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1 Introduction

The Nekrasov’s instanton partition function [1] for 4D N = 2 gauge theories has uncovered
various non-perturbative phenomena in these theories. For instance, the Seiberg-Witten
prepotential was derived from the path integral [1, 2], a relation to integrable systems
was discovered [3], and a novel 2d/4d correspondence called the AGT correspondence was
discovered [4, 5].

A generalization of the above success to theories coupled to a strongly-coupled su-
perconformal field theories (SCFTs) has partially been studied. In particular, the AGT
correspondence has been generalized in [6, 7] to gauge theories coupled to Argyres-Douglas
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Figure 1. The (A3, A3) theory is identical to the conformal SU(2) gauge theory coupled to two
(A1, D4) theories and a fundamental hypermultiplet of SU(2). Here, the middle circle with 2 inside
stands for an SU(2) vector multiplet, and the top box with 1 inside stands for a fundamental
hypermultiplet.

(AD) theories. We call these gauge theories “gauged AD theories.” Since AD theories have
no weak-coupling limit, supersymmetric localization is not available for these theories. As a
result, the generalized AGT correspondence has been the only promising way of evaluating
the instanton partition function of these theories.

One restriction of the generalized AGT correspondence was, however, that it was only
applied to non-conformally gauged AD theories.1 The reason for this is that conformally
gauged AD theories have no known realization from 6d (2,0) A1 theory, and therefore
the AGT correspondence is not directly applied to them. As a result, until recently, the
instanton partition function of conformally gauged AD theories was not evaluated.

A first idea of computing the instanton partition function of conformally gauged AD
theories has been provided in [8]. A key ingredient is the U(2) version of the generalized
AGT correspondence, which is stated in terms of irregular states of the direct sum of
Virasoro and Heisenberg algebra V ir⊕H. For instance, let us consider SU(2) gauge theory
coupled to a fundamental hypermultiplet and two copies of AD theory called (A1, D4)
(figure 1). Here, the “matter” sector is precisely chosen so that the beta function of the
SU(2) gauge coupling vanishes. This coupled theory is also known as the “(A3, A3) theory.”
While the AGT correspondence cannot be directly applied to the (A3, A3) theory, one can
apply it to a factor in the following decomposition of the partition function:

Z = Zpert
∑
Y1,Y2

q|Y1|+|Y2|Zvec
Y1,Y2(a)Z fund

Y1,Y2(a,M)
2∏
i=1
Z(A1,D4)
Y1,Y2

(a,mi, di, ui) , (1.1)

where a is the vacuum expectation value (VEV) of the Coulomb branch operator in the vec-
tor multiplet, q is the exponential of the gauge coupling, the sum runs over pairs of Young
diagrams (Y1, Y2), |Y | stands for the number of boxes in a Young diagram Y , and Zvec

Y1,Y2

and Z fund
Y1,Y2

are the contributions from the vector and hypermultiplets.2 The factor Z(A1,D4)
Y1,Y2

is the contribution from an (A1, D4) theory, which is hard to evaluate via localization but
can be evaluated via the U(2)-version of the generalized AGT correspondence [8].

The reason for the “U(2)-version” is that the decomposition (1.1) is possible only
when the gauge group is U(2) instead of SU(2). The difference between U(2) and SU(2)
gives rise to a prefactor of the partition function, known as the U(1)-factor. By factoring

1Here, by “non-conformally gauged,” we mean that the beta function of the gauge coupling is asymp-
totically free.

2Here Zpert is a prefactor that makes the q-series start with 1.
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out the U(1)-factor, one can read off the partition function and the prepotential of the
(A3, A3) theory from (1.1). As discussed in [8], when dimensionful parameters are turned
off except for a, the prepotential F(A3,A3)(q; a) of the (A3, A3) theory read off as above is
in a surprising relation to the prepotential FNf=4

SU(2) (q; a) of SU(2) gauge theory with four
fundamental flavors, i.e.,

2F(A3,A3)(q; a) = FNf=4
SU(2) (q2; a) . (1.2)

This remarkable relation was then used to read off how the S-duality of (A3, A3) acts on
the UV gauge coupling q.

While the above U(2)-version of the generalized AGT correspondence provides a novel
way of evaluating the instanton partition function of conformally gauged AD theories, one
of its restrictions is that the formula provided in [8] is only for (A1, Deven) theories. The
reason for this is that only irregular states of integer ranks were constructed in [8], and
those of half-integer ranks are still to be identified.3

In this paper, we extend the result of [8] to the case of (A1, Dodd) theories, under
the condition that all couplings and VEVs of Coulomb branch operators in (A1, Dodd) are
turned off. This is done by explicitly identifying the action of V ir×H on irregular states of
half-integer ranks. This action turns out to be very simple in the classical limit ε1, ε2 → 0,
when the above condition is satisfied.

As an application of our extension, we evaluate the prepotential of the (A2, A5) theory,
which is the conformal SU(2) gauge theory coupled to a fundamental hypermultiplet and
AD theories called (A1, D6) and (A1, D3) (figure 2).4 To compute the partition function
Z(A2,A5) of this theory, one needs to know the contribution of the (A1, D3) and (A1, D6)
theories at each fixed point on the instanton moduli space, i.e. , Z(A1,D3)

Y1,Y2
and Z(A1,D6)

Y1,Y2
.

While the latter can be evaluated via the method of [8], computing the former needs a
prescription that we develop in this paper. We then read off from Z(A2,A5) an expression
for the prepotential F(A2,A5) of the (A2, A5) theory, which turns out to be in a surprising
relation to FNf=4

SU(2) :

3F(A2,A5)(q; a) = FNf=4
SU(2) (q3; a) . (1.3)

Note that this relation is quite similar to (1.2) but different. From this relation, we read
off how the S-duality group acts on the UV gauge coupling q of the (A2, A5) theory. A
generalization of our result to the case of all dimensionful parameters turned on is left for
future work.

The organization of this paper is the following. In section 2, we review the generalized
AGT correspondence and its U(2)-version. In section 3, we consider the generalization of
the U(2)-version to (A1, Dodd). In section 4, we apply a formula developed in section 3 to
the (A2, A5) theory and show that the prepotential of (A2, A5) is related to that of SU(2)
superconformal QCD by a change of variables. In section 5, we show that the prepotential
relation found in section 4 is consistent with the Seiberg-Witten curve.

3As explained in the next section, the rank of an irregular state |I〉 is defined by the maximal n ∈ N/2
such that L2n|I〉 6= 0.

4See [9] for a recent discussion on the conformal manifold of (An, Am) theories.
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Figure 2. The (A2, A5) theory is an N = 2 SCFT, which is identical to a conformal SU(2) gauging
of (A1, D3) and (A1, D6) theories together with a fundamental hypermultiplet of SU(2).

2 U(2)-version of generalized AGT for (A1, Deven)

In this section, we give a brief review of the U(2)-version of the generalized AGT corre-
spondence for (A1, DN ) theories with even N .

2.1 Generalized AGT correspondence

We first review the original generalized AGT correspondence. Recall that the (A1, DN )
theory for a positive integer N ≥ 2 is realized by compactifying the 6d (2,0) A1 theory on a
sphere with two punctures, one of which is a regular puncture and the other is an irregular
puncture of rank N/2 [6, 7, 10]. These punctures specify how the Higgs field Φ(z) in the
corresponding Hitchin system behaves around them; Φ(z) has a simple pole at a regular
puncture while it behaves as Φ(z) ∼ 1/zN/2+1 around an irregular puncture of rank N/2,
where we take z = 0 as the locus of the puncture.

According to the generalized AGT correspondence [6, 7], the regular puncture cor-
responds to a Virasoro primary state |a〉, and the irregular puncture corresponds to an
irregular state |I(N/2)〉 of Virasoro algebra at central charge c = 1 + 6Q2. While there are
two different characterizations of |I(N/2)〉, we will use the one discussed in [7]. Here, the
irregular state is not a primary state but a simultaneous eigen state of Lk for k ≥ dN/2e,
with vanishing eigenvalues for k > N . Therefore, an irregular state |I(N/2)〉 satisfies

Lk|I(N/2)〉 =
{

0 for N < k

λk|I(N/2)〉 for
⌈
N
2

⌉
≤ k ≤ N

, (2.1)

for a set of eigenvalues {λdN/2e, · · · , λN}.5 This characterization of the irregular state is
such that

x2 = −〈a|T (z)|I(N/2)〉
〈a|I(N/2)〉

(2.2)

is equivalent to the Seiberg Witten (SW) curve of the 4d theory. Indeed, from (2.1), we
see that (2.2) is evaluated as

x2 = − λN
zN+2 −

λN−1
zN+1 − · · · −

a(Q− a)
z2 , (2.3)

which is identical to the SW curve of the (A1, DN ) theory.
5While dN/2e = N/2 for even N , we here write things so that they can be easily generalized to odd N

in the next section.
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Figure 3. SU(2) gauge theory coupled to two (A1, DN ) theories.

Given the above regular state |a〉 and the irregular state |I(N/2)〉, the generalized AGT
correspondence states that

Z(A1,DN ) = 〈a|I(N/2)〉 , (2.4)

is identified with the Nekrasov partition function of the (A1, DN ) theory. Note here that,
since no weakly-coupled description is known for this theory, the above partition function
cannot be evaluated by supersymmetric localization.

Similarly, 4d N = 2 SU(2) gauge theory coupled to two copies of (A1, DN ) (figure 3) is
constructed by compactifying 6d (2,0) A1 theory on sphere with two irregular singularities
of rankN/2. The generalized AGT correspondence then implies that the Nekrasov partition
function of this theory is given by

Z2×(A1,DN )
SU(2) = 〈I(N/2)|I(N/2)〉 . (2.5)

Note here that the characterization (2.1) does not fix the irregular state |I(N/2)〉. In
particular, the actions of L0, · · · , LbN/2c are not specified there. When N is even, these
actions are expressed in terms of differential operators with respect to (N/2+1) parameters,
c0, · · · , cN/2 [7]:

Lk|I(N/2)〉 =


0 for N < k

λk|I(N/2)〉 for N
2 ≤ k ≤ N(

λk +∑N/2−k
`=1 ` c`+k

∂
∂c`

)
|I(N/2)〉 for 0 ≤ k < N

2

, (2.6)

where the non-vanishing eigenvalues, λk, of LN/2, · · · , LN are fixed by c0, · · · , cN/2 as

λk =
{
−
∑N/2
`=k−N/2 c`ck−` for N

2 < k ≤ N
−
∑k
`=0 c`ck−` + (k + 1)Qck for k ≤ N

2
. (2.7)

The above actions of L0, · · · , LN/2 follow from the construction of |I(N/2)〉 for even N in
a colliding limit of regular primary operators. Similar colliding limit is not known for odd
N , and therefore the actions of L0, · · · , LN−1

2
have not been identified in the literature.6

2.2 U(2)-version for even N

In this sub-section, we discuss the U(2)-version of the generalized AGT correspondence.
Here, we focus on irregular states |I(N/2)〉 for even N , and therefore on (A1, Deven) theories.

6There is another characterization of the irregular state |I(N/2)〉 [6], where |I(N/2)〉 has an explicit
expression and is an eigen state of LN and L1 for even and odd N . In this paper, we use the one discussed
in [7] since it can easily be extended to the U(2)-version that we will review in the next sub-section. It
would be an interesting open problem to consider the U(2)-version of the one discussed in [6].
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Such a U(2)-version was considered in [8] in order to compute the instanton partition
function of the (A3, A3) theory. Here, the (A3, A3) theory is an N = 2 superconformal
SU(2) gauge theory coupled to two (A1, D4) theories and a fundamental hypermultiplet
(figure 1 ). When the fundamental hypermultiplet is absent, one can compute the partition
function via the generalized AGT correspondence as in (2.5), but its generalization to the
(A3, A3) theory is not straightforward. The reason for this is that (A3, A3) has no known
realization from 6d (2,0) A1 theory.

Therefore, a more indirect route was taken in [8] to compute the partition function of
the (A3, A3) theory. First, the generalized AGT correspondence was extended to the case of
U(2) gauge group. Corresponding to the extra U(1) part of the gauge group, the Virasoro
algebra on the 2d side is now accompanied with an extra Heisenberg algebra [11]. The Vira-
soro irregular state |I(N/2)〉 is then promoted to an irregular state |Î(N/2)〉 of the direct sum
of Virasoro and Heisenberg algebras V ir⊕H, which This state is generally decomposed as

|Î(N/2)〉 = |I(N/2)〉 ⊗ |I(N/2)
H 〉 , (2.8)

where |I(N/2)〉 is the Virasoro irregular state satisfying (2.6), and |I(N/2)
H 〉 is an irregular

state of the Heisenberg algebra characterized by

ak|I
(N/2)
H 〉 =

{
0 for N/2 < k ,

−ick|I(N/2)〉 for 1 ≤ k ≤ n . , (2.9)

where ak is the basis of the Heisenberg algebra such that {ak, a`} = k
2δk+`,0 . Given the

irregular state |Î(N/2)〉 of V ir ⊕H, the partition function of U(2) gauge theory coupled to
two (A1, DN ) theories is identified as

Z2×(A1,DN )
U(2) = 〈Î(N/2)|Î(N/2)〉 , (2.10)

which is a natural generalization of (2.5) to the U(2) gauge group.
A nice feature of this generalization is that the highest-weight module of V ir⊕H has

an orthogonal basis |a;Y1, Y2〉 labeled by two Young diagrams, Y1 and Y2, that satisfies [11]

1 =
∑
Y1,Y2

Zvec
Y1,Y2(a) |a;Y1, Y2〉〈a;Y1, Y2| , (2.11)

where Zvec
Y1,Y2

(a) is the contribution from a U(2) vector multiplet to the Nekrasov partition
function, at the fixed point corresponding to (Y1, Y2) on the moduli space of U(2) instantons.
Here |a;Y1, Y2〉 is a linear combination of states of the form Lp1

−n1 · · ·L
pk
−nka

q1
−m1 · · · a

q`
−m` |a〉,

and 〈a;Y1, Y2| is obtained by replacing each of these states with 〈a|aq`m` · · · a
q1
1 L

pk
nk
· · ·Lp1

n1

without changing the coefficients of the linear combination.
One can use (2.11) to decompose (2.10) as

Z2×(A1,DN )
U(2) = Zpert

∑
Y1,Y2

Λb0(|Y1|+|Y2|)Zvec
Y1,Y2(a)Z(A1,DN )

Y1,Y2
(a,m,ddd,uuu)Z̃(A1,DN )

Y1,Y2
(a, m̃, d̃dd, ũuu) ,

(2.12)
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where Zpert ≡ 〈Î(N/2)|a〉〈a|Î(N/2)〉, Λ ≡ −ζ2cN/2c̃
∗
N/2, b0 ≡ 4/N and

Z(A1,DN )
Y1,Y2

(a,m,ddd,uuu) ≡ (ζcN/2)−
2(|Y1|+|Y2|)

N
〈a;Y1, Y2|Î(N/2)〉
〈a|Î(N/2)〉

, (2.13)

Z̃(A1,DN )
Y1,Y2

(a, m̃, d̃dd, ũuu) ≡ (−ζc̃∗N/2)−
2(|Y1|+|Y2|)

N
〈Î(N/2)|a;Y1, Y2〉
〈Î(N/2)|a〉

. (2.14)

Here, m, ddd ≡ (d1, · · · , dN
2 −1) and uuu ≡ (u1, · · · , uN

2 −1) are respectively, a mass parameter,
relevant couplings and the VEVs of Coulomb branch operators. These are related to two-
dimensional parameters by

dk =
N
2∑

`=N
2 −k

c`cN−k−`

(cN
2

)2− 2k
N

, m =
N
2∑
`=0

c`cN
2 −`

cN
2

, (2.15)

uk =
N
2 −k∑
`=0

c`cN
2 −k−`

(cN
2

)1− 2k
N

−
k∑
`=1

`
cN

2 +`−k

(cN
2

)1− 2k
N

∂F(A1,DN )
∂c`

, (2.16)

where F(A1,DN ) ≡ limεi→0
(
−ε1ε2 log〈a|I(N/2)〉

)
is the prepotential of the (A1, DN ) theory.

The parameter, ζ, is a free parameter that can be absorbed or emerged by rescaling the
dynamical scale Λ.

Given the expression (2.12), the factors (2.13) and (2.14) are interpreted as the contri-
bution of the (A1, DN ) theories at the fixed point corresponding to (Y1, Y2) on the U(2) in-
stanton moduli space. Note that the gauge group is now U(2) instead of SU(2), and the dif-
ference between (2.13) and (2.14) is how the U(1) ⊂ U(2) is coupled to the (A1, DN ) theory.

An advantage of the expression (2.12) is that one can easily introduce an extra funda-
mental hypermultiplet by multiplying Z fund

Y1,Y2
(a,M) to the summand, where M is the mass

of the hypermultiplet. In particular, setting N = 4 in (2.12) and introducing an extra
fundamental hypermultiplet, the partition function is now

ZU(2) = Zpert
∑
Y1,Y2

q|Y1|+|Y2|Zvec
Y1,Y2(a)Z(A1,D4)

Y1,Y2
(a, b, u)Z̃(A1,D4)

Y1,Y2
(a, b̃, ũ)Z fund

Y1,Y2(a,M) , (2.17)

where Λb0 is now replaced by q since the SU(2) gauge coupling is exactly marginal. This
is almost equivalent to the instanton partition function of the (A3, A3) theory. The only
difference from the (A3, A3) is that the SU(2) gauge group in figure 1 is replaced by U(2),
which gives rise to an extra prefactor, ZU(1), of the partition function. Therefore, the
partition function of the (A3, A3) theory is evaluated as

Z(A3,A3) =
ZU(2)
ZU(1)

. (2.18)

3 U(2)-version of generalized AGT for (A1, Dodd)

In this section, we will extend the U(2)-version of the generalized AGT correspondence
reviewed in section 2 to the case of (A1, DN ) theories for odd N . Specifically, we will
generalize (2.13) to the case of odd N .7

7The same generalization is possible for (2.14), but we will focus on generalizing (2.13) here to make our
argument concise.
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Even when N is odd, the (A1, DN ) theory is still realized by compactifying 6d (2,0)
A1 theory on sphere with an irregular and a regular puncture. Therefore, exactly the same
discussion as in section 2.1 leads us to identifying

Z(A1,DN ) = 〈a|I(N/2)〉 , (3.1)

as the partition function of the (A1, DN ) theory. From the equivalence between (2.2)
and (2.3), we see that the non-vanishing eigenvalues, λN , · · · , λN+1

2
, in (2.1) appear as the

coefficients of the first N−1
2 non-trivial terms in the SW curve:8

x2 = 1
zN+2 −

λN−1

(−λN )N−1
N

1
zN+1 −

λN−2

(−λN )N−2
N

1
zN
− · · · −

λN+1
2

(−λN )N+1
2N

1
z
N+5

2
+ · · · , (3.2)

which are identified as the relevant couplings of (A1, DN ) for odd N [10, 12]. There-
fore the relevant couplings of (A1, DN ) theories are all encoded in the eigenvalues of
LN+1

2
, · · · , LN−2 and LN−1 (normalized by that of LN ). This is a straightforward gen-

eralization of what we reviewed in section 2.1 to odd N .
One difficulty for odd N is, however, the irregular state |I(N/2)〉 cannot be obtained in

a colliding limit of regular primary operators. As such, any result derived via the colliding
limit for even N is not available for odd N . For instance, while λk are translated into ck
through (2.7) for even N , a similar translation is not available for odd N . As a result, an ex-
plicit expression for the action of L1, · · · , LN−1

2
on |I(N/2)〉 has not been identified for oddN .

The lack of a colliding-limit construction gives rise to another difficulty when consid-
ering the U(2)-version of the generalized AGT correspondence. Generalizing the argument
in section 2.2, it is natural to expect that there exists an irregular state |Î(N/2)〉 of V ir⊕H
such that

Z(A1,DN )
Y1,Y2

∼ 〈a;Y1, Y2|Î(N/2)〉
〈a|Î(N/2)〉

, (3.3)

is identified, even for odd N , as the contribution from an (A1, DN ) sector at each fixed point
on the U(2) instanton moduli space for the gauge theory described by the quiver in figure 3.
Here, the irregular state |Î(N/2)〉 is decomposed as |Î(N/2)〉 = |I(N/2)〉 ⊗ |I(N/2)

H 〉, where
|I(N/2)〉 is the irregular state of Virasoro algebra discussed in the previous two paragraphs,
and |I(N/2)

H 〉 is a rank-N2 irregular state of Heisenberg algebra. For even N , |I(N/2)
H 〉 is

completely characterized by (2.9), which was derived via the colliding-limit construction
of |I(N/2)

H 〉. However, for odd N , the lack of a colliding-limit construction makes it difficult
to find a similar characterization of |I(N/2)

H 〉.
The above discussions imply that, due to the lack of colliding-limit, we do not know

how L1, · · · , LN−1
2

and ak>0 act on the irregular state |Î(N/2)〉 = |I(N/2)〉 ⊗ |I(N/2)
H 〉 when

N is odd. Without knowing these actions, one cannot compute

〈a|aq`m` · · · a
q1
1 L

pk
nk
· · ·Lp1

n1 |Î
(N/2)〉

〈a|Î(N/2)〉
, (3.4)

8Here we absorbed λN in front of zN−2 by rescaling z and x so that xdz is kept fixed. The fact that we
can absorb λN this way reflects the conformal invariance of (A1, DN ).

– 8 –



J
H
E
P
0
1
(
2
0
2
3
)
0
3
0

for ni > 0 and mi > 0. This generically makes it hard to compute (3.3) since 〈a;Y1, Y2|
is a linear combination of vectors of the form 〈a|aq`m` · · · a

q1
1 L

pk
nk
· · ·Lp1

n1 . In the next four
sub-sections, however, we will argue that this difficulty can be overcome when we focus
on the classical limit ε1, ε2 → 0 and turn off relevant couplings and the VEVs of Coulomb
branch operators in the (A1, DN )-sector.

3.1 Classical limit as the commutative limit

While the irregular state |I(N/2)〉 is an eigen state of LN+1
2
, · · · , LN with non-vanishing

eigenvalues, it is not an eigen state of L1, · · · , LN−1
2

. Indeed, the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m + n(n2 − 1)
12 δn+m,0 (3.5)

forbids L1, · · · , LN to have non-vanishing eigenvalues when N > 2. This is the main
reason that (2.6) (which is only for even N) involves differential operators on the r.h.s. for
0 ≤ k < N

2 .
However, when computing the matrix element (3.4) in the classical limit ε1, ε2 → 0, the

sub-algebra formed by {Ln>0} reduces to a commutative algebra. The reason for this is the
following. First, in the context of the generalized AGT correspondence, the SW curve (2.3)
of a 4d theory is identified as (2.2) on the 2d side. This and the fact that the SW 1-form,
xdz, has scaling dimension 1 imply that z and T (z) in (2.2) has four-dimensional scaling
dimensions ∆4d(z) = −2/N and ∆4d(T (z)) = ∆4d(x2) = 2(1 + 2/N), respectively. Since
the stress tensor is expanded as

T (z) =
∑
n∈Z

Ln
zn+2 , (3.6)

this implies that, when acting on |I(N/2)〉, Ln is associated with four-dimensional scaling
dimension

∆4d(Ln) = 2
(

1− n

N

)
. (3.7)

Recall here that, in the AGT correspondence, the 4d scaling dimensions are invisible since
we set ε1ε2 = 1, as explained around eq. (3.2) of [4]. To recover the correct scaling
dimensions, we need to multiply every quantity of dimension ∆4d by (ε1ε2)∆4d/2. This
particularly means the replacement Ln → (ε1ε2)1− n

N Ln, and therefore

[Ln, Lm] = (n−m)(ε1ε2)Ln+m , (3.8)

for m,n > 0. This implies that, when focusing on the leading term in the limit ε1, ε2 → 0,
the sub-algebra formed by {Ln>0} reduces to a commutative algebra. Therefore, in the
computation of (3.4) in the classical limit, one can regard all Ln and am as commutative
and simultaneously diagonalizable.

This suggests the following conjecture: in the classical limit ε1, ε2 → 0, the irregular
states |I(N/2)〉 approaches to a simultaneous eigen state of {Ln>0} and {am>0}. As seen
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in (2.6), this is indeed the case when N is even; in the third line of the r.h.s. of (2.6),∑N/2−k
`=1 ` c`+k

∂
∂c`

is sub-leading in the classical limit, and therefore |I(N/2)〉 approaches to
a simultaneous eigen state of {Lk} and {ak} in the classical limit. We here assume that
the above conjecture is also satisfied for odd N . Then the matrix element (3.4) can be
evaluated in the classical limit as

〈a|aq`m` · · · a
q1
1 L

pk
nk
· · ·Lp1

n1 |Î
(N/2)〉

〈a|Î(N/2)〉
=
(∏̀
i=1

(ami)qi
) k∏

j=1
(bnj )pj

 , (3.9)

where ai and bi are defined by

am ≡
〈a|am|Î(N/2)〉
〈a|Î(N/2)〉

, bn ≡
〈a|Ln|Î(N/2)〉
〈a|Î(N/2)〉

, (3.10)

for m,n > 0.9 Note here that, from (2.1), we see that bn = 0 for n > N . Therefore, (3.9)
is a function of bn for n = 1, · · · , N and am for m > 0. Note also that, for N+1

2 ≤ n ≤ N ,
bn is identical to the eigenvalues λn in (2.1).

3.2 4d scaling dimensions of 2d parameters

Here we evaluate the 4d scaling dimensions of the parameters {am} and {bn} defined above.
We will use them in the next sub-section to argue that, when all the couplings and VEVs of
Coulomb branch operators of (A1, DN ) are turned off, one has bn = am = 0 for all n 6= N

and m > 0.
To that end, we first see from (3.7) that

∆4d (bn) = 2
(

1− n

N

)
, (3.11)

which implies that bn for n > N are of negative dimensions and therefore irrelevant in the
infrared. Since the Nekrasov partition function is the quantity defined in the infrared, (3.3)
must be independent of such parameters. This is consistent with the condition bn = 0 for
n > N .

Let us now turn to the scaling dimensions of am. To evaluate them, one needs to use
explicit expressions for the basis |a;Y1, Y2〉 of the highest weight module of V ir ⊕H. As
shown in [11], the state |a;Y1, Y2〉 is generally a linear combination of descendants of the
highest weight state |a〉 of degree (|Y1| + |Y2|). Here, the degree is defined by the sum of
the degrees in the sense of Virasoro and Heisenberg algebras; for instance, the degree of

9The reduction of (3.4) to (3.9) was explicitly observed in the case of N = 4 in section 5.1 of [8].
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(L−1)2a−5|a〉 is evaluated as seven. A few examples of |a;Y1, Y2〉 are shown below:

|a; ∅, ∅〉 = |a〉 , (3.12)

|a; , ∅〉 =
(
− i (ε1 + ε2 + 2a) a−1 − L−1

)
|a〉 , (3.13)

|a; , ∅〉 =
(
− iε1(ε1 + ε2 + 2a)(2ε1 + ε2)a−2 − (ε1 + ε2 + 2a)(2ε1 + ε2 + 2a)a2

−1 ,

+ 2i(2ε1 + ε2 + 2a)a−1L−1 − ε1(ε1 + ε2 + 2a)L−2 + L2
−1

)
|a〉 , (3.14)

|a; , 〉 =
(
− i(ε1 + ε2)a−2 − (ε21 + ε22 + ε1ε2 − 4a2)a2

−1 + 2i(ε1 + ε2)a−1L−1

− L−2 + L2
−1

)
|a〉 , (3.15)

where we recovered the complete εi-dependence. In the context of the AGT correspondence,
the highest weight a of |a〉 is identified as the mass of the W-boson that arises on the
Coulomb branch of SU(2) gauge theory, and therefore has scaling dimension one. Similarly
the Ω-deformation parameters εi have scaling dimension one, i.e.,

∆4d(a) = ∆4d(ε1) = ∆4d(ε2) = 1 . (3.16)

Combining this with the expressions for |a;Y1, Y2〉 shown in (3.12)–(3.15), one can read off
the 4d scaling dimensions of am = 〈a|am|Î(N/2)〉/〈a|Î(N/2)〉.

For instance, we see from (3.12) and (3.10) that Z(A1,DN )
,∅ ∼ 〈a; , ∅|Î(N/2)〉/〈a|Î(N/2)〉

is evaluated as10

Z(A1,DN )
,∅ ∼ −i(ε1 + ε2 + 2a)a1 − b1 , (3.17)

Since the two terms in (3.17) must have the same scaling dimensions, we see that

∆4d(a1) = ∆4d(b1)− 1 = 1− 2
N
. (3.18)

The same analysis for Z(A1,DN )
,∅ implies

∆4d(a2) = 2∆4d(b1)− 3 = 1− 4
N
. (3.19)

It is straightforward to do the same analysis for all Z(A1,DN )
Y1,∅ with Y1 = [1, · · · , 1]. As

shown in [11], the state |a;Y1, ∅〉 is concisely expressed as

|a;Y1, ∅〉 = ΩY1(a)J(−ε22)
Y1

(x)|a〉 , (3.20)

where ΩY1(a) ≡ (−ε1)|Y1|∏
(j,k)∈Y1(2a + jε1 + kε2), and J(1/g)

Y1
(x) is the normalized Jack

polynomial of variables x ≡ (x1, x2, · · · ).11 Here, the variables (x1, x2, · · · ) are related to
the {Ln} and {am} as follows. First, write the Virasoro generators Ln 6=0 as

Ln =
∑
k 6=0,n

ckck−n + i(nQ− 2a)cn (3.21)

10Here, we recall that 〈a;Y1, Y2| is obtained by expanding it as a linear combinations of
Lp1
−n1 · · ·L

pk
−nka

q1
−m1 · · · a

q`
−m` |a〉 and replacing each of these vectors with 〈a|aq`m` · · · a

q1
1 L

pk
nk · · ·L

p1
n1 with the

expansion coefficients kept fixed.
11Note that we have g = −ε2

2 here.
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in terms of {ck} such that [ck, c`] = k
2δk+`,0. Then x = (x1, x2, · · · ) is related to {ck} and

{am} by the identifications

a−n − c−n = −iε1pn(x) , (3.22)

where pn(x) ≡∑|Y1|
i=1 x

n
i . Therefore, to express (3.20) in terms of {am} and {Lm}, one first

needs to write J(−ε22)
Y1

(x) in terms of {pn(x)}, and then replace pn(x) with i(a−n − c−n)/ε1.
When Y1 = [1, · · · , 1], the Jack polynomial is simply J(1/g)

Y1
(x) = |Y1|!

∏|Y1|
i=1 xi. Rewriting

this in terms of pn(x) = i(a−n− c−n)/ε1 for n ∈ N, one finds that the expression (3.20) for
Y1 = [1, · · · , 1] is of the form

|a; Y1 = [1, · · · , 1], ∅〉 =
(
N (Y1) ε|Y1|−1

1

|Y1|∏
j=1

(2a+ jε1 + ε2)

 a−|Y1|

+ (−L−1)|Y1| + · · ·
)
|a〉 , (3.23)

where N (Y1) is a numerical factor independent of ε1 and ε2. Note here that the presence of
(−L−1)|Y1| on the right-hand side of (3.23) is already stressed in [11]. The expression (3.23)
implies that, for Y1 = [1, · · · , 1],

Z(A1,DN )
Y1=[1,··· ,1],∅ ∼ N (Y1) ε|Y1|−1

1

|Y1|∏
j=1

(2a+ jε1 + ε2)a|Y1| + (−b1)|Y1| + · · · . (3.24)

For the first two terms on the right-hand side to be of the same scaling dimension, we must
have

∆4d(am) = m∆4d(b1)− 2m+ 1 = 1− 2m
N

. (3.25)

3.3 Computation of matrix elements for odd N

In the rest of this paper, we focus on the classical limit ε1, ε2 → 0 so that (3.9) is valid.
In this case, it is sufficient to identify the values of (3.10) for the computation of (3.3).
Here we argue that, when the relevant couplings and VEVs of Coulomb branch operators
of (A1, DN ) are all turned off, the only non-vanishing parameter among (3.10) is bN and
therefore (3.9) reduces to

〈a|aq`m` · · · a
q1
1 L

pk
nk
· · ·Lp1

n1 |Î
(N/2)〉

〈a|Î(N/2)〉
=


1 for ` = k = 0
δn1,N (bN )p1 for ` = 0, k = 1
0 for the others

. (3.26)

To derive (3.26), we first note that all parameters of (A1, DN ) on the Coulomb branch
are encoded in the SW curve (2.2). Through the equivalence of (2.2) and (2.3), these
are related to a and the non-vanishing components of bn. The interpretation of non-
vanishing bn in four dimensions is as follows. From (3.11), we see that b1, · · · , bN−1

2
are

identified as the VEVs of Coulomb branch operators since they have scaling dimensions
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larger than one [13–15]. Similarly, bN+1
2
, · · · , bN−1 are identified as relevant couplings

since their dimensions are smaller than one. Note that, the (A1, DN ) theory has no exactly
marginal coupling, and therefore the dimensionless parameter bN has no counterpart in
four dimensions. This implies that the final result must be independent of bN , as discussed
in the next sub-section.

Since the Coulomb branch of (A1, DN ) is completely characterized by {bn} and a, any
physical quantity of the (A1, DN ) theory (on the Coulomb branch) should be determined
by these parameters. In particular, am must be a function of {bn} and a. When N is even,
this function was identified in [8] via the colliding-limit construction of |Î(N/2)〉, where am
turned out to be independent of a. Here we assume this independence to hold for odd N
as well, and therefore am is a function only of {bn}.12

While it is beyond the scope of this paper to compute am for generic values of {bn},
one can easily compute it when all the relevant couplings and VEVs of Coulomb branch
operators are turned off in the (A1, DN ) theory. Indeed, turning off these couplings and
VEVs implies that

bn = 0 , for n 6= N . (3.27)

Note that this is equivalent to the condition that bn = 0 unless ∆4d(bn) = 0. Since am
is assumed to be a function only of {bn}, this implies that am = 0 unless ∆4d(am) = 0.13

From (3.25), we see that ∆4d(am) = 0 occurs if and only if m = N/2, but this condition is
never satisfied for odd N . Hence, we conclude that

am = 0 , (3.28)

for all m, when the relevant couplings and the VEVs of Coulomb branch operators of
(A1, DN ) are turned off. The above discussion implies that the matrix element (3.9) reduces
to (3.26) when focusing on the classical limit ε1, ε2 → 0 and turning off all the relevant
couplings and VEVs of Coulomb branch operators of the (A1, DN ) theory.

12We believe this assumption is natural for the following reason. First, note that there is an RG-flow from
(A1, DN ) to (A1, DN−1) triggered by a relevant perturbation. Since this flow preserves the SU(2) flavor
symmetry gauged in the quiver in figure 3, this induces an RG-flow from the SU(2) gauge theory coupled
to two (A1, DN ) theories to that coupled to two (A1, DN−1). At the level of partition function, this is a
flow from 〈I(N/2)|I(N/2)〉 to 〈I((N−1)/2)|I((N−1)/2)〉, or a flow from 〈Î(N/2)|Î(N/2)〉 to 〈Î((N−1)/2)|Î((N−1)/2)〉
when the gauge group is replaced by U(2). This strongly suggests that there is a flow between the two
irregular states |Î(N/2)〉 and |Î((N−1)/2)〉, corresponding to the RG-flow discussed above.

Now, let us consider the composition RG2 ◦ RG1 of the flows RG1 : |Î(n)〉 → |Î(n− 1
2 )〉

and RG2 : |Î(n− 1
2 )〉 → |Î(n−1)〉 for a positive integer n. As mentioned in the main text,

am ≡ 〈a|am|Î(N/2)〉/〈a|Î(N/2)〉 is independent of a when N = 2n and N = 2n − 2. Therefore
RG2 ◦ RG1 preserves the a-independence of am. This is natural since the relevant perturbations corre-
sponding to RG1 and RG2 both preserve the SU(2) flavor symmetry associated with a. It is then extremely
natural to expect that RG1 and RG2 separately preserve the a-independence of am. This suggests that
am ≡ 〈a|am|Î(N/2)〉/〈a|Î(N/2)〉 is always independent of a for even and odd N . We also provide another
supporting evidence for the a-independence of am in appendix C.

13Note here that, since we are already taking the classical limit ε1, ε2 → 0, the only non-vanishing
dimensionful parameter in the (A1, DN ) sector is now a. Since am is assumed to be independent of a, we
see that am = 0 unless ∆4d(am) = 0.
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3.4 Removing an unphysical degree of freedom

Suppose that we turn off all the relevant couplings and VEVs of Coulomb branch operators
in (A1, DN ). Then one can compute the r.h.s. of (3.3) using (3.3) and (3.26). From (3.26),
we see that the result depends on bN .

Note that (3.11) implies ∆4d (bN ) = 0, and therefore bN must be an exactly marginal
coupling if it is a physical degree of freedom. However, the (A1, DN ) theory has no such
coupling. This means that bN , that appears on the r.h.s. of (3.11), is not a physical
parameter in four dimensions. The fact that bN is unphysical can also be seen in the SW
curve (3.2) of the (A1, DN ) theory; λN = bN can be absorbed by a change of variables.
Hence, to make the relation (3.11) more precise, one has to introduce a prefactor on the
r.h.s. to remove this unphysical degree of freedom.14

As shown in [11], the basis |a;Y1, Y2〉 is a descendant at level |Y1| + |Y2|.15 Com-
bining this fact with (3.26), we find that 〈a;Y1, Y2|Î(N/2)〉/〈a|Î(N/2)〉 is proportional to
(bN )

|Y1|+|Y2|
N . This means that the following expression is independent of bN :

Z(A1,DN )
Y1,Y2

(a) = (ξbN )−
|Y1|+|Y2|

N
〈a;Y1, Y2|Î(N/2)〉
〈a|Î(N/2)〉

, (3.29)

where ξ is a numerical free parameter that can be absorbed or emerged by rescaling the
dynamical scale. We therefore identify (3.29) as the precise expression for the contribution
from (A1, DN ) to the instanton partition function. Note that this is the “odd-N version”
of (2.13). We will apply the above formula in the next section to the computation of the
instanton partition function of the (A2, A5) theory.

4 Application to the (A2, A5) theory

In this section, we compute the instanton partition function of the (A2, D5) theory using
our method described in the previous section.

4.1 Partition function

Recall that the (A2, A5) theory is SU(2) gauge theory described by the quiver diagram in
figure 2. We first replace the gauge group with U(2), and then the partition function of
the theory is evaluated as

ZU(2) = ZU(2)
pert

∑
Y1,Y2

q|Y1|+|Y2|Zvec
Y1,Y2(a)Z fund

Y1,Y2(a,M)Z(A1,D3)
Y1,Y2

(a, d, u)Z(A1,D6)
Y1,Y2

(a,m,ddd,uuu) .

(4.1)
Here Zvec

Y1,Y2
and Z fund

Y1,Y2
are contributions respectively from the vector multiplet and funda-

mental hypermultiplet [1, 2], which have simple product expressions [16–18] as reviewed in

14This is exactly the same situation as in (2.13) for even N , where (ζcN/2)−
2(|Y1|+|Y2|)

N removes a degree
of freedom that has no physical meaning in the corresponding four-dimensional theory.

15Here, the level of a descendant means the sum of the level of the Virasoro descendant and that of a
Heisenberg descendant. For instance, L−1a−3|a〉 is a descendant at level four.
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(A.1) and (A.3) of [8]. On the other hand, Z(A1,D3)
Y1,Y2

and Z(A1,D6)
Y1,Y2

are contributions respec-
tively from the (A1, D3) and (A1, D6) sectors in figure 2. Here, q is the exponential of the
exactly marginal gauge coupling, d and u are respectively the relevant coupling and VEV
of Coulomb branch operator in the (A1, D3) theory, and m, ddd = (d1, d2) and uuu = (u1, u2)
are respectively the mass parameter, relevant couplings and VEVs of Coulomb branch op-
erators in the (A1, D6) theory. The scaling dimensions of these parameters are as follows:

[q] = 0, [d1] = 1
3 , [d] = [d2] = 2

3 , [u] = [u1] = 4
3 , [u2] = 5

3 . (4.2)

In the rest of this section, we set d = u = 0 so that our formula derived in the previous
section is available. Using (3.29), we identify the contribution of the (A1, D3) theory as

Z(A1,D3)
Y1,Y2

(a) = (ξb3)−
|Y1|+|Y2|

3
〈a;Y1, Y2|Î(3/2)〉
〈a|Î(3/2)〉

. (4.3)

Since we turn off the relevant coupling and the VEV of the Coulomb branch operator, the
r.h.s. of (4.3) can be computed via (3.26).

The contribution of the (A1, D6) theory was already identified in [8] and have reviewed
in (2.13); substituting N = 6 we find

Z(A1,D6)
Y1,Y2

(a,m,ddd,uuu) = (ζc3)−
|Y1|+|Y2|

3
〈a;Y1, Y2|Î(3)〉
〈a|Î(3)〉

, (4.4)

where ddd = (d1, d2) and uuu = (u1, u2) are identified as in (2.15) and (2.16). We choose the
free parameter ζ to be ζ = 2/ξ so that the expressions in the next sub-section are simple.
Changing the value of ζ or ξ just corresponds to rescaling q. The r.h.s. of (4.4) can be
evaluated by using |Î(3)〉 = |I(3)〉 ⊗ |I(3)

H 〉 and the following equations:

Lk|I(3)〉 = 0 for k ≥ 7 , (4.5)
L6|I(3)〉 = −c2

3|I(3)〉 , (4.6)
L5|I(3)〉 = −2c2c3|I(3)〉 , (4.7)

L4|I(3)〉 = −
(
c2

2 + 2c3c1
)
|I(3)〉 , (4.8)

L3|I(3)〉 = −2 (c1c2 + c3(c0 − 2Q)) |I(3)〉 , (4.9)

L2|I(3)〉 =
(
c3

∂

∂c1
− c2(2c0 − 3Q)− c2

1

)
|I(3)〉 , (4.10)

L1|I(3)〉 =
(

2c3
∂

∂c2
+ c2

∂

∂c1
− 2c1(c0 −Q)

)
|I(3)〉 , (4.11)

and

ak|I
(3)
H 〉 =

{
−ick|I

(3)
H 〉 for k = 1, 2, 3

0 for k > 3
. (4.12)

Using (4.1), (4.3) and (4.4), one can evaluate ZU(2)/Z
U(2)
pert order by order in q.

Recall that we have replaced the SU(2) gauge group in figure 2 with U(2). This induces
an extra prefactor of the partition function, ZU(1), that is called the “U(1)-factor.” The
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partition function of the original (A2, A5) theory is then recovered by removing ZU(1) from
ZU(2), i.e.,

Z(A2,A5) =
ZU(2)
ZU(1)

. (4.13)

Since a is the VEV of a scalar field in the SU(2) vector multiplet, a is neutral under
U(1). Therefore we expect that ZU(1) is independent of a. This means that, up to an
a-independent prefactor, ZU(2) and Z(A2,A5) are identical.

4.2 S-duality from the prepotential relation

We here focus on the prepotential of the (A2, A5) theory:

F (A2,A5) ≡ lim
εi→0

(
−ε1ε2 logZ(A2,A5)

)
. (4.14)

Up to the a-independent term limεi→0(−ε1ε2 logZU(1)), this is identical to

lim
εi→0

(
−ε1ε2 logZU(2)

)
. (4.15)

The prepotential (4.14) is generally decomposed into the perturbative and instanton parts
as

F (A2,A5) = F (A2,A5)
pert + F (A2,A5)

inst . (4.16)

Again, up to a-independent terms affected by the U(1)-factor, the instanton part F (A2,A5)
inst

is identical to

lim
εi→0

−ε1ε2 log
ZU(2)

ZU(2)
pert

 , (4.17)

which one can compute using the formula (4.1).16 Below, we will compute this instanton
part, and read off from it how the S-duality group acts on the UV gauge coupling of the
(A2, A5) theory.

To study the S-duality of the theory, it is useful to turn off the couplings and VEVs in
the (A1, D6) sector as well, i.e., ddd = (0, 0) and uuu = (0, 0) in (4.1). In this case, F (A2,A5)

inst is
a function of q, a and two mass parameters M and m. Using (4.3) and (4.4), one obtains

F (A2,A5)
inst (q; a,m,M) ∼ 1

6

(
a2 + mM3

2 a−2
)
q3

+ 1
192

[
13a2 +

(3
4m

2M2 + 8mM3 + 3M4
)
a−2

−
(9

4m
2M4 + 3M6

)
a−4 + 5

4m
2M6a−6

]
q6 +O(q9) , (4.18)

16Note here that we are setting d = u = 0 in (4.1), and therefore (4.17) can be unambiguously computed
via (4.1) with (4.3) and (4.4).
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where “∼” means that the l.h.s. and r.h.s. are identical up to a-independent terms affected
by the U(1)-factor. Remarkably, the above expression is in a striking resemblance to the
instanton part FNf=4

inst of the prepotential of SU(2) gauge theory with four fundamental
flavors. Indeed, comparing (4.18) with (A.8) in appendix A, we see that the relation

3F (A2,A5)
inst (q; a,m,M) = FNf=4

inst

(
q3; a, m2 ,M,M,M

)
(4.19)

holds, at least up to O(q9)!17 Note that one of the four mass parameters on the r.h.s. is
related to the mass parameter m in the (A1, D6) sector on the l.h.s. , while the remaining
three masses on the r.h.s. are identified with the mass M of the single fundamental hyper-
multiplet on the l.h.s. . In the next sub-section, we will show that these mass relations are
consistent with the SW curves of (A2, A5) and SU(2) gauge theory with four flavors.

In the same spirit as [8], we conjecture that the relation (4.19) extends to the full
prepotential. This particularly implies that, when the mass parameters are also turned off,
one finds

3F (A2,A5)(q; a) = FNf=4(q3, a) . (4.20)

This prepotential relation is extremely powerful since one can study the S-duality of the
(A2, A5) theory via that of SU(2) gauge theory with four flavors. To see this, first note
that the prepotentials of the two theories must be written as

F (A2,A5)(q; a) = (log qIR) a2 , FNf=4(q; a) = (log q̃IR) a2 , (4.21)

for dimensional reasons, where qIR and q̃IR are functions of the UV gauge coupling q. One
can regard qIR and q̃IR as IR gauge couplings of these theories on the Coulomb branch.
Indeed, in the weak coupling limit, both qIR and q̃IR coincide with the UV gauge coupling q.

For SU(2) gauge theory with four flavors, the IR and UV gauge couplings are known
to be related by (A.4) in appendix A [19]. This theory is known to be invariant under an
action of PSL(2,Z). Its action on the IR gauge coupling is written as

T : τ̃IR → τ̃IR + 1 , S : τ̃IR → −
1
τ̃IR

, (4.22)

where τ̃IR ≡ 1
πi log q̃IR. Through (A.4), one can translate the above as

T : q → q

q − 1 , S : q → 1− q . (4.23)

Similarly, the (A2, A5) theory is known to be invariant under PSL(2,Z) [20–22]. Indeed,
the SW curve of the (A2, A5) theory reduces to a genus-one curve when dimensionful pa-
rameters except for a are all turned off. One difference from the previous paragraph is that
the action of PSL(2,Z) on q has not been identified, since the relation between q and qIR
has been unclear for (A2, A5). However, from the prepotential relation we found above, one

17To be precise, we have only checked this relation up to O(q9), and also up to terms affected by the
U(1)-factor.
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can now identify the explicit relation between q and qIR for the (A2, A5) theory. Specifically,
we see from (4.20) that F (A2,A5)(q; a) is obtained from FNf=4(q; a) by the replacement

q −→ q3 , q̃IR −→ q3
IR . (4.24)

Applying this replacement to (A.4), we find the following relation between the UV and IR
gauge couplings of the (A2, A5) theory:

q3 = θ2(q3
IR)4

θ3(q3
IR)4 . (4.25)

This suggests that the PSL(2,Z) acts on the IR gauge coupling τIR ≡ 3
π log qIR as

T : τIR → τIR + 1 , S : τIR → −
1
τIR

, (4.26)

and on the UV gauge coupling as

T : q3 → q3

q3 − 1 , S : q3 → 1− q3 . (4.27)

Indeed, applying (4.24) to (4.22) and (4.23), one obtains (4.26) and (4.27).
Remarkably, the above PSL(2,Z)-action on the (A2, A5) theory can be extended to a

more non-trivial situation. Let us now turn on u1 and u2 in (4.1) while keeping d, d1, d2
and u vanishing. Then the resulting F (A2,A5)

inst is a function of a,m,M, u1, u2 and q. We
find that this F (A2,A5)

inst is invariant under the following change of variables:

q → e
πi
3 q

(1− q3) 1
3
, m→ −m, u1 → e

2πi
3 u1 , u2 → e

πi
3 u2 , (4.28)

whereM and a are kept fixed. We checked this invariance up to O(q6). Note that the trans-
formation (4.28) is a natural extension of the T -transformation in (4.27). We believe this
can be further extended to the case of non-vanishing d, d1, d2 and u. In particular, we believe
the T -transformations for non-vanishing d, d1 and d2 involve a non-trivial q-dependence as
in the case of (A3, A3) theory studied in [8]. We leave a careful study of it for future work.18

5 Consistency with the Seiberg-Witten curve

In this section, we show that the surprising relation (4.20) is consistent with the SW
curve of the (A2, A5) theory. In particular, we will show that the relation between the
two sets of mass parameters can also be seen in the SW curve. We also show that the
T -transformation (4.28) corresponds to a symmetry of the curve.

18As discussed in section 3, our formula for Z(A1,D3)
Y1,Y2

is only for vanishing d and u. Therefore, our
discussion on the S-duality here is limited to the case of d = u = 0. Since d and d2 are of the same dimension,
the T -transformation is expected to mix them, which is why we turn off d2 as well in the main text.
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The SW curve of the (A2, A5) theory can be written as [10, 12]

0 = x3 + z6 − 1
qx

2z2 − qxz4 + c20x
2 + x(c11z + c10)

+ c05z
5 + c04z

4 + c03z
3 + c02z

2 + c01z − c00 , (5.1)

where q corresponds to the exactly marginal gauge coupling, and is a non-trivial function of
qIR. The SW 1-form is given by λ = xdz. Since the mass of a BPS state is given by

∮
λ, the

1-form λ has scaling dimension one, which fixes the dimensions of the parameters in (5.1) as

[x] = 2
3 , [z] = 1

3 , [cij ] = 2− 2i+ j

3 , [q] = 0 . (5.2)

The coefficients cij with 0 < [cij ] < 1 are regarded as relevant couplings, while those
with [cij ] > 1 are regarded as the VEV of Coulomb branch operators. The remaining
parameters, c11 and c03, are two mass parameters.

5.1 Three sectors in the (A2, A5) theory

We first show that the curve (5.1) splits into three sectors in the weak gauge coupling limit
q → 0. To see this, let us study the behavior of the curve for q ∼ 0. As discussed in [23],
the coefficients cij of the curve must be renormalized so that as many periods as possible
are kept finite in the limit q→ 0. We find that the correctly renormalized coefficients are
as follows:

Cij ≡ q
[cij ]

2 cij for i 6= j , C11 ≡ qc11 , C00 ≡ qc00 . (5.3)

In terms of these renormalized parameters, the curve (5.1) is written as

0 = x3 + z6 − 1
qx

2z2 − qxz4 + q−
1
3C20x

2 + x(q−1C11z + q−
2
3C10)

+ q−
1
6C05z

5 + q−
1
3C04z

4 + q−
1
2C03z

3 + q−
2
3C02z

2 + q−
5
6C01z

1 − q−1C00 . (5.4)

One can show that the curve (5.4) splits into the following three sectors when we take
q→ 0 with Cij kept finite.

• In the region |z/x| ∼ q−1/3, one has the curve

0 = −x̃2z̃2 + z̃6 + C11x̃z̃ + C05z̃
5 + C04z̃

4 + C03z̃
3 + C02z̃

2 + C01z̃ − C00 , (5.5)

where we defined x̃ = q− 1
6x and z̃ = q 1

6 z. One can shift x̃ as x̃ → x̃ + C11/(2z̃) so
that the curve coincides with a known expression for the (A1, D6) theory:

x̃2 = z̃4 + C05z̃
3 + C04z̃

2 + C03z̃ + C02 + C01
z̃
−
C00 −

C2
11
4

z̃2 . (5.6)

Note that the above shift of x̃ preserves the SW 1-form up to exact terms. Here, we
see that C05 and C04 are relevant couplings, C02 and C01 are the VEVs of Coulomb
branch operators, and C03 and

√
C00 − C2

11/4 are mass parameters of the (A1, D6)

theory. In particular,
√
C00 − C2

11/4 is associated with the SU(2) flavor sub-group
that is gauged by the SU(2) vector multiplet in figure 2.
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• In the region |z/x| ∼ q2/3, the curve reduces to

0 = x̃3 − x̃2z̃2 + C20x̃
2 + x̃(C11z̃ + C10)− C00 , (5.7)

where we defined x̃ = q− 1
3x and z̃ = q 1

3 z. By shifting and rescaling the coordinates,
this curve is further rewritten as

0 = X2 + Z4 + 2
1
3C20Z

2 + 4

√
C00 −

C2
11
4 Z − 2

2
3

(
C10 −

C2
20
4

)
, (5.8)

where we defined X ≡ 2 1
3 i
(
x̃ + 1

2(z̃2 − C20)
)
and Z ≡ −2− 1

3 iz̃. We note that this
coincides with the curve of the (A1, D3) theory. In particular, C20 is the relevant cou-
pling, (C10−C2

20/4) is the VEV of the Coulomb branch operator, and
√
C00 − C2

11/4
is the mass parameter associated with the SU(2) flavor symmetry.

• In the region |z/x| ∼ 1, the curve reduces to

0 = −x2z2 + C11xz − C00 , (5.9)

which describes a weak coupling limit of the SU(2) superconformal QCD as discussed
in [23]. In particular, C11 is identified as the mass parameter of a fundamental
hypermultiplet.

As seen above, in the limit q → 0, the curve of the (A2, A5) theory splits into the curves
of the three sectors shown in figure 2. Moreover, we have seen physical meanings of Cij
in these three sectors, which leads to the following identification of parameters in (4.1) in
terms of those in the SW curve (5.4):19

d1 = C05 , d2 = C04 , m = −C03
6 , u1 = C02 , u2 = C01 ,

d = C20 , u = C10 −
C2

20
4 , M = −C11

12 . (5.10)

5.2 S-duality from the curve

We now show that the T -transformation (4.28) that we identified in section 4.2 corresponds
to a symmetry of the SW curve (5.1). We first note that the curve (5.1) is invariant under
the following transformation:20

q→ e
2πi

3 q , c10 → e−
4πi

9 c10 , c11 → e−
2πi

3 c11 , c20 → e−
2πi

9 c20 ,

c01 → −e
πi
9 c01 , c02 → −e−

πi
9 c02 , c03 → e

2πi
3 c03 ,

c04 → e
4πi

9 c04 , c05 → e
2πi

9 c05 , c00 → −e
πi
3 c00 . (5.12)

19Here, numerical factors in front of C03 and C11 are not physical. They are introduced here just to avoid
unimportant numerical coefficients below.

20At the same time, we take the change of coordinates in the curve (5.1)

(x, z)→ (e−
2πi

9 x, e
2πi

9 z) . (5.11)
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In the weak coupling limit q → 0, one can translate the above transformation into a
transformation of parameters in the three sectors. Indeed, (5.3) and (5.10) imply that (5.12)
is equivalent to

q→ e
2πi

3 q , d1 → −e
2πi

3 d1 , d2 → −e
πi
3 d2 , m→ −m,

u1 → e
2πi

3 u1 , u2 → e
πi
3 u2 , (5.13)

in the weak coupling limit. Note that this is in perfect agreement with our T -
transformation (4.28).21 This means that our T -transformation (4.28) corresponds to a
symmetry of the SW curve.

One can show that the above symmetry transformation (5.12) coincides with an S-
duality transformation of the theory. To see this, let us turn off cij except for c00. In this
case, the curve is written as

0 = (x−√qz2)(x+√qz2)
(
x− z2

q

)
− c00 . (5.14)

By changing the coordinates,22 the curve is expressed as

y2 = (x̃2 − ũ)2 − fx̃4 , (5.18)

where f is defined by f ≡ 1 − q3 and the SW 1-form is now written as iũ
3
dx̃
y up to exact

terms. This is a standard expression for the curve of SU(2) conformal QCD. As discussed
in [24, 25], there is an S-duality transformation involving√

1− f → −
√

1− f , ũ→ ũ , (5.19)

which is equivalent in our case to

q→ e
2πi

3 q , c00 → −e
πi
3 c00 . (5.20)

Since this is precisely the action of (5.12) on q and c00, we conclude that our T-
transformation (5.12) (or equivalently (4.28)) is an extension of this S-duality transfor-
mation to the case of generic values of cij .

21Recall that we have set d2 = 0 in section 4.2 and therefore consistent with d2 → −e
πi
3 d2.

22In terms of w = x/z2 and v = z3, the curve (5.14) is written as

v2 = c00

(w2 − q)
(
w − 1

q

) (5.15)

We consider the following change of variables:

w →
wq 1

2
√

1 +
√
f + q 1

2

√
1−
√
f

1+
√
f

w
√

1−
√
f + 1

, v →
√

1 +
√
f

2q 1
2
√
f
v

(
w

√
1−

√
f + 1

)2

, (5.16)

where f is defined by f ≡ 1− q3. The curve is now written as

v2 = ũ

(w2 + 1)− fw4 , (5.17)

where ũ is defined by ũ ≡ 2(1−f)
1
3√

1+
√
f
c00. The SW curve is now written as 1

3wdv. In terms of x̃ ≡ i
√
ũw and

y ≡ ũ
3
2 /v, the curve (5.17) is expressed as (5.18).
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5.3 Relation between mass parameters

We have shown in (4.19) that the prepotential of (A2, A5) and that of SU(2) gauge theory
with four flavors are in a surprising relation. In particular, one of the four mass parameters
of the latter is identified with the mass of the fundamental hypermultiplet of the former,
and the other three masses of the latter are identified with the mass in the (A1, D6) sector.
In this sub-section, we rederive this mass relation from the SW curve.

As seen above, the curve of the (A2, A5) theory is identical to that of SU(2) conformal
QCD when cij = 0 except for c00. This can be generalized to the case of non-vanishing
mass parameters. When we turn on the two mass parameters c03 and c11, the curve (5.14)
of the (A2, A5) theory is slightly modified. In terms of w ≡ x/z2 and v ≡ z3, the modified
curve is written as

0 = v2 (w −√q) (w +√q)
(
w − 1

q

)
+ v (c03 + c11w)− c00 . (5.21)

Defining P3(w) ≡ (w−√q)(w+√q)(w−1/q) and shifting v as v → v−(c03+c11w)/(2P3(w)),
we can rewrite the above as

v2 = c00
P3(w) + (c03 + c11w)2

4P3(w)2 , (5.22)

where the SW 1-form is now λ = −1
3vdw up to exact terms.

We see that (5.22) is precisely of the same form as the mass-deformed curve of SU(2)
conformal QCD with four flavors [26]:

v2 = U

P3(w) + M4(w)
P3(w)2 , (5.23)

where U stands for a coordinate of the Coulomb branch, and M4(w) is a fourth-order
polynomial of w and related to the mass parameters of the theory. Since there exists one
constraint on the coefficients of M4(w), there are four independent coefficients of M4(w).
These four independent degrees of freedom are encoded in the residues of the SW 1-form
at w = ±√q, 1/q and ∞. These residues are known to be identified with the following
linear combinations of the mass parameters, m1, · · · ,m4, of fundamental hypermultiplets:

m1 ±m2 , m3 ±m4 . (5.24)

Comparing (5.22) and (5.23), we see that (c03 + c11w)2 in (5.22) is identified with M4(w)
in (5.23). This implies that the four mass parameters of the latter theory are related to
the two mass parameters of the former.

To see more concretely the relation between the mass parameters, let us compute the
residues of the SW 1-form of the (A2, A5) theory. From (5.22), we see that the residues of
the 1-form λ = −1

3vdw at w = ±√q, 1/q and ∞ are respectively

−
c03 ± c11

√q
12(q− 1/√q) , −

c03 + c11
q

6
(

1
q −
√q
) (

1
q +√q

) , 0 , (5.25)
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which reduce in the weak-coupling limit q→ 0 to

m± 2M
2 , 2M , 0 . (5.26)

We see that these residues coincide with (5.24) if we identify

m1 = m

2 , m2 = m3 = m4 = M . (5.27)

This implies that the mass-deformed SW curve of (A2, A5) is identical to that of the SU(2)
conformal QCD when the four mass parameters of the latter are restricted as in (5.27).
Note here that the restriction (5.27) of mass parameters is precisely equivalent to the one
observed in the relation (4.19) for the prepotentials of these theories!23 This is a very
non-trivial consistency check of (4.18) and our formula for Z(A1,D3)

Y1,Y2
that we developed in

section 3.

6 Conclusion and discussions

In this paper, we have considered the U(2)-version of the generalized AGT correspondence
for (A1, DN ) theories for odd N , in terms of irregular states of the direct sum of Virasoro
and Heisenberg algebras V ir⊕H. In contrast to the (A1, Deven) case, the action of V ir⊕H
on the irregular state cannot be obtained in a colliding limit of primary operators, which
makes it very difficult to compute the (normalized) inner product of the form in (3.3).
However, we have shown that, when the relevant couplings and the VEVs of Coulomb
branch operators of the (A1, DN ) theory are turned off, one can compute the inner product
as in (3.29).

Using the formula (3.29), we have computed the instanton partition function of the
(A2, A5) theory, i.e., the coupled system of an SU(2) vector multiplet, a fundamental hy-
permultiplet, (A1, D6) and (A1, D3) as described in figure 2. Our result implies a surprising
relation (4.19) between the prepotential of the (A2, A5) theory and that of the SU(2) su-
perconformal QCD. A similar relation was found in [8] for the (A3, A3) theory. Using the
relation (4.19), we have read off how the S-duality group acts on parameters including the
UV gauge coupling. We have also checked in section 5 that the relation (4.19) is consistent
with the Seiberg-Witten curves of the (A2, A5) theory and the SU(2) superconformal QCD.

One can also apply our formula for Z(A1,Dodd)
Y1,Y2

to other gauged AD theories. For
instance, let us consider the SU(2) gauge theory coupled to three copies of the (A1, D3)
theory. As in the case of (A2, A5), the SU(2) gauge coupling of this theory is exactly
marginal. Using our formula for Z(A1,D3)

Y1,Y2
, one can then compute the prepotential of this

theory, up to terms affected by the U(1)-factor, at least when the relevant coupling and
the VEV of Coulomb branch operator of the (A1, D3) sectors are turned off. We have done
this computation and checked up to O(q6) that the resulting prepotential has no instanton

23The coincidence of the numerical factor 1/2 in front of m is a consequence of our identification (5.10),
and therefore is not non-trivial. What is non-trivial here is the coincidence that, both in (4.19) and (5.27),
three of the four mass parameters of the SU(2) conformal QCD are equal and proportional to M , and the
remaining one is proportional to m.
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correction at all. Note that the same situation occurs for the prepotential of N = 4 super
Yang-Mills theories (SYMs). Indeed, a peculiar connection between the SU(2) gauge theory
coupled to three (A1, D3) theories and N = 4 SU(2) SYM has already been pointed out
in [27]; the Schur index of these two theories are related by a simple change of variables.

Let us denote by Tp1,p2,p3 the SU(2) gauge theory coupled to (A1, Dp1), (A1, Dp2) and
(A1, Dp3). Given the results discussed in the previous two paragraphs, we see that T3,3,3
has similarity with N = 4 SU(2) SYM while T2,4,4 and T2,3,6 have similarity with SU(2)
superconformal QCD with four flavors. These similarities can be universally described from
the string theory viewpoint. Indeed, since (A1, Dp) is identical to theDp(SU(2)) theory [28],
the three theories T3,3,3, T2,4,4 and T2,3,6 are respectively identical to the N = 2 cases of
(E1,1

6 , SU(N)), (E1,1
7 , SU(N)) and (E1,1

8 , SU(N)) theories described in eq. (B.2) of [20]. As
discussed in section 3.3 of [20], these theories are engineered by type IIA string theory
on (T 2 × C2)/G with G being an abelian subgroup of U(2) containing ZN and Z2p. Here,
p = 3, 4 and 6 for (E1,1

6 , SU(N)), (E1,1
7 , SU(N)) and (E1,1

8 , SU(N)), respectively.24 In terms
of N and p, we see that the similarity to N = 4 SYM occurs when N = 2 and p is odd, while
the similarity to superconformal QCD occurs when N = 2 and p is even. Moreover, focusing
on the Schur index, the former similarity to N = 4 SYM was generalized to all coprime N
and p in [27]. This suggests that different similarities occur depending on whether N and
p are coprime. It would be interesting to study the reason for this phenomenon.

There are clearly many future directions. One of the most important directions is
to understand the reason for the peculiar relation (4.19) for the prepotentials. Another
interesting direction is to study the Nekrasov-Shatashvili limit of the instanton partition
function [3], which should be combined with the recent results on the quantum periods of
AD theories [29–32]. The uplift of our formula (3.29) to five dimensions would also be an
interesting direction. It would also be interesting to search for a matrix model description
of the instanton partition function of (A2, A5), generalizing the ones studied in [33–38].
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A S-duality of SU(2) conformal QCD

Here we give a brief review of an expression for the prepotential of SU(2) superconformal
QCD, following [4]. When the mass parameters are turned off, the prepotential must be

24The remaining case (D1,1
4 , SU(2)) from (B.2) of [20] is identical to SU(2) superconformal QCD with

four flavors, and corresponds to the case of p = 2.
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written as

FNf=4 = (log q̃IR)a2 , (A.1)

for dimensional reasons, where a is the VEV of the adjoint scalar in the vector multiplet,
and q̃IR is a function of the UV gauge coupling q. The above prepotential is written as the
sum of the following perturbative and instanton parts

FNf=4
pert (a) = (log q − log 16)a2 , (A.2)

FNf=4
inst (q; a) =

(1
2q + 13

64q
2 + 23

192q
3 + · · ·

)
, (A.3)

from which the following relation between q and q̃IR [19]:

q = θ2 (q̃IR)4

θ3 (q̃IR)4 . (A.4)

This relation implies that there are S-dual transformations S and T such that

T : τIR → τIR + 1 , S : τIR → −
1
τIR

, (A.5)

where τIR is defined by

τIR ≡
1
iπ

log q̃IR = θIR
π

+ 8πi
g2

IR
. (A.6)

Note that the T -transformation corresponds to θIR → θIR + π. In terms of q, the above
S-dual transformations are written as

T : q → q

q − 1 , S : q → 1− q . (A.7)

Let us now turn on all the mass parameters. Then the instanton part of the prepotential
is modified as

FNf=4
inst (q;a,mi) (A.8)

= 1
2(a2 +m1m2m3m4a

−2)q

+ 1
64
(
13a2 +(16m1m2m3m4 +m2

3m
2
4 +m2

2(m2
3 +m2

4)+m2
1(m2

2 +m2
3 +m2

4))a−2

−3(m2
2m

2
3m

2
4 +m2

1(m2
3m

2
4 +m2

2(m2
3 +m2

4)))a−4 +5m2
1m

2
2m

2
3m

2
4a
−6
)
q2 + · · · .

The S-dual transformations (A.7) are now accompanied with the SO(8) triality [24].

B Decoupling a fundamental matter from (A2, A5)

Here, we consider the decoupling limit of the fundamental hypermultiplet from the (A2, A5)
theory at the level of the SW curve. Recall that the (A2, A5) theory is described by the
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quiver in figure 2. When the fundamental hypermultiplet is decoupled, the resulting theory
is described by the quiver in figure 4. This theory is called the “Â3,6 theory” in [6].

To see this decoupling at the level of the SW curve, we take the mass of the fundamental
hypermultiplet to infinity, i.e., C11 →∞ in (5.4). For the periods of the curves to be finite,
one needs to keep

Λ ≡ −1
2
√qC11 (B.1)

finite in this limit. The finite constant Λ is then identified as a dynamical scale of the
resulting theory. In terms of

X ≡ − Λ
√q

(
x

z2

) 1
3

+ z3
(
x

z2

) 2
3
, Z ≡

(
z2

x

) 1
3

, (B.2)

the curve in the limit C11 →∞ is written as

X2 = Λ5/3C05Z
3 + Λ4/3C04Z

2 + ΛC03Z + Λ2/3C02 + Λ1/3C01
Z

− C00 + 2Λ2

Z2 + Λ2/3C10
Z3 + Λ4/3C20

Z4 + Λ2

Z5 , (B.3)

and the SW 1-form is written as λ = XdZ up to exact terms. We see that the above curve
is precisely identical to that of the Â3,6 theory [6].

Note that, by standard arguments, the gauge coupling of the conformal theory on the
Coulomb branch, exp

(
iθIR − 8π2

g2
IR

)
, is related to the dynamical scale of the mass-deformed

theory, Λ, by

Λ
C11

= exp
(
iθIR −

8π2

g2
IR

)
. (B.4)

Combining this with (B.1), we see that

q ∝ exp
(

2iθIR −
16π2

g2
IR

)
. (B.5)

Recall here that our T -transformation (5.12) involves q→ e
2πi

3 q. Using the above relation,
one can translate this into

θIR → θIR + π

3 , (B.6)

which implies that the T -transformation exchanges the minimal magnetic monopole with a
dyonic particle whose electric charge is 1/6 of that of the W-boson, which is consistent with
the fact that PSL(2,Z) naturally acts on a modified electro-magnetic charge lattice [21].
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Figure 4. The mass deformed theory of the (A2, A5) theory.

C The a independence of am

Here, we give another supporting evidence for the a-independence of am that we have
defined in (3.10). Since its definition involves 〈a|, a priori it might depend on a. However,
as we will show below, a natural 2D interpretation of the U(1)-factor strongly suggests that
am is indeed independent of a.

To see this, we first consider the theory described by the quiver diagram in figure 3.
The partition functions of this theory for U(2) and SU(2) gauge groups are related by

ZU(2)(a) = ZU(1)ZSU(2)(a) , (C.1)

where the U(1)-factor ZU(1) is independent of a, since a is the VEV of a scalar field
in the SU(2) vector multiplet and therefore neutral under the U(1). Recall here that the
U(2)-version of the generalized AGT correspondence implies ZU(2) = 〈Î(N/2)|Î(N/2)〉, where
〈Î(N/2)| and |Î(N/2)〉 are characterized by the two (A1, DN ) theories in figure 3. Here and
below, we set all the parameters of the two (A1, DN ) theories to be equal so that 〈Î(N/2)|
is indeed the conjugate of the state |Î(N/2)〉. Then one can write

ZU(2)(a) =
∣∣∣|Î(N/2)〉

∣∣∣2 =
∣∣∣|I(N/2)〉

∣∣∣2 ∣∣∣|I(N/2)
H 〉

∣∣∣2 , (C.2)

where we used that fact that |Î(N/2)〉 = |I(N/2)〉⊗|I(N/2)
H 〉. Since the original (SU(2)-version

of) the generalized AGT correspondence implies ZSU(2)(a) =
∣∣|I(N/2)〉

∣∣2, we identify the
U(1)-factor as

ZU(1) =
∣∣∣|I(N/2)

H 〉
∣∣∣2 . (C.3)

Note that ZSU(2)(a) and ZU(1) are expanded in powers of the dynamical scale Λ as

ZU(1) =
∞∑
k=0

Λb0kZ
U(1)
k , ZSU(2)(a) =

∞∑
`=0

Λb0`Z
SU(2)
` (a) , (C.4)

where b0 ≡ 4/N is the one-loop beta function coefficient of the gauge coupling. The
identification (C.3) then implies that the expansion coefficients ZU(1)

k are somehow related
to |I(N/2)

H 〉. Below, we will argue that ZU(1)
k are written in terms of 〈aH |I(N/2)

H 〉 and

am ≡
〈a|am|Î(N/2)〉
〈a|Î(N/2)〉

= 〈aH |am|I
(N/2)
H 〉

〈aH |I(N/2)
H 〉

, (C.5)

where we decompose the highest weight state |a〉 of V ir ×H as |a〉 = |aV 〉 ⊗ |aH〉. As we
will see below, this and the a-independence of ZU(1) then strongly suggest that am are all
independent of a.
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To see how am are related to ZU(1)
k , let us first expand ZU(2) as

ZU(2)(a) =
∑
Y1,Y2

Λb0(|Y1|+|Y2|)Zvec
Y1,Y2(a)〈Î(N/2)|a;Y1, Y2〉〈a;Y1, Y2|Î(N/2)〉 . (C.6)

This is obtained by inserting (2.11) into ZU(2)(a) = 〈Î(N/2)|Î(N/2)〉. Using (C.1) and (C.4),
one also finds

ZU(2)(a) =
∑
k,`=0

Λb0(k+`)Z
SU(2)
k (a) ZU(1)

` . (C.7)

By comparing (C.6) and (C.7) order by order, one can read off how Z
SU(2)
k (a) and ZU(1)

k

are related to |I(N/2)〉 and |I(N/2)
H 〉. Below, we will perform this comparison explicitly at

O(Λ0), O(Λb0) and O(Λ2b0).
Comparing the terms of O(Λ0) in (C.6) and (C.7), we find

Z
SU(2)
0 (a)ZU(1)

0 = |〈aV |I(N/2)〉|2 |〈aH |I(N/2)
H 〉|2 , (C.8)

where we used the fact that |a; ∅, ∅〉 = |a〉 = |aV 〉 ⊗ |aH〉 and |Î(N/2)〉 = |I(N/2)〉 ⊗ |I(N/2)
H 〉.

Note that, according to the (SU(2)-version of) generalized AGT correspondence, we already
have the identification ZSU(2)

0 (a) = |〈aV |I(N/2)〉|2 [6, 7].25 This and (C.8) then imply that

Z
U(1)
0 = |〈aH |I(N/2)

H 〉|2 . (C.9)

We then see that the a-independence of |〈aH |I(N/2)
H 〉| follows from that of ZU(1)

0 .
We now compare the terms of O(Λb0) in (C.6) and (C.7). Hereafter, we set ε1 = 1/ε2 =

i for simplicity. The relevant equation is

Z
SU(2)
1 (a)ZU(1)

0 + Z
SU(2)
0 (a)ZU(1)

1

= Zvec
,∅〈Î

(N/2)|a; , ∅〉〈a; , ∅|Î(N/2)〉+ Zvec
∅, 〈Î

(N/2)|a; ∅, 〉〈a; ∅, |Î(N/2)〉 . (C.10)

Note that, using ZSU(2)
0 = |〈aV |I(N/2)〉|2, (C.9) and the explicit expressions for |a; , ∅〉 and

|a; ∅, 〉, one can rewrite the right-hand side as

− 1
2a2

∣∣〈aV |L1|I(N/2)〉
∣∣2ZU(1)

0 + 2ZSU(2)
0 (a)

∣∣〈aH |a1|I(N/2)
H 〉

∣∣2 . (C.11)

Therefore, the natural identification

Z
SU(2)
1 (a) = − 1

2a2 |〈aV |L1|I(N/2)〉|2 , Z
U(1)
1 = 2|〈aH |a1|I(N/2)

H 〉|2 . (C.12)

solves the equation (C.10). Under the above identification, the a-independence of
|〈aH |a1|I(N/2)

H 〉| follows from the fact that ZU(1)
1 is independent of a.

25One (A1, DN ) in figure 3 gives rise to 〈aV |I(N/2)〉, and the other gives its conjugate. The perturbative
contribution from the SU(2) vector multiplet is omitted here.
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One can continue this procedure to higher orders of Λ. At O(Λ2b0), we find

Z
SU(2)
2 (a)ZU(1)

0 + Z
SU(2)
1 (a)ZU(1)

1 + Z
SU(2)
0 (a)ZU(2)

2

= Zvec
,∅|〈a; , ∅|Î(N/2)〉|2 + Zvec

,∅
|〈a; , ∅|Î(N/2)〉|2 + Zvec

, |〈a; , |Î(N/2)〉|2

+ Zvec
∅, |〈a; ∅, |Î(N/2)〉|2 + Zvec

∅,
|〈a; ∅, |Î(N/2)〉|2 . (C.13)

Using ZSU(2)
0 (a) = |〈aV |I(N/2)〉|2, (C.9) and (C.12), we see that

Z
SU(2)
2 = 1

(1 + 4a2)2

[
4(−1 + 2a2)2 |〈aV |L2|I(N/2)〉|2 + −1 + 8a2

4a4
|〈aV |L1|I(N/2)〉|4

|〈aV |I(N/2)〉|4
(C.14)

− 3
(
〈I(N/2)|L−2|aV 〉〈aV |L1|I(N/2)〉2

〈aV |I(N/2)〉
+ 〈I

(N/2)|(L−1)2|aV 〉〈aV |L(N/2)
2 〉

〈I(N/2)|aV 〉

)]

Z
U(1)
2 = |〈aH |a2|I(N/2)

H 〉|2 + 2 |〈aH |a1|I(N/2)
H 〉|4

|〈aH |I(N/2)
H 〉|2

. (C.15)

solve the equation (C.13). Since ZU(1)
2 , |〈aH |I(N/2)

H 〉| and |〈aH |a1|I(N/2)
H 〉| are independent

of a, we see from (C.15) that |〈aH |a2|I(N/2)
H 〉| is also independent of a.

Given the a-independence of |〈aH |I(N/2)
H 〉|, 〈aH |a1|I(N/2)

H 〉| and |〈aH |a2|I(N/2)
H 〉|, it is

straightforward to show that

|am| =
∣∣∣∣∣〈aH |am|I

(N/2)
H 〉

〈aH |I(N/2)
H 〉

∣∣∣∣∣ (C.16)

is independent of a at least for m = 1, 2. We expect that, via the same procedure, one
can argue that |am| are all independent of a for m = 1, 2, 3, · · · . Indeed, we have checked
this for m = 1, · · · , 4. While this discussion is only about |am|, it is a strong supporting
evidence for the a-independence of am for all m.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.
Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

[2] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math.
244 (2006) 525 [hep-th/0306238] [INSPIRE].

[3] N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional
gauge theories, in 16th International Congress on Mathematical Physics, World Scientific
(2009), p. 265 [arXiv:0908.4052] [INSPIRE].

– 29 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://arxiv.org/abs/hep-th/0206161
https://inspirehep.net/literature/588642
https://doi.org/10.1007/0-8176-4467-9_15
https://doi.org/10.1007/0-8176-4467-9_15
https://arxiv.org/abs/hep-th/0306238
https://inspirehep.net/literature/622076
https://doi.org/10.1142/9789814304634_0015
https://arxiv.org/abs/0908.4052
https://inspirehep.net/literature/829640


J
H
E
P
0
1
(
2
0
2
3
)
0
3
0

[4] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from
four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219]
[INSPIRE].

[5] N. Wyllard, AN−1 conformal Toda field theory correlation functions from conformal N = 2
SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].

[6] G. Bonelli, K. Maruyoshi and A. Tanzini, Wild quiver gauge theories, JHEP 02 (2012) 031
[arXiv:1112.1691] [INSPIRE].

[7] D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas
type gauge theories, I, JHEP 12 (2012) 050 [arXiv:1203.1052] [INSPIRE].

[8] T. Kimura, T. Nishinaka, Y. Sugawara and T. Uetoko, Argyres-Douglas theories, S-duality
and AGT correspondence, JHEP 04 (2021) 205 [arXiv:2012.14099] [INSPIRE].

[9] S. Giacomelli, N. Mekareeya and M. Sacchi, New aspects of Argyres-Douglas theories and
their dimensional reduction, JHEP 03 (2021) 242 [arXiv:2012.12852] [INSPIRE].

[10] D. Xie, General Argyres-Douglas theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].

[11] V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion
of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33
[arXiv:1012.1312] [INSPIRE].

[12] S. Cecotti, A. Neitzke and C. Vafa, R-twisting and 4d/2d correspondences, arXiv:1006.3435
[INSPIRE].

[13] P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory,
Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].

[14] P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New N = 2 superconformal field
theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].

[15] T. Eguchi, K. Hori, K. Ito and S.-K. Yang, Study of N = 2 superconformal field theories in
four-dimensions, Nucl. Phys. B 471 (1996) 430 [hep-th/9603002] [INSPIRE].

[16] R. Flume and R. Poghossian, An algorithm for the microscopic evaluation of the coefficients
of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176]
[INSPIRE].

[17] U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant
cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].

[18] F. Fucito, J.F. Morales and R. Poghossian, Instantons on quivers and orientifolds, JHEP 10
(2004) 037 [hep-th/0408090] [INSPIRE].

[19] T.W. Grimm, A. Klemm, M. Marino and M. Weiss, Direct integration of the topological
string, JHEP 08 (2007) 058 [hep-th/0702187] [INSPIRE].

[20] M. Del Zotto, C. Vafa and D. Xie, Geometric engineering, mirror symmetry and
6d(1,0) → 4d(N=2), JHEP 11 (2015) 123 [arXiv:1504.08348] [INSPIRE].

[21] S. Cecotti and M. Del Zotto, Higher S-dualities and Shephard-Todd groups, JHEP 09 (2015)
035 [arXiv:1507.01799] [INSPIRE].

[22] M. Buican and T. Nishinaka, Argyres-Douglas theories, the Macdonald index, and an RG
inequality, JHEP 02 (2016) 159 [arXiv:1509.05402] [INSPIRE].

– 30 –

https://doi.org/10.1007/s11005-010-0369-5
https://arxiv.org/abs/0906.3219
https://inspirehep.net/literature/823411
https://doi.org/10.1088/1126-6708/2009/11/002
https://arxiv.org/abs/0907.2189
https://inspirehep.net/literature/825557
https://doi.org/10.1007/JHEP02(2012)031
https://arxiv.org/abs/1112.1691
https://inspirehep.net/literature/1080515
https://doi.org/10.1007/JHEP12(2012)050
https://arxiv.org/abs/1203.1052
https://inspirehep.net/literature/1092957
https://doi.org/10.1007/JHEP04(2021)205
https://arxiv.org/abs/2012.14099
https://inspirehep.net/literature/1838440
https://doi.org/10.1007/JHEP03(2021)242
https://arxiv.org/abs/2012.12852
https://inspirehep.net/literature/1838097
https://doi.org/10.1007/JHEP01(2013)100
https://arxiv.org/abs/1204.2270
https://inspirehep.net/literature/1108059
https://doi.org/10.1007/s11005-011-0503-z
https://arxiv.org/abs/1012.1312
https://inspirehep.net/literature/879875
https://arxiv.org/abs/1006.3435
https://inspirehep.net/literature/858550
https://doi.org/10.1016/0550-3213(95)00281-V
https://arxiv.org/abs/hep-th/9505062
https://inspirehep.net/literature/394993
https://doi.org/10.1016/0550-3213(95)00671-0
https://arxiv.org/abs/hep-th/9511154
https://inspirehep.net/literature/402651
https://doi.org/10.1016/0550-3213(96)00188-5
https://arxiv.org/abs/hep-th/9603002
https://inspirehep.net/literature/416415
https://doi.org/10.1142/S0217751X03013685
https://arxiv.org/abs/hep-th/0208176
https://inspirehep.net/literature/593577
https://doi.org/10.1088/1126-6708/2003/05/054
https://arxiv.org/abs/hep-th/0211108
https://inspirehep.net/literature/601869
https://doi.org/10.1088/1126-6708/2004/10/037
https://doi.org/10.1088/1126-6708/2004/10/037
https://arxiv.org/abs/hep-th/0408090
https://inspirehep.net/literature/656297
https://doi.org/10.1088/1126-6708/2007/08/058
https://arxiv.org/abs/hep-th/0702187
https://inspirehep.net/literature/745151
https://doi.org/10.1007/JHEP11(2015)123
https://arxiv.org/abs/1504.08348
https://inspirehep.net/literature/1365589
https://doi.org/10.1007/JHEP09(2015)035
https://doi.org/10.1007/JHEP09(2015)035
https://arxiv.org/abs/1507.01799
https://inspirehep.net/literature/1381803
https://doi.org/10.1007/JHEP02(2016)159
https://arxiv.org/abs/1509.05402
https://inspirehep.net/literature/1394009


J
H
E
P
0
1
(
2
0
2
3
)
0
3
0

[23] M. Buican, S. Giacomelli, T. Nishinaka and C. Papageorgakis, Argyres-Douglas theories and
S-duality, JHEP 02 (2015) 185 [arXiv:1411.6026] [INSPIRE].

[24] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2
supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

[25] P.C. Argyres, M.R. Plesser and A.D. Shapere, The Coulomb phase of N = 2 supersymmetric
QCD, Phys. Rev. Lett. 75 (1995) 1699 [hep-th/9505100] [INSPIRE].

[26] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[27] M. Buican and T. Nishinaka, N = 4 SYM, Argyres-Douglas theories, and an exact graded
vector space isomorphism, JHEP 04 (2022) 028 [arXiv:2012.13209] [INSPIRE].

[28] S. Cecotti and M. Del Zotto, Infinitely many N = 2 SCFT with ADE flavor symmetry,
JHEP 01 (2013) 191 [arXiv:1210.2886] [INSPIRE].

[29] K. Ito, S. Kanno and T. Okubo, Quantum periods and prepotential in N = 2 SU(2) SQCD,
JHEP 08 (2017) 065 [arXiv:1705.09120] [INSPIRE].

[30] K. Ito and T. Okubo, Quantum periods for N = 2 SU(2) SQCD around the superconformal
point, Nucl. Phys. B 934 (2018) 356 [arXiv:1804.04815] [INSPIRE].

[31] K. Ito, S. Koizumi and T. Okubo, Quantum Seiberg-Witten curve and universality in
Argyres-Douglas theories, Phys. Lett. B 792 (2019) 29 [arXiv:1903.00168] [INSPIRE].

[32] K. Ito, S. Koizumi and T. Okubo, Quantum Seiberg-Witten periods for N = 2 SU(Nc) SQCD
around the superconformal point, Nucl. Phys. B 954 (2020) 115004 [arXiv:2001.08891]
[INSPIRE].

[33] T. Nishinaka and C. Rim, Matrix models for irregular conformal blocks and Argyres-Douglas
theories, JHEP 10 (2012) 138 [arXiv:1207.4480] [INSPIRE].

[34] A. Grassi and J. Gu, Argyres-Douglas theories, Painlevé II and quantum mechanics, JHEP
02 (2019) 060 [arXiv:1803.02320] [INSPIRE].

[35] H. Itoyama, T. Oota and K. Yano, Discrete Painlevé system and the double scaling limit of
the matrix model for irregular conformal block and gauge theory, Phys. Lett. B 789 (2019)
605 [arXiv:1805.05057] [INSPIRE].

[36] H. Itoyama, T. Oota and K. Yano, Discrete Painlevé system for the partition function of
Nf = 2 SU(2) supersymmetric gauge theory and its double scaling limit, J. Phys. A 52
(2019) 415401 [arXiv:1812.00811] [INSPIRE].

[37] H. Itoyama and K. Yano, Theory space of one unitary matrix model and its critical behavior
associated with Argyres-Douglas theory, Int. J. Mod. Phys. A 36 (2021) 2150227
[arXiv:2103.11428] [INSPIRE].

[38] T. Oota, Perturbation of multi-critical unitary matrix models, double scaling limits, and
Argyres-Douglas theories, Nucl. Phys. B 976 (2022) 115718 [arXiv:2112.14441] [INSPIRE].

– 31 –

https://doi.org/10.1007/JHEP02(2015)185
https://arxiv.org/abs/1411.6026
https://inspirehep.net/literature/1329829
https://doi.org/10.1016/0550-3213(94)90214-3
https://arxiv.org/abs/hep-th/9408099
https://inspirehep.net/literature/375702
https://doi.org/10.1103/PhysRevLett.75.1699
https://arxiv.org/abs/hep-th/9505100
https://inspirehep.net/literature/395197
https://doi.org/10.1007/JHEP08(2012)034
https://arxiv.org/abs/0904.2715
https://inspirehep.net/literature/818218
https://doi.org/10.1007/JHEP04(2022)028
https://arxiv.org/abs/2012.13209
https://inspirehep.net/literature/1838212
https://doi.org/10.1007/JHEP01(2013)191
https://arxiv.org/abs/1210.2886
https://inspirehep.net/literature/1190210
https://doi.org/10.1007/JHEP08(2017)065
https://arxiv.org/abs/1705.09120
https://inspirehep.net/literature/1601318
https://doi.org/10.1016/j.nuclphysb.2018.07.007
https://arxiv.org/abs/1804.04815
https://inspirehep.net/literature/1667710
https://doi.org/10.1016/j.physletb.2019.03.024
https://arxiv.org/abs/1903.00168
https://inspirehep.net/literature/1722874
https://doi.org/10.1016/j.nuclphysb.2020.115004
https://arxiv.org/abs/2001.08891
https://inspirehep.net/literature/1777191
https://doi.org/10.1007/JHEP10(2012)138
https://arxiv.org/abs/1207.4480
https://inspirehep.net/literature/1123132
https://doi.org/10.1007/JHEP02(2019)060
https://doi.org/10.1007/JHEP02(2019)060
https://arxiv.org/abs/1803.02320
https://inspirehep.net/literature/1658804
https://doi.org/10.1016/j.physletb.2018.10.077
https://doi.org/10.1016/j.physletb.2018.10.077
https://arxiv.org/abs/1805.05057
https://inspirehep.net/literature/1672995
https://doi.org/10.1088/1751-8121/ab3f4f
https://doi.org/10.1088/1751-8121/ab3f4f
https://arxiv.org/abs/1812.00811
https://inspirehep.net/literature/1706289
https://doi.org/10.1142/S0217751X21502274
https://arxiv.org/abs/2103.11428
https://inspirehep.net/literature/1852845
https://doi.org/10.1016/j.nuclphysb.2022.115718
https://arxiv.org/abs/2112.14441
https://inspirehep.net/literature/1998085

	Introduction
	U(2)-version of generalized AGT for (A(1),D(even))
	Generalized AGT correspondence
	U(2)-version for even N

	U(2)-version of generalized AGT for (A(1),D(odd))
	Classical limit as the commutative limit
	4d scaling dimensions of 2d parameters
	Computation of matrix elements for odd N
	Removing an unphysical degree of freedom

	Application to the (A(2),A(5)) theory
	Partition function
	S-duality from the prepotential relation

	Consistency with the Seiberg-Witten curve
	Three sectors in the (A(2),A(5)) theory
	S-duality from the curve
	Relation between mass parameters

	Conclusion and discussions
	S-duality of SU(2) conformal QCD
	Decoupling a fundamental matter from (A(2),A(5))
	The a independence of mathfraka(m)

