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1 Introduction

There are strong phenomenological and theoretical motivations for studying scattering
processes for multi-parton processes. On the phenomenology side, matching the expected
precision data from the LHC requires perturbative results in quantum field theory. On the
theoretical side, having analytical expressions is crucial for a better understanding of the
structure of the amplitudes which may ultimately lead to completely novel approaches for
obtaining them.

The current state-of-the-art in multi-parton processes in QCD are at the two-loop five-
parton level, for a review see [1]. To achieve this, several bottlenecks had to be overcome.
For example, finite field methods [2–4] helped to tame the necessary computer algebra
for relating the Feynman integrals to an integral basis, and likewise for simplifying their
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(rational, and sometimes algebraic) prefactors. The necessary two-loop Feynman integrals
(with five on-shell legs [5–8]; with four on-shell legs and one off-shell leg [9], and the corre-
sponding non-planar case [10]) were computed analytically with the help of the canonical
differential equation method [11], see also [12, 13]. The analytic answers were further op-
timized into fast and reliable computer codes capable of evaluating any of the functions
in the physical scattering region [14, 15]. In consequence, various analytic results for scat-
tering amplitudes have become available, see e.g. [16–23]. Moreover, different groups are
already building upon these amplitudes for phenomenological applications, see e.g. [24–26].

In contrast, very little is known at present about two-loop six-particle scattering pro-
cesses (with the exception of the special all-plus helicity configuration [27, 28]). A first
study [29] considered the genuine six-particle planar Feynman integrals and found a con-
venient basis of Feynman integrals that puts the differential equation on the maximal cut
into canonical form.

While the evaluation of the full two-loop Feynman integrals is currently under in-
vestigation, it is worthwhile to investigate the corresponding one-loop processes in more
detail. Firstly, one key lesson in the computation of five-particle two-loop processes was
that important simplifications occur when going from the scattering amplitudes to an ap-
propriate infrared-renormalized finite part (see e.g. [18]). For example, the all-plus helicity
amplitudes can be written in a stunningly simple, one-line expression. While other helicity
amplitudes are more complicated, simplifications both at the level of the transcendental
functions, and at the level of the coefficients, were observed. While it would be desirable to
compute this finite part directly from infrared-finite loop integrals, in the present conven-
tional setup it is obtained as a difference of amplitudes at different loop orders, with the
lower-loop amplitudes being multiplied by infrared subtraction terms. In dimensional reg-
ularization this implies that the one-loop amplitudes need to be known to higher orders in
the dimensional regulator. Secondly, when computing two-loop cross sections, one-loop am-
plitudes with additional particles are needed for integration in phase-space integrals. This
means that they are needed to an appropriate order in the dimensional regulator, and that
particularly fast and reliable numerical representations are required. However, the analytic
results in the literature are typically available only up to the finite part, see e.g. [30, 31].

Furthermore, we can use two different schemes to perform the computation. Conven-
tional dimensional regularization, where both the loop integration variables, as well as the
external variables, are taken to be in D dimensions and four-dimensional helicity scheme,
where external states are taken to be in four dimensions. This implies a Gram determi-
nant condition between the kinematic variables and allows for an algebraic reduction of the
hexagon integrals in terms of pentagon integrals. The scheme choice is expected to have
important practical consequences for the two-loop calculation. For example, it is known
that (D−4)-dimensional, scheme-dependent, parts of loop integrands are relevant for find-
ing a uniform weight integral basis [8, 29]. It would be very interesting to understand
whether there is a natural scheme where the integrands take a simple form, as is the case
in four dimensions.

Therefore, we compute the hexagon integrals (together with all integrals in subsectors)
in dimensional regularization. In this way we obtain a basis of transcendental functions
and one-fold integral representations that can readily be used for one-loop amplitudes.
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We prefer to perform more general calculation which is valid in arbitrary six-particle
kinematics for several reasons. On the one hand, the full D-dimensional result offers
more flexibility, as one can vary independently the nine kinematic variables of the process,
without regard to the complicated Gram determinant constraint surface. This can be
advantageous for several investigations, such as the study of analyticity and Steinmann
relations, when taking limits or performing analytic continuation. Treating the internal
and external variables on the same footing is also essential if one wishes to study the
consequences of conformal symmetry of on-shell processes at a conformal fixed point [32–
35]. On the other hand, our more general setup allows us to study precisely the difference
between the two different schemes. At the level of the results, we will be able to understand
at what order the difference start, and what form it takes.

This paper is organized as follows. In section 2 we define our notation and introduce
the six-particle on-shell kinematics. In section 3 we present the one-loop integral basis and
the relevant function space. In section 4 we present details of our differential equations
calculation, explaining in particular how the boundary constants are obtained from simple
physical requirements. We use the analytic results to obtain one-fold integral representa-
tions that can readily be evaluated numerically within the Euclidean region. We validate
this by performing numerical checks at certain reference points. We analyze in detail the
result for the hexagon integral and the alphabet letters that occur in it. Finally, we study
the limit of four-dimensional external states at the level of the differential equations. We
conclude and present an outlook in section 5.

The supplementary material of this submission includes a list of ancillary files which
contain selected results in machine-readable form. We provide the following files:

• PDEMatrix.txt containing the partial differential equation matrix for the one-loop
hexagon family expressed in terms of the alphabet letters,

• HexagonAlphabet.txt containing the list of alphabet letters,

• HexagonSqrts.txt containing the substitution rules for the square roots appearing
in the alphabet,

• W2Functions.m containing the basis functions up to weight two and expressions for
the master integrals in terms of basis functions,

• BoundaryValue.txt containing the vector of boundary values up to transcendental
weight four,

• NumericalEvaluation.wl with a proof-of-concept implementation of the one-fold
integral representation for numerical evaluation.
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2 Six-particle kinematics

In this paper, we are interested in all integrals from the massless one-loop hexagon fam-
ily, i.e. integrals of the form

I(D0)(a1, . . . , a6) = eεγE

∫ dD0−2εl

iπ
D0
2

1∏6
j=1(l +∑j−1

k=1 pk)2aj
, (2.1)

with integer propagator powers ai and the Euler-Mascheroni constant γE . D0 denotes the
number of spacetime dimensions of the integration variables. In principle, this massless
six-particle Feynman integral depends on six momenta pi ∈ RDext which satisfy p2

i = 0 and
momentum conservation implies

6∑
i=1

pi = 0 (2.2)

if all momenta are taken to be incoming. However, due to Poincaré symmetry, the kinematic
dependence simplifies and an appropriate set of variables in integer dimensions Dext > 4
are the nine independent Mandelstam invariants

~v = {s12, s23, s34, s45, s56, s61, s123, s234, s345} (2.3)

with

sij = (pi + pj)2, sijk = (pi + pj + pk)2. (2.4)

We also introduce the cyclic permutation operator T that shifts the external legs by one
site,

T (pi) = pi+1, i = 1, . . . , 6 (2.5)

and it acts on the variables according to

T~v = {s23, s34, s45, s56, s61, s12, s234, s345, s123}. (2.6)

For physical momentum configurations describing 2→ 4 or 3→ 3 scattering processes,
the Mandelstam invariants take definite signs depending on which particles are incoming
and outgoing respectively. Additionally, there are certain Gram determinant constraints
that are required to hold in all physical regions. The Gram determinants G are defined as

G(q1, . . . , qn;u1, . . . , un) = det(2qi · uj), 1 ≤ i, j ≤ n, (2.7)

with
G(q1, . . . , qn) = G(q1, . . . , qn; q1, . . . , qn). (2.8)

We also introduce the notation for the modified Gram determinant of an integral with
external momenta pj ,

G?(q1, . . . , qn−1;u1, . . . , un) = G(l, q1, . . . , qn−1;u1, . . . , un)|l·pj=−
∑

k<j
pk·pj− 1

2p
2
j
. (2.9)
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Naturally, for the hexagon integral we have p2
j = 0, whereas some of the subsectors of

pentagons, boxes, triangles and bubbles will have composite external momenta which are
not necessarily on-shell.

Defining further

Ḡn = (−1)n−1G(p1, . . . , pn), 1 ≤ n ≤ 6 (2.10)

the Gram determinant constraints take the form [36]

Ḡ1 = 0, Ḡ2 > 0, Ḡ3 > 0, . . . , ḠD0 > 0 (2.11)

and Ḡn = 0 for all n > D0, since there are only D0 independent momenta in D0 dimensions.
However, in parameter integral representations, it is perfectly reasonable to analytically
continue the Feynman integrals beyond the physical regions where these constraints are
satisfied. In this paper, we will focus on the so called Euclidean region, in which all
Mandelstam invariants are negative,

sij < 0, sijk < 0. (2.12)

Most of our calculations will be performed in this unphysical region, with the understand-
ing that results acquired there can be transported to physical regions by analytical con-
tinuation. The main advantage of working in the Euclidean region is that dimensionally
regularised Feynman integrals are real-valued all throughout it and only diverge on the
boundaries where some of the Mandelstam invariants vanish.

For completeness, let us note the signs that the Mandelstam invariants acquire in
selected physical scattering regions [36].

12→3456. In the 2→ 4 scattering region with particles 1 and 2 incoming, in addition to
the Gram determinant constraints (2.11), the constraints on the Mandelstam invariants are

s12, s34, s35, s36, s45, s46, s56 > 0,
s13, s14, s15, s16, s23, s24, s25, s26 < 0. (2.13)

Note that the constraints that go beyond the set of variables introduced in (2.2) can be
reexpressed in terms of the vi. For example,

s35 = s345 − s34 − s45. (2.14)

123→ 456. In the 3→ 3 scattering region with particles 1, 2 and 3 incoming, in addition
to the Gram determinant constraints (2.11), the Mandelstam invariants satisfy

s12, s13, s23, s45, s46, s56 > 0,
s14, s15, s16, s24, s25, s26, s34, s35, s36 < 0. (2.15)
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Gram determinant constraints in Dext = 4 dimensions. Quite importantly, the
nine variables vi are only independent in an arbitrary number of dimensions Dext > 4. In
Dext = 4 dimensions, both Ḡ5 and Ḡ6 are required to vanish. While Ḡ6 vanishes trivially
by momentum conservation, the vanishing of Ḡ5 = 0 imposes a non-trivial constraint on
the Mandelstam variables, effectively reducing the number of independent variables from
nine to eight. The constraint is a degree-five polynomial in the variables vi that is quadratic
in any of the vi. It is also invariant under arbitrary permutations of the external momenta.

A parametrisation of the external degrees of freedom that hardwires this constraint, as
well as momentum conservation and on-shellness can be provided by choosing a momentum
twistor configuration [37]. In this paper, we employ the particular parametrisation [29, 38]

v1 = x1,

v2 = x1x5,

v3 = x1 [x5 − x2x3x6 + x3x5 (1 + x2 − x2x7)]
x2

,

v4 = x1

[
x5 − x5x7 − (1 + x3)x4 (x5 (−1 + x7) + x8) + x2x3x4 (x5 (−1 + x7) + x6x8)

x5

]
,

v5 = x1x3 [(x2 − x5)x5 (−1 + x7) + (−x5 + x2x6)x8]
x5

,

v6 = x1x2x3x4 [x5 (−x6 + x7) + x6x8]
x5

,

v7 = x1x8,

v8 = x1x3 (x2x6 − x5x7) ,

v9 = x1

{
x6 + x4

{
−1 + x6 + x3

[
−1 + x6 + x2

(
−1 + x7 + x6x8

x5

)]}}
(2.16)

where xi ∈ R are unconstrained variables.

3 One-loop integrals and function alphabet

In this section, we construct a canonical basis of master integrals for the hexagon family
by using dimension-shift identities and a Baikov analysis to normalise the integrals by
their leading singularities. We then describe the alphabet of letters required to express the
canonical differential equation for this basis in terms of dlog forms.

3.1 Master integrals

Using integration-by-parts (IBP) identities [39], all of the integrals in the hexagon family
can be reduced to a basis of 33 master integrals. We use a combination of FIRE [40] and
LiteRed [41] to perform the reductions automatically. A convenient basis choice Ij is
spanned by:1

• the six cyclic permutations of the massive bubble integral

Ii = T i−1I(4)(1, 0, 1, 0, 0, 0), i = 1, . . . , 6, (3.1)
1We employ the permutation operator defined in (2.5).
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Figure 1. Graphical representations of the integrals in the IBP basis.

• the three cyclic permutations of the massive bubble integral

I6+i = T i−1I(4)(1, 0, 0, 1, 0, 0), i = 1, . . . , 3, (3.2)

• the two cyclic permutations of the three-mass triangle integral

I9+i = T i−1I(4)(1, 0, 1, 0, 1, 0), i = 1, 2, (3.3)

• the six cyclic permutations of the one-mass box integral

I11+i = T i−1I(4)(0, 0, 1, 1, 1, 1), i = 1, . . . , 6, (3.4)

• the six cyclic permutations of the two-mass-hard box integral

I17+i = T i−1I(4)(0, 1, 0, 1, 1, 1), i = 1, . . . , 6, (3.5)

• the three cyclic permutations of the two-mass-easy box integral

I23+i = T i−1I(4)(0, 1, 1, 0, 1, 1), i = 1, 2, 3, (3.6)

• the six cyclic permutations of the one-mass pentagon integral

I26+i = T i−1I(4)(0, 1, 1, 1, 1, 1), i = 1, . . . , 6, (3.7)

• the hexagon integral
I33 = I(4)(1, 1, 1, 1, 1, 1). (3.8)

However, the integrals in this basis do not have uniform transcendentality (UT) and there-
fore do not satisfy a differential equation in canonical form.

– 7 –
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3.2 Constructing a UT basis

To determine a UT basis, we use the observation that n-point and (n− 1)-point integrals
in D = n − 2ε dimensions have uniform transcendentality if they are normalised by their
leading singularities in D = n dimensions [42]. Hence, for the construction of a UT basis
we prefer to include integrals in D = 2−2ε and D = 6−2ε dimensions. In fact, if D0 differs
from four by integer multiples of two, these integrals are related to the D0 = 4 integrals
by dimension shift identities [43, 44]. Explicitly, this allows us to express bubble integrals
in two dimensions through bubble integrals in four dimensions as

I(2)(1, 0, 1, 0, 0, 0) = 2(1− 2ε)
s12

I(4)(1, 0, 1, 0, 0, 0), (3.9)

as well as pentagon integrals in six dimensions through box and pentagon integrals in four
dimensions

I(6)(0, 1, 1, 1, 1, 1) = 1
2εG(p2, p3, p4, p5)~cP ·

~IP , (3.10)

where
~IP =

(
I12 I17 I18 I22 I24 I27

)
(3.11)

and

cP1 = v3v4(v8v9 − v3v6 + v2(v9 − v3) + v4(v3 − v8)),
cP2 = v2v3(v2(v3 − v9)− v3(v6 + v4) + v8(v9 + v4)),
cP3 = v4(−2v2v6v3 + v2v8(v3 + v9) + v8(v6v3 − v3v4 + v8(−v9 + v4))),
cP4 = v2(−2v6v3v4 + v3v9(−v2 + v6 + v4) + v9(v2v9 + v8(−v9 + v4))),
cP5 = (v6v3 − v8v9)(v6v3 − v8v9 + v2(−v3 + v9) + v8v4 − v3v4),
cP6 = 2v2v3v4(v6v3 − v8v9). (3.12)

Finally, the six-dimensional hexagon integral can be decomposed into four-dimensional
pentagon and hexagon integrals according to

I(6)(1, 1, 1, 1, 1, 1) = 1
2(1 + 2ε)G(p1, p2, p3, p4, p5)~cH ·

~IH , (3.13)

where
~IH =

(
I27 I28 I29 I30 I31 I32 I33

)
(3.14)

and2

cHi = −T iG?(p1, . . . , p4; p5, p1, . . . , p4), i = 1, . . . , 6
cH7 = −G?(p1, . . . , p5). (3.15)

2Note that the Gram determinant on the maximal cut should be evaluated before acting with the cyclic
permutation operator.

– 8 –



J
H
E
P
0
1
(
2
0
2
3
)
0
9
6

With these dimension-shift identities, we can set up an intermediate basis, where the
bubbles are two-dimensional, the triangles and boxes four-dimensional and the pentagons
and hexagons six-dimensional integrals, i.e.

Īi = d̂−2Ii, i = 1, . . . , 9,
Īi = Ii, i = 11, . . . , 26,
Īi = d̂2Ii, i = 27, . . . , 33 (3.16)

with the dimension-shift operator d̂. This basis is still not of universal transcendentality.

Leading singularities from the Baikov representation. To transform the above ba-
sis of master integrals into a basis where every single element is a pure function of uniform
transcendentality, we normalise the integrals by their leading singularities. Calculating the
leading singularities of one-loop integrals is most straightforward in the Baikov represen-
tation [29, 45, 46]. For an L-loop integral with E external points and n propagators Di

I(a1, . . . , an) =
∫ dDl
iπD/2

1
Da1

1 . . . Dan
n
, (3.17)

the Baikov representation is reached by the change of variables zi = Di and reads

I(a1, . . . , an) = C(E)G̃
E−D

2

∫ dz1 . . . dzn
za1

1 . . . zan
n
S

D−E−1
2 , (3.18)

where G̃ and S are Gram determinants given by

G̃ = G(p1, . . . , pE−1)
S = G(l, p1, . . . , pE−1)|l·pj=−

∑
k<j

pk·pj− 1
2 (zj−zj+1+p2

j ) . (3.19)

The leading singularity can then be extracted straightforwardly by taking the residue
at zi = 0. C(E) is a kinematic-independent constant that has no impact on the UT
property of an integral and can be omitted. Hence, the leading singularity of an integral
takes the form

LS(I(a1, . . . , an)) = G
E−D

2 Res
zi=0

S
D−E−1

2

za1
1 . . . zan

n
. (3.20)

The expression becomes even simpler if all propagator powers aj = 1:

LS(I(D)(1, . . . , 1)) = G
E−D

2 lim
zi→0

S
D−E−1

2 . (3.21)

Using the definition of G? in eq. (2.9), for the one-loop n-point integrals in n or n + 1
dimensions we can further rewrite this as

LS(I(D)(1, . . . , 1︸ ︷︷ ︸
n entries

)) =
{√

G?(p1, . . . ., pn−1)−1
, if D = n,√

G(p1, . . . , pn−1)−1
, if D = n+ 1.

(3.22)
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With this formula, we can straightforwardly calculate the leading singularities for our basis
of integrals, namely3

LS(I(2)(1, 0, 1, 0, 0, 0)) = v−1
1 ,

LS(I(2)(1, 0, 0, 1, 0, 0)) = v−1
7 ,

LS(I(4)(1, 0, 1, 0, 1, 0)) =
√

∆3(v1, v3, v5)
−1
,

LS(I(4)(0, 0, 1, 1, 1, 1)) = (v3v4)−1,

LS(I(4)(0, 1, 0, 1, 1, 1)) = (v8v4)−1,

LS(I(4)(0, 1, 1, 0, 1, 1)) = (v8v9 − v3v6)−1

LS(I(6)(0, 1, 1, 1, 1, 1)) =
√

∆5(v2, v3, v4, v8, v9, v6)
−1

LS(I(6)(1, 1, 1, 1, 1, 1)) =
√

∆6
−1
, (3.23)

and the permutations thereof, where we defined

∆3(v1, v3, v5) = λ(v1, v3, v5),
∆5(v2, v3, v4, v8, v9, v6) = (ω5(v2, v3, v4, v8, v9)− v3v6)2

−4v2v3v4(v3 + v6 − v8 − v9),
∆6 = ((1 + T + T 2)(v1v8v4)− v7v8v9)2 − 4v1v2v3v4v5v6, (3.24)

and

λ(v1, v3, v5) = v2
1 + v2

3 + v2
5 − 2v1v3 − 2v1v5 − 2v3v5,

ω5(v2, v3, v4, v8, v9, v6) = v8v9 + v2(v3 − v9) + v4(v3 − v8). (3.25)

Interestingly, ∆5 takes a strikingly simple form in terms of the Källén function λ, e.g.

∆5(v1, v2, v3, v7, v8, v5) = λ(v1v3, (v7− v1− v2)(v8− v2− v3), v2(v5− v7− v8 + v2)). (3.26)

Finally, having started with the four-dimensional basis I, after using dimension-shift iden-
tities to construct the basis Ī we can further transform it into a basis of uniform transcen-
dentality Ĩ, by normalising it according to

Ĩi = Īi

LS(Īi)
×


ε, i = 1, . . . , 9,
ε2, i = 10, . . . , 26,
ε3, i = 27, . . . , 33.

(3.27)

Here, the explicit powers of εmake sure that not only is every single integral of uniform tran-
scendentality but that all the different integrals also have vanishing transcendent weight,
cf. [47].4 Since the finite part of the pentagon and hexagon integrals in four dimensions are
transcendental functions of weight three, their epsilon expansion in arbitrary dimensions
starts at order ε3 and the first correction to the four-dimensional result is of order ε4.

3Note that due to (2.11), the leading singularities of the three-mass triangle and of the one-mass pentagon
integrals are purely imaginary in physical regions.

4Recall that ε has transcendental weight −1.
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3.3 Function space up to weight two

Hence, our goal is to obtain the one-loop hexagon integral up to fourth order in the di-
mensional regulator ε. Up to weight two, our basis integrals can be expressed in terms of
a basis of special functions, while the weight-three and weight-four parts can be expressed
as a one-fold integrals over the weight-two functions (see section 4.4).

Up to weight two, only the bubbles, triangles and boxes contribute, hence the weight-
two functions are already known, see e.g. refs. [6, 14, 15]. We denote the functions with
f

(j)
i where i is a label and j is the transcendental weight.

The basis of weight-one functions consists of

f
(1)
1 = log(−v1), f

(1)
i+1 = T if

(1)
1 , i = 1, . . . , 5 (3.28)

f
(1)
7 = log(−v7), f

(1)
i+7 = T if

(1)
7 , i = 1, . . . , 2 (3.29)

where the minus sign is used in order for the functions to be well defined in the Euclidean
region.

At weight two, we construct the initial basis as

{f (2), (f (1)f (1)), ζ2}, (3.30)

where f (2) are weight-two functions and (f (1)f (1)) are products of two weight-one functions
given in (3.29). Genuine weight-two functions that can appear are dilogarithms Li2. We
chose the arguments of these functions in such a way that they are well defined in the
Euclidean region.

The basis of weight-two functions consists of 12 dilogarithmic functions depending on
two kinematic variables

f
(2)
1 = Li2

(
1− v1

v7

)
, f

(2)
i+1 = T if

(2)
1 , i = 1, . . . , 5, (3.31)

f
(2)
7 = Li2

(
1− v2

v7

)
, f

(2)
i+7 = T if

(2)
7 , i = 1, . . . , 5. (3.32)

These functions appear as part of the expression for one-mass and two-mass-hard box
integrals.
Next, we have three dilogarithms depending on four kinematic variables which are part of
the expression for two-mass-easy box integrals

f
(2)
13 = Li2

(
1− v1v4

v7v9

)
, f

(2)
i+13 = T if

(2)
13 , i = 1, . . . , 2. (3.33)

For example, one of the two-mass-easy box integrals is given explicitly by the following
linear combination of basis functions:

Ĩ26 = 2
[
ε
(
f

(1)
2 + f

(1)
5 − f (1)

7 − f (1)
8

)
(3.34)

+ ε2
(
− 1

2(f (1)
2 )2 − 1

2(f (1)
5 )2 + f

(1)
7 f

(1)
8 − f (2)

7 − f (2)
10 − f

(2)
2 − f (2)

5 + f
(2)
14

)]
.
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Finally, the remaining two weight-two functions are

f
(2)
16 = Tri(v1, v3, v5), f

(2)
17 = Tf

(2)
17 , (3.35)

where Tri(a, b, c) is the three-mass triangle function defined as

Tri(a, b, c) = −Li2
(
− 2b
a− b− c−

√
∆3(a, b, c)

)
− Li2

(
− 2c
a− b− c−

√
∆3(a, b, c)

)

− π2

6 −
1
2 log

(
c

b

)
log

(
a− b+ c−

√
∆3(a, b, c)

a+ b− c−
√

∆3(a, b, c)

)
(3.36)

− 1
2 log

(
2b

−
√

∆3(a, b, c) + a− b− c

)
log

(
2c

−
√

∆3(a, b, c) + a− b− c

)
,

and it corresponds to the Bloch-Wigner dilogarithm [48]. The triangle function (3.36)
appears as the weight-two expression for the two three-mass triangle integrals in our func-
tion basis. These integrals are normalized by the square root of Källén function, denoted
by
√

∆3, that can either be real or imaginary in the Euclidean region. It is convenient
to choose a part of the Euclidean region where this square root is imaginary since the
three-mass triangle integrals are single-valued there.

In total we have 17 weight-two functions in addition to the products of weight-one
functions which we do not list separately. The full basis of weight-two functions as well as
the expression for our canonical basis of integrals in terms of these functions is given in
the ancillary file W2Functions.m.

3.4 Canonical differential equation

The basis of UT master integrals (3.27) satisfies a differential equation in canonical form

dĨ = εAĨ, (3.37)

where d is a total differential with respect to Mandelstam invariants vi

d =
9∑
i=1

dvi
∂

∂vi

(3.38)

and A is a matrix of logarithmic forms

Ajk =
∑
a

cajkd log(Wa). (3.39)

The matrices cajk appearing in (3.39) are constants (i.e. ckij ∈ Q) while the letters Wa are
algebraic functions of the kinematic variables taken from a list that we call the hexagon
alphabet A. In particular, the overall factor of ε is the sole dependence on the dimensional
regularisation parameter.

If the matrix A is known, derivatives of the function basis with respect to any of the
variables vi in (2.2) are calculated via

∂Ĩ

∂vi
= εAiĨ (3.40)
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with
(Ai)jk =

∑
a

cajk
∂ logWa

∂vi
. (3.41)

In fact, we use this knowledge to construct the differential equation. It is straightforward
to rewrite the derivatives with respect to the Mandelstam invariants in (3.41) in terms of
derivatives with respect to momenta pi using the chain rule. Practically, this can be done
by starting with an ansatz [49], e.g.

∂

∂s12
=

5∑
j=1

(βjpj) ·
∂

∂p1
(3.42)

and imposing compatibility with the on-shell constraints p2
i = 0 and (∑5

i=1 pi)2 as well as
the defining relations

∂

∂vj
vi = δij . (3.43)

The general solution can be given in terms of inverse Gram matrices [50],

∂

∂pi · pj
=

5∑
k=1

(G(p1, . . . , p5)−1)kjpk ·
∂

∂pi
(3.44)

after the Mandelstam derivatives have been expressed by derivatives with respect to scalar
products via the chain rule. Then, acting with a momentum derivative merely raises some
of the propagator powers, allowing us to use IBP identities to reduce the Mandelstam
derivatives of our basis elements to linear combinations of master integrals according to

∂Ĩj
∂vi

= εrkij Ĩk. (3.45)

Importantly, the rkij are manifestly rational functions of the Mandelstam invariants. In
principle, we could find the logarithmic PDE matrix A by integrating the rational function
rkij into logarithms. This would provide us with a constructive determination of the hexagon
alphabet A. However, we find that it is more efficient to start with an educated ansatz
for the alphabet and match it to the derivatives with respect to Mandelstam invariants
entry by entry. In the following two sections, we describe how to construct the hexagon
alphabet from the known alphabet for two-loop pentagon functions appended by a set
of ten additional hexagon letters. We record the expression for A (3.39) in terms of the
alphabet letters to be described in the next section in the ancillary file PDEMatrix.txt.

3.5 The one-loop hexagon alphabet

3.5.1 Alphabet letters from one-mass five-point integrals

In this and the following section, we describe the hexagon alphabet A by listing the letters
Wi necessary to express the canonical differential equation matrix. The one-loop hexagon
function alphabet has a large overlap with the two-loop one-mass five-point alphabet [9, 15],
since by contracting one of the propagators we retrieve the one-mass pentagon integral.
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Hence, as a starting point, we can use the alphabet letters provided in the ancillary files
of ref. [15] and translate them to the six-point kinematic invariants. We obtain the relevant
alphabet letters by treating the massive momenta as a sum of the two massless ones and
using cyclic permutations to obtain the remaining combinations of external momenta.

The relevant part of the function alphabet, retrieved in this way, has 93 alphabet
letters needed to express the differential equation matrix A up to and including all of the
one-mass pentagon integrals. After describing the letters we obtain from this construction,
in the next section we construct ten additional letters needed to express the full A matrix
for our set of master integrals.

We call a letter Wi odd if d logWi changes a sign when changing the sign of the square
root. The square roots appearing in the function alphabet correspond to the inverse leading
singularities defined in section 3.2.

The first 39 letters are purely rational and therefore even:

W1 = v1, Wi+1 = T iW1, i = 1, . . . , 5, (3.46)
W7 = v7, Wi+7 = T iW7, i = 1, . . . , 2, (3.47)
W10 = v1 − v7, Wi+10 = T iW10, i = 1, . . . , 5, (3.48)
W16 = v1 − v9, Wi+16 = T iW16, i = 1, . . . , 5, (3.49)
W22 = −v1 − v2 + v7, Wi+22 = T iW22, i = 1, . . . , 5, (3.50)
W28 = v1 + v4 − v7 − v9, Wi+28 = T iW28, i = 1, . . . , 2, (3.51)
W31 = −v1v4 + v7v9, Wi+31 = T iW31, i = 1, . . . , 2, (3.52)
W34 = v1(−v3 + v9) + v9(v3 − v5 − v9), Wi+34 = T iW34, i = 1, . . . , 5. (3.53)

We have another eight even letters containing just one of the square roots

W41 =
√

∆3(v1, v3, v5), W42 = TW41, (3.54)

W43 =
√

∆5(v5, v6, v1, v8, v9, v3), Wi+43 = T iW43, i = 1, . . . , 5. (3.55)

Next, we have 40 odd letters containing one square root and polynomials in kinematic
invariants:

W49 = −v1 +v3−v5−
√

∆3(v1,v3,v5)
−v1 +v3−v5 +

√
∆3(v1,v3,v5)

, W50 =TW49, (3.56)

W51 = v1−v3−v5−
√

∆3(v1,v3,v5)
v1−v3−v5 +

√
∆3(v1,v3,v5)

, W52 =TW51, (3.57)

W53 = v1−v3 +v5−2v7−
√

∆3(v1,v3,v5)
v1−v3 +v5−2v7 +

√
∆3(v1,v3,v5)

, Wi+53 =T iW53, , i= 1, . . . ,5, (3.58)

W59 = v2v3−v2v5−v3v7 +v7v8 +v1(−v2 +v8)−
√

∆5(v1,v2,v3,v7,v8,v5)
v2v3−v2v5−v3v7 +v7v8 +v1(−v2 +v8)+

√
∆5(v1,v2,v3,v7,v8,v5)

, (3.59)

Wi+59 =T iW59, , i= 1, . . . ,5, (3.60)

W65 = −v2v3−v2v5 +v3v7 +v7v8 +v1(v2−v8)−
√

∆5(v1,v2,v3,v7,v8,v5)
−v2v3−v2v5 +v3v7 +v7v8 +v1(v2−v8)+

√
∆5(v1,v2,v3,v7,v8,v5)

, (3.61)
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Wi+65 =T iW65, , i= 1, . . . ,5, (3.62)

W71 = v2v3 +v2v5−v3v7−2v2v8 +v7v8−v1(v2 +v8)−
√

∆5(v1,v2,v3,v7,v8,v5)
v2v3 +v2v5−v3v7−2v2v8 +v7v8−v1(v2 +v8)+

√
∆5(v1,v2,v3,v7,v8,v5)

, (3.63)

Wi+71 =T iW71, , i= 1, . . . ,5, (3.64)

W77 = R1−
√

∆5(v1,v2,v3,v7,v8,v5)
R1 +

√
∆5(v1,v2,v3,v7,v8,v5)

, (3.65)

Wi+77 =T iW77, , i= 1, . . . ,5, (3.66)

W83 = R2−
√

∆5(v1,v2,v3,v7,v8,v5)
R2 +

√
∆5(v1,v2,v3,v7,v8,v5)

, (3.67)

Wi+83 =T iW83, , i= 1, . . . ,5, (3.68)

where we used

R1 = v2(−v3 + v5 − 2v7) + v1(v2 + 2v5 − 2v7 − v8) + v7(v3 − 2v5 + 2v7 + v8), (3.69)
R2 = v2(v3 + v5 − 2v8) + (2v5 − v7 − 2v8)(v3 − v8) + v1(−v2 + v8). (3.70)

The last six letters involve two different square roots, therefore these are even under
simultaneous change of both signs of square roots, but odd under the sign change of one
of the square roots:

W89 = R3 −
√

∆3(v1, v3, v5)∆5(v1, v2, v3, v7, v8, v5)
R3 +

√
∆3(v1, v3, v5)∆5(v1, v2, v3, v7, v8, v5)

, (3.71)

Wi+89 = T iW89, , i = 1, . . . , 5, (3.72)

where

R3 = v2
1(v2 − v8) + v1(−2v2(v3 + v5) + v3(−2v5 + v7) + (v3 + v5 + v7)v8)

+ (v3 − v5)(v2(v3 − v5) + v7(−v3 + v8)). (3.73)

3.5.2 One-loop hexagon letters

The additional ten letters, appearing for the first time in the hexagon integral, are obtained
following the construction of one-loop alphabet letters from [51]. The letters involving
square roots can be written in the form

P (~v)−
√
Q(~v)

P (~v) +
√
Q(~v)

(3.74)

where P and Q are polynomials in the kinematic variables vi. These polynomials are
expressed in terms of Gram determinants defined in (2.8).

We construct one even letter

W40 = −∆6
G(p1, p2, p3, p4, p5) , (3.75)
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three odd letters

W101 = v3v6v7 − v1v4v8 − v2v5v9 + v7v8v9 −
√

∆6

v3v6v7 − v1v4v8 − v2v5v9 + v7v8v9 +
√

∆6
, (3.76)

Wi+101 = T iW101, i = 1, . . . , 2, (3.77)

and six letters involving two square roots

W95 = R4 −
√

∆5(v1, v2, v3, v7, v8, v5)∆6

R4 +
√

∆5(v1, v2, v3, v7, v8, v5)∆6
, (3.78)

Wi+95 = T iW95, i = 1, . . . , 5, (3.79)

where

R4 = v2
1v4v8(−v2 + v8)− (v2(v3 − v5) + v7(−v3 + v8))(v3v6v7 + (v2v5 − v7v8)v9)

+ v1(v2
2v5(2v3 − v9) + v7v8(v3(v4 + v6)− v8(v4 + v9))

+ v2(v3(−2v5v6 + v7(v6 − 2v8) + v4(−2v5 + v8)) + v8(v4v5 + (v5 + v7)v9))). (3.80)

Note that we can relate the hexagon square root to the one known from the study of
dual conformal hexagon integrals [52]. Alphabet letters in this case are expressed in terms
of three dual conformally invariant cross-ratios

u1 = v1v4
v7v9

, u2 = v2v5
v7v8

, u3 = v3v6
v8v9

, (3.81)

and
∆ = (1− u1 − u2 − u3)2 − 4u1u2u3. (3.82)

It is easy to verify that the relation between the hexagon square root
√

∆6 and
√

∆ is√
∆6 = v7v8v9

√
∆. (3.83)

The alphabet letters are related to the possible singularities of the Feynman integrals.
Therefore, they can be deduced from the solutions of the Landau equations [53]. In practice
finding these solutions is not an easy task but in the setting of n-gon one-loop Feynman
integrals they can be described in closed form. These solutions can be computed using the
Cayley matrix and the associated determinant, see refs. [54, 55]

C =
(

0 ~1T
~1 x2

ij

)
, i, j = 0, 1, . . . , n (3.84)

where ~1 denotes a (n + 1)-vector of 1’s and xij = xi − xj are given in terms of dual
coordinates xi. Here the coordinate x0 is related to the loop momentum l and the external
momenta are related to dual coordinates as pi = xi − xj+1 with xi+n = xi. For the one-
loop hexagon, the Cayley matrix is an 8× 8 matrix whose determinant equals ∆6. While
we indeed observe that the different minors of the Cayley matrix correspond to different
polynomials which appear in the alphabet letters, we are not aware of an explicit algorithm
that constructs the alphabet from the Cayley matrix only.
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To summarise, the one-loop hexagon alphabet A contains 103 letters that are algebraic
functions of the kinematic invariants vi. The square roots

√
∆3,
√

∆5 and
√

∆6, appearing
in the alphabet letters Wi, correspond to the inverse leading singularities of three-mass
triangles, one-mass pentagons and hexagon, respectively. We classify the alphabet letters
according to parity, therefore we have 48 even letters and 55 odd letters, 12 of which
contain two square roots. We stored the alphabet in the file HexagonAlphabet.txt and
the associated square roots in HexagonSqrts.txt.

4 Analytic result from differential equations

In this section we describe the solution to the canonical differential equation and introduce
the notion of the symbol. At the symbol level, we verify the extended Steinmann relations.
To fully determine the solution to the canonical differential equation, we fix the boundary
constants by imposing the absence of spurious singularities and by matching to the analytic
solution of a bubble integral at the boundary point. With the knowledge of the boundary
values up to order O(ε4), we obtain one-fold integral representation for numerical evalu-
ation which we validate at several points. We study the symbol of the one-loop hexagon
integral at order O(ε). Finally, we study the limit of four-dimensional external states and
dependencies between the letters at the level of differential equations.

4.1 Solving the canonical differential equations

Formally, the solution to the canonical differential equation (3.37) can be written as a path
ordered integral

Ĩ(~v, ε) = P exp(ε
∫
γ
dA) ·~b, (4.1)

where γ denotes a path from a boundary point ~v0 to ~v and ~b = Ĩ(~v0) is a vector of master
integrals values at the boundary point ~v0. This equation is to be understood as a Laurent
expansion around ε = 0,

Ĩ(~v, ε) =
∞∑
k=0

εkĨ(k)(~v). (4.2)

Substituting this expansion in the canonical differential equation (3.37), we see that the
equation decouples order by order in ε

dĨ(k+1)(~v) =
∑
k≥0

(dA(~v))Ĩ(k)(~v) (4.3)

The (k+ 1)-th term in the expansion is then given by a (k+ 1)-fold iterated integral along
the contour γ of the matrix differential form A

Ĩ(k+1)(~v) =
∫
γ
(dA(~v))Ĩ(k)(~v) +~b(k), (4.4)

where ~b(k) are weight k boundary values which we discuss in the following section. We can
rewrite this equation in terms of Chen’s iterated integrals [56]

Ĩ(k)(~v) =
k∑

k′=0

∑
i1,...,ik′∈A

a(i1) . . . a(ik′ )~b(k)
[
Wi1 , . . . ,Wik′

]
~v0

(~v), (4.5)
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where
[Wi1 , . . . ,Wik ]~v0

(~v) =
∫
γ

d logWk(~v′)
[
Wi1 , . . . ,Wik−1

]
~v0
, (4.6)

and [ ]~v0
= 1. In order for the integral to be well-defined, it has to be homotopy invari-

ant i.e. it should be independent of the choice of the contour as long as the singularities
are not crossed. Since the differential equation satisfies the integrability conditions,5 the
solution (4.5) is homotopy invariant, but the separate integrals (4.6) are not.

Furthermore, we can introduce the notion of the symbol which is a useful tool for
studying the polylogarithmic functions (see ref. [57]). It maps a k-fold iterated integral to
the k-fold tensor product

S
(
[W1, . . . ,Wk]~v0

(~v)
)

= W1 ⊗ · · · ⊗Wk. (4.7)

Additionally, we will use S(k)(f) to denote the symbol of the weight-k part of f , i.e. if f
has an expansion

f =
∑
k

εkfk (4.8)

then we define
S(k)(f) = S(fk). (4.9)

4.2 Steinmann relations

One immediate consequence we can draw from the form of A is the validity of the extended
Steinmann relations [58, 59] for all integrals in the one-loop hexagon family. For this family,
these relations require that the three-point Mandelstam variables s123, s234 and s345 never
appear as consecutive letters in the symbol. Physically, they reflect the incompatibility of
the different three-particle cuts on all possible Riemann-sheets. The differential equation
matrix A guarantees that the relations hold at any order in ε at any depth into the symbol
by the simple identities [60]

cajkc
b
kl = 0, (4.10)

for all j, l ∈ {1, . . . , 33} and for a 6= b, a, b ∈ {7, 8, 9}, which is straightforward to verify. Of
course, these are not the only adjacency relations that follow from the differential equation.
In fact, all letters Wa,Wb for which an identity of the form (4.10) is satisfied will never
appear next to each other in the symbol at any order in ε. It will be very interesting to in-
vestigate which of these relations continue to hold at the two-loop level and at higher loops.

4.3 Absence of spurious singularities fixes the boundary constants

To fully determine the solution to (3.37) we need to supplement it with boundary infor-
mation, i.e. we need to provide the analytical values for our basis of master integrals at a
single point in the space of kinematical variables. We will see in this section, that we can
determine the values of our integral basis at the point

~v0 = {−1,−1,−1,−1,−1,−1,−1,−1,−1} (4.11)
5Integrability conditions for the differential equation require that ∂vjAi − ∂viAj = 0 and [Ai, Aj ] = 0.
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Figure 2. Graphical representation of the kinematic region R which is bounded by the solid black
lines. The dashed lines represent singular hypersurfaces on which some of the letters diverge. To fix
the boundary constants, we start at some point ~v0 and impose cancellation of all singularities in the
PDE matrix at this point (which we call type I singularities). Then, we set up one-parameter paths
labelled by γ that lead to all other singular hypersurfaces. Imposing cancellation of divergencies
at the end-points of the path (which we call type II singularities) further restricts the boundary
constants.

up to the order ε4 by imposing the absence of certain spurious singularities and by matching
to the analytical solution of a bubble integral. To be a bit more explicit, even though the
Feynman integrals in our basis are manifestly finite all throughout the Euclidean region,
this is not true for the PDE matrix A. In fact, the vanishing (or divergence) of any the
hexagon letters

Wi = 0, (4.12)

defines a hypersurface that might intersect the Euclidean region. The situation is sketched
in figure 2. Imposing finiteness of the solution to (3.37) on any of these hypersurfaces
severly constrains the possible boundary values at the point ~v0, cf. [61]. Hence, we will
determine the cij in the expansion

Ĩi(~v0) =
4∑
j=0

cijε
j . (4.13)

We also denote the vector of boundary constants as

~b = Ĩ(~v0). (4.14)

In the following analysis, we will call spurious letter singularities at the bulk point ~v0 type-I
singularities and singularities on any other hypersurfaces that do not contain ~v0 type-II
singularities.
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4.3.1 Bubble integral

The bubble integrals can be calculated analytically, giving e.g.

Ĩ1 = εeεγE
Γ(−ε)2Γ(1 + ε)
Γ(−2ε)(−v1)ε (4.15)

Hence, at the boundary point, we get

Ĩ1(~v0) = −2 + ζ2ε
2 + 14

3 ζ3ε
3 + 47

20ζ
2
2ε

4 +O(ε5). (4.16)

4.3.2 Absence of Type-I singularities

To remove the spurious letter divergences at the point ~v0, we parametrise paths that start
at this point by an infinitesimal parameter δ. Then, the divergent letters will have an
expansion in δ according to

logWj = cj log δ +O(1). (4.17)

The set of letters vanishing at ~v0 is given by

A0 = {W10, . . . ,W21,W28, . . . ,W33}. (4.18)

Since the master integrals are supposed to diverge only on the boundaries of the Euclidean
region, the boundary vector must be such that

lim
δ→0

A~b = finite. (4.19)

Using different parametrizations to approach the boundary point on different curves,
we find that this requirement constrains ~b (non-perturbatively in ε) to be of the form

~b = {b1, b1, b1, b1, b1, b1, b1, b1, b1, b10, b11, b12, b13, b14, b15, b16, b17, b18, b19, b20, b21,

− b12 + b14 − b15 + b17 + b18 − b19 + b21,−b13 + b14 − b16 + b17 + b18 − b20 + b21,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. (4.20)

4.3.3 Absence of Type-II singularities

Beyond the singular letters at the point ~v0, there are additional letters that diverge at some
other point in the Euclidean region, e.g.

logW21 = log(−v1 − v2 + v7). (4.21)

To ensure that these singularities do not actually show up in our solution of the differential
equation, we integrate it from the boundary point ~v0 to the hypersurface where these
additional letters diverge. Then, imposing the absence of logarithmic divergences further
constrains the boundary constants bi. Since we generally do not have access to a non-
perturbative solution of (3.37), these constraints are perturbative in ε. A convenient path
from ~v0 to the hypersurface where W21 vanishes is given by

~v = {−1,−(1− x)2,−1,−(1− x)2,−1,−(1− x)2,−1 + x,−1 + x,−1 + x}, (4.22)
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which satisfies the Gram constraint. On this line, the hexagon alphabet simplifies to

A→ Aline = {x, 1− x, x− ρ, x− ρ̄}, (4.23)

with ρ = 1
2(1 + i

√
3). Hence there are four potential singular points on the line. The

absence of type-I singularities ensures that all the log x singularities drop out. The log(1−x)
singularities lie on the boundary of the Euclidean region and hence they are not necessarily
unphysical. Finally, the singularities at the points ρ and ρ̄ are non-physical and we can
further determine the boundary values by imposing that they drop out.

Using PolyLogTools [62], it is straightforward to integrate the differential equation
with the alphabet (4.23) to Goncharov-Polylogarithms [63] with entries {0, 1, ρ, ρ̄}. To
isolate the singularities, we use shuffle identities to bring the G-functions to a convenient
Lyndon basis [64]. Then, imposing that all log(x − ρ) drop out for x → ρ (and similarly
for x → ρ̄), we can fully determine the boundary values order by order. Up to O(ε4), we
find the following non-vanishing boundary constants,6

b1,...,9 = −2 + ζ2ε
2 + 14

3 ζ3ε
3 + 47

8 ζ4ε
4 +O(ε5),

b10,11 = i(6 Im[Li2(1− ρ2) + 2π log 3)ε2

+ i

(10
9 πζ2 + 12 Im[Li3(1− ρ2)] + π log(3)2

)
ε3

+ i

(
− 3ζ2 Im[Li2(1− ρ2)] + 24 Im[Li4(1− ρ2)]

+ 16
3 Im[Li4(1 + ρ2)] + π

3 log(3)3 + 12πζ2 log(3)
)
ε4 +O(ε5),

b12,...,17 = 2− 3ε2ζ2 −
20
3 ε

3ζ3 −
43
8 ε

4ζ4 +O(ε5),

b18,...,23 = 1− ε2 ζ2
2 + ε3

ζ3
3 + ε4

(17
16ζ4 + 6 Im[Li2(1− ρ2)]2

+ 2
3π

2 log 32 + 4π log 3 Im[Li2(1− ρ2)]
)

+O(ε5). (4.24)

In particular, the inverse leading singularities of all pentagon integrals and the hexagon
integral vanish on the entire line, leading to trivial boundary conditions for these functions.
With these constants determined, we actually have full analytic control over the entire
function space at weight four on the line given by (4.22). We have used this to numerically
confirm our calculation via AMFlow [66], see table 1.

The Boundary constants in eq. (4.24) are valid in the Euclidean region. To obtain the
boundary constants in the physical region, we can either perform an analytic continuation
or determine the boundary constants directly in the physical region of interest following a
similar procedure [61].

4.4 Integral representations for numerical evaluation

Now that we fixed the boundary values up to order O(ε4), we can write down the solution
to the differential equation (3.37) order by order in ε.

6These constants are embedded in the basis of polylogarithms at sixth roots of unity discussed in ref. [65].
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If we know our basis integrals at a single point vi(0) up to weight four,

Ĩ(vi(0)) = Ĩ0 =
4∑

k=0
εkĨ

(k)
0 +O(ε5) (4.25)

and want to evaluate them numerically at some other point vi(1), we can use a trick to
rewrite the solution to the differential equation in terms of a one-fold integration over the
weight-two functions [6, 67] from the section 3.3, which is suitable to numerical integration.
We set up a straight line between our starting and endpoint

vi(t) = (1− t)vi(0) + tvi(1). (4.26)

Then, we can explicitly write the solution to the canonical differential equation as

Ĩ(t) = T exp [ε
∫ t

0
dt′dAdt′ ]Ĩ0, (4.27)

with the time-ordering operator T . Hence, the weight-k solution at the end-point vi(1)
reads

Ĩ(k)(1) = Ĩ
(k)
0 +

k∑
i=1

i∏
j=1

∫ tj−1

0
dtj

dA
dtj

Ĩ
(k−i)
0 , (4.28)

where t0 = 1. By matching towards the expansions in (4.28), we find

Ĩ(1)(t) = Ĩ
(1)
0 +

∫ t

0
dt1

dA
dt Ĩ

(0),

Ĩ(2)(t) = Ĩ
(2)
0 +

∫ t

0
dt1

dA
dt Ĩ

(1)
0 +

∫ t

0
dt1

∫ t1

0
dt2

dA
dt1

dA
dt2

Ĩ
(0)
0 , (4.29)

where Ĩ(1)(t) and Ĩ(2)(t) denote the weight-one and weight-two solution to the canonical
differential equation (3.37) at the point t. These solutions can be rewritten in terms of the
basis of functions introduced in section 3.3. At weight one, we know that the only function
that can appear is the logarithm

f
(1)
i = [Wi] = log(−vi), i = 1, . . . , 9, (4.30)

while at weight two we can have products of logarithms alongside dilogarithms. For exam-
ple, a weight-two function appearing in the solution for box integrals is

f
(2)
1 = −

[
W1
W7

,
W10
W7

]
= Li2

(
1− v1

v7

)
, (4.31)

and remaining functions can be expressed in similar manner in terms of iterated integrals.
Therefore the solution up to weight two for any integral in our basis is a linear combination
of these functions.

At weight three, the solution is expressed as a one-fold integral over the weight-two
functions ~f (2)

Ĩ(3)(1) = Ĩ
(3)
0 +

∫ 1

0
dt1

dA
dt1

~f (2)(t1) (4.32)
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kinematic point Ḡ5=0 Ĩ33

~v(1)=
{
−1,−1,−1,−1,−1,−1,− 1

2 ,−
5
8 ,−

17
14
}

X
1.69878610466574714627iε3
+6.62873216549319714468iε4
+O(ε5)

~v(2)=
{
− 2

3 ,−
7

10 ,−
9

11 ,−
15
17 ,−

24
29 ,−

30
37 ,−

37
43 ,−

47
53 ,−

53
59
}

×
1.2966474952363382027iε3
+5.241756401399539064iε4
+O(ε2)

~v(3)=
{
− 7

9 ,−
4
5 ,−

29
33 ,−

47
51 ,−

77
87 ,−

97
111 ,−

39
43 ,−

49
53 ,−

55
59
}

×
0.81389548925976547185iε3
+3.2221858302838235961iε4
+O(ε5)

Table 1. Numerical evaluation of the hexagon integral at several kinematic points. The values
correspond to the UT hexagon integral and are obtained using the one-fold integral representation.

whereas at weight four we have

Ĩ(4)(1) = Ĩ
(4)
0 +

∫ 1

0
dtdAdt Ĩ

(3)
0 +

∫ 1

0
dt1

∫ t1

0
dt2

dA
dt1

dA
dt2

~f (2)(t2)

= Ĩ
(4)
0 +

∫ 1

0
dt
(dA
dt Ĩ

(3)
0 + (A(1)−A(t)) dAdt

~f (2)(t)
)
, (4.33)

where we used integration by parts with respect to t1 to reduce the last term in the first
line to a one-fold integral.

Once we have analytical results up to weight two and integral representation up to
weight four in the dimensional regulator we can validate our computation numerically. We
choose several points in the bulk of the Euclidean region (see table 1). The point ~v(1)

corresponds to the point K(3) from ref. [68] while the points ~v(2) and ~v(3) do not satisfy the
Gram determinant constraint and therefore do not satisfy the four-dimensional kinemat-
ics. Numerical values obtained using the one-fold integral representation are validated via
AMFlow up to the desired precision of 20 relevant digits where we find a complete agreement.

Note that a subset of letters diverges in the Dext → 4 limit, as we discuss in the
section 4.6. These letters appear in the last row of the PDE matrix A and therefore
influence the numerical integration of the hexagon integral. We can deform the Mandelstam
invariants by a small number to avoid numerical instabilities at the points satisfying the
Gram determinant constraint. Then we can use the one-fold integral representation to
numerically evaluate the hexagon integral.

4.5 The one-loop hexagon integral at order O(ε)

Of course, the most interesting integral in our basis is the massless hexagon integral. In this
section, we discuss its finite part and its order epsilon part in generic external spacetime
dimensions Dext. The finite part of the hexagon integral was first calculated in ref. [52].
Using the canonical differential equation matrix A and the boundary constants determined
in section 4.3, it is straightforward to determine the symbols for the O(1) and O(ε) parts
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of the hexagon integral. In agreement with ref. [52], we find

S(3)(Ĩ33) =

u1 ⊗ u2 + u2 ⊗ u1 −
3∑
j=1

uj ⊗ (1− uj)

⊗ y3 + (cyclic) (4.34)

where we used the dual-conformal cross ratios

u1 = v1v4
v7v9

, u2 = v2v5
v8v7

, u3 = v3v6
v9v8

, (4.35)

as well as the parity-odd dual-conformal letters

y1 = 1+u1−u2−u3−
√

∆
1+u1−u2−u3 +

√
∆
, y2 = 1+u2−u3−u1−

√
∆

1+u2−u3−u1 +
√

∆
, y3 = 1+u3−u1−u2−

√
∆

1+u3−u1−u2 +
√

∆
(4.36)

both of which form threefold orbits under cyclic permutations of the external points.
At weight four, the symbol of the hexagon decomposes according to7

S(4)(Ĩ33) = S(3)(Ĩ33)⊗W40 +
6∑
i=1

Ti
(
S(3)(Ĩ27)⊗W96

)
+ 1

2

3∑
i=1

Ti (Ω⊗W101) , (4.37)

where we remind the reader that Ĩ27 and its permutations are the one-mass pentagons and
Ω is given by the following combination of box integrals

Ω = S(3)(Ĩ18) + S(3)(Ĩ19) + S(3)(Ĩ21) + S(3)(Ĩ22)
− S(3)(Ĩ13)− S(3)(Ĩ16)− S(3)(Ĩ24)− S(3)(Ĩ25)− S(3)(Ĩ26). (4.38)

By inspecting these two expressions, we can determine the reduced alphabets that are
necessary to describe the hexagon integral at weight three and weight four respectively.
They read

A(3)
hex = {u1, u2, u3, 1− u1, 1− u2, 1− u3, y1, y2, y3} (4.39)

and

A(4)
hex = A\{W41, . . . ,W48}. (4.40)

Starting at weight five, all 103 letters of the one-loop hexagon alphabet show up in the
symbol.

4.6 Limit of four-dimensional external states

It is well known that for four-dimensional external momenta, the hexagon integral can be
decomposed into a linear combination of pentagon integrals [69–71], i.e.

I33 = −1
2

6∑
j,k=1

(S−1)jkI26+j , (4.41)

7We note that W101 = 1/y3, W102 = 1/y1 and W103 = 1/y2.
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with

S = −1
2



0 0 s45 s123 s23 0
0 0 0 s56 s234 s34
s45 0 0 0 s61 s345
s123 s56 0 0 0 s12
s23 s234 s61 0 0 0
0 s34 s345 s12 0 0


. (4.42)

In this section we show that this identity comes out of the differential equation for free as
a finiteness condition in four-dimensional kinematics. When the kinematics are generated
by four-dimensional vectors, the nine Mandelstam invariants are not independent anymore
but they satisfy the Gram determinant constraint,

G(p1, p2, p3, p4, p5) = 0. (4.43)

To solve the constraint we use the explicit momentum twistor parametrisation in eq. (2.16).
In terms of the momentum twistor variables, the leading singularities of the pentagons and
the hexagons become perfect squares. However, substituting the parametrisation into the
PDE matrix A, a subset of the logarithmic letters diverges, namely

Adiv = {W40,W95, . . . ,W100}. (4.44)

It is obvious why W40 diverges, since its denominator is given by the Gram determinant.
However, the divergence of the logs of the letters W95, . . . ,W100 are less straightforward
and require some explanation. Let us focus on W95 since the behaviour of the other letters
follows from cyclic permutations. It takes the form

W95 = R4 −
√

∆5,1∆6
R4 +

√
∆5,1∆6

, (4.45)

where
∆5,1 = ∆5(v1, v2, v3, v7, v8, v5) (4.46)

and R4 is given in (3.80). By inspection, one finds

∆5,1∆6 = R2
4 − 4v1v2v3(v2v5 − v7v8)G(p1, p2, p3, p4, p5) (4.47)

which is valid for arbitrary D-dimensional kinematics. Clearly, in the limit of four-
dimensional external kinematics, the product of ∆5,1 and ∆6 approaches the absolute
square of R4 and we have

W95
∣∣∣
Dext→4

→ R4 − |R4|
R4 + |R4|

. (4.48)

Depending on the sign of R4, the letterW95 will either vanish or diverge in the limit D → 4,
hence its logarithm will go to ∓∞.

The divergent letters appear only in the last row of the matrix, i.e. the derivative of
the hexagon integral and they correspond to the coefficients of the pentagon and hexagon
integrals in this derivative. Hence, for the four-dimensional limit of the hexagon integral to
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be finite, these divergences must cancel. To approach the surface where the Gram deter-
minant constraint holds more carefully, we deform the two-particle Mandelstam invariants
by a small parameter δ, i.e.

vi → vi + δ, i = 1, . . . , 6, (4.49)

explicitly breaking the Gram determinant constraint at order O(δ). Then, the divergent
letters take the form8

Wi = −ci log(δ) +O(1), Wi ∈ Adiv, (4.50)

where the signs of the log(δ) divergence depend of the sign of R4, i.e.

c95+i = sgn(T iR4), i = 0, . . . , 5, (4.51)

whereas c40 = −1. The requirement that the logarithmic divergence cancels leads to a very
simple identity for the UT integrals in four-dimensional kinematics, namely

Ĩ33 =
5∑
j=0

c95+iĨ27+i. (4.52)

Interestingly, comparing with the well-known identity (4.41), we find after dividing (4.52)
by ∆6

∆5,j
∆6

=
(

1
2

6∑
k=1

(S−1)jk
)2

(4.53)

on the momentum twistor parametrisation. Hence, after taking into account the signs
ci, the identity we find from the canonical differential equation for the UT integrals is
equivalent to (4.41).

At the level of the weight-four symbol of the hexagon integral, the four-dimensional
limit implies

lim
Dext→4

S(4)(Ĩ33) = 1
2

3∑
i=1

Ti (Ω⊗W101) , (4.54)

where Ω is the linear combination of weight-three symbols of box-integrals given in
eq. (4.38).

4.7 Dependencies between letters in four-dimensional kinematics

In addition to the divergent letters, there are also some additional dependencies between
letters that arise in four-dimensional kinematics. For simplicity, we only discuss the case in
which all ci = −1. All other cases can be reached by Galois transformations, that send the

8Note that this analysis is valid for a generic point in four-dimensional kinematics, at which no other
letters diverge. At more special points, there can be additional constraints emerging from the differential
equation.
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corresponding square roots to their negatives (and hence invert the respective odd letters).
The full list of identities read

T i−1
(

W101
W64W65

)
= 1, i = 1, . . . , 6

T i−1 (W89W91W93) = 1, i = 1, 2

T i−1
(
W71W73W83
W60W66W77

)
= 1, i = 1, . . . , 6

T i−1
(
W77W80W101W102W103
W61W64W67W70W73W76

)
= 1, i = 1, 2, 3. (4.55)

On the support of these identities, the hexagon alphabet reduces to 89 independent letters.

5 Discussion and outlook

In this paper we have investigated the one-loop on-shell hexagon integral in D-dimensional
kinematics as functions of the nine independent Mandelstam variables using the method
of canonical differential equations. To find a canonical basis, we have used dimension-
shift identities and normalised the different integrals of the hexagon family by their lead-
ing singularities in order to construct a pure function basis of uniform transcendentality.
To translate the canonical differential equations into dlog form, we have constructed the
hexagon alphabet from the previously known one-mass five-point alphabet [9, 15] and the
by now well-understood recursive structure of one-loop alphabets [51].

By imposing the absense of non-physical singularities, we have then determined the
boundary values for the hexagon family for a judiciously chosen point in the Euclidean
region. This boundary information, together with the differential equation matrix in dlog
form in principle allows us to evaluate the hexagon family at arbitrary points on any sheet
of the Riemann surface at any order of ε in terms of Chen iterated integrals.

For a particular subsection of the Euclidean region, we provide a proof-of-concept im-
plementation of the numerical evaluation. Using integration-by-parts, we have set up one-
fold integral representations for the weight-three and the weight-four parts of the hexagon
family, employing the analytically known weight-two solutions. We found perfect agree-
ment with numerical evaluations obtained with AMFlow [66].

Using the differential equation, we have also calculated the symbol of the hexagon
integral at weight three, confirming the well-known result of ref. [52], and for the first time
at weight four.

Finally, we have studied the limit of four-dimensional external kinematics, for which
the nine Mandelstam variables are no longer independent but satisfy a Gram determinant
constraint. We show how the identity relating the four-dimensional hexagon integral to one-
mass pentagon integrals comes out of the differential equation and discuss the additional
relations between alphabet letters that emerge in the four-dimensional limit.

In conclusion, we find it very convenient to work in a D-dimensional setting and only
fix the dimensionality to four at the very end by going to a kinematic point which satisfies
the Gram determinant constraint. Even though the integral family is slightly bigger in D
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dimensions, we profit from a more systematic understanding of the alphabet and manifest
realisations of permutation invariance. Clearly, the next logical step will be to extend
this analysis to the two-loop case. While at one loop, the single additional independent
integral in D-dimensional kinematics is not a vast complication, at two-loops there will
certainly be a trade-off between additional integrals and alphabet letters on the one hand
and clearer structures and free movement in the nine-dimensional kinematic space on the
other hand. Since the correct identity allowing us to remove the additional integrals in the
four-dimensional limits can be derived from the knowledge of the differential equation, the
D-dimensional analysis can be of use even if one is interested purely in four-dimensional
results. For phenomenological applications of our results, the hexagon integral has to
be evaluated on the physical 2 → 4 scattering sheet. While it is governed by the same
differential equations as on the Euclidean sheet, it will be necessary to either determine
the values of the entire integral family at a new boundary point in this physical region or to
carry the information from our boundary point to the physical region via some appropriate
analytic continuation. We leave this analysis for future work.

Furthermore, having the full D-dimensional one-loop hexagon alphabet and its four-
dimensional limit at our disposal, it will be very interesting to investigate them with respect
to cluster algebra structures. While it has been appreciated for some time that cluster
algebras play an important role for scattering amplitudes in N = 4 super-Yang-Mills
theory [72, 73] (see also ref. [74]), the application to single Feynman integrals is more
recent and still relies on a case-by-case analysis [60, 75].

On a similar note, it would be interesting whether the alphabet can be constructed
efficiently from the Landau equations. It can be easily checked that the vanishing locus
of any of our letters solves the Landau equation but it is not clear whether this can be
used to set up an algorithm that systematically constructs these letters from the Landau
equations only. At one loop, it appears that the minors of the Cayley determinant provide
the necessary building blocks but it would be highly desirable to extend this construction
to higher-loop cases.
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