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1 Introduction and review

The Ryu-Takayanagi proposal [1] posits that in holographic duality (AdS/CFT correspon-
dence [2]) the von Neumann entropies of CFT regions are encoded in the bulk AdS geome-
try as areas of extremal surfaces. This fact imposes constraints on von Neumann entropies
of boundary (CFT) states, which are dual to semiclassical bulk (AdS) geometries. The
present paper reports one new such constraint. The new constraint — inequality (2.1) —
is significant because it confirms a recent conjecture about an infinite class of constraints,
which are characterized by a highly regular structure and a crisp physical interpretation [3]
(see also [4]).

The earliest-known constraint on entanglement entropies of states with semiclassical
bulk duals is the monogamy of mutual information [5]:

SAB + SBC + SCA ≥ SA + SB + SC + SABC (1.1)

Here SX is the von Neumann entropy of a boundary region X, and union signs are dropped,
i.e. AB ≡ A ∪ B. Since then, several other inequalities have been proven; see [6] for a
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complete list of currently known inequalities. This list comprises several inequalities on
N = 5 regions (usually denoted A, B, C, D, E), and one infinite class of inequalities that
work for every N [7]. The inequalities are said to define the holographic entropy cone [7]
because every inequality divides the vector space of potential entropy assignments (entropy
space) into one allowed and one disallowed region, separated by a hyperplane where the
inequality is saturated. A collection of hyperplanes (inequalities) defines a convex cone of
allowed entropy assignments.

Reference [7] established an algorithmic technique for proving candidate holographic
inequalities. It involves finding a so-called contraction map, which is a weak homomorphism
of hypercubes whose dimensions are labeled by terms on the left and right hand side of
the inequality, respectively.1 A computer program, which searches for contraction maps,
is publicly available [8]. In this paper, we assume that the reader is familiar with how
contraction maps work,2 or at least that she is willing to accept a computer-generated
contraction map as proof of an inequality. Reference [7] also established a method to
confirm that an already-proven inequality is the tightest possible, i.e. that no terms can be
added to the right hand side or subtracted from the left without falsifying the inequality.
That task involves certain graph models, which we briefly review in section 3.2.

Qualitatively speaking, the inequalities are difficult to interpret. Two exceptions in-
clude the monogamy of mutual information (1.1), which was interpreted in [10] as quan-
tifying perfect tensor-like entanglement of a four-partite state, and the infinite class of
inequalities reported in [7], which discretize a measure of entanglement called differen-
tial entropy [11]. For other attempts to interpret known inequalities and/or identify future
ones, see [12–15]. Moreover, known facts about the holographic entropy cone are subject to
several important provisos. First, proofs by contraction [7] assume that the bulk geometry
has time reflection symmetry. Therefore, it is logically possible that states and geometries
with arbitrary time dependence might violate the inequalities listed in [6].3 Second, the
inequalities really constrain the geometric (area-like) contributions to boundary von Neu-
mann entropies, and ignore bulk entanglement. The latter term, which is part and parcel
of the quantum-corrected Ryu-Takayanagi proposal [18, 19], is typically suppressed by the
small holographic parameter 1/N [20]. In recent years, however, setups where area terms
and bulk entanglement terms compete — dubbed islands — have been used to explain the
black hole information paradox [21–23]. Although island-like setups do satisfy (indeed, sat-
urate [3]) holographic entropy inequalities, they make the inequalities conceptually harder
to interpret. This issue was discussed in [24].

1In writing ‘left hand side’ and ‘right hand side,’ we are sticking to the convention of writing the inequality
as ‘l.h.s. ≥ r.h.s. ,’ where all terms appear with positive coefficients. This convention is applied in (1.1) and
throughout this paper.

2For a pedagogical review, see [9].
3Reference [16] proved that any inequality established by the contraction method remains valid for

arbitrary states in the AdS3/CFT2 correspondence. Therefore, this hypothetical scenario would require
a higher-dimensional setup, with at least four bulk dimensions. There is ongoing work, which aims to
eliminate this logical possibility [17].
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1.1 Symmetrized inequalities and the HCAE conjecture

To make progress in studying the holographic entropy cone, Reference [3] (see also [4])
proposed to study a simpler but more doable problem. The idea is to study inequalities,
which bound averages of von Neumann entropies of p-partite regions. For example, in the
N = 3 context we have two such quantities:

S1 =
(
SA + SB + SC + SO

)
/4 (1.2)

S2 =
(
SAB + SBC + SCA + SAO + SBO + SCO

)
/6 (1.3)

These expressions assume that the 3-partite state on named regions A, B, C is purified by
a fourth region O. The averages Sp are taken over all p-partite regions, also those which
involve the purifier. As such, they form the complete set of invariants of the symmetric
group S4, which permutes all the regions, including the purifier. For this reason, constraints
on quantities Sp are symmetrized inequalities.

At general N , we will likewise envoke an (N + 1)st purifying region and treat it on
equal footing with the N named regions. Because complementary regions of a pure state
have equal entropies, in the N -region context we have

Sp = SN+1−p (1.4)

Therefore, the complete set of entropy averages Sp in the N -region context is labeled by
1 ≤ p ≤ b(N + 1)/2c, where b. . .c is the floor function.

An example inequality, which bounds the averages Sp, is the monogamy of mutual
information. Written in terms of Sp, inequality (1.1) is simply:

3S2 ≥ 4S1 (1.5)

Going to higher N , Reference [3] conjectured the following infinite class of inequalities,
parameterized by p:

2Sp

p
≥ Sp−1

p− 1 + Sp+1

p + 1 where 2 ≤ p ≤ b(N + 1)/2c (1.6)

Note that in the context of N = 3 regions (A, B, C), the monogamy of mutual informa-
tion (1.5) is inequality (1.6) for p = 2. The N = 3 assumption is used for setting S1 = S3

by equation (1.4).
The conjectured inequalities (1.6), if true, enjoy a wealth of fascinating and intuitive

properties:

• Complemented by 2S1 ≥ S2, inequalities (1.6) form the complete and tightest possible
set of inequalities, which bound Sp. They define the holographic cone of average
entropies (HCAE).

• They collectively define a pattern of most efficient (average) purification of p-partite
regions with the addition of one extra region. Quantitatively, a purification of p-
partite regions is most efficient if it achieves the smallest value of Sp+1 for a given
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value of Sp. A convex combination of inequalities (1.6) yields the relevant lower
bound on Sp+1:

Sp+1

Sp
≥ (p + 1)(N − p)

p(N + 1− p) (1.7)

The most efficient pattern of purification is when inequality (1.7) is saturated.

• Saturating (1.7) sets Sq ∝ q(N + 1 − q) for all q ≥ p. The same behavior of Sq

characterizes a collection of EPR pairs. In other words, the most efficient purification
of p-partite regions has the same (average) von Neumann entropies of (q ≥ p)-partite
regions as would a collection of EPR pairs.

• When a maximal number of inequalities are collectively saturated, we get an extreme
ray of the cone. As a side remark, the extreme rays of HCAE are relevant to describing
the radiation of an evaporating black hole in a unitary theory of gravity à la Page [25,
26] and islands [21–23]. This assertion is explained in detail in [3].

In this paper, we refer to inequalities (1.6) collectively as the HCAE conjecture.
One challenge with inequalities (1.6) is that they cannot be proven using computer

programs [8], which search for contraction maps. The limitation is not fundamental but
practical. A contraction is a weak homomorphism from (Z2)L to (Z2)R, where L and
R are the numbers of terms on the left/right hand side. If we take p = b(N + 1)/2c,
inequality (1.6) has L ≥ 1

2
(2p

p

)
types of terms on the left hand side and R ≥

( 2p
p−1

)
types

of terms on the right. We write ≥ instead of = because in practice the incommensurate
coefficients 2/p, 1/(p− 1) and 1/(p + 1) make the task of finding a contraction even more
computationally challenging.4 A brute force search for a contraction map that directly
establishes (1.6) might be marginally feasible for p = 3, but not beyond.

Efforts to establish (1.6) are ongoing [27]. The obvious method is to construct a
contraction map by hand, for arbitrary p and N . One result of the present paper is to
prove inequality (1.6) for p = 4 (and arbitrary N ≥ 7).

Symmetrizing non-symmetric inequalities. Every detailed inequality — that is, one
bounding specific entropies like SA and not merely their averages Sp — gives rise to a sym-
metrized inequality. When we add up all permutation images of a given detailed inequality,
by definition we obtain an inequality that only involves permutation invariants, i.e. the
quantities Sp. The coefficients, with which the Sp enter the symmetrized inequality, are
simply copied from the parent inequality. This is because adding permutation-equivalent
inequalities does not change the proportion, with which various p-partite terms appear.

In summary, symmetrizing a detailed inequality is carried out by the simple procedure:

• Replace every p-partite term with Sp.

To clarify this, we give two examples — subadditivity and the N = 5 cyclic inequality [7]:

SA + SB ≥ SAB −→ 2S1 ≥ S2 (1.8)
4Identical terms such as 2SX may need to be treated as independent (that is, SX + SX) for the purpose

of building a contraction. In that instance parameters L and R become greater than their naïve values.
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SABC + SBCD + SCDE + SDEA + SEAB ≥ SAB + SBC + SCD + SDE + SEA + SABCDE

−→ 5S3 ≥ 5S2 + S5 (1.9)

When working with a fixed number of regions N , we can further rewrite these symmetriza-
tions using (1.4). For instance, in the second example, we can also write 5S3 ≥ 5S2 + S1

in the N = 5 context or 5S3 ≥ 5S2 + S4 in the N = 8 context.
Inequalities known thus far have the following symmetrizations:

i1 −→ 2S1 ≥ S2

i2 −→ 2S2

2 ≥ S1

1 + S3

3
i3 −→ 2S3 + S4 ≥ S1 + 2S2 + S5

cyclic inequality for odd N −→ NS(N+1)/2 ≥ NS(N−1)/2 + SN

i5, i6, i7 −→ 2S3

3 ≥ S2

2 + S4

4
i8 −→ 2S3 ≥ 2S1 + S4

The parent (detailed) inequalities are labeled following [6]. We list them for completeness
in appendix A. Importantly, the symmetrizations of i1 and i2 and i5,6,7 collectively imply
the other symmetrized inequalities.

1.2 A strategy for proving the HCAE conjecture

It is clear that inequality i2 and the trio i5,6,7 play a special role with regard to the HCAE
conjecture. Once proven in their detailed form, they imply inequalities (1.6) for p = 2, 3
by symmetrization. We call such inequalities HCAE-realizing inequalities.

Up to now, the p = 2, 3 inequalities were the only proven inequalities in family (1.6).
The p = 4 case is proven in this paper. Their p ≥ 5 cousins remain a conjecture. In the
three proven cases (p = 2, 3, 4), the proof has proceeded by finding a detailed inequality
and symmetrizing it. (For p = 2 the symmetrization is trivial at N = 3 because the parent
inequality (1.1) is already S4-symmetric, but the comment is valid for N > 3.)

This suggests a potential strategy for proving the HCAE conjecture:

Strategy. Perhaps one can construct an HCAE-realizing inequality for every inequal-
ity (1.6), using N and p as parameters. Thus far, efforts to find contraction maps for (1.6)
directly have failed. Perhaps the HCAE-realizing inequalities might have enough structure
so that contraction maps for them could be constructed explicitly, even though the same
task has remained elusive for their symmetrized descendants.

The previous paragraph uses the word ‘perhaps’ in two key places. One of our goals in
writing this paper is to make the case that the strategy is nevertheless viable. We discuss
this question in section 4.

A simplification. Inequalities (1.6) depend on both p and N . One technical simplifi-
cation, which we emphasize from the start, is that it is enough to prove (1.6) at every
p only for the smallest number of regions N , where the inequality is supposed to hold,
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that is for N = 2p − 1. Once proven there, the inequality follows for all N > 2p − 1 by
symmetrizing over SN+1. So, in fact, the strategy requires ‘only’ to find a valid inequality
with the structure

(p− 1)(p + 1)×
[
p-partite terms

]
(1.10)

≥ p(p + 1)
2 ×

[
(p− 1)-partite terms

]
+ p(p− 1)

2 ×
[
(p + 1)-partite terms

]
for every p. The inequality should involve exactly N = 2p−1 regions. The structure (1.10)
can be modified by terms that symmetrize to zero. For instance, one can add an additional
p-partite term on each side. As an example, this happens in inequality i5 of [6], which
realizes HCAE at p = 3.

1.3 Content and organization of the paper

The main result of this paper is a new holographic entropy inequality on N = 7 regions.
This inequality has two-fold significance. Firstly, it is the first new addition to the list of
proven holographic inequalities5 since Reference [6] and, as such, it is a stepping stone in
the program of determining the full holographic entropy cone. Secondly, the new inequality
we propose is an HCAE-realizing inequality for p = 4. Therefore, it automatically proves
the conjectured inequality (1.6) for p = 4, which adds evidence in favor of the HCAE
conjecture. The inequality is presented in section 2. Subsections 2.1 and 2.2 explain the
route by which we arrived at the inequality.

In section 3, we discuss properties of the new inequality. We emphasize properties
which also apply to other holographic inequalities, in the hope that these may guide a
search for higher-p HCAE-realizing inequalities. We also establish that our inequality is
the tightest possible, in the sense that one cannot subtract a term on the left or add a term
on the right without invalidating it.

Section 4 is a discussion, which contains ideas for deploying our strategy at higher p.
In the main text, we emphasize concepts and suppress details. Information, which is

best presented in tabular form is relegated to appendices.

2 New inequality

The inequality is:

SABDE + SABDF + SABEG + SADEF + SADEG

+ SACDE + SACDF + SACEG + SBDEF + SBDEG

+ SBCDE + SBCDF + SBCEG + SCDEF + SCDEG (2.1)
≥

SABC + SADE + SADF + SAEG + SBDE + SBDF + SBEG + SCDE + SCDF + SCEG

+ SABDEF + SABDEG + SACDEF + SACDEG + SBCDEF + SBCDEG

5The new inequalities from [3] are conjectured but not proven.
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It is an HCAE-realizing inequality for p = 4. Referring to (1.10), it has 3 × 5 = 15 four-
region terms on the left-hand-side, and 4 × 5/2 = 10 three-region terms and 4 × 3/2 = 6
five-region terms on the right-hand-side. As such, this inequality also proves inequality (1.6)
for p = 4, which was conjectured in [3].

We have confirmed the validity of (2.1) using the software [8] on a standard Mac
computer. We thank Michael Walter for making it available to us.

2.1 Motivating the search

In the remainder of this section we explain how we arrived at inequality (2.1). Readers
who are uninterested in how the sausage gets made are advised to skip ahead to section 3.

In essence, we have been inspired by two facts: (i) that there are many more holographic
entropy inequalities than there are entropies, which they constrain; and (ii) that known
holographic entropy inequalities share many features in common.

An example of fact (i) is the N = 5 holographic entropy cone: it lives in a 31-
dimensional space, but is bounded by 372 inequalities or facets [6]. The gap between the
number of inequalities and the dimension of entropy space is expected to be even larger at
higher N . This implies that the positive quantities defined by the inequalities necessarily
share many linear dependencies. If so, at least in some lucky cases it should be true that
an N = 7 inequality will be expressible as a linear combination of lower-N inequalities.6
We are interested in finding at least one such instance, which is HCAE-realizing.

Fact (ii) — that maximally tight holographic entropy inequalities share many features
— makes it logical to harness known inequalities when searching for new ones. Features
shared by all holographic entropy inequalities include superbalance [14] (see beginning
of section 3) and positivity in the K-basis [13] (see appendix C). We list a few further
properties in section 3. If we are to build a new inequality that satisfies certain conditions,
it is efficient to use building blocks, which already satisfy the same conditions.

Prior example. To illustrate the idea, consider inequality i7 from [6]; see appendix A
for its explicit form. It can be rewritten in the following way:

I(AD : B : E) + I(A : BE : D) + I(AD : BE : C) ≥ I(A : C : E) + I(ACE : B : D) (2.2)

Here I(X : Y : Z) is the positive quantity defined by the monogamy inequality (1.1):

I(X : Y : Z) ≡ SXY + SY Z + SZX − SX − SY − SZ − SXY Z (2.3)

This quantity is often called −I3(X : Y : Z). For the purposes of this paper, we define
I(X : Y : Z) without the minus sign so it is easier to keep track of positive quantities.
In effect, we see that inequality i7 compares different lifts of the monogamy of mutual
information to the context of N = 5 regions.

Inequality i7 is an HCAE-realizing inequality for p = 3. The monogamy of mutual
information — the inequality used in rewriting (2.2) — is the HCAE-realizing inequality

6Technically, we are speaking here about linear combinations not of inequalities, but of positive quantities
defined by the inequalities. The distinction is that the latter allows negative coefficients. Examples of the
type of linear combinations we are after include inequalities (2.2), (2.14), and (3.2).
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for p = 2. We surmised — correctly — that an HCAE-realizing inequality for p = 4 could
be constructed in a similar fashion by combining different lifts of p = 3 HCAE-realizing
inequalities.

2.2 Working toward the inequality

We took inequality i5 as the starting point in our guesswork. The other HCAE-realizing
inequalities for p = 3 are i6 and i7. However, it turns out that using only i5 as a building
block is sufficient to construct a p = 4 HCAE-realizing inequality.

The explicit form of i5 is:

SABD + SACD + SBCD + SABE + SACE + SBCE + SADE + SBDE + SCDE

≥ (2.4)
SAD + SAE + SBD + SBE + SCD + SCE + SABC + SABDE + SACDE + SBCDE

In the context of N = 5 named regions, this inequality has symmetry group S3 × S3 × Z2.
The first S3 is explicit in (2.4): it comprises permutations of regions {A, B, C}. The second
S3 is obscured by the presentation in (2.4), where the purifying region O is never written
down, but it is easy to confirm. It comprises permutations of regions {D, E, O}. The Z2
swaps the two triples of regions.

Classifying lifts of i5 by S8-invariants. The initial step in the construction is to
identify N = 7 lifts of i5, which are distinct in terms of how many q-partite regions
they contain. The composition of the inequality in terms of q-partite components is known
from (1.10). Therefore, this analysis informs us how many distinct lifts should be combined,
and in what proportion.

Here we are lifting to N = 7 named regions an inequality, which is initially charac-
terized by two symmetry-equivalent triples of regions: {A, B, C} and {D, E, O}. We are
needing to adjoin two additional regions F, G in some way. Treating all regions (including
the purifier O) on an equal footing, we have three S8-inequivalent ways of doing so:

1. Adjoining F, G to a single region. Example: O → OFG.

2. Adjoining F to one region and G to another, both from the same triple. Example:
D → DF and O → OG.

3. Adjoining F to one region and G to another, taken from distinct triples. Example:
A→ AF and O → OG.

These three lifts symmetrize in the N = 7 context (where S3 = S5) to the following
combinations:

−6S2 + 8S3 − 3S4 ≥ 0 (2.5)
−3S2 − 4S3 + 6S4 ≥ 0 (2.6)
−4S2 + 3S4 ≥ 0 (2.7)
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We are looking for an inequality that symmetrizes to:

ineq. (1.10) at p = 4 −→ −16S3 + 15S4 ≥ 0 (2.8)

To assemble it, we consider the linear combination

a× (2.5) + b× (2.6) + c× (2.7) (2.9)

and demand that the coefficients a, b, c solve the system of equations:

−6a− 3b− 4c = 0
8a− 4b = −16 (2.10)
−3a + 6b + 3c = +15

There are infinitely many solutions:

(a, b, c) = (−1, 2, 0) + (any coefficient)× (1, 2,−3). (2.11)

The homogeneous term ∆(a, b, c) = (+1, +2,−3) has a vanishing symmetrization at N = 7
regions. It cannot be fixed by inspecting permutation invariants.

Guesswork. For an initial attempt, we took the coefficients (a, b, c) = (−1, 2, 0). There
is no compelling reason to do so, but for human researchers it is the simplest and most
intuitive option. It is easier to work with two non-vanishing coefficients instead of three.
But setting a = 0 or b = 0 would mean that the triple-region content of the intended
inequality would be taken entirely from one lift of i5 — an option we considered unlikely.

We proceeded to inspect combinations of the form +2 × (lift 2.) ≥ 1 × (lift 1.). We
looked for combinations of this type, in which double-region entropies cancel out identically.
The remaining choice at this stage was to select the exact lifts. (The list on the previous
page classifies S8-inequivalent lifts, but now we are looking for the exact inequality, so the
particular representatives of the S8-equivalent classes matter.)

To explain the choice, we need a notation for the positive quantity defined in inequality
i5. (This definition is a counterpart to equation (2.3) from the ‘Prior Example’.) We let:

I(X : Y : Z :: V : W ) (2.12)

= SXY V + SXZV + SY ZV + SXY W + SXZW + SY ZW + SXV W + SY V W + SZV W

−
(
SXV + SXW + SY V + SY W + SZV + SZW + SXY Z + SXY V W + SXZV W + SY ZV W

)
As noted below (2.4), inequality i5 divides the six regions (including the purifier) into two
three-region classes. In terms of the symmetry group S3 × S3 × Z2 of the inequality, the
S3’s permute regions within each class whereas the Z2 swaps the two classes. In (2.12), we
demarcate the two classes {X, Y, Z} and {V, W, O} using :: and omit the purifier O.

Using the notation of (2.12), lift 2. can take the form I(RR : RR : R :: R : R) or
I(R : R : R :: RR : R) or I(R : R : R :: RR : RR), depending on whether we adjoin regions
F, G to regions from triple {A, B, C} or {D, E, O}, and in the latter case whether or not
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we adjoin to the purifier. Lift 1., on the other hand, can take the form I(R : R : R :: R : R)
or I(RRR : R : R :: R : R) or I(R : R : R :: RRR : R), depending on whether we adjoin
regions FG to one of {A, B, C}, to one of {D, E}, or to the purifier O. The options for
each lift map to one another under the permutation group S8, but become distinct when
we wish to distinguish the purifier O from the seven named regions.

If we assume that the inequality really involves +2 copies of lift 2. and −1 copy of
lift 1. (as opposed to, say, +4 and −2 copies) then we can set the option for lift 1. at will.
We chose the option I(R : R : R :: R : R), which appeared the simplest to the human eye.
Without loss of generality, we are therefore looking for:

2× (lift 2.) ≥ I(A : B : C :: D : E) (2.13)

To select the right choice of lifts for the right hand side, we now demand that two-region
entropies and six-region entropies cancel out from the inequality identically. (We need
not consider single- or seven-region entropies because they do not appear in lifts 2.) This
demand, too, is a guess: it is possible that two-region entropies can appear on both sides of
the inequality, but cancel out from the symmetrization. One rationale for attempting this
was that inequalities i5, i6, i7 do not feature any single- or five-region terms, which play
analogous roles at p = 3.

This demand turns out to be a strong contraint. It has an essentially unique7 solution:

I(A : B : C :: DF : E) + I(A : B : C :: D : EG) ≥ I(A : B : C :: D : E) (2.14)

Substituting definition (2.12) gives inequality (2.1). We then verified that (2.1) is valid
using software [8].

3 Properties of the new inequality

All valid holographic inequalities are known to enjoy a property called superbalance [14].
It says that every individual region appears an equal number of times on both sides of
the inequality. The ‘super-’ part in superbalance posits that this includes the purifier O.
As a consistency check, we can easily confirm that inequality (2.1) satisfies this condition.
In fact, superbalance of (2.1) follows directly from the rewriting (2.14) because the i5-
ingredients are each superbalanced.

We now discuss other features of inequality (2.1), emphasizing those which are shared
with previously known holographic inequalities. We hope that these features will be helpful
in constructing further inequalities and/or in proving the HCAE conjecture.

3.1 Reductive property — applies to all inequalities

Whenever you set one region to be empty (or unentangled), every holographic inequality for
N regions reduces to another valid inequality on fewer regions. Heuristically, this property

7There is one other solution: I(A : B : C :: DF : E) + I(A : B : C :: D : EF )
?
≥ I(A : B : C :: D : E).

However, that guess cannot be correct because it does not involve G at all and we are looking for an
inequality on N = 7 regions. Explicitly, this guess is disproved by the six-party perfect tensor state on
A, B, C, D, E, F . Perfect tensors are defined in equation (3.4) below.

– 10 –



J
H
E
P
0
1
(
2
0
2
3
)
1
0
1

sets a counterpoint to the method by which we guessed inequality (2.1): reductions go
from higher to lower N whereas we considered lifts from lower to higher N . This is why
we inspect them in this paper.

Some remarks:

• The reductive property includes setting the purifier O to be unentangled, which means
that the N named regions land in a pure state by themselves.

• In all hitherto known cases, reducing an N -region inequality produces a (N−2)-region
inequality, possibly applied to one composite region such as AB.

• Inequalities i6 and i8 from the N = 5 holographic entropy cone reduce to convex
combinations of N = 3 inequalities (two instances of monogamy).

• We allow 0 = 0 as a possible reduction.

Example 1: monogamy of mutual information. When we set SA = 0, inequal-
ity (1.1) reduces to 0 = 0. The same is true for the other reductions because monogamy of
mutual information is S4-symmetric.

Example 2: inequality i5. The inequality is given in (2.4) and in appendix A. Setting
SA = 0 reduces i5 to an instance of the monogamy of mutual information:

SA = 0 =⇒ I(BC : D : E) ≥ 0 (3.1)

Here we used the notation of equation (2.3). All other reductions are also instances of
monogamy because the symmetry of i5 allows us to swap A with any other region; viz. the
discussion below (2.4).

Example 3: the new inequality. Let us verify its reductive property using the rewrit-
ing (2.14). There are two symmetry-inequivalent reductions to consider: SD = 0 and
SA = 0. (See section 3.3 below for the symmetry analysis.) We use the reduction of i5,
which was displayed in (3.1), in all steps.

The reduction SD = 0 directly produces I(A : B : C :: E : F ) ≥ 0, an instance of i5.
The reduction SA = 0 gives:

I(BC : DF : E) + I(BC : D : EG) ≥ I(BC : D : E) (3.2)

In appendix B we verify that (3.2) represents the cyclic inequality on the ordered set of
regions D-F -O-G-E, with the composite region BC treated as the purifier. Incidentally,
rewriting (3.2) shows that the N = 5 cyclic inequality could also be found using the
method, which we employed in section 2.2. This adds a little circumstantial motivation for
our search strategy.

Appendix B lists the reductions of the other known holographic entropy inequalities:
the cyclic inequalities, i6, i7, and i8. We tabulate them in the hope that they will be useful
in implementing our strategy in a more exhaustive search for holographic inequalities in
the future.
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3.2 Hyperbalance — applies to HCAE-realizing inequalities

We now know five HCAE-realizing inequalities: i2 for p = 2, i5, i6, i7 for p = 3, and the
new inequality (2.1) for p = 4. All have the composition (1.10).

Each of them displays an additional interesting feature: every region enters the (p−1)-
partite terms and the (p + 1)-partite terms on the right hand side the same number of
times. For example, in the monogamy of mutual information (which realizes HCAE for
p = 2) we have single-region terms SA + SB + SC and one triple-region term SABC . We
propose to call this feature ‘hyperbalance,’ in contrast to the previously observed and
proven superbalance [14]. It is important to stress that hyperbalance relates terms on
the same side of an inequality whereas superbalance relates terms on different sides of an
inequality.

Definition: hyperbalance. We say that an inequality (1.10) is hyperbalanced with
respect to region A if A appears an equal number of times in the (p− 1)-partite and in the
(p + 1)-partite terms on the right hand side.

We will say that an inequality is fully hyperbalanced if the said property holds with
respect to all the regions, including the purifier. To verify hyperbalance with respect to O,
we rewrite the inequality in such a way that a previously named region assumes the role
of the purifier. For example, to make A into the purifier, we flip every term that features
A for its complement, e.g. SABC → SO and SA → SBCO in the N = 3 context. Doing so
for our new inequality gives:

SCF GO + SCEGO + SCDF O + SBCGO + SBCF O

+ SBF GO + SBEGO + SBDF O + SBDEF + SBDEG

+ SBCDE + SBCDF + SBCEG + SCDEF + SCDEG (3.3)
≥

SBDE + SBDF + SBEG + SBF O + SBGO + SCDE + SCDF + SCEG + SCF O + SCGO

+ SBCDEF + SBCDEG + SBCDF O + SBCEGO + SBCF GO + SDEF GO

Again, each region appears the same number of times in the three-partite and five-partite
terms. The purifier flip A↔ O is the only non-trivial one, up to symmetry (see below).

We have also verified hyperbalance for the other HCAE-realizing inequalities i5, i6, i7.
Below we explain hyperbalance in terms of extreme vectors of the holographic entropy

cone, which saturate inequalities (1.10). To do this, we need to visualize entropy vectors
in terms of graph models. A way to do so was explained in Reference [7].

Graph models for entropy vectors. Draw a graph with weighted edges. Label a
subset of its vertices A, B, C . . . O; these vertices will be collectively called external. For
every X ⊂ {A, B, C, . . . O}, identify the minimum total weight of edges, which must be
cut if X is to be separated from the remaining external vertices. Let this number — the
total weight of the minimal cut — become the entropy SX . This is how a weighted graph
defines an allowed set of entanglement entropies. After symmetrization, it also defines a set
of permutation-invariants Sp. Reference [7] proved that any set of entropies constructed in
this way can be realized as areas of Ryu-Takayanagi surfaces in a classical geometry.
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Figure 1. The graph model of extreme rays of the holographic entropy cone, whose symmetrized
entropies Sp are extreme in the holographic cone of average entropies (HCAE). For N odd (as is
assumed in this paper), the parameter w takes odd values between 1 and N . The graph was drawn
following [3].

Explanation of hyperbalance. Reference [3] identified graph models whose entropic
invariants Sp form extreme rays in the HCAE. Their extremality means that they simul-
taneously saturate as many inequalities (1.6) as possible.8 They are shown in figure 1.
An interesting aside is that the same graph models characterize the unitary evaporation of
black holes; see [3, 28].

Because we are interested in inequalities (1.10), we set N = 2p − 1. The relevant
graphs are star graphs with 2p legs, with all but one leg of weight 1. In the graphs, which
define extreme rays in the HCAE, the special weight w takes odd values between 1 and N .
Note that every w ≥ 3 defines an (N + 1)-tuple of extremal vectors because the differently
weighted edge can be attached to any region. The w = 1 option is a singlet under SN+1;
it defines a so-called perfect tensor state.

The perfect tensor on 2p constituents does not saturate inequality (1.10). It is easy to
verify this using its entanglement entropies:

S(any p± 1 regions) = p− 1 and S(any p regions) = p (3.4)

But the other configurations of figure 1 saturate (1.10) if it is hyperbalanced. To confirm
this, suppose that the special vertex attached to the w-weighted edge is A, as displayed in
the figure. The total number of legs is N +1 = 2p. In this case, the entanglement entropies
become:

S(p− 1 regions excluding A) = p− 1 S(p− 1 regions including A) = p + 1
S(p regions) = p (3.5)

S(p + 1 regions excluding A) = p + 1 S(p + 1 regions including A) = p− 1

Substitute these expressions in inequality (1.10). After all the cancelations, we obtain:

0 ≥ 2 #{(p− 1)-partite terms containing A} − 2 #{(p + 1)-partite terms containing A}
(3.6)

Therefore, the configuration in figure 1 (with w ≥ 3) saturates inequality (1.10) only if the
latter is hyperbalanced with respect to A.

8Except the trivial case where all Sp = 0.
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Figure 2. Graphs models of extreme vectors of the N = 5 holographic entropy cone, which are
used in section 3.4. The graphs were drawn following [6].

3.3 Symmetry

The symmetry group of our new inequality is S3 × D5. In the presentation (2.1), the S3
permutes regions {A, B, C}. The dihedral symmetry D5, which reshuffles the remaining
regions, can be visualized by placing the regions on vertices of a regular pentagon in the
cyclic order E-F -G-D-O.

The S3 acting on {A, B, C} is manifest in (2.1). The D5 component is harder to see
in this presentation, but it becomes manifest in the K-basis [13]. We briefly review the
K-basis, and rewrite our inequality using it, in appendix C.

The symmetry group is of order 60. This means that our inequality defines 8!/60 = 672
distinct facets of the N = 7 holographic entropy cone. This is assuming that the inequality
cannot be improved, so it indeed marks a facet of the cone. We verify this presently.

3.4 Our inequality cannot be improved

Our inequality is maximally tight. This means that one cannot subtract a term from the
‘greater than’ side of the inequality, or add a term to the ‘less than’ side of the inequality,
without violating it. The locus where a maximally tight inequality is saturated forms a facet
(bounding codimension-one hyperplane) of the holographic entropy cone. Inequality (2.1)
is a facet of the N = 7 cone.

To show that the inequality cannot be improved, we must demonstrate that it can be
saturated in 126 linearly independent ways. The 126 follows because the N = 7 entropy
space is (27−1 = 127)-dimensional, and the saturation locus is supposed to be codimension-
one.

We took all the extreme vectors of the N = 5 holographic entropy cone [6] whose
graph models (see section 3.2) are star graphs, and lifted them to the N = 7 context.
Those graphs are shown in figure 2. After accounting for permutations, the lifts give rise
to 2674 configurations. Of those, 903 saturate our inequality. We found that 125 of them
are linearly independent. In addition, we knew from ‘Explanation of hyperbalance’ that
the graphs from figure 1 at N = 7 also saturate it. We confirmed that each graph from
figure 1 with w = 3 or w = 5 is linearly independent of the saturating configurations lifted
from the N = 5 cone. The calculations were conducted using Mathematica.
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4 Discussion

In section 3.1, we considered how basic holographic inequalities reduce when one region
is removed or unentangled. They produce lower-N holographic inequalities. (In the cases
i6 and i8, they produce convex combinations of basic inequalities.) The method by which
we constructed inequality (2.1) was, in essence, the undoing of one such reduction.9 We
assumed that at least one inequality of the form (1.10) would reduce to i5 after setting
SF = 0 and SG = 0. We then considered various ways of adjoining F and G to I(A : B :
C :: D : E) ≥ 0 and immediately came up with (2.14).

Inequality (2.1) was only the second option we checked. (We first inspected the option
in footnote 7, which in retrospect could not have worked.) The fact that we generated
a valid inequality already on the second trial — and the first one that did not violate
an obvious requirement — suggests that the ‘oxidation’ technique can be employed more
broadly. We anticipate that many new holographic inequalities can be generated by the
same procedure.

We offer a few comments about how a more complete search can and should differ
from the logic and guesswork outlined in section 2.2:

• We used i5 as the only building block. In a more exhaustive search, we would need to
consider different ones. Inequalities i6 and i8 illustrate this possibility because [some
of] their reductions involve linear combinations of basic lower-N inequalities.

• For inequality (2.1), the guess was tightly constrained by the anticipated struc-
ture (1.10). Searching for inequalities, which are not HCAE-realizing, will not have
this benefit.

• However, our search for (2.1) only considered adjoining F and G to a fixed starting
point I(A : B : C :: D : E) ≥ 0. We inspected how the outcome reduces when
other regions R decouple (SR = 0) only after we found inequality (2.1). It seems
promising to construct inequalities by assuming that they have fixed reductions on
several regions. For example, if we had assumed that the new inequality reduces to
I(A : B : C :: E : F ) ≥ 0 when SD = 0 and that it reduces to the cyclic inequality
on D-F -G-O-E when SA = 0, we would have found it even without assuming (1.10).

We expect that our method can generate other facets of the N = 6 and N = 7 holographic
entropy cones. Beyond that, the program will run into the difficulty of verifying candidate
inequalities. Barring some game-changing insight, verifying inequalities by brute-searching
for contractions will not succeed far beyond N = 7.

HCAE-realizing inequalities appear to be one promising exception, where this idea
might succeed for arbitrary N . This is because their structure is so tightly constrained:
they must be of the form (1.10) and they must be hyperbalanced (section 3.2). These facts
may contain enough hints to formulate a regular family of HCAE-realizing inequalities for
every N . The cyclic family of [7] is one prototype of a regular, infinite family of inequalities.

9Following common chemical nomenclature, we propose to call this method ‘oxidation’.
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Concretely, the following inductive argument seems feasible. Perhaps an (N +2)-region
HCAE-realizing inequality can be constructed by lifting the N -region HCAE-realizing in-
equality (assumed known as the inductive hypothesis) and/or the N -region cyclic inequal-
ity. If such a setup could be correctly invented, presumably the relevant contraction maps
could also be constructed analytically. Here, again, the contraction maps for the cyclic
inequalities provide an inspirational prototype. We intend to explore this possibility in
future work.

Relation to prior work. The recent reference [15] formulated a program for finding
holographic entropy inequalities, which uses the subadditivity of entanglement entropy
to bootstrap one’s way from lower-N to higher-N inequalities. That program has some
— thus far unexplored — relation with the HCAE conjecture because subadditivity is
a measure of bipartite correlations. On the other hand, [3] established that the EPR-
like behavior of (p′ ≥ p)-partite entanglement entropies characterizes the most efficient
holographic erasure-correcting schemes, which correct every p-region erasure.

It would be interesting to study in detail how the work of [15] intersects the HCAE
conjecture and, by extension, the content of this paper. Another way to organize and
predict the structure of holographic entropy inequalities appeared in [12]. We hope to
elucidate its relation to the present work in the future.
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A Previously known holographic inequalities

The inequalities are listed in [6] with labels i1 through i8. We stick to the same labeling
below.

• Inequality i1 is subadditivity:
SA + SB ≥ SAB (i1)

• Inequality i2 is the monogamy of mutual information:

SAB + SBC + SAC ≥ SA + SB + SC + SABC (i2)

• Inequality i3 is the monogamy of mutual information, with two extra regions D and
E adjoined to two distinct regions. Here we adjoin B → BD and C → CE:

SABD + SBCDE + SACE ≥ SA + SBD + SCE + SABCDE (i3)
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• Inequality i4 is part of an infinite family of cyclic inequalities, which were first pre-
sented in [7]:

SA1A2...Ap + SA2A3...Ap+1 + . . . + SA2p−1A1...Ap−1

≥ (i4)
SA1A2...Ap−1 + SA2A3...Ap + . . . + SA2p−1A1...Ap−2 + SA1A2...A2p−2A2p−1

The regions Ai, which are indexed with 1 ≤ i ≤ 2p − 1, are cyclically ordered, so
A1 ≡ A2p. The ellipses in subscripts denote unions of consecutively indexed regions.
We refer to (i4) as the N = 2p− 1 cyclic inequality. Note that the N = 3 instance is
the monogamy of mutual information i2.

• Inequality i5 is:

SABD + SACD + SBCD + SABE + SACE + SBCE + SADE + SBDE + SCDE

≥ (i5)
SAD + SAE + SBD + SBE + SCD + SCE + SABC + SABDE + SACDE + SBCDE

• Inequality i6 is:

3SABC + 3SABD + SABE + SACD + 3SACE + SADE + SBCD + SBCE + SBDE + SCDE

≥ (i6)
2SAB + 2SAC + SAD + SAE + SBC + 2SBD + 2SCE + SDE

+ 2SABCD + 2SABCE + SABDE + SACDE

This inequality has an S3 × Z2 symmetry. The S3 permutes ordered pairs {(A, O),
(E, B), (D, C)} into one another whereas the Z2 simultaneously switches the ordering
in those pairs.

• Inequality i7 is:

2SACE + SABD + SABE + SADE + SACD + SBCE + SBDE

≥ (i7)
SAC + SAD + SAE + SBD + SBE + SCE + SABCE + SABDE + SACDE

This form differs from the one presented in [6] by the exchange B ↔ E. The advan-
tage of this labeling is that now a Z6 symmetry permutes (ABCDEO) in this order.
We used this form when rewriting i7 in inequality (2.2).

• Inequality i8 is:

SAD + SBC + SABE + SACE + SADE + SBDE + SCDE

≥ (i8)
SA + SB + SC + SD + SAE + SDE + SBCE + SABDE + SACDE

This inequality has Z2 symmetries, which switch A ↔ D and B ↔ C, and another
one that switches the ordered triples (A, D, E) and (B, C, O) with one another.
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B Reductions of known inequalities

The reductions of i1 and i2 are 0 = 0. Inequality i3 is already an instance of i2 for a
composite region. We showed in the main text that i5 reduces to the monogamy of mutual
information. Here we inspect the other known holographic entropy inequalities. We use
the notation I(X : Y : Z) defined in equation (2.3) throughout.

The cyclic inequalities. When we set the purifier to be unentangled, inequality (i4)
reduces to 0 = 0. In that circumstance terms on both sides become equal pairwise because
they describe complements in a pure state on ∪2p−1

i=1 Ai.
Up to cyclic symmetry, the only other reduction is to set one of the 2p − 1 named

regions unentangled. We claim that this reduces (i4) at parameter p to the same inequality
at parameter p− 1.

Without loss of generality, let the unentangled system be Ap. Then terms SA1A2...Ap

and SApAp+1...A2p−1 on the left hand side cancel out with SA1A2...Ap−1 and SAp+1Ap+2...A2p−1

on the right. After the reduction, the left hand side contains (p−1)× [p-partite terms] and
(p− 2)× [(p− 1)-partite terms]. The former all contain A1A2p−1 in combination while the
latter do not contain them at all. The right hand side, in addition to SA1...Ap−1Ap+1...A2p−1 ,
now contains (p − 2)× [(p − 1)-partite terms] and p× [(p − 2)-partite terms]. The former
all contain A1A2p−1 in combination whereas the latter do not contain them at all.

We now set A1A2p−1 ≡ B. Written in terms of B, all terms on the left become (p−1)-
partite and all terms on the right (except SBA2...Ap−1Ap+1...A2p−2) become (p−2)-partite. If
we place B between A2p−2 and A2 in a cyclic ordering then all terms describe consecutive
unions. These properties uniquely identify the cyclic inequality on N = 2(p−1)−1 regions.

Inequality i6. Because the symmetry of i6 can map any region into any other, it is
enough to set SA = 0. This reduces i6 to a sum of two monogamies:

I(B : C : D) + I(B : C : E) ≥ 0 (B.1)

Inequality i7. Setting SA = 0 in inequality i7 gives I(C : D : E) ≥ 0. The other
reductions are also instances of monogamy because i7 has a cyclic symmetry, which rotates
all regions into one another, including the purifier.

It is interesting to examine this reduction using rewriting (2.2), which we reproduce
here for the reader’s convenience:

I(AD : B : E) + I(A : BE : D) + I(AD : BE : C) ≥ I(A : C : E) + I(ACE : B : D)

This exercise gives another illustration for how and why the reductive property motivates
the method, by which we found inequality (2.1). Setting SA = 0 gives:

I(D : B : E) + I(D : BE : C)− I(D : B : CE) ≥ 0 (B.2)

The simplification occurs because monogamy I(X : Y : Z) ≥ 0 reduces to 0 = 0. Somewhat
miraculously, region B cancels out from this combination, leaving I(C : D : E) ≥ 0.
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Inequality i8. Under the symmetry of the inequality, A can be mapped to B or C

or D but not to E or O. The regions E and O can be exchanged, with accompanying
transformations of the other regions. Therefore, up to symmetry, there are two distinct
reductions: SA = 0 and SE = 0. The SA = 0 one gives I(B : C : E) ≥ 0. The SE = 0
gives:

I(A : B : D) + I(A : C : D) ≥ 0 (B.3)

The new inequality. Regions {A, B, C} are equivalent to one another up to symmetry
(see section 3.3), as are {D, E, F, G, O}. Therefore, it is enough to consider reductions
SA = 0 and SD = 0. Setting SA = 0, we obtain:

SDEF +SDEG +SBCDE +SBCDF +SBCEG ≥ SBC +SDE +SDF +SEG +SBCDEF +SBCDEG

(B.4)
Note that regions BC always appear in combination. We now flip this duo with the purifier:
BC ↔ O. After reordering terms, we obtain:

SDF O +SF OG+SOGE +SGED +SEDF ≥ SDF +SF O+SOG+SGE +SED +SDF OGE (B.5)

This is the cyclic inequality on N = 5. Inequality (3.2) in the main text is equivalent
to (B.5).

The second reduction sets SD = 0. We obtain:

SABE + SABF + SACE + SACF + SBCE + SBCF + SAEF + SBEF + SCEF

≥ (B.6)
SAE + SAF + SBE + SBF + SCE + SCF + SABC + SABEF + SACEF + SBCEF

This is inequality i5, as noted in the main text.

C K-basis

Reference [13] defined a useful basis for the space of entropy assignments. It is constructed
from graphs (see section 3.2), which are perfect tensors on an even number of constituents.

Let us denote the coefficients in the K-basis expansion of an entropy vector with KX ,
where X contains an even number of regions. For example, KABDF is the coefficient of the
perfect tensor on regions {A, B, D, F} in the K-basis expansion of an entropy configuration.
Reference [13] proved the following statement: when we express a maximally tight entropy
inequality — a facet of the entropy cone — in the K-basis, it must have only positive
coefficients.
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Written in the K-basis, inequality (2.1) reads:
KABCD + KABCO + KABCE + KABCF + KABCG

+ KADOE + KAOEF + KAEF G + KAF GD + KAGDO

+ KBDOE + KBOEF + KBEF G + KBF GD + KBGDO

+ KCDOE + KCOEF + KCEF G + KCF GD + KCGDO

+ 3KABCDOE + 3KABCOEF + 3KABCEF G + 3KABCF GD + 3KABCGDO

+ 2KADOEF G + 2KBDOEF G + 2KCDOEF G

+ KABDOEF + KABOEF G + KABEF GD + KABF GDO + KABGDOE

+ KACDOEF + KACOEF G + KACEF GD + KACF GDO + KACGDOE

+ KBCDOEF + KBCOEF G + KBCEF GD + KBCF GDO + KBCGDOE

+ 6KABCDEF GO ≥ 0

(C.1)

Our ordering in the subscripts and among the terms is not lexicographic. Instead, we write
the terms so as to manifest the symmetry of the inequality. An S3 permutes {A, B, C} and
a dihedral symmetry D5 transforms regions D-O-E-F -G like vertices of a regular pentagon.

Going from inequality (2.1) to expression (C.1) is done by an intricate change of basis
in the 127-dimensional space of entropy assignments for N = 7 named regions. That this
change of basis returned only non-negative coefficients is a highly non-trivial sanity check
for inequality (2.1).
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