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1 Introduction

The superconformal index [1, 2] of four-dimensional field theories is a powerful tool to study
the spectrum of superconformal field theories (SCFTs). It can be defined as a trace over
the Hilbert space on S3 in the radial quantization. Alternatively, it can be defined from
the UV description as a partition function on S1 × S3 up to the Casimir energy factor [3].
It is a meaningful quantity even for N = 2 non-conformal field theories. While the generic
superconformal index of N = 2 supersymmetric field theories involving three conformal
fugacities enumerates the 1/8 BPS local operators, it admits a limit of the fugacities which
can count the 1/4 BPS local operators, which is referred to as the Schur index [4, 5]. For a
class S theory it can be interpreted as a correlation function of a 2d TQFT on a Riemann
surface [4, 6]. According to the correspondence [7] between N = 2 SCFTs and vertex oper-
ator algebras (VOAs), the unflavored Schur index is equal to the vacuum character of the
associated VOA. Also it has a nice modular property [8] as a component of a vector valued
modular function as it can solve a modular linear differential equation (MLDE) [9, 10].

In this paper we study the flavored Schur indices of 4d N = 4 super Yang-Mills (SYM)
theories with unitary gauge groups. It can be also viewed as the Schur indices of N = 2∗
SYM theories as the flavor fugacity corresponds to the mass parameter for the adjoint
hypermultiplet in the N = 4 vector multiplet. While an elementary evaluation of the
indices for several low ranks is presented by performing the contour integrals in [11], we
derive a complete closed-form expression of the indices for arbitrary ranks by applying the
Fermi-gas method in [12] which generalizes the result [13] for the unflavored Schur index
of N = 4 SYM theory.1

The flavored Schur indices are given as a sum over the Young diagrams in such a way
that the density matrix and its spectral zeta functions are given by the Kronecker theta
function [15–17] and the twisted Weierstrass functions [18, 19]. The twisted Weierstrass
function plays a role of a generating function for quasi-Jacobi forms [20]. The normalized
N = 2∗ Schur indices are shown to lie in the polynomial ring in the Kronecker theta function
and the Weierstrass functions which contains the polynomial ring of quasi-Jacobi forms.

1Closed-form expressions for the unflavored Schur indices of N = 4 SYM theories are also found in [14].
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We also use the grand canonical ensemble to provide alternative closed-form expressions
of the N = 2∗ Schur indices as infinite series. According to the observation in [21, 22], we
also obtain exact closed-form expressions for the unflavored indices of the N = 2 Γ̂(SU(N))
SCFTs [23–27] where Γ is the simply laced Lie group of ADE type. While it is shown in [25]
that the unflavored Schur index of the Ê6(SU(2)) SCFT is given by the vacuum character
of the A(6) algebra [28, 29], we find alternative expressions from our closed-form formulae.

In addition, we find that the unflavored Schur indices of N = 4 SYM theory with
(special) unitary gauge groups are identified with MacMahon’s generating functions Ak(q)
and Ck(q) [30] for the generalized sums of divisors up to overall powers of q and the
Ramanujan theta function. This generalizes the result in [22] for the case with odd rank
gauge groups. This also shows that the normalized unflavored Schur indices of N = 4 SYM
theory with (special) unitary gauge groups lie in the ring of quasi-modular forms [31]. The
unflavored U(∞) and SU(∞) Schur indices which are equivalent to the generating functions
for overpartitions [32] and 3-colored partitions respectively.2 We investigate the asymptotic
growth of the numbers of the BPS local operators by applying the Meinardus theorem [34].

1.1 Structure

The organization of the paper is as follows. In section 2 we introduce the flavored Schur
indices of N = 4 SYM theories with unitary gauge group. In section 3 we formalize the
Fermi-gas method which allows for a closed-form expression of the N = 2∗ Schur indices
in terms of the twisted Weierstrass functions, the twisted Eisenstein series as well as the
Jacobi theta functions. In section 4 we take the grand canonical ensemble to get another
type of closed-form expressions as certain infinite series for the Schur indices of N = 2∗
SYM theory. We also present a closed-form expression of the unflavored Schur indices
of Γ̂(SU(N)) SCFTs. In section 5 we show that the unflavored Schur indices of N = 4
SYM theory with unitary gauge groups can be written in terms of MacMahon’s generating
functions Ak and Ck for the generalized sums of divisors. The large N unflavored Schur
indices ofN = 4 U(N) and SU(N) SYM theories are identified with generating functions for
overpartitions and 3-colored partitions. The asymptotic growth of the numbers of the BPS
local operators in the large N limit are analyzed. In appendix A we summarize definitions
and notations of the q-factorial, the Jacobi theta functions, the (twisted) Eisenstein series,
and the (twisted) Weierstrass functions. In appendix B we present further examples of the
closed-from expressions of the Schur indices.

1.2 Future works

• The Schur indices can be decorated by the line operators [12, 35–37]. It is expected
that the Schur correlation functions of the line operators in N = 2∗ U(N) SYM theory
enjoy a hidden triality symmetry as explicitly checked for some examples in [12], which
upon a twisted circle compactification can reduce to the triality symmetry [12, 38]
of the sphere correlators of the 3d N = 4 U(N) ADHM theory. We hope to report
more details of the Schur correlators in the upcoming work [39].

2The SU(∞) index is also discussed in [33].

– 2 –



J
H
E
P
0
1
(
2
0
2
3
)
0
2
9

• The modular covariant combinations of the twisted Eisenstein series and derivatives
acting on the Jacobi forms are given in [40] and those acting on the quasi-Jacobi forms
are studies in [41]. It would be intriguing to study differential equations satisfied by
the N = 2∗ Schur indices and to examine their transformation laws by using our
closed formulae.

• The coefficients of the supersymmetric indices can encode interesting combinatorial
statistics.3 It would be interesting to extend discussions for the unflavored Schur
indices in section 5 on combinatorial interpretations to the flavored case.

• It would be nice to investigate closed-form expressions of the Schur indices of N = 2∗
SYM theory as well as N = 4 SYM theory with other gauge groups. The Fermi-
gas method may be useful by generalizing the Frobenius determinant identity [44] or
Fay’s trisecant identity [45].

• The high-temperature limit of the (grand) canonical flavored Schur indices may be
investigated by applying the generalization of the Euler-Maclaurin summation for-
mula [46].4

• In the presence of boundaries or/and corners the indices encode the BPS boundary
conditions with additional degrees of freedom as the half- and the quarter-indices [48].
It would be nice to find their closed-form expressions.

2 Canonical indices

In this section, we collect some basics on the flavored Schur index of N = 4 U(N) SYM
theory. We begin with a matrix integral that exactly computes the flavored Schur index,5

IU(N)(t; q) = 1
N !

(q)2N
∞

(q 1
2 t±2; q)N∞

∮
|σi|=1

N∏
i=1

dσi
2πiσi

∏
i 6=j

(
σi
σj

; q
)
∞

(
q σiσj ; q

)
∞∏

i 6=j

(
q

1
2 t−2 σi

σj
; q
)
∞

(
q

1
2 t2 σiσj ; q

)
∞

, (2.1)

where the integration contour for gauge fugacities σi = e2πiαi , i = 1, · · · , N is taken as a
unit torus TN . It is a formal Taylor series in q1/2 = eπiτ and its coefficients are Laurent
polynomials in a fugacity t = e2πiρ with integer coefficients. τ is a complex structure of the
torus on which the underlying VOA is supported [49–51] or the radius of S1 relative to the
radius of S3 and the fugacity t = e2πiρ couples to the difference of the Cartan generators
of SU(2)C and SU(2)H subgroups of the R-symmetry group SU(4)R.

The index (2.1) starts from 1 + · · · so that one can count the number of the quarter-
BPS local operators as a protected quantity by reading off coefficients in its expansion.
The index (2.1) is manifestly invariant under the transformation

t→ t−1, (2.2)
3See [42, 43] for the combinatorial interpretations for supersymmetric indices of M2-brane SCFTs.
4See [47] for the analysis of the unflavored Schur indices.
5See [48] for the notation and definition of the flavored Schur index of N = 4 SYM theory.
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as there is a symmetry which exchanges the SU(2)H with the SU(2)C . When t = 1, the
index (2.1) reduces to the unflavored Schur index of N = 4 U(N) SYM theory.

2.1 Examples

For example, the flavored Schur index of N = 4 U(1) SYM theory is

IU(1)(t; q) = (q)2
∞

(q 1
2 t2; q)∞(q 1

2 t−2; q)∞
= 1 + ( t2︸︷︷︸

X

+ t−2︸︷︷︸
Y

)q1/2 + (−1 + t4︸︷︷︸
X2

+ t−4︸︷︷︸
Y 2

)q + ( t6︸︷︷︸
X3

+ t−6︸︷︷︸
Y 3

)q3/2

+ ( t8︸︷︷︸
X4

+ t−8︸︷︷︸
Y 4

)q2 + ( t10︸︷︷︸
X5

−t2 − t−2 + t−10︸︷︷︸
Y 5

)q5/2 + · · · (2.3)

The terms of the form qk/2t2k and qk/2t−2k with k = 1, 2, · · · enumerate the half-BPS local
operators Xk and Y k where X and Y are the adjoint scalar fields X and Y transforming
as (1,3) and (3,1) under the SU(2)C × SU(2)H respectively. For other terms there are
implicit cancellations between bosonic and fermionic contributions. For example, we have

terms coefficients bosonic operators fermionic operators
q −1 XY λ, λ

q3/2t2 0 X2Y, ∂X λX, λX

q2 0 ∂XY,X∂Y,X2Y 2, λλ ∂λ, ∂λ, λXY, λXY

q2t4 0 X3Y,X∂X λX2, λX2

q5/2 0 X4Y, ∂X3 λX3, λX3

q5/2t2 −1 X3Y 2, X2∂Y,X∂XY, λX2Y, λX2Y,

∂2X,λλX λ∂X, ∂λX, λ∂X, ∂λX

(2.4)

where λ denotes the 4d gauginos transforming as (2,2) under the SU(2)C × SU(2)H .
The flavored Schur index of N = 4 U(2) SYM theory has an expansion

IU(2)(t; q)

= 1 +
(
t2︸︷︷︸

TrX

+ t−2︸︷︷︸
TrY

)
q1/2 +

(
2t4︸︷︷︸

Tr(X2),
(TrX)2

+ 2t−4︸ ︷︷ ︸
Tr(Y 2),
(TrY )2

)
q +

(
2t6︸︷︷︸

Tr(X3)
Tr(X2)TrX

+ 2t−6︸ ︷︷ ︸
Tr(Y 3)

Tr(X2)TrY

)
q3/2

+
(

3t8︸︷︷︸
Tr(X4)

Tr(X)3TrX
Tr(X2)2

+ 3t−8︸ ︷︷ ︸
Tr(Y 4)

Tr(Y )3TrY
Tr(Y 2)2

)
q2 + ( 3t10︸︷︷︸

Tr(X5)
Tr(X4)TrX

Tr(X3)Tr(X2)

+t2 + t−2 + 3t−10︸ ︷︷ ︸
Tr(Y 5)

Tr(Y 4)TrY
Tr(Y 3)Tr(Y 2)

)q5/2 + · · · (2.5)

The terms with qk/2t2k (resp. qk/2t−2k), k = 1, 2, · · · count the number of the half-BPS
local operators. It includes single and double trace operators consisting of the adjoint
scalar field X (resp. Y ). Again cancellations of several bosonic and fermionic operators
occur in the other terms.
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2.2 Half-BPS indices

N = 4 U(N) SYM theory has the half-BPS local operators of a fixed scaling dimension ∆
consisting of the adjoint scalar fields. For example, those operators consisting of X take
the form [52]

Tr(X l1)k1Tr(X l2)k2 · · ·Tr(X lm)km (2.6)

obeying the condition

∆ =
m∑
i=1

liki. (2.7)

They can be labeled by the Young diagram of ∆ boxes whose length is no greater than N .
We can demonstrate this by deriving from the flavored index (2.1) the half-BPS index that
enumerates the half-BPS local operators consisting of X by taking the following scaling
limit:

IU(N)
1
2BPS

(q) := lim
q=q1/4t: fixed

q→0

IU(N)(t; q) =
N∏
n=1

1
(1− qn) (2.8)

where we have set q to zero while keeping q := q1/4t being constant. In fact, the half-BPS
index (2.8) is identified with a generating function for partitions with rows being no greater
than N .

2.3 Large N limit

The ratio of the index to the large N index can admit a giant graviton expansion [53]6
where each term in the expansion is identified with the index of giant gravitons in the
holographic dual AdS space [59–61].

Let us consider the large N limit of the half-BPS index (2.8). It is identified with a
generating function for partitions of n [62]

IU(∞)
1
2BPS

(q) =
∞∏
n=1

1
(1− qn) =

∞∑
n=0

p(n)qn

= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + 15q7 + 22q8 + · · · (2.9)

where p(n) is the number of partitions of n. The asymptotic growth of the number of the
half-BPS local operators is equivalent to that of p(n). As n→∞ we have [63]

p(n) ∼ 1
4n
√

3
exp

[
π21/2

31/2 n
1/2
]
. (2.10)

6See also [54–58] for the study of giant graviton expansion of the Schur indices.

– 5 –



J
H
E
P
0
1
(
2
0
2
3
)
0
2
9

The exact numbers p(n) of the operators and the values pasymp(n) evaluated from (2.10)
are given by

n p(n) pasymp(n)
10 30 48.1043
100 1.69230× 108 1.99281× 108

1000 2.31278× 1031 2.44020× 1031

5000 1.66801× 1074 1.70889× 1074

10000 3.57099× 10106 3.63281× 10106

(2.11)

The flavored index (2.1) in the large N limit can be evaluated as

IU(∞)(t; q) = 1 + (t2 + t−2)q1/2 + (2t4 + 2t−4)q + (3t6 + t2 + t−2 + 3t−6)q3/2

+ (2 + 5t8 + t4 + t−4 + 5t−8)q2 + (5t10 + t6 + t2 + t−2 + t−6 + 5t−10)q5/2

+ (2 + 7t12 + 2t4 + 2t−4 + 7t−12)q3 + · · · . (2.12)

We find that the large N flavored index (2.12) is given by

IU(∞)(t; q) = (q)∞
∞∏
k=0

(q1+ k+1
2 t±2(k+1); q)∞

(q k+1
2 t±2(k+1); q)∞

, (2.13)

and that it coincides with ∏∞
n=1(1− qn)∏∞

n=1(1− t2nq n2 )(1− t−2nq
n
2 )
, (2.14)

which is obtained from the gravitational index in [2].
We will discuss a combinatorial interpretation of the large N indices in section 5.

3 Fermi-gas formulation

In this section, we explore closed-form expressions for the flavored Schur index of N = 4
U(N) SYM theory. To do so, we rewrite the matrix model (2.1) as the canonical partition
function of an ideal Fermi-gas system. For this purpose, it is more convenient to use
another fugacity ξ = q−1/2t2 = e2πiζ rather than t itself. With this choice of the fugacity,
the flavored index (2.1) reads

IU(N)(ξ; q) = 1
N !

(q)2N
∞

(ξ−1; q)N∞(qξ; q)N∞

∮
|σi|=1

N∏
i=1

dσi
2πiσi

∏
i 6=j

(
σi
σj

; q
)
∞

(
q σiσj ; q

)
∞∏

i 6=j

(
ξ−1 σi

σj
; q
)
∞

(
qξ σiσj ; q

)
∞

. (3.1)

The invariance under t→ t−1 is now translated into

ξ → q−1ξ−1. (3.2)

We note that the q-expansion of the index (3.1) does not start from 1 + · · · . In fact, the
index (3.1) can be interpreted as the Schur index of 4d N = 2∗ U(N) SYM theory which is a
non-conformal supersymmetric theory due to the introduction of a mass parameter for the
adjoint hypermultiplet in N = 4 SYM theory corresponding to the chemical potential ζ.

– 6 –
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3.1 Kronecker theta function

We rewrite the index (3.1) as

IU(N)(ξ; q) = (−1)NξN2/2

N !

∮
|σi|=1

N∏
i=1

dσi
2πiσi

θ′(1; q)N ∏i<j θ( σiσj ; q)θ(σjσi ; q)∏
i,j θ( σiσj ξ

−1; q) , (3.3)

where we define a new function

θ(x; q) :=
∑
n∈Z

(−1)nxn+ 1
2 q

n2+n
2

= (x
1
2 − x−

1
2 )
∞∏
n=1

(1− qn)(1− xqn)(1− x−1qn)

= −x−
1
2 (q; q)∞(x; q)∞(qx−1; q)∞. (3.4)

It is equal to the first Jacobi theta function (A.2) up to a pre-factor iq−1/8

θ(e2πiz; e2πiτ ) = iq−
1
8ϑ1(z; τ). (3.5)

It has properties

θ(e2πi(n+mτ+z); q) = (−1)n+me−πim
2τ−2πimzθ(e2πiz; q), (3.6)

θ(x−1; q) = −θ(x; q), (3.7)
θ(x, e2πi(τ+1)) = θ(x, e2πiτ ) (3.8)

and satisfies a differential equation

q
∂

∂q
θ(x; q)− 1

2

(
x
∂

∂x

)2
θ(x; q) + 1

8θ(x; q) = 0. (3.9)

Also we have

θ′(1; q) := ∂

∂x
θ(x; q)

∣∣∣
x=1

= (q)3
∞. (3.10)

To proceed, let us introduce the Kronecker theta function [15–17, 20],7

F (x, y; q) := θ(xy; q)(q)3
∞

θ(x; q)θ(y; q) = −iϑ1(z + w; τ)η3(τ)
ϑ1(z; τ)ϑ1(w; τ) (3.11)

where x = e2πiz and y = e2πiw. It satisfies the following relations

F (x, y; q) = F (y, x; q), (3.12)
F (x−1, y−1; q) = −F (x, y; q), (3.13)

F (x, x−1) = 0, (3.14)
F (e2πi(n+mτ+z), y; q) = e−2πimwF (e2πiz, y; q), (3.15)
F (x, e2πi(n+mτ+w); q) = e−2πimzF (x, e2πiw; q), (3.16)

F (qx−1, y; q) = −y−1F (x, y−1; q). (3.17)
7The Kronecker theta function F (eu, ev; e2πiτ ) defined here is the same as the Fτ (u, v) in [17].
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It is a Jacobi form of weight 1 which has the transformation laws

F

(
e2πi z

cτ+d , e2πi w
cτ+d ; e2πiaτ+b

cτ+d

)
= (cτ + d)e

2πiczw
cτ+d F

(
e2πiz, e2πiw; e2πiτ

)
, (3.18)

F
(
e2πi(z+nτ+s); e2πi(w+mτ+r); e2πiτ

)
= e−2πi(mnτ+mz+nw)F (e2πiz; e2πiw; e2πiτ ) (3.19)

for
(
a b
c d

)
∈ Γ = SL(2,Z) and (m, r), (n, s) ∈ Z2. It obeys a differential equation

q
∂

∂q
F (x, y; q) = xy

∂2

∂x∂y
F (x, y; q). (3.20)

It can be expressed as a double series

F (x, y; q) = xy − 1
(x− 1)(y − 1) −

∞∑
m,n=1

(xmyn − x−my−n)qmn. (3.21)

For |q| < |x| < 1 it has the Fourier expansion:

F (x, y; q) = −
∑
n∈Z

xn

1− yqn . (3.22)

Notice that

F (e2πiz, y; q = e2πiτ ) = P1

y−1

1

 (z, τ) (3.23)

where P1
[
θ
φ

]
(z, τ) is the twisted Weierstrass function defined by (A.83).

This results from Ramanujan’s 1ψ1 summation formula [64]

∑
n∈Z

(a; q)n
(b; q)n

zn = (q)∞(ba−1; q)∞(az; q)∞(qa−1z−1; q)∞
(b; q)∞(qa−1; q)∞(z; q)∞(ba−1z−1; q)∞

(3.24)

by setting b = aq.

3.2 Fermi-gas canonical partition function

We are ready to go to the Fermi-gas formulation. We make use of the Frobenius determinant
formula [44]8

(q)3N
∞
∏
i<j θ(viv−1

j ; q)θ(wjw−1
i ; q)∏

i,j θ(viw−1
j ; q)

= θ(u; q)
θ(u∏i viw

−1
i ; q)

det
i,j
F (viw−1

j , u; q), (3.25)

where u = e2πiν is an auxiliary fugacity. Then we can finally express the N = 2∗ Schur
index (3.3) as [12]

IU(N)(ξ; q) = (−1)NξN2/2

N !
θ(u; q)

θ(uξ−N ; q)

∮
|σi|=1

dNσ det
i,j
F

(
σi
σj
ξ−1, u; q

)

= (−1)NξN2/2θ(u; q)
θ(uξ−N ; q) Z(N ;u; ξ; q), (3.26)

8This is also obtained from the determinant formula [19] which generalizes Fay’s trisecant identity [45].
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where

Z(N ;u; ξ; q) := 1
N !

∮
|σi|=1

dNσ det
i,j
F

(
σi
σj
ξ−1, u; q

)
. (3.27)

Note that the function Z(N ;u; ξ; q) depends on u, but the Schur index IU(N)(ξ; q) does
not. This means that we can choose u freely to compute IU(N)(ξ; q). In fact, we will see
that some specific choices of u simplify exact expressions of IU(N)(ξ; q).

The function Z(N ;u; ξ; q) can be identified with a canonical partition function of
Fermi-gas with N particles on a circle. The one-particle density matrix which characterizes
the Fermi-gas is given by

ρ0(α, α′;u; ξ; q) = F (e2πi(α−α′)ξ−1, u; q)

= −
∑
p∈Z

e2πip(α−α′)ξ−p

1− uqp . (3.28)

In the Fermi-gas system α and p can be thought of as the position and momentum operators.
It is interesting to note that the canonical partition function satisfies a differential

equation

u
∂

∂u
Z(N ;u; ξ; q) + [P1(ν, τ)− P1(ν −Nζ, τ)]Z(N ;u; ξ; q) = 0 (3.29)

where P1(z, τ) is the Weierstrass function defined by (A.57).

3.3 Spectral zeta functions

Our next strategy is to evaluate the canonical partition function Z(N ;u; ξ; q) exactly. It
is known that Z(N ;u; ξ; q) is given by so-called spectral zeta functions. The spectral zeta
functions for the inverse of the density matrix of the Fermi-gas9 are defined by

Zl(u; ξ; q) := Tr(ρl0) =
∫ 1

0

l∏
i=1

dαl ρ0(α1, α2) · · · ρ0(αl, α1)

=
∑
p∈Z

(
−ξ−p

1− uqp

)l

= (−1)l−1

(l − 1)!
∂l−1F (q−(l−1)ξ−l, u; q)

∂ul−1 . (3.30)

9Let λn be eigenvalues of the inverse of the density matrix of the Fermi-gas. The spectral zeta functions
are given by Zs =

∑
n
λ−sn .
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Plugging the double series (3.21) into (3.30), we get an explicit formula

Zl(u;ξ;q)= δl,1
(1−ξ)+ 1

(u−1)l

+
∞∑

m,n=1

n+l−2
l−1

qm(n+l−1)ξmlu−n−l+1+(−1)l
 n

l−1

qm(n−l+1)ξ−mlun−l+1


= δl,1

(1−ξ)+ 1
(u−1)l

+
∞∑
n=1

n+l−2
l−1

qn+l−1ξlu−n−l+1

1−qn+l−1ξl
+(−1)l

 n

l−1

qn−l+1ξ−lun−l+1

1−qn−l+1ξ−l

. (3.31)

We note that the spectral zeta function for l = 1 is identified with the Kronecker theta
function (3.11) or equivalently with the twisted Weierstrass function

Z1(u; ξ; q) = (q)3
∞θ(ξ−1u; q)

θ(ξ−1; q)θ(u; q) = F (ξ−1, u; q) = P1

ξ
1

 (ν, τ). (3.32)

From (3.30) and (3.32) the spectral zeta functions for l > 1 can be simply obtained by
differentiating Z1(u; ξ; q) with respect to u

Zl(u; ξ; q) = (−1)l−1

(l − 1)!
∂l−1Z1(u; ql−1ξl; q)

∂ul−1 . (3.33)

Using a relation

∂n

∂un
= u−n

n∑
k=1

(2πi)−ks(n, k) ∂
k

∂νk
, (3.34)

where u = e2πiν and s(n, k) are the Stirling numbers of the first kind, we can also write
the spectral zeta functions for l ≥ 2 in terms of the twisted Weierstrass function (A.84)

Zl(u; ξ; q) = u−(l−1)

(l − 1)!

l−1∑
k=1

k!|s(l − 1, k)|Pk+1

ql−1ξl

1

 (ν, τ). (3.35)

where we have used a relation

s(n, k) = (−1)n−k|s(n, k)|. (3.36)

For our purpose, the following representation of the twisted Weierstrass function is useful:

Pk

θ
1

 (z, τ) = θ

1− θ δk1 + (−1)k
(k − 1)!Li1−k(x)

+ 1
(k − 1)!

∞∑
n=1

nk−1
[(−1)kθ−1xnqn

1− θ−1qn
+ θx−nqn

1− θqn
]

(3.37)

where θ 6= 1, x = e2πiz and q = e2πiτ .
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For small l, we have

Z2(u; ξ; q) = 1
u
P2

qξ2

1

 (ν, τ), (3.38)

Z3(u; ξ; q) = 1
2u2

P2

q2ξ3

1

 (ν, τ) + 2P3

q2ξ3

1

 (ν, τ)

 , (3.39)

Z4(u; ξ; q) = 1
3u3

P2

q3ξ4

1

 (ν, τ) + 3P3

q3ξ4

1

 (ν, τ) + 3P4

q3ξ4

1

 (ν, τ)

 , (3.40)

Z5(u; ξ; q) = 1
12u4

(
3P2

q4ξ5

1

 (ν, τ) + 11P3

q4ξ5

1

 (ν, τ)

+ 18P4

q4ξ5

1

 (ν, τ) + 12P5

q4ξ5

1

 (ν, τ)
)
. (3.41)

3.4 Closed-form formula

Now we are ready to give a first closed-form expression of the canonical Schur index by
using the spectral zeta functions as building blocks. Let

λ = (λm1
1 λm2

2 · · ·λ
mr
r ), (3.42)

with
r∑
i=1

miλi = N, (3.43)

λ1 > λ2 > · · · > λr > λr+1 = 0 (3.44)

be a partition of integer N , i.e. the Young diagram of N boxes. In terms of the spectral
zeta functions Zl(u; ξ; q), we can express the canonical partition function as a sum over the
Young diagrams

Z(N, u; ξ; q) =
∑
λ

(−1)N−r
r∏
i=1

1
λmii (mi!)

Zλi(u; ξ; q)mi , (3.45)

and the N = 2∗ U(N) Schur index

IU(N)(ξ; q) = (−1)NξN2/2θ(u; q)
θ(uξ−N ; q) Z(N ;u; ξ; q). (3.46)

As we have seen in (3.35), the spectral zeta functions (3.35) are given by polynomials in the
twisted Weierstrass functions. Thus the formula (3.46) presents a systematic evaluation of
the exact index.

The Schur indices of N = 4 SU(N) SYM theory can be similarly written as a closed-
fom according to a relation

ISU(N)(ξ; q) = I
U(N)(ξ; q)
IU(1)(ξ; q)

. (3.47)
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Note that the r.h.s. of (3.46) involves the auxiliary fugacity u. This u disappears in the
final result of the index. The cancellation of the u-dependence happens quite non-trivially.
Instead, in this paper, we use the u-independence of the index, and fix u to simplify the
results. There are several possibilities to do so. These possibilities lead to apparently
different closed-form expressions.

3.5 Quasi-Jacobi forms

While the formulae (3.45) and (3.46) state that the spectral zeta functions can be viewed as
building blocks of the N = 2∗ U(N) Schur index, they can also play a role of a generating
function for quasi-Jacobi forms [20].

A meromorphic quasi-Jacobi form of weight k ∈ Z, index m ∈ Z and depth (s, t) is a
meromorphic function ϕ(z, τ) : C×H→ C obeying the following transformation laws [20]:10

ϕ

(
z

cτ + d
,
aτ + b

cτ + d

)
=

∑
i≤s,j≤t

(cτ + d)k−i−jϕi,j(z, τ)ci+jzi, (3.48)

ϕ(z + λτ + µ, τ) =
∑
i≤s

ϕi,0(z, τ)λi (3.49)

for
(
a b
c d

)
∈ SL(2,Z) and (λ, µ) ∈ Z2 where ϕi,j(z, τ) and ϕi,0(z, τ) are meromorphic func-

tions.
Alternatively, the meromorphic quasi-Jacobi form is defined by introducing an almost

meromorphic Jacobi form [20]. An almost meromorphic Jacobi form of weight k ∈ Z, index
m ∈ Z and depth (s, t) is a (real) meromorphic function with the form

Ψ(z, τ) =
∑
i,j≥0

ψi,j(z, τ)
( 1
τ2

)i (z2
τ2

)j
(3.50)

where τ = τ1+iτ2, z = z1+iz2 and ψi,j(z, τ) are complex meromorphic functions, satisfying
the transformation laws

Ψ
(

z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)ke2πi cmz

2
cτ+d Ψ(z, τ), (3.51)

Ψ(z + λτ + µ, τ) = e−2πim(λ2+2λz)Ψ(z, τ). (3.52)

Then a quasi-Jacobi form arises as a constant term ψ0,0(z, τ) = ϕ(z, τ) with respect to
1/τ2 and z2/τ2 of the almost meromorphic form.

The algebra of quasi-Jacobi forms which is bigger than the algebra of Jacobi forms
is the algebra of functions on C × H generated by the Eisenstein series G2(τ) and the
Weierstrass functions Pk(z, τ) [20]. Alternatively, it is generated by the coefficients of the
Kronecker theta function [20].

We note that the basic spectral zeta function Z1(u; ξ; q) is equivalent to the Kronecker
theta function so that it can be expanded as

Z1(u; ξ; q) = 1
2πiν −

∞∑
k=1

Gk(ζ, τ)(2πiν)k−1 (3.53)

10Another definition of a quasi-Jacobi form is found in [65] and a definition of quasi-Jacobi form for higher
rank is found in [66, 67].
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where Gk(z, τ) is the twisted Eisenstein series (A.35). Also the logarithm of the spectral
zeta function has an expansion [68]

log (2πiνZ1(u; ξ; q)) = log(2πiν) + P0(ν, τ) + P0(ζ, τ)− P0(ζ + ν, τ)

=
∞∑
k=1

Fk(ζ, τ)(2πiν)k, (3.54)

where Pk(z, τ) is the Weierstrass function (A.58) and the function Fk(z, τ) is given by

Fk(z, τ) = (−1)k+1

k
(Pk(z, τ)−Gk(τ)) (3.55)

where Gk(τ) is the Eisenstein series (A.17). As Fk(z; τ) and G2(τ) form the ring of quasi-
Jacobi forms [20], the spectral zeta function Z1(u; ξ; q) plays a role of a generating function
for quasi-Jacobi forms.

Similarly, when one expands the other spectral zeta functions Zl(u; ξ; q) with l > 1
with respect to ν, each coefficient appears as a quasi-Jacobi form since the Zl(u; ξ; q) can
be obtained from (3.30) by differentiating Z1(u; ξ; q) with respect to u so that it can be
expressed as a polynomial in the Z1(u; ξ; q) and the Weierstrass functions Pk(ν, τ) which
belong to the algebra of the quasi-Jacobi forms [20].

Since the canonical partition functions Z(N ;u; ξ; q) are given by polynomials in the
spectral zeta functions Zl(u; ξ; q), each coefficient in the Taylor expansion of the canonical
partition function in ν appears as a quasi-Jacobi form.

Furthermore, it can be shown from (3.35), (3.45) and (3.46) that the normalizedN = 2∗
U(N) Schur index

ĨU(N)(ξ; q) := ξ−N
2/2IU(N)(ξ; q) (3.56)

is the meromorphic function on C×H which lies in the polynomial ring generated by the
Kronecker theta function and the Weierstrass functions. It contains the ring of quasi-Jacobi
forms of weight k < N generated by the Weierstrass functions as well as the Eisenstein
series G2(τ).

3.6 Examples

3.6.1 N = 1

For N = 1 the canonical partition function is simply

Z(1;u; ξ; q) = Z1(u; ξ; q) = P1

ξ
1

 (ν, τ). (3.57)

The N = 2∗ U(1) Schur index then reads

IU(1)(ξ; q) = −ξ1/2 θ(u; q)
θ(uξ−1; q)Z(1;u; ξ; q) = ξ1/2 (q)3

∞
θ(ξ; q) . (3.58)
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In this case, one can easily check the cancellation of the u-dependence. We can also express
it in terms of the Dedekind η-function,

IU(1)(ξ; q) = −iξ1/2 η3(τ)
ϑ1(ζ; τ) , (3.59)

where

η(τ) := q
1
24

∞∏
n=1

(1− qn). (3.60)

We observe that the normalized index

ĨU(1)(ξ; q) := ξ−1/2IU(1)(ξ; q) = (q)3
∞

θ(ξ; q) = −i η
3(τ)

ϑ1(ζ; τ) , (3.61)

can be written as

ĨU(1)(ξ; q) = exp
[
G2(τ)

2 (2πiζ)2
]
σ−1(ζ, τ)

= 1
2πiζ exp

[ ∞∑
k=1

G2k(τ)
2k (2πiζ)2k

]
, (3.62)

where Gk(τ) is the Eisenstein series (A.17) and σ(x, τ) is the Weierstrass σ-function (A.77).
This is the inverse of the elliptic prime form (A.76) on the elliptic curve with modulus τ [69].

The normalized index (3.61) is a Jacobi form of weight 1 and index −1
2 obeying the

transformation laws

ĨU(1)(e2πi ζ
cτ+d ; e2πiaτ+b

cτ+d ) = (cτ + d)e−
πicζ2
cτ+d ĨU(1)(e2πiζ , e2πiτ ), (3.63)

ĨU(1)(e2πi(ζ+λτ+µ), e2πiτ ) = (−1)λ+µξλq
λ2
2 ĨU(1)(e2πiζ , e2πiτ ). (3.64)

One can also write it as

ĨU(1)(ξ; q) = F (ξ1/2; ξ−1; q) (3.65)

in terms of the Kronecker theta function.

3.6.2 N = 2

For N ≥ 2, it is particularly convenient to set u = ξ at the beginning because Z1(ξ; ξ; q)
vanishes in this choice. The relation between the canonical partition function and the
spectral zeta functions is drastically simplified.

We first see the formula for generic values of u. For N = 2 the canonical partition
function has two contributions from two partitions and , which correspond to the
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partitions λ = (12), (21), respectively. Therefore we have

Z(2;u; ξ; q) = 1
2Z1(u; ξ; q)2 − 1

2Z2(u; ξ; q)

= 1
2

P1

ξ
1

2

(ν, τ)− 1
u
P2

qξ2

1

 (ν, τ)


= 1

2

P1

ξ
1

2

(ν, τ)− P2

ξ2

1

 (ν, τ) + P1

ξ2

1

 (ν, τ)


= 1

2

P1

ξ
1

2

(ν, τ)− P1

ξ2

1

 (ν, τ) (P1(ν, τ)− P1(ν − 2ζ, τ)− 1)

 . (3.66)

The Schur index can be written in terms of the twisted Weierstrass function (A.84).
While the canonical partition function in (3.66) has two contributions, it is simplified by
choosing u = ξ,

Z(2; ξ; ξ; q) = −1
2Z2(ξ; ξ; q). (3.67)

Then the Schur index is simply given by

IU(2)(ξ; q) = ξ

2P2

ξ2q

1

 (ζ, τ)

= ξ2P1

ξ2

1

 (ζ, τ)
(
P1(ζ, τ)− 1

2

)
. (3.68)

The invariance under the transformation (3.2) follows from the transformations

P2

θ−1

1

 (−z, τ) = P2

θ
1

 (z, τ), (3.69)

P2

θ
1

 (z + τ, τ) = θP2

θ
1

 (z, τ), (3.70)

of the twisted Weierstrass function.
The normalized U(2) index can be rewritten as

ĨU(2)(ξ; q) = ξ−2IU(2)(ξ; q)

= F (ξ; ξ−2; q)
(
P1(ζ, τ)− 1

2

)
(3.71)

in terms of the Kronecker theta function and the Weierstrass function.
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3.6.3 N = 3

When N = 3, the canonical partition function has three contributions corresponding to
three Young diagrams , and

Z(3;u; ξ; q) = 1
6
(
Z1(u; ξ; q)3 − 3Z1(u; ξ; q)Z2(u; ξ; q) + 2Z3(u; ξ; q)

)
. (3.72)

In terms of the twisted Weierstrass functions, it is given by

Z(3;u;ξ;q)

= 1
6

(
P1

ξ
1

(ν,τ)− 3
u
P1

ξ
1

(ν,τ)P2

qξ2

1

(ν,τ)+ 1
u2P2

q2ξ2

1

(ν,τ)+ 2
u2P3

q2ξ3

1

(ν,τ)
)

= 1
6

[
P1

ξ
1

3

(ν,τ)−P1

ξ
1

(ν,τ)P1

ξ2

1

(ν,τ)(P1(ν,τ)−P1(ν−2ζ,τ)−1)

+P1

ξ3

1

(ν,τ)
(
(P1(ν,τ)−P1(ν−3ζ,τ))2−3(P1(ν,τ)−P1(ν−3ζ,τ))

+(P2(ν,τ)−P2(ν−3ζ,τ))+2
)]
. (3.73)

As a specialized canonical partition function at u = ξ is simply given by

Z(3; ξ; ξ; q) = 1
3Z3(ξ; ξ; q), (3.74)

we can express the N = 2∗ U(3) Schur index as

IU(3)(ξ; q) = ξ5/2

6
θ(ξ)
θ(ξ2)

P2

q2ξ3

1

 (ζ, τ) + 2P3

q2ξ3

1

 (ζ, τ)

 (3.75)

in terms of the twisted Weierstrass functions.
We can write the normalized U(3) index as

ĨU(3)(ξ; q) = ξ−9/2IU(3)(ξ; q) (3.76)

= 1
6F (ξ2/3; ξ−3; q)

(
(P1(ζ, τ) + P1(2ζ, τ)− 2)2

+ (P1(ζ, τ) + P1(2ζ, τ)− 2) + (P2(ζ, τ)− P2(2ζ, τ))
)

in terms of the Kronecker theta function and the Weierstrass functions.
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3.6.4 N = 4

For N = 4, the canonical partition function has five contributions corresponding to five

Young diagrams , , , and . We get

Z(4;u; ξ; q) = 1
24

(
Z1(u; ξ; q)4 − 6Z1(u; ξ; q)2Z2(u; ξ; q) (3.77)

+ 8Z1(u; ξ; q)Z3(u; ξ; q) + 3Z2(u; ξ; q)2 − 6Z4(u; ξ; q)
)
.

It is given by

Z(4;u;ξ;q) = 1
24

[
P1

ξ
1

4

(ν,τ)− 6
u
P1

ξ
1

2

(ν,τ)P2

qξ2

1

(ν,τ)

+ 4
u2P1

ξ
1

(ν,τ)

P2

q2ξ3

1

(ν,τ)+2P3

q2ξ3

1

(ν,τ)

+ 1
u2P2

qξ2

1

2

(ν,τ)

− 2
u3

P2

q3ξ4

1

(ν,τ)+3P3

q3ξ4

1

(ν,τ)+3P4

q3ξ4

1

(ν,τ)

]. (3.78)

Now we have
Z(4; ξ; ξ; q) = −1

4Z4(ξ; ξ; q) + 1
8Z2(ξ; ξ; q)2. (3.79)

Making use of the twisted Weierstrass functions, we can express the Schur index in terms
of the twisted Weierstrass function:

IU(4)(ξ; q) = − ξ
5

24
θ(ξ)
θ(ξ3)

(
3ξP2

qξ2

1

2

(ζ, τ)− 2P2

q3ξ4

1

 (ζ, τ)

− 6P3

q3ξ4

1

 (ζ, τ)− 6P4

q3ξ4

1

 (ζ, τ)
)
. (3.80)

The normalized U(4) Schur index is given by a polynomial in the Kronecker theta
function and Weierstrass functions

ĨU(4)(ξ; q) = ξ−8IU(4)(ξ; q)

= 1
24

[
3F (ξ; ξ−2; q)F (ξ3; ξ−2; q)

(
2P1(ζ, τ)− 1

)2

+ F (ξ2; ξ−4; q)
{(
P1(ζ, τ) + P1(3ζ, τ)

)3
− 6

(
P1(ζ, τ) + P1(3ζ, τ)

)2

+ 3
(
P1(ζ, τ) + P1(3ζ, τ)

)(
P2(ζ, τ)− P2(3ζ, τ)

)
+ 11

(
P1(ζ, τ) + P1(3ζ, τ)

)
− 6

(
P2(ζ, τ)− P2(3ζ, τ)

)
+ 2

(
P3(ζ, τ) + P3(3ζ, τ)

)
− 6

}]
. (3.81)
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3.6.5 N = 5

When N = 5, there are seven Young diagrams , , , , , and

which contribute to the canonical partition function. It is given by

Z(5;u; ξ; q) = 1
120

(
Z1(u; ξ; q)5 − 10Z1(u; ξ; q)3Z2(u; ξ; q) (3.82)

+ 20Z1(u; ξ; q)2Z3(u; ξ; q)− 20Z2(u; ξ; q)Z3(u; ξ; q)

+ 15Z1(u; ξ; q)Z2(u; ξ; q)2 − 30Z1(u; ξ; q)Z4(u; ξ; q) + 24Z5(u; ξ; q)
)
.

From (3.32) and (3.38)–(3.41) we find

Z(5;u; ξ; q) = 1
120

[
P1

ξ
1

5

− 10
u
P1

ξ
1

3

P2

qξ2

1


+ 1
u2

15P1

ξ
1

P2

qξ2

1

2

+ 10P1

ξ
1

2P2

q2ξ3

1

+ 2P3

q2ξ3

1




+ 1
u3

(
−10P2

qξ2

1

P2

q2ξ3

1

+ 2P3

q2ξ3

1


− 10P1

ξ
1

P2

q3ξ4

1

+ 3P3

q3ξ4

1

+ P4

q3ξ4

1

)

+ 1
u4

6P2

q4ξ5

1

+ 22P3

q4ξ5

1

+ 36P4

q4ξ5

1

+ 24P5

q4ξ5

1

], (3.83)

where Pk
[
θ
1
]
is an abbreviation for Pk

[
θ
1
]
(ν, τ).

When we set u to ξ, the canonical partition function is drastically simplified as

Z(5; ξ; ξ; q) = −1
6Z2(ξ; ξ; q)Z3(ξ; ξ; q) + 1

5Z5(ξ; ξ; q). (3.84)

Thus we can write the U(5) Schur index as

IU(5)(ξ;q) =−ξ
17/2

120
θ(ξ)
θ(ξ4)

[
10ξP2

qξ2

1

(ζ,τ)

P2

q2ξ3

1

(ζ,τ)+2P3

q2ξ3

1

(ζ,τ)


−6P2

q4ξ5

1

(ζ,τ)−22P3

q4ξ5

1

(ζ,τ)−36P4

q4ξ5

1

(ζ,τ)−24P5

q4ξ5

1

(ζ,τ)
]

(3.85)

in terms of the twisted Weierstrass functions.
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We can write the normalized U(5) index as polynomial in the Kronecker theta function
and the Weierstrass functions

ĨU(5) = 1
120

[
−10F (ξ2; ξ−4; q)F (ξ3/2; ξ−3; q)

(
2P1(ζ, τ)− 1

)
(p2

1,2 + p2,2 − 3p1,2 + 2)

+ F (ξ5/2; ξ−5; q)(p4
1,4 − 10p3

1,4 + 6p2
1,4p2,4 + 35p2

1,4 + 3p2
2,4 − 10p1,4p2,4 + 8p1,4p3,4

− 50p1,4 + 35p2,4 − 20p3,4 + 6p4,4 + 24)
]

(3.86)

where

pk,l = Pk(ζ, τ) + (−1)k+1Pk(lζ, τ). (3.87)

There are many other exact expressions. We will present some of them in appendix B.

4 Grand canonical indices

For the purpose of obtaining the closed-form expressions of the Schur indices, the Fermi-gas
formulation naturally suggests us to consider the grand canonical ensemble.

4.1 Fermi-gas grand partition function

Let us define a grand canonical partition function by

Ξ(µ;u; ξ; q) = 1 +
∞∑
N=1
Z(N ;u; ξ; q)µN , (4.1)

where µ = e2πiη is the fugacity and η plays a role of the chemical potential. According to
the Fredholm determinant, we can express the grand canonical partition function in terms
of the spectral zeta functions [12]

Ξ(µ;u; ξ; q) = exp
[
−
∞∑
l=1

(−µ)l
l

Zl(u; ξ; q)
]

=
∏
p∈Z

(
1− µξ−p

1− uqp

)
=
∏
p∈Z

1− uqp − µξ−p
1− uqp , (4.2)

where we have plugged the infinite sum (3.30) into the spectral zeta functions.
The Schur index is equal to the canonical partition function up to the quotient of the

theta functions

IU(N)(ξ; q) = Λ(N ;u; ξ; q)Z(N ;u; ξ; q). (4.3)

where

Λ(N ;u; ξ; q) := (−1)NξN2/2 θ(u; q)
θ(uξ−N ; q) = (−1)NξN2/2 ϑ1(ν; τ)

ϑ1(ν −Nζ; τ) . (4.4)
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We have

Λ(N ; ξN/2; ξ; q) = (−1)N+1ξN
2/2, (4.5)

Λ(N ;u−1; q−1ξ−1; q) = (−u)−NΛ(N ;u; ξ; q). (4.6)

Since the N = 2∗ Schur index is invariant under the transformation (3.2) and the func-
tion (4.4) obeys the equation (4.6), the canonical partition function satisfies

Z(N ;u−1; q−1ξ−1; q) = (−u)NZ(N ;u; ξ; q). (4.7)

The grand canonical partition function (4.2) is not invariant under the transforma-
tion (3.2). Instead, it is shown to be invariant under the following extended transforma-
tions:

ξ → q−1ξ−1,

u→ u−1,

µ→ −µu−1. (4.8)

Note that this is consistent with the transformation laws (4.7) of the canonical partition
function.

4.2 Closed-form formula

Making use of Cauchy’s integral theorem, the canonical partition function is recovered from
the grand canonical partition function as

Z(N ;u; ξ; q) =
∮

dµ

2πiµN+1 Ξ(µ;u; ξ; q)

= (−1)N
∑

p1,··· ,pN∈Z
p1<···<pN

N∏
i=1

ξ−pi

1− uqpi . (4.9)

If we set u = ξN/2, then the prefactor Λ(N ; ξN/2; ξ; q) in (4.3) becomes (−1)N+1ξN
2/2. In

this choice, the expression (4.9) leads to another closed-form expression of the canonical
N = 2∗ Schur index

IU(N)(ξ; q) = −
∑

p1,··· ,pN∈Z
p1<···<pN

N∏
i=1

ξ−pi+
N2
2

1− ξN2 qpi
. (4.10)

In other words, the matrix integral (3.1) is equal to the infinite series (4.10).
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For example, we have

IU(1)(ξ;q)=−
∑
p∈Z

ξ−p+
1
2

1−ξ 1
2 qp

, (4.11)

IU(2)(ξ;q)=−
∑

p1,p2∈Z
p1<p2

ξ−p1−p2+2

(1−ξqp1)(1−ξqp2) , (4.12)

IU(3)(ξ;q)=−
∑

p1,p2,p3∈Z
p1<p2<p3

ξ−p1−p2−p3+ 9
2

(1−ξ 3
2 qp1)(1−ξ 3

2 qp2)(1−ξ 3
2 qp3)

, (4.13)

IU(4)(ξ;q)=−
∑

p1,p2,p3,p4∈Z
p1<p2<p3<p4

ξ−p1−p2−p3−p4+8

(1−ξ2qp1)(1−ξ2qp2)(1−ξ2qp3)(1−ξ2qp4) , (4.14)

IU(5)(ξ;q)=−
∑

p1,p2,p3,p4,p5∈Z
p1<p2<p3<p4<p5

ξ−p1−p2−p3−p4−p5+ 25
2

(1−ξ 5
2 qp1)(1−ξ 5

2 qp2)(1−ξ 5
2 qp3)(1−ξ 5

2 qp4)(1−ξ 5
2 qp5)

. (4.15)

We have confirmed that the q-series of these results agree with the expansions of the matrix
integral (3.1) as well as those of our previous results in (3.68)–(3.85), as expected.

We can also obtain several closed formulae for the unflavored indices. For N = 4
U(2k + δ) SYM theory with δ = 0, 1, the unflavored Schur index is given by

IU(2k+δ)(q) = (−1)k
∑

p1,··· ,p2k+δ∈Z
p1<···<p2k+δ

2k+δ∏
i=1

q
pi
2 −

(2k+δ)(2k+δ−1)
8

1− qpi+ 1
4

. (4.16)

Note that from (3.47) the unflavored Schur indices of N = 4 SU(2k + δ) SYM theory are
simply given by ISU(N)(q) = IU(N)(q) (q1/2;q)2

∞
(q;q)2

∞
.

Other formulae for the unflavored Schur indices can be derived by observing the
fact [21, 22] that the unflavored Schur indices of 4d N = 2 Γ̂(SU(N)) SCFTs [23–27]
can be realized by specializing the fugacities of the flavored Schur indices of N = 4 SU(N)
SYM theories.

The 4d N = 2 SCFTs Γ̂(G) are labeled by two simply laced Lie groups Γ and G of
ADE type. For Γ = D4, E6, E7 or E8 and gcd(h∨G,m∨Γ,max) = 1 where h∨G is the dual
Coxeter number of G and m∨Γ,max is the largest comark for the associated affine Dynkin
diagram Γ̂, the SCFTs have equal central charges a = c and their unflavored Schur indices
can be obtained from those of N = 4 SYM theory as [21, 22]11

I Γ̂(G)(q) = IG
(
ξ = q

1−m∨Γ,max
2 ; qm

∨
Γ,max

)
. (4.17)

The largest comarks for Γ = D4, E6, E7 and E8 are

m∨D4,max = 2, m∨E6,max = 3, m∨E7,max = 4, m∨E8,max = 6. (4.18)
11The fugacity t2 here is the fugacity x in [21, 22].
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The unflavored Schur indices of D̂4(SU(N)) SCFTs are ID̂4(SU(N))(q) = IU(N)(q2) (q;q2)2
∞

(q2;q2)2
∞

as argued in [22]. In addition, we can get from (4.9) the closed-form expressions for the
unflavored Schur indices of the Êk(SU(N)) SCFTs

IÊ6(SU(N))(q) = − θ(q; q3)θ(q 3
2 ; q3)

(q3; q3)3
∞θ(q

3
2 +N ; q3)

∑
p1,··· ,pN∈Z
p1<···<pN

N∏
i=1

qpi−
N2−1

2

1− q3pi+ 3
2
, (4.19)

IÊ7(SU(N))(q) = − θ(q; q4)θ(q 4
3 ; q4)

(q4; q4)3
∞θ(q

4
3 +N ; q4)

∑
p1,··· ,pN∈Z
p1<···<pN

N∏
i=1

qpi−
N2−1

2

1− q4pi+ 4
3
, (4.20)

IÊ8(SU(N))(q) = − θ(q; q6)θ(q 6
5 ; q6)

(q6; q6)3
∞θ(q

6
5 +N ; q6)

∑
p1,··· ,pN∈Z
p1<···<pN

N∏
i=1

qpi−
N2−1

2

1− q6pi+ 6
5
. (4.21)

We have checked that the equations (4.19), (4.20) and (4.21) precisely agree with the
q-expansion evaluated in [22, 25].

We note that one can find identities of q-series by extracting other closed-form expres-
sions from our formulae. For the Ê6(SU(2)) SCFT it is argued in [25] that the unflavored
Schur index is given by

IÊ6(SU(2))(q) = chA(6)(−1; q)

= 1
(q; q)∞

∞∑
n=1

(−1)n−1n

(
q

3n2−n−2
2 − q

3n2+n−2
2

)
. (4.22)

where

chA(6)(z; q) := TrA(6)q
L0z2A

= 1
(q; q)∞

∞∑
n=1

n−1
2∑

j=−n−1
2

(
q

3n2−n−2
2 − q

3n2+n−2
2

)
z2j (4.23)

is the vacuum character of the A(6) algebra [28, 29] and A is an sl(2) charge. From (4.19)
we can write it as

IÊ6(SU(2))(q) = − θ(q; q3)θ(q 3
2 ; q3)

(q3; q3)3
∞θ(q

7
2 ; q3)

∑
p1,p2∈Z
p1<p2

qp1−p2− 3
2

(1− q3p1+ 3
2 )(1− q3p1+ 3

2 )
. (4.24)

On the other hand, from the canonical partition function we also find

IÊ6(SU(2))(q) = −(q2; q2)∞(q; q3)∞
(q3; q3)2

∞

∑
p1,p2∈Z
p1<p2

q2p1+2p2−4

(1− q3p1−2)(1− q3p2−2) . (4.25)

These expressions are equal to

IÊ6(SU(2))(q) = q−1
(
G1(τ, 3τ)− 1

2

)
, (4.26)
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which results from the formulae (3.58) and (3.68). This reduces to a rather simple expres-
sion

IÊ6(SU(2))(q) =
∞∑
n=1

qn−1

1 + qn + q2n . (4.27)

It would be nice to rederive our formulae (4.19)–(4.21) from the vacuum characters of the
assoicated VOAs and to address them from their holographic duals.

4.3 Unflavored Schur index

Let us define the grand canonical unflavored Schur index by

Ω(µ; q) =
∞∑
N=0

IU(N)(q)
IU(∞)(q)

q
N2
8 µN . (4.28)

It is proposed in [54] that the factor IU(N)(q)/IU(∞)(q) can be interpreted as the contri-
butions from the D3-branes wrapping supersymmetric cycles. We find that

Ω(µ; q) = 1 + 2
∞∑
N=1

TN

(
µ

2

)
q
N2
8 , (4.29)

where Tn(x) are the n-th Chebyshev polynomials of the first kind which are defined by the
relation

Tn(cosx) = cos(nx). (4.30)

The expression turns out to be consistent with the result in [70] and the expressions of the
canonical unflavored Schur indices in terms of MacMahon’s generating functions from the
generalized sums of divisors discussed in section 5.

Note that the grand canonical unflavored Schur index (4.29) is simply the Jacobi theta
function

Ω(µ; q) = ϑ3

(
cos−1(µ/2)

2π ; τ4

)
, (4.31)

by definition and that the large N index is given by (5.44). Thus the full grand canonical
unflavored Schur index is given by

Ω̃(µ; q) :=
∞∑
N=0
IU(N)(q)q

N2
8 µN

=
ϑ3
(

cos−1(µ/2)
2π ; τ4

)
ϑ4

. (4.32)

Making use of the identity [71]

ϑ3(z; τ) = ϑ3(2z, 4τ) + ϑ2(2z, 4τ), (4.33)

the expression (4.32) is shown to agree with the result in [13].
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4.4 Half-BPS index

Also we can consider the grand canonical half-BPS index. It is given by

Ξ 1
2BPS

(µ; q) = 1 +
∞∑
N=1
IU(N)

1
2BPS

(q)µN

=
∞∑
N=0

µN

(q; q)N
= 1

(µ; q)∞
, (4.34)

where we have used the identity

1
(x; q)∞

=
∞∑
n=0

xn

(q; q)n
. (4.35)

When the resulting function (4.34) is expanded as

1
(µ; q)∞

=
∞∑
n=0

∞∑
N=0

p(n,N)qnµN , (4.36)

then the coefficient p(n,N) is the number of partitions of n with N parts [72]. It implies
the correspondence between the 1/2 BPS local operators of dimension n in N = 4 U(N)
SYM theory and partitions of n with N parts.

5 Combinatorics

5.1 Unflavored Schur indices

When t→ 1, the flavored Schur index (2.1) reduces to the unflavored Schur index of N = 4
U(N) SYM theory

IU(N)(q) = q−
N2
8 η3N (τ)
N !

∫ 1

0

N∏
i=1

dαi

∏
i<j ϑ

2
1(αi − αj)∏

i,j ϑ
2
4(αi − αj)

. (5.1)

It can be expressed as a closed-form [13]

IU(N)(q) = 1
ϑ4

∞∑
n=0

(−1)n
N + n

N

+

N + n− 1
N

 q n2+Nn
2

= 1
N !

1
ϑ4

∞∑
n=0

(−1)n (N + 2n)(N + n− 1)!
n! q

n2+Nn
2 . (5.2)

In the following we discuss that there is another expression of the unflavored Schur indices
of 4d N = 4 SYM theory with unitary gauge groups in terms of several generating functions
for partitions.
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5.2 Sum of triangular numbers

The unflavored Schur index of 4d N = 4 U(1) SYM theory is

IU(1)(q) = (q)2
∞

(q 1
2 ; q)2

∞
= (q)4

∞

(q 1
2 ; q 1

2 )2
∞

= e−
πiτ
4

η(τ)4

η(τ/2)2

= e−
πiτ
4
η(τ)3

ϑ4
= 1

2e
−πiτ4 ϑ2ϑ3

= 1 + 2q1/2 + q + 2q3/2 + 2q2 + 3q3 + 2q7/2 + 2q9/2 + · · · . (5.3)

The equality in the second line follows from the identity (A.13).
We can also write the U(1) index (5.3) as

IU(1)(q) = ψ(q1/2)2, (5.4)

where

ψ(q) = f(q, q3) =
∞∑
n=0

q
n(n+1)

2 = 1
2
∑
n∈Z

q
n(n+1)

2

= (−q; q)∞(q2; q2)∞ = (q2; q2)∞
(q; q2)∞

= 1
2q
−1/8ϑ2(τ)

= 1 + q + q3 + q6 + q10 + q15 + q21 + q28 + q36 + · · · , (5.5)

and

f(a, b) :=
∑
n∈Z

a
n(n+1)

2 b
n(n−1)

2 , (5.6)

is the Ramanujan theta function [73]. The function (5.5) is a generating function for the
triangular numbers, the number of solution of

x(x+ 1)
2 = n, (5.7)

where x is a non-negative integer. More generally, a function

ψ(q1/2)k =
∑
n=0

tk(n)q
n
2 , (5.8)

is known as a generating function for the representations tk(n) of n as a sum of the k
triangular numbers, the number of solutions of

x1(x1 + 1)
2 + x2(x2 + 1)

2 + · · ·+ xk(xk + 1)
2 , (5.9)
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where xi are non-negative integers. For k = 2 we have

n x1(x1+1)
2 + x2(x2+1)

2 tk(n)
0 0 + 0 1
1 0 + 1, 1 + 0 2
2 1 + 1 1
3 0 + 3, 3 + 0 2
4 1 + 3.3 + 1 2
5 − 0
6 0 + 6, 6 + 0, 3 + 3 3
7 1 + 6, 6 + 1 2
8 − 0
9 3 + 6, 6 + 3 2
10 0 + 10, 10 + 0 2

(5.10)

Thus we have the following correspondence between the BPS local operators of dimension
n/2 in N = 4 U(1) SYM theory counted by the unflavored Schur index and the represen-
tations of integer n as a sum of two triangular numbers.

We also note that the U(1) index can be expanded as

IU(1)(q) =
∑
n∈Z

(−1)nq 1
2n(n+1)

1− qn+ 1
2

=
∑
n∈Z

q
n
2

1− qn+ 1
4
, (5.11)

where the first expansion is obtained from the identity [74] involving the generating function
for the sums of triangular numbers. The second expression follows from the closed-form
expression (4.16).

5.3 Generalized sum of divisors

Next consider the unflavored Schur index of U(2) SYM theory. From the formula (3.68) it
reads

IU(2)(q) = 1
2
∑
n∈Z

nq
n−1

2

1− qn =
∑
n>0

nq
n−1

2

1− qn . (5.12)

Noticing that
∞∑
n=0

zqn

(1− zqn)2 =
∞∑
n=0

∞∑
m=1

m(zqn)m =
∞∑
m=1

mzm

1− qm , (5.13)

the index (5.12) can be rewritten as

IU(2)(q) =
∑
m>0

qm−1

(1− qm− 1
2 )2

= C1(q
1
2 )q−

1
2 , (5.14)
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where

C1(q) =
∑
m>0

q2m−1

(1− q2m−1)2 =
∑
n

c1,nq
n, (5.15)

is MacMahon’s generating function [30] for the sum

c1,n =
∑
λ

s, (5.16)

over all partitions λ of n into

n = s(2m− 1), (5.17)

where s and m are positive integers.
For U(2k) with k > 1 we find that

IU(2k)(q) = Ck(q
1
2 )q−

k2
2 , (5.18)

where

Ck(q) =
∑

0<m1<···<mk

q2m1+···+2mk−k

(1− q2m1−1)2 · · · (1− q2mk−1)2 . (5.19)

is known as a generating function for the generalized sum of divisors functions or parti-
tions [30]. If one expands the function (5.19) as

Ck(q) =
∞∑
n=1

ck,nq
n, (5.20)

then the coefficients cn,k are given by

ck,n =
∑
λ

s1 · · · sk, (5.21)

where the sum is taken over partitions λ of n into

n = s1(2m1 − 1) + s2(2m2 − 1) + · · ·+ sk(2mk − 1), (5.22)

with the restriction 0 < m1 < m2 < · · · < mk and si > 0. For example, for N = 4 U(2)
SYM theory each coefficient in the expansion of Schur index is the sum over all divisors
whose conjugate is an odd number.

For N = 2k + 1, k ≥ 1 we find that

IU(2k+1)(q) = (q; q)3
∞(−q 1

2 ; q 1
2 )∞

(q 1
2 ; q 1

2 )∞
Ak(q)q−

k(k+1)
2

= (q)2
∞

(q 1
2 ; q)2

∞
Ak(q)q−

k(k+1)
2 , (5.23)
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where

Ak(q) =
∑

0<m1<···<mk

qm1+···+mk

(1− qm1)2 · · · (1− qmk)2 , (5.24)

is also a generating function for the generalized sum of divisors functions or partitions [30].
When we write

Ak(q) =
∞∑
n=1

ak,nq
n, (5.25)

then the coefficients an,k are

ak,n =
∑

s1 · · · sk, (5.26)

where the sum is taken over partitions of n into

n = s1m1 + s2m2 + · · · skmk, (5.27)

with the condition 0 < m1 < · · · < mk and si > 0. For example, when k = 1 it is a
generating function for the sum of divisors function

σk(n) =
∑
d|n

dk, (5.28)

in that

A1(q) =
∞∑
m=1

qm

(1− qm)2 =
∞∑
n=1

σ1(n)qn. (5.29)

Making use of the relation (3.47) we have12

ISU(2k)(q) = (q 1
2 ; q)2

∞
(q)2
∞

Ck(q
1
2 )q−

k2
2 , (5.30)

ISU(2k+1)(q) = Ak(q)q−
k(k+1)

2 . (5.31)

We see that the relation (5.31) for odd ranks of gauge groups which was found in [22] can
be generalized to arbitrary ranks of unitary gauge groups.

It follows from (5.11) that the unflavored U(1) index satisfies a differential equation

q
d

dq
log IU(1)(q) = −3A1(q) + C1(q

1
2 ). (5.32)

Also the functions Ak(q) and Ck(q) obey [70]

Ak(q) = 1
2k(2k + 1)

[
(6A1(q) + k(k − 1))Ak−1(q)− 2q d

dq
Ak−1(q)

]
, (5.33)

Ck(q) = 1
2k(2k − 1)

[
(2C1(q) + (k − 1)2)Ck−1(q)− q d

dq
Ck−1(q)

]
. (5.34)

12Our result for the unflavored N = 4 SU(2k) Schur indices differs from the result in [75] by the extra
powers of q and the Ramanujan theta function.
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From relations

A1(q) = 1− E2(τ)
24 , (5.35)

C1(q) = E2(2τ)− E2(τ)
24 , (5.36)

where Ek(τ) is the Eisenstein series (A.20), together with the recurrence rela-
tions (5.33), (5.34), it is shown [70] that the functions Ak(q) and Ck(q) are the quasi-
modular forms since the ring of the quasi-modular forms is generated by the Eisenstein
series E2(τ), E4(τ) and E6(τ) of weights 2, 4 and 6 or by q ddq and E2(τ) [31]. This shows
that the normalized unflavored Schur indices of N = 4 SYM theory of (special) unitary
gauge groups belong to the algebra of quasi-modular forms.

For example, we have

ISU(5)(q) = q−3

5760 [27+5(E2(τ)−6)E2(τ)−2E4(τ)] , (5.37)

IU(4)(q) = q−2

3456
[
−E2(τ)2 +2E4(τ)−2E2(τ)(E2(τ/2)−6)

+2E2(τ/2)(E2(τ/2)−6)−E4(τ/2)
]
, (5.38)

ISU(7)(q) = q−6

2903040
[
2025−210E4(τ)

+7E2(τ)
(
−333−5(−15+E2(τ))E2(τ)+6E4(τ)

)
−16E6(τ)

]
, (5.39)

IU(6)(q) = q−9

1244160
[
−6E3

2(τ/2)−4E6(τ/2)+6E2(τ/2)2 (20+E2(τ))

−3E4(τ/2)(20+E2(τ))+3E2(τ/2)
(
192−20E2(τ)+E2(τ)2−6E4(τ)

)
+120E4(τ)+3E2(τ/2)

(
3E4(τ/2)+(−40+E2(τ))E2(τ)

−2(96+E4(τ))
)

+16E6(τ)
]
, (5.40)

ISU(9)(q) = q−10

278691840
[
33075−980E2(τ)3 +35E2(τ)4

+E2(τ)2(9870−84E4(τ))−12E4(τ)(329+E4(τ))−448E6(τ)

+4E2(τ)(−9687+294E4(τ)+16E6(τ))
]
, (5.41)

IU(8)(q) = q−16

836075520
[
24E2(τ/2)4−15E4(τ/2)4−672E6(τ/2)

+62208E2(τ)−16E6(τ/2)E2(τ)−7056E2(τ)2 +504E2(τ)3

−15E2(τ)4−24E2(τ/2)3(42+E2(τ))+14112E4(τ/2)
−3024E2(τ)E4(τ)+180E2(τ)2E4(τ)+156E4(τ)2

+6E4(τ/2)
(
(−84+E2(τ))E2(τ)−2(588+E4(τ))

)
+4E2(τ/2)

{
16E6(τ/2)+9E4(τ/2)(42+E2(τ))

−3
(
5184+E2(τ)(1176−42E2(τ)+E2(τ)2−6E4(τ))+84E4(τ)

)
−16E6(τ)

}
+64(42−5E2(τ))E6(τ)

]
. (5.42)
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5.4 Overpartitions

In the large N limit, the unflavored Schur index (5.1) of N = 4 U(N) SYM theory is given
by

IU(∞)(q) = 1 + 2q1/2 + 4q + 8q3/2 + 14q2 + 24q5/2 + 40q3 + 64q7/2 + · · · . (5.43)

We observe that the large N index (5.43) is identified with a generating function for the
overpartition [32]

IU(∞)(q) = 1
ϑ4

= 1
(q)∞(q 1

2 ; q)2
∞

=
∞∏
n=1

1 + q
n
2

1− q n2
=
∞∏
n=1

1
(1− q n2 )(1− qn− 1

2 )
=
∑
n=0

p(n)q
n
2 . (5.44)

Here p(n) is the number of overpartitions where an overpartition of n is a partition of
n in which the first occurrence of a number may be overlined. By convention we define
p(0) = 1. The overpartition of n is equivalent to the (2, 1)-colored partition of n [76]. It
is also given by [77]

p(n) =
∑

(1 + s1)(1 + s3) · · · (1 + s2[n/2]−1), (5.45)

where the sum is taken over partitions of n into

n = s1 + s2 · 2 + · · · sn · n. (5.46)

The asymptotic growth of the number of operators or equivalently that of overpartitions
is evaluated from the Meinardus Theorem [34, 72]. It is given by

p(n) ∼ 1
8n exp

[
πn1/2

]
. (5.47)

where the sum The exact numbers p(n) of the operators and the values pasymp(n) evaluated
from (5.47) are listed as follows:

n p(n) pasymp(n)
10 232 257.8973
100 5.32874× 1010 5.50394× 1010

1000 1.72936× 1039 1.74694× 1039

5000 7.4466× 1091 7.480269× 1091

10000 3.41319× 10131 3.42409× 10131

(5.48)

Here we propose a refined formula of the asymptotic growth of overpartitions

p(n) ∼ 1
8n

(
1− 1

πn1/2

)
exp

[
πn1/2

]
, (5.49)
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which gives rise to a more accurate answer. For n = 10 and 100 numerical values of
the formulae (5.47) are 231.9 . . . and 5.328742437341 . . . × 1010, which are enough to get
the exact numbers 232 and 5.32874243734 × 1010. For n = 1000, 5000 and 10000 the
asymptotic formula (5.47) is exact up to 34, 63 and 109 digits!13

Similarly, in the large N limit the Schur index of N = 4 SU(N) SYM theory is given by

ISU(∞)(q) = 1 + 3q + 9q2 + 22q3 + 51q4 + 108q5 + · · · . (5.51)

This is simply given by (also see [33])

ISU(∞)(q) = 1
(q)3
∞

=
∑
n=0

p3(n)qn, (5.52)

where p3(n) is the number of the 3-colored partitions of n [72], i.e. partitions of n in which
each part has one of 3 colors.

The asymptotic growth is evaluated from the Meinardus Theorem [34, 72] as

p3(n) ∼ 1
27/2n3/2 exp

[
21/2πn1/2

]
. (5.53)

We show the exact numbers p3(n) of the operators and the values p3 asymp(n) evaluated
from (5.53)

n p3(n) p3 asymp(n)
10 2640 3532.4
100 1.58733× 1015 1.74418× 1015

1000 2.81917× 1055 2.90510× 1055

5000 6.75666× 10129 6.84818× 10129

10000 7.83819× 10185 7.91314× 10185

(5.54)

Unlike the U(∞) index, corrections to the asymptotic growth (5.53) of the SU(∞) index
does not seem to terminate by simply adding the next leading term.

The leading exponential growth of the numbers of BPS local operators counted by the
Schur indices in N = 4 SYM theory is the same as the growth (2.10) for the partitions and
that of operator degeneracy in two-dimensional CFTs [79].
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A Definitions and notations

A.1 q-shifted factorial

We have introduced the following notation by defining q-shifted factorial

(a; q)0 := 1, (a; q)n :=
n−1∏
k=0

(1− aqk), (q)n :=
n∏
k=1

(1− qk), n ≥ 1,

(a; q)∞ :=
∞∏
k=0

(1− aqk), (q)∞ :=
∞∏
k=1

(1− qk),

(a±; q)∞ := (a; q)∞(a−1; q)∞, (A.1)

where a and q are complex variables.

A.2 Jacobi theta functions

The Jacobi theta functions are defined by

ϑ1(z; τ) =
∑
n∈Z

(−1)n−
1
2 q

1
2 (n+ 1

2 )2
xn+ 1

2 = −
∑
n∈Z

eπiτ(n+ 1
2 )2+2πi(z+ 1

2 )(n+ 1
2 ), (A.2)

ϑ2(z; τ) =
∑
n∈Z

q
1
2 (n+ 1

2 )2
xn+ 1

2 =
∑
n∈Z

eπiτ(n+ 1
2 )2+2πiz(n+ 1

2 ), (A.3)

ϑ3(z; τ) =
∑
n∈Z

q
n2
2 xn =

∑
n∈Z

eπiτn
2+2πinz, (A.4)

ϑ4(z; τ) =
∑
n∈Z

(−1)nq
n2
2 xn =

∑
n∈Z

eπin
2+2πi(z+ 1

2 )n (A.5)

with q = e2πiτ , x = e2πiz, τ ∈ H and z ∈ C. The Jacobi theta function ϑ1(z; τ) is a
holomorphic Jacobi form of weight 1

2 and index 1
2

ϑ1

(
z

τ
;−1

τ

)
= −i

√
τ

i
e
πiz2
τ ϑ1(z; τ), (A.6)

ϑ1(z + 1, τ) = −ϑ1(z, τ), (A.7)
ϑ1(z + τ, τ) = −e−2πiz−πiτϑ1(z, τ). (A.8)

We define ϑi = ϑi(0; τ) to be the Jacobi theta functions with argument z = 0. Then
one can write

ϑ1 = 0, (A.9)

ϑ2 = 2q1/8(q)∞(−q; q)2
∞ = 2η(2τ)2

η(τ) , (A.10)

ϑ3 = (q)∞(−q
1
2 ; q)2

∞ = η(τ)5

η(τ/2)2η(2τ)2 , (A.11)

ϑ4 = (q)∞(q
1
2 ; q)2

∞ = η(τ/2)2

η(τ) , (A.12)
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where ϑi = ϑi(0; τ). We have [71]

ϑ2ϑ3ϑ4 = 2η(τ)3, (A.13)
ϑ4

4 = ϑ4
3 − ϑ4

2, (A.14)

ϑ2(τ)ϑ3(τ) = 1
2ϑ2(τ/2)2, (A.15)

ϑ3(τ)ϑ4(τ) = ϑ2
4(2τ). (A.16)

A.3 Eisenstein series

A.3.1 Classical Eisenstein series

For k ≥ 2 even the Eisenstein series is defined by14

Gk(τ) = −Bk
k! + 2

(k − 1)!

∞∑
n=1

nk−1qn

1− qn

= −Bk
k! + 2

(k − 1)!

∞∑
n=1

σk−1(n)qn, (A.17)

where Bk are the k-th Bernoulli numbers and σk(n) is the divisor function (5.28). We also
define G0 = −1.

We have

Gk(τ) = 1
(2πi)k

∑
(m,n)∈Z2\{(0,0)}

1
(m+ nτ)k . (A.18)

For k ≥ 4 even the Eisenstein series is a holomorphic modular form of weight k on
SL(2,Z) whereas for k = 2 it is a quasi-modular form [31] of weight 2

Gk

(
aτ + b

cτ + d

)
= (cτ + d)kGk(τ)− δk,2

c(cτ + d)
2πi . (A.19)

Alternatively we introduce

Ek(τ) = − k!
Bk

Gk(τ) = 1− 2k
Bk

∞∑
n=1

σk−1(n)qn. (A.20)

14The Gk(τ) defined here are rescaled by (2πi)−k. They the same as the Gk(τ) in [68], the (2πi)−kGk(τ)
in [18, 80], the Ek(τ) in [19].
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It follows that

E2(τ) = P (q) = 24q d
dq

log η(τ), (A.21)

2E2(τ)− E2(τ/2) = η(τ)20

η(τ/2)8η(2τ)8 + 16η(2τ)8

η(τ)4 = ϑ4
2 + ϑ4

3, (A.22)

E4(τ) = Q(q) = η(τ)16

η(2τ)8 + 28 η(2τ)16

η(τ)8 = 1
2(ϑ8

2 + ϑ8
3 + ϑ8

4), (A.23)

E6(τ) = R(q) = η(τ)24

η(2τ)12 − 25 · 3 · 5η(2τ)12

− 29 · 3 · 11η(2τ)12η(4τ)8

η(τ)8 + 213 η(4τ)24

η(2τ)12 , (A.24)

E8(τ) = Q2(q) = 1
2(ϑ16

2 + ϑ16
3 + ϑ16

4 ), (A.25)

E10(τ) = Q(q)R(q), (A.26)

E12(τ) = 1
691

(
Q(q)3 + 250R(q)2

)
, (A.27)

E14(τ) = Q(q)2R(q), (A.28)

where P (q), Q(q) and R(q) are the functions introduced by Ramanujan [81] (also see [82]).
We have differential equations

q
dE2(τ)
dq

= 1
12(E2(τ)2 − E4(τ)), (A.29)

q
dE4(τ)
dq

= 1
3(E2(τ)E4(τ)− E6(τ)), (A.30)

q
dE6
dτ

= 1
2(E2(τ)E6(τ)− E4(τ)2). (A.31)

The modular invariants of an elliptic curve are given the Eisenstein series [80]

g2(τ) = 60
∑

(m,n)∈Z2\{(0,0}

1
(m+ nτ)4 = 60(2πi)4G4(τ), (A.32)

g3(τ) = 140
∑

(m,n)∈Z2\{(0,0}

1
(m+ nτ)6 = 140(2πi)6G6(τ). (A.33)

A.3.2 Twisted Eisenstein series

The twisted Eisenstein series is defined by15

Gk

θ
φ

 (τ) = −Bk(λ)
k! (A.34)

+ 1
(k − 1)!

∞∑
n=0

′ (n+ λ)k−1θ−1qn+λ

1− θ−1qn+λ + (−1)k
(k − 1)!

∞∑
n=1

(n− λ)k−1θqn−λ

1− θqn−λ ,

where φ = e2πiλ and the sum ∑′ implies that it omits n = 0 if (θ, φ) = (1, 1).
15The Gk

[
θ
φ

]
(τ) defined here are the same as the Ek

[
θ
φ

]
(τ) in [19], Qk(φ, θ−1, τ) in [18].
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In particular, for φ = 1, we define16

Gk(z, τ) = Gk

x−1

1

 (τ)

= −Bk
k! + 1

(k − 1)!

[ ∞∑
n=0

′
nk−1xqn

1− xqn + (−1)k
∞∑
n=1

nk−1x−1qn

1− x−1qn

]
, (A.35)

where x = e2πiz and ∑n=0
′ indicates that n = 0 is excluded in the sum when x = 1.

We also define G0(z, τ) = −1. The twisted Eisenstein series is related to the ordinary
Eisenstein series by

Gk

1
1

 (τ) = Gk(0, τ) =

Gk(τ) for k even
1
2δ1,k for k odd

. (A.36)

We have

Gk

θ
φ

 (τ) = 1
(2πi)k

∑
m∈Z

θm

 ∑
n∈Z

(m,n) 6=(0,0)

φn

(mτ + n)k

 , (A.37)

for φ 6= 1 and

Gk

θ
φ

 (τ) = 1
(2πi)k

∑
n∈Z

φn

 ∑
m∈Z

(m,n) 6=(0,0)

θm

(mτ + n)k

 , (A.38)

for θ 6= 1.
The twisted Eisenstein has properties

Gk(−z, τ) = (−1)kGk(z, τ), (A.39)

Gk(z + λτ + µ, τ) =
k∑

m=0

1
m! (−λ)mGk−m(z, τ), for λ, µ ∈ Z, (A.40)

Gk

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)k

k∑
m=0

1
m!

(
cz

cτ + d

)m
Gk−m(z, τ), (A.41)

∂

∂z
Gk(z, τ) = 1

k

∂

∂τ
Gk(z, τ). (A.42)

The twisted Eisenstein series can be written in terms of the Weierstrass func-
tions (A.58) as well as the Eisenstein series (A.17).

For k = 1 it is equivalent to the Weierstrass function (A.57)

G1(z, τ) = −P1(z, τ). (A.43)
16The Gk(z, τ) defined here are the same as the (2πi)−kĜk(e2πiτ , e2πiz) = Ĝk(e2πiτ , e2πiz) in [40], the

(−1)k+1Jk/k! in [83], the G̃k(z, τ) in [68].
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It is a quasi-Jacobi form of weight 1, index 0

G1

( 1
cτ + d

,
aτ + b

cτ + d

)
= (cτ + d)G1(z, τ) + 2πicz. (A.44)

For k = 2 we have

G2(z, τ) = 1
2
(
P2(z, τ)− P1(z, τ)2 −G2(τ)

)
. (A.45)

Also the twisted Eisenstein series can be expressed in terms of the Eisenstein series
and the theta function (3.4)

Gk(z, τ) (A.46)

= −
[ k2 ]∑
m=0


∑
{mp}∑

p≥1(2p)·mp=2m

∞∏
p=1

G
mp
2p (τ)

(2p)mp ·mp!

 1
(k − 2m)!

k−2m∑
l=1

S(k − 2m, l)xl θ
(l)(x; q)
θ(x; q) ,

where S(k − 2m, l) are the Stirling numbers of the second kind.
For example,

G1(z, τ) = −xθ
′(x)
θ(x) , (A.47)

G2(z, τ) = −1
2

(
x
θ′(x)
θ(x) + x2 θ

′′(x)
θ(x)

)
− 1

2G2(τ), (A.48)

G3(z, τ) = −1
6

(
x
θ′(x)
θ(x) + 3x2 θ

′′(x)
θ(x) + x3 θ

′′′(x)
θ(x)

)
− 1

2G2(τ)xθ
′(x)
θ(x) , (A.49)

G4(z, τ) = − 1
24

(
x
θ′(x)
θ(x) + 7x2 θ

′′(x)
θ(x) + 6x3 θ

′′′(x)
θ(x) + x4 θ

′′′′(x)
θ(x)

)
− 1

2G2(τ)
(1

2

(
x
θ′(x)
θ(x) + x2 θ

′′(x)
θ(x)

))
− 1

4

(
G4(τ) + 1

2G2(τ)2
)
, (A.50)

G5(z, τ) = − 1
120

(
x
θ′(x)
θ(x) + 15x2 θ

′′(x)
θ(x) + 25x3 θ

′′′(x)
θ(x) + 10x4 θ

′′′′(x)
θ(x) + x5 θ

′′′′′(x)
θ(x)

)

− 1
2G2(τ)

(
1
6

(
x
θ′(x)
θ(x) + 3x2 θ

′′(x)
θ(x) + x3 θ

′′′(x)
θ(x)

))

− 1
4

(
G4(τ) + 1

2G
2
2(τ)

)
x
θ′(x)
θ(x) , (A.51)

G6(z, τ) = − 1
720

(
x
θ′(x)
θ(x) + 31x2 θ

′′(x)
θ(x) + 90x3 θ

′′′(x)
θ(x)

+ 65x4 θ
(4)(x)
θ(x) + 15x5 θ

(5)(x)
θ(x) + x6 θ

(6)(x)
θ(x)

)

− 1
2G2(τ)

( 1
24

(
x
θ′(x)
θ(x) + 7x2 θ

′′(x)
θ(x) + 6x3 θ

′′′(x)
θ(x) + x4 θ

′′′′(x)
θ(x)

))
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− 1
4

(
G4(τ) + 1

2G
2
2(τ)

)(1
2

(
x
θ′(x)
θ(x) + x2 θ

′′(x)
θ(x)

))
− 1

6

(
G6(τ) + 3

4G4(τ)G2(τ) + 1
8G

3
2(τ)

)
. (A.52)

Conversely, ratios of the theta functions and their derivatives are given by the twisted
Eisenstein series

x
θ′(x)
θ(x) = −G1(z, τ), (A.53)

x2 θ
′′(x)
θ(x) = −2G2(z, τ)−G1(z, τ)−G2(τ), (A.54)

x3 θ
′′′(x)
θ(x) = −6G3(z, τ) + 6G2(z, τ) + (2− 3G2(τ))G1(z, τ) + 3G2(τ), (A.55)

x4 θ
′′′′(x)
θ(x) = −24G4(z, τ) + 36G3(z, τ) + 2G2(z, τ)(−11 + 6G2(τ))

+ 6G1(z, τ)(−1 + 3G2(τ)) +G2(τ)2 − 11G2(τ)− 6G4(τ). (A.56)

A.4 Weierstrass functions

A.4.1 Classical Weierstrass functions

We define the Weierstrass functions17

P1(z, τ) := −
∑

n∈Z\{0}

xn

1− qn −
1
2 , (A.57)

and

Pk(z, τ) := (−1)k−1

(k − 1)!
1

(2πi)k−1
∂k−1

∂zk−1P1(z, τ)

= (−1)k
(k − 1)!

∑
n∈Z\{0}

nk−1xn

1− qn . (A.58)

We have [16]

P1(z, τ) = 1
2πiz −

∞∑
k=1

Gk(τ)(2πiz)k−1, (A.59)

Pk(z, τ) = 1
(2πiz)k +

∞∑
l=k

 l − 1
k − 1

Gl(τ)(2πiz)l−k, (A.60)

Pk(z, τ) = 1
(2πi)k

∑
(m,n)∈Z2

1
(z +mτ + n)k . (A.61)

The P1(z, τ) is a quasi-Jacobi form of weight 1, index 0 and depth (1, 0) [20]

P1

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)P1(z, τ)− 2πicz, (A.62)

P1(z + λτ + µ, τ) = P1(z, τ). (A.63)
17The Pk(z, τ) is the same as the Pk(z, τ) in [68], the (−2πi)−kPk(e2πiz, q) in [84] and the (2πi)−kEk(z, τ)

in [16, 20].
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It can be also expressed as

P1(z, τ) = 1
2πiζ(z, τ)− 2πizG2(τ), (A.64)

where

ζ(z, τ) = 1
z

+
∑

(m,n)∈Z2\{(0,0)}

( 1
z − (mτ + n) + 1

mτ + n
+ z

(mτ + n)2

)
, (A.65)

is the Weierstrass ζ-function [85].
The P2(z, τ) is expressed as

P2(z, τ) =
∑

n∈\{0}

nxn

1− qn

= −
(
x
θ′(x)
θ(x) + x2 θ

′′(x)θ(x)− θ′(x)2

θ2(x)

)
. (A.66)

We have

P2(z, τ) = 1
(2πiz)2 +

∞∑
k=2

(k − 1)Gk(τ)(2πiz)k−2. (A.67)

The P2(z, τ) is a quasi-Jacobi form of weight 2, index 0 and depth (0, 1) [20]

P2

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)2P2(z, τ)− c(cτ + d)

2πi , (A.68)

P2(z + λτ + µ, τ) = P2(z, τ), (A.69)

for λ, µ ∈ Z. It can be written as

P2(z, τ) = 1
(2πi)2℘(z, τ) +G2(τ), (A.70)

where

℘(z, τ) = 1
z2 +

∑
(m,n)∈Z2\{(0,0)}

( 1
(z − (mτ + n))2 −

1
(mτ + n)2

)

=
(
πϑ2ϑ3

ϑ4(z; τ)
ϑ1(z; τ)

)2
− π2

3 (ϑ4
2 + ϑ4

3), (A.71)

is the Weierstrass ℘-function with period 1 and τ [85, 86]. The ℘(z, τ) is a meromorphic
Jacobi form of weight 2 and index 0. We have

℘(z, τ) = − ∂

∂z
ζ(z, τ). (A.72)

One has [16]

P2(z, τ)− P2(z + z′, τ) = (q)6
∞θ(x2x′; q)θ(x′; q)
θ(x; q)2θ(xx′; q)2 . (A.73)
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We also define

P0(z; τ) = − log(2πiz) +
∞∑
k=0

Gk(τ)(2πiz)k
k

, (A.74)

which satisfies

P1(z, τ) = −1
2πi

∂

∂z
P0(z, τ). (A.75)

The exponential is given by [16]18

exp
[
−P0(z, τ)

]
= iϑ1(z; τ)

η(τ)3

= exp
[
−G2(τ)

2 (2πiz)2
]
σ(z, τ)

= 2πiz · exp
[
−
∞∑
k=1

Gk(τ)
k

(2πiz)k
]
, (A.76)

where

σ(z, τ) = z
∏

(m,n)∈Z2\{(0,0)}

(
1− z

mτ + n

)
e

z
mτ+n+ z2

2(mτ+n)2 , (A.77)

is the Weierstrass σ-function [85] which obeys

∂

∂z
log σ(z, τ) = ζ(z, τ). (A.78)

For k ≥ 3 the Weierstrass function Pk(z, τ) is a weak meromorphic Jacobi form of
weight k and index 0 [20]. One has the following identities [16]

P4(z, τ) = (P2(z, τ)−G2(τ))2 − 5G4(τ), (A.79)
P3(z, τ)2 = (P2(z, τ)−G2(τ))3 − 15G4(τ)(P2(z, τ)−G2(τ))− 35G6(τ). (A.80)

We have differential equations

q
∂

∂q
P1(z, τ) = P3(z, τ)− P1(z, τ)P2(z, τ), (A.81)

q
∂

∂q
P2(z, τ) = 3P4(z, τ)− 2P1(z, τ)P3(z, τ)− P2(z, τ)2. (A.82)

A.4.2 Twisted Weierstrass functions

We define the twisted Weierstrass function by19

P1

θ
φ

 (z, τ) = −
∑
n∈Z

′ xn+λ

1− θ−1qn+λ , (A.83)

18It is also known as the elliptic prime form [69] on the elliptic curve with modulus τ and as Hirzebruch’s
function [87–91]. It is expressed as ϕ(z) in [16].

19The Pk
[
θ
φ

]
(z, τ) defined here is the same as Pk

[
θ
φ

]
(2πiz, τ) in [19].
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and

Pk

θ
φ

 (z, τ) = (−1)k
(k − 1)!

1
(2πi)k−1

∂k−1

∂zk−1P1

θ
φ

 (z, τ)

= (−1)k
(k − 1)!

∑
n∈Z

′ (n+ λ)k−1xn+λ

1− θ−1qn+λ , (A.84)

where φ = e2πiλ.
We have

P1

θ
φ

 (z, τ) = 1
2πiz −

∞∑
k=1

Gk

θ
φ

 (τ)(2πiz)k−1, (A.85)

Pk

θ
φ

 (z, τ) = 1
(2πiz)k + (−1)k

∞∑
l=k

 l − 1
k − 1

Gl
θ
φ

 (τ)(2πiz)l−k, (A.86)

Pk

1
1

 (z, τ) = Pk(z, τ) + 1
2δk,1. (A.87)

It follows that [19]

Pk

θ
φ

 (z, τ) = 1
(2πi)k

∑
m∈Z

θm

∑
n∈Z

φn

(z −mτ − n)k

 , (A.88)

for |q| < |x| < 1 and φ 6= 1 and that

Pk

θ
φ

 (z, τ) = 1
(2πi)k

∑
n∈Z

φn

∑
m∈Z

θm

(z −mτ − n)k

 , (A.89)

for θ 6= 1.
The twisted Weierstrass functions obey [18, 19]

Pk

θ−1

φ−1

 (−z, τ) = (−1)kPk

θ
φ

 (z, τ), (A.90)

Pk

θ
1

 (z + τ, τ) = (−1)kθPk

θ
1

 (z, τ). (A.91)
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The twisted Weierstrass functions are expressible in terms of the theta functions as
well as the ordinary Weierstrass functions. For example, we have

P1

x
1

 (ν, τ) = (q)3
∞θ(x−1u; q)

θ(x−1; q)θ(u; q) , (A.92)

P2

x
1

 (ν, τ) = −uP1

x
1

 (ν, τ)
(
x−1 θ

′(x−1u)
θ(x−1u) −

θ′(u; q)
θ(u; q)

)

= (q)3
∞θ(x−1u; q)

θ(x−1; q)θ(u; q)

(
u
θ′(u; q)
θ(u; q) − x

−1u
θ′(x−1u; q)
θ(x−1u; q)

)

= P1

x
1

 (ν, τ) (P1(ν, τ)− P1(ν − z, τ)) , (A.93)

P3

x
1

 (ν, τ) = 1
2P1

x
1

 (ν, τ)
[
(P1(ν, τ)− P1(ν − z, τ))2

+ (P2(ν, τ)− P2(ν − z, τ))
]
, (A.94)

P4

x
1

 (ν, τ) = 1
6P1

x
1

 (ν, τ)
[

(P1(ν, τ)− P1(ν − z, τ))3

+ 3 (P1(ν, τ)− P1(ν − z, τ)) (P2(ν, τ)− P2(ν − z, τ))

+ 2 (P3(ν, τ)− P3(ν − z, τ))
]
, (A.95)

P5

x
1

 (ν, τ) = 1
24P1

x
1

 (ν, τ)
[
(P1(ν, τ)− P1(ν − z, τ))4

+ 6 (P1(ν, τ)− P1(ν − z, τ))2 (P2(ν, τ)− P2(ν − z, τ))
+ 8 (P1(ν, τ)− P1(ν − z, τ)) (P3(ν, τ)− P3(ν − z, τ))

+ 3 (P2(ν, τ)− P2(ν − z, τ))2 + 6 (P4(ν, τ)− P4(ν − z, τ))
]
, (A.96)

where u = e2πiν .

B Other analytic expressions

Here we show various closed-form expression of the N = 2∗ Schur index. The derivation is
based on the Fermi-gas formulation.
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B.1 N = 2

We can write the N = 2∗ U(2) Schur index as

IU(2)(ξ; q) = ξ2 θ(u; q)
θ(uξ−2; q)Z(2;u; ξ; q)

= ξ2

2

(
(q)6
∞θ(ξ−1u; q)2

θ(ξ−1; q)2θ(u; q)θ(ξ−2u; q) + ξ−2q−1 (q)3
∞θ
′(ξ−2q−1u; q)

θ(ξ−2q−1; q)θ(ξ−2u; q)

− (q)3
∞θ(ξ−2q−1u; q)θ′(u; q)

θ(ξ−2q−1; q)θ(u; q)θ(ξ−2u; q)

)
. (B.1)

The r.h.s. of (B.1) is expressed in terms of the u-dependent theta functions (3.4). Never-
theless, the index IU(2) has no dependence on u. So we can simplify the expression (B.1)
by specializing u. Setting u = ξ, we find

IU(2)(ξ; q) = −ξ
2

2
(q)3
∞θ(ξ−1q−1; q)

θ(ξ−2q−1; q)θ(ξ)

(
ξ−2q−1 θ

′(ξ−1q−1; q)
θ(ξ−1q−1; q) −

θ′(ξ; q)
θ(ξ; q)

)
. (B.2)

Using the identity

θ(ξ−1q−1)
θ(ξ−2q−1)θ(ξ) = ξ

θ(ξ2) , (B.3)

ξ−2q−1 θ
′(ξ−1q−1)
θ(ξ−1q−1) −

θ′(ξ)
θ(ξ) = −1

ξ

(
−1 + 2ξ θ

′(ξ)
θ(ξ)

)
, (B.4)

we get

IU(2)(ξ; q) = ξ2

2
(q)3
∞

θ(ξ2)

(
−1 + 2ξ θ

′(ξ)
θ(ξ)

)
. (B.5)

It can be also expressed in terms of the twisted Eisenstein series

IU(2)(ξ; q) = −ξ
2

2
(q)3
∞

θ(ξ2) (2G1(ζ, τ) + 1)

= ie4πiζ

2
η(τ)3

ϑ1(2ζ; τ) (1 + 2G1(ζ, τ)) . (B.6)

B.2 N = 3

Using the theta function (3.4) we can write the N = 2∗ U(3) Schur index as

IU(3)(ξ;q) =−ξ
9
2

θ(u;q)
θ(uξ−3;q)Z(3;u;ξ;q)

=−ξ
9/2

6

[
(q)9
∞θ

3(ξ−1u)
θ3(ξ−1)θ(ξ−3u)θ2(u) +3 (q)6

∞θ(ξ−1u)θ(ξ−2q−1u)
θ(ξ−1)θ(ξ−2q−1)θ(ξ−3u)θ(u)

×
(
ξ−2q−1 θ

′(ξ−2q−1u)
θ(ξ−2q−1u) −

θ′(u)
θ(u)

)
+ (q)3

∞θ(ξ−3q−2u)
θ(ξ−3q−2)θ(ξ−3u)

{(
ξ−3q−2 θ

′(ξ−3q−2u)
θ(ξ−3q−2u) −

θ′(u)
θ(u)

)2

+ξ−6q−4 θ
′′(ξ−3q−2u)θ(ξ−3q−2u)−θ′(ξ−3q−2u)2

θ2(ξ−3q−2u) − θ
′′(u)θ(u)−θ′(u)2

θ2(u)

}]
, (B.7)
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where θ(x) = θ(x; q), θ′(x) = ∂
∂xθ(x; q) and θ′′(x) = ∂2

∂x2 θ(x; q). Since the index is indepen-
dent of u, one can get expressions by fixing u. When we set u = ξ3/2, we get

IU(3)(ξ;q)

=−ξ
9/2

6

[
(q)9
∞θ

3(ξ 1
2 )

θ3(ξ−1)θ(ξ− 3
2 )θ2(ξ 3

2 )
+3 (q)6

∞θ(ξ
1
2 )θ(ξ− 1

2 q−1)
θ(ξ−1)θ(ξ−2q−1)θ(ξ− 3

2 )θ(ξ 3
2 )

×
(
ξ−2q−1 θ

′(ξ− 1
2 q−1)

θ(ξ− 1
2 q−1)

− θ
′(ξ 3

2 )
θ(ξ 3

2 )

)
+ (q)3

∞θ(ξ−
3
2 q−2)

θ(ξ−3q−2)θ(ξ− 3
2 )

{(
ξ−3q−2 θ

′(ξ− 3
2 q−2)

θ(ξ− 3
2 q−2)

− θ
′(ξ 3

2 )
θ(ξ 3

2 )

)2

+ξ−6q−4 θ
′′(ξ− 3

2 q−2)θ(ξ− 3
2 q−2)−θ′(ξ− 3

2 q−2)2

θ2(ξ− 3
2 q−2)

− θ
′′(ξ 3

2 )θ(ξ 3
2 )−θ′(ξ 3

2 )2

θ2(ξ 3
2 )

}]
. (B.8)

There are other specializations of fugacity u for which the expression gets simplified. When
we take u = ξ, the expression (B.7) becomes

IU(3)(ξ;q) = ξ13/2

6
(q)3
∞

θ(ξ3)

[(
ξ−3q−2 θ

′(ξ−2q−2)
θ(ξ−2q−2) −

θ′(ξ)
θ(ξ)

)2

(B.9)

+ξ−6q−4 θ
′′(ξ−2q−2)θ(ξ−2q−2)−θ′(ξ−2q−2)2

θ2(ξ−2q−2) − θ
′′(ξ)θ(ξ)−θ′(ξ)2

θ2(ξ)

]
,

where we have used the identity

θ(ξ−2q−2)
θ(ξ−3q−2)θ(ξ−2) = − ξ2

θ(ξ3) . (B.10)

We can also express the U(3) Schur index (B.9) as

IU(3)(ξ; q) = ξ9/2

6
(q)3
∞

θ(ξ3)

[
−2
(
G2(2ζ + 2τ, τ)−G2(ζ, τ)

)
(B.11)

+
(
G1(2ζ + 2τ, τ) +G1(ζ, τ)

)(
G1(ζ − τ, τ) +G1(ζ, τ)

)]
,

in terms of the twisted Eisenstein series.

B.3 N = 4

When we express the N = 2∗ U(4) Schur index in terms of the theta function (3.4), it can
be simplified by specializing the auxiliary fugacity u. When we set u = ξ, the non-trivial
terms only appear from the Young diagrams which has no row of length 1, that is and

. We find that

IU(4)(ξ; q) = −ξ
10

8

[
(q)6
∞θ(ξ)

θ(ξ3)θ(ξ2)2A
(1)
1 (ξ; q)2 (B.12)

− ξ2

3
(q)3
∞

θ(ξ4)
(
A

(1)
3 (ξ; q)3 + 3A(1)

3 (ξ; q)A(2)
3 (ξ; q) +A

(3)
3 (ξ; q)

)]
,
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where we have defined

A
(1)
l (ξ; q) := ξ−1(ξ−1q−1)l θ

′(ξ−lq−l)
θ(ξ−lq−l) −

θ′(ξ)
θ(ξ) , (B.13)

A
(2)
l (ξ; q) := ξ−2(ξ−2q−2)l θ

′′(ξ−lq−l)θ(ξ−lq−l)− θ′(ξ−lq−l)2

θ(ξ−lq−l)2 − θ′′(ξ)θ(ξ)− θ′(ξ)2

θ2(ξ) , (B.14)

A
(3)
l (ξ; q) := ξ−3(ξ−3q−3)l 1

θ(ξ−lq−q)4

[
θ′′′(ξ−lq−l)θ(ξ−lq−l)3

− 3θ′′(ξ−lq−l)θ′(ξ−lq−l)θ2(ξ−lq−l) + 2θ′(ξ−lq−l)3θ(ξ−lq−l)
]

− θ′′′(ξ)θ(ξ)− 3θ′′(ξ)θ′(ξ)θ2(ξ) + 2θ′(ξ)3θ(ξ)
θ4(ξ) . (B.15)

B.4 N = 5

While one can write the N = 2∗ U(5) Schur index in terms of the twisted Weierstrass
functions from the expression (3.83), it can be also expressed in terms of the theta func-
tions (3.4) or the twisted Eisenstein series with fewer terms. When we specialize the
fugacity as u = ξ, only two Young diagrams and contribute to the N = 2∗ U(5)
Schur index. We obtain

IU(5)(ξ; q) = ξ25/2

120

[
10 (q)6

∞
θ(ξ3)θ(ξ4)A

(1)
1 (ξ; q)

(
A

(1)
2 (ξ; q)2 +A

(2)
2 (ξ; q)

)

+ ξ
(q)3
∞

θ(ξ5)

(
A

(1)
4 (ξ; q)4 + 6A(1)

4 (ξ; q)2A
(2)
2 (ξ; q)

)

+ 4A(1)
4 (ξ; q)A(3)

4 (ξ; q) + 3A(2)
4 (ξ; q)2 +A

(4)
4 (ξ; q)

]
, (B.16)

where

A
(4)
l (ξ; q) = ξ−4(ξ−4q−4)l 1

θ(ξ−lq−l)8

[
θ′′′′(ξ−lq−l)θ(ξ−lq−l)7 − 3θ′′(ξ−lq−l)2θ(ξ−lq−l)6

− 4θ′′′(ξ−lq−l)θ′(ξ−lq−l)θ(ξ−lq−l)6 + 12θ′′(ξ−lq−l)θ′(ξ−lq−l)2θ(ξ−lq−l)5

− 6θ′(ξ−lq−l)4θ(ξ−lq−l)4
]
− 1
θ(ξ; q)8

[
θ′′′′(ξ)θ(ξ)7 − 3θ′′(ξ)2θ(ξ)6

− 4θ′′′(ξ)θ′(ξ)θ(ξ)6 + 12θ′′(ξ)θ′(ξ)2θ(ξ)5 − 6θ′(ξ)4θ(ξ)4
]
. (B.17)
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B.5 Higher ranks

It is straihgtforward to extend to higher rank. Setting u = ξ, we display the N = 2∗ U(N)
Schur indices for N = 6, 7, 8, 9, and 10

IU(6)(ξ;q) = ξ18

144
θ(ξ)
θ(ξ5)

(
3Z3

2−8Z2
3−18Z2Z4 +24Z6

)
, (B.18)

IU(7)(ξ;q) = ξ49/2

840
θ(ξ)
θ(ξ6)

(
35Z2

2Z3−70Z3Z4−84Z2Z5 +120Z7
)
, (B.19)

IU(8)(ξ;q) = ξ32

5760
θ(ξ)
θ(ξ7)

(
−15Z4

2 +180Z2
2Z4 +160Z2(Z2

3−3Z6) (B.20)

−12
(
15Z2

4 +32Z3Z5−60Z8
))
,

IU(9)(ξ;q) = ξ81/2

45360
θ(ξ)
θ(ξ8)

(
315Z3

2Z3−280Z3
3−1890Z2Z3Z4 (B.21)

−1134Z2
3Z5 +2268Z4Z5 +2520Z3Z6 +3240Z2Z7−5040Z9

)
,

IU(10)(ξ;q) = ξ50

403200
θ(ξ)
θ(ξ9)

(
105Z5

2−2800Z2
2Z

2
3−2100Z3

2Z4 +5600Z2
3Z4 (B.22)

+6300Z2Z
2
4 +13440Z2Z3Z5−8064Z2

5 +8400Z2
2Z6−16800Z4Z6

−19200Z3Z7−25200Z2Z8 +40320Z10

)
,

where Zl are abbreviations for the specialized spectral zeta functions Zl(ξ; ξ; q) which are
obtained from (3.38)–(3.41) and

Z6(u;ξ;q) = 1
60u5

(
12P2

q5ξ6

1

(ν,τ)+50P4

q5ξ6

1

(ν,τ)+105P5

q5ξ6

1

(ν,τ)

+120P5

q5ξ6

1

(ν,τ)+60P6

q5ξ6

1

(ν,τ)
)
, (B.23)

Z7(u;ξ;q) = 1
360u6

(
60P2

q6ξ7

1

(ν,τ)+274P3

q6ξ7

1

(ν,τ)+675P4

q6ξ7

1

(ν,τ)

+1020P5

q6ξ7

1

(ν,τ)+900P6

q6ξ7

1

(ν,τ)+360P7

q6ξ7

1

(ν,τ)
)
, (B.24)

Z8(u;ξ;q) = 1
210u7

(
30P2

q7ξ8

1

(ν,τ)+147P3

q7ξ8

1

(ν,τ)+406P3

q7ξ8

1

(ν,τ)
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+735P5

q7ξ8

1

(ν,τ)+875P6

q7ξ8

1

(ν,τ)+630P7

q7ξ8

1

(ν,τ)

+210P8

q7ξ8

1

(ν,τ)
)
, (B.25)

Z9(u;ξ;q) = 1
1680u8

(
210P2

q8ξ9

1

(ν,τ)+1089P3

q8ξ9

1

(ν,τ)+3283P4

q8ξ9

1

(ν,τ)

+6769P5

q8ξ9

1

(ν,τ)+9800P6

q8ξ9

1

(ν,τ)+9660P7

q8ξ9

1

(ν,τ)

+5880P8

q8ξ9

1

(ν,τ)+1680P9

q8ξ9

1

(ν,τ)
)
, (B.26)

Z10(u;ξ;q) = 1
15120u9

(
1680P2

q9ξ10

1

(ν,τ)+9132P3

q9ξ10

1

(ν,τ)

+29531P4

q9ξ10

1

(ν,τ)+67284P5

q9ξ10

1

(ν,τ)+112245P6

q9ξ10

1

(ν,τ)

+136080P7

q9ξ10

1

(ν,τ)+114660P8

q9ξ10

1

(ν,τ)

+60480P9

q9ξ10

1

(ν,τ)+15120P10

q9ξ10

1

(ν,τ)
)
. (B.27)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] C. Romelsberger, Counting chiral primaries in N = 1, d = 4 superconformal field theories,
Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

[2] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super
conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

[3] B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, The
Casimir energy in curved space and its supersymmetric counterpart, JHEP 07 (2015) 043
[arXiv:1503.05537] [INSPIRE].

[4] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d superconformal index from
q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].

[5] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald
polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].

– 46 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nuclphysb.2006.03.037
https://arxiv.org/abs/hep-th/0510060
https://inspirehep.net/literature/694516
https://doi.org/10.1007/s00220-007-0258-7
https://arxiv.org/abs/hep-th/0510251
https://inspirehep.net/literature/696351
https://doi.org/10.1007/JHEP07(2015)043
https://arxiv.org/abs/1503.05537
https://inspirehep.net/literature/1353417
https://doi.org/10.1103/PhysRevLett.106.241602
https://arxiv.org/abs/1104.3850
https://inspirehep.net/literature/896581
https://doi.org/10.1007/s00220-012-1607-8
https://arxiv.org/abs/1110.3740
https://inspirehep.net/literature/940193


J
H
E
P
0
1
(
2
0
2
3
)
0
2
9

[6] A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d topological QFT,
JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].

[7] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite chiral
symmetry in four dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344]
[INSPIRE].

[8] S.S. Razamat, On a modular property of N = 2 superconformal theories in four dimensions,
JHEP 10 (2012) 191 [arXiv:1208.5056] [INSPIRE].

[9] C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches, and modular differential
equations, JHEP 08 (2018) 114 [arXiv:1707.07679] [INSPIRE].

[10] T. Arakawa and K. Kawasetsu, Quasi-lisse vertex algebras and modular linear differential
equations, in Lie groups, geometry, and representation theory, Springer (2018), pg. 41
[arXiv:1610.05865] [INSPIRE].

[11] Y. Pan and W. Peelaers, Exact Schur index in closed form, Phys. Rev. D 106 (2022) 045017
[arXiv:2112.09705] [INSPIRE].

[12] D. Gaiotto and J. Abajian, Twisted M2 brane holography and sphere correlation functions,
arXiv:2004.13810 [INSPIRE].

[13] J. Bourdier, N. Drukker and J. Felix, The exact Schur index of N = 4 SYM, JHEP 11
(2015) 210 [arXiv:1507.08659] [INSPIRE].

[14] C. Beem, S.S. Razamat and P. Singh, Schur indices of class S and quasimodular forms, Phys.
Rev. D 105 (2022) 085009 [arXiv:2112.10715] [INSPIRE].

[15] M. Zaganescu, Feynman and Weyl quantization on a torus and some relations to the theory
of elliptic functions, [INSPIRE].

[16] A. Weil, Elliptic functions according to Eisenstein and Kronecker, Springer (1976).
[17] D. Zagier, Periods of modular forms and Jacobi theta functions, Invent. Math. 104 (1991)

449.
[18] C.-Y. Dong, H.-S. Li and G. Mason, Modular invariance of trace functions in orbifold theory,

Commun. Math. Phys. 214 (2000) 1 [q-alg/9703016] [INSPIRE].
[19] G. Mason, M.P. Tuite and A. Zuevsky, Torus n-point functions for R-graded vertex operator

superalgebras and continuous fermion orbifolds, Commun. Math. Phys. 283 (2008) 305
[arXiv:0708.0640] [INSPIRE].

[20] A. Libgober, Elliptic genera, real algebraic varieties and quasi-Jacobi forms, in Topology of
stratified spaces, Cambridge University Press (2011), p. 95 [arXiv:0904.1026].

[21] M. Buican and T. Nishinaka, N = 4 SYM, Argyres-Douglas theories, and an exact graded
vector space isomorphism, JHEP 04 (2022) 028 [arXiv:2012.13209] [INSPIRE].

[22] M.J. Kang, C. Lawrie and J. Song, Infinitely many 4D N = 2 SCFTs with a = c and beyond,
Phys. Rev. D 104 (2021) 105005 [arXiv:2106.12579] [INSPIRE].

[23] M. Del Zotto, C. Vafa and D. Xie, Geometric engineering, mirror symmetry and
6d(1,0) → 4d(N=2), JHEP 11 (2015) 123 [arXiv:1504.08348] [INSPIRE].

[24] D. Xie, W. Yan and S.-T. Yau, Chiral algebra of the Argyres-Douglas theory from M5 branes,
Phys. Rev. D 103 (2021) 065003 [arXiv:1604.02155] [INSPIRE].

[25] M. Buican and T. Nishinaka, Conformal manifolds in four dimensions and chiral algebras, J.
Phys. A 49 (2016) 465401 [arXiv:1603.00887] [INSPIRE].

– 47 –

https://doi.org/10.1007/JHEP03(2010)032
https://arxiv.org/abs/0910.2225
https://inspirehep.net/literature/833716
https://doi.org/10.1007/s00220-014-2272-x
https://arxiv.org/abs/1312.5344
https://inspirehep.net/literature/1272900
https://doi.org/10.1007/JHEP10(2012)191
https://arxiv.org/abs/1208.5056
https://inspirehep.net/literature/1182083
https://doi.org/10.1007/JHEP08(2018)114
https://arxiv.org/abs/1707.07679
https://inspirehep.net/literature/1611596
https://doi.org/10.1007/978-3-030-02191-7_2
https://arxiv.org/abs/1610.05865
https://inspirehep.net/literature/1492758
https://doi.org/10.1103/PhysRevD.106.045017
https://arxiv.org/abs/2112.09705
https://inspirehep.net/literature/1994047
https://arxiv.org/abs/2004.13810
https://inspirehep.net/literature/1793449
https://doi.org/10.1007/JHEP11(2015)210
https://doi.org/10.1007/JHEP11(2015)210
https://arxiv.org/abs/1507.08659
https://inspirehep.net/literature/1385900
https://doi.org/10.1103/PhysRevD.105.085009
https://doi.org/10.1103/PhysRevD.105.085009
https://arxiv.org/abs/2112.10715
https://inspirehep.net/literature/1994160
https://inspirehep.net/literature/169379
https://doi.org/10.1007/978-3-642-66209-6
https://doi.org/10.1007/bf01245085
https://doi.org/10.1007/bf01245085
https://doi.org/10.1007/s002200000242
https://arxiv.org/abs/q-alg/9703016
https://inspirehep.net/literature/441257
https://doi.org/10.1007/s00220-008-0510-9
https://arxiv.org/abs/0708.0640
https://inspirehep.net/literature/801076
https://arxiv.org/abs/0904.1026
https://doi.org/10.1007/JHEP04(2022)028
https://arxiv.org/abs/2012.13209
https://inspirehep.net/literature/1838212
https://doi.org/10.1103/PhysRevD.104.105005
https://arxiv.org/abs/2106.12579
https://inspirehep.net/literature/1870156
https://doi.org/10.1007/JHEP11(2015)123
https://arxiv.org/abs/1504.08348
https://inspirehep.net/literature/1365589
https://doi.org/10.1103/PhysRevD.103.065003
https://arxiv.org/abs/1604.02155
https://inspirehep.net/literature/1444898
https://doi.org/10.1088/1751-8113/49/46/465401
https://doi.org/10.1088/1751-8113/49/46/465401
https://arxiv.org/abs/1603.00887
https://inspirehep.net/literature/1425963


J
H
E
P
0
1
(
2
0
2
3
)
0
2
9

[26] C. Closset, S. Schafer-Nameki and Y.-N. Wang, Coulomb and Higgs branches from canonical
singularities. Part 0, JHEP 02 (2021) 003 [arXiv:2007.15600] [INSPIRE].

[27] C. Closset, S. Giacomelli, S. Schafer-Nameki and Y.-N. Wang, 5d and 4d SCFTs: canonical
singularities, trinions and S-dualities, JHEP 05 (2021) 274 [arXiv:2012.12827] [INSPIRE].

[28] B.L. Feigin and I.Y. Tipunin, Characters of coinvariants in (1, p) logarithmic models, in New
trends in quantum integrable systems, World Scientific, (2010), p. 35.

[29] B. Feigin, E. Feigin and I. Tipunin, Fermionic formulas for (1, p) logarithmic model
characters in Φ2,1 quasiparticle realisation, arXiv:0704.2464 [INSPIRE].

[30] P.A. MacMahon, Divisors of numbers and their continuations in the theory of partitions,
Proc. Lond. Math. Soc. s2-19 (1921) 75.

[31] M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, in
The moduli space of curves, Birkhäuser (1995), p. 165.

[32] S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2003) 1623.
[33] M. Honda and T. Yoda, String theory, N = 4 SYM and Riemann hypothesis,

arXiv:2203.17091 [INSPIRE].
[34] G. Meinardus, Asymptotische Aussagen über Partitionen (in German), Math. Z. 59 (1953)

388.
[35] D. Gang, E. Koh and K. Lee, Line operator index on S1 × S3, JHEP 05 (2012) 007

[arXiv:1201.5539] [INSPIRE].
[36] C. Cordova, D. Gaiotto and S.-H. Shao, Infrared computations of defect Schur indices, JHEP

11 (2016) 106 [arXiv:1606.08429] [INSPIRE].
[37] A. Neitzke and F. Yan, Line defect Schur indices, Verlinde algebras and U(1)r fixed points,

JHEP 11 (2017) 035 [arXiv:1708.05323] [INSPIRE].
[38] Y. Hatsuda and T. Okazaki, Fermi-gas correlators of ADHM theory and triality symmetry,

SciPost Phys. 12 (2022) 005 [arXiv:2107.01924] [INSPIRE].
[39] Y. Hatsuda and T. Okazaki, N = 2∗ Schur correlators, to appear.
[40] M.R. Gaberdiel and C.A. Keller, Differential operators for elliptic genera, Commun. Num.

Theor. Phys. 3 (2009) 593 [arXiv:0904.1831] [INSPIRE].
[41] J.-W. van Ittersum, G. Oberdieck and A. Pixton, Gromov-Witten theory of K3 surfaces and

a Kaneko-Zagier equation for Jacobi forms, Selecta Math. 27 (2021) 64 [arXiv:2007.03489]
[INSPIRE].

[42] T. Okazaki, M2-branes and plane partitions, JHEP 07 (2022) 028 [arXiv:2204.01973]
[INSPIRE].

[43] H. Hayashi, T. Nosaka and T. Okazaki, Dualities and flavored indices of M2-brane SCFTs,
JHEP 10 (2022) 023 [arXiv:2206.05362] [INSPIRE].

[44] G. Frobenius, Über die elliptischen Funktionen zweiter (in German), J. Reine Angew. Math
93 (1882) 53.

[45] J.D. Fay, Theta functions on Riemann surfaces, Lect. Notes Math. 352 (1973) 1.
[46] K. Bringmann, W. Craig, J. Males and K. Ono, Distributions on partitions arising from

Hilbert schemes and hook lengths, arXiv:2109.10394.
[47] G. Eleftheriou, Root of unity asymptotics for Schur indices of 4d Lagrangian theories,

arXiv:2207.14271 [INSPIRE].

– 48 –

https://doi.org/10.1007/JHEP02(2021)003
https://arxiv.org/abs/2007.15600
https://inspirehep.net/literature/1809507
https://doi.org/10.1007/JHEP05(2021)274
https://arxiv.org/abs/2012.12827
https://inspirehep.net/literature/1838098
https://doi.org/10.1142/9789814324373_0003
https://arxiv.org/abs/0704.2464
https://inspirehep.net/literature/748877
https://doi.org/10.1112/plms/s2-19.1.75
https://doi.org/10.1007/978-1-4612-4264-2_6
https://doi.org/10.1090/s0002-9947-03-03328-2
https://arxiv.org/abs/2203.17091
https://inspirehep.net/literature/2060751
https://doi.org/10.1007/bf01180268
https://doi.org/10.1007/bf01180268
https://doi.org/10.1007/JHEP05(2012)007
https://arxiv.org/abs/1201.5539
https://inspirehep.net/literature/1086004
https://doi.org/10.1007/JHEP11(2016)106
https://doi.org/10.1007/JHEP11(2016)106
https://arxiv.org/abs/1606.08429
https://inspirehep.net/literature/1472367
https://doi.org/10.1007/JHEP11(2017)035
https://arxiv.org/abs/1708.05323
https://inspirehep.net/literature/1616521
https://doi.org/10.21468/SciPostPhys.12.1.005
https://arxiv.org/abs/2107.01924
https://inspirehep.net/literature/1876674
https://doi.org/10.4310/CNTP.2009.v3.n4.a1
https://doi.org/10.4310/CNTP.2009.v3.n4.a1
https://arxiv.org/abs/0904.1831
https://inspirehep.net/literature/817807
https://doi.org/10.1007/s00029-021-00673-y
https://arxiv.org/abs/2007.03489
https://inspirehep.net/literature/1805568
https://doi.org/10.1007/JHEP07(2022)028
https://arxiv.org/abs/2204.01973
https://inspirehep.net/literature/2063397
https://doi.org/10.1007/JHEP10(2022)023
https://arxiv.org/abs/2206.05362
https://inspirehep.net/literature/2094983
https://doi.org/10.1007/BFb0060090
https://arxiv.org/abs/2109.10394
https://arxiv.org/abs/2207.14271
https://inspirehep.net/literature/2127394


J
H
E
P
0
1
(
2
0
2
3
)
0
2
9

[48] D. Gaiotto and T. Okazaki, Dualities of corner configurations and supersymmetric indices,
JHEP 11 (2019) 056 [arXiv:1902.05175] [INSPIRE].

[49] M. Dedushenko and M. Fluder, Chiral algebra, localization, modularity, surface defects, and
all that, J. Math. Phys. 61 (2020) 092302 [arXiv:1904.02704] [INSPIRE].

[50] Y. Pan and W. Peelaers, Schur correlation functions on S3 × S1, JHEP 07 (2019) 013
[arXiv:1903.03623] [INSPIRE].

[51] S. Jeong, SCFT/VOA correspondence via Ω-deformation, JHEP 10 (2019) 171
[arXiv:1904.00927] [INSPIRE].

[52] S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual
N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].

[53] D. Gaiotto and J.H. Lee, The giant graviton expansion, arXiv:2109.02545 [INSPIRE].
[54] R. Arai, S. Fujiwara, Y. Imamura and T. Mori, Schur index of the N = 4 U(N)

supersymmetric Yang-Mills theory via the AdS/CFT correspondence, Phys. Rev. D 101
(2020) 086017 [arXiv:2001.11667] [INSPIRE].

[55] Y. Imamura, Finite-N superconformal index via the AdS/CFT correspondence, PTEP 2021
(2021) 123B05 [arXiv:2108.12090] [INSPIRE].

[56] S. Murthy, Unitary matrix models, free fermion ensembles, and the giant graviton expansion,
arXiv:2202.06897 [INSPIRE].

[57] J.H. Lee, Exact stringy microstates from gauge theories, JHEP 11 (2022) 137
[arXiv:2204.09286] [INSPIRE].

[58] Y. Imamura, Analytic continuation for giant gravitons, PTEP 2022 (2022) 103B02
[arXiv:2205.14615] [INSPIRE].

[59] J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from anti-de
Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].

[60] M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040
[hep-th/0008015] [INSPIRE].

[61] A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual,
JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].

[62] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, sixth edition,
Oxford University Press (2008).

[63] G.H. Hardy and S. Ramanujan, Asymptotic formulæin combinatory analysis, in Collected
papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, U.S.A. (2000), p. 276.

[64] G.H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his life and work,
Cambridge University Press (1940).

[65] T. Kawai and K. Yoshioka, String partition functions and infinite products, Adv. Theor.
Math. Phys. 4 (2000) 397 [hep-th/0002169] [INSPIRE].

[66] M. Krauel and G. Mason, Jacobi trace functions in the theory of vertex operator algebras,
Commun. Num. Theor. Phys. 09 (2015) 273 [arXiv:1309.5720] [INSPIRE].

[67] G. Oberdieck and A. Pixton, Gromov-Witten theory of elliptic fibrations: Jacobi forms and
holomorphic anomaly equations, Geom. Topol. 23 (2019) 1415 [arXiv:1709.01481]
[INSPIRE].

[68] K. Bringmann, M. Krauel and M. Tuite, Zhu reduction for Jacobi n-point functions and
applications, Trans. Amer. Math. Soc. 373 (2020) 3261 [INSPIRE].

– 49 –

https://doi.org/10.1007/JHEP11(2019)056
https://arxiv.org/abs/1902.05175
https://inspirehep.net/literature/1720290
https://doi.org/10.1063/5.0002661
https://arxiv.org/abs/1904.02704
https://inspirehep.net/literature/1728157
https://doi.org/10.1007/JHEP07(2019)013
https://arxiv.org/abs/1903.03623
https://inspirehep.net/literature/1724444
https://doi.org/10.1007/JHEP10(2019)171
https://arxiv.org/abs/1904.00927
https://inspirehep.net/literature/1727549
https://doi.org/10.4310/ATMP.2001.v5.n4.a6
https://arxiv.org/abs/hep-th/0111222
https://inspirehep.net/literature/567216
https://arxiv.org/abs/2109.02545
https://inspirehep.net/literature/1917588
https://doi.org/10.1103/PhysRevD.101.086017
https://doi.org/10.1103/PhysRevD.101.086017
https://arxiv.org/abs/2001.11667
https://inspirehep.net/literature/1778127
https://doi.org/10.1093/ptep/ptab141
https://doi.org/10.1093/ptep/ptab141
https://arxiv.org/abs/2108.12090
https://inspirehep.net/literature/1912916
https://arxiv.org/abs/2202.06897
https://inspirehep.net/literature/2032157
https://doi.org/10.1007/JHEP11(2022)137
https://arxiv.org/abs/2204.09286
https://inspirehep.net/literature/2069873
https://doi.org/10.1093/ptep/ptac127
https://arxiv.org/abs/2205.14615
https://inspirehep.net/literature/2089024
https://doi.org/10.1088/1126-6708/2000/06/008
https://arxiv.org/abs/hep-th/0003075
https://inspirehep.net/literature/524791
https://doi.org/10.1088/1126-6708/2000/08/040
https://arxiv.org/abs/hep-th/0008015
https://inspirehep.net/literature/531161
https://doi.org/10.1088/1126-6708/2000/08/051
https://arxiv.org/abs/hep-th/0008016
https://inspirehep.net/literature/531162
https://doi.org/10.4310/ATMP.2000.v4.n2.a7
https://doi.org/10.4310/ATMP.2000.v4.n2.a7
https://arxiv.org/abs/hep-th/0002169
https://inspirehep.net/literature/524165
https://doi.org/10.4310/CNTP.2015.v9.n2.a2
https://arxiv.org/abs/1309.5720
https://inspirehep.net/literature/1255109
https://doi.org/10.2140/gt.2019.23.1415
https://arxiv.org/abs/1709.01481
https://inspirehep.net/literature/1621634
https://doi.org/10.1090/tran/8013
https://inspirehep.net/literature/1790880


J
H
E
P
0
1
(
2
0
2
3
)
0
2
9

[69] D. Mumford, Tata lectures on theta I, Birkhäuser (2007).
[70] G.E. Andrews and S.C.F. Rose, MacMahon’s sum-of-divisors functions, Chebyshev

polynomials, and quasi-modular forms, J. Reine Angew. Math. 676 (2013) 97.
[71] E.T. Whittaker and G.N. Watson, A course of modern analysis — an introduction to the

general theory of infinite processes and of analytic functions with an account of the principal
transcendental functions, fifth edition, Cambridge University Press (2021).

[72] J. Bureaux, Partitions of large unbalanced bipartites, Math. Proc. Camb. Phil. Soc. 157
(2014) 469.

[73] B.C. Berndt, Ramanujan’s notebooks. Part III, Springer (1991).
[74] S.H. Chan, Generalized Lambert series identities, Proc. Lond. Math. Soc. 91 (2005) 598.
[75] M.-X. Huang, Modular anomaly equation for Schur index of N = 4 super-Yang-Mills, JHEP

08 (2022) 049 [arXiv:2205.00818] [INSPIRE].
[76] W.J. Keith, Restricted k-color partitions, II, Int. J. Numb. Theor. 17 (2020) 591.
[77] M. Merca, Overpartitions as sums over partitions, Proc. Rom. Acad. Ser. A 22 (2021) 327.
[78] J.-F. Fortin, P. Jacob and P. Mathieu, SM(2, 4k) fermionic characters and restricted jagged

partitions, J. Phys. A 38 (2005) 1699 [hep-th/0406194] [INSPIRE].
[79] J.L. Cardy, Operator content and modular properties of higher dimensional conformal field

theories, Nucl. Phys. B 366 (1991) 403 [INSPIRE].
[80] T.M. Apostol, Modular functions and Dirichlet series in number theory, second edition,

Springer (1990).
[81] S. Ramanujan, On certain arithmetical functions, Trans. Camb. Phil. Soc. 22 (1916) 159, in

Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, U.S.A.
(2000), p. 136.

[82] Y.V. Nesterenko and P. Philippon eds., Introduction to algebraic independence theory,
Springer (2001).

[83] G. Oberdieck, A Serre derivative for even weight Jacobi forms, arXiv:1209.5628.
[84] I. Kriz and L. Lai, Modular invariance of characters of vertex operator algebras, Rev. Math.

Phys. 9 (2018) 1850008 [arXiv:1310.5174] [INSPIRE].
[85] K. Chandrasekharan, Elliptic functions, Springer (1985).
[86] S. Lang, Elliptic functions, second edition, Springer (1987).
[87] F. Hirzebruch, Elliptic genera of level N for complex manifolds, in Differential geometrical

methods in theoretical physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C 250 (1988) 37.
[88] P.S. Landweber, ed., Elliptic curves and modular forms in algebraic topology, Springer (1988).
[89] F. Hirzebruch, T. Berger and R. Jung, Manifolds and modular forms, Vieweg-Teubner Verlag

(1992).
[90] L.A. Borisov and A. Libgober, Elliptic genera of toric varieties and applications to mirror

symmetry, Invent. Math. 140 (2000) 453.
[91] B. Totaro, Chern numbers for singular varieties and elliptic homology, Ann. Math. 151

(2000) 757.

– 50 –

https://doi.org/10.1007/978-0-8176-4577-9
https://doi.org/10.1515/crelle.2011.179
https://doi.org/10.1017/s0305004114000449
https://doi.org/10.1017/s0305004114000449
https://doi.org/10.1007/978-1-4612-0965-2
https://doi.org/10.1112/s0024611505015364
https://doi.org/10.1007/JHEP08(2022)049
https://doi.org/10.1007/JHEP08(2022)049
https://arxiv.org/abs/2205.00818
https://inspirehep.net/literature/2075552
https://doi.org/10.1142/s1793042120400151
https://doi.org/10.1088/0305-4470/38/8/007
https://arxiv.org/abs/hep-th/0406194
https://inspirehep.net/literature/652904
https://doi.org/10.1016/0550-3213(91)90024-R
https://inspirehep.net/literature/30207
https://doi.org/10.1007/978-1-4612-0999-7
https://doi.org/10.1007/b76882
https://arxiv.org/abs/1209.5628
https://doi.org/10.1142/S0129055X18500083
https://doi.org/10.1142/S0129055X18500083
https://arxiv.org/abs/1310.5174
https://inspirehep.net/literature/1261499
https://doi.org/10.1007/978-3-642-52244-4
https://doi.org/10.1007/978-1-4612-4752-4
https://doi.org/10.1007/978-94-015-7809-7_3
https://doi.org/10.1007/bfb0078035
https://doi.org/10.1007/978-3-663-14045-0
https://doi.org/10.1007/s002220000058
https://doi.org/10.2307/121047
https://doi.org/10.2307/121047

	Introduction
	Structure
	Future works

	Canonical indices
	Examples
	Half-BPS indices
	Large N limit

	Fermi-gas formulation
	Kronecker theta function
	Fermi-gas canonical partition function
	Spectral zeta functions
	Closed-form formula
	Quasi-Jacobi forms
	Examples
	N=1
	N=2
	N=3
	N=4
	N=5


	Grand canonical indices
	Fermi-gas grand partition function
	Closed-form formula
	Unflavored Schur index
	Half-BPS index

	Combinatorics
	Unflavored Schur indices
	Sum of triangular numbers
	Generalized sum of divisors
	Overpartitions

	Definitions and notations
	q-shifted factorial
	Jacobi theta functions
	Eisenstein series
	Classical Eisenstein series
	Twisted Eisenstein series

	Weierstrass functions
	Classical Weierstrass functions
	Twisted Weierstrass functions


	Other analytic expressions
	N=2
	N=3
	N=4
	N=5
	Higher ranks


