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1 Introduction

Jet vetoes are ubiquitously applied in experimental analyses at the Large Hadron Collider
(LHC) to select signal events and suppress the background contribution. On the other hand,
the jet veto makes the theoretical description of scattering cross sections more complicated,
since it constrains the phase space of the QCD radiation to the soft and collinear regions.
This induces Sudakov double logarithms in the jet-veto scale at each order in perturbation
theory, which need to be resummed to all orders to obtain reliable predictions.

The resummation of these logarithms beyond the common parton-shower accuracy
was pioneered in [1] using the CAESAR framework. This work triggered a lot of interest
in the theory community, and for the prime examples of Drell-Yan and Higgs-boson
production, the jet-veto logarithms were subsequently resummed to next-to-next-to-leading
logarithmic (NNLL) accuracy, matched to the fixed-order next-to-next-to-leading order
(NNLO) prediction [2–6]. Further refinements that include a resummation of the jet-radius
dependence were considered in [7], while a framework for jointly resumming logarithmic
corrections of the Higgs transverse momentum and the jet-veto scale was put forward in [8].

The developed formalism is not restricted to Drell-Yan and Higgs-boson production,
and a generic framework for resumming jet-veto logarithms for arbitrary electroweak final
states was developed in [9], while specific analyses of associated Higgs production [10, 11],
gauge-boson pair production [12–14] and beyond-the-standard-model signatures [15–18]
were performed at a similar NNLL+NNLO accuracy. Whereas all of these studies used
the transverse momentum to veto jets, other proposals that impose a looser constraint in
the forward directions [19, 20] or a rapidity cut [21, 22] were also investigated. Finally,
factorisation-breaking corrections from Glauber exchanges were addressed in [23], where it
was argued that these become relevant at N4LL accuracy and beyond.

The theoretical foundation for studying cross sections in the presence of a jet veto can
hence be considered as well-established by now. In the language of Soft-Collinear Effective
Theory (SCET) [24–26], the cross section for the production of an electroweak final state
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of invariant mass Q and rapidity Y with a transverse-momentum veto pveto
T � Q can be

written in the following factorised form [2],

d2σ
(
pveto
T

)
dQ2dY

=
∑
i,j

Hij (Q,µ) Bi/h1

(
x1, p

veto
T , µ

)
Bj/h2

(
x2, p

veto
T , µ

)
Sij
(
pveto
T , µ

)
, (1.1)

where the sum runs over all partonic channels and x1,2 = (Q/
√
s) e±Y . Here Hij(Q,µ) is

the hard function that contains the virtual corrections to the Born process, whereas the soft
and collinear emissions that pass the jet-veto constraint are described by the soft function
Sij(pveto

T , µ) and the beam functions Bi/h(x, pveto
T , µ), respectively. As long as the jet-veto

scale lies in the perturbative regime, pveto
T � ΛQCD, the latter can be matched onto the

usual parton distribution functions fi/h(x, µ) via

Bi/h
(
x, pveto

T , µ
)

=
∑
k

∫ 1

x

dz

z
Ii←k

(
x

z
, pveto
T , µ

)
fk/h(z, µ) , (1.2)

which holds at leading power in ΛQCD/p
veto
T . The calculation of the matching kernels

Ii←k(x, pveto
T , µ) for the quark beam function with i = q to NNLO accuracy is the goal of

the present paper.
The matching kernels for transverse-momentum resummation are, in fact, already

known to N3LO accuracy [27–37], as are the ones for N-jettiness [38–46]. Whereas a double-
differential beam function was computed to NNLO in [47–49], the closely-related beam
functions for certain rapidity-dependent jet vetoes are also known at this accuracy [50].
Somewhat surprisingly, the matching kernels for the standard pveto

T are currently only
known to NLO [2, 10]. While the convolution of two gluon beam functions was numerically
extracted from a fixed-order code at NNLO in [5, 6], no such determination was attempted
so far for the quark beam functions. Our calculation therefore provides the ingredients to
extend jet-veto resummations for quark-initiated processes to NNLL′ accuracy.1

As the considered jet veto is based on transverse momenta, the observable is described
by a version of the effective theory that is referred to as SCET-2. It is well known that
perturbative computations in SCET-2 are not well-defined in dimensional regularisation, as
they require an additional prescription to regularise rapidity divergences. The matching
kernels in (1.2) are therefore regularisation-scheme dependent, and we apply the analytic
phase-space regulator proposed in [52] in our calculation. As will be described in the
following section, the scheme dependence drops out once the collinear, anti-collinear and
soft contributions are combined. In order to avoid distribution-valued expressions, we
furthermore determine the matching kernels directly in Mellin space.

Our calculation is based on a novel framework that aims at automating the computation
of NNLO jet and beam functions for a broad class of observables [53, 54]. We indeed checked
our numerical predictions against the analytic results for transverse-momentum resummation
from [30], before implementing the phase-space constraints that are imposed by the jet veto.
The automated setup follows the spirit of SoftSERVE [55–57], which has been successfully

1We use the primed-order counting in this article, in which the matching corrections are included at one
order higher than in the unprimed one, see for instance table 6 in [51].
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applied to compute various NNLO soft functions that involve two light-like Wilson lines.
An extension of the soft-function framework to an arbitrary number of jet directions is
currently in development [58].

The outline of this paper is as follows. In section 2 we lay out the theoretical background
of our framework, and in section 3 we describe some technical aspects of the NNLO
calculation. Our results for the jet-veto matching kernels are presented in section 4, and we
conclude in section 5. In the appendix we collect the anomalous dimensions and splitting
functions that are needed for the renormalisation-group analysis.

2 Theoretical framework

We start from the generic definition of a quark beam function,

1
2

[
/n

2

]
βα
Bq/h(x, τ, µ) =

∑
X

δ
(
(1− x)P− −

∑
i

k−i

)
M(τ ; {ki})

〈h(P )| χ̄α |X〉 〈X|χβ |h(P )〉 , (2.1)

where χ = W †n̄
/n/̄n
4 ψ is the collinear field operator and Wn̄ denotes a collinear Wilson line. We

furthermore introduced two light-cone vectors nµ and n̄µ satisfying n2 = n̄2 = 0 and n·n̄ = 2,
and throughout this article we adopt the notation k−i = n̄ · ki, k+

i = n · ki and a transverse
component k⊥,µi that fulfils n · k⊥i = n̄ · k⊥i = 0. The sum over X indicates the phase
space of the final-state partons with momenta {ki}. At tree level this is just the vacuum
state, and at NNLO it consists of up to two massless partons. The state |h(P )〉 refers to a
hadronic state of momentum Pµ = P−nµ/2, but in order to extract the matching kernels
from the relation (1.2), it will be convenient to consider partonic states instead. In fact, if
the matching is performed on-shell in dimensional regularisation, the parton distribution
functions evaluate to fi/j(x, µ) = δijδ(1− x) to all orders in perturbation theory, and the
calculation of the partonic beam functions directly yields the desired matching kernels.

The above definition of the quark beam function is generic, and the functionM(τ ; {ki})
specifies what is actually measured on the collinear radiation. Following [56, 57] we write
the measurement function in the form

M(τ ; {ki}) = exp
(
− τ ω({ki})

)
, (2.2)

where τ is a Laplace variable of dimension 1/mass, and the function ω({ki}) specifies the
observable. In the jet-veto case, the phase-space constraints are more naturally formulated in
terms of a theta function, M̂(pveto

T ; {ki}) = θ
(
pveto
T −ω({ki})

)
, and it has been shown in [57]

how to convert this into the form (2.2) via a Laplace transform, and how to extract from
this calculation the result in the original pveto

T space. For one emission with momentum kµ,
the constraint is imposed on the transverse momentum of the emission,

ω1(k) = |~k⊥| , (2.3)

but for two emissions or more the measurement function depends on the distance of the
emissions in some predefined measure. If the emissions are close to each other in these
units, they are recombined into a pseudo-particle, whereas they are considered as part of
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two independent jets if they are far away. In the current work we consider the general class
of kT -type jet algorithms, and for two emissions one finds that the measurement function
depends on the jet radius R, but not on the specific clustering prescription according to
the kT , Cambridge/Aachen or anti-kT jet algorithm [2]. Denoting the momenta of the two
emissions by kµ and lµ, the measurement function can be written in the form

ω2(k, l) = θ(∆−R) max
(
|~k⊥|, |~l⊥|

)
+ θ(R−∆) |~k⊥ +~l⊥| , (2.4)

where the distance measure of the jet algorithm translates into

∆ =

√
1
4 ln2 k

−l+

k+l−
+ θ2

kl , (2.5)

with θkl being the angle between the momenta ~k⊥ and ~l⊥ in the transverse plane.
Our automated framework for the computation of NNLO beam functions developed

in [53, 54] furthermore requires that all distributions are resolved by appropriate inte-
gral transformations. For the delta-function constraint in (2.1), this is achieved by a
Mellin transform

B̂i/h(N, pveto
T , µ) =

∫ 1

0
dx xN−1 Bi/h(x, pveto

T , µ) , (2.6)

which brings the matching relation (1.2) into a product form,

B̂i/h(N, pveto
T , µ) =

∑
k

Îi←k(N, pveto
T , µ) f̂k/h(N,µ) . (2.7)

As the considered jet veto is imposed on the transverse momenta of the reconstructed jets,
the relevant soft modes in the effective theory have the same virtuality as the collinear
ones. This version of the effective theory is known as SCET-2, and we use the analytic
phase-space regulator of [52] to regularise rapidity divergences that are not captured by the
dimensional regulator ε = (4− d)/2. Specifically, the rapidity regulator α is introduced on
the level of the phase-space measure

∫
ddki

(
ν

k−i + k+
i

)α
δ(k2

i ) θ(k0
i ) (2.8)

for each emitted parton with momentum kµi . While this corresponds to the prescription
that is implemented for the soft integrals in SoftSERVE, the regulator simplifies in the
collinear region with k−i � k+

i and in the anti-collinear region with k+
i � k−i . As the

rapidity regulator respects the n-n̄ symmetry of the process, it is actually not necessary to
compute the anti-quark beam function in the anti-collinear region explicitly.

The rapidity divergences induce a dependence on the rapidity scale ν that is implicit
in (2.7). In order to obtain a result that is independent of the specific regularisation scheme,
we follow the collinear-anomaly approach [27, 59], which states that the product of the soft,
collinear and anti-collinear functions is finite in the limit α→ 0. Specifically, the product

– 4 –



J
H
E
P
0
1
(
2
0
2
3
)
0
8
3

of the three functions, which contains an implicit dependence on the hard scale Q, can be
refactorised in the form[

Îq←i
(
N1, p

veto
T , µ, ν

)
Îq̄←j

(
N2, p

veto
T , µ, ν

)
Sqq̄

(
pveto
T , µ, ν

)]
Q

=
(

Q

pveto
T

)−2Fqq̄(pveto
T ,µ)

Îq←i
(
N1, p

veto
T , µ

)
Îq̄←j

(
N2, p

veto
T , µ

)
, (2.9)

where the quantities on the right-hand side are manifestly independent of the rapidity scale ν.
In this relation, the dependence on the hard scale Q is controlled by the collinear-anomaly
exponent Fqq̄(pveto

T , µ), which obeys the renormalization-group equation (RGE)

d

d lnµ Fqq̄(pveto
T , µ) = 2 ΓFcusp(αs) , (2.10)

which is controlled by the cusp anomalous dimension in the fundamental representation
ΓFcusp(αs). The refactorised matching kernels Îi←j(N, pveto

T , µ), on the other hand, are
independent of the scheme that is used to regularise the rapidity divergences, and their
scale dependence is controlled by the RGE

d

d lnµ Îi←j
(
N, pveto

T , µ
)

= 2
[
ΓRi

cusp (αs) L− γi (αs)
]
Îi←j

(
N, pveto

T , µ
)

− 2
∑
k

Îi←k
(
N, pveto

T , µ
)
P̂k←j (N,αs) , (2.11)

where L = ln
(
µ/pveto

T

)
, ΓRicusp(αs) is the cusp anomalous dimension in the representation

of the parton i, γi(αs) is the collinear anomalous dimension for quarks (i = q) or gluons
(i = g), and P̂k←j(N,αs) are the DGLAP splitting functions in Mellin space. Explicit
solutions to these RGE to the considered two-loop order are given in the following section.

3 Computational aspects

In our automated setup for computing NNLO beam functions we apply universal phase-space
parametrisations to factorise the implicit divergences of the collinear matrix elements. For
one emission with momentum kµ, we use the magnitude of its transverse momentum with
respect to the beam axis, which is set by Pµ, and we allow for a non-trivial azimuthal
dependence of the observable, i.e. we choose the variables

kT = |~k⊥| , tk = 1− cos θk
2 , (3.1)

where θk is the angle between ~k⊥ and a reference vector ~v⊥ that may be imposed by the
observable. The remaining momentum components are then fixed by the delta function
in (2.1) and the on-shell condition, yielding k+ = k2

T /k
− with k− = (1− x)P−.

Following [53, 54] (see also [55–57]), we then parametrise the generic measurement
function for a single emission in the form

M1(τ ; k) = exp
[
−τkT

(
kT

(1− x)P−
)n

f(tk)
]
. (3.2)
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One easily verifies that the specific jet-veto measurement from (2.3) corresponds to the
case n = 0 and f(tk) = 1 in this notation. The above parametrisation is, however, more
general and in particular it allows us to gauge our numerical results against the analytic
expressions for transverse-momentum resummation from [30], which corresponds to n = 0
and f(tk) = 2i(1− 2tk) in our conventions. The very fact that both of these measurements
are described by n = 0 signals that they are SCET-2 observables [56]. In the latter case, the
factor i is moreover a relic of a Fourier transform, and the non-trivial azimuthal dependence
arises due to the presence of the electroweak particle in the final state, which singles out a
direction in the transverse plane.

For two emissions, we proceed similarly and parametrise the momenta kµ and lµ of the
massless final-state partons in the form

a = k−lT
l−kT

, b = kT
lT
, z = k− + l−

P−
, qT =

√
(k− + l−)(k+ + l+) , (3.3)

where again kT = |~k⊥| and lT = |~l⊥|, and in addition we now have three non-trivial angles
in the transverse plane, θk and θl which refer to the reference vector ~v⊥ as before, and
θkl which is the angle between ~k⊥ and ~l⊥. We then rewrite these angles in terms of the
variables tk, tl and tkl similar to (3.1), which are defined on the unit interval.

In terms of these variables, we make the following ansatz for the two-emission measure-
ment function,

M2(τ ; k, l) = exp
[
−τqT

(
qT

(1− x)P−
)n
F(a, b, z, tk, tl, tkl)

]
, (3.4)

which captures the jet-veto case from (2.4) for

F(a,b,z, tk, tl, tkl) = ρ

{
θ(∆−R) max(1, b)+θ(R−∆)

√
(1−b)2+4b(1−tkl)

}
, (3.5)

with ρ =
√
a/(1 + ab)/(a+ b) and ∆ =

√
ln2 a+ arccos2(1− 2tkl), while the measure for

transverse-momentum resummation is given by F(a, b, z, tk, tl, tkl) = 2iρ
(
b(1−2tk)+1−2tl

)
.

The very fact that the latter involves a Fourier rather than a Laplace transform requires a
workaround in our numerical approach that was described in detail in the appendix of [56].

Having fixed the phase-space parametrisations and the form of the measurement
function, the partonic beam functions can readily be evaluated. The required collinear
matrix elements are known to be related to spin-averaged d-dimensional splitting functions
after crossing [60]. Specifically, we use the expressions from [61–63] for the real-virtual
contribution, and from [64, 65] for the double real-emission part at NNLO. While the
phase-space divergences of the former can easily be factorised in terms of the variables given
in (3.1), this is only true in certain cases for the latter using (3.3). Several further steps that
involve sector-decomposition techniques, non-linear transformations and selector functions
are, in fact, needed to factorise all divergences of the double real-emission contribution.
Once this factorisation is accomplished, it becomes a straightforward task to perform a
Laurent expansion in the rapidity regulator α and the dimensional regulator ε, and we
finally integrate the respective coefficients in this double expansion numerically. To perform
these steps, we have implemented our formalism in the public program pySecDec [66], and
we use the Vegas routine of the Cuba library [67] for the numerical integrations.
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By following this procedure, which will be described in more detail in [68], one obtains
the regulator-dependent matching kernels on the left-hand side of the refactorisation
condition (2.9). In order to extract the regulator-independent matching kernels on the right-
hand side of this equation, one needs to combine the collinear and anti-collinear matching
kernels with the corresponding soft function in the same regularisation scheme. To this end,
we use SoftSERVE, which contains both the considered jet veto and transverse-momentum
resummation among the template observables that are included in the distribution. As a
first check of our calculation, we then observe that the 1/α poles and the dependence on
the rapidity scale ν drop out in the product of the three functions, and we extract the bare
anomaly exponent and the bare refactorised matching kernels using (2.9). The former is
known to renormalise additively, F bare

qq̄ = Fqq̄ + ZFqq̄, and the solution to its RGE (2.10) up
to the considered two-loop order is given by

Fqq̄(pveto
T , µ) =

(
αs
4π

){
2ΓF0 L+ d1

}
+
(
αs
4π

)2 {
2β0ΓF0 L2 + 2

(
ΓF1 + β0d1

)
L+ d2

}
,

(3.6)

where ΓFi and βi are the expansion coefficients of the cusp anomalous dimension and the
β-function, respectively, in the conventions that are specified in appendix A. The non-
logarithmic terms di of the anomaly exponent are, in fact, also known to the considered
two-loop order for both transverse-momentum [27] and jet-veto [1, 5, 6] resummation,
and we can hence use these expressions as a further cross-check of our calculation. For
completeness, we also provide the two-loop solution of the counterterm ZFqq̄, which obeys a
similar RGE as the renormalised anomaly exponent. It reads

ZFqq̄(pveto
T , µ) =

(
αs
4π

){ΓF0
ε

}
+
(
αs
4π

)2
{
−β0ΓF0

2ε2 + ΓF1
2ε

}
. (3.7)

We next consider the refactorised matching kernels that are defined via the relation (2.9).
In Mellin space, these kernels renormalise multiplicatively, but since they contain two
different sources of divergences, we find it convenient to introduce two types of counterterms
in this case. Explicitly, we write Îi←j = ZBi

∑
k Î

bare
i←k Ẑ

f
k←j , where ZBi captures the UV

divergences of the beam function defined in (2.1) (for i = q), whereas Ẑfk←j subtracts the
IR divergences that match the UV divergences of the parton distribution functions. The
former counterterm obeys the RGE

d

d lnµ ZBi

(
pveto
T , µ

)
= 2

[
ΓRi

cusp (αs) L− γi (αs)
]
ZBi

(
pveto
T , µ

)
, (3.8)

which to two-loop order is solved by

ZBi

(
pveto
T ,µ

)
= 1+

(
αs
4π

){
− Γi0

2ε2−
Γi0L−γi0

ε

}

+
(
αs
4π

)2
{(

Γi0
)2

8ε4 +
(

Γi0
2 L− γ

i
0

2 + 3β0
8

)
Γi0
ε3

+
((

Γi0
)2

2 L2−Γi0
(
γi0−

β0
2

)
L

−Γi1
8 +

(
γi0
)2

2 −β0γ
i
0

2

)
1
ε2
−Γi1L−γi1

2ε

}
, (3.9)

and the corresponding coefficients of the anomalous dimensions can again be found in
appendix A.
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While the beam-function counterterm ZBi subtracts double Sudakov-type divergences
that are controlled by the cusp anomalous dimension, the parton distribution functions are
known to have a single-logarithmic evolution. The non-trivial aspect, on the other hand, is
in this case the operator mixing. The RGE of the respective counterterm reads

d

d lnµ Ẑfk←j

(
N, pveto

T , µ
)

= −2
∑
l

Ẑfk←l

(
N, pveto

T , µ
)
P̂l←j(N,αs) , (3.10)

where P̂l←j(N,αs) are the Mellin-space DGLAP splitting functions that we introduced
earlier in (2.11). The general solution to this RGE is given by

Ẑf
k←j

(
N,pveto

T ,µ
)

= δkj +
(αs

4π

){
P̂

(0)
k←j (N) 1

ε

}
(3.11)

+
(αs

4π

)2
{
−P̂ (0)

k←j (N) β0

2ε2 +
∑

l

P̂
(0)
k←l (N) P̂ (0)

l←j (N) 1
2ε2 +P̂ (1)

k←j (N) 1
2ε

}
,

where the P̂ (m)
i←j (N) are the m-th order coefficients of the DGLAP splitting functions that

are also defined in appendix A.
After combining the bare refactorised matching kernels with these counterterms as

described above, we find that all 1/ε divergences drop out to the numerical accuracy of
our calculation. We then extract the renormalised matching kernels, which up to two-loop
order can be written in the form

Îi←j
(
N, pveto

T , µ
)

(3.12)

= δij +
(
αs
4π

){(
Γi0 L2 − 2γi0 L

)
δij − 2L P̂ (0)

i←j (N) + Î
(1)
i←j (N)

}
+
(
αs
4π

)2
{((

Γi0
)2

2 L4 − 2Γi0
(
γi0 −

β0
3

)
L3 +

(
Γi1 + 2

(
γi0

)2
− 2β0γ

i
0

)
L2 − 2γi1L

)
δij

− 2
(
Γi0L3 +

(
β0 − 2γi0

)
L2
)
P̂

(0)
i←j (N) +

(
Γi0L2 − 2

(
γi0 − β0

)
L
)
Î

(1)
i←j (N)

+ 2
∑
k

(
L2 P̂

(0)
i←k (N)− L Î(1)

i←k (N)
)
P̂

(0)
k←j (N)− 2L P̂ (1)

i←j (N) + Î
(2)
i←j(N)

}
.

While the logarithmic terms in this expression are controlled by known anomalous dimensions
and splitting functions, the goal of the present article consists in determining the non-
logarithmic terms Î(m)

i←j(N). We in fact use the known analytic results for transverse-
momentum resummation as a final cross-check of our calculation, and we provide the
two-loop coefficients Î(2)

q←j(N) for jet-veto resummation for the first time in this work.

4 Results

We now present our results for the renormalised matching kernels Î(m)
q←j(N) up to two-loop

order. As QCD is invariant under charge conjugation, the corresponding anti-quark kernels
Î

(m)
q̄←j(N) can be directly derived from these expressions. Although we obtained similar
results for transverse-momentum resummation with our generic setup, we only show the
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jet-veto kernels here, since the former are already known for a long time and they serve
only as a cross-check of our calculation. Our results for transverse-momentum resummation
have, in fact, already been presented in [53, 54].

Whereas the matching kernels are trivial at tree level, see (3.12), they can easily be
evaluated analytically at NLO, since the complicated phase-space constraints that are
imposed by the jet algorithm are still ineffective at this order. In Mellin space, the kernels
for the two non-vanishing channels at this order are given by

Î(1)
q←q(N) = CF

( 2
N
− 2
N + 1 −

π2

6

)
,

Î(1)
q←g(N) = TF

( 4
N + 1 −

4
N + 2

)
, (4.1)

whereas the one-loop anomaly exponent vanishes, d1 = 0.
At NNLO we sample the matching kernels for ten values of the Mellin parameter

N ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20} and three values of the jet radius R ∈ {0.2, 0.5, 0.8}.
In order to gauge the accuracy of our numerical predictions, we first extract the known
two-loop quark anomalous dimension,

γq1 = γCF
1 C2

F + γCA
1 CFCA + γ

nf

1 CFTFnf , (4.2)

and the two-loop anomaly exponent,

d2 = dCF
2 C2

F + dCA
2 CFCA + d

nf

2 CFTFnf , (4.3)

from our calculation. Specifically, we use our numbers for the quark-to-quark matching
kernel with N = 8 and R = 0.5 for this purpose. For the quark anomalous dimension,
we obtain

γCF
1 = −10.6105(152) [−10.6102] ,

γCA
1 = −4.6424(142) [−4.6371] ,
γ
nf

1 = 11.3948(20) [11.3946] , (4.4)

where the known analytic numbers are shown in the square brackets for comparison. The
two-loop anomaly exponent, on the other hand, depends on the jet radius R and is displayed
in the upper left panel of figure 1. In this plot, we also show the known results from [5],
which were obtained semi-analytically in an expansion for R � 1. Note that our results
have numerical uncertainties, which are not visible on the scale of the plot, while the results
from [5] have an inherent error due to the truncation of the small-R expansion. Overall,
the plot shows that the two-loop anomaly is correctly reproduced by our calculation, and
that the expansion used in [5] extends up to large values of R . 1.

For the non-logarithmic terms of the matching kernels we use the decomposition

Î(2)
q←q(N) = C2

F Î
(2,CF )
q←q (N) + CFCA Î

(2,CA)
q←q (N) + CFTFnf Î

(2,nf )
q←q (N) + CFTF Î

(2,TF )
q←q (N) ,

Î(2)
q←g(N) = CFTF Î

(2,CF )
q←g (N) + CATF Î

(2,CA)
q←g (N) ,

Î
(2)
q←q̄(N) = CF (CA − 2CF ) Î(2,CAF )

q←q̄ (N) + CFTF Î
(2,TF )
q←q (N) ,

Î
(2)
q←q′(N) = Î

(2)
q←q̄′(N) = CFTF Î

(2,TF )
q←q (N) . (4.5)
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Figure 1. Upper left: two-loop anomaly exponent d2 as a function of the jet radius R. The dots
show the results of our numerical evaluation, and the lines represent the expansion from [5]. Other:
non-logarithmic terms of the NNLO matching kernels defined in (4.5) for three different values of
the jet radius R. .

Apart from the quark-to-quark and gluon-to-quark channels that are already present at
NLO, there are further channels opening up at NNLO, and we write q′ and q̄′ to indicate that
the initiating parton has a different flavour than the quark that appears in the definition of
the beam function. In total, there are thus seven independent matching kernels at this order
that we resolve numerically in Mellin space in our approach. The first three quark-to-quark
kernels are shown in figure 1, and the remaining four kernels are displayed in figure 2.

We emphasise again that our results have numerical uncertainties, which can be
reconstructed from the electronic file that accompanies the present article, but which are
not visible on the scale of the plot. Except in special cases, in which the central value by
itself is very small, these uncertainties are well below the percent level, and they are, in fact,
smaller for the jet-veto kernels than for the ones of transverse-momentum resummation, for
which the Fourier transform is known to pose numerical challenges in our framework [56].
Interestingly, for some kernels the dependence on the jet radius R is quite pronounced,
while it is less so for others. While we focused here on real Mellin values for illustration
purposes, we emphasise that our method can, moreover, equally be applied for complex
values of N , as required for inverting the Mellin transform.

5 Conclusion

We computed the beam-function matching kernels for jet-veto resummation in quark-
initiated processes to NNLO. As the considered jet veto is imposed on the transverse
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Figure 2. Non-logarithmic terms of the NNLO matching kernels defined in (4.5).

momenta of the reconstructed jets, the beam function is defined in SCET-2, and we used
the analytic phase-space regulator of [52] to regularise rapidity divergences. We furthermore
combined the matching kernels with the corresponding soft function, which we calculated
with SoftSERVE, to obtain scheme-independent expressions. Our final results for the Mellin-
space matching kernels are shown in figures 1 and 2, and they are also provided in electronic
form as supplementary material attached to this papaer.

While we focused on real values of the Mellin parameter N for illustration, our method
is not restricted to this assumption. One may thus use our method to numerically invert
the Mellin transform by choosing an appropriate contour in the complex Mellin plane.
While this requires a careful treatment of the distributional terms in momentum space,
the run-time of our codes is small enough to use very fine grids for this inversion, which
guarantees that the associated systematic uncertainties are under control. In a future work,
we plan to present an alternative method for computing beam-function matching kernels
directly in momentum space.

Our computation is based on a novel framework that automates the calculation of
NNLO beam functions [53]. Apart from the transverse-momentum and jet-veto beam
functions considered in this work, we in fact already applied this formalism to other SCET-1
and SCET-2 observables [54]. For the jet veto, our calculation provides the ingredients
to extend the resummations for quark-initiated processes to NNLL′ accuracy. It would
furthermore be interesting to derive the respective gluon beam function with the same
method, which we leave for future work. In the long term, we plan to provide a public code
for the computation of NNLO beam functions in the spirit of the SoftSERVE distribution.
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Note added. Shortly after our work was published on arXiv, ref. [69] appeared which
also addresses the NNLO jet-veto matching kernels. While the authors of [69] in addition
considered the gluonic channels, their computational approach seems very different from
ours, as they used, for instance, a different rapidity regulator, they only computed the
difference with respect to a reference observable, and they calculated the matching kernels
directly in momentum space. Our approach, on the other hand, provides a straight-forward
calculation in Mellin space that does not rely on any reference observable, and it can
therefore easily be adapted to other observables.
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A Anomalous dimensions and splitting functions

We define the coefficients in the perturbative expansion of the anomalous dimensions as

ΓRcusp(αs) =
∞∑
m=0

(
αs
4π

)m+1
ΓRm , γi(αs) =

∞∑
m=0

(
αs
4π

)m+1
γim , (A.1)

and similarly for the QCD β-function

β(αs) = −2αs
∞∑
m=0

(
αs
4π

)m+1
βm . (A.2)

In this work we need the cusp anomalous dimension in the fundamental representation and
the collinear quark anomalous dimension to two-loop order [70],

ΓF0 = 4CF , (A.3)

ΓF1 = 4CF

{(
67
9 −

π2

3

)
CA −

20
9 TFnf

}
,

γq0 = −3CF ,

γq1 = C2
F

(
2π2 − 3

2 − 24ζ3

)
+ CFCA

(
26ζ3 −

961
54 −

11π2

6

)
+ CFTFnf

(
130
27 + 2π2

3

)
,

whereas the β-function is only required to one-loop order,

β0 = 11
3 CA −

4
3TFnf . (A.4)

We furthermore expand the Mellin-space splitting functions in the form

P̂j←i(N,αs) =
∞∑
m=0

(
αs
4π

)m+1
P̂

(m)
j←i(N) , (A.5)
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N P̂
(1,CF )
q←q P̂

(1,CA)
q←q P̂

(1,nf )
q←q P̂

(1,TF )
q←q P̂

(1,CF )
q←g P̂

(1,CA)
q←g P̂

(1,CAF )
q←q̄

2 3.9979 -13.8508 4.7407 1.4815 2.7407 1.2963 -0.0751

4 5.3153 -23.9337 9.8304 0.0795 3.1287 -1.8208 -0.0026

6 6.1672 -29.7455 12.9439 0.0156 3.1971 -2.3413 -0.0003

8 6.7588 -33.9480 15.2188 0.0049 3.1287 -2.4719 0.0000

10 7.1955 -37.2665 17.0189 0.0020 3.0170 -2.4766 0.0000

12 7.5327 -40.0172 18.5109 0.0010 2.8952 -2.4330 0.0000

14 7.8021 -42.3694 19.7860 0.0005 2.7755 -2.3702 0.0000

16 8.0228 -44.4256 20.8997 0.0003 2.6624 -2.3007 0.0000

18 8.2074 -46.2527 21.8885 0.0002 2.5573 -2.2302 0.0000

20 8.3645 -47.8972 22.7777 0.0001 2.4602 -2.1613 0.0000

Table 1. Two-loop splitting functions evaluated at sample values of the Mellin parameter.

which at one-loop order are given by

P̂ (0)
q←q(N) = CF

(
3− 2HN+1 − 2HN + 2

N

)
,

P̂ (0)
q←g(N) = TF

( 4
N + 2 −

4
N + 1 + 2

N

)
,

P̂ (0)
g←q(N) = CF

( 2
N + 1 −

4
N

+ 4
N − 1

)
,

P̂ (0)
g←g(N) = CA

(
− 4HN−2 −

4
N + 2 + 4

N + 1 −
8
N

)
+ β0 , (A.6)

where HN is the N -th harmonic number. At two-loop order and beyond, the Mellin-space
splitting functions are often expressed in terms of harmonic sums (see e.g. [71–73]), but we
do not repeat these lengthy expressions here. Instead we provide numerical values for the
Mellin parameters that we used in our analysis in section 4. To this end, we start from a
similar decomposition as in (4.5)

P̂ (1)
q←q(N) =C2

F P̂
(1,CF )
q←q (N)+CFCA P̂ (1,CA)

q←q (N)+CFTFnf P̂
(1,nf )
q←q (N)+CFTF P̂ (1,TF )

q←q (N) ,

P̂ (1)
q←g(N) =CFTF P̂

(1,CF )
q←g (N)+CATF P̂ (1,CA)

q←g (N) ,

P̂
(1)
q←q̄(N) =CF (CA−2CF ) P̂ (1,CAF )

q←q̄ (N)+CFTF P̂ (1,TF )
q←q (N) ,

P̂
(1)
q←q′(N) = P̂

(1)
q←q̄′(N) =CFTF P̂

(1,TF )
q←q (N) . (A.7)

The numerical values we obtained for these coefficients by integrating the momentum-space
splitting functions provided in [74–76] are shown in table 1.
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