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Abstract: We present the first calculation of the complete set of NNLO QED correc-
tions for muon-electron scattering. This includes leptonic, non-perturbative hadronic, and
photonic contributions. All fermionic corrections as well as the photonic subset that only
corrects the electron or the muon line are included with full mass dependence. The genuine
four-point two-loop topologies are computed as an expansion in the small electron mass,
taking into account both, logarithmically enhanced as well as constant mass effects using
massification. A fast and stable implementation of the numerically delicate real-virtual
contribution is achieved by combining OpenLoops with next-to-soft stabilisation. All
matrix elements are implemented in the McMule framework, which allows for the fully-
differential calculation of any infrared-safe observable. This calculation is to be viewed in
the context of the MUonE experiment requiring a background prediction at the level of 10
ppm. Our results thus represent a major milestone towards this ambitious precision goal.
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1 Introduction

The MUonE experiment [1–3] aims to measure the differential cross section for muon-
electron elastic scattering by colliding a 160GeV muon beam with atomic electrons located
on thin target plates. The purpose is to derive very precisely the running of the electro-
magnetic coupling α at low energy using the method proposed in [4].

The need for such a measurement arises from the long-standing tension between
the measured and calculated values of the anomalous magnetic moment of the muon,
aµ = (g − 2)/2. The discrepancy between aµ calculated in the Standard Model (SM) and
the corresponding experimental measurement was first reported by the BNL E821 experi-
ment [5] and recently confirmed by the first results from the FNAL g−2 experiment [6]. The
deviation between the combination of the BNL and FNAL experiments, and the currently
accepted SM prediction [7] is of 4.2σ.

It is important to rule out the possibility that the deviation is due to a systematic error
in the calculation. The contribution from the hadronic vacuum polarisation (HVP), aHVP

µ ,
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enters in the SM prediction and cannot be calculated in perturbation theory. Consequently,
this quantity is usually determined from low-energy electron-positron annihilation data
through a dispersive approach [8, 9]. Interestingly, a recent calculation in lattice QCD [10]
leads to a value that is in contrast with the data-driven calculation and reduces the discrep-
ancy between theory and experiment in the muon magnetic moment. In light of this situa-
tion, it is crucial to pursue new and different methods to determine the HVP contribution.

The method proposed in [4, 11] allows for the determination of aHVP
µ from the mea-

surement of the running electromagnetic coupling in the space-like region, which can be
carried out by the MUonE experiment. Contrary to the conventional time-like approach,
the space-like region has the advantage of being smooth and free of hadronic resonances.
The experiment suffers, however, from complications related to the measurement of a sub-
leading effect. The contribution of the HVP changes the differential cross section by only
up to O(10−3). As a consequence, the experimental and theoretical uncertainties should
not exceed 10 ppm in order to allow for a competitive determination of aHVP

µ .
The feasibility of this ambitious precision goal crucially relies on two special features of

muon-electron scattering at the proposed energy scale. First, the presence of a low-signal
normalisation region allows for the cancellation of experimental systematic uncertainties.
Second, non-perturbative hadronic corrections other than HVP only enter beyond next-to-
next-to-leading order (NNLO) and can safely be neglected. This includes the notoriously
difficult hadronic light-by-light scattering contribution. The NNLO HVP corrections, on
the other hand, are significantly simpler and have been computed in [12] with a dispersive
approach. To avoid any dependence on time-like data the analogous calculation has been
performed with the space-like hyperspherical method in [13].

To ensure a clean extraction of the HVP with MUonE, it is further important to rule out
any possible contamination of the signal due to physics beyond the SM (BSM). Dedicated
studies performed in [14, 15] have shown that such effects could only affect the signal below
10 ppm, if existing BSM bounds are to be observed. In these analyses the normalisation
region was used to cancel larger effects. This explains the different conclusion reached
in [16], where the normalisation region was not exploited. Even though this latter study
is therefore not directly applicable to the HVP measurement, it opens up the avenue for
dedicated BSM searches with MUonE. This option was further investigated in [17–19] where
it was shown that new parameter space for light new physics could indeed be explored.

At present, the main concern on the theoretical side is the perturbative prediction of the
SM background at the level of 10 ppm. It is therefore mandatory to incorporate NNLO cor-
rections in QED. In addition, it will be necessary to improve the precision of the calculation
by supplementing it with large logarithmic corrections of soft and collinear origin beyond
NNLO. In order to reach this goal, there has been a coordinated theoretical effort [20] with
the goal of developing two completely independent Monte Carlo event generators.

The Mesmer [21] Monte Carlo is based on photon-mass regularisation combined with
a slicing approach to cope with soft divergences in the phase-space integration. The com-
plete set of electroweak corrections are implemented at next-to-leading order (NLO) accu-
racy [22]. At NNLO, virtual as well as real leptonic contributions have been included in
the form of leptonic vacuum polarisation and lepton pair production [23]. In addition, vir-
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tual hadronic contributions have been included through the time-like approach. However,
NNLO photonic corrections have been calculated in [21] employing a YFS-inspired [24]
approximation when dealing with the genuine two-loop four-point topologies. Otherwise,
the contributions that only correct the electron or muon line are calculated without any
approximation. Most recently, also the background due to pion production was studied
with Mesmer in [25].

The second Monte Carlo is being developed within the McMule framework [26] and
it is employed in the present paper. It is based on dimensional regularisation and the FKS`

subtraction scheme [27], a generalisation of the FKS method [28, 29] for QED with massive
fermions to any order in perturbation theory. The subset of NNLO QED corrections
restricted to the electron line has been implemented in [26]. Perfect agreement was found in
a dedicated comparison with the Mesmer code. In the following, we present the calculation
of the full set of NNLO QED corrections in McMule.

Contrary to QCD experiments, MUonE observables are not collinear safe and therefore
highly sensitive to fermion-mass effects. It is therefore not permissible to neglect the
electron mass, even though it is small compared to all other scales in the process. This has
far-reaching ramifications. On the one hand, it simplifies the infrared (IR) structure since
collinear singularities are naturally regularised by fermion masses. At the same time, it
significantly complicates the evaluation of loop integrals. In the case of closed fermion loops
this is unproblematic, since semi-numerical methods can easily be applied. In particular, we
have implemented the aforementioned hyperspherical results from [13] to calculate leptonic
and non-perturbative hadronic NNLO corrections. In the case of the photonic two-loop
amplitude, on the other hand, the complete calculation with full mass dependence is still
not available.

Very recently, however, the analytic evaluation of the amplitude of di-muon production
via massless electron-positron annihilation in QED [30], as well as the heavy-quark pair
production through light-quark annihilation in QCD [31], became available, based on the
master integrals computed in [31–33]. These two results have shown the feasibility of a
completely analytical calculation of the NNLO virtual muon-electron elastic scattering in
the approximation of a massless electron, presented here for the first time. This result can
be employed in the context of the MUonE observables if supplemented with finite electron-
mass effects introduced via massification, which was originally developed in [34–36] and
later extended to heavy external states in [37]. It exploits the universal structure of collinear
degrees of freedom to determine the leading mass effects in a process-independent way.
This includes the logarithmically enhanced as well as the constant terms and only neglects
polynomially suppressed contributions. Since the electron mass is much smaller than all
other scales in the process, this procedure is expected to yield a reliable approximation of
the full mass dependence.

At the same time, this scale hierarchy gives rise to numerical instabilities in the case of
soft and collinear photon emission. Following [38] we apply next-to-soft (NTS) stabilisation
combined with OpenLoops [39, 40] to ensure a fast and stable implementation of the
delicate real-virtual amplitude. This method is based on the idea of expanding the real-
virtual contribution in the soft photon energy including the next-to-leading power term
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in numerically delicate phase-space corners. Similar to the eikonal contribution at leading
power, also the subleading term can be related to the non-radiative process. This was shown
in [41] where the Low-Burnett-Kroll theorem [42, 43] was extended to the one-loop level.

The paper is structured as follows. Section 2 presents the technical details of the cal-
culation. This includes a discussion of the one-loop radiative and the two-loop amplitude,
as well as details on the implementation in the McMule framework. Section 3 presents
results for observables that are relevant for the MUonE experiment. The calculation has
been validated with various tests, including, among others, a dedicated study for the re-
liability of the massified approximation as well as for the NTS stabilisation, which are
discussed in section 4. We conclude and remark on future steps in section 5.

2 Technical details

The complete NNLO results for muon-electron scattering presented in this article represent
the culmination of a program involving various groups over several years. They are based
on numerous concepts and calculations that have been developed for this program and
were published in separate articles. In this section, we will build on these articles, give
an overview of how the partial results are combined and describe what additional steps
were required. In the interest of conciseness, we will refrain from repeating the details of
previous work that is required to obtain the physical results presented here. Instead, we
will refer the reader at the appropriate places to those earlier papers for further details.

2.1 Overview

The fully differential computation of elastic muon-electron scattering at higher orders in
α follows closely the procedure outlined in [20] whose notation we also adopt. To obtain
results at NNLO we need to consider the processes with up to two additional photons,

e−(p1)µ±(p2)→ e−(p3)µ±(p4) + {γ(k1) γ(k2)} . (2.1)

Lepton pair production, i.e. e−µ± → e−µ±(e+e−), will not be considered here. Even
though this process plays an important role in a future MUonE analysis, it is a measur-
ably different physical process and from a theoretical point of view can be considered in
isolation [23]. As discussed in [20], the trivial inclusion of the tree-level Z exchange is
needed to match the precision required by MUonE, but the full NLO electroweak effects
are below the 10 ppm target precision as shown in a calculation by Mesmer [22]. We have
implemented the same corrections in McMule in the context of ee → µµ [44] and found
full agreement. Nevertheless, these corrections are not considered in this paper where we
restrict ourselves to pure QED.

We will denote the `-loop amplitude of the process (2.1) with j additional photons
by A(`)

n+j . The (differential) LO cross section dσ0 is obtained by integrating the tree-level
(squared) matrix element for the 2→ 2 processM(0)

n ≡ |A(0)
n |2 over the two-particle phase

space dΦn.
In addition to the flux factor, a measurement function O(p3, p4, {k1, k2}) that defines

the observable is implicitly understood to be part of the phase-space integration. The only
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constraint on this function is that it represents an IR-safe quantity. This property is crucial
to ensure the cancellation of IR singularities when going beyond LO. Concretely, in the
soft limit of e.g. k1 → 0 we require O(p3, p4, k1, {k2})→ O(p3, p4, {k2}). Contrary to com-
putations in QCD, there is no requirement on O for a collinear limit ki‖pj . The potential
non-cancellation of contributions from collinear regions of the phase space is regularised by
the fermion masses. The corresponding logarithms are physical. They can be and are mea-
sured. As a consequence, in order to be fully differential, in particular with respect to emis-
sion of collinear photons, muon mass M and electron mass m effects have to be included.

As we will discuss below, our calculation includes full dependence on M , but makes
certain approximations regarding the m dependence. These approximations are restricted
to the (finite part of the) two-loop matrix elementsM(2)

n , as given in (2.4), and are driven by
the complexity of two-loop calculations with many scales. Even with these approximations,
there are no collinear singularities present and only soft singularities appear. This leads to
a tremendous simplification of the IR structure and allows the use of the FKS2 subtraction
method [27] to perform a fully differential phase-space integration also at NNLO.

Radiative corrections to muon-electron scattering have been considered in the past [45–
51], using various approximations. Two independent fully differential results with complete
muon and electron mass dependence exist and have been compared [22, 26]. As is well
known, the NLO correction to the (differential) cross section dσ(1) is a combination of real
and virtual contributions

dσ(1) = dσ(v) + dσ(r) =
∫

dΦnM(1)
n +

∫
dΦn+1M(0)

n+1 , (2.2)

where M(1)
n = 2 Re[A(1)

n × (A(0)
n )∗] and M(0)

n+1 = |A(0)
n+1|2. For an IR-safe observable, the

IR singularities cancel between dσ(v) and dσ(r). We do the renormalisation in terms of
on-shell fermion masses and the on-shell coupling α ≡ α(0). Intermediate results depend
on the regularisation scheme, but this scheme dependence cancels for physical predictions.
In McMule the standard choice is to use the four-dimensional helicity scheme (fdh) [52].

The NNLO corrections to the cross section are obtained as the sum of three contribu-
tions, dubbed double-virtual (vv), real-virtual (rv), double-real (rr) terms, as

dσ(2) = dσ(vv) + dσ(rv) + dσ(rr) =
∫

dΦnM(2)
n +

∫
dΦn+1M(1)

n+1 +
∫

dΦn+2M(0)
n+2 , (2.3)

where the matrix elements are defined as

M(2)
n = 2 Re

[
A(2)
n × (A(0)

n )∗]+
∣∣A(1)

n

∣∣2 ≡M(2+0)
n +M(1+1)

n , (2.4)

M(1)
n+1 = 2 Re

[
A(1)
n+1 × (A(0)

n+1)∗] , (2.5)

M(0)
n+2 =

∣∣A(0)
n+2

∣∣2 . (2.6)

Taken separately, the three parts of (2.3) are IR divergent. Following the FKS2 proce-
dure [27], we re-express the NNLO corrections as a sum of three separately finite parts

dσ(2) = dσ(2)
n (ξc) + dσ(2)

n+1(ξc) + dσ(2)
n+2(ξc) . (2.7)
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According to (2.7), dσ(2) consists of a two-particle part dσ(2)
n (ξc) that combines the double

virtual with suitable integrated real corrections to obtain an IR finite result, a three-particle
part dσ(2)

n+1(ξc) related to real-virtual corrections, and a four-particle part dσ(2)
n+2(ξc) that

corresponds to soft-subtracted double-real corrections. These parts individually depend
on an unphysical parameter ξc. As will be illustrated in section 4.2.1, this ξc dependence
has to cancel in the sum, providing a very useful check of a correct and numerically stable
implementation.

The higher-order corrections to the cross section can be split into photonic and
fermionic corrections. The latter contain leptonic vacuum polarisation (VP) contributions,
dσ(i)

lep, and are separately gauge independent. We include electron, muon, and tau loops
in our results with all mass effects. In addition we also provide results for hadronic loops,
dσ(i)

had, i.e. the signal of the MUonE experiment. The photonic corrections can be split
further into separately gauge independent pieces by formally differentiating between the
electron charge q and the muon charge Q, and organising the matrix elements according
to powers of q and Q. The tree-level matrix element of the 2 → 2 process has couplings
M(0)

n ∼ q2Q2. At NLO, there are contributions with an additional factor q2 (electronic
corrections dσ(1)

e ), an additional factor Q2 (muonic corrections dσ(1)
µ ), and an additional

factor q Q (mixed corrections dσ(1)
eµ ). In analogy to lepton-proton scattering, the latter are

known as two-photon exchange contributions. With respect to the Born contribution, at
NNLO there are four additional factors of q or Q for the photonic corrections. Following
the NLO terminology, we will consider a split into electronic (dσ(2)

e , additional factor q4),
muonic (dσ(2)

µ , additional factor Q4) and various mixed corrections with additional factors
(q3Q, q2Q2, qQ3). The latter are often combined into dσ(2)

eµ for the presentation of the
results, even though they are computed separately. Hence, at NLO (` = 1) and NNLO
(` = 2), we decompose (2.2) and (2.3) as

dσ(`) = dσ(`)
e + dσ(`)

eµ + dσ(`)
µ + dσ(`)

lep + dσ(`)
had . (2.8)

Some (squared) matrix elements contributing to dσ(2) are depicted in figure 1. An example
for the fermionic corrections dσ(`)

lep and dσ(`)
had is shown in the top left panel of figure 1. The

vv cuts correspond to M(2)
n , the first due to the one-loop amplitude squared M(1+1)

n , the
second due to the interference of the two-loop amplitude with the tree-level amplitude
M(2+0)

n . The rv cut corresponds to aM(1)
n+1 contribution. For photonic corrections we also

have rr cuts, due to double real contributions involvingM(0)
n+2. Contributions to dσ(2)

e and
dσ(2)

µ are also shown in the top panel of figure 1, whereas the bottom panel depicts various
contributions to dσ(2)

eµ .
The split (2.8) has a threefold motivation. First, since the electron mass is much

smaller than the muon mass, the electronic corrections are expected to be numerically more
important. As we will see, however, this expectation is only partially correct. Second, the
electronic and muonic corrections can be computed with full dependence on the electron
massm as well as the muon massM [21, 26], since the two-loop amplitudes can be expressed
through the massive two-loop form factor [53–55]. We use a solid single line for the electron
in figure 1 to indicate that all m effects are fully taken into account. As we will see below,
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vv rv vv rr rv vv rr rv vv

rr rv vv rr rv vv rv rv vv

Figure 1. Sample contributions to the (squared) matrix elements M(2)
n (vv), M(1)

n+1 (rv), and
M(0)

n+2 (rr). The leading order part M(0)
n ∼ q2 Q2 is shown in black while additional particles are

shown in grey. The top-left panel shows fermionic corrections. Electronic (muonic) corrections are
shown in the top-middle (right) panel, with all additional emissions ∼ q4 (∼ Q4) from the electron
(muon) line. Muon mass effects (solid double line) and electron mass effects (single solid line) are
taken into account exactly. The bottom panel shows examples of mixed corrections, with additional
couplings q3 Q (left panel), q2 Q2 (middle panel), and q Q3 (right panel). For these contributions
electron mass effects inM(2)

n (vv) are included only through massification (see text), as indicated
by the dashed single line.

for the mixed corrections shown in the bottom panel of figure 1, electron mass effects in
the two-loop matrix element are taken into account approximately, as indicated by using a
dashed single line for the electron. Finally, changing from µ+ to µ− simply amounts to the
replacement Q→ −Q. In particular, the electronic and muonic corrections are not affected.

Once the amplitudes for muon-electron scattering are known, we can follow the pro-
cedure used previously for Bhabha scattering [38], Møller scattering [56], and lepton pair
production [44] to obtain physical results. The double radiative tree-level matrix element
M(0)

n+2 is trivial to compute with full M and m dependence. The only delicate point is
to ensure a numerically reliable integration over those phase-space regions that lead to
collinear pseudo-singularities. This is achieved by a partitioning and tuning of the phase
space to have a direct match of the small angle with an integration variable [57]. As men-
tioned above, the check of the independence on ξc of the final result plays an important
role here. The remaining matrix elements,M(1)

n+1 andM(2)
n , are more delicate and will be

discussed below, in sections 2.2 and 2.3.

2.2 One-loop radiative matrix element

The real-virtual matrix element (2.5) is particularly delicate with respect to its numerical
stability. For the bulk of the phase space this contribution was computed with Open-
Loops [39, 40], which recursively constructs amplitudes from process-independent building
blocks given by the Feynman rules of the model. Recently, OpenLoops was extended to
allow for the separate calculation of QCD, QED and weak corrections with variable number
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of leptons and quarks, as well as with massive leptons. In order to comply with the split of
the photonic corrections discussed above, we separated the purely muonic, purely electronic
and mixed corrections through a power counting in the muon and electron charges Q and q.

The OpenLoops program provides high numerical stability in one-loop amplitudes
due to the on-the-fly reduction of tensor integrals1 [39], dedicated kinematic expansions,
and a hybrid precision mode [40]. In the latter, the majority of the OpenLoops recursion
steps is performed in double precision, while only the most critical steps of the on-the-fly
algorithm are performed in quadruple precision. While this procedure provides excellent
CPU efficiency and numerical stability for a wide range of processes, even in ultra-soft
and collinear regions [40], for simultaneously extremely soft and collinear kinematics the
numerical stability in the hybrid precision configuration was not sufficient for this process.
Hence a next-to-soft (NTS) stabilisation was employed.

The basic idea of NTS stabilisation [38] is to replace the full one-loop matrix elements
by a numerically adequate expression in the critical soft regions of phase space. The
well-known soft limit, given by an eikonal factor times a reduced matrix element, is not
sufficiently accurate. To improve the situation, the NTS limit has to be used. This limit
can be obtained by a generalisation of the Low-Burnett-Kroll theorem [42, 43] to one
loop. In [41] it was shown how to write the NTS limit for one-loop matrix elements
in a process independent way. With these expressions we can obtain a numerically
reliable evaluation of the one-loop contribution in all regions of phase space. As will be
discussed in section 4.2.3, this implementation was successfully checked against a full
quadruple-precision calculation in OpenLoops.

While NTS stabilisation is crucial for the mixed real-virtual corrections, it is not strictly
necessary in the case of the electronic and muonic contributions. For the results presented
in [26], we have used an in-house calculation of the real- virtual contribution assisted by
Collier [58] in problematic regions of the phase space. However, this implementation is
superseded in the current version of the code by OpenLoops combined with NTS stabil-
isation. Even though this results in a slower evaluation speed for the matrix element, the
improved numerical stability ensures a faster and more reliable phase-space integration.

2.3 Double-virtual matrix element

As a final ingredient for the NNLO corrections, we need the double-virtual matrix element
M(2)

n .
Following [13], the fermionic contributions at two loop, dσ(2)

lep and dσ(2)
had, can be cal-

culated with full M and m dependence, using the hyperspherical method [60–62]. This
semi-numerical approach is independent of the exact form of the VP. This therefore makes
it possible to compute leptonic as well as non-perturbative hadronic contributions simulta-
neously. In the case of the leptonic VP the analytic two-loop result from [63] can be used.
For the HVP, on the other hand, we can rely on the Fortran library alphaQED [64].

1The remaining scalar two-, three- and four-point integrals are evaluated with the external tools Col-
lier [58] (double precision calculation) or OneLoop [59] (quadruple precision).
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For the photonic part ofM(2)
n , according to (2.4), we need A(1)

n and A(2)
n , decomposed

as

A(1)
n = q3QA(1)

3,1 + q2Q2A(1)
2,2 + qQ3A(1)

1,3 , (2.9)

A(2)
n = q5QA(2)

5,1 + q4Q2A(2)
4,2 + q3Q3A(2)

3,3 + q2Q4A(2)
2,4 + qQ5A(2)

1,5 . (2.10)

The purely electronic and muonic two-loop corrections, A(2)
5,1 and A(2)

1,5, with complete mass
dependence, can be calculated using the known analytic results of the massive form fac-
tors [53–55]. Therefore, the terms dσ(2)

e and dσ(2)
µ , having complete dependence on the

muon and electron mass, can be computed within the McMule framework, as previously
employed in [21, 26]. On the other hand, dσ(2)

eµ receives contributions from the remaining
photonic mixed terms, A(2)

4,2 ,A
(2)
3,3 , and A

(2)
2,4 , whose expressions with full mass dependence

are currently not available. However, the electron mass m is sufficiently small with respect
to all other scales S in the process to approximate dσ(2)

eµ by neglecting terms that are poly-
nomially suppressed in m2/S. As explained in detail in section 2.3.5, this expansion can
be efficiently computed based on the massless result using massification.

In the following, we provide the details of the evaluation of the two terms contributing
toM(2)

n in (2.4), namely the interference term,M(2+0)
n ≡ 2 Re

[
A(2)
n ×(A(0)

n )∗], that receives
contributions from two-loop graphs, and the contribution due to squared one-loop graphs,
M(1+1)

n ≡
∣∣A(1)

n

∣∣2.
2.3.1 Two-loop contribution

The analytic evaluation of M(2+0)
n (m = 0) is carried out by considering the electron as a

massless particle, while retaining full dependence on the muon mass M , and it constitutes
one of the main novel results of this paper.

By adopting the same strategy as used for the crossing-related process e+e− → µ+µ−

in [30], A(2)
n (m = 0) has been generated by FeynArts [65] and FeynCalc [66], within con-

ventional dimensional regularisation (cdr). The decomposition ofM(2+0)
n has been carried

out by the in-house calculation framework aida [67], that combines the Adaptive Integrand
Decomposition [68, 69], and the integration-by-parts decomposition, through the interfaces
to Reduze [70] libraries. The master integrals for the muon-electron elastic scattering were
computed analytically in [31–33] by means of the method of differential equations [71–75]
and the Magnus exponential [76, 77].

The analytic expression is obtained in the non-physical region s < 0, t < 0, and cast
as a Laurent series expansion around d = 4 space-time dimensions, whose coefficients are
a combination of generalised polylogarithms (GPLs) [78, 79], depending on the kinematic
variables. The numerical values of the amplitude in the physical region of the elastic scatter-
ing, s > M2 and −(s−M2)2/s < t < 0, can be obtained by evaluating the GPLs according
to the prescription s→ s+ iδ , namely by assigning a small positive imaginary part δ � 1.

Let us remark that the result for the amplitude of muon-electron elastic scattering is
found to obey the crossing symmetry linking it to di-muon production in electron-positron
fusion [30]. Moreover, the diagrams considered in the current process have been recently
used also to derive the analytic expressions of the colour-stripped partial amplitudes of
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qq̄ → tt̄ in QCD [31], proportional to the colour coefficients corresponding to Abelian-like
diagrams, and were found in agreement with the previously known results [80–82]. The
matrix element has been computed in cdr, and it is expressed in terms of the on-shell
muon mass and the QED coupling renormalised in the MS scheme [30].

In view of the electron massification procedure, discussed in section 2.3.5, the fermionic
terms coming from diagrams with closed fermion loops, as well as the terms proportional
to q6Q2 (purely electronic corrections) and q2Q6 (purely muonic corrections), are excluded
fromM(2+0)

n (m = 0), see (2.10), and replaced by their complete massive version.

2.3.2 Squared one-loop contribution
The determination ofM(1+1)

n (m = 0) requires the knowledge of the squared one-loop am-
plitude A(1)

n (m = 0) up to O(ε2). We have performed two independent analytic calculations
of the squared one-loop contribution: one using FeynArts [65] and FeynCalc [66] in cdr,
and one using QGraf [83], Package-X [84], and its companion tool PVReduce in fdh. In
both cases, the intermediate expressions contain only one-loop scalar integrals that, upon
integration-by-parts reduction, are decomposed in terms of master integrals. The latter
have been evaluated using the same technique as the two-loop integrals mentioned earlier,
i.e. via the method of differential equations [71–75] and the Magnus exponential [76, 77].
Because of products of master integrals containing 1/ε2 poles, we had to extend up to
O(ε2) the one-loop integrals given in [32]. The complete expression of the squared one-
loop contribution is finally split into electronic, muonic and photonic corrections, accord-
ing to section 2.1. As for M(2+0)

n (m = 0), we also replace the terms q2Q6 and q6Q2 in
M(1+1)

n (m = 0) by the analogous expression with full m dependence.

2.3.3 Infrared structure
As an additional check of M(2)

n (m = 0), we have verified that it has the expected IR
structure. The residual IR poles present in the two-loop corrections evaluated at m = 0
can be obtained by adapting a procedure originally developed for the IR structure of QCD
amplitudes in [85–87]. The IR poles are dictated by an anomalous dimension Γ. The explicit
expressions for the perturbative coefficients of Γ in cdr for the process e+ e− → µ+ µ−

up to α2 can be found in the supplemental material of [30]. For our process we have to
use the crossed expressions with s ↔ t. Through the perturbative coefficients of Γ and
the QED beta function, an IR renormalisation factor ZIR = 1 + Z

(1)
IR + Z

(2)
IR + O(α3) can

be written. The IR poles remaining in the UV-renormalised virtual corrections to muon-
electron scattering at ` loops can then be obtained by multiplying ZIR by the amplitude
up to (` − 1) loops and subsequently collecting the terms proportional to order α` in the
product. In particular, at two loops one finds

M(2)
n

∣∣∣
poles

=
[
2
(
Z

(2)
IR −

(
Z

(1)
IR

)2
)
M(0)

n + Z
(1)
IRM

(1)
n

]
poles

+
[
Z

(1)
IRM

(1)
n −

(
Z

(1)
IR

)2
M(0)

n

]
poles

. (2.11)

In (2.11) only the IR poles in the dimensional regulator have to be retained in both the
l.h.s. and r.h.s. of the equations. The first line of (2.11) leads to the IR poles of the
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Figure 2. The finite part of the matrix element M(2)
n (m = 0), defined in (2.4), calculated in

the fdh scheme, within the kinematic region used in section 3, i.e. s = 174 684 MeV2 and t ∈
[−153 069,−1 021] MeV2.

interference of the two-loop and tree-level amplitudes M(2+0)
n (m = 0), while the second

accounts for the IR poles originating from the absolute square of the one-loop amplitude
M(1+1)

n (m = 0).

2.3.4 Scheme conversion

The massless two-loop amplitude as discussed so far, has been evaluated in terms of the
QED coupling renormalised in the MS scheme, whereas for the final results we use the
on-shell α. Thus, in principle we have to perform a renormalisation-scheme conversion for
M(2)

n . However, the difference between the two renormalisation schemes is restricted to
fermion loop contributions. As discussed above, the latter are computed independently and
directly in the on-shell scheme. Hence, for the photonic terms, no further shift is required.

Another scheme conversion that is needed is a regularisation-scheme change. Following
the standard convention of McMule, the matrix elements are converted from the cdr
scheme to the fdh scheme. This can be done by realising that the IR-subtracted matrix
element is independent of the regularisation scheme [88, 89], i.e.

(
Zfdh

IR

)−1
M(fdh)

n =
(
Zcdr

IR

)−1
M(cdr)

n +O(ε) . (2.12)
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The difference between Zcdr
IR and Zfdh

IR is in the perturbative coefficients of Γ and the beta
function [88–91]. However, the structure of ZIR and the basic ideas remain the same. With
Zfdh

IR known, we repeat the calculation of the one-loop matrix element in fdh and can
obtainM(2)

n in the fdh scheme, using (2.12).
In figure 2, we plot the finite part of the matrix elementM(2)

n (m = 0), defined in (2.4),
computed in the fdh scheme, using the same convention to define the finite part as in [92].
Rather than showing the dependence in the whole s-t plane, we focus on the kinematic
ranges we will use in section 3, i.e. we fix s = 174 684 MeV2 and consider the range t ∈
[−153 069,−1 021] MeV2. This allows us also to demonstrate the split into the different
contributions (cf. (2.10)). Note that, sinceM(2)

n (m = 0) is unphysical unless combined with
real corrections, we cannot make any statements about the relative sizes of the different
contributions. However, we can illustrate the numerical stability of the analytic expressions,
which are provided in the supplementary material.

2.3.5 Massification

In this subsection we describe the only approximation we make for our NNLO result. It
concerns the m dependence of the terms {q3Q5, q4Q4, q5Q3} of M(2)

n that are required
for dσ(vv)

eµ . Starting from the corresponding matrix element with a massless electron,
M(2)

n (m = 0), we can obtain the leading term of the small-mass expansion efficiently using
the strategy of massification [34, 36, 37]. This way, we can recover all terms of M(2)

n (m)
that are not polynomially suppressed, i.e. the logarithmically enhanced ones as well as the
constant terms, without the need of additional process-dependent computations. However,
the approximation neglects terms that vanish in the limit m → 0. Hence, in our result
for the mixed corrections dσ(2)

eµ we will miss terms of the form (α/π)2m2/S, potentially
multiplied by a logarithm of the form log(m2/S).

Massification is applicable in the case where some external fermions have small masses
compared to all other scales in the process. Since this corresponds to highly-energetic par-
ticles in the external states, soft-collinear effective theory (SCET) [93–95] can be used for a
systematic expansion of scattering amplitudes. As a consequence of the decoupling trans-
formation [93], collinear and soft degrees of freedom factorise at leading power and we have

An(m) =
(∏

j

√
Z
)
× S ×An(0) +O(m) . (2.13)

Each energetic external particle defines a collinear sector in SCET and thus contributes
one power of the massification constant

√
Z. This process-independent factor does not

depend on any hard scale and apart from the trivial factorised m dependence is a constant.
The soft function S, on the other hand, is not universal and does depend on the hard
scales of the process. One can show that in QED it only receives contributions from
closed fermion loops [36]. As previously mentioned, these contributions can be calculated
at NNLO with exact mass dependence using the semi-numerical hyperspherical method.
This has the added advantage of rendering massification completely process independent.

While it is in principle possible to study these structures directly in SCET, it is easier
to instead perform a matching calculation. In [37], we have explicitly calculated the leading
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bottom-mass effects for the process t→Wb using the method of regions [96] and were able
to write the resulting amplitude as

An(t→Wb,m) =
√
Z × S ×An(t→Wb, 0) +O(m) . (2.14)

Through trivial modifications of the colour factors, this result can be converted to the
QED case µ → νν̄e. The exact form of the massification constant up to NNLO, i.e.
Z = 1 + Z(1) + Z(2), can be found in [37]. For photonic corrections this agrees with the
expression given in [36].

We can now turn to our process and re-use Z, adding a factor of
√
Z to the amplitude

for each light external leg. As mentioned before, there is no soft contribution if closed
fermion loops are excluded. This means that for photonic corrections to muon-electron
scattering we have to write

An(eµ→ eµ,m) =
√
Z

2
×An(eµ→ eµ, 0) +O(m) . (2.15)

Note that Z only contains contributions due to the electron charge q and is of course
independent of the muon charge Q. As for (2.11), the relation (2.15) is to be expanded in
α. Since we are only using massification for the mixed contributions, it is actually sufficient
to use the one-loop value of Z and we find

q4Q2A(2)
4,2(m) + q3Q3A(2)

3,3(m) + q2Q4A(2)
2,4(m) (2.16)

= q4Q2A(2)
4,2(0) + q3Q3A(2)

3,3(0) + q2Q4A(2)
2,4(0) + Z(1)

(
q2Q2A(1)

2,2(0) + qQ3A(1)
1,3(0)

)
.

Massification was previously used [34, 36, 38, 56] to calculate mass effects in Bhabha and
Møller scattering. It was also verified in the case of the muon decay that the massified result
at NNLO gives a very good approximation to the result with exact m dependence [27].

2.4 Computing

All the contributions described in the previous paragraphs are implemented in Mc-
Mule [97], a framework for (IR-safe) fully differential higher-order QED calculations. The
code is publicly available at

https://gitlab.com/mule-tools/mcmule

A general presentation of McMule and of the methods employed therein is given
in [26, 57, 92]. In particular, section 5 of [26] deals with the implementation of the electronic
corrections at NNLO. Here the description is focused on the peculiarities of the new muon-
electron scattering implementation, which completes the previous one.

The customary split of the radiative corrections into fermionic and photonic contribu-
tions is also reflected by the structure of the code. The user is allowed to choose which
contributions, or pieces in the McMule notation, are to be computed. Each of the two
classes is further split in terms of electronic, muonic and mixed corrections.

The non-radiative pieces are relatively straightforward to integrate over their simple
phase space as there are no numerical issues. However, there is one subtlety related to the

– 13 –

https://gitlab.com/mule-tools/mcmule


J
H
E
P
0
1
(
2
0
2
3
)
1
1
2

double-virtual mixed photonic piece: the matrix element is expressed in terms of several
thousand GPLs. While these can be efficiently evaluated using the latest version (v0.2.0b)
of handyG [98], evaluation is still limited to roughly 1 s/event. However, due to the sim-
plicity of the actual phase-space integration that only requires ∼ 2× 105 points, it is still
possible to obtain very good results in a reasonable amount of time. A more aggressive
and efficient caching system in handyG might improve this further.

The radiative pieces have comparatively simpler matrix elements but a more compli-
cated phase space that tends to lead to numerical instabilities. The main issue here is
the real-virtual matrix element which is evaluated using OpenLoops and NTS stabilisa-
tion (see section 2.2). For points in the bulk of the phase space, evaluation takes roughly
3 ms/event. However, the complexity of the phase space necessitates roughly 1.5 × 108

points meaning that the total integration time is on par with the non-radiative pieces.
The whole set of results can be found in the relevant directory of the McMule user

library,

https://mule-tools.gitlab.io/user-library/

along with user, menu and configuration files, and the Python code that generates the
plots in the paper [99]. The production runs employed version v0.3.1 (for µ−e → µ−e)
and v0.4.2 (for µ+e→ µ+e) of the McMule public release, which was encapsulated in a
docker environment in order to ensure complete reproducibility of the results. In order to
obtain a relative accuracy better than at least 10−4 (10−3) for the NLO (NNLO) coefficient,
we ran McMule for a total of 2.5 CPU-years per configuration on Intel Xeon Gold 6152
CPUs. In total, the results presented in this paper, including the checks in section 4,
correspond to a runtime of roughly 21 CPU-years.2

3 Results

This section presents some results for muon-electron scattering at NNLO, with the char-
acteristics of the MUonE experiment in mind. The kinematics of the process is defined
by the momenta in (2.1) together with the electron and the muon mass, m and M . The
Mandelstam invariants are introduced as te = (p1 − p3)2 and tµ = (p2 − p4)2, along with
the outgoing electron and muon energy, Ee and Eµ, and the electron and muon scattering
angle with respect to the beam axis, θe and θµ. If the process is elastic te = tµ ≡ t.

The muon beam energy is set to E = 160GeV, consistent with the M2 beam line at
CERN North Area [2].3 This corresponds to a centre-of-mass energy of

√
s ≈ 420 MeV. A

cut is imposed on the energy of the outgoing electron, Ee > 1GeV, which is equivalent to
a cut on the minimal value of |t|, in order to cure the singular behaviour of dσ/dt ∼ t−2.
A cut on θµ can be used to remove most of the background. Hence, for some of our results
we also require θµ > 0.3mrad.

2Using [100] we estimate that this corresponds to an energy consumption of 2.77 MWh and a carbon
footprint of 32 kgCO2e.

3This is different than the value used in previous works [21, 26] where E = 150GeV.
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Ee > 1GeV θµ > 0.3 mrad 0.9 < θµ/θ
el
µ < 1.1

S1 X X

S2 X X X

S1’ X

S2’ X X

Table 1. Kinematical scenarios analysed in the McMule prediction.

In order to achieve a well-defined extraction of the HVP, a possible way to proceed is
to discriminate elastic scattering events from the otherwise kinematically allowed radiative
events and processes in the background. This can be obtained in terms of the elasticity
constraint that relates muon and electron scattering angles in the absence of photons,

tan θel
µ = 2 tan θe

(1 + γ2 tan2 θe)(1 + g∗
µ)− 2

, (3.1)

where
γ = E +m√

s
, g∗

µ = Em+M2

Em+m2 . (3.2)

Applying an elasticity cut, such as

0.9 < θµ
θel
µ

< 1.1 , (3.3)

would then allow to reconstruct the HVP momentum flow on an event-by-event basis.
Furthermore, the cut is expected to flatten out the radiative corrections at the differen-
tial level due to an evenly distributed soft enhancement. Since MUonE plans to exploit
the presence of a normalisation and a signal region, this behaviour could turn out to be
advantageous. The effect of the elasticity cut (3.3) is very similar to the acoplanarity cut
introduced in [22].

However, such a kinematical constraint is not ideal from the experimental perspective.
It would cut off many events, yielding issues in terms of statistics, and would also com-
plicate the estimate of systematic uncertainties, as it would lead to a complex practical
implementation. At present, the alternative proposed by the experiment is to employ a
template fit to extract the HVP, as discussed in [3]. Nonetheless, a study with the elasticity
cut is still of theoretical interest.

In the following, results are presented for different scenarios, defined in terms of the
kinematical cuts discussed above and summarised in table 1. All the results use the input
parameters [101]

α = 1/137.035999084 , m = 0.510998950 MeV ,

M = 105.658375 MeV , mτ = 1776.86 MeV .

The Fortran library alphaQED [64], in particular the most recent version alphaQEDc19, is
employed for the evaluation of the HVP.
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The order-by-order contributions, σ(i), to the NkLO integrated cross section, σk =∑k
i=0 σ

(i), are shown in tables 2 and 3, divided according to (2.8). The NLO hadronic
piece, σ(1)

had, corresponds to the signal of the MUonE experiment. In addition, the tables
show the K factor corresponding to each contribution, defined as

K(i) = 1 + δK(i) = σi
σi−1

. (3.4)

When applicable, the tables present the different cross sections for both negative and
positive muons. The mixed photonic NLO correction with positive muons can be derived
from the one with negative muons by flipping the sign of the latter. The mixed photonic
NNLO correction could be further disentangled into three classes, labelled by the leptonic
charges relative to the LO cross section, i.e. {q3Q, q2Q2, q Q3}, so that the contribution
with positive muons can be derived from the one with negative muons by flipping the sign
of the classes with odd powers of Q. Once all mixed contributions are added up as displayed
in the tables, this symmetry is not manifest anymore.

According to table 2, NLO and NNLO corrections amount to around 1% and 0.01%
(or less) for S1, and to around 3% and 0.01% for S2. The elasticity constraint cuts off hard
radiation and the consequent soft enhancement introduces large logarithms that result in
larger K ratios in the latter scenario, particularly in the case of electronic corrections. For
S1 there is no apparent hierarchy among photonic corrections, while leptonic contributions,
especially those due to electronic VP insertions, dominate NLO and NNLO corrections.
For S2 a hierarchy between electronic and mixed photonic contributions, both at NLO and
at NNLO, is more evident.

Comparing table 3 and table 2 reveals that the cut on θµ has a large impact on NLO
corrections, similar to the elasticity cut. However, the θµ cut has a much more pronounced
effect on the total cross section, as it also affects the Born term.

In addition to integrated cross sections, differential distributions can provide a more
reliable estimate with respect to MUonE’s 10 ppm target, as higher-order corrections can be
much larger at that level. As a Monte Carlo integrator, McMule allows for the calculation
of any number of IR-safe differential observables in the same run. Here,4 figures 3–5 display
differential results that are of interest to the MUonE experiment, in particular distributions
with respect to θe and θµ. The differential cross sections at LO and NNLO are shown in
the upper panels. Furthermore, the lower panels show the differential K factor

δK(i) = dσ(i)/dx
dσi−1/dx

, (3.5)

with x ∈ {θe, θµ}. From top to bottom, the second panel displays the NLO K factor for
negative muons, the third and fourth panel the NNLO K factor for negative and positive
muons, the fifth panel again the NNLO K factor for negative muons restricted to mixed
photonic contributions, further disentangled in terms of the three gauge-invariant subsets,
labelled by their leptonic charge.

4Results for other observables can be found in the McMule User Library.
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σ/µb δK(i)/%
S1 S2 S1 S2

σ0 106.44356 106.44356
σ

(1)
e −0.61211(3) −4.66042(3) −0.57506(3) −4.37830(3)

σ
(1)
eµ

{−

+

−0.21404 −0.16017 −0.20108 −0.15047
0.21404 0.16017 0.20108 0.15047

σ
(1)
µ −0.02843 −0.16134 −0.02671 −0.15157
σ

(1)
lep 1.38575 1.38575 1.30186 1.30186
σ

(1)
had 0.01565 0.01565 0.01471 0.01471

σ1
{−

+

106.99038(3) 102.86304(3) 0.51372(3) −3.36377(3)
107.41847(3) 103.18338(3) 0.91589(3) −3.06283(3)

σ
(2)
e 0.00090 0.06595 0.00084 0.06411

σ
(2)
eµ

{−

+

0.00095 0.01926 0.00089 0.01872
0.00329 0.00479 0.00307 0.00464

σ
(2)
µ −0.00005 0.00002 −0.00005 0.00002

σ
(2)
lep

{−

+

−0.01195 −0.06568 −0.01117 −0.06385
−0.00424 −0.05959 −0.00395 −0.05775

σ
(2)
had

{−

+

−0.00045 −0.00104 −0.00042 −0.00101
−0.00004 −0.00068 −0.00004 −0.00066

σ2
{−

+

106.97977(3) 102.88154(3) −0.00992(4) 0.01799(4)
107.41832(3) 103.19386(3) −0.00013(4) 0.01016(4)

Table 2. Integrated cross sections for S1 and S2 at LO, NLO, and NNLO. The results are split
into photonic, i.e. electronic, mixed and muonic, and fermionic, i.e. leptonic and hadronic, correc-
tions. All three leptons are included in the leptonic contributions. When applicable, the different
contributions with negative and positive muons are shown. Where no error is given, all digits are
significant compared to the precision of the numerical integration.

In the case of the θe distribution, (N)NLO corrections can be larger at differential level,
for example up to 20% (0.2%), as shown in figure 3. These large corrections occur for small
electron scattering angles, or equivalently for large electron energies, where photon emission
is forced to be soft. Furthermore, the effect of the elasticity cut is clearly visible when
comparing figure 3 and figure 4. As expected from an evenly-distributed soft enhancement,
the K factor is significantly flattened.

Among photonic corrections, a hierarchy is expected from the appearance of collinear
pseudo-singularities. At the cross section level, this introduces logarithms of the form
log(m2

i /S), wheremi ∈ {m, M} and S is the energy scale of the process. As a consequence,
electronic corrections are expected to be dominant compared to mixed corrections, and even
more compared to muonic corrections.
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σ/µb δK(i)/%
S1’ S2’ S1’ S2’

σ0 245.59625(1) 245.59625(1)
σ

(1)
e 10.8488(2) −11.18183(7) 4.41735(7) −4.55293(3)

σ
(1)
eµ

{−

+

−0.35021 −0.28598 −0.14260 −0.11644
0.35021 0.28598 0.14260 0.11644

σ
(1)
µ −0.06668 −0.22413 −0.02715 −0.09126
σ

(1)
lep 2.88969 2.88969 1.17660 1.17660
σ

(1)
had 0.01943 0.01943 0.00791 0.00791

σ1
{−

+

258.9373(2) 236.81343(7) 5.43211(7) −3.57612(3)
259.6377(2) 237.38539(7) 5.71731(7) −3.34324(3)

σ
(2)
e 0.02713(4) 0.17491(1) 0.01048(2) 0.07386

σ
(2)
eµ

{−

+

−0.02526 0.02852 −0.00975 0.01204
0.03165 0.00439 0.01219 0.01852

σ
(2)
µ −0.00010 −0.00004 −0.00004 −0.00002

σ
(2)
lep

{−

+

0.05911 −0.13445 0.02283 −0.05678
0.07161 −0.12380 0.02758 −0.05215

σ
(2)
had

{−

+

−0.00049 −0.00128 −0.00019 −0.00054
0.00000 −0.00083 0.00000 −0.00035

σ2
{−

+

258.9977(2) 236.88109(7) 0.02332(9) 0.02857(4)
259.7680(2) 237.44002(7) 0.05018(9) 0.02301(4)

Table 3. Integrated cross sections for S1’ and S2’ at LO, NLO, and NNLO. The results are
split into photonic, i.e. electronic, mixed and muonic, and fermionic, i.e. leptonic and hadronic,
corrections. All three leptons are included in the leptonic contributions. When applicable, the
different contributions with negative and positive muons are shown. Where no error is given, all
digits are significant compared to the precision of the numerical integration.

This phenomenon can be observed at NLO, where the electronic contribution is the
largest, and particularly for S1, where the additional soft enhancement at the endpoints of
the distributions seems to affect the electronic correction even more.

The collinear hierarchy is less pronounced at NNLO, apparently because of further en-
hancements of soft origin. In fact, electronic and mixed corrections are similar in magnitude
for small θe, where the soft enhancement is prevalent. Nonetheless, the collinear hierarchy
is partially restored in the bulk of the distribution. The interplay between collinear and soft
enhancements is even clearer from the lowest panel in figure 3, where the soft enhancement
of the mostly-electronic mixed correction (q3Q) turns out to account for the similar magni-
tude of electronic and mixed corrections for small θe. Similarly, NNLO results for S2 in fig-
ure 4 are further enhanced by soft logarithms because of the additional elasticity constraint.
As a consequence, the collinear hierarchy is less visible in the bulk of the distribution.
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Figure 3. From top to bottom: (i) differential cross section w.r.t. θe for S1 at LO (violet), and
NNLO (orange) for negative muons; (ii) NLO K factor for negative muons (positive muons have a
sign flip for the mixed photonic correction); (iii) NNLO K factor for negative muons; (iv) NNLO
K factor for positive muons; (v) NNLO K factor for disentangled mixed photonic corrections,
for negative muons. In panels (ii)–(iv) the correction is split into photonic, i.e. electronic, mixed
and muonic, and fermionic, including leptonic and hadronic. The hadronic correction at NLO
corresponds to the signal of the experiment and is shown separately in purple in panel (ii).
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Figure 4. From top to bottom: (i) differential cross section w.r.t. θe for S2 at LO (violet), and
NNLO (orange) for negative muons; (ii) NLO K factor for negative muons (positive muons have a
sign flip for the mixed photonic correction); (iii) NNLO K factor for negative muons; (iv) NNLO
K factor for positive muons; (v) NNLO K factor for disentangled mixed photonic corrections,
for negative muons. In panels (ii)–(iv) the correction is split into photonic, i.e. electronic, mixed
and muonic, and fermionic, including leptonic and hadronic. The hadronic correction at NLO
corresponds to the signal of the experiment and is shown separately in purple in panel (ii).
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Figure 5. From top to bottom: (i) differential cross section w.r.t. θµ for S1’ at LO (violet), and
NNLO (orange) for negative muons; (ii) NLO K factor for negative muons (positive muons have a
sign flip for the mixed photonic correction); (iii) NNLO K factor for negative muons; (iv) NNLO
K factor for positive muons; (v) NNLO K factor for disentangled mixed photonic corrections,
for negative muons. In panels (ii)–(iv) the correction is split into photonic, i.e. electronic, mixed
and muonic, and fermionic, including leptonic and hadronic. The hadronic correction at NLO
corresponds to the signal of the experiment and is shown separately in purple in panel (ii).
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In the case of the θµ distribution in S1’, displayed in figure 5, a strong enhancement for
small values of θµ is visible for all NLO and NNLO K factors, except for the NLO fermionic.
This explains why MUonE enforces a kinematical cut for small muon scattering angles, in
order not to lose the majority of these events. On the other hand, fermionic corrections at
NLO are not enhanced (note the different scale for the NLO hadronic), since NLO fermionic
corrections correspond to elastic events, which are not affected by the cut at θµ = 0.3 mrad.

Finally, figure 3 and figure 5 also show that the MUonE signal, i.e. the hadronic NLO
corrections, are O(10−3) in the regions of small θe and large θµ.

However, the magnitude of NNLO corrections at differential level, around 10−3, is still
too large compared to MUonE’s precision goal of 10 ppm. Higher-order predictions beyond
NNLO can certainly help in that direction. Furthermore, it is clearly mandatory to make
an effort towards a more reliable description of the region where radiation leads to an
enhancement through large logarithms.

4 Checks and validation

Since this paper presents the first full prediction for muon-electron scattering at NNLO
in QED, various studies were conducted in order to validate the results. Checks were
performed both externally (section 4.1), against independent though partial results, and
internally (section 4.2), in order to test the consistency and the validity of the methods.
In particular, both photonic and fermionic NNLO corrections could be completely tested
against independent calculations, except for the contribution of the two-loop four-point
topologies to the mixed photonic correction.

4.1 External checks

The electronic and muonic contributions to the photonic NNLO correction were also cal-
culated in [21] with Mesmer. Since a slicing scheme is employed therein to handle IR
divergences, along with a photon-mass regulator, a comparison with McMule represents
a completely independent check. A positive outcome was reported in [26]. As mentioned
in section 2.2, we have improved upon this calculation by using OpenLoops combined
with NTS stabilisation to evaluate the real-virtual contribution. This yields a better con-
vergence behaviour of the Monte Carlo integration. Perfect agreement with the Mesmer
results is also found in this case.

For the mixed photonic NNLO result, a new comparison was conducted with the Mes-
mer collaboration. Since the calculation in [21] is complete up to the mixed two-loop contri-
bution, it is possible to compare the mixed NLO correction to µe→ µeγ, which is physical
and corresponds to the double-real and real-virtual contributions to muon-electron scat-
tering. In order to check the numerical stability of the real-virtual implementation, small
photon energy cuts of {10−6, 10−5, 10−4} ×

√
s/2 were used. Perfect agreement was found

between the two codes for the total cross section as well as for differential distributions.
A verification of the complete NNLO calculation and in particular of the genuine

two-loop four-point topologies with Mesmer is currently not possible. In [21] these
contributions were approximated with a YFS-inspired approach. Since this only yields
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a rough estimate of the exact result, a meaningful comparison is not viable. Instead, we
have made an independent test of the massified two-loop matrix element. To this end,
we start from a completely independent massless calculation of the matrix element for
Bhabha scattering [102]. We restrict the result to the t-channel [38] contribution and
massify both fermion lines. As can be expected, this result approaches the muon-electron
two-loop matrix element in the high-energy limit S � M,m. This represents a strong
check on the correctness of the massless two-loop matrix element as well as the consistency
of the massification procedure.

Finally, the fermionic contribution to the NNLO correction was also computed in [12]
through a dispersive approach, using e+e− annihilation data for the hadronic part. On the
other hand, the McMule implementation employs the hyperspherical results from [13].
The positive outcome of the comparison between the two sets of results, for both leptonic
and hadronic distributions, constitutes an additional strong validation.

4.2 Internal checks

Further checks were performed internally to test the new ingredients of the present cal-
culation and are discussed with more details in the following subsections. In particular,
section 4.2.1 presents a validation for the Fortran implementation in McMule, section 4.2.2
analyses the effect of massification, and section 4.2.3 studies the impact of NTS stabili-
sation applied to the calculation of real-virtual contributions. The results of all of these
checks are summarised in figure 6.

4.2.1 Implementation

In addition to the external checks, a validation for the Fortran implementation is provided
through the subtraction method employed by McMule. As given in (2.7), FKS` introduces
the unphysical parameter ξc, on which the three pieces contributing to the photonic NNLO
correction (double-virtual, real-virtual and double-real) depend. The cancellation of the
ξc dependence, when the three pieces are summed together, is a strong check in terms of
implementation consistency and numerical stability, even more when performed at the level
of differential distributions.

The second and third panel of figure 6 show, for a number of merged bins, the relative
difference between the differential cross section computed for each of the ξc employed for
the calculation (ξi) and the combined differential cross section (labelled with ξc), for the
electronic and the mixed NNLO correction in S1, respectively.

The error bars in the plot indicate very good consistency and stability of the imple-
mentation, on top of (unavoidable) larger oscillations corresponding to the zero crossings
of the distributions.

4.2.2 Massification error

It is essential to validate the reliability of the approximation provided by massification
for the considered observables. To do so, one can use the electronic NNLO correction,
computed with full mass dependence, to obtain an error estimate when massification is
applied to the massless two-loop electron form factor.
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Figure 6. Validation plots for electronic and mixed photonic corrections, as differential distribu-
tions w.r.t. the electron scattering angle. From top to bottom (see the corresponding subsections
in section 4 for further details): (i) differential NNLO correction w.r.t. θe — electronic in S1 in red,
electronic in S1’ in purple, mixed in S1 in green; (ii) ξc-(in)dependence study for NNLO electronic
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We write the massified electronic NNLO corrections as

dσ̃(2)
e (m) =

(
1 + δZ

)
dσ(2)

e (m) (4.1)

and thereby introduce the relative difference, δZ , between the NNLO coefficients of the
full and massified electronic correction. The second-to-last panel of figure 6 shows δZ
in two different scenarios, S1 and S1’, which differ for the enforcement of an additional
cut on the muon scattering angle, θµ > 0.3 mrad ≡ θcµ. We stress that the difference
between the massified and full result for the NNLO coefficients only affects the double-
virtual contributions, which are computed with and without massification, respectively.

The relative difference at the level of the NNLO differential cross section is

dσ̃2 − dσ2
dσ2

= dσ(2)
e

dσ2
δZ ∼ α2 δZ , (4.2)

i.e. at most around 10−3α2 in the present case, so that we can safely argue that massification
is not providing a source of uncertainty in the context of MUonE’s precision goal of 10
ppm. The error bars are not visible since they are much smaller than the scale of δZ . In
particular, they quantify the error of the ratio between the double-virtual contributions to
the massified and the full NNLO correction. This error is at least a thousand times smaller
than the Monte Carlo error of the physical NNLO corrections, not shown in the plot.

However, in the case of S1, δZ seems to increase for θe ∼ 15 mrad, on top of (unavoid-
able) larger oscillations due to the zero crossings of the distributions. Since massification
is applied to the double-virtual contribution, this behaviour can be explained with a focus
on elastic events. In this respect, electron scattering angles around 15 mrad correspond
to muon scattering angles around 0.5 mrad. As θe increases, the difference between the
corresponding θµ and θcµ gets smaller and smaller. The appearance of such a small quan-
tity breaks the power counting massification is based on and thus results in a less reliable
approximation. This observation is confirmed by the absence of a similar trend in the case
of S1’, where the same cut is not enforced, in purple in figure 6.

4.2.3 Impact of next-to-soft stabilisation

A final check validates the procedure of NTS stabilisation, which is used for computing
real-virtual contributions in phase-space regions where the evaluation with OpenLoops
becomes numerically unstable.

Below a certain value of the photon energy, fixed at 10−3√s/2 for the present im-
plementation, the evaluation of the real-virtual matrix element is switched to the NTS
expansion. This is a much simpler and thus numerically much more stable expression. Al-
ternatively, one can use OpenLoops in quadruple precision to always use the full matrix
element for the entire phase space. This has an enormous price in terms of computing
time, but can be used to validate the NTS expansion.

In analogy to (4.1) we write the NTS-expanded mixed NNLO correction as (1 +
δNTS) dσ(2)

eµ , where dσ(2)
eµ is computed using OpenLoops in quadruple precision for the

full phase space. The last panel of figure 6 shows the relative difference δNTS at differen-
tial level. Except for oscillations due to the zero crossing of the distribution, the relative
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difference at the level of the NNLO differential cross section, i.e.

dσ(2)
eµ

dσ2
δNTS ∼ α2 δNTS , (4.3)

is at most around 10−2α2. The error bars in this figure only include the error of the real-
virtual contributions. We stress that this error is at least ten times smaller than the Monte
Carlo integration error of the physical NNLO correction, not shown in the plot. Hence, we
can safely argue that the NTS expansion is an extremely good approximation.

As a consequence, the NTS expansion accurately represents the full real-virtual contri-
bution, as much as the full computation with OpenLoops in quadruple precision. However,
it allows for a much faster integration. The data in the plot, using the same amount of
statistics and the same setup for both cases, required seven days with NTS stabilisation,
three months without it.

5 Conclusions and outlook

We have presented the first calculation of the complete set of NNLO QED corrections
to muon-electron scattering. The results presented here constitute the first complete and
fully differential NNLO calculation of a 2 → 2 process with two different non-vanishing
masses on the external lines. They were obtained by combining state-of-the-art analytic
calculations of two-loop amplitudes and their numerical evaluations with advanced QFT-
inspired methods to ensure an efficient and numerically stable phase-space integration, even
in the presence of a large hierarchy of scales. Through crossing, they also open the door to
study muon-pair and tau-pair production at electron-positron colliders to unprecedented
precision. Furthermore, they can be adapted to contribute to an improved description of
lepton-proton scattering.

Our results include leptonic, non-perturbative hadronic, and photonic corrections. The
fermionic matrix elements were calculated with the semi-numerical hyperspherical method,
while a purely analytic approach was followed for the photonic parts. The phase-space
integration is performed numerically in the McMule framework [26], where the soft sin-
gularities are subtracted using the FKS` scheme [27]. This allows for a fully-differential
calculation of any IR-safe observable.

Electronic and muonic corrections have been computed exactly based on the analytic
result for the heavy-lepton and heavy-quark form factors [54, 55]. The full mass dependence
of the genuine four-point two-loop topologies, on the other hand, is currently not known.
Adapting the recent computation of the two-loop matrix element for e+ e− → µ+µ− [30] for
massless electrons, we have computed the corresponding matrix element for muon-electron
scattering. Based on this result, it was possible to reconstruct the leading electron-mass
effects using massification [37]. This correctly captures both logarithmically enhanced as
well as constant terms and results within an error of the order of (α/π)2m2/S log(m2/S).
It can therefore be expected that the impact of the missing terms lies well below MUonE’s
target precision of 10 ppm. We have substantiated this claim by comparing the massive
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computation for the electron line corrections with the massified result. The difference is
smaller than the Monte Carlo error, which is negligible for practical purposes.

The second bottleneck in the calculation is given by the numerical (in)stability of the
radiative matrix element for soft and collinear photon emission. A stable and fast imple-
mentation of the delicate real-virtual matrix element was possible by combining Open-
Loops [39, 40] with NTS stabilisation [38, 41]. We have cross-checked this approach by
running OpenLoops in quadruple-precision mode and found perfect agreement of the two
results within the Monte Carlo error. Furthermore, the real-virtual and double-real con-
tributions have been validated in a dedicated comparison of the radiative process with the
Mesmer collaboration.

The calculation presented here represents a major milestone towards the ambitious
10 ppm precision goal of the MUonE experiment. The corresponding results unveil rather
large NNLO corrections of up to ∼ 10−3, depending on the angle of the scattered electron.
They are thus absolutely essential for the MUonE program. The enhancement can be
traced back to the presence of soft logarithms. An inclusion of these effects beyond NNLO
is therefore unavoidable to reach the required precision. The leading logarithms can be
resummed with a parton shower and a corresponding effort is ongoing to extend the
McMule framework accordingly.

Even with a NNLO-matched parton shower it will be essential to reliably assess the
impact of missing higher-order contributions. An analytic approach to resum next-to-
leading logarithmic effects could therefore be helpful in this regard. It is, however, unlikely
that this can be done for realistic MUonE observables. An alternative approach is given
by the fixed-order calculation of the electron-line corrections at N3LO. With the all-order
subtraction scheme FKS` and the recent calculation of the heavy-quark form factor at three
loop [103, 104] such an endeavour indeed seems feasible. The main missing piece is the
real-virtual-virtual matrix element which is only known for massless electrons [105, 106].
As an alternative route to an analytic calculation of this matrix element, one could follow a
numerical approach to calculate the loop integrals using e.g. DiffExp [107], AMFlow [108],
or SecDec [109]. Another option is to extend massification to radiative processes. A
corresponding collaborative effort has been launched recently [110].

Last but not least, a rigorous assessment of the reliability of the massified approxima-
tion is clearly desirable. A computation with full mass dependence is therefore envisaged.
Analytic results for a subset of the planar master integrals have recently become avail-
able [111]. A numerical approach seems, however, more promising in this case. In fact,
similar techniques as for the electronic real-virtual-virtual amplitude might also be applica-
ble here. The N3LO endeavour will therefore not only control missing higher-order effects
but might also facilitate the fully-massive NNLO calculation. A prediction of the SM back-
ground for MUonE with the ambitious target precision of 10 ppm thus seems within reach
in the near-term future.
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