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1 Introduction

Flat space holography attracted considerable attention in recent years, see e.g. [1–4] for
review. Despite significant progress in this area, explicit holographically dual pairs with
both theories independently defined are lacking, see, however, recent suggestions [5–7]. As
was reviewed in [8], this difficulty originates from the fact, that flat space counterparts of
boundary conformal field theories with the desired properties do not exist. In particular,
ultra-relativistic contractions of conformal field theories lead to nilpotent translations, which
is incompatible with the non-trivial action of translations for the usual fields in the Minkowski
bulk space. This suggests that the familiar holographic setup cannot be directly carried
over from the AdS space to the flat space, instead, it requires considerable modifications.

To understand how exactly flat space holography may work a natural starting point is
the setting of higher-spin holography. In the simplest scenario of the higher-spin holography
in AdS [9, 10] the boundary theory is free. Due to that, to large extent higher-spin
holography reduces to simple representation theory manipulations and, moreover, both sides
of the duality are severely constrained by rich higher-spin symmetry. Thus, higher-spin
holography in the AdS space crucially relies on a set of simple and rigid structures, which
may be used to control consistency of the deformation of the whole construction into the
flat space bulk.
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Higher-spin theories in flat space are well understood in the chiral (self-dual) sector,
see [11–13] for original results and [14] for a detailed review.1 In particular, the associated
global higher-spin symmetries were established in [15, 17, 18, 25–27]. Following the standard
steps this symmetry algebra allows one to identify the dual theory, referred to as the flat
space singleton. In [8] it was found that the flat space singleton carries a representation of
a certain deformation of the Poincare algebra — which can be connected to the so-called
Maxwell algebra [28–32] — and explicit realisations of this representation were given. This
deformation of the Poincare algebra is what makes the given setup very different from more
standard ones — usually, based on the BMS symmetry [33, 34] — and what allows one to
overcome the difficulty with the existence of the dual theory we alluded to above.

In the present paper we further elaborate on the proposal made in [8]. In particular, we
show that the flat space singletons feature a version of the Flato-Fronsdal theorem [35]. To
be more precise, we show that the tensor product of two flat space singletons decomposes
into the direct sum of representations, for which the aforementioned deformation of the
Poincare algebra trivialises and which can be identified with the usual massless higher-
spin fields in the Minkowski space. Our argument is based on the explicit kernel, which
intertwines the representations as stated above.

Next, we construct two-point functions of singleton representations, by requiring that
these are invariant with respect to the deformed Poincare algebra. Then, assuming that
the theory of singletons is free, we compute simple correlators of single-trace operators by
performing the Wick contractions. Finally, employing the intertwining kernel we constructed
previously, these give rise to two- and three-point amplitudes of the higher-spin gauge
theory. The latter agree with amplitudes in the chiral higher-spin theory.

This paper is organised as follows. In the next section we review how the relevant
deformed Poincare algebras are defined, present their singleton representations and the
representation associated with the tower of massless higher-spin fields. In section 3 we
construct the intertwining kernel between the tensor product of two singletons and massless
higher-spin fields. In this way we prove the flat space version of the Flato-Fronsdal theorem.
We then compute correlators in the theory of free singletons in section 4, which are then
reinterpreted as higher-spin scattering amplitudes. We conclude in section 5.

2 Deformed Poincare algebra and its representations

In this section we recall how the relevant deformations of the Poincare algebra are defined.
We next review how the massless higher-spin fields transform with respect to these algebras
as well as give their singleton representations.

The deformed chiral Poincare algebra consists of the anitholomorphic half of the Lorentz
transformations, J̄α̇β̇, deformed translations Pαα̇ and the central element Lαα. Unlike for
the usual Poincare algebra deformed translations do not commute

[Pαα̇, Pββ̇ ] = −iεα̇β̇Lαβ . (2.1)
1Some recent developments on chiral higher-spin theories can be found in [15–19]. Chiral higher-spin

theories and related structures has been also recently discussed in the context of celestial holography [20–23].
We would also like to mention a related earlier work [24].
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The dotted spinor indices refer to the complex conjugate representation of sl(2,C) generated
by J̄α̇α̇. Unless the remaining Lorentz generators Jαα are added the undotted spinor indices
do not transform, they only enumerate different components of Pαα̇ and Lαα. If Jαα are
added, the undotted indices transform in the fundamental representation of sl(2,C). Then
L commutes non-trivially with J , so L is no longer a central element. The latter algebra
will be referred to as the L-deformed Poincare algebra and it is a version of the so-called
Maxwell algebra [28–32]. For more details on the definitions and for explicit commutation
relations, see [8].

2.1 Massless higher-spin fields

Massless positive energy higher-spin representations of the deformed chiral Poincare algebra
are given by

J̄α̇α̇ = 2iλ̄α̇
∂

∂λ̄α̇
, Pαα̇ = −λαλ̄α̇, Lαα = 0. (2.2)

The representation space is carried by functions Φ(λ; λ̄) on C2/{0}. Together with the
remaining part of the Lorentz algebra, which is realised as

Jαα = 2iλα
∂

∂λα
(2.3)

we obtain the usual massless higher-spin representations of the Poincare algebra. Indeed,
due to the fact that for these representations L = 0, deformation (2.1) becomes trivial
and we end up dealing with the usual massless fields. Note that once we keep only
generators (2.2), states with different λ are not mixed by the algebra. Then λ can be
regarded as a representation label in the sense of labelling different representations.

2.2 Singleton representations

For our purposes it is more convenient to use the single-variable realisation of the singleton
representations given in [8]. To be more precise, we take

J̄1̇1̇ = a2, J̄2̇2̇ = − ∂2

∂a2 , J̄1̇2̇ = −i
(
a
∂

∂a
+ 1

2

)
,

Pα1̇ = − 1√
2
λαa, Pα2̇ = i√

2
λα

∂

∂a
,

Lαα = 1
2λαλα.

(2.4)

The representation space is given by functions cλ(a), where λ labels different representations.
Representation (2.4) can be extended to the representation of the L-deformed Poincare
algebra. Then J acts as in (2.3). Moreover, the representation space splits into two invariant
subspaces defined by

c−λ(−a) = ±cλ(a). (2.5)

The even subspace is analogous to the scalar singleton in the AdS space, while the odd one
is analogous to the AdS spinor singleton

scalar: c−λ(−a) = cλ(a),
spinor: c−λ(−a) = −cλ(a).

(2.6)
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3 Flat space Flato-Fronsdal theorem

We start by giving a simple qualitative argument, which suggests how the Flato-Fronsdal
theorem may work in flat space. As we could see in the previous section, massless higher-spin
fields decompose into the direct sum of representations of the deformed chiral Poincare
algebra labelled by λ. At fixed λ the representation space is given by a function of two
variables λ̄1̇ and λ̄2̇. In turn, the singleton representation at fixed λ is realised by a function
of a single variable a. This superficial analysis suggests that the tensor product of two
singletons with fixed λ may give a massless higher-spin representation with fixed λ.

Below we will show that this is, indeed, the case. This will be done by providing an
explicit intertwining map

Cλ1(λ),λ2(λ)(a1, a2) =
∫
dλ̄1̇dλ̄2̇k(a1, a2; λ̄1̇, λ̄2̇)Φ(λ; λ̄1̇, λ̄2̇), (3.1)

where C is the wave function of the tensor product of two singletons and λi are uniquely
defined by λ, as anticipated by the argument given above. The fact that the intertwining
kernel k is invariant under the deformed chiral Poincare algebra implies that for any of its
generators O one has

OCk = OTΦk. (3.2)

Here the subscripts C and Φ refer to the action of O in the tensor product of singletons and
in the higher-spin representations, while the superscript T refers to integration by parts.

3.1 Intertwining J̄

We will start by finding the most general intertwining kernel, which is invariant with respect
to the antiholomorphic half of the Lorentz algebra generated by J̄ . In principle, this can
be done by explicitly solving differential equations resulting from (3.2). This turns out
to be somewhat cumbersome, moreover, by proceeding this way one may easily overlook
distributional solutions. Below, we will use a different method, which relies on treating
representations as the lowest-weight ones.

For representation (2.4) it is suggestive to regard iJ̄1̇2̇ as a weight, which is lowered
by J̄2̇2̇ and raised by J̄1̇1̇. Then, the singleton representation (2.4) is the lowest-weight
representation with the lowest-weight space spanned by c1

λ(a) = 1, c2
λ(a) = a and the

associated eigenvalues of iJ̄1̇2̇ are equal to 1
2 and 3

2 respectively. The tensor product of two
such representations is again a lowest-weight representation. Its lowest-weight space can be
found by directly solving the lowest-weight condition

−
(
∂2

∂a2
1

+ ∂2

∂a2
2

)
C lw
λ1,λ2(a1, a2) = 0. (3.3)

This leads to
C lw
λ1,λ2(a1, a2) =

∑
k=0

[
αk(a1 + ia2)k + βk(a1 − ia2)k

]
. (3.4)

The associated eigenvalues of iJ̄1̇2̇ are

iJ̄1̇2̇(a1 + ia2)k = (k + 1)(a1 + ia2)k,
iJ̄1̇2̇(a1 − ia2)k = (k + 1)(a1 − ia2)k.

(3.5)
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In other words, we find that the tensor product of two singleton representations is a direct
sum of lowest-weight representations of J̄ with lowest weights 1, 2, . . . , each representation
appearing twice. Without loss of generality, we can focus on the first branch of solutions
in (3.4), while the second one can be obtained by permuting a1 and a2. Once the lowest
weight states are known, the remaining states in the representation can be obtained by
applying the raising operator. Explicitly, one finds

(J̄1̇1̇)n(a1 + ia2)k = (a2
1 + a2

2)n(a1 + ia2)k = (a1 + ia2)n+k(a1 − ia2)n. (3.6)

Next, we will repeat a similar analysis for the massless higher-spin representations. The
J̄ generators explicitly read

J̄1̇1̇ = −2iλ̄2̇ ∂

∂λ̄1̇
,

J̄1̇2̇ = −iλ̄2̇ ∂

∂λ̄2̇
+ iλ̄1̇ ∂

∂λ̄1̇
,

J̄2̇2̇ = 2iλ̄1̇ ∂

∂λ̄2̇
.

(3.7)

Accordingly, the lowest-weight space satisfies

2iλ̄1̇ ∂

∂λ̄2̇
Φlw(λ; λ̄1̇, λ̄2̇) = 0. (3.8)

This equation admits two branches of solutions

Φlw(λ; λ̄1̇, λ̄2̇) = δ(λ̄1̇)γ1(λ̄2̇) + γ2(λ̄1̇). (3.9)

These two branches are related by the Fourier transform in the λ̄ variable, which is an auto-
morphism of representation (3.7). Without loss of generality we will focus on the first branch.

Considering polynomial γ1, we find the following spectrum of lowest-weight states

iJ̄1̇2̇δ(λ̄
1̇)
(
λ̄2̇)k = δ(λ̄1̇) (k + 1)

(
λ̄2̇)k, (3.10)

where k ≥ 0. Accordingly, eigenvalues of iJ̄1̇2̇ for the lowest-weight states are equal to
1, 2, . . . , which matches the spectrum we found previously for the tensor product of two
singleton representations. We proceed further to the remaining states in the representation.
By applying the raising operator we find

(J̄1̇1̇)nδ(λ̄1̇)
(
λ̄2̇)k =

(
−2iλ̄2̇ ∂

∂λ̄1̇

)n
δ(λ̄1̇)

(
λ̄2̇)k = (−2i)nδ(n)(λ̄1̇)

(
λ̄2̇)n+k

. (3.11)

It is now not hard to find a map that relates (3.6) and (3.11). Indeed, each factor of
a1 + ia2 in (3.6) goes over to a factor of λ̄2̇ in (3.11). Similarly, each factor of a1 − ia2
in (3.6) generates a derivative of δ(λ̄1̇) in (3.11). The latter map can be implemented by
first replacing a1 − ia2 with some µ̄, which is then Fourier transformed to λ̄1̇. By putting
these observations together, we find that the map between the two representations reads

Cλ1,λ2(a1, a2) =
∫
dλ̄1̇e−iα2 (a1−ia2)λ̄1̇Φ

(
λ; λ̄1̇,

1
α

(a1 + ia2)
)
. (3.12)
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Here we added an extra undetermined variable α, which accounts for the fact, that different
irreducible representations, characterised by different lowest weights, can be intertwined
with independent relative factors. Equation (3.12) implies that the intertwining kernel (3.1)
so far, has been fixed to be of the form

kα(a1, a2, λ̄
1̇, λ̄2̇) = e−iα2 (a1−ia2)λ̄1̇

δ

(
λ̄2̇ − 1

α
(a1 + ia2)

)
. (3.13)

The most general intertwining kernel, which is consistent with J̄ symmetry, can be obtained
from (3.13) by integration with an arbitrary weight w(α). Having derived k from the lowest
weight considerations, we checked explicitly that it does satisfy (3.2) for J̄ generators.

3.2 Intertwining P and L

We now move on to the requirement of the invariance of k under deformed translations.
Explicitly one has

Pα1̇ = λαλ̄
2̇, Pα2̇ = −λαλ̄1̇ (3.14)

in the higher-spin representation, while

Pα1̇ = − 1√
2

(λα,1a1 + λα,2a2) , Pα2̇ = i√
2

(
λα,1

∂

∂a1
+ λα,2

∂

∂a2

)
(3.15)

for the tensor product of singletons. The invariance condition (3.2) for Pα1̇ then leads to[
− 1√

2
(λα,1a1 + λα,2a2)− λαλ̄2̇

]
kα = 0. (3.16)

With k given in (3.13), this entails

λα,1 =
√

2
α
λα, λα,2 = i

√
2
α
λα. (3.17)

As it was anticipated above, we find that λ’s of massless higher-spin fields and of two
singletons, indeed, determine each other and, thus, the Flato-Fronsdal theorem in flat space
works at fixed λ. Imposing Pα2̇ invariance is not necessary as it follows from J̄ and Pα1̇
invariance. Besides that, invariance with respect to L also follows, as L is generated from
the commutator of two translations (2.1).

To summarise, we found that the intertwining map (3.1) between a pair of singleton
representations and the massless higher-spin fields reads

C√
2
α
λ,i

√
2
α
λ
(a1, a2) = v(λ)

∫
dλ̄1̇dλ̄2̇e−iα2 (a1−ia2)λ̄1̇

δ

(
λ̄2̇ − 1

α
(a1 + ia2)

)
Φ(λ; λ̄1̇, λ̄2̇),

(3.18)
where v(λ) is an arbitrary function, which accounts for the fact that the Flato-Fronsdal
theorem in flat space works independently at different λ. If, in addition, invariance with
respect to J (2.3) is imposed, then v(λ) is constant. This is what we will assume in the
following. Besides that, the kernel in (3.18) features an undetermined parameter α, which
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for given wave functions of singletons contributes to the higher-spin wave function as
Φ(α−1λ, αλ̄). Thus, the homogeneity degree in α counts the helicity of the higher-spin field
and the ambiguity in α is related to the ambiguity to rescale fields of different helicities.
This ambiguity is unphysical and was totally expected. Below we will keep α arbitrary.
Still, it can be fixed from some additional considerations, such as the requirement that the
intertwining kernel is higher-spin invariant, which we discuss in appendix A.

Finally, we remark that the map defined by (3.18) is, clearly, invertible, thus, the
tensor product of two singletons is, indeed, equivalent to the tower of massless higher-spin
representations.

3.3 Products of irreducible representations

In this section we will give more refined versions of the flat space Flato-Fronsdal theorem,
which take into account symmetry constraints (2.6) making the singleton representation
irreducible.

We start by considering the tensor product of two scalar singletons. To this end, we
start from the kernel of (3.18)

K(λ, λ̄|a1,λ1;a2,λ2)≡ δ2
(
λ1−

√
2
α
λ

)
δ2
(
λ2−i

√
2
α
λ

)
e−iα2 (a1−ia2)λ̄1̇

δ

(
λ̄2̇− 1

α
(a1+ia2)

)
,

(3.19)
which we supplemented with additional delta functions making the λ-dependence explicit.
For the tensor product of two scalar singletons this kernel should be projected in a way
that it becomes even in (2.5) for each singleton leg. This leads to

Kscalar×scalar(λ, λ̄|a1, λ1; a2, λ2)

= 1
4
(
K(λ, λ̄|a1, λ1; a2, λ2) +K(λ, λ̄| − a1,−λ1; a2, λ2)

+K(λ, λ̄|a1, λ1;−a2,−λ2) +K(λ, λ̄| − a1,−λ1;−a2,−λ2)
)
.

(3.20)

It then straightforward to check that

Kscalar×scalar(−λ,−λ̄|a1, λ1; a2, λ2) = Kscalar×scalar(λ, λ̄|a1, λ1; a2, λ2). (3.21)

This implies that the tensor product of scalar singletons decomposes into the sum of bosonic
higher-spin fields

scalar× scalar = bosonic HS. (3.22)

In a similar manner we find that

spinor× spinor = bosonic HS,
scalar× spinor = fermionic HS.

(3.23)

Another option is to consider symmetric tensor products. For the product of scalar
singletons, the associated kernel is

KSym(scalar×scalar)(λ, λ̄|a1, λ1; a2, λ2)

= 1
2
(
Kscalar×scalar(λ, λ̄|a1, λ1; a2, λ2) +Kscalar×scalar(λ, λ̄|a2, λ2; a1, λ1)

)
.

(3.24)
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It is straightforward to check that

KSym(scalar×scalar)(−iλ, iλ̄|a1, λ1; a2, λ2) = KSym(scalar×scalar)(λ, λ̄|a1, λ1; a2, λ2), (3.25)

which means that the symmetric product of two scalar singletons contains only even-spin
fields

Sym(scalar× scalar) = even bosonic HS. (3.26)

Analogously, one finds that

Sym(spinor× spinor) = odd bosonic HS. (3.27)

Finally, we would like to note that the realisation of the flat space singleton as in (2.4)
has some common features with the standard oscillatorial realisation of so(3, 2) singletons,
while (2.2), (2.3) can be obtained by a smooth flat limit from the analogous realisaion of
massless higher-spin fields in the AdS space. Besides that, the flat space chiral higher-spin
algebra is related to the higher-spin algebra in AdS by a smooth contraction. Similarly,
the flat space kernel that we have found is reminiscent of the one that can be extracted
from [36]. Considering all these similarities and relations, it would be interesting to see
whether our result can be obtained by a smooth contraction of the kernel of [36].

4 Higher-spin amplitudes from the dual theory

In the previous section we established a flat space version of the Flato-Fronsdal theorem.
We also derived an explicit kernel that intertwines the higher-spin wave function with the
wave function of the tensor product of two singleton fields. In the present section we will use
this intertwining kernel to compute the simplest higher-spin amplitudes from the correlators
of bilinear operators in the theory of flat space singletons. As in the simplest example of
the higher-spin holography in the AdS space, we will assume that the boundary theory is
free. This means that the correlators in this theory can be computed simply by performing
the Wick contractions and, thus, are expressed in terms of two-point functions of singletons.

4.1 Two-point function of singletons

We start by deriving the two point function of singletons. As in the previous analysis, it
will be fixed by requiring invariance with respect to the deformed Poincare algebra.

Let gλ1,λ2(a1, a2) be the two-point function of the singleton. Each of the legs of the
two-point function transforms in the representation, which is dual to (2.4) or, in other
words, operators in (2.4) need to be integrated by parts. Then invariance with respect to
J̄ requires

(a2
1 + a2

2)gλ1,λ2(a1, a2) = 0,

−
(
∂2

∂a2
1

+ ∂2

∂a2
2

)
gλ1,λ2(a1, a2) = 0,

i

(
a1

∂

∂a1
+ a2

∂

∂a2
+ 1

)
gλ1,λ2(a1, a2) = 0.

(4.1)

– 8 –



J
H
E
P
0
1
(
2
0
2
3
)
0
4
8

The first of these equations implies

gλ1,λ2(a1, a2) = k1(a1 + ia2)δ(a1 − ia2) + k2(a1 − ia2)δ(a1 + ia2), (4.2)

where k1 and k2 are arbitrary functions. Combining this with the remaining two equations,
we find that

gλ1,λ2(a1, a2) = β1δ(a1 − ia2) + β2δ(a1 + ia2). (4.3)

Next, we require that deformed translations leave the two-point function invariant.
This leads to

− 1√
2

(λα,1a1 + λα,2a2)gλ1,λ2(a1, a2) = 0. (4.4)

Together with (4.3), this entails

gλ1,λ2(a1, a2) = g1
λ1,λ2(a1, a2) + g2

λ1,λ2(a1, a2),
g1
λ1,λ2(a1, a2) = β1δ

2(λα,1 + iλα,2)δ(a1 + ia2),
g2
λ1,λ2(a1, a2) = β2δ

2(λα,1 − iλα,2)δ(a1 − ia2).
(4.5)

The remaining generators leave the two-point function invariant automatically. One can
consider two-point function of singletons with fixed parity (2.5), which will relate β1 and
β2. For simplicity, below we consider β1 = 1, β2 = 0.

4.2 Two-point amplitude of higher-spin fields

We will now use the two-point functions of flat space singletons just derived to compute
the two-point amplitude of massless higher-spin fields. To this end, as in the usual CFT
relevant for the AdS space holography, we consider the two-point correlator of single trace
operators2

〈: ϕ1(a1)ϕ2(a2) : : ϕ3(a3)ϕ4(a4) :〉, (4.6)

where ϕ(a) is the operator of the singleton field localised at a. Then, employing the
intertwining kernels we derived previously, : ϕ1ϕ2 : and : ϕ3ϕ4 : will be converted to the
higher-spin representation and (4.6) will be reinterpreted as the two-point amplitude of
massless higher-spin fields in the Minkowski space.

As we mentioned before, we assume that the dual theory is free, thus (4.6) is computed
by performing the Wick contractions. There are two inequivalent ways to perform the Wick
contractions in (4.6)

〈: ϕ1(a1)ϕ2(a2) : : ϕ3(a3)ϕ4(a4) :〉
= gλ1,λ3(a1, a3)gλ2,λ4(a2, a4) + gλ1,λ4(a1, a4)gλ2,λ3(a2, a3).

(4.7)

For definiteness, let us focus on the second term. We need to find a configuration of λ
for the singletons in such a way that gλ1,λ4(a1, a4), gλ2,λ3(a2, a3) as well as the intertwining
kernels to higher-spin fields are all non-trivial. One such configuration is

λ1 = λ, λ2 = iλ, λ3 = λ, λ4 = iλ, λa = α√
2
λ, λb = α√

2
λ. (4.8)

2Vector O(N) indices can be added in a straightforward manner.
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Here λa is the spinor for the higher-spin field arising as the tensor product of singletons 1
and 2, while λb is the spinor for the higher-spin field associated with singletons 3 and 4.
For values of λ as indicated in (4.8) one has the first type of two-point functions (4.5) —
g1
λ1,λ4

(a1, a4) and g1
λ2,λ3

(a2, a3) — non-vanishing.
The λ̄-dependent part of the two-point amplitude of higher-spin fields then reads

Ar(λ̄a, λ̄b) =
∫
da1da2da3da4kα(a1, a2, λ̄

1̇
a, λ̄

2̇
a)

× kα(a3, a4, λ̄
1̇
b , λ̄

2̇
b)g1

λ1,λ4(a1, a4)g1
λ2,λ3(a2, a3)

=
∫
da1da2da3da4e

−iα2 (a1−ia2)λ̄1̇
aδ

(
λ̄2̇
a −

1
α

(a1 + ia2)
)

× e−iα2 (a3−ia4)λ̄1̇
bδ

(
λ̄2̇
b −

1
α

(a3 + ia4)
)
δ(a1 + ia4)δ(a3 + ia2)

= 2πδ2(λ̄a + λ̄b).

(4.9)

Computation of integrals in (4.9) proceeds in a straightforward manner: three integrals are
lifted by delta functions, while the remaining one is the Fourier transform of an exponent.

Keeping in mind that λa = λb, see (4.8), we find that the complete amplitude is

A(λa, λ̄a, λb, λ̄b) = 2πδ2(λa − λb)δ2(λ̄a + λ̄b). (4.10)

This result is consistent with [27] in the sense that up to an irrelevant factor of 2π it agrees
with the canonically normalised Wightman functions of massless higher-spin fields summed
over spins.

4.3 Three-point amplitude of higher-spin fields

In a similar manner, we compute the three-point amplitude of higher-spin fields from the
dual theory. To this end, we consider a correlator

〈: ϕ1(a1)ϕ2(a2) : : ϕ3(a3)ϕ4(a4) : : ϕ5(a5)ϕ6(a6) :〉
= gλ2,λ3(a2, a3)gλ4,λ5(a4, a5)gλ6,λ1(a6, a1) + . . . .

(4.11)

Focusing on the explicit term in (4.11), we choose a configuration of λ’s in a way that
first branches of solution (4.5) for the two-point function are non-trivial. In addition, it is
required that the singleton pairs (1, 2), (3, 4) and (5, 6) can be mapped to higher-spin fields,
the latter labelled with λa, λb and λc respectively. In particular, we can choose

λ1 = λ, λ2 = iλ, λ3 = λ, λ4 = iλ, λ5 = λ, λ6 = iλ (4.12)

and

λa = α√
2
λ, λb = α√

2
λ, λc = α√

2
λ. (4.13)
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Then, the λ̄-dependent part of the three-point amplitude of higher-spin fields reads

Ar(λ̄a, λ̄b, λ̄c) =
∫
da1da2da3da4da5da6kα(a1, a2, λ̄

1̇
a, λ̄

2̇
a)kα(a3, a4, λ̄

1̇
b , λ̄

2̇
b)

× kα(a5, a6, λ̄
1̇
c , λ̄

2̇
c)g1

λ2,λ3(a2, a3)g1
λ4,λ5(a4, a5)g1

λ6,λ1(a6, a1)

=
∫
da1da2da3da4da5da6e

−iα2 (a1−ia2)λ̄1̇
aδ

(
λ̄2̇
a −

1
α

(a1 + ia2)
)

× e−iα2 (a3−ia4)λ̄1̇
bδ

(
λ̄2̇
b −

1
α

(a3 + ia4)
)
e−iα2 (a5−ia6)λ̄1̇

c

× δ
(
λ̄2̇
c −

1
α

(a5 + ia6)
)
δ(a3 + ia2)δ(a5 + ia4)δ(a1 + ia6)

= 2π|α|δ2(λ̄a + λ̄b + λ̄c)e
iα2

2 (−λ̄2̇
c λ̄

1̇
b+λ̄

2̇
b λ̄

1̇
c).

(4.14)

Again, the computation of integrals is very straightforward.
Reinstating the λ dependence, which is defined by (4.13), we find

A(λa, λ̄a,λb, λ̄b,λc, λ̄c) = 2π|α|δ2(λa−λb)δ2(λb−λc)δ2(λ̄a+λ̄b+λ̄c)e
iα2

2 (−λ̄2̇
c λ̄

1̇
b+λ̄

2̇
b λ̄

1̇
c). (4.15)

This result is consistent with the analysis of [27] where the three-point amplitude in the
chiral higher-spin theory was summed over helicities on the external lines and brought
to the form (4.15). It was also argued that up to a prefactor this result is fixed by the
higher-spin symmetry of the theory.

5 Conclusion

In the previous paper [8] we suggested a theory of flat space singletons and based on
symmetries argued that it may provide a dual description of higher-spin gauge theories in
the 4d Minkowski space. At the algebraic level this duality has many common features
with the higher-spin AdS/CFT correspondence. At the same time, it departs substantially
from the way flat space holography is usually expected to work geometrically based on the
analogy with the AdS space case — namely, that the symmetry of the boundary theory
should be the asymptotic symmetry of the Minkowski space, the BMS algebra. Instead,
the symmetry of the dual theory in our approach is a certain deformation of the Poincare
algebra, for which translations do not commute. For some representations — such as for
massless higher-spin fields — this deformation trivialises and, thus, one reproduces the
usual Poincare algebra. At the same time, for the dual theory this deformation is necessarily
non-trivial. This is what prevents us from regarding the dual theory as the boundary
one and the duality, despite having some holographic flavour, is not, strictly speaking,
holographic in the usual sense.

In the present paper we provided substantial evidence that the duality suggested
in [8] does work. We started by proving the flat space counterpart of the Flato-Fronsdal
theorem [35], that is that the tensor product of two singletons decomposes into the direct
sum of massless higher-spin representations. This is an algebraic way of saying that the
spectrum of single-trace operators — with the traces understood as in vector models —
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in the theory of singletons matches the spectrum of fields in the Minkowski space. We
would like to emphasise that, as argued in [8], already this type of a statement about the
spectrum is something that is impossible to achieve in flat space holography, unless certain
modifications — such as the aforementioned deformation of the Poincare algebra — are
made. In other words, despite being just a basic statement at the level of the spectrum, the
existence of the flat space Flato-Fronsdal theorem that we proved is a rather non-trivial fact,
which, moreover, provides strong support for the approach to flat space holography we took.

Besides that we computed the two- and three-point amplitudes of massless higher-spin
fields in the 4d Minkowski space from the correlators in the dual theory by mimicking
the standard steps from the AdS/CFT correspondence. The resulting amplitudes match
the amplitudes in the chiral higher-spin theory in the form of [27]. As argued there,
higher-spin amplitudes are fixed by symmetries up to an independent overall factor for
each number of external lines. Thus, this matching is to large extent controlled by higher-
spin symmetries. Still, it allows one to fix the aforementioned overall factors, which were
otherwise undetermined.

It should be remarked that in flat space only the chiral higher-spin theory [11–13] is
currently known how to define in a self-contained way, in particular, it has an explicit
local action in the light-cone gauge. This theory is self-dual [15, 17, 25], which entails
its integrability and the vanishing of its n-point amplitudes with n > 3 [16]. Despite in
the present paper we did not compute holographic higher-point amplitudes explicitly, it
is clear that these are non-vanishing. This means that the higher-spin theory, which is
dual to the theory of free flat space singletons is not the chiral higher-spin theory, but its
certain extension. Such extensions do not have an independent bulk definition. The key
reason for that is that numerous no-go theorems imply that massless higher-spin theories in
flat space with non-trivial scattering do not exist unless locality is violated.3 In turn, by
relaxing locality not only one risks to obtain theories displaying pathological physics, one
also looses a key consistency condition, which makes the typical perturbative approaches
to the construction of higher-spin theories well-defined. Thus, the construction of higher-
spin theories beyond the self-dual sector requires new guiding principles alternative to
locality. From this perspective, we suggest the holographic approach of this paper as such
an alternative. In other words, the holographic duality in the present case is, rather, a way
to define a bulk theory than a conjecture that needs to be checked. In fact, to large extent,
this also applies to the higher-spin holography in AdS, where an independent definition of
the bulk theory faces difficulties related to locality, see e.g. discussions in [38–43]. Such a
holographic reconstruction may be used to define the flat space higher-spin theory S-matrix.
Once the S-matrix is known one may, in principle, reconstruct the action of the theory in
the light-cone gauge, by following the procedure detailed in [44].

In the present paper, to describe the flat space singleton representation we used its
realisation in terms of a particular set of variables, which make the intertwining kernel of the
flat space Flato-Fronsdal theorem particularly simple. At the same time, this description

3This is a short and thus not quite accurate corollary of the no-go results, which are abundant and rather
diverse. For precise statements and further details, see e.g. reviews [14, 37].
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lacks some important features of the usual field theory, e.g. we cannot say much on how
this representation can be extended off-shell, what is the natural manifold the field lives
on and what is the associated action. More generally, field theories with the underlying
symmetry being the deformed Poincare algebra, that we encountered here, have not been
fully developed yet — see e.g. [32] for recent discussions of models featuring the closely
related Maxwell algebra as a symmetry. In fact, it is not naturally an algebra of vectors
fields — L in (2.4) acts algebraically, which is more reminiscent of the Weyl transformations
— thus, it is hard to interpret it as a space-time symmetry. It would be interesting to explore
this in future.

The holographic construction that we presented here is essentially chiral. In particular,
its global symmetry is a chiral algebra. To make contact with more usual theories it would
be important to extend this approach to the parity-invariant setup. Besides that, the
important role in our construction is played by sl(2,C) spinors, which are particularly
suited for dealing with massless fields in four dimensions. It would be interesting to see
how this approach can be extended to massive fields and to other dimensions.
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A Fixing α from higher-spin symmetry

One way to get rid of the ambiguity related to independent rescalings of fields with different
helicities is to require that the kernel (3.18) is, in addition, invariant with respect to
higher-spin symmetries. Indeed, higher-spin generators with spin greater than two mix fields
of different helicities and, thus, higher-spin invariance constrains relative normalisations
between fields with different spins.

Below we require the invariance of the intertwining kernel with respect to the spin-4
generator (J̄1̇1̇)3. This generator acts on the higher-spin fields via

(J̄1̇1̇)3Φ ≡ (J̄1̇1̇ ◦̄ J̄1̇1̇ ◦̄ J̄1̇1̇) ◦̄ Φ− Φ ◦̄ (J̄1̇1̇ ◦̄ J̄1̇1̇ ◦̄ J̄1̇1̇), (A.1)

where
J̄1̇1̇ = 1

2λαλα (A.2)

and the ◦̄ product is defined by [8]

(f ◦̄ g)(λ, λ̄) = f(λ, λ̄)exp
[
iεα̇β̇

←−
∂

∂λ̄α̇

−→
∂

∂λ̄β̇

]
g(λ, λ̄). (A.3)

Evaluating (A.1) explicitly, we find

(J̄1̇1̇)3Φ =
(
−3

2 i(λ̄
2̇)5 ∂

∂λ̄1̇
+ 5i(λ̄2̇)3 ∂3

∂(λ̄1̇)3
− 3

2 iλ̄
2̇ ∂5

∂(λ̄1̇)5

)
Φ. (A.4)
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At the same time, for the tensor product of singletons one has

J̄3
1̇1̇C = (a6

1 + a6
2)C. (A.5)

This leads us to the equation for the kernel(
−3

2 i(λ̄
2̇)5 ∂

∂λ̄1̇
+ 5i(λ̄2̇)3 ∂3

∂(λ̄1̇)3
− 3

2 iλ̄
2̇ ∂5

∂(λ̄1̇)5
+ a6

1 + a6
2

)
k = 0, (A.6)

which can be only satisfied for

(α2 − 2)(α2 + 2) = 0. (A.7)

The structure of the higher-spin algebra is such that the closure of the spin-2 generators
and spin-4 generator (J̄1̇1̇)3 involves all higher-spin generators of even spins. This implies
that for α satisfying (A.7), the intertwining kernel that we constructed is invariant with
respect to the subalgebra of the higher-spin algebra containing only even spin generators.

To fix the remaining ambiguity, one may consider spin-3 generator (J̄1̇1̇)2 in a similar
way. It acts as

(J̄1̇1̇)2Φ ≡ [J̄1̇1̇ ◦ J̄1̇1̇,Φ]◦̄ =
(
−2i(λ̄2̇)3 ∂

∂λ̄1̇
− 2i(λ̄2̇) ∂3

∂(λ̄1̇)3

)
Φ (A.8)

on higher-spin fields. We found that for (J̄1̇1̇)2 acting on the tensor product of two singletons
via a4

1 + a4
2 — which is how it naturally acts according to the definitions — the invariance

condition for the kernel has no solutions. In other words, with the action of the higher-spin
algebra defined as above, the kernel cannot be made invariant with respect to higher-spin
generators of odd spins.

It seems natural to expect that the Flato-Fronsdal kernel in flat space can be made
invariant with respect to all higher-spin generators. To achieve this, we note that the
higher-spin algebra has an automorphism

Ts → (−1)sTs, (A.9)

where the lower label refers to the spin of the generator. In other words, the automor-
phism (A.9) changes the signs of odd spin generators.

The existence of the aforementioned automorphism implies that when trying to achieve
invariance of the intertwining kernel under spin-3 symmetry, we are free to change signs
of (J̄1̇1̇)2 at our convenience. In particular, if the action of the higher-spin algebra on the
second singleton is supplemented with (A.9), then the action of (J̄1̇1̇)2 on the tensor product
of singletons becomes a4

1 − a4
2. One can then see that the invariance of the kernel leads to

α2 = 2. (A.10)

Alternatively, when the action of the higher-spin algebra on the first singleton is corrected
with (A.9), then one finds

α2 = −2. (A.11)
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For definiteness, we will choose the first option (A.10), which leads to two possible values
of α differing by the overall sign. As it is not hard to see, the effect of the change of the sign of
α is that fermionic higher-spin fields change the sign, while bosonic higher-spin fields remain
intact. Irreducible kernels, which we discussed in section 3.3, do not involve higher-spin
bosons and fermions simultaneously. Thus, the effect of the sign change for α on irreducible
kernels reduces to the change of their overall normalisation and, therefore, is immaterial.

In summary, we have shown that by requiring invariance with respect to the higher-spin
symmetry, the irreducible intertwining kernels of the flat space Flato-Fronsdal theorem are
fixed up to an overall factor. It, still, seems somewhat unnatural that to achieve that the
automorphism (A.9) was necessary. It would be interesting to clarify this in future.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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