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1 Introduction

Much of the recent progress towards constructing a flat space hologram [1] has been guided
by our understanding of the symmetries of the bulk and the behavior of bulk excitations
near the conformal boundary [2]. Efforts to pin down the relevant symmetry group have
relied on input from both amplitudes and relativity communities. While it is perhaps not
surprising in hindsight that the IR behavior of scattering [3–5] is imprinted on the large dis-
tance, long timescale modes on the boundary [6–8], the concrete proposal of an equivalence
between asymptotic symmetries and soft theorems [9, 10] has provided an interesting av-
enue to explore extensions of the asymptotic symmetry group. In this story, the subleading
soft graviton plays a particularly important role because it encodes a Virasoro symmetry
of the S-matrix [11–14], motivating the celestial hologram [15–18].

The celestial holographic map looks at S-matrix elements in a boost basis where they
transform as correlation functions of primaries under the action of the Lorentz group [19,
20]. For massless external states this is simply implemented by a Mellin transform

〈O±∆1
(z1, z̄1) . . .O±∆n

(zn, z̄n)〉 =
n∏
i=1

∫ ∞
0

dωiω
∆i−1
i 〈out|S|in〉 (1.1)

trading the energy for a boost weight. Coupling to gravity promotes these quasi-primaries
to Virasoro primaries precisely because of the subleading soft graviton theorem. Taking this
presentation of S-matrix elements as a 2D system to heart and interpreting the (complex-
ified) collinear limits of scattering as encoding the data of a radially quantized 2D celestial
CFT unveils even richer symmetry structures [21, 22] than anticipated. Meanwhile, input
from the twistor [23–25] and relativity communities [26] have provided critical insight into
the expected scope.
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This note focuses on the loop corrections to the subleading soft graviton. In partic-
ular, we show that insights from the leading conformally soft sector [27] dictate a slight
modification to the 1-loop exact correction to the celestial stress tensor [28] in a manner
that matches onto the quadratic corrections to the soft charges computed from the BMS
flux algebra in [29]. Our motivation for doing so is two-fold. On the one hand, it serves as
a nice example of gainfully merging insights from the 2D organization of the conformally
soft sector, IR divergences in amplitudes, and covariant phase space methods in relativity.
On the other, it provides an ideal opportunity to connect the BMS flux algebra statements
to the celestial diamond framework [30, 31] and its null state predecessors [32–34].

Let us take a moment to expand on this latter point in anticipation of a more detailed
discussion below. The modus operandi is essentially the same principle motivating the ce-
lestial framework in the first place: organize the objects we care about into representations
of the relevant symmetries. A surprising amount of mileage can be attained just using the
Lorentz group. Indeed, if we are looking at representations for the matter fields we want
to couple to gravity, we will be interested in this group anyway.

In the celestial basis, our single particle states are in boost eigenstates. While our holo-
gram is presented as two dimensional, the space of on-shell momenta is three dimensional.
This manifests itself as continuous spectrum on the principal series [20]. To capture confor-
mally soft theorems we need to analytically continue to general complex dimensions [35–37].
This tunability allows us to go to conformal dimensions where our state has a primary de-
scendant. For example, a negative helicity spin-s particle has primary descendants

Osoft = 1
k!∂

k
wO∆,−s, (1.2)

at
∆ = 1 + s− k, (1.3)

with similar expressions for the positive helicity sector. These are observed to decouple in
scattering amplitudes for the known soft theorems. For recent discussions on the tower of
symmetry currents phrased in the celestial diamond language see [26, 38].

We will be interested solely in the leading and subleading soft graviton here. Now the
Ward Identities for asymptotic symmetries [2] take the following general form in S matrix
insertions

〈out|Q+[ξ]S − SQ−[ξ]|in〉 = 0 (1.4)

where the charge contributions from I± further split into a hard and a soft term

Q±[ξ] = Q±S [ξ] +Q±H [ξ]. (1.5)

The insight of [32–34] is that for the soft and hard operators to add to zero they should
have the same weights under the Lorentz group. In practice, the constraint equations
used to recast the standard canonical charges in to the form (1.5) relate descendants of
modes with different spins. Indeed, the candidate currents in CCFT arise from particular
choices of the gauge parameter such that the soft operator has definite weights. By the
aforementioned argument, the hard particles coupling to this operator must also have
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these same weights. Indeed we see that while the radiative modes have spin-2, the sources
producing the memory effect are captured by operators of lower spin. More generally, for
a given matter operator one can ask what radiative modes it can couple to. Similarly, for
a given conformally soft mode with a primary descendant one can ask what operators can
source it. This latter route is relevant for assessing corrections to the soft theorems.

Now the hard operator is a primary but not a descendant. From this perspective, the
global symmetries arise if there are gauge parameters such that the soft charge vanishes∑

i

〈O1 . . . δiOi . . .On〉 = 0. (1.6)

This happens for gauge parameters in the kernel of the descendancy relation whenever
the behavior of the soft operator in correlators is such that we can integrate by parts.
In practice, one finds that this terminates at the usual Poincaré group for gravity or the
standard global charge for gauge theory. Indeed, the majority of the asymptotic symmetries
are spontaneously broken by a choice of vacuum. In this case, the soft charge operators
shift the vacuum, as manifested in S-matrix elements by the insertion of an extra incoming
or outgoing soft gauge boson.

The upshot of the BMS flux algebra [29] is to generalize this statement to construct
objects that are covariant under the extended BMS group. Namely, not only the total fluxes
but also the hard and soft splittings are required to provide an appropriate representation
of this larger group. In doing so they effectively extend the celestial diamond framework to
non-linear order and non-trivial vacua. These u-integrated operators provide the natural
symmetry generators for Celestial CFT. The slices of constant (spacelike) Rindler time
intersect the conformal boundary on surfaces that run along the generators of I±. If we
want to describe a state in the radial quantized CCFT defined on a contour on the celestial
sphere, this lifts to a two dimensional slice of the boundary of this form, extending along
the generators so as to precisely support the BMS fluxes [39]. That we are able to get this
mileage — namely, celestial operators with the appropriate symmetry transformations that
hold beyond leading order in perturbation theory — from our understanding of the bulk
equations of motion near the boundary is consistent with either the celestial extrapolate
dictionary [31, 38] or the Carrollian description [40, 41]. The fact that the flux algebras
avoid certain issues with the charges associated to fixed u-cuts serves as a nicer motivation
for the CCFT version of the hologram.

This note is organized as follows. In section 2, we set up our conventions for the
Bondi gauge metric near I+ and review the construction of the BMS fluxes from [29]. We
then compare this to the loop correction to the celestial stress tensor proposed in [42] in
section 3. Here insights from the supertranslation vertex operators in [27] let us match
to the quadratic corrections from [29]. We close with a recap of the assumptions and
discussion of the takeaways in section 4.

2 BMS flux algebra

In this section we review the construction of [29]. The coadjoint representation of the
BMS group was examined in [43], and used to study the non-radiative phase space of
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asymptotically flat spacetimes. Various issues that arise when radiation is included can be
avoided by looking at certain integrated quantities called BMS fluxes — defined in terms of
phase space data integrated along generators of null infinity rather than living at a fixed-u
cut [44, 45]. Namely, one can define a flux algebra that closes under the standard bracket
and is finite once we impose appropriate late-u falloffs on our phase space.

2.1 A Bondi gauge primer

Most of our notation for the Bondi gauge metric of asymptotically flat spacetimes will be
familiar from [2]. Near future null infinity, the metric in Bondi gauge takes the form [6–8]

ds2 =− du2 − 2dudr + 2r2γzz̄dzdz̄ + 2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2

+
[(
DzCzz −

1
4rDz(CzzCzz) + 4

3rNz

)
dudz + c.c.

]
+ . . .

(2.1)

For ease of comparing to the notation in [29], note that γzz̄ = (ΩSΩ̄S)−1 is the unit
round metric in projective coordinates. We will see later that such factors are often used
to construct objects with definite weights. The latter notation avoids confusion over the
index structure so we will adopt it here. The u-evolution of the Bondi mass and angular
momentum aspect are controlled by the constraint equations Guµ = 8πGTMuµ at large-r

∂umB = 1
4[D2

zN
zz +D2

z̄N
z̄z̄]− Tuu, ∂uNz = 1

4Dz[D2
zC

zz −D2
z̄C

z̄z̄] +DzmB − Tuz (2.2)

while the radiative data is captured by the news tensor Nzz = ∂uCzz. In (2.2) we’ve
suggestively grouped terms quadratic in the metric into the Tµν with the matter fields

Tuu ≡
1
4NzzN

zz + 4πG lim
r→∞

r2TMuu

Tuz ≡ −
1
4Dz[CzzN zz]− 1

2CzzDzN
zz + 8πG lim

r→∞
r2TMuz ,

(2.3)

incorporating the gravitational contribution to the null energy and angular momentum, in
what is treated as a ‘hard’ term coupling to finite energy gravitons. In the remainder of
this section we will stick with a purely gravitational theory. As we will soon see, one of
the nice upshots of [29] is that they revisit the soft and hard splittings using the charge
algebra as a guide. This is very much in the spirit of the celestial diamonds [30, 31] and
null state predecessors [32–34] outlined in the introduction.

Now this class of falloffs is preserved by the following asymptotic symmetries

ξ = f∂u −
1
r

(Dzf∂z +Dz̄f∂z̄) +DzDzf∂r

+
(

1 + u

2r

)
Y ∂z −

u

2rD
z̄DzY ∂z̄ −

1
2(u+ r)DzY ∂r + u

2DzY ∂u + c.c.+ . . .
(2.4)

where f(z, z̄) and Y (z) depend only on the celestial sphere coordinates, and parameterize
supertranslations and superrotations, respectively. In what follows it will be convenient to
strip out a factor of the round sphere metric from our supertranslation parameter

f = (ΩSΩ̄S)−
1
2T. (2.5)
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The ellipses in (2.4) indicates (field-dependent) subleading-in-r terms that ensure these
killing vectors preserve the Bondi gauge conditions. Using the modified Lie bracket
[ξ1, ξ2]∗ = [ξ1, ξ2] − δξ1ξ2 + δξ2ξ1 [46] to take into account this field dependence, we get
the expected closure of the commutation relations

[ξ(T1, Y1, Ȳ1), ξ(T2, Y2, Ȳ2)]∗ = ξ(T12, Y12, Ȳ12) (2.6)

where

T12 = Y1∂T2−
1
2∂Y1T2− (1↔ 2)+ c.c., Y12 = Y1∂Y2− (1↔ 2), Ȳ12 = Ȳ1∂̄Ȳ2− (1↔ 2).

(2.7)
Here ∂ is a partial derivative, in contrast to the Dz appearing above, which is a covariant
derivative with respect to the round sphere metric.

Finite superrotations introduce defects into the round sphere metric [47, 48]. Indeed,
if we act on the usual Minkowski vacuum with such finite transformations we get the
following ‘vacuum’ shear tensor and News [47]

Cvac
zz = (u+ C)Θzz − 2D2

zC Nvac
zz = ∂uC

vac
zz = Θzz (2.8)

where C is the Goldstone mode and Θzz is the superrotation Goldstone mode. Namely,
under infinitesimal transformations of the form (2.4) these shift as follows

δfC = f, δY Θzz = Y ∂zΘzz + 2∂zYΘzz − ∂3
zY. (2.9)

This makes it natural to define the ‘physical’ news tensor [49]

N̂AB = NAB −Nvac
AB (2.10)

which captures the (non-vacuum) radiative data and transforms homogeneously under the
asymptotic symmetry group.

The early and late u limits of radiative spacetimes reverts to vacua of this form where
the mode C can take different asymptotic values C± := C(u ↔ ±∞). Meanwhile, the
superrotation Goldstone mode can be recast in terms of a Liouville stress tensor [49]

Θzz =
[1

2DAΦDBΦ−DADBΦ
]TF

Φ(z, z̄) = ϕ(z) + ϕ̄(z̄) + ln(ΩSΩ̄S). (2.11)

For dynamical solutions ∆C = C+ − C− encodes the memory effect and is symplectically
paired with the Goldstone mode which we can identify with C−. Similarly, the spin memory
effect [50] is measured by the celestial stress tensor and is symplectically paired with the
superrotation Goldstone mode [51]. The naive over-counting of currents we get when
treating the Goldstone and memory modes as two independent fields can be used to our
advantage. Indeed, by taking certain linear combinations of these two (2,0) modes [52, 53],
one can define a sector of CCFT with a nontrivial central charge [54].

Now this Liouville mode also plays an important role in the construction of conformal
fields on the celestial sphere. Consider a conformal transformation of the form z 7→ z′(z)
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and z̄ 7→ z̄′(z̄) along with an appropriate Weyl rescaling.1 A conformal field of weight
(h, h̄) transforms as follows

φ′
h,h̄

(x′) =
(
∂z

∂z′

)h ( ∂z̄
∂z̄′

)h̄
φh,h̄(x) (2.12)

where h = 1
2(∆ + J) and h̄ = 1

2(∆ − J). By contrast, for SL(2,C) primaries we restrict
to the Möbius transformations z′ = az+b

cz+d and similarly for z̄. Taking into account the
transformation properties of the Liouville field

δT,Y Φ = Y ADAΦ +DAY
A (2.13)

one finds that the following Weyl covariant derivatives [29, 43]

Dφh,h̄ = [Dz − h∂Φ]φh,h̄, D̄φh,h̄ = [Dz̄ − h̄∂̄Φ]φh,h̄ (2.14)

map us to conformal primaries with shifted weights (h+ 1, h̄) and (h, h̄+ 1), respectively.
These conformal derivatives also appear in [55, 56]. We will see that these derivatives neatly
incorporate corrections to the soft charges when we look at scattering around non-trivially
superrotated vacua.

2.2 BMS fluxes

The upshot of [43] is that the supertranslation parameter T and superrotation parameters
Y and Ȳ have definite conformal weights. The same is true of the supermomentum and
super angular momentum operators which appear in the canonical charges. The authors
of [29] show that when one goes beyond the non-radiative sector these have a natural
expression as BMS fluxes. First, the supermomentum flux takes the form

P = 1
4πG

∫
du∂uM , M = (ΩSΩ̄S)−

3
2

[
mB + 1

8(CzzNvac
zz + C z̄z̄Nvac

z̄z̄ )
]

(2.15)

where the supermomentum M reduces to the familiar Bondi mass at early and late times
in the trivial superrotation vacuum. This combination is selected for the fact that it
transforms as a conformal field with weights (h, h̄) = (3

2 ,
3
2). Similarly the super angular

momentum flux takes the form

J = 1
8πG

∫
du∂uN , N = (ΩSΩ̄S)−1

[
Nz̄−u(ΩSΩ̄S)

3
2Dz̄M + 1

4Cz̄z̄Dz̄C
z̄z̄+ 3

16Dz̄(CzzCzz)

+ u

4D
z
[(
D2
z−

1
2N

vac
zz

)
Czz̄ −

(
D2
z̄−

1
2N

vac
z̄z̄

)
C z̄z

]]
(2.16)

where the super angular momentum N involves an appropriate Bondi mass subtraction of
the angular momentum aspect Nz̄, familiar from the charge expressions of [12] used for the
early computations of the tree level Virasoro symmetry [14] and spin memory effect [50], but

1From the point of the 2D celestial sphere, the Weyl rescaling comes from the action of the superrotations
on the r coordinate so that the leading round sphere metric is unchanged away from certain punctures where
Y has poles.
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now with the corrections designed so that this object transforms as a conformal field with
weights (h, h̄) = (1, 2). A similar expression involving the opposite helicity sector gives J̄ .

A key result of [29] is that these fluxes can be further split into a soft and a hard part

P = Psoft + Phard, J = Jsoft + Jhard (2.17)

which separately transform as conformal fields

δT,Y,Ȳ Psoft/hard =
[
Y ∂ + Ȳ ∂̄ + 3

2∂Y + 3
2 ∂̄Ȳ

]
Psoft/hard

δT,Y,Ȳ Jsoft/hard =
[
Y ∂ + Ȳ ∂̄ + ∂Y + 2∂̄Ȳ

]
Jsoft/hard +

[1
2T ∂̄ + 3

2 ∂̄T
]
Psoft/hard.

(2.18)

To see this, let us define the following soft radiative modes

N (0) = 1
16πG

∫ ∞
−∞

du(ΩSΩ̄S)
1
2 N̂zz, N (1) = 1

16πG

∫ ∞
−∞

du(ΩSΩ̄S)uN̂zz (2.19)

which we know to have weights (3
2 ,−

1
2) and (1,−1), respectively, precisely because in the ce-

lestial amplitudes dictionary these correspond to the leading and subleading (conformally)
soft theorems, as well as the supertranslation Goldstone mode

C = (ΩSΩ̄S)
1
2C− (2.20)

with weight (−1
2 ,−

1
2). In terms of these modes we have

Psoft = D2N̄ (0) + D̄2N (0), Jsoft = −D̄3N (1) − D̄3CN (0) − 3D̄2CD̄N (0) (2.21)

while
Phard = − 1

16πG

∫
du(ΩSΩ̄S)−

3
2 N̂zzN̂

zz, (2.22)

and

Jhard = 1
8πG

∫
du(ΩSΩ̄S)−1

[3
4 Č
−
z̄z̄Dz̄N̂

z̄z̄ + 1
4N̂

z̄z̄Dz̄Č
−
z̄z̄ + u

4Dz̄(N̂ z̄z̄N̂z̄z̄)
]

(2.23)

where we’ve defined
Č±AB = CAB − (1− u∂u)Cvac,±

AB . (2.24)

Unlike for the news tensor (2.10) we have to make a choice of which (early or late time)
vacuum to use to define a subtracted CAB that transforms homogeneously (2.8). This
is because while typical scattering processes undergo non trivial supertranslation vacuum
transitions, we are not allowing for superrotation vacuum transitions [57]. Exchanging
C− 7→ C+ throughout would not affect the charge algebra. Meanwhile, the electric bound-
ary conditions at early/late u imply that the two terms in Psoft are equal. This equality
is an echo of the shadow redundancy at the level of the conformal primary wavefunctions
and corresponding soft theorems at these conformal dimensions.

As discussed in more detail in section 4, we see the celestial diamond structure appear-
ing in the linear-order contribution to the soft term. Meanwhile, the hard fluxes vanish on
vacuum solutions. For the authors of [29] this splitting is based on consistency with the
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symmetry algebra. Namely, for an appropriate complexified integration contour, used to
isolate modes in a double Laurent expansion in z and z̄, the transformation laws (2.18)
imply that the smeared fluxes

FT,Y,Ȳ =
∫
S

dzdz̄

(2πi)2 [TP + Y J̄ + Ȳ J ] (2.25)

and their soft and hard splittings obey the following algebra [43, 45, 58]

{F soft
(T1,Y1,Ȳ1), F

hard
(T2,Y2,Ȳ2)} = 0, {F soft/hard

(T1,Y1,Ȳ1), F
soft/hard
(T2,Y2,Ȳ2)} = −F soft/hard

[(T1,Y1,Ȳ1),(T2,Y2,Ȳ2)] (2.26)

where the bracket {·, ·} is defined by

{F(T1,Y1,Ȳ1), F(T2,Y2,Ȳ2)} = δ(T1,Y1,Ȳ1)F(T2,Y2,Ȳ2). (2.27)

These smeared operators naturally appear in the construction of the celestial symmetry
generators. For what follows we will focus on the superrotation case.

The authors of [29] construct the following candidate celestial stress tensor from the
soft super angular momentum flux as follows

T (z) =
∮

dz̄

2πiJ̄soft(z, z̄), T̄ (z̄) =
∮

dz

2πiJsoft(z, z̄). (2.28)

Examining the expression for Jsoft above, we see that the linearized piece matches the tree
level stress tensor of [59], while the quadratic terms almost (but not quite) match the loop
level corrections found in [42]. Here, these terms were necessary for the superrotation gen-
erators to have the correct transformation properties under the action of supertranslations.
We will now see that we can readily resolve this tension by taking into account the soft
dressings [27].

3 A 1-loop correction to the stress tensor

The subleading soft graviton theorem [13] gets a one loop exact correction which was recast
as a modification to the celestial stress tensor [14, 59] in [42]. Here we will see that this IR
divergent part nicely matches onto the form of the quadratic corrections to the soft flux
found in [29]. Our discussion in this section will follow the notation of [42] and we will
work in momentum space. Since these computations involve scattering around the trivial
superrotation vacuum we will want to match onto the Nvac

AB = 0 limit of the expressions in
the previous section, for which N̂AB 7→ NAB and D 7→ Dz.

3.1 Reviewing the loop corrected soft graviton

Let us start by considering two S-matrix elements: An corresponding to the scattering
of n particles of arbitrary species and energies; and A±n+1 describing the process with an
additional soft graviton of helicity ±2 added to the out state

An = 〈out|S|in〉, A±n+1 = 〈out|a±(k)S|in〉, (3.1)

– 8 –
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where k = ωq for some reference null vector q. At tree level the leading terms in an
expansion as ω → 0 take the following form

A±n+1(kµ = ωqµ) = [S(0)±
n + S(1)±

n +O(ω)]An (3.2)

where
S(0)±
n = κ

2

n∑
k=1

pkµpkνε
±µν

ωpk · q
, S(1)±

n = −iκ2

n∑
k=1

pkµε
±µνqλJkλν
pk · q

(3.3)

and κ =
√

32πG. The saddle point approximation connect fields near null infinity to
S-matrix elements [60]. As discussed further in [31, 38], this underpins the extrapolate
dictionary of CCFT. For the case of the leading and subleading soft graviton of interest
here, we have the following relation between (appropriately regulated) u-integrals of the
news and the soft graviton modes near I+

N
(0)
z̄z̄ =

∫
duNz̄z̄ = − κ

8π ε̂z̄z̄ lim
ω→0

ω[a−(ωq) + a+(ωq)†] (3.4)

and
N

(1)
z̄z̄ =

∫
duuNz̄z̄ = iκ

8π ε̂z̄z̄ lim
ω→0

(1 + ω∂ω)[a−(ωq)− a+(ωq)†] (3.5)

where these operators live at the point q̂ on the celestial sphere, corresponding to the direc-
tion of the three momentum of the soft graviton. We see that the ω-dependent prefactors
select precisely the leading and subleading soft theorems in these limits. The notation
in [29] is chosen to match the ones here. For the perturbative S-matrix we often consider
the trivial superrotation background (or infinitesimal superrotations around this Nvac

z̄z̄ = 0
vacuum), so it is indeed appropriate to promote Nz̄z̄ → N̂z̄z̄ in the expressions here when
we want to consider scattering atop a non-trivial superrotation.

Let us now turn our focus to the subleading case. The tree level celestial stress tensor
is defined as follows

T tree
zz = 4i

κ2

∫
d2w

γww̄

z − w
D3
wN

(1)
w̄w̄. (3.6)

While integrating by parts on the celestial sphere turns this into a shadow of the subleading
soft graviton, in the language of the celestial diamonds we see that as written (3.6) is a lift
of the level-3 primary descendant. This form matches the starting point of [29], modulo
the analytic continuation in their integration contour.

While the leading soft graviton theorem is not corrected at loop order, the subleading
soft graviton receives a one loop exact correction. The authors of [42] focus on the IR
divergent part which in dim-reg contributes the following pole

A(1)
n |div = σn

ε
A(0)
n (3.7)

where d = 4− 2ε, A(`)
n κ2` is the contribution from `-th loop order, and [61]

σn = − 1
4(4π)2

n∑
i,j=1

(pi · pj) log µ2

−2pi · pj
. (3.8)
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With the hindsight of [27], we can quickly recognize this Eikonal factor as coming from a
correlation function of vertex operators constructed from the supertranslation Goldstone
mode. Since this perspective modifies the final form of the answer in [42], it is worthwhile
to first work out a few more of the steps in their original derivation.

Combining this loop correction factor with the soft limit of the n + 1 particle ampli-
tude (3.2) gives

A(1)±
n+1

∣∣
div

ω→0−→ σn+1
ε

[S(0)±
n + S(1)±

n ]A(0)
n (3.9)

where we are dropping terms of order O(ω). Now σn+1 contains terms that scale like O(ω0)
when soft gravitons are exchanged between two hard legs and a part that scales like O(ω)
when one of the particles is the soft graviton

σn+1 = σn + σ′n+1, σ′n+1 = − 1
2(4π)2

n∑
i=1

ω(pi · q) log µ2

−2pi · q
. (3.10)

The logω term coming from the ln pi · k vanishes by momentum conservation. Regrouping
terms we find that

A(1)±
n+1

∣∣
div

ω→0−→ [S(0)±
n + S(1)±

n ]A(1)
n

∣∣
div + 1

ε

(
σ′n+1S

(0)±
n − [S(1)±

n , σn]
)
A(0)
n (3.11)

where the last term comes from commuting the dressing factor σn through the subleading
soft operator. The first term just accounts for the Eikonal exchanges among the hard
particles, as expected at loop order, while the term in brackets scales like O(ω0) and
corrects the subleading soft theorem.

Thus we’ve seen that the subleading soft graviton insertion gets a loop correction.
The fact that the tree level soft theorem could be interpreted as a 2D stress tensor Ward
identity came from how the original soft factor S(1)

n acts on the external states. We can
thus restore this Ward identity at loop level by moving the second set of terms in (3.11) to
the left hand side, shifting the tree level stress tensor via

Tzz = T tree
zz + T loop

zz = 4i
κ2

∫
d2w

γww̄

z − w
D3
w

(
N

(1)
w̄w̄ −N

(1)
w̄w̄

∣∣
div

)
(3.12)

where

〈out|N (1)
w̄w̄S|in〉

∣∣
div = iκ3

8π ε̂w̄w̄ lim
ω→0

(1 + ω∂ω)1
ε

(
σ′n+1S

(0)−
n − [S(1)−

n , σn]
)
〈out|S|in〉. (3.13)

Next, to connect to the BMS flux algebra, we want to rewrite this loop correction in terms
of the metric data at null infinity. This turns out to be quadratic in the zero modes. We
will first follow the steps in the appendix of [42], then revisit this computation using the
insights of [27], before finally comparing to [29].

To evaluate identify the appropriate operator that gives rise to this soft theorem, the
authors started with the explicit momentum space realization of the correction term. The
σn and σ′n+1 are given in (3.8) and (3.10) above, while the action of the soft factors can
be similarly evaluated noting that the angular momentum operator in (3.3) is simply the
following differential operator on a function of the external momenta

Jkλν = −i
[
pkλ

∂

∂pνk
− pkν

∂

∂pλk

]
. (3.14)
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The combination of terms in (3.13) explicitly evaluates to

1
ε

(
σ′n+1S

(0)±
n − [S(1)±

n , σn]
)

(3.15)

= κ

4(4π)2ε

n∑
i,j=1

[
(pi · ε−)2

pi · q
(pj · q) log pj · q

pi · pj
− (pi · ε−)(pj · ε−) log µ2

−2pi · pj

]

in S-matrix elements. After evaluating the appropriate descendants, the authors of [42]
match their answer to the form of the leading soft factor to conclude that

Tzz = 4i
κ2

∫
d2w

γww̄

z − w

[
D3
wN

(1)
w̄w̄ −

i

2πε
(
2N (0)

wwDwN
(0)
w̄w̄ +Dw(N (0)

wwN
(0)
w̄w̄)

)]
(3.16)

reproduces this loop correction in S-matrix insertions. The details can be found in appendix
A of that reference. While plugging in the soft theorem indeed matches the momentum
space form of this loop correction, there is a slight ambiguity that explains the mismatch
with [29] where one of the memory modes is instead replaced by a supertranslation Gold-
stone mode. That replacement has a non-trivial effect on the flux algebra since we need
a mode that shifts inhomogeneously in the supertranslations to reproduce the expected
transformation (2.18).

3.2 The soft S-matrix

We will now show that if we take a step back and look at the IR dressing factors responsible
for this divergent loop correction and how they are captured by vertex operators in the
CCFT constructed from the celestial Goldstone modes [27], we naturally resolve the tension
between the results in [42] and [29] and avoid an explicit appearance of the IR regulator in
the answer. Moreover, this type of ambiguity at the level of matching correlators is closely
tied to the naive over-counting of currents seen in [54, 62]. As in those studies, restricting
to sectors where the Goldstone and memory modes are proportional to each other (in a
manner fixed by consistency with the symmetries) reduces this over-counting and gives
rise to non-trivial levels [62] and central charges [54]. Our conventions in this subsection
will follow [27]. While we are still in momentum space here, a celestial basis version has
been examined in [63]. For additional discussions of celestial models that capture the soft
dynamics associated to these supertranslation Goldstone modes see [64, 65].

In four dimensions, virtual soft graviton exchanges between the undressed single par-
ticle states generate IR divergences [3]. This leading Eikonal behavior exponentiates in a
way that can be factored out from the IR finite part of the amplitude

〈out|S|in〉 = exp

1
ε

G

2π

n∑
i,j=1

pi · pj ln
(

µ2

2pi · pj

) ̂〈out|S|in〉. (3.17)

Now this IR divergent piece has a natural interpretation in terms of the asymptotic sym-
metries. First, the vanishing of exclusive amplitudes when we remove the IR cutoff is a
symptom of charge non-conservation for processes that do not include the appropriate soft
radiation [66]. Moreover, the Minkowski vacuum spontaneously breaks the supertranslation
symmetry and the dynamics of this IR sector is controlled by this symmetry breaking.
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The IR divergent piece in (3.17) can be recast in terms of a correlator of Wilson lines.
Keeping the celestial framework in mind, the authors of [27] construct gravitational Wilson
line-like operators that take the form of vertex operators in the celestial CFT

Wk = eiηkωkC(zk,z̄k) (3.18)

where pk = ηkωkqk for a null reference vector qk parameterizing points on the celestial
sphere and C is the supertranslation Goldstone mode, normalized as in 2.8. As we saw
in (2.20), the Goldstone mode C needed to be rescaled by a factor of the metric determinant
to give a field with definite conformal weight. It will be convenient to follow [27] and go
to the flat celestial sphere,2 for which q0

k = (1 + zkz̄k). We can ‘undress’ the operators
creating single particle external states

Ok = WkÕk. (3.19)

The inhomogeneous shift δfC = f translates to the following transformation of the vertex
operators

δfWk(zk, z̄k) = iηkωkf(zk, z̄k)Wk(zk, z̄k) (3.20)

so that the dressed operators Õk are supertranslation invariant. Mapping the external
states to correlators on the celestial sphere, we see that (3.17) can be recast into the form

〈O1 · · · On〉 = 〈W1 · · ·Wn〉〈Õ1 · · · Õn〉. (3.21)

Namely

〈W1 · · ·Wn〉 = exp

−1
2

n∑
i 6=j

ηiηjωiωj〈C(zi, z̄i)C(zj , z̄j)〉

 (3.22)

where3

〈C(zi, z̄i)C(zj , z̄j)〉 = −2
ε

G

π
|zi − zj |2 ln |zi − zj |2 (3.23)

and we’ve used momentum conservation to match (3.17) and (3.22)–(3.23). This takes the
form familiar from the IR divergent loop correction (3.8) we encountered in the previous
section. Namely

σn
ε

= 1
2κ2

n∑
i,j=1

ηiηjωiωj〈C(zi, z̄i)C(zj , z̄j)〉, (3.24)

again using total momentum conservation.
For the purpose at hand, the point we care about is that the correlators of two Gold-

stone modes versus the correlator of a Goldstone mode and the memory mode of the same
weight in the symplectically paired celestial diamond have the kinematic structure [31].

2As discussed in [67] one can take this flat limit by rescaling u 7→ αu, r 7→ 1
2αr, z 7→ αz and then sending

α→ 0. Note that under this rescaling ε̂z̄z̄ = 2
(1+zz̄)2 → 2.

3Here we have followed [27] and [63] in introducing a single supertranslation Goldstone mode, as expected
from antipodal matching. The Coulomb phase can be reproduced with an appropriate branch choice,
however it drops out of the derivatives of the soft correlators we need for our expression for the loop
correction.
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Therefore, one needs to take care when matching expressions for the soft factors to deduce
which boundary limits of bulk operators they correspond to. This is phrased as an off
diagonal level structure for the Kac-Moody like symmetry which takes the form

PzPw ∼ 0, PzP̃w ∼
1

(z − w)2 , P̃zP̃w ∼ −
2
ε

G

π

z̄ − w̄
z − w

(3.25)

reminiscent of the gauge theory case [62] (but where the signed-energies ηkωk play the role
of the charge for the corresponding vertex operators Wk) generated by the operators

Pz = 1
2G∂z̄N

(0)
zz , P̃z = i∂zC (3.26)

with weights (h, h̄) = (3
2 ,

1
2) and (1

2 ,−
1
2) respectively. The memory effect is measured by

insertions of Pz precisely because it reproduces the soft theorem when it contracts with
one of the C operators in the dressings Wk

〈PzW1 · · ·Wn〉 =

 n∑
j=1

iηjωj〈PzC(zj , z̄j)〉

 〈W1 · · ·Wn〉 (3.27)

where
iηjωj〈PzC(zj , z̄j)〉 = −2

κ
∂z̄
[
ωS

(0),+
n,j

]
= ηjωj
z − zj

(3.28)

where we recognize the contribution from particle j to the leading soft factor in (3.3).
However, upon taking derivatives we find

∂2
z 〈C(z, z̄)C(zj , z̄j)〉 = − i

πε
〈N (0)

zz (z, z̄)C(zj , z̄j)〉. (3.29)

Taking note of the flat versus round celestial sphere rescalings in footnote 2, we see that this
provides the relative factor in (3.16) so that, restoring covariant derivatives, the following
expression

Tzz = 4i
κ2

∫
d2w

γww̄

z − w

[
D3
wN

(1)
w̄w̄ +

(
2D2

wCDwN
(0)
w̄w̄ +Dw(D2

wCN
(0)
w̄w̄)

)]
(3.30)

similarly reproduces the momentum space form of the loop corrections. This matches
the expression from [29] in the trivial superrotation vacuum under the change of measure
2i
∫
d2z ↔

∮ dz
2πi
∮ dz̄

2πi in their expressions. Moreover, it is consistent with the fact that we
now see that σn is coming from the C correlators that capture Eikonal exchanges, and that
these Eikonal terms multiply copies of the negative helicity soft theorems.

4 Discussion

Let’s now recap the highlights of what was needed for each of the computations we’ve
combined and revisit the larger themes motivating our investigations.

In the BMS flux computations [29], the authors stick to the purely gravitational theory
but keep track of quadratic corrections that give rise to both the gravitational contribution
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P J̄ N̄ (0) N̄ (1) C
h 3

2 2 −1
2 −1 −1

2

h̄ 3
2 1 +3

2 +1 −1
2

Table 1. Weights of the soft graviton modes appearing in the construction of the loop-corrected
celestial stress tensor and their relevant primary descendants.

to the hard charge and corrections to the soft operators. If we want to add matter back
in, the constraint equations would imply additional contributions to the hard fluxes. The
splitting into soft and hard is based on demanding that each contribution transforms appro-
priately under the extended BMS group. The hard part is quadratic in the radiative modes,
vanishes on the vacuum solutions, and is a conformal primary that is not itself a (Weyl
covariant) primary descendant of other metric fields. The soft part reduces to a primary
descendant in the linearized limit, matching the tree level proposal for a celestial stress
tensor in [59]. Meanwhile, certain quadratic corrections are necessary to reproduce the
correct covariance properties. Furthermore, this derivation extends previous construction
to nontrivial superrotation vacua.

To compare these expressions with the amplitudes computations [14, 42, 59], we need
to go back to the trivial superrotation vacuum. In this limit, the Weyl covariant derivatives
reduce to covariant derivatives on the celestial sphere. At tree level, we recover the celestial
diamond story as presented in [30, 31], illustrated in figure 1. The operators appearing
in the expressions of [29] are plotted at their respective dimensions, also summarized in
table 1. In each case the operators at the bottom corners have dimension ∆ = 3 while the
ones at the top corners have dimension ∆ = −1. The construction of the BMS fluxes only
requires the bottom half of the memory diamonds. The dashed lines in the figure indicate
the descendancy relations that do not appear here. For comparison with [31], we note
that in the linearized case the Schwarzian mode parameterizing the superrotation vacuum
can be captured by an operator with the same conformal dimensions as the symmetry
parameter Y [51].

Both the BMS flux computation and the one-loop exact correction to the subleading
soft graviton from amplitudes require that the operator J̄soft get a contribution that does
not descend from the subleading radiative mode N (∞). The authors of [42] use the explicit
form of the soft factors to match the loop correction to a proposed quadratic operator,
effectively considering a double soft limit. The extrapolate dictionary suggests that we
should take the slight mismatch with [29] seriously, since the transformation laws are
sensitive to such modifications. However, it is worth providing some perspective on the
timeline. Issues with non-integrable terms in the definitions of the charges on fixed-u cuts
were strategically avoided by sticking to tree level amplitudes in [14]. The recent work
of [29] builds off lessons learned in the canonical phase space program, while the flux
quantities they consider have nice properties precisely because they can be recast in terms
of data at the corners where the spacetime has returned to a non-radiative solution.

The Ward identity (1.4) follows from combining in and out contributions, whereby the
corner terms near spatial infinity are canceled by an antipodal matching condition [2]. In
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N̄ (0) N (0)

C

Psoft

(a)

Tzz

J̄soft

N̄ (1)

Y

(b)

Figure 1. Goldstone (red) and memory (black) diamonds for the leading (a) and subleading (b)
soft graviton theorem.

order for this total charge to vanish, the soft and hard parts need to transform in the same
representations. On the one hand, it is straightforward to think of tuning the gravitational
coupling to zero to isolate the transformation properties of the hard contribution. By
contrast, the analog for isolating the soft sector is to restrict to non-radiative spacetimes.
In the end, the realization of the soft and hard splitting is tied to the leading infrared
factorization of the gravitational S-matrix.

In hindsight, the derivation of the IR divergent contribution to the loop corrected soft
theorem in [42] arises from the interaction between the soft theorems and the supertransla-
tion dressing. Taking into account the vertex operator construction of [27] indeed remedies
the mismatch between [29] and [42] and restores a form that transforms as expected under
the full asymptotic symmetry group. This provides a new perspective on the question of
possible finite corrections to the loop order stress tensor raised in [42], since we can phrase
this in terms of the ability to construct other boundary graviton modes with the appro-
priate symmetry transformations. In the end, we see that the mechanism for identifying
the soft and hard fluxes follows the same paradigm as the null state analysis of [30–34],
applied to a larger symmetry group. Meanwhile, this example illustrates the power of un-
derstanding the underlying bulk perspective when it comes to identifying operators like the
loop-corrected stress tensor, whose form is protected by symmetries despite being tricky
to pin down unambiguously from the perturbative computation.
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