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semi-classical weak-coupling regime. The instanton background, constructed for ∆ � 1
in [1], has fractional topological charge Q = 1

2 and supports two gaugino zero modes,
yielding a non-vanishing bilinear condensate, which we find to be ∆-independent. Further,
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of the energy eigenstates on any size torus with ’t Hooft twists. In particular, there are two
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the ∆-independence of the condensate, and assuming further that the semi-classical theory is
continuously connected to the strongly-coupled large-T4 regime, we determine the numerical
coefficient of the gaugino condensate: 〈0|trλλ|0〉 = |〈1|trλλ|1〉| = 32π2Λ3, a result equal to
twice the known R4 value. We discuss possible loopholes in the continuity approach that
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1 Introduction

Strongly coupled gauge theories have been under intense study over the past few years,
thanks to the recent developments of generalized global symmetries [2]. These are operations
that implement the group multiplication laws via topological constructions such that the
symmetry operations are supported on topological surfaces that are robust under small
deformations. An ordinary 0-form symmetry G, which acts on point-like particles, is
implemented by operators supported on co-dimension 1 surfaces. These surfaces obey the
group-multiplication laws via fusion rules and give rise to phases valued in G when they
cross the charged objects. Likewise, a 1-form symmetry acts on 1-dimensional objects
and is implemented via co-dimension 2 surfaces. For example, Wilson lines in 4-D SU(N)
pure or super Yang-Mills theories are charged under Z(1)

N 1-form symmetry. The 1-form
symmetry is implemented via topological 2-dimensional surfaces that obey the ZN group
multiplication laws and give rise to ZN phases when they link with Wilson lines. Like
ordinary 0-form symmetries, 1-form symmetries organize the spectrum of a theory into
representations, satisfy Ward identities, and may become anomalous if one tries to gauge
them. In particular, ’t Hooft anomaly matching conditions (or ’t Hooft anomalies for short),
which impose stringent constraints on quantum field theory (QFT), can be generalized to
include anomalies of 1-form symmetries. Detecting the anomaly in 4-D requires defining a
given QFT on manifolds with nontrivial 2-cycles, the typical example being the 4-torus T4.
Generalized ’t Hooft anomalies provide a framework for classifying QFT and its phases.
Many recent works entertained this generalized framework to shed light on a plethora of
asymptotically free gauge theories, including vector-like [3–10] and chiral theories [11, 12].

Assuming a gauge theory generates a mass gap in the infrared (IR), one way to match
its ’t Hooft anomalies is via the formation of condensates. A famous example, and the
subject of this paper, is the formation of gaugino condensates in N = 1 SU(N) super
Yang-Mills theory (SYM), which are needed to match a generalized ’t Hooft anomaly.
This anomaly can be understood as follows. In addition to the Z(1)

N 1-form symmetry
that acts on the Wilson lines, SYM enjoys a Zdχ2N 0-form global discrete chiral, or R,
symmetry. We may gauge the 1-form symmetry by turning on a background gauge field
of Z(1)

N , which is done either by coupling SYM to a ZN TQFT [13] or by activating a ’t
Hooft flux [14, 15]. The latter is a field configuration on T4 that carries a fractional flux
B ∈ H2(T4,ZN ) (i.e. the flux piercing 2-cycles obeys the quantization rule

∫
T2⊂T4 B ∈ 2πZ

N )
and fractional topological charge Q = 1

8π2
∫
T4 B ∧ B ∈ Z

N . In mathematical language, we
consider the PSU(N) ≡ SU(N)/ZN bundle instead of the SU(N) bundle. The former has
a non-trivial Brauer class w ∈ H2(BPSU(N),ZN ) that obstructs the lifting of PSU(N)
to SU(N), and we set B = w. In practice, the PSU(N) flux is turned on by imposing
twisted boundary conditions on the fields that live on T4. Next, we examine the partition
function Z[PSU(N)] of SYM in this background by performing a Zdχ2N rotation. We find
Z[PSU(N)]→ ei

2π
N Z[PSU(N)], and thus, the theory stops being invariant under the action

of Zdχ2N once we gauge the 1-form symmetry. This is the sought generalized ’t Hooft anomaly
— a mixed anomaly between the Z(1)

N 1-form symmetry and the Zdχ2N 0-form discrete chiral
symmetry. The anomaly indicates that the IR theory cannot be trivially gapped. Assuming
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confinement, the theory breaks its Zdχ2N symmetry and forms N vacua separated by domain
walls. The order parameter of Zdχ2N symmetry is the bilinear gaugino condensate 〈trλ2〉 or
higher-order condensates 〈(trλ2)n〉, n > 1 and nmodN 6= 0. The existence of N vacua is
also in accordance with the Witten index [16].

1.1 Gaugino condensate: a historical prelude

Generally speaking, the matching conditions can only provide kinematical constraints and
do not, by themselves yield insights into the details of the IR dynamics of a gauge theory.
One needs an extra guide if, at all, there is a hope to understand the dynamics, e.g., the
condensates. Thanks to supersymmetry, such studies are possible in SYM. These date
back to the early eighties [17–21] (see [22–27] for reviews). The condensate calculations are
based on the Belavin-Polyakov-Schwartz-Tyupkin (BPST) instanton calculus [28]: BPST
instantons are (anti) self-dual Yang-Mills configurations that violate the non-renormalization
theorems of SYM and hence, give a non-zero vacuum expectation value to the condensates.
On dimensional-analysis grounds one can write 〈 trλ2

16π2 〉 = cΛ3, where Λ is the strong-coupling
scale and c is a numerical factor. The exact value of c was a controversial issue that caused
many debates in the past. Generally, there are two methods to compute the bilinear gaugino
condensate in 4-D SYM: the strong-coupling and the weak-coupling instanton methods.

In the first method, we start directly from the 4-D SYM in its strong-coupling regime
and do instanton calculus, as in [17, 18]. A single SU(N) BPST instanton carries integer
topological charge Q ∈ Z, and the configuration with the lowest topological charge Q = 1
admits 2N gaugino zero modes. The saturation of the zero modes in the Q = 1 instanton
background gives a nonzero value to the 2N -point function 〈(trλ2)N 〉, from which one can
naively extract the value of the 2-point function 〈(trλ2)〉 =

[
〈(trλ2)N 〉

]1/N
. A detailed

calculation, keeping track of all numerical coefficients, gives 〈(trλ2)〉 = 2((N − 1)!(3N −
1))−1/N (16π2Λ3)ei 2πk

N , with k = 0, 1, . . . , N − 1. The complex phase results from taking the
Nth root of unity, in accordance with the expectation that the theory admits N distinct
vacua needed to match the generalized ’t Hooft anomaly.

In the weak-coupling instanton method, we consider super QCD with N−1 fundamental
flavors Φi, i = 1, . . . , N − 1, where Φi is a chiral superfield, and give all the flavors small
masses m. We work in the limit |Φi| � ΛQ, where ΛQ is the strong scale in the presence
of quarks. Since there are N − 1 flavors, the gauge group fully abelianizes and we are
well inside the weak-coupling regime. The total superpotential of this theory takes the
from W = mi

jΦ̄jΦi + Λ2N+1
Q

Det(Φ̄Φ) , where the second term is the Affleck-Dine-Seiberg (ADS)
superpotential [20]. The ADS term is nonperturbative in nature and is based on holomorphy
and the symmetry structure of super QCD. It also results from saturating the quarks’
zero modes in the BPST instanton background(the numerical coefficient was obtained1
in [29], and corrected in [30]). Since we are in a weak-coupling limit, the instanton
calculations are reliable. Minimizing the energy, we obtain the supersymmetric vacuum
Φ̄jΦi =

(
m−1)j

i

[
Λ(2N+1)
Q Detm

]1/N
. Finally, we substitute this result back into W to find

1The comparison between the weak-coupling and strong-coupling instanton methods in SU(2) was first
performed in [21], where the correct ratio between the two methods was given.
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W = N
[
Λ2N+1
Q Detm

]1/N
. We then decouple the quarks by taking m� ΛQ, thus, leaving

the weak-coupling regime. Using holomorphy, we can write Weff = NΛ3, where Λ is the
strong scale at the mass threshold, and it exactly coincides with SYM strong scale at the
decoupling limit. Recalling that one can write the holomorphic strong scale as Λ = µeiτ/3N ,
with τ = 4πi

g2(µ) and µ is some arbitrary energy scale, and that 〈trλ2〉 = −16πi∂Weff
∂τ , one

obtains 〈trλ2〉 = 16π2Λ3ei
2πk
N in the k-th vacuum.2

Having two different methods that yield two different answers resulted in many debates
in the literature about the validity of both methods. It was earlier understood that the
strong-coupling instanton method is in tension with the cluster decomposition principle
(CDP). Consider the correlator 〈trλ2(x)trλ2(x′)〉. In the limit |x − x′| → ∞ we expect
〈trλ2(x)trλ2(x′)〉 = 〈trλ2〉2. However, since a BPST instanton cannot saturate 2 gaugino
zero modes, one finds 〈trλ2〉 = 0, contradicting CDP. A possible resolution of this puzzle
was proposed in [32]. It was hypothesized that SYM admits an extra phase with vanishing
bilinear condensate 〈trλ2〉 = 0 and that averaging over the chirally symmetric and non-
symmetric phases gives the result of the strong-coupling instanton method. This hypothesis
was carefully examined in [33] by considering a softly broken N = 2 Seiberg-Witten theory
down to SYM. It was shown that the chirally-symmetric phase is absent, casting doubt on
the averaging hypothesis. Further considerations in [34] excluded the symmetric vacuum.
We also note that the anomaly-matching argument of [35] also precludes such a phase. It
was further shown in [36] that strong-coupling multi-instanton calculations are inconsistent
with CDP.

Extra support to the weak-coupling calculations came from studying SYM on R3 × S1
L,

where S1
L is a small spatial circle with circumference L� (NΛ)−1, and both gauge fields

and gauginos are given periodic boundary conditions on S1
L [31, 37]. Compactification over a

small circle causes this theory to fully abelianize and enter its weakly-coupled regime.3 The
theory on R3 × S1

L admits monopole-instantons, the microscopic constituents of calorons.4
At the supersymmetric vacuum, the monopoles have topological charges of 1/N . Using the
index theorem, we deduce that a single monopole can saturate 2 gaugino zero modes giving
rise to the bilinear condensate. Detailed calculations give 〈 trλ2

16π2 〉 = Λ3, the exact same

2The definition of the strong coupling scale we follow in this paper is given by Λ3 = µ3 e−8π2/Ng2

g2 , the
one used in [25, 26, 31].

3The 4-D coupling constant on R3 × S1
L ceases to run at scale ∼ 1/NL, roughly the W -boson mass.

Taking L� (NΛ)−1, we stay in the weakly-coupled regime.
4A SU(N) caloron with a unit topological charge is composed of N monopole instantons. Calorons are

Yang-Mills (anti) self-dual configurations defined on R3×S1 with integral topological charges and non-trivial
holonomy (the expectation value of the Polyakov’s loop) along S1. A BPST instanton, in contrast, (or more
precisely, the Harrington-Shepard solution [38] defined on R3 × S1) has a trivial holonomy. Calorons were
discovered by Kraan and van Baal [39] using the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction [40]
and independently by Lee and Yi [41] and Lee and Lu [42] in the context of D-branes. Let L and P be the
size of S1 and the holonomy (in units of 1/L). If LP & 1, then the monopole constituents are well-separated
in space, and one can make sense of them in a semi-classical treatment, as in the case of SYM on R3 × S1

L.
In particular, in the supersymmetric vacuum, which preserves the 0-form ZN center symmetry of the theory,
the constituent monopoles are of equal action S = 8π2

Ng2 . In the opposite limit, LP � 1, the monopoles hide
inside the caloron core.
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result from 4-D weak-coupling instanton calculations. The advantage of the compactified
theory over the 4-D theory at weak coupling is that in the former, one can understand
the dynamics responsible for the condensate formation without relying on the miracle of
holomorphy. As a bonus, the proliferation of the monopoles causes the compactified theory
to generate a mass gap and confine, a result that is prohibitively difficult to understand
in 4-D.

The continuity of confinement and condensate between the small and large L limits
may imply that the fractional instantons are responsible for the dynamics on R4, even
though one may not make analytical sense of them in a strongly-coupled setup. The
continuity conjecture was taken seriously over the past decade in supersymmetric and
nonsupersymmetric theories; see [43, 44] for reviews. The conjecture withstood many tests,
but we are still far from a firm conclusion about the role of fractional microscopic objects
in strongly-coupled phenomena. This continuity was mainly tested on R3 × S1

L, and one
wishes to examine whether it holds in other geometries.

One such geometry is T4, very natural from the point of view of lattice practicalities.
Right after ’t Hooft presented his twisted solutions (solutions with twisted boundary
conditions, i.e. PSU(N) bundle solutions, with fractional topological charges) [15], van
Baal studied their mathematical properties [45, 46]. Later, it was argued in a series of
works [47–49], see also the review [50], that (anti) self-dual ’t Hooft fractional instantons can
be seen in realistic simulations of 4-D pure Yang-Mills theory and that such configurations
could be utilized to explain confinement.5 Further, it was argued in [53], via extended lattice
simulations, that ’t Hooft fractional instantons on T4 are ultimately connected to monopole
instantons in the infinite 3-volume limit and finite time6 direction. In particular, it was
shown that an exact SU(2) caloron solution with a unit topological charge and equal-action
constituent monopoles (see Footnote 4) can be constructed on the twisted T4 by gluing two
twisted solutions, each carrying Q = 1

2 charge, along the space directions.7

1.2 Gaugino condensate on asymmetric T4: a summary of the procedure and
results

The possible connection between ’t Hooft’s solutions and monopole-instantons [53] calls for
a serious examination of this finding. Since both the R3 × S1

L monopole-instanton and 4-D
weak-coupling instanton methods give the same gaugino condensate, one wonders whether
the same result can be obtained in the ’t Hooft flux background.8 This is especially timely
after the advent of the new generalized anomalies, which can be easily detected when

5Even before these studies, a program known as the “femtouniverse” utilized the Hamiltonian formalism
on R× T3, to study Yang-Mills theories at small volumes [51]; see [52] for a review.

6Notice that these are simulations in pure Yang-Mills theory, and thus, unlike SYM, there is no distinction
between thermal and spatial circles.

7In fact, there is an obstruction to the existence of Q = 1 (anti) self-dual caloron on T4 with untwisted
boundary conditions [54]. Yet, in practice, one can find a very good approximate self-dual solution even in
the absence of twists.

8We interchangeably use the term “’t Hooft flux background” and “’t Hooft twists.” The latter is more
precise, since it refers to the twist of the boundary conditions, which does not always lead to nonzero “flux,”
i.e. nonzero gauge field strength. Whether such field strength is present or not is a dynamical issue, see
e.g. [16]. We hope that our abuse of terminology does not lead to confusion.
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a QFT is put on T4 with a PSU(N) bundle (or ’t Hooft twisted boundary conditions).
Recently, Ünsal advocated that a refinement of the instanton sum in the partition functions
of SU(N) theories has to be considered: while fractional instantons of PSU(N) bundles
contribute to observables like the gaugino condensate and vacuum energy, the sum over
the fractional objects has to be constrained to yield the integer topological charges of the
SU(N) bundle [55] (see also [52] for an earlier assertion).

In this paper, we put this proposal under scrutiny and perform detailed calculations of
the gaugino condensate on T4 and a PSU(2) bundle.9 Our conclusion is that the condensate
in any of the two vacua is given by 〈0|trλ2|0〉 = |〈1|trλ2|1〉| = 32π2Λ3, with a coefficient
that is twice that obtained via the weak-coupling instanton method on R4 and the semi-
classical calculations on R3 × S1

L. The extra factor of 2 is unexpected and calls for further
serious examinations of the role of the PSU(N) bundles in SU(N) gauge theories and of
the continuity conjecture.

The calculations that lead to this puzzling result are surprisingly rich. The simplest
SU(2) pure Yang-Mills (i.e. Yang-Mills equations with zero source) fractional instanton with
topological charge Q = 1

2 and action S0 = 4π2

g2 was constructed by ’t Hooft in his seminal
work [15]. This solution is abelian in nature, i.e. the gauge field components are along
the Cartan direction. The solution must be (anti) self-dual, otherwise, the fluctuations in
this background will have negative modes signaling instability. Let L1, L2, L3, L4 be the
lengths of the periods in T4. Then, the self-duality of the abelian solution is guaranteed if
and only if L1L2 = L3L4. We dub the T4 that obeys this relation as the self-dual torus,
the simplest one being the symmetric T4 with L1=L2=L3=L4. Given the simplicity of the
abelian solution on the symmetric T4, one is tempted to use it as a source for the gaugino
condensate. According to the index theorem, this background must saturate 2 gaugino zero
modes. Nevertheless, the direct solution of the Dirac equation yields 6 zero modes (four
“undotted” and two “dotted” ones). To make things worse, the extra zero modes source the
super Yang-Mills equations of motion, hinting that such an abelian solution might not be a
consistent background. The resolution of both puzzles could have been achieved had we
been able to show that higher-order corrections (including loops) lift the extra gaugino zero
modes. Although we believe that this should be the case, we were not able to show it in a
satisfactory way.

In order to circumvent this difficulty, we chose to depart from the symmetric self-dual
to the non-self-dual torus. This is both a blessing and a curse. The curse is the technical
difficulty of the problem, while the blessing is that the asymmetric torus enables us to
take various interesting limits, e.g. R × T3 and R2 × T2. If the relation L1L2 = L3L4 is
violated, the abelian solution must be modified to include non-abelian pieces, ensuring
that the solution persists to be (anti) self-dual. To date, there exists no analytical solution
with Q = 1

2 on T4 with arbitrary shape. However, a systematic procedure to deal with
non-self-dual tori was developed in [1]. This method gives an approximate analytical

9The gaugino condensate on a symmetric T4 in the background of ’t Hooft flux was first considered long
ago in [56]. These calculations were solely based on supersymmetry transformations along with dimensional
analysis, and no attempt to determine the numerical coefficient was made.

– 5 –



J
H
E
P
0
1
(
2
0
2
3
)
1
1
8

self-dual solution, with charge |Q| = 1
2 and action S0 = 4π2

g2 , as an expansion in a “detuning”
parameter ∆ ≡ (L3L4 − L1L2)/

√
L1L2L3L4 measuring the deviation from a self-dual T4.

Solving the Dirac equation on a small asymmetric T4 with ∆ � 1 and limiting our
explicit treatment to the lowest order in ∆, we find exactly 2 gaugino zero modes as per the
index theorem. We also verified that the explicit solutions of the fermion zero modes are
consistent with supersymmetry transformations. These modes do not source the Yang-Mills
equations of motion, implying that our approximate solution is a consistent background.
The gauge field fluctuations admit 4 bosonic zero modes (also in accordance with the index
theorem), interpreted as translational moduli. Supersymmetry guarantees the cancelation
between the bosonic and fermionic excited states, leaving only the bosonic and fermion zero
mode integrals to deal with.

The contributions of zero modes to the path integral are taken into account using the
method of collective coordinates, and therefore, we need to integrate over the moduli space
M. To correctly identify the shape and size ofM, we carefully examine all gauge invariant
observables in the background of the fractional instanton on T4. This includes both local
gauge-invariant densities and Wilson loops. While gauge-invariant densities are invariant
under translations over a period on T4, a Wilson loop acquires a Z2 phase.10 Therefore,
we find M ∼ T4 with double the periods of the physical torus to account for the gauge
inequivalent classes. This result is further supported by investigating the Hamiltonian
formalism of the theory. Interestingly, the metric onM is found to be proportional to the
background action and is, hence, independent of ∆. Putting the pieces together, we finally
obtain 〈trλ2〉 = 64π2Λ3, with a coefficient four times the expected number on R4.

To understand the significance of this result, we need to interpret the expectation
value 〈trλ2〉 using the Hamiltonian formalism. Due to the mixed discrete chiral/one-form
center anomaly, the energy eigenstates are doubly degenerate in the background of a ’t
Hooft flux on any torus size: there are 2 vacua that are exchanged under the operation of
chiral transformation, which explains the extra factor of 2, while the relative phase in the
condensate in the two vacua is compensated by the ’t Hooft twist in the Euclidean time
direction [57]. Thus, restricting the condensate to one vacuum, upon taking the limit of
large T4, we obtain 〈0|trλ2|0〉 = |〈1|trλ2|1〉| = 32π2Λ3. This coefficient is twice the known
value on R4 (using the weak-coupling instanton method) or on R3 × S1

L.
We emphasize that our calculations are performed on a small T4, compared to the

strong scale of the theory, and thus, we are well inside the semi-classical regime. The
calculations in this regime are under analytic control, thanks to the smallness of the coupling
constant. However, to make a connection to the result on R4, we made a few assumptions.
The invalidation of any of these assumptions can explain the discrepancy between our result
and the expected one. We now list the assumptions that led to our result:

1. We assume that there is a unique fractional instanton on the asymmetric T4 with
topological charge Q = 1

2 . This solution is nonabelian in nature and is obtained
from ’t Hooft’s abelian solution on a symmetric T4 as an expansion in the detuning

10Effectively, a Wilson loop measures the Z2 flux of the twisted solution.
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parameter ∆ [1]. However, we were not able to prove the uniqueness11 of the solution.
Instead, we rely on the numerical evidence in [1].

2. Another lingering issue is the radius of convergence of the expansion, which is yet
to be understood. Although our final result does not depend on ∆, one needs to be
cautious when interpreting the result. In order to interpret the result and compare
with the condensate on R4, we had to make use of the Hamiltonian formalism. Here,
first, one puts the theory on a small spatial torus T3, with a ’t Hooft twist, and
with periods of length L� Λ−1, and then takes the limit of a large Euclidean time
direction, L4 � Λ−1. This is the limit ∆ ∼

√
L4
L � 1, well outside the small-∆ regime

used to compute the condensate.

3. After taking ∆ large, one needs to take the size of the remaining T3 periods beyond the
inverse strong-coupling scale. Thus, we necessarily leave the semi-classical regime, yet
we assume no extra instantons contribute to the condensate in this limit. (However,
we can not help but note that this is similar, at least in spirit, to the extrapolation of
the R3 × S1

L semiclassical calculation of the gaugino condensate to R4.)

4. In carrying out our calculations, we assume that quantum corrections due to bosonic,
fermionic, and ghost fluctuations cancel exactly in our supersymmetric background, to
all loop orders, and for arbitrary T4 size. Although the cancellation of the determinants
to any loop order is well-established in R4, one may need to examine this assumption
more carefully in the fractional instanton background of T4.

In view of the above discussion, in the bulk of the paper, we present our calculations in
sufficient detail to help the interested readers follow all numerical factors and enable them
to dwell on the procedures used — and on improving the interpretation of our result.

1.3 Future directions

Here, in lieu of a conclusion, we point out that our study warrants a few expansion directions:

1. An immediate step would be generalizing the SU(2) result to SU(N ≥ 3). Self-dual
instantons with topological charge 1

N , N ≥ 3, are necessarily non-abelian solutions
of Yang-Mills equations [15]. This makes the treatment more involved, especially as
we deviate from the self-dual torus.12 Fortunately, a systematic analysis to deal with
this problem, a generalization of the method in [1], appeared in [58]. One can follow
the same line of thought in our work to compute the condensate in SU(N).

2. It is tempting to study the condensates in other gauge groups, e.g., Sp(N) and
Spin(2N) groups. These groups have small center groups: Sp(N) has a Z2 and

11To avoid possible confusion, we note that the series in ∆ determines a unique self-dual configuration for
fixed values of the moduli (see the proof in appendix A.1, near eq. (A.31)). The possibility of non-uniqueness
mentioned here refers to existence of a genuinely nonabelian Q = 1

2 solution not connected to ’t Hooft’s
abelian solution. The numerical study of [1] appears to support uniqueness in this sense, but does not
constitute a proof.

12The definition of a self-dual torus in SU(N) is different from the SU(2) case [15].
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Spin(2N) has a Z4 or a Z2×Z2 center group depending on whether N is odd or even.
Owing to the small centers, ’t Hooft fluxes (or fractional instantons) of these groups
will, in general, support more than 2 gaugino zero modes. This situation is different
from the calculations on R3 × S1

L, where a monopole-instanton always supports 2 zero
modes for all gauge groups, even those with no center symmetry. Therefore, at first, it
is not clear how the twists and monopoles are connected. Investigating this problem
is important for the continuity program.

3. It is also interesting to carry out our procedure to higher orders in ∆. The convergence
of the series in ∆ may shed more light on the problem of continuity. In this regard, we
note that the closely related work [59] in the two-dimensional abelian Higgs model was
able to carry the ∆-expansion to 51-st order, with the results indicating convergence
to the infinite volume limit.

4. Another interesting geometry is to consider SYM on T2×R2 with a ’t Hooft flux turned
on T2. This setup was considered previously in [60]. It was shown via dimensional
reduction from T2×R2 to R2 that the theory admits ZN vortices and that the gaugino
condensate forms in the 2-D effective theory 〈trλ2〉 ∼ Λ3, as expected. However, the
authors did not attempt to compute the numerical coefficient of the condensate. Such
a calculation would mandate a more careful treatment of the dimensionally reduced
2-D theory, presumably using the power of supersymmetry. We also note that T2×R2

is the limiting geometry of our asymmetric T4 after taking ∆ to infinity.

1.4 Outline

Our paper is organized as follows:
In section 2, we formulate the theory and spell out all the necessary ingredients to

define the partition function and the condensate on T4 with twisted boundary conditions.
Further, we explain that a self-dual torus gives rise to extra, unexpected, zero modes.
Then, we present the solution on the asymmetric T4 in section 3 and discuss both the
fermion and bosonic zero modes. In section 4, we calculate the measures of the bosonic
and fermion zero modes. In section 5, we deviate to the Hamiltonian formalism to discuss
two important aspects. First, we argue that the moduli space of the bosonic zero modes is
isomorphic to T4 with a period size twice the size of the physical period. Next, we recall
that the 0-form/1-form mixed anomaly implies that the energy eigenstates on T3 are doubly
degenerate and the theory admits 2 degenerate vacua. These features are important for the
interpretation of our calculation of the gaugino bilinear. Finally, in section 6, we put all the
pieces together to obtain our result of the gaugino condensate.

Owing to the mismatch between our and both R4 and R3 × S1
L results for the gaugino

condensate, and in order to offer the reader the opportunity to catch mistakes, if any, we
present our rather detailed calculations of various quantities in two appendices.

In appendix A, we review in great detail the construction of [1] of the fractional
instanton to order ∆, with emphasis on the dependence on the collective coordinates. We
also provide expressions of the field strengths and Wilson loops in the background of the
leading-order solution.
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In appendix B, we construct the fermion zero modes by directly solving the Weyl
equation as well as by using supersymmetry transformation, and we prove that both
methods yield the same result. Then, we construct the bosonic zero modes to any order
in ∆, first by employing the fermionic zero modes and then by taking derivatives of the
classical background solution w.r.t. the collective coordinates modulo gauge transformation
(we also determine these gauge transformations). Finally, we determine the Jacobian of the
bosonic zero modes moduli space needed to complete the calculations.

2 Fractional instantons on the symmetric torus

We consider the SU(2) SYM theory on T4 with periods of lengths L1, L2, L3, L4. The
Euclidean action of the theory is given by13

SSYM = 1
g2

∫
T4

tr
[1

2FmnFmn + 2
(
∂nλ̄α̇ + i[An, λ̄α̇]

)
σ̄α̇αn λα

]
, (2.1)

and λ is a left-handed adjoint Weyl fermion, the gaugino. Dn = ∂n + i[An, ] is the covariant
derivative, σn ≡ (i~σ, 1), σ̄n ≡ (−i~σ, 1), ~σ are the Pauli matrices, and the Latin letters n,m
run over 1, 2, 3, 4. The field strength is given by Fmn = ∂mAn − ∂nAm + i[Am, An]. This
action is invariant under the supersymmetry transformations

δAn = ζα σnαα̇ λ̄
α̇+ζ̄α̇ σ̄α̇αn λα , δλα =−σ β

mnα ζβ Fmn , δλ̄α̇ =−σ̄ α̇
mn β̇

ζ̄ β̇ Fmn ,

(2.2)

where the spinors obey ξ1 = ξ2, ξ
2 = −ξ1 and likewise for the dotted ones. The equations

of motion that result from the variation of SSYM are

(DmFmn)A = −i tr λ̄σ̄n[TA, λ] , σ̄α̇αn Dnλ
A
α = 0 , σn αα̇Dnλ̄

Aα̇ = 0, (2.3)

where A = 1, 2, 3 labels the color group generators TA = τA/2 with τA the Pauli matrices.
We shall consider SYM with twisted boundary conditions on T4. Without loss of generality,
we can use the following transition functions:

Ω2(x) = e
−i2π x1

L1
τ3
2 , Ω4(x) = e

−i2π x3
L3

τ3
2 , while Ω1 = Ω3 = 1. (2.4)

Ω2 and Ω4 implement the twists along the x2 and x4 directions, while the transition
functions along the x1 and x3 directions are trivial. The transition functions obey the
cocycle conditions

Ωi(x+ Lj êj) Ωj(x) = eiπnijτ3 Ωj(x+ Liêi) Ωi(x), i, j = 1, 2, 3, 4, ∀x ∈ R4, (2.5)

where ên is a unit vector in the xn direction, n12 = n34 = −n21 = −n43 = 1, and the rest of
nij are zeros. The periodicity condition on the gauge fields and gaugino in R4 defines the

13The Euclidean action, supersymmetry transformations, and the matrices σn, σ̄n, σmn, σ̄mn, are as
in [25], except that we use hermitean gauge fields, necessitating the replacement Athat ref. = iAthis paper. See
also appendices A.1 and B.2.
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T4 fields:

A(x+ ênLn) = Ωn(x)(A(x)− id)Ω−1
n (x), n = 1, 2, 3, 4, ∀x ∈ R4,

λ(x+ ênLn) = Ωn(x)λ(x)Ω−1
n (x) , (2.6)

where we denoted A(x) =
4∑

n=1
An(x)dxn. Let the SU(2) non-abelian field Φ denote either

the gauge field or the gaugino and expand Φ using the Cartan-Weyl basis:

Φ(x) = Φ3 τ
3

2 + Φ+τ+ + Φ−τ− . (2.7)

The Pauli matrices τ3, τ± are the generators of SU(2) in this basis. Using the commutation
relations [τ3, τ±] = ±τ3, [τ+, τ−] = τ3 along with the Baker-Campbell-Hausdorff formula,
one finds that the boundary conditions on Φ are satisfied if and only if:

Φ3(xi + Li) = Φ3(x) + I ,

Φ±(x1 + L1, x2, x3, x4) = Φ±(x1, x2, x3, x4) ,

Φ±(x1, x2 + L2, x3, x4) = e
∓i 2πx1

L1 Φ±(x1, x2, x3, x4) , (2.8)

where I is a nonhomogeneous term that contributes to the gauge field and appears upon
shifting the x2 coordinate: A3

n(x + ê2L2) = A3
n(x) + 2π

L1
δn,1. Similar boundary condi-

tions hold in the 3–4 plane. As we shall show, there is a classical solution to the equa-
tions of motion (2.3), which satisfies the boundary conditions (2.8) and has a topological
charge Q = 1

2 .
The Euclidean partition function of our system is given by the path integral:

ZSYM[n12 = 1, n34 = 1] =
∑
ν∈Z

∫
[DAµ][Dλ][Dλ̄]e−SSYM−i(ν+ 1

2 )θ|n12=1,n34=1 , (2.9)

where we have emphasized that this path integral is to be computed with the twists in the
1–2 and 3–4 plane, as per the transition functions (2.4), and thus, all the fields need to
satisfy the boundary conditions (2.8). Notice that one also needs to sum over the integer
topological sectors ν ∈ Z in order for ZSYM to respect locality and unitarity.14 The vacuum
angle θ can be transformed away by applying an axial rotation on the gauginos. Our main
aim is to find the bilinear gaugino condensate starting from (2.9).

The solution of ZSYM, as well as the condensate, will proceed by using the semi-classical
techniques, which amount to computing the path integral as the sum of paths of small
fluctuations in the background of instantons. The semiclassical approach is justified in the
limit of small volume.

Notice, however, that this partition function vanishes identically, which can be under-
stood in two different ways. First, as we shall show, the theory exhibits 2 fermion zero
modes. These are the zero modes that are saturated in the twisted background and give

14If ν 6= 0, the transition functions (2.4) (but not the cocycle conditions (2.5)) have to be appropri-
ately modified.
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rise to the fermion condensate. We can also argue that ZSYM = 0 because of the mixed
anomaly between the 0-form discrete chiral and 1-form center symmetries, as was previously
shown in [57].

The gaugino condensate calculations can proceed by inserting the gaugino bilinear
trλλ in the path integral (2.9), where the trace is taken in the color space. We define the
expectation value of the gaugino condensate as:

〈 trλλ〉 = N−1 ∑
ν∈Z

∫
[DAµ][Dλ][Dλ̄] trλλ e−SSYM−i(ν+ 1

2 )θ|n12=1,n34=1 , (2.10)

with normalization constant N . Only the ν = 0 sector (in the presence of the twists) can
contribute to the bilinear condensate, and thus, we restrict our calculations to this sector.
The standard way of normalizing the expectation value of an operator is to divide by the
partition function. Since ZSYM = 0, we need to search for another appropriate way to
normalize our physical observables. We choose to divide by the partition function with
twists only in the 1–2 plane. Explicitly,

N =
∑
ν∈Z

∫
[DAµ][Dλ][Dλ̄] e−SSYM−iνθ|n12=1 . (2.11)

This partition function is saturated by the ν = 0 term. In the small-T4 limit, it can be
evaluated using a semiclassical expansion around two zero-action classical saddle point
configurations, related by the Z2 center symmetry in the x3 direction, generated by the
“improper gauge transformation” T3. In a gauge with constant transition functions15 in the
x1-x2 plane, these saddle points are A = 0 and A = −iT3dT

−1
3 [16]. Each of these saddle

points gives an identical contribution to N . There are no zero modes (see [61] for calculations
of the spectrum) and all determinants, fermionic and bosonic, are the ones computed in the
A = 0 background (we note that this is the normalization of instanton transition amplitudes
already taken in [62]). The partition function (2.11), up to a normalization factor that is
expected to cancel the numerical factor in the numerator of (2.10), is equal to the Witten
index Tr[(−1)F ], which counts the number of the ground states. Thus, we take N = 2. See
section 5 for a Hamiltonian treatment.

As a first trial, let us find a self-consistent Q = 1/2 fractional-instanton solution to the
equations of motion (2.3) with the boundary conditions (2.8). It is easy to see that the
abelian gauge configuration:

Ā3
1 = 2πx2

L1L2
+ z1
L1

, Ā3
2 = z2

L2
,

Ā3
3 = 2πx4

L3L4
+ z3
L3

, Ā3
4 = z4

L4
, (2.12)

obeys (2.8). The bar is introduced here to serve a later convenience, and the constants
zm are the collective coordinates, which will be set to zero in this section without loss
of generality. This field configuration was first found by ’t Hooft, and it solves the Pure
Yang-Mills equations DmFmn = 0, owing to its abelian nature and constant field strength.

15These zero-action configurations can also be exhibited in a gauge where Ω2 is as in (2.4), with Ω1,3,4 = 1,
but details are to be given elsewhere.
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It carries a topological charge Q = 1
2 and its action is half the action of a BPST instanton:

S = S0 ≡ 4π2

g2 . This solution must be self-dual or anti-self-dual, Fmn = ±1
2εmnpqFpq, which

guarantees that the bosonic and fermionic determinants in this background do not yield
negative zero modes, a sign of instability of the solution on T4. Self-duality of the Q = 1/2
solution (2.12) implies the condition

L1L2 = L3L4 . (2.13)

A torus that satisfies the relation (2.13) is said to be self-dual, and a simple choice that
satisfies the condition (2.13) is the symmetric torus with L1 = L2 = L3 = L4. The classical
solution (2.12) will also hold in SYM provided that the right-hand side of the first equation
in (2.3) vanishes. To check that, we first need to solve the Weyl equations (second and third
equations in (2.3)) in the background (2.12), along with the boundary conditions (2.8). We
find 6-independent zero modes: 4 modes for λ and 2 modes for λ̄:

λ = τ3

2

[
ξ1
ξ2

]
+

∞∑
n1,n3=−∞

e
−i2π(n1

x1
L1

+n3
x3
L3

)
h12

0 (x2 − n1L2) h34
0 (x4 − n3L4)τ+

[
0
ξ3

]

+
∞∑

n1,n3=−∞
e
i2π(n1

x1
L1

+n3
x3
L3

)
h12

0 (x2 − n1L2) h34
0 (x4 − n3L4)τ−

[
ξ4
0

]
,

λ̄ = τ3

2

[
ξ5
ξ6

]
, (2.14)

where ξi are Grassmann numbers. The functions h12
0 and h34

0 are the ground eigenstates
of the simple harmonic oscillator, of frequencies ω12 = 2π

L1L2
and ω34 = 2π

L3L4
, respectively;

see appendices A.1 and B.2.3. Owing to the abelian nature of the classical background,
the Weyl equation yields the solutions in the τ3 directions. Substituting the fermion zero
mode solutions into the right-hand side of the bosonic equation of motion in (2.3), one
easily finds that the source term is nonzero. This simple exercise shows that the abelian
background (2.12) is either inconsistent or that some gaugino zero modes must be lifted
by higher-order corrections in order to have trλ̄σ̄n[TA, λ] = 0. Presumably, higher-order
corrections will gap 4 of the fermion zero modes, and in the end, we will have a consistent
story. We were not able to show that this is the case in a satisfactory way.16

Instead, we chose to detune the self-dual torus, i.e., to relax the condition L1L2 = L3L4,
and modify the abelian background to include non-abelian pieces that are needed to
guarantee the self-duality of the fractional instanton on an asymmetric T4. The detuned
solution does not suffer from any of the above-mentioned problems. A further motivation
for considering the asymmetric T4 connects to interesting semiclassical limits that have
been considered.

16For completeness, we note that an analogous problem occurs with the bosonic zero modes around the
solution (2.12) on the self-dual torus: there are 8 (four real and two complex), rather than 4, bosonic zero
modes, as was shown long ago by van Baal [46]. We also stress that the existence of the four undotted
and two dotted fermionic zero modes (2.14) is consistent with the index theorem, which only determines
their difference.
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3 Fractional instantons and gaugino zero modes on the asymmetric torus

In order to circumvent the problems of the self-dual T4, we instead search for a self-dual
instanton on an asymmetric torus using a perturbation technique introduced in [1]. The
gauge field An can be written in the general form

Acln (x, z) =
(
Ā3
n(x, z) + Sn(x, z)

) τ3

2 +Wn(x, z)τ+ +W ∗n(x, z)τ− , (3.1)

where we have split the τ3 component into two parts. The first part Ā3
n(x, z) is the abelian

background (2.12) that solves the sourceless Yang-Mills equations on the symmetric T4.
The functions Sn(x, z) and Wn(x, z) will be determined perturbatively. We also introduce
the dimensionless detuning parameter ∆ ≡ (L3L4 − L1L2) /

√
L1L2L3L4, which measures

the deviation from the self-dual torus, and take ∆ > 0. The solution of the sourceless Yang-
Mills equations on the asymmetric T4 is obtained by imposing the self-duality condition
Fmn = 1

2εmnpqFpq, where ε1234 = 1, etc. In order to reduce the gauge redundancy, one also
imposes the background gauge condition ∂nAcln + i[Ān, Acln ] = 0.

The details of the construction of the self-dual solution in an expansion in powers of ∆
is given in appendix A.1. The presentation there follows [1] but for completeness we present
it in detail using our notation, with an emphasis on the dependence of the solution of the
zn variables. Here, we only give an idea of the construction of the fractional instanton and
present its main features. To simplify the equations, it is convenient to use a quaternion
notation. Thus, we introduce the matrices:

w = σnWn , wc = Cw∗C , s = σnSn , (3.2)

where σn = (i~σ, 12×2), σ̄n = (σn)† and C =
(

0 −i
i 0

)
. Self-duality and the background

gauge conditions (see (A.12)) then yield the following equations:

σ̄n∂ns = 2π∆√
V
iτ3 − i

(
w†cwc − w†w

)
, σ̄n

(
∂n + iĀ3

n

)
w = − i2

(
s†w − w†cs

)
. (3.3)

These equations are subject to the boundary conditions (2.8). The solutions to (3.3) is
found as series expansions in

√
∆:

w = ∆1/2
∞∑
j=0

wj∆j , s =
∞∑
j=1

sj∆j . (3.4)

The symmetry structure of the self-duality equations (3.3), as well as their solution to
the leading order in ∆, is discussed in appendix A.1. The final answer for the fractional
instanton solution, giving the order

√
∆ terms in (3.1), reads:

W1(x, z, α) = − i2
√

∆F (x, z)eiα
√

2π
V 1/4 +O(∆3/2)

W2(x, z, α) = 1
2
√

∆F (x, z)eiα
√

2π
V 1/4 +O(∆3/2) = iW1 +O(∆3/2),

W3 = O(∆3/2) , W4 = O(∆3/2) , Sn = O(∆) . (3.5)
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We stress that the O(∆) contribution to Sn is determined by the O(
√

∆) terms shown
above, in a manner described in appendix A.1, but explicit expressions will not be needed.
The arbitrary phase α is due to the gauge freedom to rotate around the τ3 isospin direction,
and the function F (x, z) is given by the expression:

F (x, z) =
√
L2L4

∞∑
n1,n3=−∞

e
−i2π

(
n1

x1
L1

+n3
x3
L3

)
e
−i z2

L2
(x2−n1L2)−i z4

L4
(x4−n3L4)

× h12
0

(
x2 −

(
n1 −

z1
2π

)
L2

)
h34

0

(
x4 −

(
n3 −

z3
2π

)
L4

)
, (3.6)

with the normalization
∫
T4 |F |2 = ∏4

i=1 Li = V . The functions h12,34
0 are the same harmonic

oscillator ground state wave functions appearing in eq. (2.14) and described there.
It remains to check that this solution obeys the equations of motion (2.3), and in

particular, that the fermionic source in the bosonic equation of motion vanishes identically.
To this end, we need to find the fermion zero modes, which we do in section 3.1. For
this purpose, we will need to use the field strength, a computation carried out in detail in
appendix A.2. We find that to order O(

√
∆):

F12 = 2π
L1L2

, F34 = 2π
L3L4

,

F13 = −iγ∗eiα
√

2π
2L3L4

G(x, z)τ+ + iγe−iα
√

2π
2L3L4

G∗(x, z)τ−,

F14 = γ∗eiα
√

2π
2L3L4

G(x, z)τ+ + γe−iα
√

2π
2L3L4

G∗(x, z)τ− , (3.7)

where γ = i
2

√
2π∆√
V

and the function G(x, z) is

G (x, z) =
√
L2L4

∞∑
n1,n3=−∞

e
−i2π

(
n1

x1
L1

+n3
x3
L3

)
e
−i z2

L2
(x2−n1L2)−i z4

L4
(x4−n3L4)

× h12
0

(
x2 −

(
n1 −

z1
2π

)
L2

)
h34

1

(
x4 −

(
n3 −

z3
2π

)
L4

)
. (3.8)

The function h1 is the first excited state of the simple harmonic oscillator, and just like
F (x, z), G is dimensionless and similarly normalized

∫
T4 |G|2 = ∏4

i=1 Li = V . To find the
field strength to order O(∆) and establish the self-duality of the solution, one needs to
solve for the functions Sn, see (A.43). In appendix A.1, we discuss the relations obeyed
by the field strength of Sn (explicit expressions will not be needed in our work). These
are important for establishing the self-duality of the solution, and thus of the fact that its
action S0 saturates the BPS bound, S0 = 4π2

g2 .
Finally, we stress that the solutions, whose construction via a small-∆ expansion

was described above, have been subjected to comparison with “exact” solutions obtained
by numerically minimizing the lattice Yang-Mills theory action with an n12 = n34 =
1 twist. A good qualitative (and in some cases quantitative) agreement of the gauge
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invariants charactering the solution, computed analytically17 to O(∆), with the numerical
approximation of the exact solution was found, for ∆ in the range 0.02− 0.09 for various
lattice sizes, see [1] for a detailed discussion.

The existence of a consistent solution in the form (3.4) to all orders in ∆ has been
shown in [1], but explicit calculations beyond the leading order have not yet been performed.
The radius of convergence in ∆ is also not known. In what follows, we assume that the
all-order ∆-expansion gives rise to a unique self-dual solution of action S0 = 4π2

g2 , at least
for sufficiently small ∆. This is supported by the consistency of (3.4) and the agreement
with numerical tests [1].

3.1 Fermion zero modes

The fermion zero modes can be found by solving the Weyl equations from (2.3), Dnσ̄nλ =
0 , Dnσnλ̄ = 0 in the background (3.1). We perform these explicit computations in
appendix B.2.2.

The fermion zero modes can also be obtained via the supersymmetry transforma-
tions (2.2), with the result agreeing with the direct solution of the Weyl equations. Consider
the effect of the supersymmetry transformation (2.2) in the background of the bosonic
solution (3.1), with fermions set to zero, λ̄ = λ = 0. Since our solution is self-dual, i.e.
obeys σ̄mnFmn = 0, the SUSY transformation only produces λα variations:

δλ = −σmnFmnζ , δλ̄ = 0 , (3.9)

which is true to all orders in ∆. Computing δλ we obtain, see appendix B.2.4, to O(
√

∆):(
δλ1
δλ2

)
= −2iF (0)

12

(
ζ1
−ζ2

)
+ 2F (1)

13

(
ζ2
−ζ1

)
− i2F (1)

14

(
ζ2
ζ1

)

=
[(

η1
η2

)
τ3

2 + V
1
4

π
1
2
γ∗eiαG(x, z)

(
η2
0

)
τ+ + V

1
4

π
1
2
γe−iαG∗(x, z)

(
0
η1

)
τ−
]
,

(3.10)

where in going from the first to second line we used the definitions η1 ≡ 4πV −1/2ζ1,
η2 ≡ −4πV −1/2ζ2. Thus, as expected, we find 2 fermion zero modes in accordance with
the index theorem. One can easily see that trλ̄σ̄n[TA, λ] = 0, and hence, the self-dual
instanton (3.1) on the asymmetric T4 solves the sourceless equations of motion DmFmn = 0
and is a consistent background for SYM.

3.2 Bosonic zero modes

For every fermionic zero mode

φ (β) A
α = −(σmn)(β)

α FAmn, β = 1, 2, A = 1, 2, 3, (3.11)

there are two bosonic zero modes. Thus, in total, there are four independent bosonic
zero modes. The advantage of the discussion that follows is that the bosonic zero modes

17This is also done in our appendix A.3, where the zn dependence of the local and non-local gauge
invariants characterizing the solution is discussed in detail.
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automatically obey the background gauge condition and, furthermore, their construction
holds to arbitrary orders in ∆.

The four-vector expressions for the bosonic zero modes are denoted by Z
(β) A
n and

Z
(β ′) A
n , where β, β′ = 1, 2. These modes are determined as described in e.g. [25, 26]: from

each zero mode φ(β)
α of the undotted Dirac equation one builds two four-vector bosonic zero

modes, denoted by Z(β)
n and Z(β ′)

n (from here on, we suppress the Lie-algebra index A to
reduce clutter). Their four-vector components are then (see appendix B.3.2, eq. (B.37)):

Z(β)
n =

{
=φ(β)

2 ,−<φ(β)
2 ,=φ(β)

1 ,<φ(β)
1

}
, Z(γ ′)

n =
{
<φ(γ)

2 ,=φ(γ)
2 ,<φ(γ)

1 ,−=φ(γ)
1

}
.

Using the expression of φ(β)
α in terms of Fmn, we can also express Z(β)

n and Z(γ ′)
n in terms

of Fmn:

Z(1)
n =

{
=φ(1)

2 ,−<φ(1)
2 ,=φ(1)

1 ,<φ(1)
1

}
= {−2F14, 2F13,−2F12, 0} ,

Z(2)
n =

{
=φ(2)

2 ,−<φ(2)
2 ,=φ(2)

1 ,<φ(2)
1

}
= {2F12, 0,−2F14, 2F13} ,

Z(1 ′)
n =

{
<φ(1)

2 ,=φ(1)
2 ,<φ(1)

1 ,−=φ(1)
1

}
= {−2F13,−2F14, 0, 2F12} ,

Z(2 ′)
n =

{
<φ(2)

2 ,=φ(2)
2 ,<φ(2)

1 ,=φ(2)
1

}
= {0, 2F12, 2F13, 2F14} . (3.12)

It is a simple exercise to check DnZ
(β)
n = 0 and DnZ

(γ ′)
n = 0, and thus, these zero modes

solve the classical equations of motion as expected.
Further, one can write down Z

(β)
n and Z

(γ′)
n as the derivatives with respect to the

collective coordinates {zi} modulo gauge transformations. To this end, we define new zero
modes Y (i)

n , i = 1, 2, 3, 4, by relabeling (3.12) as follows

Y (3)
n ≡ Z(1)

n , Y (1)
n ≡ −Z(2)

n , Y (4)
n ≡ −Z(1 ′)

n , Y (2)
n ≡ −Z(2 ′)

n , (3.13)

and show in appendix B.3.3 that

Y (k)
n = 4πLk√

V

∂An
∂zk

+Dn(Acl)Λ(k) . (3.14)

There, we also explicitly find the expressions for the background-gauge restoring gauge
transformations Λ(k) to order

√
∆ and show that they obey boundary conditions preserving

the transition functions. For later convenience, we also define the inner product of the
zero-mode wave functions (or moduli space metric)

Ukl = 2
g2

∫
T4

trY (k)
n Y (l)

n (3.15)

which in diagonal basis is simply Ukl = δlkul. Using (3.12), see appendix B.3.2 for details,
we readily obtain

Ukl = 4δkl
g2

∫
T4

trFmnF̃mn = 4δklS0 = δkl
16π2

g2 . (3.16)

This result is valid to all orders in ∆, since the action of a fractional instanton does not
depend on the size or shape of T4.
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4 The path integral: bosonic and fermionic measures

The contributions from the non-zero modes of fermions, bosons, and ghosts cancel in the
path integral, thanks to supersymmetry. Thus, in our subsequent discussion, we only discuss
the contribution from zero modes to the bosonic and fermionic measures.

4.1 Fermionic measure

The fermion zero modes measure will be inferred from the one for the non-zero modes. We
expand the fermions as eigenfunctions of the second order Hermitian operators

DD̄ = D2 + iFmnσ
mn , −(DD̄) β

α λβ = ω2λβ (4.1)

D̄D = D2 + iFmnσ̄
mn = D2, D2λ̄β̇ = ω2λ̄β̇ ,

where, in the second line, we used the self-duality of the background.
To discuss the measure, we begin by considering the contribution of a single nonzero

eigenvalue ω to the fermion path integral. Let −(DD̄) β
α φiβ = ω2φiα, where i labels the

different eigenfunctions, the commuting functions φiα, with the same eigenvalue ω (we note
that there are at least two of them). We expand the nonzero-mode part of the fermion field
(for brevity, denoting it with the same letter λ, λ̄)

λα =
∑
i

χi φiα (4.2)

λ̄α̇ =
∑
i

χ̄i
1
ω
D̄α̇αφiα,

where we used the fact that the nonzero eigenfunctions of DD̄ and D̄D are related as shown
and we attach the spinor index to the bosonic solution of the 2nd order equation and not
to the Grassmann variable, χi or χ̄i (the fact that there is more than a single solution for
every ω is accounted by the index i). We also indicate that the λ and λ̄ expansions have
each their separate Grassmann variables χi, χ̄i.

Plugging (4.2) into the fermionic action (2.1), we obtain after integration by parts and
using the fact that φ is an eigenvector of DD̄:

SF = 2
g2 tr (Dnλ̄α̇σ̄

α̇α
n λα) =

∑
ij

χ̄jχiω

( 2
g2

∫
T4

trφiαφjα
)

(4.3)

= ω
∑
ij

χ̄jχi U ijF ,

where the fermion mode inner product matrix is

U ijF = 2
g2

∫
T4

tr
(
φi2φ

j
1 − φ

i
1φ

j
2
)
, U ijF = −U jiF . (4.4)

Then we define the fermion nonzero mode path integral so that it produces ω (the minimal
number of eigenfunctions with the same eigenvalue is two, i.e. i, j = 1, 2, with UF generically
a 2× 2 matrix) ∫ ∏

i

dχidχ̄i (detUF )−1e−SF = ω . (4.5)
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When all nonzero eigenvalues are taken into account, we obtain the square root of the
product over all nonzero eigenvalues of D̄D (or DD̄).

The integrals over the fermion zero modes are defined in the same manner via the same
mode normalization matrix, U ijF , defined in (4.4). Recalling that only the undotted spinors
λα have zero modes, we expand18

λα =
∑
i

ηiφiα + nonzero modes, (4.6)

where we use ηi to denote the zero-mode Grassmann variable. The fermion zero-mode
measure is then taken to be the “square root” of (4.5):19

dµF =
∏
i

dηi (detUF )−1/2 =
∏
i

dηi (PfUF )−1 . (4.7)

In appendix B.3.1, we calculate the Pfaffian, using the zero-mode wave functions (3.11),
and show that PfUF = −U12

F = 4× 4π2

g2 , see eq. (B.34). Notice that this result is valid to
all orders in ∆ (thus including the nonabelian part of the zero modes), since PfUF involves
integrating the square of the field strength Fmn over T4, which is proportional to the action,
a ∆-independent quantity.

Furthermore, it follows from (4.6) that trλαλα = 1
2η

αηβφ
(α)A
γ φ

(β)A
δ εδγ+(nonzero

modes). Thus, combining with (4.7), one finally finds:∫
dµF trλλ(x) = g2

16π2

∫
dη1dη2 tr [λαλα(x)]

= g2

16π2
1
2
(
φ(2)A
γ φ

(1)A
δ − φ(1)A

γ φ
(2)A
δ

)
[x]εδγ . (4.8)

We next note that all gauge invariant quantities in the fractional instanton background
depend on the combinations of xi with the dimensionless collective coordinates zl, see
eq. (A.9) in appendix A.1. Thus, to calculate the condensate, in eq. (4.8) one should replace

x1 → x1−
L1z2
2π , x2 → x2 + L2z1

2π , x3 → x3−
L3z4
2π , x4 → x4 + L4z3

2π . (4.9)

That all gauge invariant quantities depend on (4.9) follows from the actions of translations
in our background and is explained in appendix A.1 (see Footnote 30 there).

4.2 Bosonic measure

We express the bosonic field An(x), to be integrated over in the path integral, as a sum
of the classical solution Acln (x, z) (3.1), the zero mode fluctuations normalized as in (B.67)
of appendix B.3.3, and the nonzero modes of the fluctuation operator denoted by Zqn (of
eigenvalues ωq) using the same notation as in appendix B.1, see the discussion after eq. (B.2):

An(x) = Acln (x, z) +
4∑

k=1
ζ

(0)
k

√
V

4πLk
Y (k)
n (x, z) +

∑
q

ζqZ
(q)
n . (4.10)

18Here and below, we use φiα to denote the zero-mode solutions of DD̄, obeying (DD̄) β
α φiβ = 0. The

reader should forgive us for using the same letter as in the non-zero mode discussion near (B.9).
19This definition ensures that, upon perturbing with a zero-mode lifting mass term, δSm = m

g2 trλαλα,
one obtains m for the zero-mode contribution to the path integral.
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Using the inner product defined in (3.16), the measure of the bosonic zero modes takes
the form

dµB =
(

det V

16π2LkLl
Ukl

) 1
2

4∏
k=1

[
dζ

(0)
k√
2π

]
= V

g4

4∏
k=1

dζ
(0)
k√
2π

. (4.11)

In appendix B.3.4, we show how we change the variables ζ(0)
k to the collective coordi-

nates {zm} by inserting a unity, á la Faddeev-Popov gauge-fixing method. The resulting
expression is

dµB = V

g4

4∏
k=1

dzk√
2π

. (4.12)

5 The Hamiltonian formalism, Wilson loops, and the moduli space

Up to this point, we have all pieces to compute the gaugino condensate except for the
shape and size of the moduli space M, or in other words, the range of integration over
the collective coordinates {zm}. Determining M will force us to deviate, for now, from
the path integral to the Hamiltonian formalism. We refer the reader to [57] for a detailed
description of the Hilbert space, while here, we only provide a synopsis needed to study the
Wilson loops and moduli space.

5.1 Pure Yang-Mills theory

The moduli space is determined in the absence of fermions, and thus, we start by studying
the Hamiltonian formalism of pure Yang-Mills theory with vacuum angle θ on T3 with a
unit ’t Hooft magnetic flux.

Consider L1,2,3 of T3 as space of volume V3 and L4 as Euclidean time, where V3 is to
be taken much smaller than the inverse of Λ3, the strong-coupling scale, while L4 can be
varied from small to large w.r.t. Λ−1. Recall that we apply the twists m3 ≡ n12 = 1, this
is a “magnetic flux” piercing the 1–2 plane, and k3 ≡ n34 = 1. The latter is related to a
twist of the partition function by a centre symmetry transformation, to be described below.
The physical Hilbert space lives along the constant time slices and, thus, is in the m3 = 1
“magnetic flux” background. Let |ψ〉 denote a state in the physical Hilbert space on T3 with
twisted boundary conditions, Hm3=1.

We introduce the operator T̂3 as the generator of the Z(1)
2 1-form center symmetry

in the L3 direction. The generator T̂3 commutes with the Hamiltonian, [T̂3, Ĥ] = 0, and
thus, they can be diagonalized in the same basis. It can be shown that the action of T̂3
on its eigenstates, |ψ〉 = |e3〉, in the physical Hilbert space is T̂3|e3〉 = eiπe3−i θ2 |e3〉, where
e3 ∈ {0, 1} is the Z2 “electric flux” of the state. This terminology can be explained as follows.
Since T̂3 is a center-symmetry generator, it acts on Wilson loops winding around the L3
direction as T̂3Ŵ3 = −Ŵ3T̂3. Then, one readily finds T̂3(Ŵ3|e3〉) = eiπ(e3+1)−i θ2 (Ŵ3|e3〉),
i.e., the action of Ŵ3 on a state increases the Z2 flux of this state by one unit. The fact
that Ŵ3 can be thought of as creating a winding electric flux tube explains the terminology.
We conclude that T̂3 measures the center flux of a given state in Hilbert space. The
generators of the center symmetries in the other two spatial directions, x1 and x2, T̂`,
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` = 1, 2, act similarly on Wilson loops winding in the corresponding directions. They also
commute with the Hamiltonian and thus all eigenstates of Ĥ are also labeled by e1 ∈ {0, 1}
and e2 ∈ {0, 1}.20

The twisted partition function of pure Yang-Mills theory, the one we have been studying
in the absence of fermions, is the one with an insertion of a T̂3 twist:

ZYM [n12 = 1, n34 = 1] = trHm3=1

[
e−L4Ĥ T̂3

]
=

∑
E(e3), e3={0,1}

〈E(e3), e3|e−L4E(e3)T̂3|E(e3), e3〉

=
∑

E(e3), e3={0,1}
〈E(e3), e3|e−L4E(e3)|E(e3), e3〉eiπe3−i θ2 , (5.1)

where in going from the first to the second line, we summed over a complete set of eigenstates
in the physical Hilbert space Hm3=1 that diagonalize Ĥ and T̂3 simultaneously (for brevity,
omitting the summation over e1,2). The expectation value of the Wilson loop operator Ŵ3
is21 〈W3〉 = trHm3=1

[
e−L4ĤŴ3T̂3

]
. Using the relation T̂3Ŵ3 = −Ŵ3T̂3 and the fact that T̂3

(but not Ŵ3) commutes with Ĥ , we immediately find 〈Ŵ3〉 = −〈Ŵ3〉, and hence, 〈Ŵ3〉 = 0.
One can also show that the expectation value of the Wilson loop winding in any

other direction vanishes identically. Since T̂`, ` = 1, 2, 3 and Ĥ form a set of commuting
operators, they can be diagonalized simultaneously. Let {|E(e1, e2, e3), e1, e2, e3〉} be a set
of orthonormal eigenstates of the set of the 4 operators Ĥ, {T̂`, ` = 1, 2, 3}, where e` ∈ {0, 1}
is the Z2 electric flux in the L` direction, and we emphasized that, in general, the energy
of the state depends on these fluxes. The expectation value of a general Wilson loop Ŵp

wrapping the Lp direction and computed using the T̂3-twisted partition function (5.1) reads

〈Ŵp〉 =
∑

E(e1,e2,e3), ei={0,1}
e−L4E〈E(e1, e2, e3), e1, e2, e3|ŴpT̂3|E(e1, e2, e3), e1, e2, e3〉 (5.2)

=
∑

E(e1,e2,e3), ei={0,1}
e−L4E〈E(e1, e2, e3), e1, e2, e3|Ŵp|E(e1, e2, e3), e1, e2, e3〉eiπe3−i θ2 .

However, the insertion of Ŵp increases the electric flux by one unit in the Lp direction and
produces a sum over different energy eigenstates. Thus, its diagonal matrix element in the
|E(e1, e2, e3), e1, e2, e3〉 state vanishes. We immediately conclude that a Wilson loop that
wraps L1, L2, or L3 must vanish on T4 with twisted boundary conditions. The vanishing
of 〈Ŵ4〉 follows by applying a 90-degree rotation to any spatial Wilson loop, i.e. upon
considering a different T4 direction as time. Thus, we conclude that for any winding Wilson
loop Ŵp,

〈Ŵp〉 = trHm3=1

[
e−L4ĤŴpT̂3

]
= 0. (5.3)

20The action of T̂1 on states of electric flux e1 is T̂1|e1〉 = eiπe1 |e1〉 (and similar for T̂2), without the θ/2
factor in the action of T̂3 (which is due to the m3 = 1 twist).

21We ignore the normalization of Wilson loops. We will come back to normalization in calculating the
gaugino condensate.
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We spent so much time explaining the expected result (5.3) because its consistency with
semiclassics is one of our main criteria used to determine the moduli space of the frac-
tional instanton.

Thus, we now contrast the general result (5.3) with the computation of the expectation
value of a Wilson loop in the path integral formalism, in the semiclassical approximation.
Consider a Wilson loop W (Cn1,n2,n3,n4), with C beginning at an arbitrary point x in T4

and winding n` times around each direction L`:

W (x,Cn1,n2,n3,n4) = tr
(
Pe

i
∫
Cn1,n2,n3,n4

Ak(x′)dx′k Ωn2
2 (x) Ωn4

4 (x)
)
, (5.4)

where we inserted Ωn2
2 (x) Ωn4

4 (x) to enforce the gauge invariance of W (x,Cn1,n2,n3,n4).
Using the classical self-dual background (3.1), (3.5), we show in eq. (A.58) in the appendix,
that W to order ∆ is:

W (x,Cn1,n2,n3,n4)

= 2 cos
[1

2

(
n1

(
z1 + 2πx2

L2

)
+ n2

(
z2 −

2πx1
L1

)
+ n3

(
z3 + 2πx4

L4

)
+ n4

(
z4 −

2πx4
L2

))]
.

× [1 + ∆F(x, z)] . (5.5)

The O(1) and O(∆) contributions come from the abelian and nonabelian components
of (3.1). The cosine function has 4π periodicity in {zi}, while the O(∆) piece F(x, z) is a
periodic and even function of {z1 + 2πx2

L2
, z2 − 2πx1

L1
, z3 + 2πx4

L4
, z4 − 2πx4

L2
} with periodicity

2π for {zi}.
Now, using the results from the previous section and limiting our discussion to pure

Yang-Mills theory and ignoring issues of normalization, the expectation value of a general
Wilson loop is

〈W (x,Cn1,n2,n3,n4)〉 (5.6)

=
∑
ν

∫
[DAµ]W (x,Cn1,n2,n3,n4)e−SYM−iθ(ν+ 1

2 )|n12=1,n34=1

∼ e−S0−i θ2
V

g4

∫
M

4∏
k=1

dzk√
2π

W (x,Cn1,n2,n3,n4)+e−S0+i θ2
V

g4

∫
M

4∏
k=1

dzk√
2π

W̃ (x,Cn1,n2,n3,n4) ,

where in going from the first to the second line, we ignored the quantum loops and used the
bosonic zero-mode measure (4.12). We limited the r.h.s. to the contributions of the ν = 0
sector, with total topological charge Q = 1

2 , and the ν = −1 sector, with total topological
charge Q = −1

2 . Ignoring higher-Q contributions is justified in the limit when semiclassics
holds, i.e. for a small T4.

Furthermore, in writing the above expression, we assumed that the fractional instantons
(and antinstantons22) we obtained are the only |Q| = 1

2 saddle points in the path integral,
contributing to the first and second terms above, respectively. While we have no proof of

22W̃ in the second term is the Wilson loop (5.4), but evaluated in the anti-instanton background, whose
explicit form is similar to (5.5) and shall not be needed.
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uniqueness, the favourable comparison of “exact” (i.e. obtained by numerically minimizing
the action) fractional instantons on an asymmetric T4 with the solutions obtained by
small-∆ expansion gives support in favor of this assumption, at least for small enough ∆.
In this regard, we note that ref. [1] found good agreement for ∆ as large as 0.08.

Our point now is that the d4z integral in (5.6) vanishes, and is thus consistent with (5.3),
for all values of θ and for all x, if and only if the limits of integration are taken zi ∈ [0, 4π).
This leads us to conclude that the moduli spaceM∼ T4 with period 4π in every direction.23

A further argument in favour of this identification of the moduli space is that the
classical fractional instanton field configurations with zn differing by 2π are distinguished
by the gauge invariant winding Wilson loop operators, while those differing by 2π are not
distinguished. Thus one expects that zn and zn + 2π are not to be identified. In contrast,
no local gauge invariant operators can distinguish between zn and zn + 2π, see section A.3
in the appendix for detail.24

5.2 SYM theory

Before turning to the calculations of the gaugino condensate using the path integral method,
we pause here to discuss SYM theory using the Hamiltonian formalism, akin to our discussion
of pure Yang-Mills of section 5.1. The partition function of SYM with twisted boundary
conditions in the 1–2 and 3–4 planes, identical for bosons and fermions, is given by

ZSYM[n12 = 1, n34 = 1] = trHm3=1

[
(−1)F e−L4Ĥ T̂3

]
. (5.7)

The insertion of the fermion number (−1)F guarantees that both fermions and bosons
obey periodic boundary conditions in the time direction. Let X̂ be the Zdχ4 discrete chiral
symmetry generator. Then, it can be shown that the symmetry operators T̂3 and X̂ obey
the algebra: [

Ĥ, T̂3
]

= 0 ,
[
Ĥ, X̂

]
= 0 , T̂3X̂ = eiπX̂T̂3 , (5.8)

where the last relation is the result of the mixed anomaly between the 0-form discrete chiral
and 1-form center symmetries [57].25 Since Ĥ commutes with T̂3, we can as before, label
the physical states in Hm3=1 by |E(e3), e3〉. The algebra (5.8) requires that X̂|E(e3), e3〉 =
|E(e3), e3 − 1〉, and thus, it is easily seen the states |E(e3), e3 = 1〉 and |E(e3), e3 = 0〉 are
degenerate: Ĥ|E, e3 = 0〉 = E(e3 = 0)|E, e3 = 0〉, Ĥ|E, e3 = 1〉 = E(e3 = 0)|E, e3 = 1〉, at
any size of the spatial T3, as a consequence of the anomaly.

23Moreover, it is easy to check that changing the limits of integration to any other values yields a
position-dependent Wilson loop. For example, consider 〈W (x,Cn1=1,n2=0,n3=0,n4=0)〉 and take the range of
zi ∈ [0, 2π), which yields 〈W (x,Cn1=1,n2=0,n3=0,n4=0)〉 ∼ − sin

(
π x

2

L

)
+O(∆). This result should not be

expected on physical grounds since our background has constant field strength on T4 (to leading order in
∆); the expectation value of the Wilson loop should, at most, be a constant (to leading order in ∆).

24We note, without discussing the details, that a virtually identical argument for extending the limits
of zn integration holds also in the SU(N) case in the background of the Q = 1/N solutions found by ’t
Hooft [15], recently extended in the framework of the small-∆ expansion [58].

25The same algebra arises in the 2-D massless charge-2 Schwinger model [63], due to a similar anomaly.
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Now, we can readily calculate the partition function (5.7) to find

ZSYM[n12 = 1, n34 = 1] = trHm3=1

[
(−1)F e−L4Ĥ T̂3

]
=

∑
E, e3={0,1}

(−1)F (−1)e3〈E, e3|e−EL4 |E, e3〉

=
∑

E, e3={0,1}
(−1)F (−1)e3e−EL4 = 0 . (5.9)

This equation provides one way to see that the twisted partition function of SYM vanishes,
by noting that all states in Hilbert space are doubly degenerate and their contributions
cancel each other in the twisted partition function (5.9).

Now we insert the gaugino condensate, the trλ2 operator, where the trace is taken in
the color space. The operator is inserted at x4 = 0 and some position on T3:

〈 trλλ〉 =
trHm3=1

[
(−1)F e−L4Ĥ trλ2 T̂3

]
trHm3=1

[
(−1)F e−L4Ĥ

]
= N−1 ∑

E, e3={0,1}
(−1)F (−1)e3e−EL4〈E, e3| trλ2|E, e3〉 . (5.10)

Here, we took the normalization constantN to be the Witten index: N = trHm3=1

[
(−1)F

]
=

2, given by the partition function on T3 with an n12 twist, but without a T̂3 twist in the
time direction (recall (2.11) in the path integral framework).

Next, we know that X̂|E, e3〉 = |E, e3 + 1〉 from the anomaly (5.8) and that X̂ acts on
the condensate as X̂ trλ2 = − trλ2X̂. Thus, because

〈E, 0|X̂†X̂ trλ2|E, 0〉 = −〈E, 1| trλ2|E, 1〉 , (5.11)

trλ2 has opposite expectation values in the two degenerate states e3 = 0 and e3 = 1. Thus,
we find

〈 trλλ〉 = N−1 ∑
E, e3={0,1}

(−1)F e−EL4〈E, 0| trλ2|E, 0〉V3,n12

=
∑
E

(−1)F e−EL4〈E, 0| trλ2|E, 0〉V3,n12 , (5.12)

where the sum is over only the half of the Hilbert space with e3 = 0 and we are reminded
that the condensate is being computed in a small V3 theory Hilbert space with boundary
conditions twisted by n12.

If L4 is small compared to the energy scales in the problem, there is no reason to assume
that any particular values of E dominate. Thus, eq. (5.12) is the Hamiltonian expression
of the expectation value we have computed for general L4. However, we can try take the
L4 →∞ limit to obtain26

〈 trλλ〉 = 〈0, 0| trλ2|0, 0〉V3,n12 , (5.13)
26Equating the result of our calculation, eq. (6.3) below, to the r.h.s. of (5.13) is only possible if we

assume that the semi-classical treatment holds as L4 is varied between small and large, and, in particular,
there are no new contributions that contribute to the l.h.s. This can be only justified by understanding the
convergence radius of the ∆ expansion.
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where we used that supersymmetry is unbroken and the small-V3 ground state is bosonic,
(−1)F = 1.27

In conclusion, eq. (5.13) shows that in the large-L4 limit, the calculation of 〈 trλ2〉
using the T̂3-twisted parition function and normalized by the Witten index, as in (5.10),
yields the gaugino condensate in one of the two degenerate ground states of the small-V3
theory with a unit ’t Hooft flux n12. The state |0, 0〉V3,n12 is further expected, as V3 →∞,
to become one of the two degenerate ground states of the SU(2) SYM theory on R4.

6 The gaugino condensate

Finally, we put pieces together to read out the condensate. We use the fact that non-zero
modes in (2.10) cancel between the bosons, fermions, and ghosts. Then, we combine the
integral of trλ2 over the zero mode measure for the fermions from eq. (4.8) with the boson
zero mode measure (4.12). We also recall that we normalize by the Witten index N = 2
to obtain:

〈trλλ〉= M3
PV e

− 4π2
g2

N
V

g4 (6.1)

×
∫
zi∈[0,4π]

4∏
k=1

dzk√
2π

g2

16π2
1
2 ε

δγ(φ(2)A
γ φ

(1)A
δ −φ(1)A

γ φ
(2)A
δ )[{x}]

∣∣∣∣
x1→x1−

z2L1
2π , see eq. (4.9)

= Λ3

2
V

4π2
1

16π2

2π∫
−2π

d4z
(
φ

(2)A
2 φ

(1)A
1 −φ(1)A

2 φ
(2)A
1

)[
−z2L1

2π ,
z1L2
2π ,−z4L3

2π ,
z3L4
2π

]
.

To obtain the last line, we recalled the substitution of (4.9), the fact that all local gauge
invariants are periodic functions of ẑk (defined in (4.9)) of period 2π, and used shifts of
the zn variables to set the xk-coordinates (of period Lk) to zero. Further, Pauli-Villars
regularization has been utilized to renormalize the theory, and the scale MPV is the Pauli-
Villars mass. The factor M3

PV comes from regularizing the boson and fermion determinants,
with each zero-mode contributing an appropriate factor of MPV : the bosonic determinant
gives M4

PV and the fermionic determinant gives M−1
PV (we do not describe this in detail, as it

is a standard procedure in supersymmetric instanton calculations [25, 26, 31, 37]). In going

from the first to the second line of (6.1), we used the fact that Λ3 = M3
PV
g2 e

− 4π2
g2 in the scheme

often used for gaugino condensate calculations [25, 26], notably, in the weakly-coupled
R3 × S1 set up and its comparison with the weak-coupling calculation on R4 [31].

Next, we rescale the zk variables in (6.1) by appropriate factors of 2π
Lp

, contributing an
overall Jacobian (2π)4

V . Taking the liberty to again call the rescaled variables xk, we obtain

27We note that a similar equation holds in SU(N) theories for one of the N vacua of the twisted, small-V3

theory. There N = N and there is N -fold degeneracy of all energy states on T3 with n12 = 1.
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for the condensate

〈 trλλ〉 = Λ3

2
1
4
∏
k

Lk∫
−Lk

dxk
(
φ

(2)A
2 φ

(1)A
1 − φ(1)A

2 φ
(2)A
1

)
[−x1, x2,−x3, x4]

= Λ3

2
24

4

∫
T4

d4x
(
φ

(2)A
2 φ

(1)A
1 − φ(1)A

2 φ
(2)A
1

)
[x] = Λ3

2
24

4 g
2U21

F . (6.2)

As indicated, the integrand on the second line is the same as the one appearing in U21
F

from (4.4), safe for the absence of a factor of 1/g2. Thus, recalling that U21
F = 16π2

g2 , as per
the discussion after (4.7) (see also (B.34)), we finally obtain for (5.12):

〈 trλλ〉 = 32π2Λ3. (6.3)

Further, assuming that the result extends to L4 → ∞, as described in the previous
section, we use (5.13) and (6.3) to conclude

〈0, 0| trλ2|0, 0〉V3,n12 = 2× 16π2Λ3 . (6.4)

Thus, the condensate in one of the two degenerate vacua of the small-V3, n12 = 1 theory
has twice the value calculated on R4 as described in the Introduction.28
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A Constructing instantons on the asymmetric T4 with twists

Our SU(2) Lie algebra convention is as follows. We denote the generators in the Cartan

as τ3

2 and the non-Cartan as τ±, where τ+ =
(

0 1
0 0

)
= (τ−)†. We expand the Hermitean

gauge field as

An = A3
n

τ3

2 +A+
n τ

+ +A−n τ
−, A− = (A+)†, n = 1, 2, 3, 4. (A.1)

28In the spirit of Footnote 24, without discussing the details, we remark that a similar result is obtained,
upon taking the large-L4 limit of ’t Hooft’s SU(N) solutions with Q = 1

N
, constructed via the ∆ expansion

in [58]. One finds, instead of (6.4), that the condensate in one of the N degenerate vacua on T3 with an
n12 = 1 twist, 〈0, 0| trλ2|0, 0〉V3,n12 = N × 16π2Λ3, i.e. equals N times the R4 result.
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An identical expression (but without the reality condition) also holds for the adjoint
representation fermions λα, λ̄α̇ (α, α̇ = 1, 2), which are independent variables in Euclidean
space, to be discussed in more detail later.

The fields are smooth and defined on R4, with coordinates xn, n = 1, 2, 3, 4. The
restriction to a T4 with periods Ln, and with ’t Hooft twists is accomplished by imposing
periodicities defined by transition functions Ωn(x), x ∈ R4. As explained in the main text,
we choose a gauge where the T4 transition functions are trivial in the x1 and x3 directions
and nontrivial in the x2 and x4 directions

Ω2(x) = e
−i2π x1

L1
τ3
2 , Ω4(x) = e

−i2π x3
L3

τ3
2 , while Ω1 = Ω3 = 12×2, ∀x ∈ R4.

(A.2)
Thus, there are two nontrivial twists, n12 = n34 = 1, since (A.2) obey the cocycle conditions

Ωi(x+ Lj êj) Ωj(x) = eiπnij Ωj(x+ Liêi) Ωi(x), i, j = 1, 2, 3, 4, ∀x ∈ R4, (A.3)

where ên is a unit vector in the xn direction. The periodicity condition on the gauge fields
in R4 define the T4 fields:

A(x+ ênLn) = Ωn(x)(A(x)− id)Ω−1
n (x), n = 1, 2, 3, 4, ∀x ∈ R4, (A.4)

where we denoted A(x) =
4∑

n=1
An(x)dxn. The Euclidean path integral is performed over

fields obeying (A.4), with fixed transition functions Ωn(x). Gauge transformations g(x) ∈
SU(2), x ∈ R4 act on the gauge field the usual way29 while their action on transition
functions is

Ωn(x)→ g(x+ ênLn)Ωn(x)g−1(x) , n = 1, 2, 3, 4, ∀x ∈ R4. (A.5)

Gauge transformations g(x) which leave the transition functions invariant will be called
“Ω-periodic.” With our choice of gauge for the transition functions, Ω-periodic gauge
transformations g(x) are periodic in x1 and x3 but not in x2 and x4. The only constant
Ω-periodic transformations are the abelian ones, g = eiατ

3 .
For future use, we note that a fundamental-representation Wilson loop along a unit-

winding loop C1 (winding once along xn) is

W (C1, x) = tr

Pei
x+ênLn∫

x

Ak(x′)dx′k
Ωn(x)

 . (A.6)

Here, the insertion of Ωn(x) ensures invariance under (A.5).

29Our convention for gauge transformations, A(x) → g(x)(A(x) − id)g−1(x), implies Fmn = ∂mAn −
∂nAm + i[Am, An] and Dmφ = ∂mφ+ i[Am, φ] for any adjoint φ. Adjoint fermions obey the same periodicity
conditions as (A.4), but without the inhomogeneous term.
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A particular field configuration obeying (A.4) is the constant field strength Abelian
background, the “fractional instanton” introduced by ’t Hooft, see [15, 46, 64]:

Ān(x, z) = Ā3
n(x, z)τ

3

2 : Ā3
1 = 2πx2

L1L2
+ z1
L1
, (A.7)

Ā3
2 = z2

L2
,

Ā3
3 = 2πx4

L3L4
+ z3
L3
,

Ā3
4 = z4

L4
.

Here, zn are constants whose significance as collective coordinates associated with the instan-
ton will be discussed at length later. The field strength of the abelian background (A.7) is:

F (0)
mn = τ3

2


0 − 2π

L1L2
0 0

2π
L1L2

0 0 0
0 0 0 − 2π

L3L4

0 0 2π
L3L4

0

 . (A.8)

The abelian background (A.7), (A.8) has the following properties:

1. The field strength F (0)
mn from (A.8) can be used to explicitly verify that the abelian

background (A.7) has topological charge 1/2. This can be seen by recalling that the
topological charge only depends on the transition functions. Its fractional nature is
owing to the nonzero twists n12 = n34 = 1.

2. In addition, it also follows from (A.8), that for a “symmetric” T4 — one where
L1L2 = L3L4 — the background (A.7) is self-dual and hence stable, i.e. it has minimal
action for the given topological charge. The action of the self-dual abelian solution is
S0 = 4π2

g2 , half that of the BPST instanton.

3. For use below, it is convenient to introduce the variables

(ẑ1, ẑ2, ẑ3, ẑ4) ≡
(
z1 + 2πx2

L2
, z2 −

2πx1
L1

, z3 + 2πx4
L4

, z4 −
2πx3
L3

)
(A.9)

The ẑ-variables are important since all gauge invariants characterizing the nonabelian
instanton background depend on ẑn only. In the gauge we are using, the fact that
the background depends on ẑ1, ẑ3 is already evident in (A.7). The appearance of the
combinations ẑ2, ẑ4 follows from the action of translations in x1 and x3: in order to
preserve the transition functions, an x1, x3 translation is accompanied by a non-Ω-
periodic gauge transformation which shifts z2 and z4. This ensures that all gauge
invariant quantities only depend on ẑn.30

30For example, a translation x1 → x1 + ε1 is accompanied by g1(ε1, x2) = e
i2π ε1x2

L1L2
τ3
2 ensuring that Ω2(x1)

is invariant: as per (A.5), Ω2(x1) transforms into g1(x2 = L2)Ω2(x1 + ε1)g−1
1 (x2 = 0) = Ω2(x1). At the

same time, the g1 action on Ā shifts z2 → z2 − 2πε1
L1

, showing that the variable ẑ2 = z2 − 2πx1
L1

is invariant
under the combined action of g1 and translation eε1∂1 . Our nonabelian solution also exhibits this property:
considering, for example, its W1 component of eq. (A.40), we observe that it is invariant under the combined
action of translation of x1, the shift of z2 given above, and a gauge transformation by g1, which multiplies
W1 by a phase. Gauge invariants built from the solution will then only depend on the ẑn combinations.
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A.1 Constructing the self-dual fractional instanton for small ∆

As explained in the main text, there are issues regarding the abelian solution in the tuned
T4 that have not yet been addressed in full. Notably, they concern the lifting of the extra
bosonic zero modes (found in [46]) present in the L1L2 = L3L4 limit. These issues, as well
as our desire to probe the more interesting asymmetric T4 limit31 prompt us to introduce a
“detuning” parameter ∆, which we define as follows

∆ = L3L4 − L1L2√
L1L2L3L4

= L3L4 − L1L2√
V

. (A.10)

We always take L3L4 > L1L2, i.e. ∆ > 0. For small positive ∆, a nonabelian solution of
the self-duality equations has been constructed as a series expansion in powers of

√
∆ [1],

with the leading contribution being the abelian background (A.7).
In this section, we exhibit this solution, to the leading nontrivial order in ∆, us-

ing our notation and carefully including the dependence on zn. To begin, consider the
classical background

An(x, z) =
(
Ā3
n(x, z) + Sn(x, z)

) τ3

2 +Wn(x, z)τ+ +W ∗n(x, z)τ− , (A.11)

where S,W are the deviations from the abelian background, to be determined in terms of
an expansion in

√
∆. Let us momentarily denote them by an ≡ Sn τ

3

2 +Wnτ
+ +W ∗nτ

−. The
construction of the self-dual solution on the asymmetric torus by means of an expansion
in ∆ proceeds by imposing a self-duality condition on the field strength of (A.11) and
solving the resulting equations in a series expansion in

√
∆ [1]. In order to solve for an, it

is subjected to the background-Lorentz gauge condition:

Dn(Ā)an = ∂nan + i[Ān, an] = 0, or in components: (A.12)

∂nS
n = 0,

3[pt]
(
∂n + iĀ3

n

)
Wn = 0.

Further, the boundary conditions (A.4) imply that Sn is periodic in all xn, while Wn is
periodic in x1 and x3, but not in x2 and x4. Explicitly the boundary conditions are

Sn(x+ êkLk) = Sn(x), ∀k, (A.13)
Wn(x+ ê1L1) = Wn(x),

Wn(x+ ê2L2) = e
−i 2πx1

L1 Wn(x),
Wn(x+ ê3L3) = Wn(x),

Wn(x+ ê4L4) = e
−i 2πx3

L1 Wn(x).

To proceed with the construction of the instanton on the twisted asymmetric T4,
following [1], we calculate the field strength of (A.11), set its antiselfdual part to zero, and

31This is because the asymmetric T4 connects to various semiclassical limits that have been discussed in
the literature, see the main text.
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solve the equations imposing self-duality in a series expansion in powers of
√

∆. To write
the subsequent equations, it is convenient to use a quaternion notation. Thus, we introduce
the matrices32

w = σnWn , where σn = (i~σ, 12×2), σ̄n = (σn)† , (A.14)

s = σnSn ,

wc = Cw∗C , where C =
(

0 −i
i 0

)
.

Here ~σ are the usual Pauli matrices, acting in spinor space, not to be confused with the
τ3, τ± group generators from earlier. In terms of the matrices (A.14), the condition that
the field strength of (A.11) be self dual is Fmnσ̄mσn = 0. This, using (A.12), becomes

Fmnσ̄
mσn = 0 =⇒ σ̄n∂ns = 2π∆√

V
iτ3 − i(w†cwc − w†w), (A.15)

and σ̄n(∂n + iĀ3
n)w = − i2(s†w − w†cs).

The self-duality equations (A.15) admit a solution as a series expansion in the T4 detuning
parameter ∆ (A.10),

w = ∆1/2 w1 + ∆3/2 w2 + ∆5/2 w3 + . . . , (A.16)
s = ∆ s1 + ∆2 s2 + ∆3 s3 + . . . .

The difference in powers of
√

∆ in the series for w and s follows by the structure of the
self-duality equations (A.15).

Here, we shall study only the leading-order solution. To exhibit it explicitly, we
substitute the expansions in (A.16) in (A.15) and keeping the leading term in each equation,
we find that s1, w1 obey

σ̄n∂ns1 = 2π√
V
iτ3 − i

(
w†1cw1c − w†1w1

)
, (A.17)

σ̄n
(
∂n + iĀ3

n

)
w1 = 0 .

We begin with the equation for w1 — the complex quaternion σmWm, obeying the boundary
conditions (A.13). Periodicity in x1, x3 is obeyed by writing a Fourier series

w1 =
∞∑

n1,n3=−∞
e
−i2π

(
n1

x1
L1

+n3
x3
L3

)
wn1,n3

1 (x2, x4), (A.18)

while the conditions

wn1,n3
1 (x2 + L2, x4) = wn1+1,n3

1 (x2, x4) , (A.19)

wn1,n3
1 (x2, x4 + L4) = wn1,n3+1

1 (x2, x4) ,
32The n = 1, 2, 3 components of the four-vector matrix σn defined here should not be confused with

~σ = {σa, a = 1, 2, 3} = (σ1, σ2, σ3), the usual Pauli matrices. We use lower-case indices a = 1, 2, 3 to denote
the usual Pauli matrices σa and reserve τa for the SU(2) generators.
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ensure the rest of (A.13) and, by induction, imply that all wn1,n3 can be expressed via a
single function,

wn1,n3
1 (x2, x4) = u1(x2 − n1L2, x4 − n3L4). (A.20)

Before we continue, we note that (A.20) together with (A.18) implies that the norm of w1
on T4 can be expressed as an R2-integral

||w1|| ≡
∫
T 4
d4x trw†1w1 =

∑
n1,n3

L2∫
0

dx2

L4∫
0

dx4 tr
(
wn1,n3

1
)†
wn1,n3

1

=
∞∫
−∞

dx2

∞∫
−∞

dx4 tru†1(x2, x4)u1(x2, x4) . (A.21)

Thus, finiteness of ||w1|| implies that the elements of the quaternion u1(x2, x4) should be
square-normalizable functions on the R2-plane spanned by x2, x4. Any complete basis of
such functions on R2 can be used, but below, we shall argue that an especially convenient
basis is given by appropriately chosen simple harmonic oscillator eigenfunctions.

Continuing with our self-duality equations (A.17), now the second equation in (A.17)
together with (A.20) implies that

(
∂4 + i z4

L4

)
+ 2π

L3L4

[
x4 −

(
n3 − z3

2π
)
L4
]
−
(
∂2 + i z2

L2

)
+ 2π

L1L2

[
x2 −

(
n1 − z1

2π
)
L2
]

(
∂2 + i z2

L2

)
+ 2π

L1L2

[
x2 −

(
n1 − z1

2π
)
L2
] (

∂4 + i z4
L4

)
− 2π

L3L4

[
x4 −

(
n3 − z3

2π
)
L4
]


× u1(x2 − n1L2, x4 − n3L4) = 0 .
(A.22)

The holonomies in the partial derivatives can be absorbed by defining a new quaternion
ũ1(x2 − n1L2, x4 − n3L4) by means of the redefinition

u1(x2 − n1L2, x4 − n3L4) = e
−i z2

L2
(x2−n1L2)−i z4

L4
(x4−n3L4)

ũ1(x2 − n1L2, x4 − n3L4).
(A.23)

Using this, equation (A.22) becomes ∂4 + 2π
L3L4

[
x4 −

(
n3 − z3

2π
)
L4
]
−∂2 + 2π

L1L2

[
x2 −

(
n1 − z1

2π
)
L2
]

∂2 + 2π
L1L2

[
x2 −

(
n1 − z1

2π
)
L2
]
∂4 − 2π

L3L4

[
x4 −

(
n3 − z3

2π
)
L4
]


× ũ1 (x2 − n1L2, x4 − n3L4) = 0 . (A.24)

As already alluded to, we now recognize that the first order differential operators
appearing above are the creation and annihilation operators of simple harmonic oscillators
(SHO) of frequencies 2π/(L1L2) and 2π/(L3L4). Let hijp (x) be the normalized p-th state of
the SHO of frequency

ωij = 2π
LiLj

. (A.25)
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The relations that we need in what follows are the orthonormality relations
∞∫
−∞

dxhijn (x)hijm(x) = δnm , n,m = 0, 1, 2 . . . , (A.26)

as well as the raising and lowering operators which obey the usual equations√
LiLj
4π

[
∂x + 2π

LiLj
x

]
hijn (x) =

√
n hijn−1(x) ↔ Aij |n〉ij =

√
n|n− 1〉ij ,√

LiLj
4π

[
−∂x + 2π

LiLj
x

]
hijn (x) =

√
n+ 1 hijn+1(x) ↔ A†ij |n〉ij =

√
n+ 1|n+ 1〉ij ,

(A.27)

where we have indicated that the differential operators in the middle and bottom line are
the familiar lowering and raising operators Aij , A†ij of SHOs of frequencies ωij (A.25). In
terms of A12, A

†
12, A34, A

†
34,33 we can rewrite (A.24) as(√

2ω34A34
√

2ω12A
†
12√

2ω12A12 −
√

2ω34A
†
34

)
ũ1

(
x2 −

(
n1 −

z1
2π

)
L2, x4 −

(
n2 −

z3
2π

)
L2

)
= 0 . (A.28)

It is then clear that this equation is satisfied by ũ1 given by the product of ground state
wave functions of the ω12 and ω34 SHOs times a constant 2× 2 matrix C1:

ũ1 = h12
0

(
x2 −

(
n1 −

z1
2π

)
L2

)
h34

0

(
x4 −

(
n3 −

z3
2π

)
L4

)
C1, (A.29)

where C1 obeys, as a consequence of (A.28)(
0
√

2ω12
0 −
√

2ω34

)
C1 = 0 =⇒ C1 =

(
a b

0 0

)
, (A.30)

with arbitrary complex numbers a, b.
Before continuing, let us make the following important remark:

• We stress that (A.29), (A.30) is the unique solution and not simply a consistent
one. Because of the R2-normalizability (A.21), any solution can be expressed in
terms of ω12 and ω34 SHO eigenfunctions. Explicitly, for the ab-th element of the
quaternion ũ1, we have ũ1 ab(x2, x4) =

∞∑
n,m=0

cnmab h
12
n (x2)h34

m (x4). Plugging into (A.28)

and using (A.26), (A.27) one finds a set of linear equations for the constants cnmab :
√
ω34 c

p,q+1
11

√
q + 1 +√ω12 c

p−1,q
21

√
p = 0, for p, q = 0, 1, 2, 3 . . . ,

√
ω34 c

p,q+1
12

√
q + 1 +√ω12 c

p−1,q
22

√
p = 0,

√
ω12 c

p+1,q
11

√
p+ 1−√ω34 c

p,q−1
21

√
q = 0,

√
ω12 c

p+1,q
12

√
q + 1−√ω34 c

p,q−1
22

√
q = 0. (A.31)

33With appropriately shifted center, as in the argument of ũ1 below, a fact which we do not make explicit
for brevity.
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One begins by noticing that c00
11 and c00

12 do not appear above (this is easy to see
by inspection recalling the range of p, q, which ensure that terms containing the
nonexistent coefficients, like c−1,∗

∗∗ , are always multiplied by 0). Then, recursively
solving the equations, one finds that their only solution is that all cnmij vanish except
for the two that do not appear in equations (A.31), the undetermined c00

11 and c00
12,

called a and b in (A.29).
Let us flesh out the argument. We consider the first and third equations in (A.31); the
second and fourth can be considered similarly and are left as an exercise. First notice
that (A.31) imply that c0,p

11 = cp,011 = 0 for p = 1, 2, 3 . . .. Further, denote δ =
√

ω12
ω34

and shift the p’s and q’s in (A.31) such that both equations involve cp,q11 we find

cp,q11
√
q + δcp−1,q−1

21
√
p = 0, (A.32)

cp,q11
√
p− 1

δ
cp−1,q−1

21
√
q = 0.

Next, we multiply the top equation by √p and the bottom by √q, subtract them,
and find

cp−1,q−1
21 (pδ + q

δ
) = 0. (A.33)

Recalling that the appropriate range for p, q in (A.33) is 1, 2, 3 . . ., this implies that
all c21’s vanish. Hence by (A.32), all cp,q11 with (p, q) 6= (0, 0) vanish as well.

We next turn to the first of the self-duality equations in (A.17). Since s1 is periodic,
the r.h.s. of the equation has no constant Fourier mode. Thus, consistency implies that the
constant mode of the r.h.s. vanishes as well; this will be seen to fix the coefficients a, b in
terms of the volume of the torus up to an overall phase. To determine them, let us collect
everything — in reverse order, eqs. (A.29), (A.24), (A.23), (A.20), and (A.18)—and exhibit
the full solution for w1 we found so far:

w1 = F (x, z)C1 = F (x, z)
(
a b

0 0

)
, (A.34)

where

F (x, z) =
√
L2L4

∞∑
n1,n3=−∞

e
−i2π(n1

x1
L1

+n3
x3
L3

)
e
−i z2

L2
(x2−n1L2)−i z4

L4
(x4−n3L4)

× h12
0

(
x2 −

(
n1 −

z1
2π

)
L2

)
h34

0

(
x4 −

(
n3 −

z3
2π

)
L4

)
, (A.35)

with the normalization ∫
T 4
|F |2 = V, (A.36)

recalling (A.27). Note that F is dimensionless and a, b have dimension one. In addition,
under the reflection of all xn and all zn, after relabeling n1, n3 → −n1,−n3 and noting that
hij0 are even functions of their arguments, we find

F (−x,−z) = F (x, z) . (A.37)
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With (A.34), (A.35), we have that the vanishing constant mode of ∂s from equa-
tion (A.17) implies that

2π
√
V τ3 = (C†cCc − C†C)

∫
T 4

d4x|F (x, z)|2 , or

2π
√
V

(
1 0
0 −1

)
=
(
|b|2 − |a|2 −2a∗b
−2ab∗ |a|2 − |b|2

)
V . (A.38)

We thus conclude that a = 0 while |b|2 = 2π
V 1/2 . Thus, our solution has the form

w(x, z) = σnWn =
√

∆w1(x, z) =
√

∆F (x, z)eiα (2π)1/2

V 1/4

(
0 1
0 0

)
+O(∆) ,

s(x, z) = σnSn = O(∆) , (A.39)

with the phase α due to the gauge freedom to rotate around the τ3 isospin direction.
Before we continue, let us exhibit the self-dual solution we found, eq. (A.39), w = ∆1/2w1

in terms of the 4-vector gauge potentials, Wn, Sn of (A.11):

Sn = O(∆) ,

W1(x, z, α) = − i2
√

∆F (x, z)eiα
√

2π
V 1/4 +O(∆3/2) ≡ −γeiαF (x, z),where γ ≡ i

2

√
2π∆√
V
,

W2(x, z, α) = 1
2
√

∆F (x, z)eiα
√

2π
V 1/4 +O(∆3/2) = iW1 +O(∆3/2),

W3 = O(∆3/2),

W4 = O(∆3/2). (A.40)

We note that the above implies that the only gauge-field zero modes in our background
are the one due to translations (corresponding to shifting zn) and constant gauge rotations
around τ3 (corresponding to shifts of α). The former are physical and gauge invariant
quantities characterizing the solution will be seen to depend on zn, while the latter are
gauge artifacts with no physical quantity exhibiting α-dependence.

For calculating the action density and gauge-invariant “electric” and “magnetic” fields
to leading nontrivial order, one also needs the expression for S1, which was not given
in (A.40). Here we simply describe how this can be found. We have, with w1 from (A.39)

w1 = F

(
0 b

0 0

)
, b = eiα

√
2π
V

1
4

=⇒ w†1w1 = |F |2
(

0 0
0 |b|2

)
,

w1c = F ∗
(

0 0
−b∗ 0

)
=⇒ w†1cw1c = |F |2

(
|b|2 0
0 0

)
. (A.41)

Hence, from the top equation in (A.17), we obtain the equation for s1:

σ̄n∂ns1 = iτ3 2π√
V

(
1− |F (x, z)|2

)
. (A.42)
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The consistency of this equation (the absence of a constant Fourier mode of the r.h.s.)
discussed above is yet again seen to follow from (A.36). We also note that equation (A.42)
allows adding a constant to s1; this is a contribution to the constants zn, already included
in our background (A.7). To solve (A.42), we multiply by σm∂m to obtain

∂n∂
ns1 = −iσmτ3 2π√

V
(F ∗∂mF + F∂mF

∗) . (A.43)

This equation is solved by expanding both s1 and the r.h.s. in Fourier modes in x1 . . . x4 and
equating the coefficients. This can be explicitly done and a unique s1 can be written down,
but we shall not need the explicit form here. As we mentioned in section 1.3, understanding
the higher orders in the ∆ expansion is an interesting problem for future studies.

A.2 The field strength tensor of the fractional instanton to order ∆

To find the gauge invariants of the solution to order ∆, we need the field strength of
s1, namely34

F snm ≡ (∂nSm − ∂mSn) , (A.44)

where for brevity we use Sn to denote the coefficient of the O(∆) part of Sn. The l.h.s.
of (A.42) has the form

−i∂3 + ∂4 −i∂1 − ∂2

−i∂1 + ∂2 i∂3 + ∂4


 iS3 + S4 iS1 + S2

iS1 − S2 −iS3 + S4



=

 ∂nS
n + i(F s12 − F s34) −F s13 − F s24 + i(F s23 − F s14)

F s13 + F s24 + i(F s23 − F s14) ∂nS
n − i(F s12 − F s34)

 . (A.45)

Comparing with the r.h.s. of (A.42), using ∂nSn = 0, we conclude that

F s12 − F s34 = 2π√
V

(
1− |F (x, z)|2

)
,

F s13 + F s24 = 0,

F s23 − F s14 = 0. (A.46)

Note that these terms should be multiplied by ∆. Also note that these equations by
themselves do not determine the individual F s12, F s34 (etc.) but only their non-self-dual
parts. To find the individual F smn, we need to solve (A.43) to first find s1.

34As stressed above, we shall not need its explicit form, but only the relations it satisfies, which are
important to ensure self-duality.
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The field strength of the O(1) abelian background (A.7) is F (0)
mn, already given in (A.8).

Combining this with the results for F smn from (A.46), we find

F (0+1(s))
mn = τ3

2



0 − 2π
L1L2

+ ∆F s12 ∆F s13 ∆F s14

2π
L1L2

−∆F s12 0 ∆F s14 −∆F13

−∆F s13 −∆F s14 0 − 2π
L3L4

+ ∆F s34

−∆F s14 ∆F s13
2π
L3L4

−∆F s34 0


,

(A.47)

where F s34 is understood to be expressed via F s12 through the first equation in (A.46).
To study the complete field strength tensor in the τ3 direction to order ∆, we must

add to (A.47) the O(∆) contribution to the τ3 field strength coming from the commu-
tator F (1(w))

mn = i[Wmτ
+ + W ∗mτ

−,Wnτ
+ + W ∗nτ

−] = τ3

2 2i(WmW
∗
n − W ∗mWn). For the

background (A.40), this is only nonzero for F (1(w))
12 . We find

F
(1(w))
12 = −F (1(w))

21 = τ3

2
2π∆√
V
|F (x, z)|2 , all other F (1(w))

mn = 0. (A.48)

Most of the terms in (A.47) obey self-duality because of F (0+1(s))
13 = −F (0+1(s))

24 and
F

(0+1(s))
23 = F

(0+1(s))
14 as is evident from (A.47), (A.46). The only terms left to consider are

the 12 and 34 entries. To study their self-duality, we write, using the top equation in (A.46)

F
(0+1(s))
12 − F (0+1(s))

34 = τ3

2

(
−2πL3L4 − L1L2

V
+ ∆(F s12 − F s34)

)
= τ3

2

(
−2π ∆√

V
+ 2π ∆√

V
(1− |F (x, z)|2

)
= −τ

3

2
2π∆√
V
|F (x, z)|2 . (A.49)

This non-selfdual contribution to F (0+1(s))
mn is cancelled by the O(∆) contribution of the Wn

shown in (A.48).
Displayed in full glory, the Cartan part of the field strength to order ∆ is given by the

sum of (A.47) and (A.48):

F (0+1)
mn

∣∣
Cartan =

0 − 2π
L1L2

+∆(F s12+ 2π√
V
|F (x,z)|2) ∆F s13 ∆F s14

2π
L1L2

−∆(F s12+ 2π√
V
|F (x,z)|2) 0 ∆F s14 −∆F13

−∆F s13 −∆F s14 0 − 2π
L3L4

+∆F s34

−∆F s14 ∆F s13
2π
L3L4

−∆F s34 0


.

(A.50)
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We stress again that F s34 is understood to be expressed via F s12 through (A.46), a substitution
we have not explicitly done for lack of space. Further, the above expression is understood
to be multiplied by τ3/2 and the undertermined F smn are found by solving (A.43).

The non-Cartan part of the solution, the Wn from (A.40) also produce a non-Cartan
field strength. The O(

√
∆) field strength due to Wn is F (1)

mn = (∂m + iĀ3
m)Wnτ

+ + (∂m −
iĀ3

m)W ∗nτ− − (m ↔ n). It is self-dual by itself and the O(
√

∆) field strength of Wn

is the only non-Cartan contribution to order ∆ (the next non-Cartan contribution is of
order ∆3/2):

F (1)
mn =



0 0 F
(1)
13 F

(1)
14

0 0 F
(1)
14 −F

(1)
13

−F (1)
13 −F

(1)
14 0 0

−F (1)
14 F

(1)
13 0 0


. (A.51)

The nonzero entries of (A.51) are

F
(1)
13 = −iγ∗eiα

√
ω34
2 G(x, z)τ+ + iγe−iα

√
ω34
2 G∗(x, z)τ−, (A.52)

F
(1)
14 = γ∗eiα

√
ω34
2 G(x, z)τ+ + γe−iα

√
ω34
2 G∗(x, z)τ− ,

where we shouldn’t forget that γ ∼
√

∆, as γ = i
2

√
2π∆√
V
, as per (A.40). The function

G(x, z) is

G(x, z) =
√
L2L4

∞∑
n1,n3=−∞

e
−i2π(n1

x1
L1

+n3
x3
L3

)
e
−i z2

L2
(x2−n1L2)−i z4

L4
(x4−n3L4)

× h12
0

(
x2 −

(
n1 −

z1
2π

)
L2

)
h34

1

(
x4 −

(
n3 −

z3
2π

)
L4

)
, (A.53)

where, just like F (x, z), G is dimensionless.
In conclusion, the full field strength tensor of our solution, to order ∆, is given by the

Cartan part (A.50) and the non-Cartan part (A.51). Owing to the self-duality, the action
of the solution is S0 = 4π2

g2 , as can also be explicitly inferred from the explicit form of the
field strength. These properties of the solutions are useful in what follows.

A.3 The gauge invariants of the fractional instanton background

We now consider the zn-dependence of gauge invariants, both local and nonlocal (i.e. winding
Wilson loops) characterizing the solution.

We begin with the zn dependence of local gauge invariants, formed of traces of powers
the field strength tensor. Using the data given above, we now compute

〈E2
i 〉 ≡

L3∫
0

dx3

L4∫
0

dx4 trF 2
i4(x, z), (A.54)
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calling it the “i-th component of the electric field squared,” averaged over x3 and x4.35
Omitting overall constants, for i = 1, we find for the leading contribution to (A.54), which
is O(∆):

〈E2
1〉 ∼

∑
n1,m1

e
−i2π(n1−m1) 1

L1

(
x1−

z2L1
2π

)
h12

0

(
x2 + z1L2

2π − n1L2

)
h12

0

(
x2 + z1L2

2π −m1L2

)

∼
∑
n1,m1

e
−i2π(n1−m1) 1

L1

(
x1−

z2L1
2π

)
e
− π
L1L2

[(
x2+ z1L2

2π −n1L2
)2

+(x2+ z1L2
2π −m1L2)2

]
. (A.55)

The sum over m,n is rapidly converging and can be seen to produce localized bumps on T4

when plotted, periodic on R2 with period L1, L2 (usually a limit of −4 ≤ m,n ≤ 4 suffices
to make the errors tiny and produces a periodic picture). The point of this discussion is to
illustrate two facts:

1. That all local gauge invariants characterizing our fractional instanton depend on the
combinations z2− 2πx1

L1
and z1 + 2πx2

L2
(this also holds for the dependence on z4− 2πx3

L2
and z3 + 2πx4

L4
, not shown above).

2. That, furthermore, the local gauge invariants have 2π periodicity in these variables.

Next, we consider the zn dependence of winding Wilson loops. To order ∆0, with the
abelian background (A.7), this is a rather straightforward task. Consider a Wilson loop
beginning at some x, going along the x1 direction n1 times (i.e. from x to x+ ê1n1L1), then
n2 times in the x2 direction, n3 times in the x3 direction, and n4 times in the x4 direction,
with the final point being x+

4∑
k=1

êknkLk. The gauge invariant Wilson loop along the loop
Cn1,n2,n3,n4 , beginning at x and consisting of the winding straight segments described above,
is given by

W (Cn1,n2,n3,n4) = tr
(
Pe

i
∫
Cn1,n2,n3,n4

Ak(x′)dx′k Ωn2
2 (x) Ωn4

4 (x)
)
, (A.56)

where the nontrivial transition functions are inserted to ensure gauge invariance.
The path-ordering can be disregarded for an abelian background (Ā of (A.7)) and one

can conclude that

W∆0 (Cn1,n2,n3,n4) (A.57)

= 2 cos
[1

2

(
n1

(
z1 + 2πx2

L2

)
+ n2

(
z2 −

2πx1
L1

)
+ n3

(
z3 + 2πx4

L4

)
+ n4

(
z4 −

2πx4
L2

))]
.

We now observe that the O(∆0) Wilson loops W∆0
n1,n2,n3,n4 are periodic functions of the

variables ẑ1 ≡ z1 + 2πx2
L2

, ẑ2 ≡ z2− 2πx1
L1

, ẑ3 ≡ z3 + 2πx4
L4

, ẑ4 ≡ z4− 2πx3
L3

. However, in contrast
with the local gauge invariants, like the earlier (A.55), the periodicity in ẑn is 4π, rather
than 2π. Thus, while local gauge invariants can not distinguish values of ẑn differing by 2π,
nonlocal gauge invariant observables distinguish such values. These values are, therefore,
not physically equivalent.

35The averaging is done solely in order to shorten the formulae that we display. This was also done in [1],
when comparing the analytic solution to the numerical minimization of the action at given ∆.

– 37 –



J
H
E
P
0
1
(
2
0
2
3
)
1
1
8

We are led to conclude that the range of values of ẑn which are distinguished by gauge
invariant quantities — and are thus physically distinct — is given by T4. In our description,
the T4 has “circumference” 4π, ẑn ≡ ẑn + 4π. This fact is important in the calculation of
the gaugino condensate.

It should be clear that the O(∆) (and higher) contributions to the Wilson loops (A.56),
which require taking the path ordering into account, are proportional to the same overall
factor as (A.57)—since they come upon expanding the path-ordered exponential. Thus,
eq. (A.57), is multiplied by (1 +O(∆)). The O(∆) terms are 2π periodic functions of ẑn,
even with respect to their simultaneous reflection, not affecting our conclusion above.

As an explicit simple example, consider the O(∆) contribution to W (C1,0,0,0), obtained
by expanding the path-ordered exponential and using the explicit form of the solution (A.40).
Omitting the overall constant, we obtain36

W (C1,0,0,0)
∣∣
O(∆)−contribution (A.58)

∼ cos ẑ1
2

(∣∣∣∣∑
n3

ein3ẑ4 h34
0 ( ẑ3L4

2π − n3L4)
∣∣∣∣2

×
∣∣∣∣∑
n1

e−in1ẑ2 h12
0 ( ẑ1L2

2π − n1L2)
1∫

0

dt eit(ẑ1−2πn1)
∣∣∣∣2 + contribution of s1

 .
The expression above illustrates the properties we mentioned earlier: as a function of ẑn,
the O(∆) contribution multiplying the overall cos ẑ1

2 factor is 2π periodic.

B Zero modes of the fractional instanton

B.1 Leading-order bosonic zero-modes and measure

Here, we study the leading order bosonic zero modes and construct the O(∆0) bosonic zero
mode measure. In the following sections, we shall argue that the measure remains the same
to all orders in ∆.

The bosonic zero modes are related to the dependence of the solution on zp. Their
leading-order wave functions are particularly simple

Z0,(p)
n = ∂Acl.n

∂zp
= δnp
Lp

τ3
2 + . . . (B.1)

As usual when performing semiclassical instanton calculations, we add a background Lorentz
gauge fixing term to the bosonic action37 and expand to second order in fluctuations am,
Am ≡ Aclm + am, Dm ≡ Dm(Acl) = ∂m + i[Aclm, ∗]. We stress that here Aclm is the classical

36We indicated that there is an additional contribution of the Cartan-direction O(∆) component s1, which
we have not computed. However, since it is found by solving (A.43), whose r.h.s. is (schematically) ∼ F ∗F
which has the same properties as the (also schematically) |W1|2 contribution shown in (A.58).

37It should be clear that, to order O(∆0), the zero modes (B.1) already obey the background gauge
condition: the leading-order background is in the Cartan algebra and thus commutes with Z

0,(p)
n and,

furthermore, the leading-order zero modes (B.1) are constant.
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solution on the asymmetric T4, taken to the desired order in ∆. Thus, we obtain the usual
action of the bosonic fluctuations

Sb,g.f. =
∫
T 4

[ 1
2g2 trFmnFmn + 1

g2 tr (Dmam)2
]

(B.2)

' 4π2

g2 + 1
g2

∫
T 4

tr [anOnmam] , where Onmam = −D2δnmam − 2i[Fnm, am].

We include the rather well-known details that follow in order to motivate the inner product
of modes as well as to follow the factors of 2. Denote by Zkm the nonzero-eigenvalue
eigenfunctions of Onm, i.e. OnmZkm = ωkZ

k
n and expand the nonzero-mode part of the

fluctuation am (for brevity, using the same letter as the full fluctuation which includes the
zero modes) as am = ∑

k ζkZ
k
m. Then we have that

Sb,g.f. −
4π2

g2 =
∑
l,k

ωlζkζl
2

( 2
g2

∫
T 4

trZkmZ lm
)
≡
∑
l,k

ωlζkζl
2 Ukl,

where the last equation defines the zero-mode norm matrix Ukl, explicitly spelled out in (B.3)
below. We diagonalize the matrix Ukl with eigenvalues uk and define the measure of the
path integral over the nonzero modes as ∏k

dζk
√
uk√

2π , thus normalizing the path integral to
simply produce the product ∏k ω

−1/2
k . The upshot is that we defined the inner product (or

moduli space metric)

Ukl = 2
g2

∫
T 4

trZknZ ln (B.3)

which in a diagonal basis is simply Ukl = δlkul.
We use the same inner product for the zero modes Z(0),p

n of eq. (B.1), for which we find,
neglecting the O(

√
∆) contributions

u
(0)
k = V

g2L2
k

. (B.4)

As before, we expand the gauge field as An = Acln +∑4
p=1 ζ

(0)
p Z

(0),p
n + (nonzero modes), and

define the measure over the zero modes as ∏4
k=1 dζ

(0)
k

√
u

(0)
k
2π , the same as for the nonzero

modes. Taken at face value, this integral is undetermined until we find the region of
integration over ζ(0)

k . To change variables ζ(0)
k → zk, we note that to leading order in

∆ this is quite straightforward, since the dependence of Acl(z) on zk is linear hence one
simply replaces ζ(0)

k by zk. These O(∆0) considerations allow us to obtain the bosonic zero-
mode measure

dµB ≡
d4z

(
√

2π)4

4∏
l=1

√
u

(0)
l = V

g4
dz1dz2dz3dz4

(
√

2π)4 . (B.5)

As described earlier, section A.3, the zn are integrated over in the range from 0 to 4π
modulo an overall reflection.

We end this introductory discussion of bosonic zero modes with two comments:
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1. Eq. (B.5) was obtained by considering only the leading-order solution. Our next task
is to show that the zero modes of the O(

√
∆) (and higher) solution enjoy the same

measure. We need to ensure that the background gauge condition can be satisfied
and that the change of variables from ζ

(0)
k to zn results in the same measure.

2. An additional question that needs to be discussed is the fact that for ∆ = 0, the
self-dual abelian solution has extra non-Cartan zero modes, in addition to the constant
modes, as was found long ago [46]. In contrast, the asymmetric T4 self-dual solution
has only the zero modes discussed above, as we show below.

B.2 Fermions and their zero-mode measure

It is well-known (see e.g. [25, 26]) that there is a relation between the zero modes of the
adjoint Dirac operator and the zero modes of the bosonic fluctuation operator Omn of
eq. (B.2), to be exploited later. To this end, as well as because we are interested in the
theory with adjoint fermions, we now consider the adjoint fermions and their path integral
in the fractional instanton background.

The Euclidean space Lagrangian density with the fermions included is

1
2g2 trFmnFmn + 2

g2 tr (∂nλ̄α̇ + i[An, λα̇])σ̄α̇αn λα), (B.6)

where λ and λ̄ are independent variables.38 For future use, we note that it is invariant
under the supersymmetry

δAn = ζα σn αα̇ λ̄
α̇ + ζ̄α̇ σ̄

α̇α
n λα (B.7)

δλα = −σ β
mn α ζβ Fmn

δλ̄α̇ = −σ̄ α̇
mn β̇

ζ̄ β̇ Fmn

where the σ’s are the ones of [25]. As usual for spinors, ξ1 = ξ2, ξ
2 = −ξ1 and likewise

for dotted.
The procedure for the fermions we shall follow is to again start from the nonzero modes.

We expand the fermions as eigenfunctions of the second order Hermitean operators

DD̄ = D2 + iFmnσ
mn , −(DD̄) β

α λβ = ω2λβ (B.8)

D̄D = D2 + iFmnσ̄
mn = D2, D2λ̄β̇ = ω2λ̄β̇ ,

where, in the second line, we used the self-duality of the background (A.15). To discuss the
measure, begin by considering the contribution of a single (for brevity) nonzero eigenvalue
ω to the fermion path integral. Let −(DD̄) β

α φiβ = ω2φiα, where i labels the different
eigenfunctions, the commuting functions φiα, with the same eigenvalue ω (we note that

38All our notation regarding fermions is as in [25], save for the fact that ref. [25] uses antihermitean gauge
fields, necessitating the replacement Athat ref. = iAthis paper. The four-vectors σn, σ̄n were already defined
in (A.14). For futher use, notice, in particular, that σmn = (σmσ̄n − σnσ̄m)/4, and that these matrices
are, explicitly, σ12 = σ34 = i

2σ3, σ13 = −σ24 = − i
2σ2, σ14 = σ23 = i

2σ1. As we already noted, we use σa to
denote the usual Pauli matrices, not to be confused with the components of the four-vector σn of (A.14).
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there are at least two of them). We expand the nonzero-mode part of the fermion field (for
brevity, denoting it with the same letter λ, λ̄)

λα =
∑
i

χi φiα (B.9)

λ̄α̇ =
∑
i

χ̄i
1
ω
D̄α̇αφiα,

where we used the fact that the nonzero eigenfunctions of DD̄ and D̄D are related as shown
and we attach the spinor index to the bosonic solution of the 2nd order equation and not
to the Grassmann variable, χi or χ̄i (the fact that there is more than a single solution for
every ω is accounted by the index i). We also indicate that the λ and λ̄ expansions have
each their separate Grassmann variables χi, χ̄i.

Plugging (B.9) into the fermionic action (B.6), we obtain after integration of parts and
using the fact that φ is an eigenvector of DD̄:

SF = 2
g2 tr (Dnλ̄α̇σ̄

α̇α
n λα) =

∑
ij

χ̄jχiω

( 2
g2

∫
trφiαφjα

)
(B.10)

= ω
∑
ij

χ̄jχi U ijF ,

where the fermion mode inner product matrix is

U ijF = 2
g2

∫
T 4

tr
(
φi2φ

j
1 − φ

i
1φ

j
2
)
, U ijF = −U jiF , (B.11)

and again we remind ourselves that we are just looking at a single eigenvalue (one can
imagine a sum over them). Then we define the fermion nonzero mode path integral so that
it produces ω (the minimal number of eigenfunctions with the same eigenvalue is two, i.e.
i, j = 1, 2, with UF generically a 2× 2 matrix)∫ ∏

i

dχidχ̄i (detUF )−1e−SF = ω . (B.12)

When all nonzero eigenvalues are taken into account, we obtain the square root of the
product over all nonzero eigenvalues of D̄D (or DD̄).

The definition of the integrals over the fermion zero modes are done in the same manner
using the same mode normalization matrix, U ijF defined in (B.11). We imagine (as we shall
argue to be the case in our background) that only the undotted spinors λα have zero modes,
thus we expand39

λα =
∑
i

ηiφiα + nonzero modes, (B.13)

where we use ηi to denote the zero-mode Grassman variable. The fermion zero-mode
measure is then taken to be the “square root” of (B.12):40

dµF =
∏
i

dηi (detUF )−1/2 =
∏
i

dηi (PfUF )−1 . (B.14)

39Here and below, we use φiα to denote the zero-mode solutions of DD̄, obeying (DD̄) β
α φiβ = 0. The

reader should forgive us for using the same letter as in the non-zero mode discussion near (B.9).
40This definition ensures that, upon perturbing with a zero-mode lifting mass term, δSm = m

g2 trλαλα,
one obtains m for the zero-mode contribution to the path integral.
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B.2.1 No zero modes of D2 = DD̄ on the asymmetric T4

The reason to include this section is that in the ∆ = 0 abelian self-dual background, i.e. in
the symmetric-T4 case, the D2 (= D̄D) operator has zero modes: an = cnτ

3, with arbitrary
constant cn. These zero modes are also zero modes of Omn of (B.2), owing to the abelian
nature of the background. The four Cartan zero modes of the ∆ = 0 self-dual solution
appear in addition to the two non-Cartan (complex) zero modes, also obeying Omnan = 0
but with an in the τ± directions, found in [46]. Thus the ∆ = 0 self-dual abelian background
has 8, not 4 bosonic zero modes. While it is expected that interactions lift half of these
zero modes, this has not been shown in any detail and is a problem for future studies.

In any case, since we find the ∆ 6= 0 detuned T4 of greater physical interest, we proceed
to show that in our self-dual background (A.40) the D2 operator has no zero modes. Furst,
suppose that there exists an adjoint field φ (generally complex) obeying DnDnφ = 0 in
our background; φ is, of course, assumed to obey the boundary conditions appropriate to
adjoints, i.e. (A.4) without the nonhomogeneous term. This implies that

∫
T4

trφ†DnDnφ = 0,

or, after integration by parts, noting that the boundary terms vanish if (A.4) are obeyed,∫
T4

trDnφ
†Dnφ = 0. This is only possible if Dnφ = 0, or writing explicitly the components

of this equation:

∂nφ
3 − 2iA−n φ+ + 2iA+

n φ
− = 0,(

∂n − iA3
n

)
φ− + iA−n φ

3 = 0,(
∂n + iA3

n

)
φ+ − iA+

n φ
3 = 0, (B.15)

where A3,±
n are to be substituted by the O(

√
∆) background fields (A.40). Eqs. (B.15)

imply that the D2 zero mode φ0 of the abelian background (the ∼ ∆0 term with A± = 0)
has components φ3

0 = c, φ±0 = 0. One can show that there are no other zero mode solutions
obeying the right boundary conditions (see [46], or perform a SHO analysis of (B.15) in the
background (A.7), similar to the analysis in section A.1).

We now want to argue that the O(
√

∆) perturbations around the abelian background
of eq. (A.40) lift the zero eigenvalue of −D2. To this end, we use perturbation theory
for the non-negative Hermitean operator −D2 and compute its matrix element in the
unperturbed “eigenstate” found above, φ0 = c τ

3

2 . For the shift of the eigenvalue, this gives∫
T4 trφ†0(−D2)φ0 = |c|2

2
∫
T4 4A−nA+

n , where only the n = 1, 2 components are nonzero in the
order

√
∆ solution: A+

1 = W1 and A+
2 = W2 = iW1. The integral is positive definite, as it is

easily seen to be proportional to
∫
T4 |F |2, recall (A.36), showing that the zero eigenvalue is

lifted in the detuned-T4 self-dual background. This is a welcome feature of this background,
compared to the one in the symmetric T4 studied in [46].

B.2.2 The zero modes of D on the asymmetric T4 via the Dirac equation

In this section, we explicitly study the Dirac equation for the undotted fermions in the
∼
√

∆ background and show that they have two zero modes. Since, as shown above,
D2 = D̄D has no zero modes, the presence of two zero modes of DD̄ is guaranteed by the
index theorem in the topological charge 1/2 background. Thus, we include this discussion
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only for completeness. In the later section, we shall see that these zero modes can be
obtained using supersymmetry.

The Dirac equation for the zero mode is D̄α̇αλα = 0 yielding

0 = σ̄nα̇α
(
∂nλ

3
α − 2iW ∗nλ+

α + 2iWnλ
−
α

)
,

0 = σ̄nα̇α
(
∂nλ

−
α − iĀ3

nλ
−
α + iW ∗nλ

3
α

)
,

0 = σ̄nα̇α
(
∂nλ

+
α + iĀ3

nλ
+
α − iWnλ

3
α

)
. (B.16)

In our leading-order background (A.40), these equations give, for the λ3
α components:

(i∂1 + ∂2)λ3
2 + (i∂3 − ∂4)λ3

1 = 4γ∗F (x, z)eiαλ−2 ,
−(i∂1 − ∂2)λ3

2 + (i∂3 + ∂4)λ3
1 = 4γF ∗(x, z)e−iαλ+

1 . (B.17)

On the other hand, the non-Cartan λ−α components satisfy the equations

[
i(∂1 − i

z1
L1

) + (∂2 − i
z2
L2

) + 2π
L1L2

x2

]
λ−2 +

[
i(∂3 − i

z3
L3

)− (∂4 − i
z4
L4

) + 2π
L3L4

x4

]
λ−1

= 0 ,[
i(∂1 − i

z1
L1

)− (∂2 − i
z2
L2

) + 2π
L1L2

x2

]
λ−1 −

[
i(∂3 − i

z3
L3

) + (∂4 − i
z4
L4

) + 2π
L3L4

x4

]
λ−2

= 2γF ∗(x, z)e−iαλ3
1 , (B.18)

while the λ+
α components obey

[
−i(∂1 + i

z1
L1

)− (∂2 + i
z2
L2

) + 2π
L1L2

x2

]
λ+

2 +
[
−i(∂3 + i

z3
L3

) + (∂4 + i
z4
L4

) + 2π
L3L4

x4

]
λ+

1

= 2γ∗F (x, z)eiαλ3
2 ,[

i(∂1 + i
z1
L1

)− (∂2 + i
z2
L2

)− 2π
L1L2

x2

]
λ+

1 +
[
−i(∂3 + i

z3
L3

)− (∂4 + i
z4
L4

) + 2π
L3L4

x4

]
λ+

2

= 0 . (B.19)

We now can follow exactly the same steps as in the study of the self-duality equation
for w1, see discussion after (A.17): we introduce x1, x3 Fourier modes for λ± and the
functions corresponding to (A.20); likewise, we can absorb the Wilson lines by a redefinition
similar to (A.23). Proceeding thus, we can now solve the undotted fermion zero mode
equations (B.17), (B.18), (B.19) in an expansion in

√
∆. Keeping in mind that γ ∼

√
∆,

it follows that the solution for λ3
α is of order ∆0 and is simply given by a two-component

constant Grassmann spinor η3
α. This satisfies the λ3

α equation to leading order, since the
r.h.s. of (B.17) is of order (

√
∆)2 as the λ± solutions are themselves of order

√
∆. Proceeding
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thus, we find the leading-order fermion zero-modes:

λ3(0)
α = η3

α,

λ
−(0)
1 = 0,

λ
−(0)
2 = −η3

1γe
−iα

√
L3L4
π

√
L2L4

∑
n1,n3

e
i2π
(
n1

x1
L1

+n3
x3
L3

)
e
i

(
z2
L2

(x2−n1L2)+ z4
L4

(x4−n3L4)
)

× h12
0

(
x2 − n1 + z1

2π

)
h34

1

(
x4 − n3 + z3

2π

)
,

λ
+(0)
1 = η3

2γ
∗eiα

√
L3L4
π

√
L2L4

∑
n1,n3

e
−i2π

(
n1

x1
L1

+n3
x3
L3

)
e
−i
(
z2
L2

(x2−n1)+ z4
L4

(x4−n3)
)

× h12
0

(
x2 − n1 + z1

2π

)
h34

1

(
x4 − n3 + z3

2π

)
,

λ
+(0)
2 = 0. (B.20)

That (B.20) are solutions to order
√

∆ follows by direct substitution and use of (A.27).
Consider, for example, the λ−α components of the zero modes. That λ−2 satisfies the top
equation in (B.18) follows from the fact that it is acted upon by the lowering operator of
the ω12 SHO, while setting λ−1 to zero is necessitated by its being acted upon by the raising
operator of the ω34 oscillator as well as by the second equation in (B.18). The lowering
operator of the ω34 oscillator acting on λ−2 from (B.20) can be easily seen to produce the
r.h.s. of the second eq. in (B.18), recalling the definition of F from (A.35). One similarly
verifies that λ+(0)

α solve the (B.19).
Before we continue, let us write the fermion zero modes (B.20) in a more compact

manner, in terms of the function G(x, z) of (A.53). The fermion zero modes (B.20), that
ω34 = 2π/(L3L4), are now written as:

λ(0)
α =

(
η3

1
η3

2

)
τ3

2 +
(
η3

2
0

)
γ∗eiα

√
2
ω34

G(x, z)τ+ +
(

0
−η3

1

)
γe−iα

√
2
ω34

G∗(x, z)τ−

=
(
η3

1
η3

2

)
τ3

2 +
(
η3

2
0

)
γ∗eiα

V
1
4

π
1
2
G(x, z)τ+ +

(
0
−η3

1

)
γe−iα

V
1
4

π
1
2
G∗(x, z)τ−, (B.21)

with the last equality being true to leading order in
√

∆.

B.2.3 Zero modes of D and D̄ on the symmetric T4

For completeness, let us consider the fermionic zero modes of the abelian self-dual in-
stanton solution of the ∆ = 0 symmetric T4. For the D̄λ = 0 equation, we can
use (B.17), (B.18), (B.19) with γ set to zero, i.e. without r.h.s. Then, it immediately
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follows that the zero modes on the symmetric T4 are

λ3(∆=0)
α = η3

α, (B.22)

λ
−(∆=0)
1 = 0,

λ
−(∆=0)
2 = η−2

√
L2L4

∑
n1,n3

e
i2π
(
n1

x1
L1

+n3
x3
L3

)
e
i

(
z2
L2

(x2−n1L2)+ z4
L4

(x4−n3L4)
)

× h12
0

(
x2 − n1 + z1

2π

)
h34

0

(
x4 − n3 + z3

2π

)
,

λ
+(∆=0)
1 = η+

1
√
L2L4

∑
n1,n3

e
−i2π

(
n1

x1
L1

+n3
x3
L3

)
e
−i
(
z2
L2

(x2−n1)+ z4
L4

(x4−n3)
)

× h12
0

(
x2 − n1 + z1

2π

)
h34

0

(
x4 − n3 + z3

2π

)
,

λ
+(∆=0)
2 = 0. (B.23)

That these are solutions of (B.17), (B.18), (B.19) with γ = 0 follows from observing that
the annihilation operators of the ω12 and ω34 SHOs act on λ+

1 and λ−2 components only,
while the other components are acted upon by creation operators and are thus set to
zero. These four zero modes of D̄α̇α at ∆ = 0 combine with the two dotted zero modes,
obeying Dαα̇λ̄

α̇ = 0, which exist due to the fact that D2 has zero modes at ∆ = 0 (recall
section B.2.1):41

λ̄
3(∆=0)
α̇ = η̄3

α̇,

λ̄
±(∆=0)
α̇ = 0. (B.24)

The presence of two dotted (B.24) and four undotted (B.23) fermion zero modes in the
self-dual background on the symmetric T4 is, of course, in accord with the index theorem.
The presence of extra zero modes is the fermionic counterpart of the existence of bosonic
zero modes of D2 on the symmetric T4, as discussed after eq. (B.15) of section B.2.1. As
mentioned in the main text, the extra zero modes — bosonic and fermionic — are expected
to be lifted once fluctuations around the self dual background on the symmetric T4 and
their interactions are taken into account, but this has not been yet demonstrated.

B.2.4 The zero modes of D on the asymmetric T4 via supersymmetry

We now check that the asymmetric T4 undotted fermion zero modes (B.20) can be obtained
via supersymmetry of the O(

√
∆) bosonic background (A.7), (A.40). Consider the effect

of the SUSY transforms (B.7) in the gauge field background (A.7), (A.40) with fermions
set to zero, λ̄ = λ = 0. Since our solution is self-dual, i.e. obeys σ̄mnFmn = 0, the SUSY
transform only produces λα variations. Computing δλ we obtain

δλ = −(σmnF (0)
mn + σmnF

(1)
mn)ζ + . . . (B.25)

41As in our analysis leading to the bosonic solution of eq. (A.34), one can show that there are no
normalizable zero modes of D or D̄ except for (B.23), (B.24).
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where F (0)
mn is the field strength (A.8) of the abelian background (A.7), and F (1)

mn is the order√
∆ contribution from (A.51), (A.52). Thus, combining everything, plugging into (B.25),

and recalling Footnote 38, we obtain(
δλ1
δλ2

)
=−2iF (0)

12

(
ζ1
−ζ2

)
+2F (1)

13

(
ζ2
−ζ1

)
−i2F (1)

14

(
ζ2
ζ1

)

= i
4π√
V

[(
ζ1
−ζ2

)
τ3

2 +V
1
4

π
1
2
γ∗eiαG(x,z)τ+

(
−ζ2

0

)
+V

1
4

π
1
2
γe−iαG∗(x,z)τ−

(
0
−ζ1

)]
(B.26)

On the last line, we again used the small-∆ relation ω34 ' 2πV − 1
2 . Comparing (B.21)

with (B.26), we see that they are identical provided the supersymmetry parameter in (B.26)
is identified with the Grassmann coefficient in (B.21) as follows

η3
1 = 4πiV −

1
2 ζ1 , (B.27)

η3
2 = −4πiV −

1
2 ζ2 ,

showing that all is consistent with SUSY.

B.3 The moduli space metric, to any order in ∆

Here we shall study the bosonic and fermionic moduli space to order ∆. It is well known
that for every zero mode solution of the undotted Dirac equation φ(β)

α , one can construct
two zero mode eigenvalues of the operator Onm which obey the background gauge condition
Dm(Acl)am = 0.

We begin with our notation for the zero modes (B.25): we shall denote the corresponding
commuting wave functions by φβ Aα , where A = 1, 2, 3 denotes the SU(2) algebra index.
These are the two solutions of the undotted Dirac equation considered above. Thus, with
(β) = 1, 2 labeling the two zero modes, we have

Dα̇αφ(β)
α = 0 , (B.28)

φ(β)
α =−(σmn)(β)

α Fmn , with φ(β)
α =

3∑
A=1

φ (β)A
α TA, (B.29)

φ (β)A
α =−(σmnFAmn)(β)

α =−2i(σ3) (β)
α FA12+2i(σ2) (β)

α FA13−2i(σ1) (β)
α FA14 (B.30)

=−2i (σa) (β)
α V A

a ,where V A
a has componentsV A

3 =FA12, V A
2 =−FA13, V A

1 =FA14.

In the second equality, we used self-duality of the background and the explicit form of σmn
given in Footnote 38.

B.3.1 Fermion zero-mode measure to arbitrary order in ∆
In terms of the zero modes (B.28) the fermion zero-mode expansion (B.13), relabeling the
index i (used there to label the different zero modes), i → β, we have

λAα = ηβφ(β) A
α , sum understood over β = 1, 2,

UβγF = 1
g2

∫
T 4

(
φ

(β) A
2 φ

(γ) A
1 − φ(β) A

1 φ
(γ) A
2

)
, (B.31)
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where again A = 1, 2, 3 is the Lie algebra index, summed over the definition of UF . The
fermion zero mode norm matrix UβγF from (B.11) is antisymmetric and we have from (B.31)
and (B.28)

U12
F = 1

g2

∫
T 4
V A
a V

A
b (−4)

[
(σa) 1

2 (σb) 2
1 − (σa) 1

1 (τ b) 2
2

]
= (−4)

g2

∫
T 4
V A
a V

A
b Xab . (B.32)

Consider now the matrix Xab = (σa) 1
2 (σb) 2

1 − (σa) 1
1 (σb) 2

2 implicitly defined above. We
have, from the explicit form of the Pauli matrices:

||Xab|| =

 1 −i 0
i 1 0
0 0 1

 , (B.33)

thus

U12
F = −4

g2

∫
T 4
V A
a V

A
a = − 4

g2

∫
T 4

((
FA12

)2 +
(
FA14

)2 +
(
FA13

)2) = − 1
g2

∫
T 4

(FAmn)2

= −4 4π2

g2

(
since 1

4g2

∫
T 4

(
FAmn

)2 = 4π2

g2

)
. (B.34)

The Pfaffian of the fermion mode matrix is thus PfUF = −U12
F = 4× 4π2

g2 and the fermion
zero-mode measure, defined via the Pfaffian in (B.14) is

dµF = dη1dη2 (PfUF )−1 = 4× 4π2

g2 dη
1dη2 . (B.35)

To obtain a nonzero result for the fermion zero mode integral, we insert the gaugino bilinear,
trλαλα = 1

2η
αηβφ

(α)A
γ φ

(β)A
δ εδγ+(nonzero modes), and obtain∫

dη1dη2 (PfUF )−1 trλαλα = g2

16π2

∫
dη1dη2 1

2 ηαηβφ(α)A
γ φ

(β)A
δ εδγ

= g2

16π2
1
2
(
φ(2)A
γ φ

(1)A
δ εδγ − φ(1)A

γ φ
(2)A
δ εδγ

)
, (B.36)

where we used (B.34) and the explicit form of the Pfaffian.
We stress that the fermion zero mode measure (B.14) as well as (B.36) hold to arbitrary

order in ∆. Furthermore, the measure and the result (B.36) are independent on ∆.

B.3.2 Bosonic zero-modes and moduli-space metric to any order in ∆

Now to the wave functions of the bosonic zero modes obtained from the fermionic modes and
automatically obeying the gauge condition. For every fermionic zero mode φ (β)

α , β = 1, 2,
there are two bosonic zero modes. Thus, in total there are four independent bosonic zero
modes. The advantage of the discussion that follows is that the bosonic zero modes thus
obtained automatically obey the gauge condition and, furthermore, that their construction
holds to arbitrary orders in ∆.
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The four-vector expressions for the bosonic zero modes thus obtained are denoted by
Z

(β) A
n and Z(β ′) A

n , where β = 1, 2, A = 1, 2, 3. These modes are determined as follows (see
e.g. [25, 26]). First one forms the quaternions made out of the zero-mode solutions of the
undotted Dirac equation, explicitly:

σnZ(β) A
n =

(
Z

(β)
4 + iZ

(β)
3 Z

(β)
2 + iZ

(β)
1

−Z(β)
2 + iZ

(β)
1 Z

(β)
4 − iZ(β)

3

)A
=
(
φ

(β)
1 −φ(β) ∗

2
φ

(β)
2 φ

(β) ∗
1

)A
,

σnZ(β ′) A
n =

(
Z

(β ′)
4 + iZ

(β ′)
3 Z

(β ′)
2 + iZ

(β ′)
1

−Z(β ′)
2 + iZ

(β ′)
1 Z

(β ′)
4 − iZ(β ′)

3

)A
=
(
iφ

(β)
1 iφ

(β) ∗
2

iφ
(β)
2 −iφ(β) ∗

1

)A
. (B.37)

Thus, each zero mode φ(β)
α of the undotted Dirac equation can be used to build two four-

vector bosonic zero modes, denoted by Z(β)
n and Z(β ′)

n . Their four-vector components are
then inferred from (B.37):

Z(β) A
n =

{
=φ(β) A

2 ,−<φ(β) A
2 ,=φ(β) A

1 ,<φ(β) A
1

}
,

Z(γ ′) A
n =

{
<φ(γ) A

2 ,=φ(γ) A
2 ,<φ(γ) A

1 ,−=φ(γ) A
1

}
. (B.38)

Now, knowing the four-vector components of the zero modes, we can use (B.37)
and (B.28) to find detUkl and argue for its ∆-independence. We need to compute the 4× 4
matrix of different overlaps (B.3)

Uβ,γ = 2
g2

∫
T 4

trZ(β)
n Z(γ)

n = 1
g2

∫
T 4
Z(β) A
n Z(γ) A

n

Uβ,γ+2 = Uγ+2,β = 2
g2

∫
T 4

trZ(β)
n Z(γ ′)

n = 1
g2

∫
T 4
Z(β) A
n Z(γ ′) A

n ,

Uβ+2,γ+2 = 2
g2

∫
T 4

trZ(β ′)
n Z(γ ′)

n = 1
g2

∫
T 4
Z(β ′) A
n Z(γ ′) A

n , (B.39)

where the trace is now in the Lie-algebra generator space. The four-vector inner products are

Z(β)
n Z(γ)

n = Z(β ′)
n Z(γ ′)

n = =φ(β)
2 =φ

(γ)
2 + <φ(β)

2 <φ
(γ)
2 + =φ(β)

1 =φ
(γ)
1 + <φ(β)

1 <φ
(γ)
1

=
2∑

α=1

1
2
(
φ(β)
α φ(γ) ∗

α + φ(β) ∗
α φ(γ)

α

)
,

Z(β)
n Z(γ ′)

n = =φ(β)
2 <φ

(γ)
2 −<φ(β)

2 =φ
(γ)
2 + =φ(β)

1 <φ
(γ)
1 −<φ(β)

1 =φ
(γ)
1

=
2∑

α=1

i

2
(
φ(β)
α φ(γ) ∗

α − φ(β) ∗
α φ(γ)

α

)
, (B.40)

where momentarily we omitted the group index A (to be restored below). Thus, using (B.28),
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with the shorthand σ.FA ≡ σmnFAmn, we find

Uβ,γ = Uβ+2,γ+2 = 1
2g2

∫
T 4

2∑
α=1

(
φ(β) A
α φ(γ) ∗ A

α + φ(β) ∗ A
α φ(γ) A

α

)

= 1
2g2

∫
T 4

2∑
α=1

((
σ.FA

) (β)
α

(
σ.FA

) (γ) ∗
α

+
(
σ.FA

) (β) ∗
α

(
σ.FA

) (γ)
α

)
,

Uβ,γ+2 = Uγ+2,β = i

2g2

∫
T 4

2∑
α=1

(
φ(β) A
α φ(γ) ∗ A

α − φ(β) ∗ A
α φ(γ) A

α

)

= i

2g2

∫
T 4

2∑
α=1

((
σ.FA

) (β)
α

(
σ.FA

) (γ) ∗
α

−
(
σ.FA

) (β) ∗
α

(
σ.FA

) (γ)
α

)
.

(B.41)

Let us now study the matrix

Aβγ = 1
2g2

∫
T 4

2∑
α=1

(σ.FA) (β)
α (σ.FA) (γ) ∗

α . (B.42)

Using the notation of eq. (B.28), we rewrite it as

Aβγ = 1
2g2

∫
T 4
V A
a V

A
b 4 (σa) (β)

α ((σb)∗) (γ
α ) = 2

g2

∫
T 4
V A
a V

A
b (σ2σaσbσ2) (γ)

(β)

= δγβ
2
g2

∫
T 4
V A
a V

A
a = 1

2g2

∫
T 4

(FAmn)2 . (B.43)

Thus, the 4× 4 matrix U with matrix elements (B.41), expressed through A of (B.42) is of
the form

U =


A11 +A∗11 A12 +A∗12 i(A11 −A∗11) i(A12 −A∗12)
A12 +A∗12 A22 +A∗22 i(A12 −A∗12) i(A22 −A∗22)
i(A11 −A∗11) i(A12 −A∗12) A11 +A∗11 A12 +A∗12
i(A12 −A∗12) i(A22 −A∗22) A12 +A∗12 A22 +A∗22



=


2A11 0 0 0

0 2A22 0 0
0 0 2A11 0
0 0 0 2A22


= diag(1, 1, 1, 1) 1

g2

∫
T 4

(FAmn)2

= diag(1, 1, 1, 1) 4 4π2

g2

(
since 1

4g2

∫
T 4

(
FAmn

)2 = 4π2

g2

)
, (B.44)

where we used the diagonal form of A form (B.43).
Thus, we have for the norm matrix (B.3) of the bosonic zero modes (to any arbitrary

order in ∆ to which the solution has been find):

Ukl = δkl 4 4π2

g2 , k, l = 1, 2, 3, 4. (B.45)
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The point, so far, is to argue that the inner-product of the bosonic zero modes obeying the
gauge condition — or the moduli space metric (B.45)—are ∆-independent.42

The careful reader may remark that the fact that the bosonic zero mode metric is
proportional to the classical action, as in (B.45), is well-known, hence the ∆-independence
follows from the fact that the action of the self-dual solution is ∆-independent. However,
we presented the steps outlined above, especially the explicit relation between the undotted
Dirac equation zero modes and the bosonic zero modes of eq. (B.38), in order to use them to
verify that the derivatives of the O(

√
∆) classical solution we found with respect to zn are

equal to the modes (B.38) obeying the background gauge condition, after an appropriate
gauge transformation. This somewhat more involved procedure, compared to the similar
task for the BPST instanton, is what we discuss next.

B.3.3 The derivatives of the O(
√

∆) solution and the gauge condition

To this end, let us compute the zero modes (B.38) in the ∆ expansion and compare to the
derivatives of the classical solution, ∂Acln /∂zk. The zero modes (B.38) obeying the gauge
condition43 are determined by the matrices (B.28)

||<φ(β) A
α || =

(
0 2FA13

−2FA13 0

)
,

||=φ(β) A
α || =

(
−2FA12 −2FA14
−2FA14 2FA12

)
. (B.46)

This yields for Z(β)
n , Z

(β)′
n of (B.38),

Y (3)A
n ≡Z(1)A

n =
{
=φ(1)A

2 ,−<φ(1)A
2 ,=φ(1)A

1 ,<φ(1)A
1

}
=
{
−2FA14,2FA13,−2FA12,0

}
,

Y (1)A
n ≡−Z(2)A

n =
{
−=φ(2)A

2 ,<φ(2)A
2 ,−=φ(2)A

1 ,−<φ(2)A
1

}
=
{
−2FA12,0,2FA14,−2FA13

}
,

Y (4)A
n ≡−Z(1 ′)A

n =
{
−<φ(1)A

2 ,−=φ(1)A
2 ,−<φ(1)A

1 ,=φ(1)A
1

}
=
{

2FA13,2FA14,0,−2FA12

}
,

Y (2)A
n ≡−Z(2 ′)A

n =
{
−<φ(2)A

2 ,−=φ(2)A
2 ,−<φ(2)A

1 ,=φ(2)A
1

}
=
{

0,−2FA12,−2FA13,−2FA14

}
.

(B.47)

We relabelled the four zero modes Z(1)
n , Z(2)

n , Z(1)′
n , Z(2)′

n by Y (k)
n , where k indicates that in

our ∆-expanded solution these correspond to derivatives of the classical background with
respect to zk (as we shall see shortly). The functions Y (k)

n calculated in the leading ∼
√

∆
solution are explicitly presented below.

42The reader may notice that while we use the same letter, the moduli space metric Ukl of (B.45) does
not equal the one constructed earlier from the leading-order derivatives of the classical solution w.r.t. zn,
the metric Ukl of eqs. (B.3), (B.4). In fact, we have g8 detUkleq. (B.45) = (4π)8 while g8 detUkleq. (B.4) = V 2.
This is accounted for by the difference in normalization of the respective zero modes; see section B.3.3 for
explicit expressions. This difference contributes an extra factor of ( 4π√

V
)8∏

k
(L2
k) = (4π)8

V 2 to the determinant
of eq. (B.4).

43As these can be constructed from F cl.mn to any order in ∆, we shall call these “exact” zero modes.
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Let us now also write our ∼
√

∆ self dual classical solution (A.40):

Acln (x, z) =
(2πnnmxm

LnLm
+ zn
Ln

)
τ3

2 + τ+(δn1 + iδn2)W + τ−(δn1 − iδn2)W ∗,

W = − i
√
π∆√

2V 1/2
eiαF (x, z), (B.48)

where for brevity we introduced the (not anti-symmetric!) tensor nnm where only n12 =
n34 = 1 are nonzero. Consider now the derivative of the classical solution w.r.t. zp/Lp

Lp
∂Acln
∂zp

= δnp
τ3

2 + τ+(δn1 + iδn2)Lp∂W
∂zp

+ τ−(δn1 − iδn2)Lp∂W
∗

∂zp
). (B.49)

The Cartan term is the one we considered before, see section B. To find the zero mode
wave functions, an explicit computation using the SHO h0 and h1 properties from (A.27)
shows that

L1
∂F

∂z1
= −

√
L1L2

4π G̃ ,

L2
∂F

∂z2
= i

L2z1
2π F − i

√
L1L2

4π G̃ ,

L3
∂F

∂z3
= −

√
L3L4

4π G ,

L4
∂F

∂z4
= i

L4z3
2π F − i

√
L3L4

4π G . (B.50)

Here, we defined, in addition to F (x, z) (A.35) and G(x, z) (A.53), a new function G̃(x, z),
similar to G(x, z) but where the 1st-excited state is in the ω12 SHO instead:

G̃ (x, z) =
√
L2L4

∞∑
n1,n3=−∞

e
−i2π

(
n1

x1
L1

+n3
x3
L3

)
e
−i z2

L2
(x2−n1L2)−i z4

L4
(x4−n3L4)

× h12
1

(
x2 −

(
n1 −

z1
2π

)
L2

)
h34

0

(
x4 −

(
n3 −

z3
2π

)
L4

)
. (B.51)

Using these expressions, we find the derivatives of the classical solution w.r.t. zp:

L1
∂Acln
∂z1

= δn1
τ3

2 +
[
τ+ (δn1 + iδn2) i

√
∆

2
√

2
eiαG̃+ h.c.

]
,

L2
∂Acln
∂z2

= δn2
τ3

2 +

τ+ (δn1 + iδn2)
(
− i
√
π∆√

2V 1/2
eiα
)iL2z1

2π F − i

√
L1L2

4π G̃

+ h.c.

 ,
L3
∂Acln
∂z3

= δn3
τ3

2 +
[
τ+ (δn1 + iδn2) i

√
∆

2
√

2
eiαG+ h.c.

]
,

L4
∂Acln
∂z4

= δn4
τ3

2 +

τ+ (δn1 + iδn2)
(
− i
√
π∆√

2V 1/2
eiα
)iL4z3

2π F − i

√
L3L4

4π G

+ h.c.

 .
(B.52)
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The expressions for the exact zero modes Y (k)
n from (B.47) can also be computed using

our knowledge of the field strength to order
√

∆, F (0)
mn, F

(1)
mn of eqs. (A.8) and (A.52). Next,

we use this information and (B.52) to determine the gauge transformations needed to bring
the Lk ∂A

cl
n

∂zk
zero modes into the background-Lorentz gauge. We shall see that on the T4

with twists, this is slightly different from the usual BPST instanton. To find these gauge
transformations, we now consider the derivatives of the classical solution w.r.t. each zk
in turn.

Zero mode ∂
∂z1

vs Y (1): here, we compare Y (1)
n to the derivative w.r.t. z1. From the

above we find that the four-vectors of the exact zero mode and the derivative of the classical
solution are

Y (1)
n =

{
4π√
V

τ3

2 , 0, τ
+
(
−i
√

2∆π√
V

eiαG(x, z)
)

+ h.c., τ+
√

2∆π√
V

eiαG(x, z) + h.c.

}
,

L1
∂Acln
∂z1

=
{
τ3

2 +
(
τ+ i
√

∆
2
√

2
eiαG̃+ h.c.

)
,−
(
τ+
√

∆
2
√

2
eiαG̃+ h.c.

)
, 0, 0

}
. (B.53)

Their difference is

Y (1)
n − 4π√

V
L1
∂Acln
∂z1

= τ+π
√

2∆eiα
V 1/2


−iG̃(x, z)
G̃(x, z)
−iG(x, z)
G(x, z)

+ h.c.

= Dn(Acl.)Λ(1) = ∂nΛ(1) + i
[
Acl.n

∣∣
∆=0,Λ

(1)
]
. (B.54)

After some algebra, we find that the gauge transformation making the derivative of the
classical solution obey the gauge condition is O(

√
∆):

Λ(1)(x, z) = −
√

2∆π
V

1
4
eiαF (x, z)τ+ + h.c. . (B.55)

Zero mode ∂
∂z2

vs Y (2): here we have the four-vectors

Y (2)
n =

{
0, 4π√

V

τ3

2 , τ
+
√

2∆π√
V

eiαG(x, z) + h.c., τ+ i
√

2∆π√
V

eiαG(x, z) + h.c.

}
,

L2
∂Acln
∂z2

=

τ+
√

∆πeiα
√

2V 1
4

L2z1
2π F (x, z)−

√
L1L2

4π G̃(x, z)

+ h.c.,

τ3

2 + τ+i

√
∆πeiα
√

2V 1
4

L2z1
2π F (x, z)−

√
L1L2

4π G̃(x, z)

+ h.c., 0, 0

 . (B.56)
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We again consider the difference

Y (2)
n − 4π√

V
L2
∂Acln
∂z2

= τ+π
√

2∆eiα√
V


−2
√
π

V
1
4

[
L2z1
2π F (x, z)−

√
L1L2

4π G̃(x, z)
]

−i2
√
π

V
1
4

[
L2z1
2π F (x, z)−

√
L1L2

4π G̃(x, z)
]

G(x, z)
iG(x, z)


+ h.c.

= Dn(Acl.)Λ(2) = ∂nΛ(2) + i
[
Acl.n

∣∣
∆=0 +Acl.n

∣∣
O(
√

∆),Λ
(2)
]
. (B.57)

Here, in contrast with (B.55), we find that the gauge transformation making the zero mode
obey the background condition also has a Cartan-subalgebra piece ∼ ∆0, in addition to an
O(
√

∆) piece which is proportional to (B.55):

Λ(2)(x, z) = 2L2z1√
V

τ3

2 +
(
iΛ(1)+(x, z)τ+ + h.c.

)
. (B.58)

Naturally, only terms of order
√

∆ are to be kept on the r.h.s. of (B.57).

Zero mode ∂
∂z3

vs Y (3) : remarkably, here we find

Y (3)
n − 4π√

V
L3
∂Acln
∂z3

= 0 =⇒ Λ(3) = 0, (B.59)

hence no compensating gauge transform is needed. This follows from the four-vector
expressions for the zero modes

Y (3)
n =

{
i

√
2∆π√
V

eiαGτ+ + h.c.,−
√

2∆π√
V

eiαGτ+ + h.c.,
4π√
V

τ3

2 , 0
}
, (B.60)

and
L3
∂Acln
∂z3

=
{
i

√
∆

2
√

2
eiαGτ+ + h.c.,−

√
∆

2
√

2
eiαGτ+ + h.c.,

τ3

2 , 0
}
. (B.61)

Notice that x3 is the direction where Acl depends on x4 + z3L4/(2π) and where the classical√
∆ solution vanishes.

Zero mode ∂
∂z4

vs Y (4): here, the four-vectors of the exact zero mode and the derivative
of the classical solution are

Y (4)
n =

{
−
√

2∆π√
V

eiαGτ+ + h.c.,−i
√

2∆π√
V

eiαGτ+ + h.c., 0, 4π√
V

τ3

2

}
, (B.62)

and

L4
∂Acln
∂z4

=


√
π∆√

2V 1/2
eiα

L4z3
2π F −

√
L3L4

4π G

 τ+ + h.c.,

i

√
π∆√

2V 1/2
eiα

L4z3
2π F −

√
L3L4

4π G

 τ+ + h.c., 0, τ
3

2

 . (B.63)
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Their difference is

Y (4)
n − 4π√

V
L4
∂Acln
∂z4

= −τ+
√

2π∆
V 1/2 eiα

L4z3

V
1
4


F (x, z)
iF (x, z)

0
0

+ h.c.

= Dn(Acl.)Λ(4) = ∂nΛ(4) + i
[
Acl.n

∣∣
∆=0 +Acl.n

∣∣
O(
√

∆),Λ
(4)
]
. (B.64)

Here, we have that

Λ(4)(x, z) = 2L4z3√
V

τ3

2 (B.65)

only has a ∆ = 0 part. The claim that Λ(4) obeys (B.64) is straightforwardly verified

Summary: in each case we have verified that to order
√

∆,

4π√
V
Lk
∂Acln
∂zk

+Dn(Acl)Λ(k) = Y (k)
n (B.66)

obeys the background gauge condition, where Λ(k), for k = 1, 2, 3, 4, are given in ((B.55),
(B.58), (B.59), (B.65)), respectively. As follows from these explicit expressions, the gauge
transformation Λ(k) which makes the derivative of the classical solution obey the background-
gauge condition is Ω-periodic (recall the definition after (A.5)), i.e. obeys the same periodicity
conditions (A.4) as the classical solution. In fact, the x-dependent part of Λ(k) is expressed
through the O(

√
∆) component of the classical solution Aclk , similar to the BPST case. The

Ω-periodicity of Λ(k) is important in what follows.
We shall next argue that the measure in terms of the zn variables remains the one we

found earlier by studying the leading-order zero modes, eq. (B.5). For use below, we also
rewrite the zero modes (B.66) as

∂Acln
∂zk

+Dn(Acl)Λ̃(k) =
√
V

4πLk
Y (k)
n . (B.67)

The motivation for the rescaling evident in (B.67) is that the zero modes are now directly
proportional to the derivatives of Acln with respect to zk. The compensating gauge transfor-
mation Λ̃(k) =

√
V

4πLkΛ(k) is trivially related to Λ(k) appearing in (B.66) and appearing in
((B.55), (B.58), (B.59), (B.65)).

B.3.4 The Jacobian and the all-order bosonic measure

We begin by shifting the bosonic field An(x), obeying (A.4), to be integrated over in the
path integral by the classical solution Acl.n (x, z) of (B.48). We can choose to expand the
fluctuation in terms of a complete set of eigenfunctions of the hermitean operator Omn(x, z)
— the zero modes (B.67) and the nonzero modes Zqn:44

An(x)−Acl.n (x, z) =
4∑

k=1
ζ

(0)
k

√
V

4πLk
Y (k)
n (x, z) +

∑
q

ζq Z
(q)
n (x, z). (B.68)

44Of eigenvalues ωq, using the same notation as after eq. (B.2): OmnZ(q)
n = ωqZ

(q)
n .
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The coefficients ζ(0)
k and ζq are the projections of the gauge field fluctuation An(x) −

Acl.n (x, z) onto the Y (k)(x, z) and Zq(x, z) directions in field space, thus they have implicit
zk-dependence. In what follows, we trade the integration over ζ(0)

k for integration over the
zk. In our subsequent discussion we shall not explicitly write the contribution of the nonzero
modes to the measure of the path integral, due to their cancellation with the contribution
of the nonzero modes of the fermions and ghosts.

With the expansion (B.68), the measure of the bosonic zero modes now takes the form,
using (B.45)45 and taking into account the normalization of the zero modes

dµB =
(

det V

16π2LkLl
Ukl
∣∣
eq. (B.45)

) 1
2

4∏
k=1

[
dζ

(0)
k√
2π

]
= V

g4

4∏
k=1

dζ
(0)
k√
2π

. (B.69)

In order to integrate over fields orthogonal to the Y (k)
n (x, z) zero modes, we consider their

inner product with (B.68)

fk = 2
g2 tr

∫
T4

(An(x)−Acl.n (x, z)) Y (k)
n (x, z). (B.70)

We then insert unity in the path integral, in the form

1 =
∏
k

dzk
∏
p

δ(fp) | det ∂fk
∂zl
| , (B.71)

where ∂fk
∂zl

is evaluated at the value of zn making delta function vanish.46 Then, using (B.68),
the orthogonality of the zero and nonzero modes, we have that (B.45), that

fp =
√
V

4πLp
16π2

g2 ζ(0)
p , (B.72)

so that the δ-function from (B.71) sets ζ(0)
k = 0 after integrating over ζ(0)

k with the
measure (B.69) (to avoid confusion, recall that ζ(0)

k has implicit z-dependence).
On the other hand, evaluating the derivative of (B.70), we find

∂fk
∂zl

= 2
g2

∫
T4

tr
(
∂(An −Acln )

∂zl
Y (k)
n + (An −Acln )∂Y

(k)
n

∂zl

)

= 2
g2

∫
T4

tr
(
−∂A

cl.
n

∂zl
Y (k)
n + (An −Acln )∂Y

(k)
n

∂zl

)
.

Next, we use (B.67) to replace ∂Acl.n
∂zl

by Y (k)
n . Using the fact that Λ̃(k) is Ω-periodic allows

us to integrate by parts on T4 without a boundary term, i.e. set
∫
T4 trDnΛ̃(l) Y

(k)
n = 0,

45Recalling that (B.45) calculated Ukl = 2
g2

∫
T4 trY (k)

n Y
(l)
n = 16π2

g2 δkl.
46Evaluating

∫
T4 A

cl.
n Y

(k)
n using the explicit expressions of section B.3.3 and plugging into (B.70), we find

that to leading-order in ∆ the zero of fk occurs for zk = z∗k, where z∗k = −π(δk3 + δk4) + LkÃ
3
k +O(

√
∆).

Here, Ã3
k is the constant T4-mode of the Cartan component of An.
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since Y (k)
n obeys the background gauge condition. We thus find

∂fk
∂zl

= 2
g2

∫
T4

tr
(
−
√
V

4πLl
Y (l)
n Y (k)

n + (An −Acln )∂Y
(k)
n

∂zl

)

= −
√
V

4πLl
16π2

g2 δkl + 2
g2

∫
T4

tr (An −Acln )∂Y
(k)
n

∂zl
. (B.73)

Thus, the unity insertion (B.71) becomes

1 =
∏
k

dzk δ

(
ζ

(0)
k

√
V

4πLk
16π2

g2

) ∣∣∣∣ det
( √

V

4πLl
16π2

g2 δkl −
2
g2

∫
T4

tr ζqZ(q)
n

∂Y
(k)
n

∂zl

) ∣∣∣∣, (B.74)

where we used (B.68) and took the liberty to set ζ(0)
k = 0 in the determinant, due to

integrating the delta function with the measure (B.69). The nonzero mode part of the
fluctuations can be ignored to leading order. Thus, collecting everything, we find that the
Jacobian factors from the delta function and the determinant in (B.74) cancel out and the
bosonic measure (B.69) becomes, after inserting (B.74) and integrating over ζ(0)

k ,

dµB = V

g4

4∏
k=1

dzk√
2π

. (B.75)

The bosonic zero mode measure is thus equal to the leading-order measure constructed
earlier in (B.5).
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