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1 Introduction and summary

In the past couple of years, significant attention has been given to the black hole information
paradox which is still a key problen in quantum gravity arising from the discovery of
Hawking radiation [1–3]. One of the recent proposed resolutions for spacetimes with
a holographic dual [4] is the Island Conjecture [5, 6], closely tied to the appearance
of replica wormholes in the gravitational path integral [7–10].1 Within this framework,
the generalised entropy associated to the nontrivial island becomes the minimal one and
dominates the entropy, leading to the decreasing part of the Page curve [11, 12]. Moreover,
the AMPS paradox [13] can be resolved by noting that the island only describes a part of
the black hole interior, namely the part within its causal diamond — the entanglement
wedge [6, 14–16]. This region starts on a null line a scrambling time to the past and tells
us when we can decode an object after throwing it into the black hole according to the
Hayden-Preskill protocol [17, 18]. Since this island is associated to the radiation which
already left the black hole a long time ago, both regions should be attributed to the same
Hilbert space. Maximal entanglement now only happens between two states: one on R∪ I
and one on its complement BH associated to the fine-grained entropy of the black hole.
This identification can be viewed as a manifestation of ER = EPR [19, 20].

The key idea is the following formula for the generalised radiation entropy:

S(R) = Min
I

Ext
I

[
A(∂I)
4GN

+ SQFT(R∪ I)
]
, (1.1)

where R is the radiation region, I is the island and SQFT(R ∪ I) is the entanglement
entropy of the quantum fields in this bulk region of spacetime.

Whilst the island formula computes the fine-grained entropy of the radiation, there is
an analogous formula for the fine-grained entropy associated to the black hole.2 Instead of
an island, we look for a Quantum Extremal Surface X [21] from which one computes
the generalised entropy as:

S(X ) = Min
X

Ext
X

[
A(X )
4GN

+ SQFT(X )
]
. (1.2)

This formula can be viewed as a natural extension of the RT/HRT prescription [22, 23],
improving further on the JLMS extension [24] where the classical Bekenstein-Hawking
contribution [25, 26] is augmented by the bulk matter contribution of quanta surrounding
the black hole. It is understood that bringing this semiclassical contribution inside the
extremisation procedure leads to an expression which is valid at all orders of GN. The
local divergences in the QFT entanglement entropy computation can be absorbed into
a renormalisation of Newton’s constant, in 4d of the form: 1/GN,ren ≡ 1/GN,bare + #/ε2
in the standard framework of renormalisation making the entire quantity (1.2) finite. If
the black hole was formed from an initially pure state, we expect these two formulas to
coincide S(X ) = S(R).

1See [6] for a review.
2This formula was actually used prior to the island formula.
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Considering purely the matter or radiation contributions SQFT in either computation,
one can make sense of its UV-divergence on its own by considering the so-called renormalised
entanglement entropy, studied extensively in the somewhat older literature [27, 28]. For this
quantity, one subtracts the matter entanglement entropy of the same region in a reference
matter state:

Sren ≡ Sbare − Sref. (1.3)

For the asymptotically flat CGHS/RST model, this definition of the radiation entropy was
explored in [29], whereas for the JT model this was done in [30]. One of the appealing benefits
is that the renormalised matter entropy can be defined operationally and independently of
the gravitational piece of the entropy.

The above QES (1.2) and island (1.1) prescriptions have been tested extensively, starting
initially with the JT gravity model. In this work, guided by the above considerations, we
make two adjustments to the typical analysis:

• Following the above arguments, we will utilise the renormalised entanglement en-
tropy (1.3) for the matter sector, and insert this for SQFT in the QES formula (1.2).
The apparent ambiguity of choice of reference state is naturally addressed in the JT
gravity model due to the preferred choice of boundary coordinate t as time flows. This
leads to an operational definition of the island points, which we will call operational
islands. Our reinterpretation of the renormalisation procedure of (1.2) can be viewed
as an alternative proposal, the main benefits of which will be made apparent in the
main text below.

• In most of the literature, a flat heat bath is added to the boundary of spacetime to
accommodate for the radiation region in the island formula [5, 8, 10, 31–41].3 One may
wonder whether the physics of this heat bath does indeed change the time evolution
of the entropy. For example, it was found that the location of the island depends on
the initial temperature of the heat bath [35]. Yet, gluing such a heat bath still seems
like an arbitrary process, that has nothing to do with the internal dynamics of the
evaporating black hole itself. In this paper, we will, following [30, 43], not include any
explicit heat bath. Instead, we implement solely the absorbing boundary conditions
of the boundary detector, and consider the resulting purely dissipative dynamics.

The result of these adjustments is the island structure of figure 8a and unitary Page
curve in figure 8b that we will show later on. This provides for an alternative renormalisation
scheme of the island formula than the one utilised in the past couple of years.

Next to this, we will also generalise the relevant dissipative system to include charge
and supercharge dissipation through the holographic boundary, and present a solution for
the energetics and radiation entropy during evaporation of such more general black holes.
In particular, we will see that the black hole can actually grow during the initial stage
of evaporation by superradiant mode emission, to eventually dissipate as expected. The
matter entanglement entropy profile as a function of time is also drawn for these black
holes, and has a qualitatively similar Page curve as expected.

3For calculations with a gravitating bath, see [42].
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In the remainder of the paper, we provide the details of these calculations. The paper
is structured as follows: we begin with a review of JT gravity in section 2 where emphasis
is put on the perspective of the boundary observer. Next, in section 3 we describe the
evaporating black hole in this model, and the entropy associated to the matter sector. Of
importance will be how we deal with the UV cutoffs. Subsequently, in section 4 we present
the QES calculations in our model, with the final Page curve in 4.4. In the second half of the
paper, we consider more general dissipative systems than the purely energetic dissipation of
the uncharged black hole. In particular, we focus on adding charged dissipation and then
solve the coupled equations of motion. As a further argument in favour of our results, we
also embed and generalise these calculations in N = 2 and higher supersymmetric black
hole dissipation. This is done in sections 5 and 6.

Section 4 on the one hand, and 5 and 6 on the other, can be read independently, and
the reader only interested in one of the two can safely skip the other parts.

The appendices contain some of the more technical details, in particular appendix D
contains a discussion on the 2d CFT entanglement entropy generalising the pure frame
dependence to include gauge and superframe dependence.

For convenience, we present a short Glossary for the different kinds of entropy:

Sren,R(t) = renormalised outgoing radiation entropy ,
SBH(t) = semiclassical Bekenstein-Hawking entropy,
Spre(t) = generalised entropy before the Page time ,
Spost(t) = generalised entropy after the Page time .

2 A short review of JT gravity

We first present a concise review of the classical dynamics of JT gravity.

2.1 Action and dynamics

We begin by writing down the action for 2d JT gravity with metric g and dilaton Φ coupled
to conformal matter φ (lAdS = 1) [43–48]

S[g,Φ, φ] = Stop[g] + SJT[g,Φ] + Sm[g, φ], (2.1a)

Stop[g] = Φ0
16πGN

[∫
M

√
−gR+ 2

∫
∂M

√
−γK

]
, (2.1b)

SJT[g,Φ] = 1
16πGN

[∫
M

√
−gΦ(R+ 2) + 2

∫
∂M

√
−γΦb(K − 1)

]
. (2.1c)

The first action Stop[g] is purely topological and adds a constant contribution ∼ Φ0χ

through the Gauss-Bonnet theorem where χ is the Euler characteristic of the corresponding
manifoldM. The second action SJT[g,Φ] captures the leading deviation from extremality
of higher-dimensional black holes where Φ0 + Φ measures the area of the transverse space
in the parent theory. Moreover, we added the usual Gibbons-Hawking-York boundary term
with boundary metric γ, curvature K, and boundary value φb for the dilaton. There is an
additional holographic counterterm required which explains the (K − 1) combination. The
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last action Sm[g, φ] is simply a 2d CFT action for a matter field which does not couple to
the dilaton directly.

Varying the total action w.r.t. Φ imposes the constant curvature constraint R+ 2 = 0.
In other words, the geometry is everywhere locally AdS2 with a constant negative curvature.
In Poincaré coordinates (F,Z) this is

ds2 = −dF
2 + dZ2

Z2 = − 4
(X+ −X−)2dX

+dX−, (2.2)

with X± = F ± Z lightcone coordinates, future and past horizon at X± = ±∞, and the
boundary located at X+ = X− as per usual in the Poincaré patch X− ≤ X+.

The other dynamics can be found from varying with respect to the metric and yields
the EoM for the dilaton field sourced by the conserved energy-momentum of the matter
CFT sector [46].

2.2 Boundary particle

The classical dynamics of JT gravity can be conveniently described in terms of a dynamical
boundary particle. This description originated from the SYK model, and was developed
in parallel in [43, 47–49]. From this viewpoint, the boundary time t is a preferred coordinate
from which we can define a dynamical variable at the AdS2 boundary: the time reparametri-
sation F (t) of a fixed reference time F , the Poincaré time. This preferred boundary time t,
associated to a boundary particle/observer, naturally describes the time evolution along the
AdS2 boundary u = v ≡ t. By requiring that these coordinates (u, v) near the boundary
coincide with the AdS2 boundary in the Poincaré patch itself X+(u) = X−(v), we acquire
the dynamical/holographic boundary curve

X+(t) = X−(t) ≡ F (t), (2.3)

After introducing a regulator for the AdS2 boundary ε which moves the boundary
slightly inwards, the boundary observer’s coordinate frame (t, z) can be related to that of a
bulk observer through

X+(t+ ε) +X−(t− ε)
2 = F (t), (2.4a)

X+(t+ ε)−X−(t− ε)
2 = εF ′(t), (2.4b)

where εF ′(t) is equal to the distance between the holographic boundary curve and the
true boundary.

There is a quite natural way to extend this coordinate frame into the entire bulk: a
boundary observer can construct a bulk frame by shooting in and collecting light rays
u = t+ z, v = t− z. They shoot in a light ray at v = t1 as measured on their clock and
collect it back at u = t2. Now, taking this procedure to the Poincaré patch where the
boundary observer sends at F1 = F (t1) and receives at F2 = F (t2), they can associate the
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coordinates X− = F1, X
+ = F2 to every bulk point. From this they can construct a unique

bulk frame and metric — the radar definition of the bulk [30, 50]

X+(u) = F (u), X−(v) = F (v), (2.5a)

ds2(F ) = F ′(u)F ′(v)
[F (u)− F (v)]2

(
dz2 − dt2

)
. (2.5b)

This procedure is boundary-intrinsic and is constructed via local operations from the
boundary observer perspective. Allowing quantum fluctuations, the boundary observer
experiences a fixed bulk location but fluctuating metric whilst a Poincaré observer would
see a fuzzy bulk location and a fixed metric.

The boundary particle dynamics can be derived by imposing specific boundary condi-
tions as [43, 46, 48]

gtt

∣∣∣∣
∂M

= 1
ε2 , Φ

∣∣∣∣
∂M

= Φb = φr
ε
, (2.6)

where φb is large and φr is a fixed constant. In this approach, the JT action reduces to a
boundary term and the theory becomes a Schwarzian theory in 0+1 dimensions

SJT → −
φr

8πGN

∫
dt

ε

K − 1
ε

= −C
∫
dt{F (t), t}, {F (t), t} = F ′′′

F ′
− 3

2

(
F ′′

F ′

)2
,

(2.7)

where C ≡ φr
8πGN

, with induced metric dt/ε and extrinsic curvature K = 1+ε2{F (t), t}+ . . ..
With the aforementioned result, the total energy can be computed directly by relating

the action (2.7) to the boundary Hamiltonian

E(t) = − φr
8πGN

{F (t), t}. (2.8)

When allowing for backreaction in a semiclassical setup, the rate at which the total energy
changes is merely equal to a net flux of the energy flow at the holographic boundary:

dE
dt = 〈Tvv(t)〉 − 〈Tuu(t)〉 , (2.9)

where the stress tensors showing up are the covariant ones [51, 52] (see also the book [53]
for a thorough pedagogical treatment):

Tuu = − c

12π
[
(∂uω)2 − ∂2

uω
]

+ :Tuu:, (2.10a)

Tvv = − c

12π
[
(∂vω)2 − ∂2

vω
]

+ :Tvv:, (2.10b)

Tuv = − c

12π∂u∂vω, (2.10c)

for a spacetime ds2 = −e2ω(u,v)dudv. The second term is the normal-ordered stress tensor
which is chirally conserved and frame-dependent since normal-ordering is always with
respect to a certain vacuum. This normal-ordered term is exactly what one would measure
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via a detector calibrated to their vacuum. However, this term transforms non-covariantly
under a general conformal transformation (U(u), V (v)) due to the conformal anomaly:4

:Tuu:=
(
dU

du

)2
:TUU : − c

24π{U, u}, :Tvv:=
(
dV

dv

)2
:TV V : − c

24π{V, v}, (2.11)

Only the total sum is covariant in the sense that ∇µTµν = 0 and transforms as a tensor.
These properties are important to be consistent with the Einstein equation. By giving
an operational meaning to this equation, it resolves a paradox related to the experience
of accelerated observers: the Minkowski vacuum for an accelerated observer looks like a
thermal Rindler state, but if this thermal stress-energy backreacts on the spacetime, it
would deform the flat space we started with and invalidate the entire setup. However, what
the accelerated observer measures, as stated, is the normal-ordered piece and not the total
covariant stress tensor. So by adding the vacuum/Casimir piece — the first term — to
their measurement, the effect cancels out and no net backreaction is happening.

The case for AdS2 gravity is special because:

− c

12π
[
(∂uω)2 − ∂2

uω
]

= c

24π{F (u), u}, (2.12)

and analogously for v, which means the Casimir piece of both stress tensors (2.10a), (2.10b)
are equal to the expression above

Tuu(u) = c

24π{F (u), u}+ :Tuu(u):, Tvv(v) = c

24π{F (v), v}+ :Tvv(v):, (2.13)

such that for the difference at the boundary u = v = t, they cancel each other out:

dE
dt = 〈Tvv(t)〉 − 〈Tuu(t)〉 = 〈:Tvv(t):〉 − 〈:Tuu(t):〉 . (2.14)

This equation of motion should be viewed as the JT version of the semiclassical Ein-
stein equation:

Gµν = 8πG 〈Tµν〉 . (2.15)

2.3 Static black hole solution

For cases in which the matter stress tensor vanishes and with metric (2.2), we obtain the
static black hole background with mass M = E and dilaton profile

Φ = 2φr
1− (πT )2X+X−

X+ −X−
, (2.16)

at Hawking temperature T in AdS2 [46]. The time reparametrisation in this case F (t)
becomes

F (t) = 1
πT

tanh(πTt), (2.17)

4Observe how for a Möbius transformation U → aU+b
cU+d in PSL(2,R) (and independently for V ), the

anomalous term disappears. This is directly related to the fact that these transformations leave the vacuum
state invariant.
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which is a solution for a constant Schwarzian

{F (t), t} = −2π2

β2 . (2.18)

From this follows the metric and dilaton in the new coordinates (u, v) through (X+(u), X−(v))

ds2 = − 4(πT )2

sinh2[πT (u− v)]
dudv, Φ = 2φrπT coth[πT (u− v)]. (2.19)

Both expressions are periodic in Euclidean time with period β.
This spacetime has a future and past horizon where u = +∞, v = −∞ which translates

in Poincaré coordinates to
X± = ± 1

πT
. (2.20)

These two points are exactly where the boundary particle meets the AdS2 boundary for
X± = F (t→ ±∞) at the two points respectively. The black hole is characterised by the
following thermodynamical relations above extremality:

E = πφr
4GN

T 2, S = 2πφr
4GN

T. (2.21)

The energy is found by plugging the time reparametrisation (2.17) into (2.8). The entropy
above extremality is found by either using the thermodynamical definition, the RT formula
or the Bekenstein-Hawking result in combination with (2.21). Notice that for the latter two,
the minimal surface ∂±φ = 0 and the horizon gtt|h = 0 are both codimension-2 surfaces
which in our spacetime translate to a point. This is in correspondence to the dilaton being
related to the area of the transverse space of the parent theory via dimensional reduction.

3 Evaporating black holes

We now implement evaporation in this model.

3.1 Setup

We start with the extremal black hole (the Poincaré patch) and form a non-extremal black
hole by sending in a classical matter pulse at t = 0 with fixed energy E0

dE
dt = E0δ(t) + 〈:Tvv(t):〉 − 〈:Tuu(t):〉 . (3.1)

The quantum state in which we evaluate the matter fluxes is hence always the initial
Poincaré frame. In this Poincaré patch, we have 〈:T++(t):〉 = 0 = 〈:T−−(t):〉 for all times t.

Before the pulse t < 0 there is nothing ingoing or outgoing such that 〈Tuu〉 = 0 = 〈Tvv〉.
So, the equations to solve (2.8), (3.1) become

{F (t), t} = 0, d
dt{F (t), t} = 0, (3.2)

which has the trivial Poincaré solution F (t) = t. A boundary observer would also measure
the Poincaré vacuum 〈:Tvv:〉 = 0 = 〈:Tuu(t):〉.

– 7 –
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After we have sent in the pulse t > 0, we do not throw anything in anymore: 〈Tvv〉 =
0 = 〈Tuu〉. By imposing reflecting BC, the Hawking radiation sent out by the black hole
eventually falls back into it again and feeds it such that it remains at a constant energy.
The Poincaré vacuum is now described in the black hole frame (u, v) which has a nonzero
Schwarzian contribution (2.13):

〈:Tuu:〉 = 〈:Tvv:〉 = − c

24π{F (t), t}. (3.3)

Equations (2.8), (3.1) now dictate that the energy stays constant at E0

{F (t), t} = E0,
d
dt{F (t), t} = 0. (3.4)

These two conditions lead to the static black hole solution with reparametrisation (2.17)
and Hawking temperature (2.21). Hence, as viewed from the black hole frame, we obtain
an eternal Unruh heat bath [54]

〈:Tuu:〉 = 〈:Tvv:〉 = πc

12β2 . (3.5)

To let our black hole evaporate, we take away the outgoing Hawking radiation. We can
imagine a boundary observer moving along the holographic boundary curve and who holds
a detector perfectly absorbing all emitted Hawking radiation; hence 〈:Tvv:〉 = 0 — there
is no ingoing flux feeding the black hole. The outgoing Hawking radiation is nonzero and
measured at the boundary as:

〈:Tuu:〉 = − c

24π{F (t), t}. (3.6)

We now have a nonzero energy rate (3.1) dE
dt = −〈:Tuu:〉 and together with the total

energy (2.8) we have to solve the following differential equation

d

dt
{F (t), t} = −k{F (t), t}, t > 0, (3.7)

or in terms of the energy profile:

dE
dt = −kE ⇒ E(t) = E0e

−kt, (3.8)

after implementation of the initial value E(0) = E0 and where we defined the evaporation
rate k as

k ≡ cGN
3φr

= c

24πC , (3.9)

with units [k] = [energy] = [time]−1. We obtain an exponentially decaying energy and with
this we can find the reparametrisation F (t) by solving

{F (t), t} = −2(πT )2e−kt, (3.10a)

F (0) = 0, F ′(0) = 1, F ′′(0) = 0, (3.10b)

– 8 –
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Figure 1. (a) Evaporating black hole setup. Starting in the Poincaré patch, we send in a pulse at
t = 0 to form a black hole. If the black hole were static, the (u, v) coordinates could only describe
up to the would-be horizon X+ = 1

πT . In the evaporating case, these coordinates describe the patch
up to F∞. The red wiggly curve represents the holographic boundary curve. The apparent horizon
is denoted in dashed orange. (b) Reparametrisation profiles for the different scenarios and T = 1

2π .
The time reparametrisation of the evaporating black hole interpolates between the eternal black
hole and the Poincaré patch for increasing evaporation rate k.

with the BC stemming from gluing along the pulse at t = 0 which also determines E0
in terms of the would-be temperature via (2.21). The solution is pretty complicated and
contains the modified Bessel functions of the first and second kind [43]

F (t) = 1
πT

I0(α)K0
(
αe−

kt
2
)
−K0(α)I0

(
αe−

kt
2
)

I1(α)K0
(
αe−

kt
2
)

+K1(α)I0
(
αe−

kt
2
) , α = 2πT

k
. (3.11)

The reparametrisation F (t) increases monotonically and asymptotes to a fixed value F∞
for t → +∞ beyond the horizon of the would-be static black hole. However, it does not
reach the original Poincaré horizon as shown in figure 1a.5 Different profiles are plotted
in figure 1b.

For a macroscopic black hole k/T � 1, the reparametrisation and horizon value can be
approximated by the following expressions [35]6

F (t) ≈ F∞ tanh
[2πT
k

(
1− e−

k
2 t
)]
, F∞ = 1

πT
+O(k). (3.13)

This can be compared to the static black hole solution (2.17).
5Indeed, we have

F∞ ≡ F (t→ +∞) = 1
πT

I0(α)
I1(α) , (3.12)

and Poincaré time stops flowing as F ′(t→ +∞)→ 0 [43].
6This just boils down to expanding the modified Bessel functions for large arguments [55]

Iν(z) = ez√
2πz

(
1− 4ν2 − 1

8z

)
+O(z−2), Kν(z) =

√
π

2z e
−z
(

1 + 4ν2 − 1
8z

)
+O(z−2).
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3.2 Matter sector: recalibrating the entropy

To find islands through the QES formula, we require an expression for the entanglement
entropy of the bulk fields across the spacelike interval between the island and the boundary.
The fact that this interval is anchored at one end on the holographic boundary provides us
with an entropy evolving in boundary time t. Since the matter sector does not couple to
the dilaton directly, we can treat it as a QFT on a fixed AdS2 background. Moreover, since
information flow in a CFT is preserved along null lines, we will be able to interpret our setup
as a boundary observer with a detector calibrated according to their vacuum in boundary
coordinates (u, v), who measures the entanglement between the radiation already captured
(early time) and the radiation yet to come out of the remaining black hole (late time).

Let us start in flat space in lightcone coordinates ds2 = −dX+dX− and measure the
entanglement entropy across a single interval for a free, massless scalar with respect to the
Minkowski vacuum |0+〉 [27, 28, 30]. For a free massless scalar, the CFT decouples in a
right-moving and left-moving part, thus we can calculate the contribution to the entropy
from these modes separately across intervals [X+

1 , X
+
2 ] and [X−1 , X−2 ]

S = c

12 ln

(
X+

1 −X
+
2

)2

δ1δ2
+
(
X+
i → X−i

)
, (3.14)

where δi are the cutoffs in the points (X+
i , X

−
i ) as measured by an observer in this frame.

Alternatively, we can look at the entropy with respect to another vacuum |0u〉 related
to the original vacuum by a conformal transformation u(X+), similarly for v(X−)

S = c

12 ln (u1 − u2)2

δ̂1δ̂2
+ (ui → vi), (3.15)

with cutoffs δ̂i as measured by an observer in the (u, v) frame.
The cutoffs δi and δ̂i are related by how the clocks tick for the observers in the different

frames δ̂i = u′iδi, since they have their detectors calibrated to a different vacuum and hence
to a different time coordinate with respect to which they define positive frequency modes.
Plugging this relation into (3.15) leads to

S = c

12 ln (u1 − u2)2

u′1u
′
2δ1δ2

+ (ui → vi). (3.16)

In these new coordinates, the metric is ds2 = −∂uX+∂vX
−dudv = −e2ωdudv and the

entropy can alternatively be written as

S = c

6(ω1 + ω2) + c

12 ln (u1 − u2)2

δ1δ2
+ (ui → vi). (3.17)

In [28] it was argued that this is the correct analogue for a generic curved spacetime with
conformal factor e2ω. Moreover, this equation is directly derived using a standard twist
fields approach using the replica trick [31].

We can now apply this procedure to our setup in AdS2

ds2 = − 4
(X+ −X−)2dX

+dX− = −4∂uX+∂vX
−

(X+ −X−)2 dudv. (3.18)

– 10 –
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We obtain for the vacuum |0+〉:

Sbare = c

6

(
ln 2
X+

1 −X
−
1

+ ln 2
X+

2 −X
−
2

)
+ c

12 ln

(
X+

1 −X
+
2

)2

δ1δ2
+
(
X+
i → X−i

)
.

(3.19)

However, a boundary observer in the coordinate frame (u, v) would calibrate their detector
with respect to their vacuum |0u〉, so we should subtract a reference entropy

Sref = c

6

(
ln 2∂uX+

1 ∂vX
−
1

X+
1 −X

−
1

+ln 2∂uX+
2 ∂vX

−
2

X+
2 −X

−
2

)
+ c

12 ln (u1−u2)2

δ1δ2
+
(
X+
i →X−i ,ui→ vi

)
,

(3.20)

from the bare entropy to obtain a renormalised quantity

Sren ≡ Sbare − Sref = c

12 ln

(
X+

1 −X
+
2

)2

∂uX
+
1 ∂uX

+
2 (u1 − u2)2 +

(
X+
i → X−i , ui → vi

)
. (3.21)

This is a finite quantity that a boundary observer would measure.7 Notice that this
expression is also equal to the renormalised entropy in flat space, since we can rewrite
it as [30]:

Sren ≡ Sbare − Sref = c

12 ln

(
X+

1 −X
+
2

)2

∂uX
+
1 ∂uX

+
2 δ1δ2

− c

12 ln (u1 − u2)2

δ1δ2
+
(
X+
i → X−i , ui → vi

)
.

(3.22)

This is quite convenient since we know a lot about expressions of this kind.

3.3 Boundary observer perspective

In the previous section we introduced our model for an evaporating black hole in JT gravity,
without specifying a heat bath. We took the perspective of a boundary observer who follows
the holographic boundary curve with a detecting apparatus in hand, absorbing all the
outgoing radiation from the black hole. This effectively turns our CFT into a chiral CFT
since only one set of movers remains.

For the radiation region R, we take it to be the interval stretching from (u = σ, v = σ)
up until (u = t, v = σ/2) along the pulse [30], where σ � 1 is infinitesimal. We can imagine
that as soon as the detector starts absorbing radiation, a heat bath develops behind the
boundary which grows as more radiation is getting absorbed — some kind of internal
spacetime for the detector. In this heat bath, a horizontal slice is equivalent to the radiation
region as the latter can be mapped to the interval by moving along an outgoing null ray.
This view is illustrated in figure 2a.

7One might think that we are working in a boundary CFT, and we should hence add the Affleck-Ludwig
boundary entropy ln g, and to the two-interval case a term lnG(η) related to the OPE coefficient of the
two-point function [56], and where η is the crossratio. However, by setting absorbing BC, the boundary can be
seen as “transparent”, and we are then effectively considering a single interval in a space without boundaries.

– 11 –
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~

(a)

~

(b)

Figure 2. (a) The radiation region R up to time t = u is shown as the (nearly) null surface
in green. We can add an internal detector system where the radiation caught by the observer is
stored. Every interval beginning at the left null ray and ending on the right one constitutes a correct
radiation region. We can even map it into the timelike boundary interval R̃. (b) Full Cauchy slice
Σ = I ∪ BH ∪ R, for the case of an island outside the horizon, as we will construct. The union
I ∪ BH ∪ R̃ is not spacelike everywhere, but it serves the same goal for purely right-moving CFT
matter flows as is the case here.

This links our setup with the usual setup in which a flat space heat bath is glued to
the boundary. However, we need not specify any particular dynamics or geometry for this
region, as this region is fictitious in our case. The only property it needs is for it to act as
an absorber for the radiation.

This information preservation along null lines also give rises to a nice interpretation of
the island. Given that all radiation can be seen as originating from the pulse v = 0, to each
interval along the pulse we can associate an interval R̃ which lies along the holographic
boundary curve by shifting it over an outgoing null line (figure 2a). An observer starting at
t = 0 moving along the boundary will start collecting radiation and its associated interval
along the pulse will grow. The entropy the observer measures is then a measure for the
entanglement between the early radiation — the collected radiation R̃ and the island region
I — and the late radiation — the radiation yet to escape BH. This total slice of the
spacetime I ∪ BH ∪ R̃ is not spacelike, but can be mapped to a spacelike slice without
losing information as discussed above. A full Cauchy slice of this extended spacetime is the
union of these three intervals: I ∪ BH ∪R, as shown in figure 2b.

With our operational definition, we will search for and find an island region outside
of the horizon. One could ask whether the presence of such an island violates causality.
The first appearance of such an island was in [32] for an eternal AdS2 black hole; causality
was restored by means of the quantum focussing conjecture [57]. Other cases also report a
possible island extending to the outside [35, 58–64]. Considering quantum corrections to the
event horizon, it was suggested that the island may be inside the stretched horizon [65] but
outside the classical horizon [60]. In higher-dimensional systems this effect can be explained
in terms of entanglement wedge nesting [15, 58, 66, 67].

As the boundary observers moves to t→ +∞ and ends at F∞, the detector will have
collected all the outgoing radiation from the black hole resulting in full knowledge and
a zero entropy. Eventually, the region BH disappears and the full Cauchy slice is now

– 12 –
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Figure 3. The final island. The island eventually ends up at the same location as the observer on
the boundary. There is no BH anymore, a full Cauchy slice is given by I ∪ R. At this point, the
observer has caught all the outgoing radiation and can construct the interior (in purple).

Σ = I ∪ R (see figure 3). If the quantum state was pure on this Cauchy slice, then surely
S(BH) = S(I ∪ R) = S(Σ) = 0. Therefore, we expect that the island eventually recedes
to this boundary point for t→ +∞. The captured radiation can be used to almost fully
reconstruct the black hole interior — the part lying within the entanglement wedge of the
island and the only region relevant for the observer. This is a clear difference between
information loss and preservation when incorporating the existence of such an island. At
this point, the scrambling time tscr = t − vX is zero since the island and the boundary
observer coincide; all the information is immediately available.

The setup we described here varies from the usual setup in most recent papers [5, 8,
10, 31–41]. So we juxtapose both models depicted in figure 4a and 4b.

The first model glues a flat region to the holographic boundary. This extra region
of spacetime acts as a heat bath collecting the Hawking radiation but where gravity is
effectively turned off. Before the pulse is sent in, these two regions of spacetime do not
interact with each other and the boundary is assumed to be perfectly reflecting, whereas
after the coupling it becomes transparent. This results in a pulse that forms the black hole,
reminiscent of a quench procedure (see appendix B of [68]).

In our model, we do not glue any spacetime to the boundary but take the perspective
of a boundary observer. This boundary observer moves along the holographic boundary
associated to the Poincaré patch for t < 0. Evaporation for t > 0 is achieved by the
observer collecting the outgoing Hawking radiation with a detector, without making any
assumptions about the dynamics of the absorbing medium, and aiming at purely modelling
the dissipation of the black hole system.

3.4 Radiation and Bekenstein-Hawking entropy

We consider the radiation region R to lie along the pulse; this is the interval between (σ, σ)
and (u = t, σ/2) where σ is very small and only there to keep it spacelike (figure 2a). Without
loss of generality we set φ0 = 0 and work in units of 2φr/4GN for all coming computations.

We could now do a quick computation of the entropy solely attributed to this region,
equal to plugging the trivial island I = ∅ into the island formula (1.1). With σ ≈ 0 we
have F (σ) ≈ 0, F ′(σ) ≈ 1, F ′′(σ) ≈ 0 such that the bare entropy (3.19) becomes upon

– 13 –
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(a) (b)

Figure 4. (a) The setup in most of the literature. Due to the coupling at t = 0 a pulse is sent in
forming the black hole. By setting transparent BC, evaporation is achieved and we have radiation
in both directions. The dashed vertical line denotes the transparant BC. (b) Our setup of an
evaporating black hole. A classical pulse is sent in and outgoing radiation is absorbed by the
boundary observer. Nothing is ever reflected back in.

dismissing the cutoff terms:
SR(t) = k ln 4, (3.23)

which is completely time-independent. In the bulk of AdS2, such an observation was made
before in [69, 70]. The same calculation by making use of the renormalised entropy (3.21)
leads instead to the expression [30]:

Sren,R(t) = k

2 ln F (t)2

F ′(t)t2 . (3.24)

This entropy starts at 0 and quickly reaches a fixed value, as is seen in figure 5a, determined
by the limit value (3.12) and limt→+∞ F

′(t)t2 resulting in8

lim
t→+∞

Sren,R(t) = k ln I0

(2πT
k

)
. (3.25)

The plot 5a shows S as a function of kt. One can retrieve the two limit scenarios by
only considering the ratio k/T :

• Static black hole limit: this coincides with the ratio going to zero via k → 0 or
T → +∞. The first one is directly equivalent to no evaporation. Since k ∝ c, this can
be seen as decreasing the amount of evaporation channels the black hole has access to,
slowing down the evaporation.9 The latter corresponds to shooting in a pulse with

8It was noted that F ′(t) indeed behaves as t−2 for large values in [31], this leads to the limit

lim
t→+∞

F ′(t)t2 =
(
πTI1

(2πT
k

))−2
.

9We should be careful in this regard, we implicitly assumed a large central charge c in order for the
graviton contribution to be negligible.
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SBH(t)
SPage(t)
2SBH(0)

(b)

Figure 5. (a) The renormalised radiation entropy (3.24) for k = 1 and T = 1
2π . It starts at 0

and asymptotes to the value given by (3.25). (b) Following the minimum of Sren,R(t) (3.26) and
SBH(t) (3.27) results in the Page curve, here drawn for k = 0.01. Also note how the radiation
asymptotes to twice the initial black hole value.

infinite energy (2.8). It is ‘non-evaporating’ in the sense that the energy is infinite,
and hence decays sluggishly.

• Poincaré limit: this corresponds to k/T → +∞. Either by instant evaporation
k → +∞ or by having no pulse at all T → 0.

For a macroscopic black hole for which k/T � 1, we can make use of the approximations
of the modified Bessel functions for large values to leading-order to get:

Sren,R(t) ≈ 2πT
(
1− e−

k
2 t
)
. (3.26)

In this case, the Bekenstein-Hawking entropy can be quasi-statically approximated by the
entropy of the static solution (2.21) with the time-dependent energy (3.8), leading to

SBH(t) = πTe−
k
2 t, (3.27)

in our chosen units. By following the minimum of these two curves, shown in figure 5b,
we obtain the Page curve with accompanying Page time ktPage = 2 ln 3

2 . However, without
the island formula, there is no instruction telling us to take the minimum. Either way, this
curve agrees qualitatively with what one would expect from unitary evolution.

The radiation entropy goes to twice that of the initial black hole value Sren,R(t →
+∞)] = 2SBH(t = 0). This is not a coincidence, because when we look at their variation at
any time, we unearth [30]10

δSren,R(t) = −2δSBH(t). (3.28)
10It was argued in the past [28, 71] that an evaporating black hole in empty space of D spatial dimensions

leads to a radiation entropy which is a factor (D + 1)/D larger than the initial value of the Bekenstein-
Hawking entropy; it is an irreversible process. This factor originates from comparing the increasing entropy
of a free Boson gas at TH with the decreasing entropy of a black hole

δS = D + 1
D

E

TH
dt, δSBH = − E

TH
dt.

Note that in this case, this factor appears between the Bekenstein-Hawking entropy and a fine-grained
entropy instead.
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4 Operational islands

Finally, we use the QES formula to find out precisely how the above analysis is modified.
Firstly, the expression for the dilaton can be written in terms of the time reparametri-

sation without use of the memory integrals found in [46]. One either directly integrates
the general expression [10] or one makes use of the EoM in the case of purely infalling
matter T++ = 0 [72] and combines this with the perfect absorption condition :Tvv:= 0 in
our case [36]. One ends up with the formula

φ = 2φr
[1

2
F ′′(v)
F ′(v) + F ′(v)

F (u)− F (v)

]
. (4.1)

The most general expression for the entropy consisting of the dilaton contribution (4.1)
associated to the island (u, v), and that of the bulk quantum fields for an interval (ub, vb)→
(u, v) (3.21) is then given by:

S =
[1

2
F ′′(v)
F ′(v) + F ′(v)

F (u)− F (v)

]
+ k

2 ln [F (ub)− F (u)]2
F ′(ub)F ′(u)(ub − u)2 + k

2 ln [F (vb)− F (v)]2
F ′(vb)F ′(v)(vb − v)2 .

(4.2)
One end of the interval (ub, vb) is anchored to the boundary, hence by making use
of (2.4a), (2.4b) we can set

ub = vb = t, F (ub) = F (vb) = F (t), F (ub)− F (vb) = 2εF ′(t), (4.3)

resulting in

S(t, u, v) =
[1

2
F ′′(v)
F ′(v) + F ′(v)

F (u)− F (v)

]
+ k

2 ln [F (t)− F (u)]2
F ′(u)(t− u)2 + k

2 ln [F (t)− F (v)]2
F ′(v)(t− v)2 − k lnF ′(t). (4.4)

Next, We specify this equation to the different regions of the Penrose diagram, as in
figure 6. Essentially, we are looking at all points spacelike separated from the boundary for
t > 0 and which lie in the exterior since the radar definition is ill-defined behind the horizon.
Hence, we have two regions: a pre-pulse one with coordinates (F (u), v) and a post-pulse
one described by (F (u), F (v)).

4.1 Pre-pulse island

We start with the region prior to the pulse corresponding to X− ≤ 0 ≤ F (t) ≤ X+

equivalent to v ≤ 0 ≤ t ≤ u such that F (v) = v. The entropy (4.4) becomes

Spre(t, u, v) = 1
F (u)− v + k

2 ln [F (t)− F (u)]2
F ′(u)(t− u)2 + k

2 ln [F (t)− v]2
(t− v)2 − k lnF ′(t). (4.5)

To find islands within this frame, we extremise (4.5) with respect to both u and
v independently

∂uSpre = 0 = −F ′(u)
(F (u)− v)2 + k

[ −F ′(u)
F (t)− F (u) + 1

t− u
− 1

2
F ′′(u)
F ′(u)

]
, (4.6a)

∂vSpre = 0 = 1
(F (u)− v)2 + k

[ −1
F (t)− v + 1

t− v

]
. (4.6b)
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Poincaré

BH

Figure 6. The radar definition of how the boundary observer would associate coordinates to a bulk
point [50]. The bulk point prior to the pulse but in the exterior corresponds to (F (u), v) and for
one after the pulse we get (F (u), F (v)). However, such a notion cannot be used for a bulk point in
the interior — lying behind X+(u) = F∞.

By numerical inspection of these equations, it is easy to see that the island solution lies on
the past horizon I−: vX → −∞, immediately giving an infinite scrambling time. It is easy
to verify that this satisfies the v-condition (4.6b) for finite t and u. The u-condition (4.6a)
consequently reduces to

0 = −F ′(u)
F (t)− F (u) + 1

t− u
− 1

2
F ′′(u)
F ′(u) , (4.7)

and is effectively the purely matter condition ∂uSpre, bulk = 0 since the dilaton term vanishes.
The solution is u = t.

This island exists for all t, starts with an entropy equal to 0, and increases indefinitely.
Eventually, it ends at (F∞,−∞). The entropy becomes:

Spre(t) = −k2 lnF ′(t). (4.8)

The time evolution of this entropy is shown in figure 7a for k = 0.01. As a comparison, the
renormalised radiation entropy (3.24) computed in the previous section is plotted as well.

One can interpret this island as being trivial I = ∅ since the classical piece vanishes,
and we are only left with the entropy due to the matter fields present. A similar situation
happens in the Schwarzschild case: the trivial island extends all the way down to r = 0
where it contributes no area piece since A ∝ r2 in such a geometry [6].

For a macroscopic black hole k/T � 1, where one has the approximate form of F (t)
given in equation (3.13), we find for kt of order 1:

Spre(t) = −k2 lnF ′(t) ≈ 2πT
(
1− e−

k
2 t
)

= Sren,R(t), (4.9)

which matches precisely onto the outgoing renormalised radiation entropy written in (3.26).11

11Intriguingly, the formula (4.8) matches precisely with that in the CGHS/RST model [29].
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Figure 7. (a) Evolution of the entropy associated to the pre-pulse island for k = 0.01 and T = 1
2π .

The entropy of the island on the past horizon looks similar to the radiation entropy (3.24). (b)
The post-island entropy for k = 0.01, T = 1

2π . We show how both contributions, dilaton and
bulk, contribute to the generalised entropy. The semiclassical Bekenstein-Hawking entropy is also
plotted and almost exactly coincides with the dilaton. The initial time is depicted as the dashed,
vertical line.

4.2 Aside: the island at t < 0

For consistency, we should find zero entropy when t < 0 since the black hole has not even
formed then. For t < 0, there are two possible regions to find an island: the region where
u > 0 and the region where u < 0.

For the region u > 0, it is clear from equation (4.5) upon setting F (t) = t, that the
value of the entropy decreases monotonically as vX → −∞ as before. On this past horizon,
the value of the entropy functional also decreases when moving towards u→ 0. Hence no
saddle exists in this region.

For the region u < 0 where additionally F (u) = u, the matter piece vanishes identically,
and the equations (4.6a) and (4.6b) are solved by vX → −∞, without a specification on u.
For this set of possible island endpoints, one has the entropy S = 0, which is simultaneously
also the global minimum of the entropy functional in these two regions (u > 0 and u < 0)
of the Penrose diagram.

4.3 Post-pulse island

We finally arrive at the islands which are the hardest to discover, namely those after the
pulse 0 ≤ v ≤ t ≤ u with the most general entropy functional (4.4). This leads to the
island conditions

∂uSpost = 0 = − F ′(u)F ′(v)
[F (u)− F (v)]2 + k

[ −F ′(u)
F (t)− F (u) + 1

t− u
− 1

2
F ′′(u)
F ′(u)

]
, (4.10a)

∂vSpost = 0 = 1
2∂v

F ′′(v)
F ′(v) + F ′′(v)

F (u)− F (v) +
(

F ′(v)
F (u)− F (v)

)2

+ k

[ −F ′(v)
F (t)− F (v) + 1

t− v
− 1

2
F ′′(v)
F ′(v)

]
. (4.10b)

Because of the high nonlinearity, a nontrivial island needs to be found numerically. The
result for the post-island entropy with k = 0.01 is depicted in figure 7b.
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Notice that as indeed expected, the matter contribution to Spost(t) is tiny compared to
the dilaton contribution. Moreover, this decreasing part of the Page curve can be tracked
quite well by the classical Bekenstein-Hawking entropy (3.27).

In a bit more detail, the resulting island is characterised by the following properties:

• The island is at the minimum of the entropy functional (4.4).
• The island ends its life on the boundary at X+ = F∞ = X− where the observer ends

as well, requiring uX = vX → +∞. Indeed, one can easily verify that every term
vanishes.12 Furthermore, the entropy correctly vanishes in this limit. When equally
dividing the last term in expression (4.4) among the two prior, what remains is the
following limit

lim
u→t

[F (t)− F (u)]2
F ′(t)F ′(u)(t− u)2 = F ′(t)2

F ′(t)2 = 1. (4.11)

At this point, the scrambling time vanishes as well since t = vX .
• As vX generally increases when t does, the earliest possible island is one at the pulse

itself vX = 0. By using eqs. (4.10a), (4.10b), this is when13

− F
′(u0)

F (u0)2 + k

[ −F ′(u0)
F (t0)− F (u0) + 1

t0 − u0
− 1

2
F ′′(u0)
F ′(u0)

]
= 0, (4.12a)

−(πT )2 + 1
F (u0)2 + k

[ 1
t0
− 1
F (t0)

]
= 0. (4.12b)

The second condition can be directly solved to

kF (u0) = k

πT

1√
1 +

(
k
πT

)2 [ 1
kF (t0) −

1
kt0

] . (4.13)

Because of t − F (t) ≥ 0, it immediately follows that 1
F (t) −

1
t ≥ 0. Irrespective of

the ratio k/T and t0, the denominator in the expression above will be larger than
unity. Hence the island always starts outside the would-be horizon. In the limiting
case when k/T → 0, the island starts on the would-be horizon.

The initial time kt0 when the island emerges on the pulse, as a function of k/T can
also be considered. Somewhat surprising is the appearance of a threshold value beyond
which this initial time formally becomes negative. This threshold is k/T ≈ 0.547 and

12In the limit of large times, the arguments of the modified Bessel functions go to zero and only those of
the second kind will remain. Combining this with F ′(t)→ 0 leads to

lim
t→+∞

F ′′(t)
F ′(t) = 0.

Similar manipulations are required for the other terms.
13It is easy to show that by using the Schwarzian (3.10a) we have

∂t
F ′′(t)
F ′(t) = 1

2

(
F ′′(t)
F ′(t)

)2

+ 2(πT )2e−kt.
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the island then starts at the would-be horizon kF (u0) = k
πT . One would first conclude

that for values beyond this threshold the island does not start on the pulse but rather
somewhere else; the initial island conditions break down. However, numerics show
that the only candidate islands lie within the lightcone of the boundary observer:
v < t is violated, and as such these are not suitable. However, when k/T is sufficiently
large, we are creating a rapidly evaporating small black hole. For such microscopic
black holes, our calculation ought not to be trusted anymore in any case.

• The apparent horizon is the locus where ∂vφ = 0, or when the first line of (4.10b)
vanishes. An intersection between the apparent horizon and the island endpoint
cannot occur. Indeed, such an incidence would require the second line of (4.10b) to
separately vanish as well. It is readily checked that this second line only vanishes
when v = t. However, the numerical solution of the island endpoint (uX , vX ) is readily
checked never to lead to a location where vX = t unless at the very endpoint of
evaporation where all quantities → +∞.

• For a macroscopic black hole where k/T � 1, we checked numerically that the resulting
entropy limits precisely to the quasi-static Bekenstein-Hawking entropy (3.27):

Spost(t) ≈ SBH(t). (4.14)

4.4 The Page curve

Combining the results of both islands, we obtain the island structure of figure 8a and the
Page curve graph in figure 8b.

As was established earlier, the semiclassical Bekenstein-Hawking entropy is a good
fit for the entropy associated to the post-island which gives the decreasing contribution
to the Page curve. The increasing part due to the pre-pulse island can be relatively well
approximated by the radiation entropy.

These observations become precise in the macroscopic limit where k/T � 1, and hence
the Page curve for an evaporating macroscopic black hole in JT gravity is identical to that
obtained by first following the Hawking radiation entropy (4.9), and subsequently following
the semiclassical Bekenstein-Hawking entropy (4.14).

Because of this equality in the macroscopic limit, the downward piece of the Page curve
decreases with half the slope as the upward piece, as found in (3.28). This can also be
found to be approximately correct from a numerical standpoint only.

Moving away from the strict macroscopic limit, the Page time happens slightly earlier
in the black hole life cycle.

In general, the increasing part of the Page curve is associated to a trivial island with
an entropy associated to it being purely due to the matter fields; e.g. for Schwarzschild this
is one all the way down to r = 0 [6]. The decreasing part is attributed to a nontrivial island
behind the horizon. In our setup, we identified the trivial island with the island lying on
the past horizon prior to the pulse where the dilaton vanishes. Moreover, the nontrivial
island after the pulse inevitably lies in the exterior in our setup, due to how we defined the
matter entropy in an operational way.
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Figure 8. (a) The island trajectories (in red). At the Page time, the dominance of the two islands
changes. The initial island is on the past horizon. The final island is outside of the event horizon
and the apparent horizon (gray dot-dashed line) for its entire lifetime. (b) The Page curve for
k = 0.01, T = 1

2π is given by the solid line in green. There is a small shift to a smaller Page time
when compared with the intersection of the fine-grained radiation entropy (3.24) and the classical
Bekenstein-Hawking entropy when deviating from the strict macroscopic k/T � 1 limit.

For comparison, like in many works on this topic, it is instructive to perform the same
computations for the non-evaporating black hole. We present these results in appendix A
where the resulting Page curve is also shown. Our pre- and post-pulse islands are located
at similar locations in the Penrose diagrams.

5 Charged black holes in JT gravity

In this and the next section, we generalise the evaporating black hole model studied above
to include additional conserved quantities. We focus on the electrically charged case first.
Concretely, we will solve the JT versions of the Einstein-Maxwell system:

Gµν = 8πG 〈Tµν〉 , ∇µFµν = 〈Jν〉 , (5.1)

where gravity and EM are treated classically, but they are sourced by charged
quantum matter.

Later on, we will embed this system within a larger supersymmetric system to illustrate
that our physical results are also natural from a structural perspective.

5.1 Setup

The uncharged black hole system is governed by a Schwarzian boundary action, which
is in turn found in the low-energy regime of the SYK model. In order to motivate the
corresponding charged generalisation, we can take a look at the charged version of the SYK
model instead. The low-energy dynamics of the complex SYK model at finite temperature
is governed by the following system; coupling the Euclidean thermal Schwarzian model,
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describing the purely gravitational sector, to a U(1) BF model describing the gauge field
sector of the low-energy bulk dual [73, 74]:

S[f, σ] = −C
∫ β

0
dτ

{
tan π

β
f(τ), τ

}
+ K

2

∫ β

0
dτ
(
σ′(τ)− iµf ′(τ)

)2
. (5.2)

The new field σ parametrizes charge fluctuations, and is only defined up to a constant shift:
σ ∼ σ + (constant), in direct analogy to the Möbius group invariance of the Schwarzian
reparameterisation F (τ).

A second way of obtaining the same model (5.2) is by looking at the near-extremal
near-horizon dynamics of the 4d Reissner-Nordström (RN) black hole. The resulting s-wave
dynamics is governed by the JT model coupled to 2d Maxwell theory, which can in turn
be described in this particular context by the 2d U(1) BF model. One quick way of
appreciating this relation between the 2d Maxwell model (which is quasi-topological and
depends solely on the area of surfaces) and the 2d U(1) BF model (which is topological
up to length-dependent boundary contributions) is by realising that in AdS2 areas and
lengths scale in the same way (see e.g. appendix C of [75] for an argument along these lines).
Up to a rescaling of coupling coefficients, this then allows an immediate identification of
amplitudes. The leading deviations from extremality are then described by the coupled
bulk 2d JT + U(1) BF model:

Sbulk = 1
16πG

∫
M

√
−gΦ(R+ 2) + K

2

∫
M
BF + (boundary), (5.3)

which reduces to pure boundary dynamics given by (5.2) indeed upon choosing suitable
boundary conditions.14

This model (5.3) yields a grand canonical partition function (on the disk topology)
given by

Z(β, µ) =
∑
Q∈eZ

∫ +∞

Q2
2K

dEe−β(E−µQ) sinh 2π
√

2C
√
E −Q2/2K. (5.4)

The Q-integral is a sum due to charge quantisation. In the semiclassical large Q regime, one
can approximate it by an integral. The saddle equations hold in the regime E � Q2/2K,
where we can approximate sinh as exp, and are given by

∂S

∂E
= β, ⇒ β = π

√
2C√

E −Q2/2K
, (5.5a)

∂S

∂Q
= µβ, ⇒ µ = Q/K, (5.5b)

relating the temperature β−1 and chemical potential µ to the mass E and charge Q of the
black hole. This saddle approximation is rendered invalid for small values of E −Q2/2K.
This model hence describes the spectrum of charged black holes also in the regime where
quantum gravitational corrections are important.

14To fully match with (5.2) one has to introduce a suitable holonomy boundary condition on the gauge
field to match with the twisting of σ induced by having nonzero µ. We make some comments below.
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The parameter K can be matched to the original 4d RN black hole parameters as
follows. A reversible change in the state of the 4d RN black hole follows the first law:

δE = Q

4πr+
δQ, (5.6)

where V (r) = Q
4πr is the Coulomb potential of the black hole, and r+ is the radial location of

the outer horizon. This corresponds to an electric field E(r) = Q
4πr2 , which is approximated

as constant in the near-horizon region where r ≈ r+. The dynamics in this near-horizon
regime are described by the 2d Maxwell theory. Integrating (5.6) leads to the finite relation:

E = Q2

8πr+
+ constant, (5.7)

describing the energy of the black hole above extremality in terms of the charge added,
while preserving its entropy. Note that this relation deviates from the actual 4d RN relation
for sufficiently large choices of E (and Q). From this relation, by comparing with (5.4) we
identify K ≡ 4πr+, see also [76] for a more thorough treatment of this identification.

We will make some simple adjustments to modify the action (5.2) into a form that
will be of use to our real-time dynamical evolution. Firstly, the explicit chemical potential
µ-term couples both sectors f and σ explicitly. It is however simple to decouple the sectors
by redefining σ → σ− iµf(τ). In case of the thermal partition function and correlators, this
redefinition leads to a twisted periodicity of the new field σ [77, 78].15 Secondly, since we
are interested in real-time evolution in a non-stationary (i.e. non-thermal) state, we use an
arbitrary reparametrisation of the Poincaré frame F (τ) instead of the time reparametrisation
of the black hole time coordinate related as F (τ) = tan π

β f(τ). Therefore, the Euclidean
action that will be our starting point is:

S[F, σ] = −C
∫
dτ {F (τ), τ}+ K

2

∫
dτσ′(τ)2. (5.8)

5.2 Charged matter fields

Next we introduce charged matter fields in the bulk. For both simplicity and concreteness,
let us consider a charged massless scalar field φ(x) of charge +q, with Lorentzian action:

Sm = −
∫
M
d2x
√
−gDµφ(Dµφ)∗, (5.9)

where Dµ = ∂µ− iqAµ. In case of no background gauge field Aµ = 0, the field equation leads
to decoupled holomorphic and antiholomorphic sectors as φ(u, v) = φ(u) + φ(v). A chiral
component of this field transforms under chiral coordinate and gauge transformations as

∂Uφ(U) → dU

du
∂uφ(U(u)), Duφ(u) → eiqσ(u)Duφ(u). (5.10)

After integrating out the Lagrange multipliers Φ and B in (5.3), one is reduced to
a patch of AdS2 with a flat connection F = 0, or Aµ = ∂µχ is pure gauge.16 Picking

15This procedure can in turn be interpreted in terms of a group-theoretic character insertion in the bulk
dual BF TQFT.

16We assume our manifoldM has trivial topology.
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a particular bulk coordinate frame on AdS2 and bulk gauge choice for Aµ, is largely
arbitrary. The only physically relevant information is the boundary values of these gauge
transformations, since the large “gauge” transformations are not gauged at all. As before,
we choose to work with bulk frames on AdS2 that preserve holomorphicity by setting

X+ = F (u), X− = F (v), (5.11)

with the same function F (.). Analogously, we restrict to pure gauge fields Aµ = ∂µχ, with

χ(u, v) = σ(u), (5.12)

which reduces at the boundary ∂M u = v = t to the physical σ(t).
Starting out with the reference case Aµ = 0, for which σ = 0,17 we gauge transform to

the specific gauge choice (5.12) by setting

Duφnew = eiqσ(u)∂uφ, Dvφnew = eiqσ(v)∂vφ, (5.13)

and will insert these operators into correlation functions below. We will drop the “new”
subscript from here on. Notice that for ingoing (v) or outgoing (u) modes a different
gauge choice is made. For our purposes, this is natural since the boundary is chosen to be
transparent, so there is no relation between them. If one would consider a reflecting boundary
on the other hand, the modes would become naturally identified through this reflection.

An alternative way of phrasing this issue is that to define a gauge-invariant observable,
one needs to suitably dress the bulk operator with a Wilson line emanating from the
boundary [79–83]. There is a natural choice on how to do this, choosing a line along the
same null direction in which the matter is moving. The boundary gauge field is related to
this as

At|∂M = ∂tσ(t). (5.14)

5.3 Matter energy density

Now we can consider the (holomorphic) matter two-point function in the Poincaré vacuum
state |0+〉:

〈0+|Du1φ(u1)Du2φ
∗(u2) |0+〉 . (5.15)

We can evaluate this correlator explicitly, by using the bulk gauge choice (5.13) and the
free boson correlator, as:

〈0+|Du1φ(u1)Du2φ
∗(u2) |0+〉 = − 1

4π
F ′(u1)F ′(u2)

(F (u1)− F (u2))2 e
iq(σ(u1)−σ(u2)), (5.16)

in terms of the Poincaré frame F (t), and the gauge transformation σ(t).
The chiral stress tensor components are given by:

Tuu = Duφ
∗Duφ+DuφDuφ

∗, Tvv = Dvφ
∗Dvφ+DvφDvφ

∗. (5.17)
17Up to a constant shift that is meaningless for the σ-field as mentioned before.
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As composite operators, these require regularisation and renormalisation. We implement
the point-splitting procedure, where we subtract the vacuum contribution as:

:Tuu(u2): = lim
u1→u2

[
Duφ(u1)Duφ(u2)∗ + 1

4π
1

(u1 − u2)2 + (cc)
]
, (5.18a)

:Tvv(v2): = lim
v1→v2

[
Dvφ(v1)Dvφ(v2)∗ + 1

4π
1

(v1 − v2)2 + (cc)
]
. (5.18b)

Evaluated in the Poincaré vacuum |0+〉, we series-expand (5.16) as u1 → u2:

F ′(u1)F ′(u2)
(F (u1)− F (u2))2 e

iq(σ(u1)−σ(u2)) = 1
u2

12
+ iqσ′(u2)

u12
+1

6 {F, u2}+
1
2q(−qσ

′(u2)2+iσ′′(u2))+. . .

(5.19)
We then obtain

〈0+| :Tuu(u): |0+〉 = − 1
12π {F, u}+ 1

4πq
2σ′2(u), (5.20)

which has a positive contribution both from the gravitational piece, and from the gauge sector.
Note that this is the left-moving energy momentum flux of both particles and antiparticles.

If we use the thermal saddle configurations, where F (t) = tanh π
β t and σ′(t) = µ, we

are describing the semiclassical 2d charged black hole with temperature β−1 and chemical
potential µ, where we obtain

Ebath(u, v) ≡ 〈:Tuu(u):〉+ 〈:Tvv(v):〉 = π

3β2 + 1
2πq

2µ2. (5.21)

This is the energy density contained in the Unruh heat bath of a charged black hole. This
expression matches with that in older work by Iso, Umetsu and Wilczek [84], where different
techniques were used to obtain the same expression (5.21) describing the Unruh heat bath
energy flows of the spherically symmetric sector of 3+1d RN black holes.

Between different chiral frames (U(u), V (v)), including possibly different background
gauge choices (5.13), these renormalised stress tensor components transform anomalously as

:T σuu: =
(
dU

du

)2
:TχUU : − c

24π {U, u}+ q2

4π
(
σ′2 (u)− χ′2 (u)

)
, (5.22a)

:T σvv: =
(
dV

dv

)2
:TχV V : − c

24π {V, v}+ q2

4π
(
σ′2(v)− χ′2(v)

)
, (5.22b)

generalising (2.11). For clarity, we denoted the background gauge with the superscript.
Picking one of the frames to be the Poincaré patch, by setting U = X+, V = X−, and
χ = 0, we get:

:T σuu: =
(
dX+

du

)2

:T++: − c

24π{X
+, u}+ q2

4πσ
′2(u), (5.23a)

:T σvv: =
(
dX−

dv

)2

:T−−: − c

24π{X
−, v}+ q2

4πσ
′2(v). (5.23b)

Computing the VeV, we then immediately reproduce (5.20).
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The formulas (2.13) now need to be adjusted to compensate for the contribution from
background gauge transformations as:

Tuu(u) = c

24π {F (u),u}− q
2

4πσ
′2(u)+ :T σuu(u):, Tvv(v) = c

24π {F (v),v}− q
2

4πσ
′2(v)+ :T σvv(v): .

(5.24)
The quantities on the left hand side transform as rank 2 symmetric tensor fields under
coordinate transformations, and are invariant under gauge transformations. They serve as
suitable insertions as sources in Einstein’s equations. A different way of motivating such an
expression is by embedding it into the superspace version of (2.13). We will come back to
the supersymmetric embedding later on in section 6.2. Note that evaluating (5.24) in the
Poincaré vacuum, using (5.20) for c = 2, we get precisely zero.

As before, the inhomogeneous terms cancel out for the net influx at the boundary
u = v = t: 〈Tvv(t)〉 − 〈Tuu(t)〉 = 〈:Tvv(t):〉 − 〈:Tuu(t):〉 as sourcing equation (2.13).

For later reference, we also summarise the spectral occupation of the charged Unruh
heat bath in 2d, see [85] for the original 4d calculations. The total occupation number of
mode ω with charge +q can be obtained by essentially Fourier transforming the two-point
function as:

Nω,q = − 1
4π2ω

∫ +∞

−∞
du1

∫ +∞

−∞
du2e

−iω(u1−u2)
[
F ′(u1)F ′(u2)
(F1 − F2)2 eiq(σ1−σ2) −

( 1
u12

)2
]
.

(5.25)

Setting F (t) = tanh π
β t and σ′(t) = µ once more to pick the semiclassical charged black

hole, the integrals can be performed and result in the spectral occupation:18

Nω,q = ω − qµ
ω

e−
β
2 (ω−qµ)

e
β
2 (ω−qµ) − e−

β
2 (ω−qµ)

, (5.26)

where particles with charge +q are preferably emitted for a black hole with chemical
potential +µ.

The total energy in the bath can then be determined by computing:

Ebath =
∫ +∞

0
dωω (Nω,q +Nω,−q) , (5.27)

and matches the above expression (5.21) when integrating that one over space.
We want to draw the attention to the prefactor in the expression (5.26), which is the

absorption coefficient of the superradiant modes, where we denote these low-frequency
modes by the same name as for rotating black holes. Note that it flips sign when ω < qµ

to ensure an overall positive occupation number. At zero temperature, this expression
reduces to:

Nβ→∞
ω,q = qµ− ω

ω
Θ(qµ− ω), (5.28)

which is the occupation of particle-antiparticle pairs due to a constant electric field in
vacuum — the Schwinger effect. Only superradiant modes with ω < qµ are still occupied.

18Up to a volume prefactor arising from the u1 + u2 integral of (5.25), that we omit.
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5.4 Matter current density

The matter sector also has a conserved local current density. The (normalised) U(1)
conserved current density is given by the expression:

Jµ = q

i
(φDµφ

∗ − φ∗Dµφ) . (5.29)

Within quantum expressions, one again needs to point-split and renormalise the expression as:

:Ju(u2): = lim
u1→u2

q

i

[
φ(u1)Duφ

∗(u2)− 1
4π

1
(u1 − u2) − (cc)

]
, (5.30a)

:Jv(v2): = lim
v1→v2

q

i

[
φ(v1)Dvφ

∗(v2)− 1
4π

1
(v1 − v2) − (cc)

]
. (5.30b)

Using the bulk correlation function:

〈0+|φ(u1)Du2φ
∗(u2) |0+〉 = 1

4π
F ′(u2)

F (u1)− F (u2)e
iq(σ(u1)−σ(u2)), (5.31)

and the series expansion

F ′(u2)
(F (u1)− F (u2))e

iq(σ1−σ2) = 1
u12

+ iqσ′(u2) + . . . , (5.32)

we readily find its expectation value in the Poincaré vacuum state as:

〈0+| :Ju(u): |0+〉 = 1
2πq

2σ′(u). (5.33)

E.g. for the semiclassical charged black hole solution where σ′(t) = µ, we obtain the
total charge density:

J0(u, v) ≡ 〈:Ju(u):〉+ 〈:Jv(v):〉 = 1
π
q2µ. (5.34)

This again matches with the expressions in [84] found in a different way for the RN black hole.
There is a second way to appreciate this result. Just as the total energy density (5.27) is

obtained by adding particle and antiparticle contributions to the spectral occupation (5.25),
the charge density can be found by subtracting the relevant contributions from particles
and antiparticles. One can then compute the total charge in the bath by integrating over ω
and match this with the volume integral of the charge density (5.34).

The above normal-ordered current densities are operationally defined, but are not
suitable to insert as sources into equations of motion since they are not gauge-invariant: the
quantity (5.31) is not gauge-invariant. The reason for this apparent discrepancy is that the
φφ∗ correlator is singular, and this singularity can be compensated by a zero in the numerator.
Indeed, the above calculation is easily used to prove the inhomogeneous transformation:

:Jσu (u): =
(
dU

du

)
:JχU (U): + 1

2πq
2 (σ′(u)− χ′(u)

)
, (5.35a)

:Jσv (v): =
(
dV

dv

)
:JχV (V ): + 1

2πq
2 (σ′(v)− χ′(v)

)
, (5.35b)
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where in the notation we have explicitly kept track of both the coordinate frame in the
subscript and the background gauge choice in the superscript.

In analogy with gravity, the resolution is to define a gauge-invariant current density by
adding an inhomogeneous term that precisely compensates this anomalous transformation, as

Ju(u) ≡ − 1
2πq

2σ′(u)+ :Jσu (u):, Jv(v) ≡ − 1
2πq

2σ′(v)+ :Jσv (v):, (5.36)

such that a change of background gauge σ → χ, where we use (5.35a), (5.35b), now leaves
Ju and Jv invariant, in the sense that e.g.:

Ju(u) = − 1
2πq

2σ′(u)+ :Jσu (u):= − 1
2πq

2χ′(u)+ :Jχu (u): . (5.37)

Note that all terms transform as rank 1 tensors under coordinate transformations,
since this transformation is not anomalous for the current densities :Ju(u): and :Jv(v):
of (5.35a), (5.35b).

Vacua that are unitarily equivalent in the charged case are found by restricting to trans-
formations for which the inhomogeneous terms in both (5.35a), (5.35b) and (5.22a), (5.22b)
vanish. This requires for both chiral sectors U = au+b

cu+d as before, and σ = χ+ (constant).
This is the PSL(2,R)×U(1) global piece of the underlying gauge groups, generalising the
purely Möbius group of the uncharged case. This is also the bosonic subalgebra of the
OSp(2|2) superalgebra, when we embed the charged system into the N = 2 supersymmetric
system, as we will do further on.

5.5 Charge equation of motion

Here we will derive the correct equation of motion for the field σ, when it is sourced by
quantum matter in the bulk. We start with the Lorentzian gravitational + gauge field action:

SL[F, σ] = −C
∫
dt {F (t), t}+ K

2

∫
dtσ′(t)2. (5.38)

Varying w.r.t. σ leads to
δSL[F, σ]
δσ(t) = −Kσ′′, (5.39)

where Kσ′ is to be interpreted as the total charge in the system. The equation of motion is
hence just charge conservation.

Now we couple a bulk matter action to this boundary action S[F, σ], minimally coupled
to the gauge sector as:

Sm =
∫
M
d2xLm(φ,Dµφ), Dµ = ∂µ − ig∂µσ. (5.40)

In order to complete the description, we have to choose a particular gauge for the field
σ(t, z) throughout the bulk as it is a priori only defined on the boundary curve z = 0. In
this section only, we choose to extend the gauge transformation σ(t) into the bulk in the
simplest way possible by setting:19

σ(t, z) ≡ σ(t). (5.41)
19This argument is in analogy with a similar derivation for the sourced Schwarzian (gravitational) equation

of motion in appendix B of [86].
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The equation of motion for σ(t) is invariant under small gauge transformations, i.e. those
that do not influence the boundary, and the answer hence does not depend on this particular
choice of bulk gauge, as long as we limit to σ(t) as we approach the boundary z → 0. Then
we directly find

δSm
δσ(t) =

∫
dz

∫
dt′
∂Lm
∂At

∂t′δ(t′ − t) = − d

dt

∫
dz
∂Lm
∂At

= dQ

dt
, (5.42)

where Q(t) =
∫
dz
√
−gJ t(t, z), and we have defined the currents as

Jµ = − 1√
−g

δSm
δAµ

. (5.43)

Using that the matter sector describes a conserved current as:

dQ

dt
= −

√
−gJz

∣∣
∂M = −

√
−ggzz Jz|∂M = Jv − Ju|∂M , (5.44)

and combining this with (5.39), we finally obtain the sourced equation of motion describing
how the total charge in the system evolves in time, as a response to charge injections or
extractions from the holographic boundary:

Kσ′′ = Jv − Ju|∂M , (5.45)

where the right hand side is the net charge influx from the holographic boundary ∂M
at z = 0.

In our specific case of a charged massless scalar, we hence need to insert the boundary
values of:

Ju = q

i
(φDvφ

∗ − φ∗Dvφ) , Jv = q

i
(φDuφ

∗ − φ∗Duφ) , (5.46)

but the derivation of (5.45) was done more generally.

6 Evaporating charged black holes

In this section, we solve the previously derived equations of motion in the situation of
absorbing boundary conditions after an initial injection of energy E0 and charge Q0. We
will track how both energy and charge dissipate from the total system.

6.1 Charged absorption

Sourcing the charge equation of motion by the quantum expectation values of the matter
current density fluxes, we write:

Kσ′′(t) = 〈Jv(t)〉 − 〈Ju(t)〉 = 〈:Jv(t):〉 − 〈:Ju(t):〉 , (6.1)

where we have used that at the boundary, the inhomogeneous terms in the expressions (5.36)
Ju and Jv are equal and cancel out, just as in (2.14).

If our boundary at z = 0 is reflecting, then the r.h.s. of this evolution equation is zero,
and the total charge in the system does not change in time.
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Imposing instead absorbing boundary conditions, we require 〈:Jv:〉 = 0, interpretable
as the boundary observer removing all charge they detect on their local detector. Plugging
in (5.33), this gives us the equation of motion:

Kσ′′ = − 1
2πq

2σ′ +Q0δ(t), (6.2)

where we injected a pulse with charge Q0 at time t = 0. This leads to exponential dissipation
of charge from the system after the initial charge injection:

Q(t) = Kσ′ = Q0e
− q2

2πK t. (6.3)

Note that the charge depletes because the created black hole preferably emits particles
that have the same sign of charge as the injection itself. This is in agreement with intuition
from the static Unruh heat bath (5.26).

The total energy in the system (5.38) has two contributions:

E(t) = −C {F, t}+K
1
2σ
′2, (6.4)

which can be identified as a (positive) contribution coming from the black hole itself, and a
(positive) contribution coming from the energy stored in its exterior electric field.20 Next we
plug in the matter source expression (5.20) we derived in a generic frame (F, σ) to obtain
the energy equation of motion:

d

dt

(
−C {F, t}+K

1
2σ
′2
)

= 1
12π {F, t} −

1
4πq

2σ′2 + E0δ(t). (6.5)

Multiplying (6.2) by σ′ and subtracting from (6.5), one obtains an equation describing
purely the time evolution of the black hole contribution EBH(t) ≡ −C {F, t} to the energy:

d

dt
EBH(t) = 1

12π {F, t}+ 1
4πq

2σ′2 + (E0 −Q0σ
′(0))δ(t), (6.6)

where we interpret σ′(0) = Q0
2K . From (6.5) and (6.6), one immediately finds the jump

conditions at t = 0:

∆E(t = 0) = E0, ∆EBH(t = 0) = E0 −
Q2

0
2K . (6.7)

Plugging in the charge profile (6.3), the resulting black hole energy is described by a sum
of two decaying exponentials:

{F, t} = ae−
t

12πC + be−
q2
πK

t, (6.8)

where21

b = 3q2Q2
0

K(12q2C −K) , a = − 1
C

(
E0 −

Q2
0

2K

)
− b (6.9)

20The BF model has zero electric field; here we mean the electric field of the higher-dimensional black
hole, captured by the boundary charge profile Kσ′(t) in the BF description.

21If 12q2C = K, both exponentials decay at the same rate, and one has the second solution ∼ te−#t. Also,
the second constant can be written as a = −2(πT0)2 − b. In the uncharged case b→ 0, and the differential
equation gets cast into a familiar form.
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This leads to the total energy in the system:

E(t) =
(
Q2

0
2K − bC

)
e−

q2
πK

t − aCe−
t

12πC . (6.10)

For the particular case where E0 = Q2
0

2K , the black hole energy EBH(t) does not exhibit a
discontinuity at t = 0 by (6.7), but it does become nonzero during the evaporation process.
We will provide the physical interpretation further on.

There is a particular choice of parameters for which the first exponential function isn’t
there. This happens e.g. when this system is the bosonic subsector of an N = 2 super JT
gravity model as we discuss next.

6.2 Embedding in N = 2 supersymmetric system

In order to check that our analysis of the charged dissipative system was correct, we here
show that it can be naturally embedded within the N = 2 supersymmetric JT gravity
model if one makes a particular choice of the coupling coefficients of the charged system.

The observation we make is the following. The bosonic dissipative system (3.7) has a
particularly nice structure. This system then has an immediate generalisation to higher
supersymmetry, by writing the analogous equation in superspace:

d

dt
S(t, θ, θ̄) = − c

24πC S(t, θ, θ̄), t > 0, (6.11)

motivated by having a net outgoing flux that is nonzero in the evaporating superframe.
It is instructive to work this out in components. For N = 2 superspace, the anomalous

transformation law of the holomorphic stress tensor in superspace is given by [87]:

T (z) = T (z′)(Dθ′)(D̄θ̄′) + c

24πS(z, z′), z ≡ (z, θ, θ̄). (6.12)

Denoting the bosonic coordinate as t instead of z, the N = 2 super-Schwarzian derivative is
given by the expression:

S(z, z′) ≡ S(t, θ, θ̄) = ∂tD̄θ̄′

D̄θ̄′
− ∂tDθ

′

Dθ′
− 2 ∂tθ

′∂tθ̄′(
D̄θ̄′

)
(Dθ′)

, (6.13)

and D = ∂θ + θ̄∂t, D̄ = ∂θ̄ + θ∂t. With a suitable parametrization of the transformed
coordinates θ′ and θ̄′ as in [88], the top component of S is

Stop = F ′′′

F ′
− 3

2

(
F ′′

F ′

)2
− 2σ′2 + fermion bilinears, (6.14)

in terms of two bosonic functions F (t) and σ(t), and fermionic fields that we do not write
explicitly. The bottom component is then likewise determined to be

Sbot = −2iσ′ + fermion bilinears. (6.15)
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The superspace dissipation equation (6.11) then reduces to the coupled component equations

C
d

dt

(
{F, t} − 2σ′2 + (fermion bil.)

)
= − c

24π
(
{F, t} − 2σ′2 + (fermion bil.)

)
+ E0δ(t),

C
d

dt

(
σ′ + (fermion bil.)

)
= − c

24π
(
σ′ + (fermion bil.)

)
+Q0δ(t), (6.16)

C
d

dt
fermion = − c

24π fermion +Q0δ(t),

where we allowed an injection of energy E0, supercharge Q0, and U(1) R-charge Q0 into
our system. Our notation has also been slightly schematic in the sense that we have not
written out the fermions and the fermion bilinear combinations (“fermion bil.”) explicitly.

Let us make some comments on the structure of this system of equations:

• In the case where no supercharge is sent in Q0 = 0, the fermionic fields are never
turned on.

• Stronger, even if Q0 6= 0, it is easy to show that all fermion bilinears cancel out in the
bosonic equations in (6.16). The way to show this is to multiply these equations (6.16)
by the fermion bilinears themselves, and using that they square to zero. Then either
the fermion bilinear itself is zero, mapping the initial problem to the purely bosonic
(‘body’) subsector; or their prefactor is zero, which is again the same body piece of
these differential equations.22

• For the simpler case of N = 1 supersymmetry, we explicitly illustrate the above
arguments in appendix B and solve for the dissipation of both the black hole energy
and the supercharge, after an initial injection of both E0 and Q0.

Decoupling the fermions as stated above, we then obtain the purely bosonic cou-
pled ODEs:

C
d

dt

(
−{F, t}+ 2σ′2

)
= − c

24π
(
−{F, t}+ 2σ′2

)
+ E0δ(t), (6.17a)

Cσ′′ = − c

24πσ
′ +Q0δ(t). (6.17b)

For the particular choice of coupling coefficients in the charged black hole system of section 6.1

K = 4C, q2 = 2/3, (6.18)

the bosonic charged dissipative system solved in section 6.1 matches with the above
supersymmetric dissipation of a c = 2 system. This provides indirect evidence that
our analysis of the charged dissipative system was indeed consistent, by viewing it as
embedded in the N = 2 system, where the EM U(1) gauge group gets identified with the
R-symmetry group.

22Intuitively, the ‘soul’ parts in the equations should be thought of as infinitesimal compared to the body
piece, allowing us to drop them compared to the body pieces.
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It is actually not that hard to write down the generic evaporating equations of motion
for an arbitrary amount of supersymmetry. In N = n extended superspace, the dissipation
equation is still

d

dt
S(t, θ1, θ2, . . .) = − c

24πC S(t, θ1, θ2, . . .), (6.19)

where we have n distinct θi’s, i = 1 . . . n. Schematically, this leads to the compo-
nent equations:

C
d

dt
({F, t} − CR(t) + (fermion bil.)) = − c

24π ({F, t} − CR(t) + (fermion bil.)) + E0δ(t),

C
d

dt
(Ja + (fermion bil.)) = − c

24π (Ja + (fermion bil.)) +Qa0δ(t), a = 1 . . . dim GR,

C
d

dt
fermion = − c

24π fermion +Q0δ(t), (6.20)

where the index a runs across all generators Xa of the R-symmetry group GR. The
non-Abelian R-charges and their Casimir are given by:

Ja = Trg−1∂tgX
a, CR (t) = Tr(g−1∂tg)2 =

∑
a

JaJa, (6.21)

in terms of the group variable g(t) describing the bosonic degrees of freedom that describe
the R-symmetry group in the super-Schwarzian. The fermions decouple again, and the
conserved charges dissipate according to

Ja(t) = Qa0e
− c

24π t, a = 1 . . . dim GR. (6.22)

Multiplying the second equation of (6.20) by 2Ja and summing over a, we plug this in the
first equation and find the black hole energy EBH(t) dissipating according to a very similar
equation as earlier in (6.6):

C
d

dt
{F, t} = − c

24π ({F, t}+ CR(t)) +
(
E0 −

∑
aQ

a
0Q

a
0

2

)
δ(t). (6.23)

We can summarise this by stating that the solution EBH(t) for all such supersymmetric,
dissipative equations is of the familiar form:

{F, t} = ae−
c

24πC t + be−
c

12πC t, (6.24)

for some coefficients a and b, that are easily determined. Notice that both exponentials
differ by a factor of 2 in their decay rate, which is universal for the supersymmetric systems.
For the bosonic charged system of section 6.1 this last property is not necessarily true.

One can now go further and solve (6.24) explicitly for the time reparametrisation F (t),
with a and b as in (6.9). Restricting to the supersymmetric case where 6q2C = K and
K = 4C, the solution to this equation with the correct gluing conditions at t = 0 is

F (t) =
√
KC

iQ0

−Wiκ,0 (4iκx)Miκ,0
(
4iκxe−kt

)
+Miκ,0 (4iκx)Wiκ,0

(
4iκxe−kt

)
CMiκ,0 (4iκxe−kt) +DWiκ,0 (4iκxe−kt)

 ,
(6.25)
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Figure 9. The reparametrisation F (t) (6.25) plotted for various x with fixed energy E0 = 20, fixed
k = 0.1 and K = 4C. As the charge increases, the profile F (t) gets closer to the Poincaré solution
F (t) = t than the uncharged solution.

in terms of combinations of Whittaker-W and -M functions, with evaporation rate k ≡
cGN
3φr = c

24πC , and where we introduced the dimensionless constants

κ ≡ 12πE0
√
KC

cQ0
, x ≡ Q2

0
2E0K

, (6.26)

and (C.4a), (C.4b). The future horizon is located at:

F∞ ≡ F (t→ +∞) =
√
KC

iQ0

Miκ,0 (4iκx)
M ′iκ,0 (4iκx)− 1

8iκxMiκ,0 (4iκx)
. (6.27)

Further details and checks are provided in appendix C, and the reparametrisation for
various x at fixed E0 is plotted in figure 9.

6.3 Black hole entropy SBH and superradiance

For the eternal, charged black hole in JT gravity, the Hawking temperature is given by the
relation (5.5a):

T = 1
π
√

2C

√
E − Q2

2K . (6.28)

This sets a bound on the value of the parameter x introduced in (6.26). This same bound
is encountered when solving (6.6). Demanding T0 to be positive we obtain 0 ≤ x ≤ 1 where
x = 0 is the uncharged case and x = 1 the charged, extremal black hole case.

We can define an “instantaneous” temperature as

T (t) ≡ 1
π
√

2C

√
E(t)− Q(t)2

2K , (6.29)

upon plugging in the expressions for the dissipating energy (6.10) and charge (6.3). Using
the black hole first law for a charged system in a quasi-static approximation

dE = T (t)dS + Q(t)
K

dQ, (6.30)
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the instantaneous Bekenstein-Hawking entropy SBH(t) is given by

SBH(t) = 2π
√

2C

√
E(t)− Q(t)2

2K = 2π
√

2C
√
EBH(t). (6.31)

Let’s focus on the choice of parameters (6.18) relevant for the supersymmetric system
again. In this case, the charge, energy and black hole energy profiles are

Q(t) = Q0e
− ct

24πC , (6.32a)

E(t) = E0e
− ct

24πC , (6.32b)

EBH(t) ≡ E(t)− Q(t)2

2K = E0e
− ct

24πC − Q2
0

2Ke−
ct

12πC . (6.32c)

Somewhat surprisingly, whereas the total energy in the system E(t) always decreases
monotonically, the black hole energy EBH(t) and its entropy SBH(t) are not necessarily
monotonically decreasing, and instead can have a local maximum at the time:

tM = 24πC
c

ln Q2
0

E0K
= 1
k

ln 2x. (6.33)

This time tM is positive (and hence physical) iff Q2
0 > E0K or x > 0.5. We can distinguish

two qualitative cases:

• 0.5 < x ≤ 1: the resulting black hole has a temperature such that during 0 ≤ t ≤ tM
the spontaneous emission of superradiant modes dominates, causing the black hole to
heat up and increase in size. This is reflected in its Bekenstein-Hawking entropy. For
t ≥ tM, the thermal Hawking modes will be more densely populated such that the
black hole now starts to dissipate.

• 0 ≤ x ≤ 0.5: superradiant modes are suppressed at this temperature such that the
thermal Hawking radiation dominates. The black hole immediately starts shrinking.

In both cases the charge decays monotonically. This prevents the black hole from going
through a cyclic life of growth and shrinking in the first case x > 0.5. After tM, the
temperature decreases, but it will not result in repeated domination of the superradiant
modes due to the decaying charge.

To appreciate these statements, it is instructive to think about an initial extremal pulse
with E0 = Q2

0
2K , or x = 1. For such a pulse, we have no jump in temperature and entropy

at t = 0+:
T (0+) = 0, SBH(0+) = 0. (6.34)

The instantaneous bath surrounding the black hole is then given by equation (5.28), which
only contains superradiant modes up to ω = Q0

K q. Superradiant mode emission causes the
starting extremal black hole to heat up as t > 0, this unlocks ordinary thermal Hawking
radiation. Such physics was also found in a higher-dimensional holographic context in [89].
As time progresses and the black hole heats up more and more, normal Hawking radiation
starts taking over, depleting the black hole again. All the while the electric charge of the
black hole monotonically decreases. We sketch the evolution of the black hole and its size
in figure 10.
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Figure 10. At times before tM , the black hole emits mainly superradiant modes causing it to heat
up. After tM , thermal Hawking emission dominates, the black hole loses energy, and the system
dissipates completely. The curve in this figure is specific for E0 = Q2

0
2K , x = 1 for which there is no

jump at t = 0.

6.4 Early-late matter entanglement entropy

Finally, we will calculate the early-late entanglement entropy profile for our charged or
supersymmetric system.

It can be shown that the 2d CFT entanglement entropy formula for an interval
(u1, v1), (u2, v2):

S = c

12 ln (F (u1)− F (u2))2

δ1δ2F ′(u1)F ′(u2) + (u↔ v), (6.35)

remains the same when considering a system with an enlarged local symmetry group that
goes beyond conformal coordinate transformations, i.e. in our case including U(1) gauge
transformations, or superconformal transformations. We show this statement from several
perspectives in appendix D.23

As such, we can still use the formula (3.24) for the renormalised radiation entropy
Sren,R(t) by plugging in the form of F (t) we derived above in (6.25). Both this renormalised
entanglement entropy, and the above Bekenstein-Hawking entropy (6.31) are plotted in
figure 11 for different values of x = Q2

0
2E0K

. Following the minimum of both curves would
lead to the Page curve for the evaporating, charged black hole. This is also the result of
following the quantum extremal surface formula using our operational islands prescription
from section 4 for a macroscopic, evaporating, charged black hole. Notice that for larger
values of the charge (or x), depending on the parameters, one might worry about a situation
where the Page time occurs before tM . However, numerical investigations have shown us that
this scenario does not seem to occur, at least not for the supersymmetric scenario (6.18).

Let us end with some comments on these expressions concerning their late-time and
macroscopic limiting behaviours. For an arbitrary matter CFT with central charge c, the
late-time renormalised entanglement entropy is given by

lim
t→+∞

c

12 ln F (t)2

t2F ′(t) = c

12 ln
( 1

4iκxM
2
iκ,0 (4iκx)

)
, (6.36)

since the late-time behaviour of F ′(t) goes as t−2, just as in the uncharged case.
23This is the flat space formula, but we have seen in (3.22) that the renormalised versions in flat space

and in AdS2 space match.
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Figure 11. The Bekenstein-Hawking (6.31) and matter radiation entropy Sren,R(t) (3.24) plotted
for different values of x = Q2

0
2E0K

with fixed E0 = 20, k = 0.1 and K = 4C. For x = 0.75, 1.00 we see
the appearance of a maximum at tM as was elaborated upon in the main text.

To investigate the macroscopic limit, we go to the regime where E0C ≈ E0K �
1, Q0 � 1 in such a way that the initial temperature T0 (6.28) remains of order O(1).
Hence, E0 ∼ O(Q2

0) resulting in κ → +∞ and x remaining finite. Subsequently, we can
make use of (C.10):

lim
t→+∞

c

12 ln F (t)2

t2F ′(t) →
κ→+∞

c

12 ln

 1
24π2Q0

√
K

C

(
x

1− x

)1/2
e8κ√ρ

 , (6.37)

where
2√ρ =

√
x− x2 − arccos

√
x+ π

2 . (6.38)

From this, we obtain the final radiation entropy:

Sren,R(t→ +∞) = 2c
3 κ
√
ρ = 4πE0

√
KC

Q0

 Q0√
2KE0

√
E0 −

Q2
0

2K − arccos Q0√
2KE0

+ π

2

 .
(6.39)

Taking the first term alone, we can simplify the formula into

S1st term
ren,R (t→ +∞) = 2π

√
2C

√
E0 −

Q2
0

2K , (6.40)

which matches the initial Bekenstein-Hawking entropy (6.31) of the created black hole.
The corrections in (6.39) adjust this, and show that entropy is created in this evaporation
process. Moreover, there is no simple relation between the final radiation entropy and the
initial black hole entropy, unlike in the uncharged case as discussed around (3.28).

In the uncharged limit, where ρ ≈ x = Q2
0

2KE0
, we can simplify (6.39) to

Sren,R(t→ +∞) = 4π
√

2CE0, (6.41)

agreeing with [30].24

24This can also be found in the macroscopic limit of the expression (3.25).
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In the opposite maximally charged regime where E0 = Q2
0/2K or x = 1, the final

matter entropy becomes

Sren,R(t→ +∞) = 2π2E0
√
KC

Q0
. (6.42)

It is useful to compare this to the maximum black hole entropy during the evaporation.
Plugging the time (6.33) in (6.31), we get

SBH(tM) = 2πE0
√
KC

Q0
, (6.43)

which is a factor of π smaller than (6.42).

7 Concluding remarks

In this work, we have investigated black hole evaporation in the 1+1 dimensional JT gravity
model. Our main endeavour has been twofold:

(1) We attempted to understand how the older concept of renormalised matter entan-
glement entropy fits into the recent island paradigm. We found that plugging in
this renormalised entanglement entropy into the island or quantum extremal surface
formula yields the expected physics, with a second saddle dominating after the Page
time. In this case, both contributions to the entropy are physically meaningful. It
remains to be seen precisely how this alternative proposal fits into the bigger story.

(2) We generalised the purely energetic considerations of black hole evaporation to include
more general conserved quantites: charge and supercharge in particular. In both
cases, we solved the dissipative equation of motion and considered the entanglement
entropy profiles during evaporation.

We will end by providing a couple of open problems, for which we will suggest concrete
routes forward.

Brane-world models and massive graviton. There has been a considerable amount of
confusion about the set-up of coupling a flat space bath to the gravitational region. This set-
up has an interpretation in terms of brane-world Karch-Randall-Sundrum configurations [90,
91]. It is known however that for such models, the graviton in the bulk becomes massive
due to quantum effects [92]. Within the current context, works addressing this are e.g. [33,
38, 64, 93]. In 1+1d, there is no bulk graviton to begin with, so the application of the above
observation directly to 2d is more subtle. However, our absorbing set-up did not use this
explicit coupling to a flat space bath to begin with, and it therefore seems to open a path
towards understanding the massless graviton story directly.

Quantum effects of gauge fields. Throughout this work, we have considered gravity
and the bulk gauge sector to be classical. Let’s include the quantum dynamics of the gauge
sector here for the non-evaporating case. To isolate its effect, we work at zero temperature

– 38 –



J
H
E
P
0
1
(
2
0
2
3
)
0
2
7

Q + q(t)

dq

Figure 12. Continuous extraction of charge δq from a charged system of charge Q+ q(t) where q(t)
starts off at q and then shrinks as charge is extracted until it reaches 0.

but include the quantum effects of the gauge sector (K finite). We can write for the spectral
occupation number in the Poincaré vacuum:25

Nβ→∞
ω [σ] = − 1

4π2ω

∫
du1

∫
du2e

−iω(u1−u2)
[

1
u2

12
eiq(σ(u1)−σ(u2)) −

( 1
u12

)2
]
, (7.1)

where an (off-shell) choice of gauge frame σ(.) is still present. Within the path integral over
σ, the operator insertion eiq(σ(u1)−σ(u2)) is Gaussian and can be readily done into [86]:26∫ +∞

−∞
dq e−

q2
2K τe−

(q−Q)2
2K (β−τ)eµβ(Q−q). (7.2)

Performing then the Fourier transform in (7.1),27 we obtain after the σ path integral:

〈
Nβ→∞
ω

〉
=
qµ−

(
ω − q2

2K

)
ω

Θ
[
qµ−

(
ω − q2

2K

)]
. (7.3)

This formula has the following interpretation. The total energy ω of an emitted
quantum consists of the kinetic and rest energy of the particle itself, and the energy of the
electric field it sources. The quantity ω − q2

2K is then the energy of the quantum without its
electric self-energy.

This can be appreciated as follows. Consider the removal of a total charge q from
a (extremal, or zero-temperature) black hole horizon with remaining charge Q after the
particle is extracted. In line with the Hawking evaporation process, this procedure is done
continuously and leads to the following differential energy:

dE = Q+ q(t)
K

δq(t), (7.4)

where q(t) ranges from q to 0 as the charge is extracted (figure 12). This leads to a total
energy gained in the process:

∆E = µq + q2

2K , µ = Q

K
. (7.5)

This backreaction effect then corrects the Schwinger energetic cutoff in the occupation
number in (7.3) by including the electric self-energy q2/2K of the particle as it is emitted.

25One can also allow arbitrary F (t) in this expression and path integrate over the Schwarzian degrees of
freedom to obtain the Unruh heat bath in full quantum gravity [30, 94].

26We are assuming the gauge group R here for simplicity, otherwise the charge integral would be a sum.
27And using

− 1
2πω

∫ +∞

−∞
dt

1
(t∓ iε)2 e

−iωt = ∓Θ(∓ω)
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Dissipative action. One of the main points of this work has been implementing a purely
dissipative interaction at the level of the classical equations of motion. One route towards a
quantum implementation of this would be to first write an action principle for this equation
of motion. It is a famous result that dissipative equations of motion cannot be deduced
from a local Lagrangian but can be “localised” by integrating in bath degrees of freedom
that soak up the emitted energy, which was essentially the approach of the flat space bath
coupled to JT gravity. So instead of doing this, can we directly write down the non-local
action whose equations of motion directly yield

d

dt
{F, t} = −k {F, t} ? (7.6)

One direct route is to use the mapping F ′ = eϕ in terms of which the Schwarzian action
reduces essentially to that of a 1d free boson ϕ. The required dissipative model then
also reduces to the textbook dissipative action, see e.g. [95], where one introduces the
Caldeira-Leggett non-local term:

SCL ∼
∫
dt

∫
dt′

(ϕ(t)− ϕ(t′))2

(t− t′)2 . (7.7)

It remains to be seen how useful this observation is for the development of the quantum
dissipative models at hand.
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A Non-evaporating black hole

The case for a non-evaporating black hole is readily made. We merely replace the evaporating
time reparametrisation by the eternal one of (2.17). One can interpret the resulting equations
both as associated to the physical situation of an infalling pulse creating a non-evaporating
black hole, or as an eternal black hole that was always present. The radiation and Bekenstein-
Hawking entropies become now:

Sren,R(t) = k

2 ln F (t)2

t2F ′(t) = k ln sinh πTt
πT t

, (A.1)
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and
SBH(t) = πT. (A.2)

For a macroscopic black hole, the radiation entropy rises linearly as kπT t.
From the QES prescription, we find a pre-pulse island at the same location as earlier,

with generalised entropy:

Spre(t) = −k2 lnF ′(t) = k ln cosh πTt, (A.3)

and for the post-pulse island, the expression for the entropy (4.4) with (2.17) results in28

Spost(t, u, v) = πT coth[πT (u− v)] + Sren,R(u− t) + Sren,R(t− v), (A.4)

numerically leading to an island starting just outside the event horizon that asymptotes
to it as time goes on, with a nearly constant generalised entropy. Moreover, numerical
analysis shows that the island stays at a fixed radial position z in the black hole coordinates
of (2.19), namely at u = t + tscr, v = t − tscr. Taking the ansatz u = t + a, v = t − b it
can be analytically checked that the island equations (4.10a), (4.10b) indeed lead to the
solution a = b ≡ tscr. We will call this radial location, zs.h. ≡ tscr, the stretched horizon. In
turn, this leads to a fixed entropy for this island

Spost = πT coth(2πTzs.h.) + 2Sren,R(zs.h.). (A.5)

The constant scrambling time tscr (or stretched horizon location) can be found numerically
by solving (4.13) for which u0 = 2tscr, t0 = tscr, and generally decreases for an increasing
value of k/T .29

For a macroscopic black hole where k/T � 1, both generalised entropies match again
with the Hawking radiation and quasi-static Bekenstein-Hawking entropies. In this case,
the scrambling time can be computed assuming zs.h. � 1/T , by extremising (A.5), leading
to the result

tscr = zs.h. = 1
4πT ln 4πT

k
= 1

4πT ln 24
c
S, (A.6)

which indeed satisfies the assumption zs.h. � 1/T for a macroscopic black hole k/T � 1.
This location corresponds in the metric (2.19) to the proper distance ` ≈

√
k
πT =

√
c

6S from
the black hole horizon.

We plot all entropies and the resulting Page curve in figure 13.

B Black hole dissipation in N = 1 JT supergravity

The JT supergravity action can be written in superspace as [96]:

S = − 1
16πG

[
i

∫
d2zd2θEΦ(R+− + 2) + 2

∫
dtdθΦbK

]
. (B.1)

28Note that these equations are time translation invariant, as it should for the static black hole metric
and dilaton background (2.19).

29Eq. (4.13) reduces to the extremisation of this expression.
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Figure 13. The Page curve for k = 0.01, T = 1
2π for a non-evaporating black hole is given by the

solid line in green. For tscr = 3.057 one finds the same constant part of the Page curve via (A.5).
There is a small shift to a smaller Page time when compared with the intersection of the fine-grained
radiation entropy and the classical Bekenstein-Hawking entropy when deviating from the strict
macroscopic k/T � 1 limit.

It was shown in [97] that the dynamics reduces to the boundary term in (B.1), which can
be written as a super-Schwarzian action:

S = 2C
∫
dtdθSch(τ, θ). (B.2)

The super-Schwarzian is defined in N = 1 (τ, θ) superspace by:

Sch ≡ Schf + θSchb = D4θ′

Dθ
− 2D

3θ′D2θ′

(Dθ′)2 , (B.3)

with D = ∂θ + θ∂τ the superderivative and where the transformed coordinates are
parametrised as

τ ′ = F (τ + θη(τ)), (B.4a)

θ′ =
√
∂τF

(
θ + η + 1

2θη∂τη
)
, (B.4b)

in terms of a bosonic function F (τ) and a fermionic function η(τ). This action describes
the dynamics of the superframe (F, η) of a boundary super-clock.

Written in component fields (the reparametrisation F (τ) and its superpartner η(τ)),
one writes

Schb = 1
2
[
{F, τ}+ ηη′′′ + 3η′η′′ − {F, τ} ηη′

]
, (B.5a)

Schf = η′′ + 1
2ηη

′η′′ + 1
2η {F, τ} . (B.5b)

The action (B.2) is then written in bosonic space as:

S = C

∫
dτSchb. (B.6)
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There is a set of symmetry transformations of the action (B.2): the super-Möbius group
OSp(1|2) acting as [88, 98]30

τ → aτ + b− (aδ − bβ)θ
cτ + d− (cδ − dβ)θ , θ →

βτ + δ + (1 + 3
2δβ)θ

cτ + d− (cδ − dβ)θ , (B.7)

with ad− bc = 1, in terms of three bosonic parameters a, b, c and two fermionic parameters
β, δ. This is a superconformal mapping with reparametrisation functions:

F (τ) = aτ + b

cτ + d
, η(τ) = δ + βτ. (B.8)

The N = 1 super-Schwarzian has a fermionic (f) and a bosonic (b) component in its
decomposition as Sch(τ, θ) ≡ Schf (τ) + θSchb(τ). Absorbing boundary conditions are
then implemented by the following dissipation of energy and supercharge, after an initial
pulse E0,Q0:

d

dt
2CSchb = − c

12πSchb − E0δ(t), (B.9a)
d

dt
2CSchf = − c

12πSchf −Q0δ(t). (B.9b)

Explicitly, when plugging in the expressions for the super-Schwarzian components (B.5a)
and (B.5b), these equations of motion look like:

C
(
4η′η′′′+ ηη′′′′+ (1−ηη′) {F, t}′ −ηη′′ {F, t}

)
= − c

24π
(
{F, t}+ηη′′′+ 3η′η′′ −{F, t} ηη′

)
− E0δ(t), (B.10)

C

(
η′′′ + 1

2ηη
′η′′′ + 1

2η
′ {F, t}+ 1

2η {F, t}
′
)

= − c

24π

(
η′′ + 1

2ηη
′η′′ + 1

2η {F, t}
)

+ Q0
2 δ(t), (B.11)

and represent two coupled differential equations, where one function η(t) is Grassmann-
valued. Multiplying the equation (B.10) by ηη′, we find:

ηη′
(
C {F, t}′ + c

24π {F, t}+ E0δ(t)
)

= 0. (B.12)

Either ηη′ 6= 0, implying the bosonic prefactor between brackets vanishes, or ηη′ = 0 in
which case η ∼ η′ ∼ η′′, and hence all products of η’s vanish and equation (B.10) directly
boils down to again the same equation. Hence, w.l.o.g. we find the same dissipating equation
of motion as in the bosonic case:

C {F, t}′ = − c

24π {F, t} − E0δ(t), (B.13)

30When writing the transformations in this way they do not compose as a group. For our purposes here
this is sufficient, but we refer to [99] for more details in a related context where this does matter.
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solved by the bosonic dissipating solution:

− C {F, t} = E0e
− c

24πC t. (B.14)

Multiplying equation (B.11) by ηη′, we obtain:

Cηη′η′′′ = − c

24πηη
′η′′ + ηη′

2 Q0δ(t). (B.15)

Equation (B.11) then becomes:

C

(
η′′′ + 1

2η
′ {F, t}

)
= − c

24πη
′′ +

(
1− ηη′

2

) Q0
2 δ(t)− E0ηδ(t). (B.16)

Integrating this equation from −ε to +ε, one finds no jump in η or its first derivative, but a
nontrivial jump in the second derivative:

∆η = 0, ∆η′ = 0, ∆η′′ =
(

1− η(0)η′(0)
2

) Q0
2C − η(0)E0. (B.17)

As an example, let’s solve this differential equation for a pure supercharge injection
Q0, where E0 = 0. In that case, by (B.13), {F, t} = 0 for all times t. We need to solve
only (B.16) which boils down to:

Cη′′′ = − c

24πη
′′ + (1− ηη′)Q0δ(t). (B.18)

One finds the solution:

η(t) = A+Bt+De−
c

24πC t = 12πQ0
c

(
t− 24πC

c

(
1− e−

c
24πC t

))
, (B.19)

where in the second line we have implemented the jump conditions to determine the a
priori three Grassmann integration constants A, B and D in terms of the single Grassmann
variable Q0. This means in particular that the gluing conditions have forced η ∼ η′ ∼ η′′
and all terms with more than one η to vanish automatically.

The supercharge is then

2CSchf = 2Cη′′ = Q0e
− c

24πC tθ(t), (B.20)

jumping to the value Q0 and then dissipating exponentially from the system.
For E0 6= 0, the solution is readily generalised. One solves (B.16) into

η(t) = C1 + C2I0

(
24π
√

2CE0
c

e−
c

48πC t

)
+ C3K0

(
24π
√

2CE0
c

e−
c

48πC t

)
, (B.21)

where

C1 = −Q0
E0

, (B.22a)

C2 = 24πQ0
√

2C
c
√
E0

K1

(
24π
√

2CE0
c

)
, (B.22b)

C3 = 24πQ0
√

2C
c
√
E0

I1

(
24π
√

2CE0
c

)
, (B.22c)

– 44 –



J
H
E
P
0
1
(
2
0
2
3
)
0
2
7

satisfying η(0) = 0, η′(0) = 0 and η′′(0) = Q0/2C. This again leads to the same exponentially
decaying supercharge

2CSchf = 2Cη′′ + Cη {f, t} = Q0e
− c

24C tθ(t), (B.23)

as it should by directly solving (B.9b). Notice the appearance of the same type of special
functions as those appearing in the bosonic reparameterisation (3.11).

C Solving the differential equation

A general analytic solution for the differential equation (6.24):

{F, t} = ae−kt + be−2kt, (C.1)

can be found when indeed restricting to the case where both exponentials decay at rates
that differ by a factor of 2, and where F (t) satisfying the gluing conditions

F (0) = 0, F ′(0) = 1, F ′′(0) = 0, (C.2)

at the infalling pulse. It consists can be written down in terms of the Whittaker-W and
-M functions

F (t) = 1

Γ
(

1
2 + ia√

8bk

)2

∫ t

0
dt

e−kt(
CM− ia√

8bk
,0

(
i
√

2b
k
e−kt

)
+DW− ia√

8bk
,0

(
i
√

2b
k
e−kt

))2

= 1
i
√

2b

−W− ia√
8bk

,0

(
i
√

2b
k

)
M− ia√

8bk
,0

(
i
√

2b
k
e−kt

)
+M− ia√

8bk
,0

(
i
√

2b
k

)
W− ia√

8bk
,0

(
i
√

2b
k
e−kt

)
CM− ia√

8bk
,0

(
i
√

2b
k
e−kt

)
+DW− ia√

8bk
,0

(
i
√

2b
k
e−kt

)
 .
(C.3)

In this expression, the constants C, D take the following form

C = −W ′− ia√
8bk

,0

(
i

√
2b
k

)
+ k√

8bi
W− ia√

8bk
,0

(
i

√
2b
k

)
, (C.4a)

D = M ′− ia√
8bk

,0

(
i

√
2b
k

)
− k√

8bi
M− ia√

8bk
,0

(
i

√
2b
k

)
, (C.4b)

where we have denoted the derivatives of the Whittaker function w.r.t. their arguments by
a prime.

As a check, when setting either a or b to 0 the frame should end up in a more familiar
form consisting of the modified Bessel functions of the first and second kind. The easiest
case is a→ 0 by making use of [55]

M0,0(x) =
√
xI0

(
x

2

)
, M ′0,0(x) = 1

2
√
x
I0

(
x

2

)
+ 1

2
√
xI ′0

(
x

2

)
, (C.5a)

W0,0(x) = 1√
π

√
xK0

(
x

2

)
, W ′0,0(x) = 1

2
√
π
√
x
K0

(
x

2

)
+ 1

2
√
π

√
x.K ′0

(
x

2

)
. (C.5b)
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Just as in the uncharged case, the reparametrisation eventually reaches an asymptotic,
fixed value when t→ +∞

F (t→ +∞) = 1
i
√

2b

M− ia√
8bk

,0

(
i
√

2b
k

)
M ′− ia√

8bk
,0

(
i
√

2b
k

)
− k√

8biM− ia√
8bk

,0

(
i
√

2b
k

) , (C.6)

stemming from the behaviour of the Whittaker functions for small arguments

Mµ,0(z)→
√
z +O(z), Wµ,0(z)→ −

√
z ln z

Γ(1
2 − µ)

+O(z). (C.7)

C.1 Limiting forms

In certain cases where we take a limit of one or more of the parameters, the following
limiting forms will be useful

Mi/x,0(iax) →
x→0

√
iax I0(2

√
a), (C.8)

Wi/x,0(iax) →
x→0

2
Γ
(

1
2 −

i
x

)√iaxK0(2
√
a). (C.9)

Here, the first equality is derived using the Buchholz expansion of Mκ,µ(z) whereas the
second one can be guessed from matching onto the correct F (t) in the uncharged limit
where Q0 → 0.

Another useful limit is

Miκ,0(4iκx) →
κ→+∞

2
√
iκ

(
xρ

1− x

)1/4
I0(4κ√ρ)

→
κ→+∞

(
x

1− x

)1/4 e4κ√ρ+iπ4
√

2π
, (C.10)

where
2√ρ =

√
x− x2 − arccos

√
x+ π

2 . (C.11)

Especially when also x→ 0, we obtain ρ ≈ x. The limit for the Whittaker-W function has
a similar expression

Wκ,0(4κx) →
κ→+∞

2Γ
(

1
2 + κ

)
√

2π

(
x

1− x

)1/4
cos

(
4κ√ρ− π

4

)
, (C.12)

where 2√ρ differs from (C.11) by an additive term π/2

2√ρ =
√
x− x2 − arccos

√
x. (C.13)

D (S)CFT entanglement entropy

In this section, we derive a general formula for the entanglement entropy in a 2d (S)CFT,
where we include the (super)frame dependence of the result. We first present a general
argument in subsection D.1 and then provide a direct proof for the specific case of N = 1
supersymmetry in subsection D.2.
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D.1 General argument

Our main goal is to prove the following statement:

The entanglement entropy of an interval in any given state does not depend on
any compact internal symmetries characterising said state.

This is a generalisation of a statement by Cardy [100] that the entanglement entropy in 2d
CFT in the grand canonical ensemble does not depend on any chemical potentials.

Of course, since any 2d SCFT has a bosonic Virasoro subalgebra, the entanglement
entropy of an interval with endpoints (u1, v1) and (u2, v2) in the vacuum state |0u〉 defined
by these coordinates, is given by the expression

S = c

12 ln (u1 − u2)2

δ1δ2
+ (u↔ v). (D.1)

Under a conformal transformation X+ = X+(u) and X− = X−(v), one can derive the
entanglement entropy in the state |0U 〉 as

S = c

12 ln
(
X+ (u1)−X+ (u2)

)2
∂uX+ (u1) ∂uX+ (u2) δ1δ2

+ (u↔ v) , (D.2)

where we crucially described the cutoff ε in the (u, v) coordinates. However, when we have
an extended superconformal algebra, we have at our disposal more general superconformal
transformation to map to a larger class of states. It is this more general extension of this
formula that we are after.

An alternative but equivalent way of phrasing this is the following. The entanglement
entropy is readily determined by the replica trick and twist operator insertions. For larger
superconformal algebras, these twist operators are characterised by more than just their
conformal weight. For e.g. N = 2, we would need to know the charge of the twist operators,
or their R-symmetry representation for N > 2 superconformal algebras. We can then
perform a gauge transformation and find out how the entanglement entropy depends on a
change of gauge as well as a change of (bosonic) frame. Both of these are combined in a
superconformal algebra in terms of a specification of superframe.

In a bosonic 2d CFT, there are several arguments to obtain the entanglement entropy
of an interval. The argument that will be directly suitable to generalisation is the following
where we focus on the left-moving sector solely in what follows, the right-moving sector
being treated identically (figure 14).

Consider the lightcone interval (u1, u2) in a 2d CFT. Then performing the Möbius
conformal mapping

Z = u− u1
u− u2

, (D.3)

maps the lightcone interval (u1, u2) to the real half-line R− with u1 mapped to the origin
and u2 mapped to −∞. This can in a second step be mapped to the entire axis by an
exponential transform:

e
2π
β
w = −Z, (D.4)
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u1

u2 v1

v2

Figure 14. Decomposition of entanglement entropy in 2d CFT in decoupled left- and right-
moving sectors.

mapping u1 to −∞ and u2 to +∞. The final coordinate w has periodicity β for its imaginary
part, implying that the w-frame is just a thermal system on the entire real axis.

Regularising the left end at z = u1 − δ1, one finds the relation

e
− 2π
β
L1 = − δ1

u1 − u2
, (D.5)

in terms of an IR regulator L1 in the w-coordinates as w → −∞. Since the w-system is
thermal, the thermal energy and entropy in the w-frame are then readily computed as

E = c

12π
2π2

β2 (L1 + L2), S = cπ

3β (L1 + L2), (D.6)

where the IR cut-off L1 + L2 is the total range of the w coordinate. Finally, using (D.5),
we get

S = cπ

3β (L1 + L2) = c

12 ln
(

(F (u1)− F (u2))2

δ1δ2F ′(u1)F ′(u2)

)
. (D.7)

One can view this entanglement entropy between points u1 and u2 as that in the vacuum
state annihilated by positive frequency modes w.r.t. the time coordinate F ≡ F (t). The
right-moving piece is simply added to it due to the complete decoupling between left- and
right-moving modes. The resulting expression is SL(2,R) invariant, reflecting the unitary
equivalence of vacua related by Möbius transformations.

To generalise to both charged and supersymmetric systems, one can immediately write
down the supersymmetric extension as

S = − c

12Re ln (δ1δ2 〈O1(u1)O2(u2)〉)|bottom + (u↔ v), (D.8)

where O are chiral superconformal primaries of weight 1, and we take the bottom component
of this superspace expression. This formula is uniquely determined by the following two
properties:

• It is invariant under the suitable global superconformal group, reflecting super-Möbius
transformations preserving the vacuum state.

• Restricting to the bosonic subgroup of conformal transformations, we have

〈O1(u1, θu1, . . .)O2(u2, θu2, . . .)〉|body, Virasoro = F ′(u1)F ′(u2)
(F (u1)− F (u2))2 . (D.9)
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The presence of the real part and the bottom component arise from the relation (D.5)
relating the IR cutoff Li to the UV cutoff δi. After superreparametrisation, the r.h.s. of
that relation becomes generically a complex supernumber. Finding the physical IR cutoff
then requires restricting to the real part of the bottom component.

In case of nontrivial R-symmetry group, as appears starting with N = 2 supersymmetry,
the correct ‘body’ superconformal two-point function is given by:

〈OMα(u1, θu1, . . .)OαM (u2, θu2, . . .)〉|body = F ′(u1)F ′(u2)
(F (u1)− F (u2))2

[
g−1(u1)g(u2)

]
MM

,

(D.10)
where one considers the operators transforming in a suitable unitary representation of the
(compact) R-symmetry group, and we take a fixed diagonal element MM .31 This form is
prescribed by the first property above.

Taking the log of this quantity, the g-dependent piece is purely imaginary since it is
writable as exp(iXMM ) where X is a Hermitian matrix, with hence real diagonal elements.
Therefore, the contribution from the compact R-symmetry group cancels out. For the case
of N = 2, the contribution from the U(1)R charge σ′ cancels out explicitly since

c

6 [iq(σ1 − σ2)− iq(σ1 − σ2)] = 0, (D.11)

for any charge q. One can view this as a cancellation between particle and antiparticle
contributions, or mathematically between complex representations and their conjugates.

Indeed, Cardy proved in [100] that the entanglement entropy in 2d CFT in the grand
canonical ensemble does not depend on the chemical potential for any (possibly non-Abelian)
charge, in particular holding for an R-symmetry group within an extended superalgebra.32

The above derivation provides the generalisation beyond the grand canonical ensemble to
arbitrary states, at least when embedded in superconformal algebras.

If we restrict to cases where our ingoing pulse carries no fermionic charge, the fermions
are identically zero at all times, and the final result just boils down to the same entanglement
entropy formula as in the N = 0 case:

S = c

12 ln
(

(F (u1)− F (u2))2

δ1δ2F ′(u1)F ′(u2)

)
+ (u↔ v). (D.12)

31We do not need to describe this quantity in more detail since the result will follow for any choice of
representation and index M .

32Cardy also presented a quick insightful argument as follows. Take Z = Tre−βH+βµQ and perturb around
µ = 0. The lowest correction occurs at order µ2 and leads to the thermal entropy correction:

δS = µ2(β∂β − 1)β2 〈Q2〉
µ=0

.

Since in a CFT we have
〈
Q2〉

µ=0
∼ Ld−1

βd−1 , we finally get:

δS = −(d− 2)µ2β2L
d−1

βd−1 ,

which vanishes in d = 2. As another explicit perspective, the total energy density in the presence of a
chemical potential is (5.21). Since the second term does not depend on the temperature, it doesn’t contribute
to the entropy and one indeed finds the same as in the uncharged case.
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We can show that at least for the N = 1 case, this same formula is true even when
injecting fermionic charge. We do this by showing that η(t) ∼ Q0 for a single Grassmann-
odd variable Q0 in appendix B.33 However, when computing the bulk matter entanglement
entropy in the full quantum gravity theory [30], one has to integrate over the bosonic and
fermionic reparametrisations. In that case, one has to incorporate the bilinear fermionic
corrections in the bottom component. This is of no concern for this work but is important
to point out for the eventual full story.

For the particular case of N = 1 supersymmetry, we provide a more direct deriva-
tion below.

D.2 Entanglement entropy in N = 1 2d SCFT

We illustrate the formula (D.8) for N = 1 supersymmetry by explicitly deriving it along the
same lines as the bosonic formula in the beginning of this section. Consider a superspace
interval ((u1, θu1), (u2, θu2)) in a 2d SCFT, where we specify holomorphic coordinates in the
form (z, θ), and where we will set θu1 = θu2 in the end to restrict to the physical (= bosonic)
interval. We start by using the N = 1 super-Möbius mapping with reparametrisations (B.8):

F (z) = z − u1
z − u2

, η(z) = θu1 − θu2

u2 − u1
+ u1θu2 − u2θu1

u2 − u1
z, (D.13)

to get as in (B.7)34

Z = z − u1 + θu1θ

z − u2 + θu2θ
, Θ =

θu1−θu2
u2−u1

z + u1θu2−u2θu1
u2−u1

+
(
1 + 3

2
θu1θu2
u2−u1

)
θ

z − u2 + θu2θ
. (D.14)

The new Z-coordinate is the ratio of two superdistances. In particular, close to the left
endpoint where z = u1 + δb, θ = θu1 + δf or to the right endpoint z = u2− δb, θ = θu2 − δf ,
one gets:

e
− 2π
β
L1 = − δ

u1 − u2 − θu1θu2
, e

2π
β
L2 = u2 − u1 − θu2θu1

δ
, (D.15)

where δ = δb + θu1δf or δ = δb + θu2δf is the regularisation in the original superframe
(z, θ).35 Next, we reparametrise these expressions to:

e
− 2π
β
L1 = −

(Du1θ
′
u1)δ

u′1 − u′2 − θ′u1θ
′
u2

, e
2π
β
L2 =

u′2 − u′1 − θ′u2θ
′
u1

(Du2θ
′
u2)δ . (D.16)

This corresponds to starting in another frame (z′, θ′) related to the original one by a
superconformal transformation. The regulator δ → (Dzθ

′)δ in the process. Indeed:

τ ′1 − τ ′2 − θ′1θ′2 ≈
τ1 → τ2
θ1 → θ2

(τ1 − τ2 − θ1θ2)(Dθθ
′)2, (D.17)

33One can imagine that for extended supersymmetry, multiple Grassmann-odd parameters exist, corre-
sponding to the different supercharge injections. In that case, fermion bilinears can be nonzero.

34This simplifies in the limit θu1 = θu2 to:

Z = z − u1 + θu1θ

z − u2 + θu1θ
, Θ = −1 + θ

z − u2 + θu1θ
.

35Note that one can set δf = 0 by choice of regulator. However, it is worthwhile keeping an open mind.
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generalising the bosonic:

τ ′1 − τ ′2 ≡ F (τ1)− F (τ2) ≈
τ1→τ2

(τ1 − τ2)F ′(τ2). (D.18)

We compute the total thermal energy and entropy in the w-frame as:

E = c

12π
2π2

β2 (L1 + L2), S = cπ

3β (L1 + L2). (D.19)

Finally, using (D.16) we get the anticipated:

S = c

6 ln
(

(u′1 − u′2 − θ′u1θ
′
u2)2

δ2Du1θ
′
u1Du2θ

′
u2

)∣∣∣∣∣
bottom

, (D.20)

where we need to extract the bottom component of this expression when expanding in the
odd variables θu1 and θu2 . For semiclassical evaporation, we explicitly solved for the decaying
frames in appendix B, where in particular the fermionic superpartner is proportional to
a single Grassmann variable η(t) ∼ Q0. All fermion bilinears vanish because of this, and
the expression reduces to (D.12). When using a matter superfield as the agent of Hawking
radiation, the only difference is then the shift in central charge c = 1→ c = 3/2 by including
the emission channel from the fermion.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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