms of maximum spin as a function of energy, is logarithmic by eq. (2.27),
rather than the linear trajectory of Veneziano. See figure 1 for an illustration.

5Note that for the special case of δ = 1/(q − 1), the spin ranges from γk + β to `max(k).
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<latexit sha1_base64="AiTZxpsCkJxOJjEUS2mS1mD6Z44=">AAACAnicbVDLSsNAFL3xWesr6krcDBbBjSUpoi6LblxWsA9o2jCZTtqhM0mYmQglFDf+ihsXirj1K9z5N07bLLT1wOUezrmXmXuChDOlHefbWlpeWV1bL2wUN7e2d3btvf2GilNJaJ3EPJatACvKWUTrmmlOW4mkWAScNoPhzcRvPlCpWBzd61FCOwL3IxYygrWRfPvQCyUmmfCH3cqZ8J1uZZx5IjXNt0tO2ZkCLRI3JyXIUfPtL68Xk1TQSBOOlWq7TqI7GZaaEU7HRS9VNMFkiPu0bWiEBVWdbHrCGJ0YpYfCWJqKNJqqvzcyLJQaicBMCqwHat6biP957VSHV52MRUmqaURmD4UpRzpGkzxQj0lKNB8Zgolk5q+IDLDJRJvUiiYEd/7kRdKolN2Lsnt3Xqpe53EU4AiO4RRcuIQq3EIN6kDgEZ7hFd6sJ+vFerc+ZqNLVr5zAH9gff4AiUuW4Q==</latexit>

m2
k �m2

0

µ2

<latexit sha1_base64="JslEF0Zjmr3RKZAtBv/ZdXDAOKI=">AAACH3icbZDLSsNAFIYnXmu8RV26GSwWVyWptXVZdOOygr1AE8pkOmmHTiZhZiKUkDdx46u4caGIuOvbOG2zqK0/DPx85xzOnN+PGZXKtqfGxubW9s5uYc/cPzg8OrZOTtsySgQmLRyxSHR9JAmjnLQUVYx0Y0FQ6DPS8cf3s3rnmQhJI/6kJjHxQjTkNKAYKY36Vq3kQNc1S64KBMJpLUvr2TKoZunNAsCcVLL0OutbRbtszwXXjZObIsjV7Fs/7iDCSUi4wgxJ2XPsWHkpEopiRjLTTSSJER6jIelpy1FIpJfO78vgpSYDGERCP67gnC5PpCiUchL6ujNEaiRXazP4X62XqODWSymPE0U4XiwKEgZVBGdhwQEVBCs20QZhQfVfIR4hnYLSkZo6BGf15HXTrpSdWtl5rBYbd3kcBXAOLsAVcEAdNMADaIIWwOAFvIEP8Gm8Gu/Gl/G9aN0w8pkz8EfG9Bc3L6Cr</latexit>

1
6
7
4
5
2
3

<latexit sha1_base64="OtFut2t1oeeBbCZBcPqXrEbV6x4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0swm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBP0IzqSPOSMmlzqoxCDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+a0zcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa88TMuk9SgZItFYSqIiUn+OBlyhcyIqSWUKW5vJWxMFWXGxlOxIXjLL6+S9kXdu6p7D5e1xm0RRxlO4BTOwYNraMA9NKEFDMbwDK/w5kTOi/PufCxaS04xcwx/4Hz+AA9ejkE=</latexit>

`

<latexit sha1_base64="BMGfJqQHAbhrGMxLis45Jr0yHqg=">AAACBnicbVDLSgMxFM3UV62vUZciBIvQQikzIupGKLpxWcG2Qmcod9K0DU1mhiQjlKErN/6KGxeKuPUb3Pk3pu0stPWEXA7n3EtyTxBzprTjfFu5peWV1bX8emFjc2t7x97da6ookYQ2SMQjeR+AopyFtKGZ5vQ+lhREwGkrGF5P/NYDlYpF4Z0exdQX0A9ZjxHQRurYhyUPeDyAihdQbWofhIDyZcmpmFPu2EWn6kyBF4mbkSLKUO/YX143IomgoSYclGq7Tqz9FKRmhNNxwUsUjYEMoU/bhoYgqPLT6RpjfGyULu5F0txQ46n6eyIFodRIBKZTgB6oeW8i/ue1E9278FMWxommIZk91Es41hGeZIK7TFKi+cgQIJKZv2IyAAlEm+QKJgR3fuVF0jypumdV9/a0WLvK4sijA3SESshF56iGblAdNRBBj+gZvaI368l6sd6tj1lrzspm9tEfWJ8/qfqWqw==</latexit>

(↵,�, �) = (0, 0, 0)

<latexit sha1_base64="maY5H75yoLbHAJO0Qagak9JdQn8=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68diC/YA2lM120q7dbOLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LejBP0IzqQPOSMGivVH3ulsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWrX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD3ZWM+w==</latexit>q

0 2 4 6 8
0

2

4

6

8

10

12

14

-4 -3 -2 -1 0
0

2

4

6

8

10

12

14

<latexit sha1_base64="DFWXlOpDNAmKtkRFM22AZLyJm0Y=">AAACCXicbVC7TsMwFHXKq5RXgJHFokJioUoqBIwVLIxFog+pSSPHdVqrthPZDlIUdWXhV1gYQIiVP2Djb3DbDNBypKt7dM69su8JE0aVdpxvq7Syura+Ud6sbG3v7O7Z+wdtFacSkxaOWSy7IVKEUUFammpGuokkiIeMdMLxzdTvPBCpaCzudZYQn6OhoBHFSBspsKEXSYRzHoz7dXgGeeBREemsX5/kHk9NC+yqU3NmgMvELUgVFGgG9pc3iHHKidCYIaV6rpNoP0dSU8zIpOKliiQIj9GQ9AwViBPl57NLJvDEKAMYxdKU0HCm/t7IEVcq46GZ5EiP1KI3Ff/zeqmOrvyciiTVROD5Q1HKoI7hNBY4oJJgzTJDEJbU/BXiETLRaBNexYTgLp68TNr1mntRc+/Oq43rIo4yOALH4BS44BI0wC1oghbA4BE8g1fwZj1ZL9a79TEfLVnFziH4A+vzB74zmb0=</latexit>

m2
k �m2

1
µ2

<latexit sha1_base64="J19e7sRTC+gkhE2QUCgmPhDFMX0=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIsgCCURUY9FLx4rWFtoQplsN+3SzWbZ3Qgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5keRMG8/7dkorq2vrG+XNytb2zu5edf/gUaeZIrRFUp6qToSaciZoyzDDaUcqiknEaTsa3U799hNVmqXiwYwlDRMcCBYzgsZKQYBcDvEsiKjBXrXm1b0Z3GXiF6QGBZq96lfQT0mWUGEIR627vidNmKMyjHA6qQSZphLJCAe0a6nAhOown908cU+s0nfjVNkSxp2pvydyTLQeJ5HtTNAM9aI3Ff/zupmJr8OcCZkZKsh8UZxx16TuNAC3zxQlho8tQaKYvdUlQ1RIjI2pYkPwF19eJo/ndf+y7t9f1Bo3RRxlOIJjOAUfrqABd9CEFhCQ8Ayv8OZkzovz7nzMW0tOMXMIf+B8/gC7apF9</latexit>

↵+ �

<latexit sha1_base64="OtFut2t1oeeBbCZBcPqXrEbV6x4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0swm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBP0IzqSPOSMmlzqoxCDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+a0zcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa88TMuk9SgZItFYSqIiUn+OBlyhcyIqSWUKW5vJWxMFWXGxlOxIXjLL6+S9kXdu6p7D5e1xm0RRxlO4BTOwYNraMA9NKEFDMbwDK/w5kTOi/PufCxaS04xcwx/4Hz+AA9ejkE=</latexit>

`

<latexit sha1_base64="utvlL9Xmy+tUoLjH0+aPqBgKxRY=">AAAB+3icbVDLSgMxFM3UV62vsS7dBIvgQupMFRWkUHTjsoJ9QDuUO2mmDU1mxiQjlqG/4saFIm79EXf+jeljoa3ncuFwzr3k5vgxZ0o7zreVWVpeWV3Lruc2Nre2d+zdfF1FiSS0RiIeyaYPinIW0ppmmtNmLCkIn9OGP7gZ+41HKhWLwns9jKknoBeygBHQRurY+Ydy6eT0uH1lqgdCQNnp2AWn6EyAF4k7IwU0Q7Vjf7W7EUkEDTXhoFTLdWLtpSA1I5yOcu1E0RjIAHq0ZWgIgiovndw+wodG6eIgkqZDjSfq740UhFJD4ZtJAbqv5r2x+J/XSnRw6aUsjBNNQzJ9KEg41hEeB4G7TFKi+dAQIJKZWzHpgwSiTVw5E4I7/+VFUi8V3fOie3dWqFzP4siifXSAjpCLLlAF3aIqqiGCntAzekVv1sh6sd6tj+loxprt7KE/sD5/AHx3ks0=</latexit>

q = 2/3, � = 0

<latexit sha1_base64="tDQi2yMJBKtJKpPQWS90T8mXea4=">AAAB9XicbVDLTsMwENzwLOFV4MjFoqLiVCUVAo4VXDgWiT6kJlSO67RWHSeyHVAV9T+4cAAhrvwLN/4GN80BWkba1WhmV15PkHCmtON8Wyura+sbm6Ute3tnd2+/fHDYVnEqCW2RmMeyG2BFORO0pZnmtJtIiqOA004wvpn5nUcqFYvFvZ4k1I/wULCQEayN9FB1kOfZVTfv9X654tScHGiZuAWpQIFmv/zlDWKSRlRowrFSPddJtJ9hqRnhdGp7qaIJJmM8pD1DBY6o8rP86ik6NcoAhbE0JTTK1d8bGY6UmkSBmYywHqlFbyb+5/VSHV75GRNJqqkg84fClCMdo1kEaMAkJZpPDMFEMnMrIiMsMdEmKNuE4C5+eZm06zX3oubenVca10UcJTiGEzgDFy6hAbfQhBYQkPAMr/BmPVkv1rv1MR9dsYqdI/gD6/MHXb+P1Q==</latexit>

0

1

2

<latexit sha1_base64="obtFI3aS9TSiXIwOsdAyhPnIvJM=">AAACCXicbVDLSgNBEJyNrxhfqx69DAYhgRB3o6gQAkEvHiOYB2SX0DuZmCGzD2dmhRBy9eKvePGgiFf/wJt/4yTZgyYWNBRV3XR3eRFnUlnWt5FaWl5ZXUuvZzY2t7Z3zN29hgxjQWidhDwULQ8k5SygdcUUp61IUPA9Tpve4GriNx+okCwMbtUwoq4PdwHrMQJKSx0T3+MKLh2fFJyyU845wKM+FByPKshXclbBynfMrFW0psCLxE5IFiWodcwvpxuS2KeBIhykbNtWpNwRCMUIp+OME0saARnAHW1rGoBPpTuafjLGR1rp4l4odAUKT9XfEyPwpRz6nu70QfXlvDcR//PasepduCMWRLGiAZkt6sUcqxBPYsFdJihRfKgJEMH0rZj0QQBROryMDsGef3mRNEpF+6xo35xmq5dJHGl0gA5RDtnoHFXRNaqhOiLoET2jV/RmPBkvxrvxMWtNGcnMPvoD4/MHBvqWvg==</latexit>

q = 2/3, (↵,�) = (0, 0)

-4 -3 -2 -1 0
0

5

10

15

20

25

<latexit sha1_base64="DFWXlOpDNAmKtkRFM22AZLyJm0Y=">AAACCXicbVC7TsMwFHXKq5RXgJHFokJioUoqBIwVLIxFog+pSSPHdVqrthPZDlIUdWXhV1gYQIiVP2Djb3DbDNBypKt7dM69su8JE0aVdpxvq7Syura+Ud6sbG3v7O7Z+wdtFacSkxaOWSy7IVKEUUFammpGuokkiIeMdMLxzdTvPBCpaCzudZYQn6OhoBHFSBspsKEXSYRzHoz7dXgGeeBREemsX5/kHk9NC+yqU3NmgMvELUgVFGgG9pc3iHHKidCYIaV6rpNoP0dSU8zIpOKliiQIj9GQ9AwViBPl57NLJvDEKAMYxdKU0HCm/t7IEVcq46GZ5EiP1KI3Ff/zeqmOrvyciiTVROD5Q1HKoI7hNBY4oJJgzTJDEJbU/BXiETLRaBNexYTgLp68TNr1mntRc+/Oq43rIo4yOALH4BS44BI0wC1oghbA4BE8g1fwZj1ZL9a79TEfLVnFziH4A+vzB74zmb0=</latexit>

m2
k �m2

1
µ2

<latexit sha1_base64="OtFut2t1oeeBbCZBcPqXrEbV6x4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0swm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBP0IzqSPOSMmlzqoxCDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+a0zcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa88TMuk9SgZItFYSqIiUn+OBlyhcyIqSWUKW5vJWxMFWXGxlOxIXjLL6+S9kXdu6p7D5e1xm0RRxlO4BTOwYNraMA9NKEFDMbwDK/w5kTOi/PufCxaS04xcwx/4Hz+AA9ejkE=</latexit>

`

<latexit sha1_base64="tDQi2yMJBKtJKpPQWS90T8mXea4=">AAAB9XicbVDLTsMwENzwLOFV4MjFoqLiVCUVAo4VXDgWiT6kJlSO67RWHSeyHVAV9T+4cAAhrvwLN/4GN80BWkba1WhmV15PkHCmtON8Wyura+sbm6Ute3tnd2+/fHDYVnEqCW2RmMeyG2BFORO0pZnmtJtIiqOA004wvpn5nUcqFYvFvZ4k1I/wULCQEayN9FB1kOfZVTfv9X654tScHGiZuAWpQIFmv/zlDWKSRlRowrFSPddJtJ9hqRnhdGp7qaIJJmM8pD1DBY6o8rP86ik6NcoAhbE0JTTK1d8bGY6UmkSBmYywHqlFbyb+5/VSHV75GRNJqqkg84fClCMdo1kEaMAkJZpPDMFEMnMrIiMsMdEmKNuE4C5+eZm06zX3oubenVca10UcJTiGEzgDFy6hAbfQhBYQkPAMr/BmPVkv1rv1MR9dsYqdI/gD6/MHXb+P1Q==</latexit>

0

1

2

<latexit sha1_base64="1HbveT5JU6V0eK6wHlVYfExiar0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhN7JbDJmZnaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bJsk0ZXWaiES3IjRMcMXqllvBWqlmKCPBmtHwduo3n5g2PFEPdpSyUGJf8ZhTtE5qdPooJXZLZb/iz0CWSZCTMuSodUtfnV5CM8mUpQKNaQd+asMxasupYJNiJzMsRTrEPms7qlAyE45n107IqVN6JE60K2XJTP09MUZpzEhGrlOiHZhFbyr+57UzG1+HY67SzDJF54viTBCbkOnrpMc1o1aMHEGqubuV0AFqpNYFVHQhBIsvL5PGeSW4rAT3F+XqTR5HAY7hBM4ggCuowh3UoA4UHuEZXuHNS7wX7937mLeuePnMEfyB9/kDiOOPGw==</latexit>�

Figure 1. Chew-Frautschi plots depicting the spin ` and mass squared m2
k for the modes exchanged

at the kth level in our amplitudes. Top: for (α, β, γ) = (0, 0, 0) and various values of q, we see
how the logarithmic Regge trajectories and accumulation points of the original Coon amplitude
(q < 1) interpolate into the linear trajectories and unbounded spectrum of the Veneziano amplitude
(q = 1). Bottom left: for q = 2/3, different values of α+ β add linearly to `max(k), though α and β
enter independently in the actual amplitude. Bottom right: for q = 2/3, different values of γ add
multiplicatively to `max(k). Note that the colored dots are overlayed, so it should be understood
that the states represented by pink, yellow, and teal have spins ranging from `max(k) down to 0 and
all first appear at m2

0.
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2.3.2 Kinematic limits

Next, let us consider the amplitude in various kinematic limits. We begin with the low-
energy limit, which we take to mean the kinematic regime in which the external momenta
are close to the mass of the lowest-lying modes in the spectrum. This corresponds to taking
σ, τ → 1 in eq. (2.25), yielding the infrared amplitude,

AIR(σ, τ) = lim
σ,τ→1

A(σ, τ) = −cαβγ
(q−α; q)α
(q; q)∞

( 1
1− σ + 1

1− τ

)
+ · · · , (2.30)

where we have defined the q-Pochhammer symbol,

(r; q)n =
n−1∏
k=0

(1− rqk). (2.31)

In the case where the lowest-lying modes are massless, this corresponds to AIR(s, t) ∼ 1
s + 1

t ,
which is the amplitude of massless cubic scalar theory.6

Furthermore, we can trivially compute the behavior of the amplitude at high-energy,
fixed-angle scattering, since the infinite product in eq. (2.25) trivially asymptotes to unity.
Taking σ, τ → −∞ in eq. (2.25), we obtain the following scaling for the ultraviolet amplitude,

logAUV(σ, τ) = lim
σ,τ→−∞

logA(σ, τ)

= log
[
cαβγ(στ)α+βq(1+γ) logσ

log q
log τ
log q

]
+ · · ·

= (α+ β)(log σ + log τ) + (1 + γ) log σ log τ
log q + · · · ,

(2.32)

which is of course nothing more than the logarithm of theW prefactor. The result in eq. (2.32)
implies that at intermediate high energies the amplitude has poor but still polynomial
behavior, AUV ∼ (στ)α+β . However, at extreme high energies, far above the accumulation
point, the amplitude exhibits softened behavior, AUV ∼ exp

[
(1 + γ) log σ log τ

log q

]
. Note that

since q < 1 and γ ≥ 0, the coefficient of log σ log τ is negative, so the ultraviolet behavior
improves indefinitely. By the same logic, the Regge growth is ARegge ∼ σα+β+(1+γ) log τ/ log q.
If we impose Regge boundedness, then α + β ≤ 2, which as we will see later is also
apparently required by partial wave unitarity in conjunction with imposing additional
physical requirements.

In our analysis we have assumed throughout that the external states are scalars. But
by multiplying these scalar amplitudes by polarization-dependent kinematic factors, we can
easily derive putative expressions for higher-spin external states. That said, this procedure
will invariably introduce additional powers of momenta, so the above infrared and ultraviolet
expressions asymptotics will all be modified. In particular, there is a general tension between
lifting to higher-spin external states and maintaining Regge boundedness.

6Note that the would-be double pole in the expansion, scaling as (1 −σ)−1(1 − τ)−1, has a coefficient
∼ cαβγ(q−α; q)∞/(q; q)2

∞, which vanishes for α ≥ 0. Equivalently, in the notation we will introduce in
section 2.3.5, the would-be 1/st pole for massless external states has a coefficient ∼ dαβγq

α/Γq(−α), which
vanishes for nonnegative integers α due to the poles in the q-gamma function.
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2.3.3 Branch cuts

As we have seen in eq. (2.32), our new amplitudes exhibit branch cuts ending at the
accumulation point in the spectrum. As we noted earlier, ref. [11] closely examined the
uniqueness of the Veneziano amplitude but specifically assumed the absence of accumulation
points in their arguments. That said, ref. [11] did raise concerns about unitarity of the
Coon amplitude on account of its double branch cut at high energies of the form

logAUV(s, t) ∼ − log(−s) log(−t), (2.33)

which also appears in our amplitudes. However, as calculated in ref. [1] using the results of
ref. [15], string theory itself exhibits amplitudes with precisely this behavior, arising from
the scattering of open strings ending on a D-brane in AdS. We therefore cannot rule out any
of the accumulation-point generalizations of the Veneziano amplitude on the basis of branch
cut singularities, provided string theory is consistent. Instead, we check unitarity directly
by computing the residues of all partial waves and demanding positivity, as in section 3.

2.3.4 Relation to Coon amplitude

The original analysis of Coon [7] improperly omitted the amplitude prefactor W (σ, τ), but
this was later rectified in refs. [8, 16]. All of these past results correspond to a special case
of our amplitudes for (α, β, γ) = (0, 0, 0).

Conversely, we can recast the amplitude for general (α, β, γ) as a natural multi-parameter
deformation of the Coon amplitude. In particular, defining

σ = q−ασ̃

τ = q−ατ̃

q = q̃1+γ ,

(2.34)

then our amplitude in eq. (2.25) becomes

A(σ, τ) = c̃αβγ(σ̃τ̃)β−αγ q̃
log σ̃
log q̃

log τ̃
log q̃

∞∏
n=0

(
1− q̃(1+γ)(n+α)

σ̃τ̃

)
(
1− q̃(1+γ)(n+α)

σ̃

) (
1− q̃(1+γ)(n+α)

τ̃

) . (2.35)

This expression is literally the Coon amplitude expressed in terms of σ̃ and τ̃ , with two
small differences: a) there is an additional factor of (σ̃τ̃)β−αγ out front, and b) the infinite
product effectively runs over (1 + γ)(N0 + α) rather than N0.

By construction, every residue of the Coon amplitude on a pole in σ yields a polynomial
in τ . The deformation in a) clearly preserves this property, since it multiplies the Coon
amplitude by an overall monomial in σ and τ . Furthermore, we could have more directly
arrived at the deformation in b) by solving the polynomial residue constraint for the ansatz
in eq. (2.5) but with the product running over (1 + γ)N0 + α rather than N0. Note that the
same is not true for a product ansatz running over an arbitrary subset of the integers. In
this more general case the residues will be nonpolynomial.
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2.3.5 Relation to Veneziano amplitude

In order to relate our amplitudes to those of Veneziano, let us examine specific values of q.
To ensure smooth limits as q → 0 and q → 1, we rescale the overall normalization of the
amplitude cαβγ by

cαβγ = dαβγ(1− q)1−αqα
∞∏
n=0

(
1− qn+1). (2.36)

Next, recall the definition of the q-gamma function,

Γq(x) = (q; q)∞
(qx; q)∞

(1− q)1−x, (2.37)

expressed in terms of the q-Pochhammer symbol in eq. (2.31). The latter reduces to
the usual gamma function Γ(x) for q → 1. In terms of these functions, we obtain the
simple expression

A(σ, τ) = dαβγq
α(στ)α+βq(1+γ) logσ

log q
log τ
log q

Γq
(
− log σ

log q

)
Γq
(
− log τ

log q

)
Γq
(
−α− log σ

log q −
log τ
log q

) , (2.38)

which is just a rewriting of the amplitude in eq. (2.25).
Now let us take the q → 1 limit. First, we note that the mass spectrum is obtained

from eq. (2.27) by sending the q-deformed integers [n]q to the regular integers n, so

m2
n = µ2 (δ + n) . (2.39)

This is precisely the evenly spaced and unbounded mass spectrum of the Veneziano amplitude.
However, as we will soon see, the distribution of spins is markedly different.

Second, we take the q → 1 limit of the amplitude in eq. (2.38), which is by construction
smooth. Since σ, τ → 1 when q → 1, the dependence on β from the prefactor disappears in
the limit. Further, using that Γq(− log σ

log q ) q→1= Γ(− s
µ2 + δ), we find that

A(s, t) q→1= dαβγ
Γ
(
− s
µ2 + δ

)
Γ
(
− t
µ2 + δ

)
Γ
(
−α− s+t

µ2 + 2δ
) , (2.40)

where we have also transformed to the physical s and t Mandelstam variables. For α = 0,
the amplitude in eq. (2.40) is literally the Veneziano amplitude, where 1/µ2 and −δ play
the respective roles of α′ and α0. Remarkably, for α 6= 0 we obtain a new deformation
of the Veneziano amplitude that exhibits the usual string spectrum — that is, without
accumulation points — but encodes a shifted distribution of spin exchanges. In particular,
at the kth mass level, we observe a tower of exchanged modes with spin 0 to k + α.

3 Unitarity bounds

In this section we derive positivity bounds on our amplitudes following from partial wave
unitarity. We begin with an analytic approach, deriving positivity bounds that are simple
to understand before constructing the general case. Afterwards, we numerically evaluate
the general positivity bounds in order to carve out the space of consistent theories.
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3.1 Analytic positivity

Our starting point is the residue of the four-parameter amplitude in eq. (2.25) evaluated at
the simple pole at σ → qk, yielding the compact expression7

Rk(τ) = lim
σ→qk

(
1− qk

σ

)
A(σ, τ) = cαβγq

k(α+β)τ (1+γ)k+α+β

k+α−1∏
n=0

(
1− qn

τqk+α

)
∏∞
j=0,j 6=k

(
1− qj

qk

) . (3.1)

As advertised, this residue is a polynomial in τ .
To streamline our positivity analysis, we will simplify equations by using ∼ to denote

expressions that have the same sign, modulo magnitudes, so for example

qk(α+β) ∼ 1 and
∞∏

j=0,j 6=k

(
1− qj

qk

)
∼ (−1)k. (3.2)

Dropping all factors that do not affect the overall sign, we obtain

Rk(τ) ∼ cαβγ(−1)kτ (1+γ)k+α+β
(

1
τqk+α ; q

)
k+α

∼ cαβγ(−1)kτ (1+γ)k+α+β
k+α∑
j=0

[k+α
j

]
q

(
− 1
τqk+α

)j
q
[j
2
]

∼ cαβγ
k+α∑
j=0

(−1)j+k
[k+α
j

]
q
q
[j
2
]
−j(k+α)τ (1+γ)k+α+β−j .

(3.3)

In the last line we have expanded the residue to obtain the precise coefficients of each term
in the τ expansion. Here we have used the following formulas for the q-Pochhammer symbol
in terms of q-binomial coefficients,

(r; q)n =
n∑
j=0

[n
j

]
q
(−r)jq

[j
2
]

where
[n
j

]
q

= [n]!q
[n− j]!q[j]!q

=
j−1∏
i=0

1− qn−i

1− qi+1 , (3.4)

where the q-factorial is [n]q! = (q; q)n/(1− q)n and
[n
j

]
is the standard binomial coefficient.

In order to evaluate the positivity of each partial wave, we recast the τ -dependence
residue in terms of the physical scattering angle θ via

cos θ = x = 1 + 2t
s− 4µ2δ

. (3.5)

As previously noted, following the case of the Veneziano amplitude and the unitarity analysis
of ref. [8], we have assumed that the masses of the external states are equal to those of the
lowest-lying state in the exchanged tower, namely, m2

0 = µ2δ. With this relation, we rewrite

7Modulo positive constant factors, this formula extracts the residue on a physical factorization channel,
so lim

σ→qk
(1 − qk

σ
)A(σ, τ) ∼ lim

s→m2
k

(m2
k − s)A(s, t).
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the auxiliary kinematic variable on the pole σ → qk, defining parameters akin to the Coon
amplitude analysis of ref. [8],

τ = −bk(x− x∞,k)

bk = 1− qk + 3δ(q − 1)
2

xn,k = 3− qk + δ(q − 1)− 2qn−k−α

1− qk + 3δ(q − 1) ,

(3.6)

where we define xn,k for later convenience and x∞,k = limn→∞ xn,k. Written in terms of x
defined in eq. (3.5), the residue has dependence on five parameters, (q, α, β, γ, δ). The sixth
parameter µ2, defined in eq. (2.26), drops out of the partial wave unitarity analysis as it
just sets the overall scale of all Mandelstam invariants.

Next, we define the partial wave decomposition as

Rk(x) =
∑
`

ak,`G
(D)
` (x), (3.7)

where the Gegenbauer polynomial8 G(D)
` corresponds to a spin-` partial wave in D spacetime

dimensions. The coefficient of each partial wave is

ak,` =
2D−4

(
D−3

2 + `
)
`!
[
Γ
(
D−3

2

)]2
πΓ(`+D − 3)

∫ +1

−1
dx (1− x2)

D−4
2 G

(D)
` (x)Rk(x), (3.8)

and a necessary and sufficient condition for partial wave unitarity is that

ak,` ≥ 0, (3.9)

so the spectrum does not contain negative-norm states.

3.1.1 Simple bounds

Before conducting a general analysis of all partial waves, we first derive a few simple bounds
that can be extracted straightforwardly from the above formulas. To be concrete, we
compute the leading and subleading partial wave coefficients, ak,`max(k) and ak,`max(k)−1,
derived from the residue on the kth level. Partial wave unitarity enforces that these
coefficients are positive, thus carving out a restricted region of putatively consistent theories
in the (q, α, β, γ, δ) parameter space.

Expanding the residue in eq. (3.3) to its leading and subleading powers of τ , we obtain

Rk(τ) ∼ cαβγ(−1)kτ `max(k)
(

1− [k + α]q
qk+ατ

+ · · ·
)
. (3.10)

Substituting the τ -dependence for x via eq. (3.6) and focusing on the leading partial wave
coefficient, we obtain

Rk(x) ∼ cαβγ(−1)k(3δ − [k]q)`max(k)x`max(k) + · · · . (3.11)

8In conventional mathematical notation, our function G(D)
` (x) is written as C( D−3

2 )
` (x).
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Using that the coefficient of x`max(k) is proportional to ak,`max(k), we find

ak,`max(k) ∼ cαβγ(−1)k(3δ − [k]q)`max(k)

∼ cαβγ(−1)k
(
3δ(1− q)− 1 + qk

)(1+γ)k+α+β
.

(3.12)

Since there must be k such that qk− 1 + 3δ(1− q) 6= 0, it follows that if γ is odd, there exist
k for which [qk− 1 + 3δ(1− q)](1+γ)k > 0, which in turn would imply that ak,`max(k) ∼ (−1)k

times a k-independent constant at large k. This is inconsistent with positivity, so γ must
be even.

Unitarity also forbids δ = 1
3(1−q) , since such an equality would set ak,`max(k) ∼ (−1)kcαβγ .

At very large k, where qk → 0, we have

ak,`max(k) ∼ (−1)α+βcαβγ(1− 3δ(1− q))k+α+β , (3.13)

so we must have cαβγ ∼ (−1)α+β and δ < 1
3(1−q) . Next, considering the case of general k,

we find ak,`max(k) ∼ ([k]q − 3δ)k+α+β , so we must have

δ ≤ 1
3[k]q for all

k ≥ 1, α = β= 0
k ≥ 0, α+ β > 0.

(3.14)

In summary, we conclude that

γ is even, cαβγ ∼ (−1)α+β , and δ ≤


1
3 , α = β= 0
0, α+ β > 0,

(3.15)

which are the necessary conditions implied by unitarity of the leading partial wave coefficient.
Similarly, the coefficient of x`max(k)−1 in the expansion of Rk(x) gives the subleading

partial wave coefficient ak,`max(k)−1 up to a postive factor. From the τ expansion in eq. (3.10)
and the binomial expansion of τ `max(k)−1 in terms of x using eq. (3.6), we have

ak,`max(k)−1 ∼ cαβγ(−1)k+`max(k)(bk)`max(k)
(
−`max(k)x∞,k + [k + α]q

bkqk+α

)
. (3.16)

Using the results of eq. (3.15), cαβγ(−1)k+`max(k) ∼ +1 and bk ∼ +1, so

ak,`max(k)−1 ∼ 2[k + α]q − qk+α`max(k)
(
3− qk + δ(q − 1)

)
. (3.17)

Positivity therefore requires

δ ≥ 2
1− q + [k]q −

2[k + α]q
(1− q)qk+α`max(k) . (3.18)

Among k ≥ 1, the strictest bounds from eq. (3.18) appear to always come from k = 1. We
have the necessary condition

δ ≥ 1 + 2
1− q −

2[1 + α]q
(1 + α+ β + γ)q1+α(1− q) , (3.19)
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which, given the upper bound on δ in eq. (3.15), implies a maximum value of β + γ as a
function of q and α.

Deriving unitarity bounds for ever-more subleading partial waves entails expanding
eq. (3.3) to higher and higher orders, which quickly becomes intractable. We will therefore
turn to a more general analysis in the subsequent sections, computing the explicit form of
all partial wave coefficients analytically and then exploring this space numerically.

Before moving on, let us derive a set of sufficient conditions guaranteeing partial wave
unitarity for β = γ = 0 and arbitrary α. In particular, we observe from eq. (3.1) that for
this choice of parameters, Rk ∼ (−1)αcα00

∏k+α−1
n=0 (−τ + qn−k−α), with no extra factors of

τ . Thus a sufficient condition to ensure positivity of all partial waves is to require that Rk
be a polynomial in x with all positive coefficients. Using that cα00 ∼ (−1)α from eq. (3.15)
and the parameterization in eq. (3.6), we have Rk ∼

∏k+α−1
n=0 bk(x−xn,k), so we can enforce

positivity by demanding that bk ≥ 0 and xn,k ≤ 0 for all n = 0, . . . , k + α− 1. In terms of
the parameters defining our amplitude, these conditions imply

[k]q + 2[n− k − α]q ≤ δ ≤
1
3[k]q, (3.20)

which corresponds to the following sufficient condition for partial wave unitarity for all
theories with β = γ = 0 and arbitrary α:

cα00 ∼ (−1)α and − 2
q

+ 1
1− q ≤ δ ≤ 0. (3.21)

For the special case of α = 0, the lower bound for δ given above matches the sufficient
positivity condition derived for the Coon amplitude in ref. [8].

3.1.2 General bounds

For the sake of completeness, let us now derive a closed formula for all partial wave
coefficients of our amplitudes on their residues. To accomplish this task it will be convenient
to introduce a compact generating function of all Gegenbauer polynomials,

(1− 2xλ+ λ2)−
D−3

2 =
∞∑
`=0

λ`G
(D)
` (x). (3.22)

Convolving this generating function with the residue Rk(x), we obtain a generating function
for all partial wave coefficients,

Rk(λ) =
∫ +1

−1
dxRk(x)(1− 2xλ+ λ2)−

D−3
2

∼ cαβγ(−1)`max(k)−k
k+α∑
j=0

[k+α
j

]
q
q
[j
2
]
−j(k+α)

`max(k)−j∑
i=0

[`max(k)−j
i

]
Qi(λ) (−bkx∞,k)`max(k)−j

(−x∞,k)i ,

(3.23)
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in terms of `max(k) in eq. (2.29) and bk, x∞,k in eq. (3.6), and where we have defined the
function Qi(λ) as

Qi(λ) =
∫ +1

−1
dx (1− x2)

D−4
2 xi(1− 2xλ+ λ2)−

D−3
2

=
√
π

2(1 + λ2)
D−1

2

{
[1+(−1)i](1+λ2)

2i
Γ(1+i)Γ(D−2

2 )
Γ(1+ i

2 )Γ(D+i−1
2 )3F2

[
D−3

4 , D−1
4 , 1+i

2
1
2 ,

D+i−1
2

; 4λ2

(1+λ2)2

]

+ [1−(−1)i]λ
2D−4

Γ(1+ i
2 )Γ(D−2)

Γ(D−3
2 )Γ(D+i

2 )3F2

[
D−1

4 , D+1
4 , 1 + i

2
3
2 ,

D+i
2

; 4λ2

(1+λ2)2

]}

= π

2D−4+i
Γ(D − 3 + i)

Γ
(
D−3

2

)
Γ
(
D−1

2 + i
) × λi + · · · ,

(3.24)
where in the last line we have written the highest power in λ. By unitarity, each partial
wave must be positive, so

ak,` ∼ lim
λ→0

d`Rk(λ)
dλ` ≥ 0. (3.25)

Hence, by demanding positivity of all derivatives of Rk(λ) at λ = 0, we can carve out the
space of unitary amplitudes.

Even more explicitly, by employing various identities involving the Gegenbauer polyno-
mials and traces of nested sums, we can derive a closed-form expression for each partial
wave coefficient, as shown in appendix A:

ak,` =
(
1 + 2`

D−3

)
Γ
(
D−1

2

) (−1)`cαβγqk(α+β)

(q;q)∞(q−k;q)
k

×

×

b
β+γk−`

2 c∑
s=0

k+α∑
j=0

+

⌊
α+β+(1+γ)k−`

2

⌋∑
s= max{0,1+bβ+γk−`

2 c}

k+α∑
j=`+2s−β−γk


[

(j+β+γk)![1−qk+3δ(q−1)]`+2s[3−qk+δ(q−1)]j+β+γk−`−2s

2`+2s+j+β+γk(j+β+γk−`−2s)!s!Γ(D−1
2 +`+s)

(q−k−α;q)k+α−j
(q;q)k+α−j

]
.

(3.26)

The alternating signs in the sum mean that — as is notoriously the case for the Veneziano
amplitude [17] — the partial waves are not manifestly positive. Reading off the unitary
regions of parameter space will therefore require numerical analysis.

3.2 Numerical positivity

At last, we are equipped to numerically ascertain the parameter space of our amplitudes
that is consistent with partial wave unitarity. To achieve this result, we simply evaluate ak,`
using eq. (3.26) for various choices of (q, α, β, γ, δ) and demand its positivity. The space of
parameters is vast, so to visualize the bounds we scan over various choices of the integers
(α, β, γ) and plot the positive regions in the (q, δ) plane.

In figure 2, we have numerically evaluated the partial wave coefficients at the kth mass
level for theories described by discrete choices of α, β ∈ {0, 1, 2} with γ = 0, scanning over
continuous values of (q, δ) and specializing to D = 4 dimensions for concreteness. We then
plot the regions for which all the partial wave coefficients — of spin ` with 0 ≤ ` ≤ `max(k) —
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at a given kth level are positive. For ease of visualization, the plots in figure 2 are displayed
in the (q, qδ) plane. By numerical evaluation, we have not found any consistent regions
with γ 6= 0. It would be interesting to see to what extent these amplitudes satisfy low-spin
dominance [18].

Meanwhile, figure 3 depicts the intersection of all positivity bounds in figure 2. In
particular, the colored area depicts the region in which all positivity bounds computed
for k ∈ {0, . . . , 6} are satisfied. Higher values of k do not appreciably affect this region.
Multiple consistent islands are present.

Another physically important quantity is the critical spacetime dimension Dcrit, which
defines the maximal dimension in which the amplitude remains unitary. It is straightforward
to compute Dcrit for various choices of parameters using eq. (3.26). For example, for the
Veneziano amplitude, corresponding to (q, δ) = (1, 0) and (α, β, γ) = (0, 0, 0), the critical
dimension is Dcrit = 10. Interestingly, this quantity slowly rises with α, so by incrementing
up to α = 2 we obtain Dcrit = 11, while going all the way to α = 10 gives Dcrit = 12. We
leave a more complete investigation of these unitary islands to future work.

3.3 Additional spectral constraints

In principle there exist additional constraints on the space of allowed amplitudes based
on the masses and spins appearing in the spectrum. For example, we see from eq. (2.27)
that for δ < 0, the lowest-lying mode in the spectrum is tachyonic. Depending on the spins
of these states, the presence of tachyonic instabilities can range from a mere nuisance to
something more pathological.

For example, scalar tachyons famously arise in everything from the standard model to
open string theory. In such cases the scalar tachyons condense and there is no fundamental
problem because we have improperly expanded about a saddle point or maximum. While it
is questionable whether one should even be computing amplitudes in such a background,
this is certainly common practice when studying perturbative string tachyon amplitudes.

If, on the other hand, the tachyonic modes carry spin, then the corresponding instability
results in ghost condensation [19] and the spontaneous breaking of Lorentz invariance [20].
Such theories exhibit extreme peculiarities, including violations of the second law of
thermodynamics [21]. In principle, it might be logically possible to tame these issues if the
ghost condensate points in the direction of an extra dimension.

That said, a maximally conservative option is to simply forbid altogether any tachyons
with spin, which we now assume. On the k = 0 pole, the amplitude exhibits the exchange
of states of mass µ2δ and spin ranging from 0 to α + β. Hence, the absence of spinning
tachyons implies that if α+β > 0, then δ ≥ 0. Meanwhile, the k = 1 pole supports states of
mass µ2(δ + 1) and spins ranging 0 to α+ β + γ + 1, so we deduce that δ ≥ −1. Combined
with our positivity results in eq. (3.15), we thus learn that δ ∈ [−1, 1

3 ] for (α, β) = (0, 0),
and δ = 0 otherwise.

Last but not least, we can also impose Weinberg’s theorem [22] forbidding the existence
of interacting massless higher-spin particles with ` > 2. Such states do not have a well-
defined stress-energy tensor and cannot be consistently coupled to gravitons [23]. The
absence of states that are massless higher-spin or spinning tachyons then implies the
bound α+ β ≤ 2.
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<latexit sha1_base64="LGZAfrC+j+Uwz0boY3oHCn6CHaU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gPaUDabTbt0s4m7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuBtRwKRRvoUDJu6nmNA4k7wTj25nfeeLaiEQ94CTlfkyHSkSCUbRS57Efcol0UK25dXcOskq8gtSgQHNQ/eqHCctirpBJakzPc1P0c6pRMMmnlX5meErZmA55z1JFY278fH7ulJxZJSRRom0pJHP190ROY2MmcWA7Y4ojs+zNxP+8XobRjZ8LlWbIFVssijJJMCGz30koNGcoJ5ZQpoW9lbAR1ZShTahiQ/CWX14l7Yu6d1X37i9rDbeIowwncArn4ME1NOAOmtACBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AGEBj4s=</latexit>

q�
<latexit sha1_base64="LGZAfrC+j+Uwz0boY3oHCn6CHaU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gPaUDabTbt0s4m7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuBtRwKRRvoUDJu6nmNA4k7wTj25nfeeLaiEQ94CTlfkyHSkSCUbRS57Efcol0UK25dXcOskq8gtSgQHNQ/eqHCctirpBJakzPc1P0c6pRMMmnlX5meErZmA55z1JFY278fH7ulJxZJSRRom0pJHP190ROY2MmcWA7Y4ojs+zNxP+8XobRjZ8LlWbIFVssijJJMCGz30koNGcoJ5ZQpoW9lbAR1ZShTahiQ/CWX14l7Yu6d1X37i9rDbeIowwncArn4ME1NOAOmtACBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AGEBj4s=</latexit>

q�

<latexit sha1_base64="LGZAfrC+j+Uwz0boY3oHCn6CHaU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gPaUDabTbt0s4m7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuBtRwKRRvoUDJu6nmNA4k7wTj25nfeeLaiEQ94CTlfkyHSkSCUbRS57Efcol0UK25dXcOskq8gtSgQHNQ/eqHCctirpBJakzPc1P0c6pRMMmnlX5meErZmA55z1JFY278fH7ulJxZJSRRom0pJHP190ROY2MmcWA7Y4ojs+zNxP+8XobRjZ8LlWbIFVssijJJMCGz30koNGcoJ5ZQpoW9lbAR1ZShTahiQ/CWX14l7Yu6d1X37i9rDbeIowwncArn4ME1NOAOmtACBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AGEBj4s=</latexit>

q�

<latexit sha1_base64="LGZAfrC+j+Uwz0boY3oHCn6CHaU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gPaUDabTbt0s4m7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuBtRwKRRvoUDJu6nmNA4k7wTj25nfeeLaiEQ94CTlfkyHSkSCUbRS57Efcol0UK25dXcOskq8gtSgQHNQ/eqHCctirpBJakzPc1P0c6pRMMmnlX5meErZmA55z1JFY278fH7ulJxZJSRRom0pJHP190ROY2MmcWA7Y4ojs+zNxP+8XobRjZ8LlWbIFVssijJJMCGz30koNGcoJ5ZQpoW9lbAR1ZShTahiQ/CWX14l7Yu6d1X37i9rDbeIowwncArn4ME1NOAOmtACBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AGEBj4s=</latexit>

q�

<latexit sha1_base64="VNBX3SWrJPXLWLxGyG46quPhvm4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1WvcVmpuXkcRTiBUzgHD66hBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB2CuM6Q==</latexit>q

<latexit sha1_base64="VNBX3SWrJPXLWLxGyG46quPhvm4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1WvcVmpuXkcRTiBUzgHD66hBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB2CuM6Q==</latexit>q

<latexit sha1_base64="VNBX3SWrJPXLWLxGyG46quPhvm4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1WvcVmpuXkcRTiBUzgHD66hBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB2CuM6Q==</latexit>q

<latexit sha1_base64="VNBX3SWrJPXLWLxGyG46quPhvm4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1WvcVmpuXkcRTiBUzgHD66hBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB2CuM6Q==</latexit>q

<latexit sha1_base64="VNBX3SWrJPXLWLxGyG46quPhvm4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1WvcVmpuXkcRTiBUzgHD66hBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB2CuM6Q==</latexit>q

<latexit sha1_base64="VNBX3SWrJPXLWLxGyG46quPhvm4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1WvcVmpuXkcRTiBUzgHD66hBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB2CuM6Q==</latexit>q

<latexit sha1_base64="VNBX3SWrJPXLWLxGyG46quPhvm4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1WvcVmpuXkcRTiBUzgHD66hBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB2CuM6Q==</latexit>q

<latexit sha1_base64="VNBX3SWrJPXLWLxGyG46quPhvm4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1WvcVmpuXkcRTiBUzgHD66hBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB2CuM6Q==</latexit>q

<latexit sha1_base64="VNBX3SWrJPXLWLxGyG46quPhvm4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1WvcVmpuXkcRTiBUzgHD66hBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB2CuM6Q==</latexit>q

<latexit sha1_base64="Fu9hNuyWCJD1cx0XejmnjOWXUvA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipORmUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6tarXvK7U3TyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AzxOM4w==</latexit>

k
<latexit sha1_base64="U1ZCT0kgVPtzRKnLhw91Kkgd9Ho=">AAAB/3icbVDLSsNAFL3xWeMrKrhxEywWVyWpRV0W3LisYB/QhDKZTtqhk0mYmQglduGvuHGhiFt/w51/46TNQlsPzOVwzr3cOydIGJXKcb6NldW19Y3N0pa5vbO7t28dHLZlnApMWjhmsegGSBJGOWkpqhjpJoKgKGCkE4xvcr/zQISkMb9Xk4T4ERpyGlKMlJb61nHF8Tyz4uallpeLvNT7VtmpOjPYy8QtSBkKNPvWlzeIcRoRrjBDUvZcJ1F+hoSimJGp6aWSJAiP0ZD0NOUoItLPZvdP7TOtDOwwFvpxZc/U3xMZiqScRIHujJAayUUvF//zeqkKr/2M8iRVhOP5ojBltortPAx7QAXBik00QVhQfauNR0ggrHRkpg7BXfzyMmnXqu5l1b2rlxtOEUcJTuAUzsGFK2jALTShBRge4Rle4c14Ml6Md+Nj3rpiFDNH8AfG5w8USpI7</latexit>
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4

<latexit sha1_base64="akOWFmKXuNezDED1xRfpnADCwQc=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahgpRdEfVY8OKxgv2AdinZdLYNzWaXJCuUpT/CiwdFvPp7vPlvTNs9aOsLgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38389hMqzWP5aCYJ+hEdSh5yRo2V2lX3wr7zfrni1tw5yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72XzdKTmzyoCEsbJfGjJXf3dkNNJ6EgW2MqJmpJe9mfif101NeOtnXCapQckWg8JUEBOT2e1kwBUyIyaWUKa43ZWwEVWUGZtQyYbgLZ+8SlqXNe+65j1cVepuHkcRTuAUquDBDdThHhrQBAZjeIZXeHMS58V5dz4WpQUn7zmGP3A+fwDoh43t</latexit>

(0, 0, 0)
<latexit sha1_base64="Kd2wHUQCPlNTi+xAl3WjnPzzwyQ=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSJUKCUroh4LXjxWsB/QLiWbZtvQJLskWaEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZemAhuLMbf3tr6xubWdmGnuLu3f3BYOjpumTjVlDVpLGLdCYlhgivWtNwK1kk0IzIUrB2O72Z++4lpw2P1aCcJCyQZKh5xSqyT2hVc9av4ol8q4xqeA60SPydlyNHol756g5imkilLBTGm6+PEBhnRllPBpsVealhC6JgMWddRRSQzQTY/d4rOnTJAUaxdKYvm6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10W2QcZWklim6WBSlAtkYzX5HA64ZtWLiCKGau1sRHRFNqHUJFV0I/vLLq6R1WfOva/7DVbmO8zgKcApnUAEfbqAO99CAJlAYwzO8wpuXeC/eu/exaF3z8pkT+APv8wfqDo3u</latexit>

(0, 1, 0)
<latexit sha1_base64="gGTXJFZTtySuBJU2xIhYiq9ptwE=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQinZIuqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt0qrjVq+HJYruA6zoDWiZuTCuRoDctfg1FEk5BJQwXRuu/i2HgpUYZTwealQaJZTOiUjFnfUklCpr00O3eOLqwyQkGkbEmDMvX3REpCrWehbztDYiZ61VuI/3n9xAS3XsplnBgm6XJRkAhkIrT4HY24YtSImSWEKm5vRXRCFKHGJlSyIbirL6+TTqPuXtfdh6tKE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH65WN7w==</latexit>

(0, 2, 0)

<latexit sha1_base64="p/LRr2K1yuv2aIKgEHKxwuakqd4=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSJUKCUroh4LXjxWsB/QLiWbZtvQJLskWaEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZemAhuLMbf3tr6xubWdmGnuLu3f3BYOjpumTjVlDVpLGLdCYlhgivWtNwK1kk0IzIUrB2O72Z++4lpw2P1aCcJCyQZKh5xSqyT2hW/iqv4ol8q4xqeA60SPydlyNHol756g5imkilLBTGm6+PEBhnRllPBpsVealhC6JgMWddRRSQzQTY/d4rOnTJAUaxdKYvm6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10W2QcZWklim6WBSlAtkYzX5HA64ZtWLiCKGau1sRHRFNqHUJFV0I/vLLq6R1WfOva/7DVbmO8zgKcApnUAEfbqAO99CAJlAYwzO8wpuXeC/eu/exaF3z8pkT+APv8wfqEI3u</latexit>

(1, 0, 0)
<latexit sha1_base64="tJsV1s6bxRvQO7hFLFjkezp2rVk=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSJUKCURUY8FLx4r2A9ol5JNs21oNrskWaEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZekEhhLMbf3tr6xubWdmGnuLu3f3BYOjpumTjVjDdZLGPdCajhUijetMJK3kk0p1EgeTsY38389hPXRsTq0U4S7kd0qEQoGLVOaldIlVTxRb9UxjU8B1olJCdlyNHol756g5ilEVeWSWpMl+DE+hnVVjDJp8VeanhC2ZgOeddRRSNu/Gx+7hSdO2WAwli7UhbN1d8TGY2MmUSB64yoHZllbyb+53VTG976mVBJarlii0VhKpGN0ex3NBCaMysnjlCmhbsVsRHVlFmXUNGFQJZfXiWtyxq5rpGHq3Id53EU4BTOoAIEbqAO99CAJjAYwzO8wpuXeC/eu/exaF3z8pkT+APv8wfrl43v</latexit>

(1, 1, 0)
<latexit sha1_base64="WPm7D9rCtZOh41JRhrzxBQGTLVE=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQIYTdIOox4MVjBPOAJITZSW8yZHZ2mZkVwpKP8OJBEa9+jzf/xkmyB00saCiquunu8mPBtXHdbye3sbm1vZPfLeztHxweFY9PWjpKFMMmi0SkOj7VKLjEpuFGYCdWSENfYNuf3M399hMqzSP5aKYx9kM6kjzgjBortctepVZxLwfFklt1FyDrxMtICTI0BsWv3jBiSYjSMEG17npubPopVYYzgbNCL9EYUzahI+xaKmmIup8uzp2RC6sMSRApW9KQhfp7IqWh1tPQt50hNWO96s3F/7xuYoLbfsplnBiUbLkoSAQxEZn/ToZcITNiagllittbCRtTRZmxCRVsCN7qy+ukVat611Xv4apUd7M48nAG51AGD26gDvfQgCYwmMAzvMKbEzsvzrvzsWzNOdnMKfyB8/kD7R6N8A==</latexit>

(1, 2, 0)

<latexit sha1_base64="4/oxYkW4KQgIckFvei45JsbfTA8=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQinZIuqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt1qo4Zr+HJYruA6zoDWiZuTCuRoDctfg1FEk5BJQwXRuu/i2HgpUYZTwealQaJZTOiUjFnfUklCpr00O3eOLqwyQkGkbEmDMvX3REpCrWehbztDYiZ61VuI/3n9xAS3XsplnBgm6XJRkAhkIrT4HY24YtSImSWEKm5vRXRCFKHGJlSyIbirL6+TTqPuXtfdh6tKE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH65mN7w==</latexit>
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Figure 2. Numerical plots depicting the parameter space for which all partial waves on the kth
residue are unitary. Positive regions are represented in the (q, qδ) plane for various choices of (α, β, γ)
in D = 4. Note that for the (α, β, γ) = (0, 0, 0) and (0, 1, 0) theories, the k = 0 pole is not depicted:
for (0, 0, 0) it is trivially positive, while for the (0, 1, 0) case there exists no choice of (q, δ) consistent
with positivity for k = 0.

In summary, and incorporating our D = 4 numerical results, we arrive at the following
parameter space satisfying partial wave unitarity and free of spinning tachyons or massless
higher-spin states:

δ ∈ [−1, 1
3 ] for (α, β, γ) = (0, 0, 0)

δ = 0 for (α, β, γ) = (1, 0, 0) or (2, 0, 0),
(3.27)

where q ranges freely from 0 to 1. The first line defines the original Coon amplitude and
the second encompasses representatives of our generalizations.

4 Unbounded variations

Up until now, our analysis has focused entirely on amplitudes exhibiting spectra with
accumulation points at finite energy. In this section we consider the opposite regime, in
which the spectrum grows without bound. We consider the cases of st-symmetric and
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Figure 3. Numerical plots depicting the parameter space for which all partial waves on all calculated
residues are unitary. Positive regions are represented in the (q, qδ) plane for various choices of
α, β ∈ {0, 1, 2}, all with γ = 0 and D = 4. The cases (α, β) = (0, 1) and (0, 2) evidently do not
support any consistent region.

stu-symmetric amplitudes, which should be interpreted as deformations of the cyclic and
permutation invariant amplitudes of the open and closed string, respectively.

4.1 Cyclic invariant

As our starting point, we consider the st-symmetric ansatz,

A(σ, τ) = W (σ, τ)
∞∏
n=0

1− σ+τ
g(n) −

στ
h(n)(

1− σ
f(n)

) (
1− τ

f(n)

) , (4.1)

which is reminiscent of eq. (2.5) except that here the infinite products are convergent
because the as yet undetermined functions f(n), g(n), and h(n) are assumed to be divergent
as n→∞. As before, we take f(n) to be monotonic without loss of generality. Here the
variables σ and τ are related to the physical Mandelstam invariants s and t by an affine
transformation.

Peeling off the first p(k) factors of the numerator in analogy with eq. (2.7) and mandating
cancellation of the remaining τ -dependence in the product, we obtain a polynomial residue
constraint that is identical to eq. (2.8) except with f , g, and h sent to their multiplicative
inverses. Thus, we again have p(k) = k + α, for α a nonnegative integer, and the general
solution is given by eq. (2.17) except with f → 1/f , g → 1/g, and h→ 1/h.

Exploiting the freedom in affine transformations of σ and τ , we fix f(0) = 1 and
f(1) = q, where now q > 1. The resulting amplitude is

A(σ, τ) = W (σ, τ)
∞∏
n=0

1− στ
qn−α(

1− σ
qn

) (
1− τ

qn

) . (4.2)

Unlike before, residues of the amplitude are local in τ , so there is not a factor of 1/τk+α that
needs to be cancelled by W , which we assume for simplicity to be monomial. As a result, we
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merely require that W be st-symmetric and analytic in τ on the residue. This uniquely fixes
the prefactor function W (σ, τ) = cαβγ(στ)βqγ

logσ
log q

log τ
log q , where β, γ are nonnegative integers.

The final form of the amplitude for a divergent spectrum is then

A(σ, τ) = cαβγ(στ)βqγ
logσ
log q

log τ
log q

∞∏
n=0

1− στ
qn−α(

1− σ
qn

) (
1− τ

qn

) . (4.3)

Sending q → 1/q, σ → 1/σ, τ → 1/τ , γ → −1− γ, and β → −α− β, we arrive back to the
accumulation-point amplitude in eq. (2.25).

A preliminary analysis of partial wave unitarity for the amplitude in eq. (4.3) suggests
that positivity requires q → 1, corresponding to eq. (2.40) and in agreement with previous
analyses of the original Coon amplitude, which is nonunitary for q > 1. That is, it appears
that the Veneziano amplitude of string theory and its generalizations in eq. (2.40) reside at
the boundary of the consistent region, and constitute the only infinite-product amplitudes
with an unbounded spectrum with polynomial residues. We leave a full analysis of this
amplitude to future work.

4.2 Permutation invariant

Next, let us consider an analogous construction for a fully stu-symmetric amplitude. In
this case, our underlying motivation is of course to investigate the uniqueness of the
Virasoro-Shapiro amplitude of the closed string,

Mstring(s, t) = − 1
stu

Γ(−s)Γ(−t)Γ(−u)
Γ(s)Γ(t)Γ(u) , (4.4)

where s+t+u = 0 for massless external states and we have set all coupling constants and mass
scales to unity and stripped off any external kinematic data associated with polarizations.
Any sensible generalization of the Virasoro-Shapiro amplitude would be of particular interest,
as it might offer an alternative path to unitarizing four-point graviton scattering.9

To this end, it is natural to generalize the approach of our earlier sections and consider
a fully permutation invariant, infinite-product ansatz,

M(σ, τ) = W (σ, τ)
∞∏
n=0

1− σ2+τ2+υ2

g(n) − στυ
h(n)(

1− σ
f(n)

) (
1− τ

f(n)

) (
1− υ

f(n)

) , (4.5)

where σ, τ, υ are auxiliary kinematic variables that are some affine transformation of s, t, u.
Note that these variables are subject to an auxiliary on-shell condition, σ + τ + υ = ζ =
constant. Here f(n), g(n), and h(n) are unknown functions that diverge as n→∞.

Unfortunately, it is far more complicated to solve the polynomial residue constraint for
the permutation invariant ansatz in eq. (4.5) as compared to our earlier cyclic invariant
ansatze. For example, one immediate annoyance is that the auxiliary on-shell condition
effectively introduces a new parameter ζ. Of course, we can instead define σ, τ, υ to be

9While unitary sums of Virasoro-Shapiro amplitudes were constructed in ref. [13], these are not of product
form so we will not encounter them here.
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literally equal to s, t, u for massless particles, effectively setting ζ = 0. However, even in this
case we find that the solutions for f, g, h satisfying the polynomial residue constraint have
zeroes that make the infinite product in eq. (4.5) ill defined unless we construct the product
in a more elaborate way. Similarly difficulties arise if one attempts to construct permutation
invariant amplitudes with bounded spectra starting from an ansatz like eq. (4.5) but with
the kinematic functions inverted to ensure convergence, akin to eq. (2.5).

For this reason, we leave a detailed analysis of this system for later work. That said,
let us remark on one curious solution to the polynomial residue constraint that we have
discovered, which is

M(s, t) = (−1)α+1

stu

Γ(−s)Γ(−t)Γ(−u)
Γ(s− α)Γ(t− α)Γ(u− α) , (4.6)

for some nonnegative integer α. For the special case of α = 0 this is precisely the Virasoro-
Shapiro amplitude in eq. (4.4), while α > 0, we see that the highest spin exchanged on each
pole is finitely increased. Here the spectrum of masses is the same as in string theory, in
agreement with the no-go result of ref. [24].

While this result is enticing, it seems unlikely that the case of general α really offers a
consistent deformation of closed-string amplitudes. In particular, for a bona fide four-point
graviton scattering amplitude, one should dress eq. (4.6) with the polarization-dependent
kinematic function R4, which is the multi-linearization of a quartic Riemann operator. When
α = 0, the massless pole at s = 0 only encodes spin-two graviton exchange. However, for
α > 0, this massless pole also includes higher spins, in direct contradiction with Weinberg’s
theorem. We leave a thorough analysis of the amplitude in eq. (4.6) and its possible cousins
for future work.

5 Discussion

In this paper we have derived a multi-parameter space of Lorentz invariant, four-point,
perturbative scattering amplitudes describing the exchange of an infinite tower of higher-spin
modes. By construction, these amplitudes have i) high-energy behavior that is polynomially
bounded and ii) poles whose residues encode the exchange of finite-spin degrees of freedom.
Our amplitudes can be viewed as generalizations of the Veneziano and Coon amplitudes,
albeit exhibiting modified spin-dependence in their Regge trajectories.

Afterwards, we derived analytic and numerical positivity bounds carving out regions
of parameter space in which partial wave unitarity is satisfied. As far as our analysis
is concerned, the remaining islands of positivity are putatively consistent and could in
principle correspond to amplitudes of physical theories.

Our work leaves numerous avenues for future inquiry. For example, it would be
illuminating to obtain a fully analytic understanding of the conditions for partial wave
unitarity on our parameter space, (q, α, β, γ, δ), as well as the spacetime dimension D.
Another clear direction would be to repeat our analysis with fewer technical assumptions.
For example, our entire setup is based on a product ansatz for the amplitude A(σ, τ ). Also,
as we have noted, there may exist alternative solutions to the constraint of polynomial
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residues, e.g., if we relax the requirement of smoothness on the f, g, h functions or allow W

to be a polynomial. The amplitudes with unbounded spectra described in section 4 are also
worthy of further study.

In terms of the underlying physics, our most pressing concern is to what extent the
amplitudes we have derived here can be generalized to higher point. Indeed, the fact that
there is an abundance of four-particle amplitudes satisfying conditions i) and ii) might
simply be a sign that constraints on four-particle scattering are simply not that strong. If
this is the case, then deformations of higher-point string scattering will be pathological. It
should be noted that there exists prior work constructing higher-point generalizations of
the Coon amplitude [25, 26].

Finally, it would be interesting to understand if there is a more direct physical inter-
pretation of the Coon amplitude and our generalizations thereof. Indeed the spectrum is
remarkably rich: a discretum of hydrogen-like levels culminating at an accumulation point,
above which lies a branch cut suggesting a continuum of ionized states. While string theory
realizes amplitudes with features matching the Coon form [1], a more general physical
understanding is warranted.
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A Analytic partial waves

Consider the (α, β, γ) amplitude defined in eq. (2.25). Recall that, as in the case of the
Coon amplitude [8], we assume that the external particles are scalars whose masses are the
same as the lowest state exchanged in the amplitude, which in our notation is at µ2δ = m2

0.
The residue on the pole at s = m2

k = µ2
(
δ + qk−1

q−1

)
in eq. (2.25) is given by eq. (3.1). By

construction, Rk is a finite polynomial in τ . Written in terms x = cos θ for θ the physical
scattering angle defined in eq. (3.5), we have the pole at σ = qk,

Rk = cαβγq
k(α+β) ∏

j,j 6=k

(
1− qj−k

)−1
×

×
[
1 + 1

2
(
1− qk

)
(1− x) + δ

1− q
2 (3x− 1)

]β+γk
×

×
k+α−1∏
l=0

[
1 + 1

2
(
1− qk

)
(1− x) + δ

1− q
2 (3x− 1)− ql−k−α

]
.

(A.1)
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We can write this expression in terms of the parameters in eq. (3.6) as

Rk = cαβγq
k(α+β)

(q; q)∞(q−k; q)k
(−bk)`max(k)(x− x∞,k)β+γk

k+α−1∏
l=0

(x− xl,k)

= cαβγq
k(α+β)

(q; q)∞(q−k; q)k
(−bk(x− x∞,k))`max(k)

(
− 1
qk+αbk(x− x∞,k)

; q
)
k+α

,

(A.2)

where `max(k) is defined in eq. (2.29). Using eq. (3.4) to rewrite the q-Pochhammer symbol
in terms of q-binomial coefficients, we have

Rk = cαβγq
k(α+β)

(q; q)∞(q−k; q)k
(−bk(x−x∞,k))`max(k)

k+α∑
j=0

q−j(k+α) (bk(x−x∞,k))−j q
j(j−1)

2
[k+α
j

]
q
,

(A.3)
or equivalently, relabeling j → k + α− j,

Rk = (−1)`max(k)cαβγq
k(α+β)

(q; q)∞(q−k; q)k

k+α∑
j=0

(bk(x−x∞,k))β+γk+j q−
(k+α−j)(k+α+j+1)

2
[ k+α
k+α−j

]
q
. (A.4)

Using the binomial theorem, we can rewrite this expression as

Rk = (−1)α+β+(1+γ)k cαβγq
k(α+β)

(q;q)∞(q−k;q)k
×

×

k+α∑
j=0

(bk)j+β+γkq−
(k+α−j)(k+α+j+1)

2
[ k+α
k+α−j

]
q

j+β+γk∑
r=0

(j+β+γk)!
r!(j+β+γk−r)!(−x∞,k)

j+β+γk−rxr

 .
(A.5)

Now, we can rearrange a general double sum via the identity
n∑
j=0

j+N∑
r=0

Mr,jx
r =

N∑
s=0

n∑
j=0

Ms,jx
s +

n∑
p=1

n∑
j=p

MN+p,jx
N+p. (A.6)

Thus, rearranging the sums to group all terms going like xs together, we have

Rk = (−1)α+β+(1+γ)k cαβγq
k(α+β)

(q; q)∞(q−k; q)k

β+γk∑
s=0

k+α∑
j=0

+
α+β+(1+γ)k∑
s=β+γk+1

k+α∑
j=s−β−γk

Qj,s, (A.7)

where

Qj,s = (bk)j+β+γkq−
(k+α−j)(k+α+j+1)

2
[ k+α
k+α−j

]
q

(j+β+γk)!
s!(j+β+γk−s)!(−x∞,k)

j+β+γk−sxs. (A.8)

Now, the monomial xr can be written in terms of the Gegenbauer polynomials,

xr =
br/2c∑
v=0

r!
(
1 + 2(r−2v)

D−3

)
Γ
(
D−1

2

)
2rv!Γ

(
D−1

2 + r − v
) G

(D)
r−2v(x). (A.9)

Expanding Rk in partial waves as in eq. (3.7), we therefore have

ak,` =
β+γk∑
s=0

bs/2c∑
ν=0

k+α∑
j=0

Qj,ν,sδ`,s−2ν +
α+β+(1+γ)k∑
s=β+γk+1

bs/2c∑
ν=0

k+α∑
j=s−β−γk

Qj,ν,sδ`,s−2ν , (A.10)
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where

Qj,ν,s =
(

1 + 2`
D − 3

) Γ
(
D−1

2

)
2sv!Γ

(
D−1

2 + s− v
)(−1)α+β+(1+γ)k cαβγq

k(α+β)

(q; q)∞(q−k; q)k
×

× (bk)j+β+γkq−
(k+α−j)(k+α+j+1)

2
[ k+α
k+α−j

]
q

(j + β + γk)!
(j + β + γk − s)! (−x∞,k)

j+β+γk−s.

(A.11)
Now, one can check that, for any matrix Mv,s, the following identities hold:

N∑
s=0

bs/2c∑
v=0

Mv,sδ`,s−2v =
b(N−`)/2c∑

s=0
Ms,`+2s

N+n∑
s=N+1

bs/2c∑
v=0

Mv,sδ`,s−2v =
b(N+n−`)/2c∑

s=max{0,1+b(N−`)/2c}
Ms,`+2s.

(A.12)

Putting this all together, we obtain

ak,` =
bβ+γk−`

2 c∑
s=0

k+α∑
j=0

Qj,s,`+2s +
bα+β+(1+γ)k−`

2 c∑
s= max{0,1+bβ+γk−`

2 c}

k+α∑
j=`+2s−β−γk

Qj,s,`+2s, (A.13)

which is the closed-form expression for all partial wave coefficients given in eq. (3.26).
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