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1 Introduction

In recent years significant interest was drawn to flat space holography. For reviews on the
subject we refer the reader to [1–6]. There are different approaches to flat space holography,
but all of them acknowledge the central role of the (extended) BMS symmetry [7, 8] — or,
equivalently, the conformal Carroll symmetry [9] — as the symmetry underlying the dual
boundary dynamics [10–18]. Similarly to the AdS/CFT correspondence, in flat holography
one reinterprets flat-space scattering amplitudes as correlators in the dual theory, which,
upon recasting them in a boost eigenstate basis [19–22], do manifest properties of some
exotic conformal field theories [23–32] — living either on the celestial sphere or on the
Minkowski space boundary. Despite significant progress in this direction, no explicit flat
space holographically dual pairs have been constructed yet.1

One simple reason why constructing holographically dual pairs with flat space bulk is
problematic is the qualitative difference in the representation theory of the AdS and the
Minkowski space isometries. To be more precise, for the case of a d-dimensional bulk, the
boundary theory is (d− 1)-dimensional and, accordingly, the boundary on-shell fields have
the Gelfand-Kirillov (GK) dimension equal to d− 2.2 What makes flat space holography
problematic is that the Poincaré algebra iso(d − 1, 1) — which is a subalgebra of the

1See, however, recent works [33–35].
2If a representation space is carried by functions of k independent variables, its GK dimension is equal to k.

This is the standard way to characterise the size of an infinite-dimensional representation. The GK dimension
of an on-shell theory in d− 1 dimensions is d− 2, because the on-shell condition removes dependence of a
field on one variable, which otherwise is given by an arbitrary function of all d− 1 space-time coordinates.
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BMSd algebra — does not have unitary irreducible representation of the GK dimension
d− 2 with non-trivially realised translations. This statement is a simple corollary of the
Wigner classification of unitary irreducible representations of the Poincaré group, see [36] for
review. The reason why one should expect that translations are realised non-trivially (more
generally, to be not nilpotent) for the boundary fields is that, otherwise, the single-trace
operators constructed out of them will also have trivially realised (nilpotent) translations,
while this property is not valid for the on-shell bulk fields, which are expected to be dual to
the single-trace operators on the boundary.3 In other words, suitable flat space counterparts
of the AdS/CFT boundary fields do not exist already at the level of representation theory.
This means that to proceed with flat space holography, we inevitably need to give up some
of the basic features of the AdS/CFT correspondence.4

To understand which of the standard requirements might have to be relaxed, we will
consider the setup of higher-spin holography. Higher-spin theories occupy an important place
in the AdS/CFT duality. The simplest version of the AdS space higher-spin holography [44,
45] relates higher-spin theories in the bulk with free conformal theories on the boundary.
Due to the fact that the boundary theory is free, the AdS space higher-spin holography,
essentially, reduces to a simple algebraic analysis based on the representation theory of
the AdS space isometry algebra. Besides that, the free theory on the boundary has rich
symmetry, which simultaneously plays the role of the global higher-spin algebra in the
bulk. This symmetry is rich enough so that once it is known, the boundary theory can be
identified [46–48]. An efficient approach to do that is to regard the higher-spin algebra as the
universal enveloping algebra of the AdS space isometry algebra, quotiented out by generators,
that annihilate the representation, carried by the on-shell field on the boundary, see [49–56].

In the present paper, to address the issue of flat space higher-spin holography we use
chiral higher-spin theories in flat space as a starting point.5 Chiral higher-spin theories
were suggested in [61] based on the earlier analysis of [62, 63]. These theories were actively
studied recently and, in particular, the associated chiral higher-spin algebra was found [64–
69]. Having the higher-spin algebra at our disposal, we follow the steps mimicking the
AdS space analysis to identify the dual theory. Namely, we show that the flat space chiral
higher-spin algebra can be constructed as the universal enveloping algebra of a certain
chiral deformation of the Poincaré algebra, which is quotiented by the ideal generated by a
set of quadratic relations. These quadratic relations allow us to identify a representation of
the chiral Poincaré algebra, which we regard as the flat space singleton.

This paper is organised as follows. We start by reviewing how the enveloping algebra
construction works for higher-spin holography in the AdS space in section 2. Next, in

3For this reason, theories constructed e.g. in [37–41] are unlikely to give suitable boundary duals to the
typical Minkowski space theories. It is known for a long time that flat space contractions of singletons
lead to trivially realised translations, see e.g. [42]. Another proposal — see [43] — is to consider massless
fields extended to representations of the complete BMS algebra as the dual theory candidates. These
representations have translations realised non-trivially, though, as pointed out in [43], these are too large —
in the sense of having the GK dimension d− 1 — to fit into the familiar holographic framework.

4One way to avoid this conclusion is to suggest that flat space holography does not have any weak-weak
regime, therefore, the representation theory arguments are inapplicable.

5Chiral higher-spin theories and related structures were recently discussed in the context of celestial
holography in [57–60].
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section 3 we first recall how the flat space chiral higher-spin algebra is defined and then
show how the enveloping algebra approach can be extended to the flat space case. This
allows us to define the flat space singleton representations, which we realise in two different
ways in section 4. Finally, in section 5 we give our conclusions.

2 The AdS space case

In the present section we review the universal enveloping algebra approach towards the
higher-spin algebra in the AdS space. For earlier works, which include reviews and extensions,
see [49–56].

We start by recalling how this construction works in general dimensions. Let the AdSd
space isometry algebra g ≡ so(d− 1, 2) be defined as

i[JMN , JRS ] = η̃NRJMS − η̃MSJNR − η̃SMJRN + η̃SNJRM , (2.1)

where capital Latin letters take values from 0 to d and η̃ = diag(−,+, . . . ,+,−). The
universal enveloping algebra U(g) is generated by polynomials in JMN modulo relations (2.1).
According to the Poincaré-Birkhoff-Witt theorem the basis elements of U(g) can be chosen
as symmetric products of JMN .

The AdS space higher-spin algebra can be defined as U(g) quotiented by the two-
sided ideal

hsd ≡ U(g)/〈I〉, 〈I〉 ≡ U(g) I U(g), (2.2)

where I is generated by

I ≡
(
J[MN � JRS]

)
⊕
(
JM (N � JR)M −

2
d+ 1 η̃NRC2

)
, (2.3)

JMN � JCD ≡
1
2{JMN , JCD}, C2 ≡

1
2JMN � JMN . (2.4)

The role of the first term in (2.3) is to factor out all products of JMN in U(g), which have
symmetries of Young diagrams with more than two rows, while the role of the second term
is to factor out all traces of products of JMN in U(g). Besides that, one can show that the
vanishing of (2.3) fixes the quadratic Casimir operator of g

C2 ∼ −
(d+ 1)(d− 3)

4 . (2.5)

As a result, the higher-spin algebra is generated by traceless tensor representations of
so(d− 1, 2) with symmetries characterised by rectangular two-row Young diagrams.

Quadratic relations (2.3), (2.5) vanish when evaluated on the singleton representation
of so(d− 1, 2), that is the representation carried by the boundary field theory.6 Thus, the
higher-spin algebra can be equivalently understood as the universal enveloping algebra
U(g) evaluated on the singleton representation. This property can be used to identify the
singleton representation once the higher-spin algebra is known. To this end one just needs to
consider quadratic elements of U(g) and see which of them vanish for the higher-spin algebra.
Vanishing of these quadratic generators uniquely defines the singleton representation.

6In the given case “the singleton” just refers to the free massless scalar field on the boundary.
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In the present paper we will focus on the higher-spin algebras in the four-dimensional
space-time. In this case it is convenient to make the Lorentz symmetry manifest by utilising
sl(2,C) spinors. Our conventions on sl(2,C) spinors are given in appendix A. To rewrite
the previous discussion in these terms, one first needs to decompose so(3, 2) tensors into
the Lorentz ones. In particular, the so(3, 2) generators are now decomposed into Lorentz
transformations and deformed translations

JMN → {Jmn, Pm ≡ Jmd}, (2.6)

where the Lorentz indicesm, n run from 0 to 3. Next, employing the vector-spinor dictionary,
all Lorentz indices should be converted to spinor ones. For the generators of so(3, 2) this
leads to

Pαα̇ ≡ (σm)αα̇Pm,

Jαβ ≡ Jβα ≡
1
2(σm)αγ̇(σn)βγ̇Jmn,

J̄α̇β̇ = J̄β̇α̇ = 1
2(σm)γα̇(σn)γβ̇J

mn.

(2.7)

In these terms the quadratic relations (2.3) acquire the form

JααJαα − J̄ α̇α̇J̄α̇α̇ ∼ 0,

Pβα̇J
β
α + JβαPβα̇ − c.c. ∼ 0,

2Pαα̇Pαα̇ − JααJ̄α̇α̇ − J̄α̇α̇Jαα ∼ 0,

Pβα̇J
β
α + JβαPβα̇ + c.c. ∼ 0,

JααJαα + J̄ α̇α̇J̄α̇α̇ − 3Pαα̇Pαα̇ ∼ 0,

(2.8)

where c.c. refers to the complex conjugate expression, while (2.5) becomes

C2 = 1
4 J̄

α̇α̇J̄α̇α̇ + 1
4J

ααJαα + 1
2P

αα̇Pαα̇ ∼ −
5
4 . (2.9)

For our conventions on symmetrisation and the use of repeated indices, see appendix A.
As it is not hard to see, with the ideal generated by (2.8), (2.9) quotiented out, one

is left with the generators of the form Tα(m),α̇(n) with the total number of indices even.
This spectrum matches the one that we discussed above using the so(3, 2) covariant terms
once the latter is first rephrased in terms of Lorentz tensors and then converted to spinor
notations.7

The AdS4 higher-spin algebra [71, 72] can be realised explicitly in terms of the associative
star product

(f ? g)(λ, λ̄) ≡ f(λ, λ̄)exp
[
iεα̇β̇

←−
∂

∂λ̄α̇

−→
∂

∂λ̄β̇
+ iεαβ

←−
∂

∂λα

−→
∂

∂λβ

]
g(λ, λ̄). (2.10)

7The necessary details can be found, e.g. in [70].
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The higher-spin algebra generators are given by polynomials f(λ, λ̄) with the total degree
even, while the Lie algebra bracket is just the star product commutator

[f, g](λ, λ̄) ≡ (f ? g)(λ, λ̄)− (g ? f)(λ, λ̄). (2.11)

To make contact with the previous discussion, we first note that quadratic monomials

J̄α̇α̇ ≡
1
2 λ̄α̇λ̄α̇,

Pαα̇ ≡
1
2λαλ̄α̇,

Jαα ≡
1
2λαλα

(2.12)

generate the so(3, 2) subalgebra of the higher-spin algebra [71, 72]. It is then straightforward
to check that (2.8), (2.9) are identically satisfied when the product in (2.8), (2.9) is
understood as the star product. In other words, the star product realisation of the higher-
spin algebra in AdS4 automatically resolves the ideal, which annihilates the singleton
representation.

3 Flat space case

In this section we will show how the discussion of the previous section can be carried over
to the flat space case. However, in contrast to the previous section, here we will start from
the known realisation of the flat space higher-spin algebra, which will then be put into the
universal enveloping algebra framework. This will allow us to find the quadratic relations
that define the flat space counterpart of the singleton representation.

To start, we remind that the higher-spin algebra associated with chiral higher-spin
theories in flat space [61–63] can be formulated in terms of the product [64–69]

(f ◦̄ g)(λ, λ̄) ≡ f(λ, λ̄)exp
[
iεα̇β̇

←−
∂

∂λ̄α̇

−→
∂

∂λ̄β̇

]
g(λ, λ̄). (3.1)

This product is associative and can be understood as a contraction of the star product (2.10),
in which the λ spinors become commutative. Equivalently, (3.1) is the star product on the
λ̄ variables, with the coefficients valued in functions of λ. Cleary, if two such functions are
supported at different λ’s, their product vanishes. On the contrary, if f and g are supported
at the same λ their ◦̄-product reduces to the usual star product in λ̄. Thus, intuitively,
the associative algebra defined by (3.1) can be viewed as the direct sum of infinitely many
copies of the star product algebra on variable λ̄ with different copies labelled by λ. A similar
structure is characteristic of flat space singleton representations, to be discussed later.

Similarly to the AdS space case, we consider quadratic monomials

J̄α̇α̇ ≡
1
2 λ̄α̇λ̄α̇,

Pαα̇ ≡
1
2λαλ̄α̇,

Lαα ≡
1
2λαλα.

(3.2)
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Here J̄ generates a chiral part of the Lorentz subalgebra sl(2,C) with respect to which Pαα̇
transforms according to its index structure. We will often refer to the J̄ part of the Lorentz
algebra as the antiholomorphic Lorentz algebra. The commutator of P ’s is given by

[Pαα̇, Pββ̇ ] = −iεα̇β̇Lαβ , (3.3)

while L commutes with itself and with other generators. We will refer to the algebra
generated by (3.2) as the deformed chiral Poincaré algebra. For more details on the algebras
we are dealing with in this paper see appendix B.

The algebra generated by (3.2) is, obviously, not the Poincaré algebra. Firstly, unlike
translations, P ’s in (3.2) do not commute. Secondly, L does not generate the missing part of
sl(2,C), instead, it provides a central extension of the algebra generated by P and J̄ . This
can be reconciled with the fact that we are dealing with massless higher-spin fields in the
Minkowski space in the following way [69]. Firstly, massless higher-spin fields appear to be
in the representation for which L = 0 and, therefore, P ’s actually commute as translations
should. Secondly, the theory still has the missing part of the Lorentz algebra as symmetry,
though, this symmetry is not a part of the chiral higher-spin algebra.

We now evaluate the flat space counterparts of the AdS quadratic relations (2.8), (2.9)
by using the ◦̄ product instead of the star product. After some straightforward algebra
we find

Pαα̇ ◦̄ Pαα̇ = 0,

J̄ α̇α̇ ◦̄ J̄α̇α̇ = −3
2 ,

P β̇α ◦̄ J̄β̇α̇ + J̄β̇α̇ ◦̄ P
β̇
α = 0,

Lαα ◦̄ Lαα = 0,

Pαβ̇ ◦̄ Lαβ + Lαβ ◦̄ Pαβ̇ = 0,

2Pαα̇ ◦̄ Pαα̇ − Lαα ◦̄ J̄α̇α̇ − J̄α̇α̇ ◦̄ Lαα = 0.

(3.4)

These relations specify the flat space singleton representations, which will be explicitly
realised in the following section.

4 Realisations of the flat space singleton representation

Considering that L commute, it is convenient to choose a basis in the representation space
as eigenstates of L. Moreover, for the flat space singleton representation one has (3.4)

LααL
αα = 0 ⇔ det(L) = 0. (4.1)

Considering that Lαα is also symmetric, it can be presented as8

Lαα ≡
1
2λαλα (4.2)

8Note that despite the last line of (3.2) looks identical to (4.2), their meaning is different: while in (4.2)
L is the action of a Lie algebra generator in the flat space singleton representation, in (3.2) it represents the
action of the associative algebra generator L in the higher-spin algebra representation. In particular, as a
Lie algebra generator L acts trivially in the higher-spin algebra representation.

– 6 –
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with λ being the usual commuting variables. Since L commute with all generators of the
deformed chiral Poincaré algebra, they serve as representation labels, similar to m2 for the
Poincaré algebra. Alternatively, representations can be labelled with λ. With the latter
labelling representations associated with λ and with −λ are equivalent.

4.1 Manifest J̄ symmetry

We will start by realising the flat space singleton representation labelled with λ in the form,
which makes the J̄ symmetry manifest due to the use of λ̄ spinors. This means that a
representation will be carried by a function ϕλ(λ̄), on which J̄ act as

J̄α̇α̇ϕλ(λ̄) = 2iλ̄α̇
∂ϕλ(λ̄)
∂λ̄α̇

. (4.3)

Such a realisation can be considered as the flat space version of the approach to the AdS
space singletons, which makes the sl(2,C) symmetry manifest [73, 74].

In these terms, the second equation in (3.4) gives9

2(N̄ + 2)N̄ϕλ(λ̄) = −3
2ϕλ(λ̄), (4.4)

where
N̄ ≡ λ̄α̇ ∂

∂λ̄α̇
. (4.5)

Equation (4.4) has two solutions

N̄ = −1
2 , N̄ = −3

2 , (4.6)

accordingly, ϕλ splits into two subspaces with fixed homogeneity degrees in λ̄

N̄ϕ
− 1

2
λ = −1

2ϕ
− 1

2
λ , N̄ϕ

− 3
2

λ = −3
2ϕ

− 3
2

λ . (4.7)

Then J̄ covariance requires that deformed translations are representated as

Pαα̇ϕ
− 3

2
λ = Aλαλ̄α̇ϕ

− 3
2

λ , Pαα̇ϕ
− 1

2
λ = Bλα

∂

∂λ̄α̇
ϕ

− 1
2

λ . (4.8)

The unknown coefficients A and B are then fixed from the requirement that (3.3) holds.
This leads to

AB = i. (4.9)

This constraint allows us to solve for B in terms of A. The value of A, in turn, is inessential,
as it can be fixed to any given one by relative rescalings of ϕ− 1

2 and ϕ− 3
2 .

It can be checked that for representation (4.3), (4.8), (4.9) all conditions (3.4) are
satisfied. Finally, we note that this representation is not irreducible: it can be split into
two subspaces analogously to the splitting of the AdS singleton representation into positive
and negative energy modes, see appendix C.

9We would like to remark that (4.4) can be regarded as a candidate equation of motion for ϕλ(λ̄). When
converted back to the vector notations, ϕλ(λ̄) becomes a function on the light-cone times U(1), with the
U(1) factor being responsible for carrying the spin labels. Considering that the light-cone is isomorphic
to the Minkowski space boundary, (4.4) has some features of a boundary theory equation of motion. It
would be interesting to explore this in future further. In particular, it would be interesting to extend this
construction off shell in a way that the deformed chiral Poincaré algebra is a symmetry of the action.

– 7 –



J
H
E
P
0
1
(
2
0
2
3
)
0
8
4

4.2 Single-variable realisation

In this section we will consider a single-variable realisation of the flat space singleton
representation. It is somewhat similar to the oscillator realisation in the AdS4 case first
proposed in [73].

In this approach, the representation space is realised by a function cλ(a) of a single
variable a. The anti-holomorphic Lorentz commutation relations

[J̄1̇1̇, J̄2̇2̇] = 4iJ̄1̇2̇, [J̄1̇1̇, J̄1̇2̇] = 2iJ̄1̇1̇, [J̄2̇2̇, J̄1̇2̇] = −2iJ̄2̇2̇ (4.10)

can be realised with

J̄1̇1̇ = Xa2, J̄2̇2̇ = Y
∂2

∂a2 , J̄1̇2̇ = iXY

(
a
∂

∂a
+ 1

2

)
, (4.11)

where
XY = −1. (4.12)

Here X can be fixed to any convenient value, which is related to the freedom to rescale the
a variable, while Y is then defined in terms of X via (4.12).

The components of an auxiliary dotted spinor π̄α̇ can be realised as

π̄1̇ = Wa, π̄2̇ = Z
∂

∂a
, (4.13)

where
YW = −iZ. (4.14)

Evaluating the commutator of π̄α̇ we find

[π̄α̇, π̄β̇ ] = WZεα̇β̇ . (4.15)

It is then natural to look for the deformed translations in the form

Pαα̇ = λαπ̄α̇. (4.16)

To reproduce the correct commutation relations (3.3), one has to require

WZ = − i2 . (4.17)

Once X and Y are fixed, (4.14) and (4.17) allow us to fix W and Z up to an irrelevant sign,
which can be absorbed into λ → −λ. It can be checked that the representation we have
just defined satisfies (3.4).

To summarise, (4.11), (4.16), (4.13) together with constraints (4.12), (4.14) and (4.17)
provide the oscillator-like realisation of the flat space singleton representation. This
representation is irreducible for given λ.

– 8 –
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4.3 Remarks

In this section we would like to make a couple of remarks concerning the flat space singleton
representations we constructed above.

To start, we note that in the split signature (+,+,−,−) the single-variable representa-
tion of section 4.2 is unitary. Indeed, with a choice

X = 1, Y = −1, Z = i√
2
, W = − 1√

2
(4.18)

operators (4.11), (4.16) are self-adjoint with respect to the inner product

(bλ, cλ) ≡
∫
da b̄λ(a)cλ(a) (4.19)

in the sense that for all of them

(Obλ, cλ) = (bλ, Ocλ). (4.20)

Above the bar denotes the complex conjugation and λ is understood to be real. Thus,
despite the construction of section 4.2 has some features of the oscillatorial realisation of
singletons in AdS, the inner product (4.19) is different from the natural oscillatorial one.

As a second remark, we note that the flat space singleton representation can be naturally
promoted to a representations of the algebra, which, in addition, features J generators of
the Lorentz algebra. In appendix B it is referred to as the L-extended Poincaré algebra. To
this end, one just needs to assume that the flat space singleton wave function also depends
on λ and J acts in the standard way

Jαα = 2iλα
∂

∂λα
. (4.21)

Then, cλ(a) with different λ’s are mixed by J transformations. Still, one can impose two
invariant conditions on the wave function

c−λ(−a) = ±cλ(a). (4.22)

In other words, the representation space cλ(a) can be split into invariant subspaces of even
and odd total homogeneity degrees in a and λ. By analogy with the AdS case, we will
refer to the even representation as the scalar flat space singleton, while the odd one will be
referred to as the spinor flat space singleton.

Finally, we remark that the flat space singleton representation can be naturally promoted
to a parity-invariant representation of the (L, L̄)-extended Poincaré algebra, which extends
the L-extended Poincaré algebra in a parity-invariant way, see appendix B for the precise
definition. To this end, it is convenient to start from the flat space singleton representation
realised as in section 4.1. In addition to ϕλ(λ̄), one also considers its complex conjugate
ϕ̄λ̄(λ), which satisfies

2(N + 2)Nϕ̄λ̄(λ) = −3
2 ϕ̄λ̄(λ), (4.23)

– 9 –
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where
N ≡ λα ∂

∂λα
. (4.24)

The Lorentz generators act on ϕ̄ in the standard way (4.3), (4.21), while the deformed
translations act by

Pαα̇ϕ̄
− 3

2
λ̄

= Āλαλ̄α̇ϕ̄
− 3

2
λ̄
, Pαα̇ϕ̄

− 1
2

λ̄
= B̄λ̄α̇

∂

∂λα
ϕ̄

− 1
2

λ̄
. (4.25)

Then, one has
Lααϕ̄ = 0, L̄α̇α̇ϕ̄ = 1

2 λ̄α̇λ̄α̇ϕ̄. (4.26)

5 Conclusions

In the present paper we studied the flat space chiral higher-spin algebra focusing on its
universal enveloping algebra realisation. We found that it can, indeed, be constructed
as the universal enveloping algebra of the deformed chiral Poincaré algebra, quotiented
out by a set of quadratic relations. These quadratic relations allow us to identify the flat
space counterpart of the so(3, 2) singleton representation. This provides us with a concrete
candidate for a theory, which is holographically dual to chiral higher-spin theories in flat
space or their extensions discussed in [69].

This construction has a number of features, which make it different from how holography
works in the AdS space and from what is usually discussed in the context of flat space
holography. As we mentioned in the introduction, basic representation theory arguments
imply that some changes in the holographic setup with the Minkowski space as the bulk
are inevitably required. Let us highlight the important peculiarities of our construction.

The key difference with other approaches to flat holography is that in our case the
symmetry algebra of the dual theory is neither given by the BMS algebra nor by the
Poincaré algebra, instead, it is a certain chiral extension of the Poincaré algebra, for which
translations do not commute. As discussed in appendix B, this extended algebra can be
connected to the so-called Maxwell algebra [75–79]. The commutator of translations is given
by (3.3), where L ∼ λλ commutes with all generators and, hence, serves as a representation
label. The massless higher-spin fields have L vanishing, which explains how one can recover
the usual Poincaré algebra in the bulk. Instead, for the dual flat space singleton L can
be non-zero, which impedes its interpretation as the boundary theory with the boundary
understood in the usual geometric sense.

An important difference between the AdS space higher-spin holography and the setup
considered here is that the flat space singleton representation is not unique, instead, these
are labelled by a continuous label — the sl(2,C) spinor λ. This property can be traced to
the properties of the flat space higher-spin algebra, which has an analogous structure. The
higher-spin algebra is still the symmetry of the flat space singleton representation, though,
elements of the algebra act non-trivially on the flat space singleton representation only if
both are associated with the same value of λ.

The obvious next step is to explore whether the flat space singleton representation
discussed here features any generalisation of the Flato-Fronsdal theorem [42]. The basic
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counting of degrees of freedom suggests that such a theorem may exist. Indeed, at fixed λ,
massless higher-spin fields are functions of the two-component spinor λ̄. In turn, at fixed λ
the representation space of the flat space singleton is given by a function cλ(a) of a single
variable a. Thus, the tensor product of two flat space singletons at fixed λ has the right
number of degrees of freedom to match the states of the tower of massless higher-spin fields.
This is how the representation theory obstacle, that we outlined in the introduction, can
be resolved. Moreover, a tensor product at fixed λ seems natural, considering that the
higher-spin amplitudes it should eventually give rise to holographically are non-trivial only
when all fields on the external lines have equal λ components [69]. In fact, if the flat space
counterpart of the Flato-Fronsdal theorem does exist, the correlators in a theory of flat
space singletons should be inevitably consistent with the results on the higher-spin side due
to the constraining role of the higher-spin symmetry.
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A Conventions

In this appendix we collect our conventions on sl(2,C) spinors as well as some useful formulae.
A Lorentz vector can be converted to a bispinor via

vαα̇ ≡ va(σa)αα̇, (A.1)

where

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(A.2)

are the Pauli matrices. Spinor indices are raised and lowered using the following convention

λα = εαβλβ , λβ = εβγλ
γ , (A.3)

where
εαβ = εα̇β̇ =

(
0 1
−1 0

)
= −εαβ = −εα̇β̇ . (A.4)

Relation (A.1) can be inverted as follows

va = −1
2(σa)α̇αvαα̇. (A.5)

To this end one needs to use

(σa)αα̇(σa)ββ̇ = −2εαβεα̇β̇ , (σa)αα̇(σa)ββ̇ = −2εαβεα̇β̇ . (A.6)
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Formulae (A.1), (A.5) can be used to convert (deformed) translation between the spinor
and vector representations.

This machinery can be straightforwardly extended to include tensors of arbitrary
symmetry. In particular, for antisymmetric rank two tensor Jab = −Jba one has

Jαα̇,ββ̇ ≡ J
ab(σa)αα̇(σb)ββ̇ . (A.7)

It is easy to show that antisymmetry of Jab implies that Jαα̇,ββ̇ is of the form

Jαα̇,ββ̇ = εαβ J̄α̇β̇ + εα̇β̇Jαβ , (A.8)

with Jαβ and J̄α̇β̇ symmetric. Here

Jαβ = Jβα ≡
1
2(σa)αγ̇(σb)βγ̇Jab,

J̄α̇β̇ = J̄β̇α̇ = 1
2(σa)γα̇(σb)γβ̇J

ab.
(A.9)

For real Jab bispinors Jαβ and J̄α̇β̇ are complex conjugate to each other. One can invert (A.9),
which leads to

Jab = 1
4 (σa)α̇α (σb)β̇β

(
εαβ J̄α̇β̇ + εα̇β̇Jαβ

)
. (A.10)

These relations can be used to convert Lorentz generators from the vector representation to
the spinor one and back.

We also use a convention according to which indices of a symmetric tensor are denoted
by the same letter. In particular, symmetric tensors in (A.9) are often denoted Jαα and
J̄α̇α̇. Moreover, the same convention is used to indicate that a tensor expression should be
projected into the symmetric part. For instance,

Pαα̇Sαα̇ = 1
4 (Pα1α̇1Sα2α̇2 + Pα1α̇2Sα2α̇1 + Pα2α̇1Sα1α̇2 + Pα2α̇2Sα1α̇1) . (A.11)

Finally, for tensors with multiple symmetric indices we write explicitly one of them an
indicate the number of symmetric indices in brackets. For example, Tα(m),α̇(n) is symmetric
in m indices α as well as symmetric in n indices α̇.

B Extended Poincaré algebras

The deformed chiral Poincaré algebra is generated by P , J̄ and L generators. The non-trivial
commutation relations are

[J̄α̇α̇, J̄β̇β̇ ] = −4iεα̇β̇ J̄α̇β̇ , [Pαα̇, J̄β̇β̇ ] = −2iεα̇β̇Pαβ̇ ,

[Pαα̇, Pββ̇ ] = −iεα̇β̇Lαβ .
(B.1)

Along with this algebra, we also consider the L-extended Poincaré algebra. In addition
to P , J̄ and L, it also features Lorentz generators J . It is defined by non-trivial commutation
relations (B.1) together with

[Jαα, Jββ ] = −4iεαβJαβ , [Pαα̇, Jββ ] = −2iεαβPαβ̇ ,

[Lαα, Jββ ] = −4iεαβLαβ .
(B.2)
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Finally, it seems natural to consider a parity-invariant version of the L-extended algebra.
It is generated by P , J , J̄ , L and L̄ generators. The commutator of translations, instead
of (B.1) is given by

[Pαα̇, Pββ̇ ] = −iεα̇β̇Lαβ − iεαβL̄α̇β̇ . (B.3)

The L̄ generator transforms under J̄ as

[L̄α̇α̇, J̄β̇β̇ ] = −4iεα̇β̇L̄α̇β̇ (B.4)

and commutes with other generators. The remaining non-trivial commutation relations are
as in (B.1), (B.2). We will refer to this algebra as the (L, L̄)-extended Poincaré algebra.
For L̄ = (L)∗ this algebra is parity-invariant.

The (L, L̄)-extended Poincaré algebra that we encountered here is also known as the
Maxwell algebra.10 It first appeared in [77] and can be connected to particle motion
in a constant electro-magnetic background, ∂cFab = 0, [75–78]. For recent discussions
and further references, see [79]. The L-extended Poincaré algebra is then the Maxwell
algebra with a self-dual field strength, while the deformed chiral Poincaré algebra is a chiral
subalgebra of the former. In the context of our analysis, it is worthwhile exploring the
existing literature for systematics of the associated representation theory, the homogeneous
spaces these algebras naturally act on, etc.

C Splitting the flat space singleton representation

In this appendix we show that representation (4.3), (4.8), (4.9) can be split into two invariant
subspaces in complete analogy with the splitting of the AdS singleton representation into
positive and negative energy modes [74].

To start, we first solve the homogeneity degree constraints (4.7) in the form

φ(z̄) = ϕN̄
(
λ̄1̇, 1

)
, ϕN̄ (λ̄) =

(
λ̄2̇
)N̄

φ(z̄), z̄ ≡ λ̄1̇

λ̄2̇
. (C.1)

Splitting of the representation (4.3), (4.8), (4.9) is based on the fact that there is an J̄

invariant intertwining operator between representations carried by ϕ− 1
2 and ϕ− 3

2

φ− 3
2 (z̄) = Oφ− 1

2 (z̄) ≡ d i2

∫
(z̄ − z̄1)− 3

2φ− 1
2 (z̄1)dz̄1 (C.2)

where d is an arbitrary normalisation factor. It has the form of the chiral part of the sl(2,C)
shadow transform and sometimes it is referred to as the light transform, see e.g. [80, 81] for
discussions in the celestial holography context.

The intertwining operator (C.2) by construction is J̄ invariant. Below we will require
it to be invariant with respect to the deformed translations, which will ensure invariance
with respect to the complete chiral Poincaré algebra, as well as will fix d. To this end, we

10We would like to thank X. Bekaert for pointing this to us.
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will focus on the action of P11̇ component

φ̃− 1
2 (z̄) ≡ P11̇φ

− 3
2 (z̄) = −Aλ1φ

− 3
2 (z̄),

φ̃− 3
2 (z̄) ≡ P11̇φ

− 1
2 (z̄) = Bλ1

∂φ− 1
2 (z̄)
∂z̄

.
(C.3)

Invariance with respect to P11̇ amounts to the fact that once (C.2) is satisfied, then

φ̃− 3
2 (z̄) = Oφ̃− 1

2 (z̄) (C.4)

is also true. Invariance of O with respect to other components of deformed translations
follows from J̄ covariance of O.

Equations (C.2) and (C.4) entail

Bφ− 1
2 (z̄) = −Ad i2(−2)

∫
dz̄1(z̄ − z̄1)− 1

2d
i

2

∫
dz̄2(z̄1 − z̄2)− 3

2φ− 1
2 (z̄2)dz̄2, (C.5)

which, considering that ∫
dz̄1(z̄ − z̄1)− 1

2 (z̄1 − z̄2)− 3
2 = 4πδ(z̄ − z̄2), (C.6)

leads to
B = −2πd2A. (C.7)

Employing (4.9), we find

d2 = − i

2πA2 . (C.8)

This means that there are two solutions for d that make (C.2) invariant with respect to the
chiral Poincaré algebra. Accordingly, representation (4.3), (4.8), (4.9) can be decomposed
into two invariant subspaces.

Open Access. This article is distributed under the terms of the Creative Commons
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