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1 Introduction

Dimensional regularization (DR) [1, 2] is the regularization framework that underlies
most of the modern higher-order perturbative calculations in Quantum Chromodynam-
ics (QCD). It is well known that special attention is needed in DR in the treatment of γ5
— an intrinsically 4-dimensional object. At the root of the issue is the contradiction be-
tween a fully anticommuting (non-trivial) γ5 in D ( 6= 4) dimensions and the non-vanishing
value of the trace of the product of four γ matrices and γ5 in 4 dimensions. Neverthe-
less, the anticommutativity of γ5 is essential for the concept of chirality of spinors in 4
dimensions. On the other hand, an anticommuting γ5 in DR, where the invariance of loop
integrals under arbitrary loop-momentum shifts is ensured, leads to the absence of the axial
or Adler-Bell-Jackiw (ABJ) anomaly [3, 4]. In order to overcome these issues, various γ5
prescriptions in DR have been developed in the literature [1, 5–19] over a span of nearly
50 years, albeit each with its own pros and cons.

Given the fact that a local gauge theory with an internal gauge anomaly suffers from
severe theoretical problems, e.g. the loss of unitarity and all-order (multiplicative) renor-
malizability, it is natural to wonder why one would care about studying the anomalous sin-
glet axial current at all. Putting aside many related interesting theoretical developments,
an external axial anomaly (i.e. anomaly in the divergence of an external axial current which
is not coupled to the quantized gauge bosons in question) is not only allowed in a gauge
theory, but also crucial in understanding some important physical observations, such as a
low-energy theorem for π0 → γγ decay [3, 4, 20, 21] and the solution of the so-called U(1)
problem [22–24]. Besides, there are practical applications of the renormalization of the
anomalous singlet axial current. One example is the determination of the structure of the
non-decoupling (heavy-quark) mass logarithms in the quark form factors [25–30], which
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are present in an anomaly-free theory such as the Standard Model. These non-decoupling
mass logarithms can be resummed by solving the corresponding renormalization group
equation where the anomalous dimension is precisely given by that of the renormalized
anomalous singlet axial current. Another application concerns the calculation of polar-
ized proton structure functions (or parton distribution functions) and polarized splitting
functions [31–38].

In this publication, we provide the renormalization constants of both the singlet and
non-singlet axial currents regularized with a non-anticommuting γ5 [1, 5, 6] up to the
four-loop order in QCD. We employ, in particular, the non-anticommuting γ5 variant as
prescribed in refs. [15, 16]. The renormalization constant for a flavor non-singlet axial
current was previously determined in DR to O(α3

s) in refs. [15, 16], whereas the finite
part of the renormalization constant of the flavor-singlet axial current was computed only
to O(α2

s) due to the limitation of the approach in use (see below). The missing O(α3
s)

finite part was completed in ref. [39] where a derivative-free projector was composed in
order to efficiently project out the non-vanishing “anomalous” form factor of the famous
vector-vector-axial-vector (VVA)-amplitude [3, 40], i.e. the matrix element of the axial
current operator between the vacuum and a pair of external gluons, at zero-momentum
(where the axial anomaly vanishes). The choice of the VVA-amplitude is advantageous for
determining the MS renormalization constant associated with the axial-anomaly operator
(and subsequently verifying its equality with that of the strong coupling constant αs). This
choice is, however, not very economical for studying axial current renormalization.

The approach of refs. [15, 16, 41] can be used straightforwardly to obtain the renor-
malization constant for a non-singlet axial current at O(α4

s), provided the propagator-
type four-loop integrals can be efficiently evaluated which is indeed the case thanks to
Forcer [42] and the analytic results for the values of the relevant master integrals given in
refs. [43, 44]. However, this approach does not allow to obtain the renormalization constant
for a singlet axial current at O(α4

s) via a four-loop calculation, because the axial anomaly
vanishes at zero momentum in the matrix element of the axial current operator between
the vacuum and a pair of external quarks. Alternatively, in order to retain a non-vanishing
anomaly in this matrix element, one has to allow a non-zero momentum flowing through
the singlet axial current. In consequence, in order to deal with a propagator-type kine-
matic configuration (and to avoid dealing with infrared/collinear divergences), one of the
external quarks must be off-shell, carrying away the same amount of input momentum,
while the other carries zero momentum. This naturally leads us to propose to use the
Ward-Takahashi identity for an axial current with off-shell quark fields to determine the
renormalization constant for a flavor singlet (and non-singlet) axial current at O(α4

s) via a
four-loop calculation. In this approach, the non-anticommuting γ5 matrix in the contact
terms (due to off-shell external quark fields) does not require any renormalization. We will
address this in detail later in the article.

The article is organized as follows. In the next section, we recapitulate the basic renor-
malization properties of the local composite operators involved in our calculation, mainly
to lay down the notations and conventions in use. Section 3 is devoted to a detailed account
of the core of our recipe, the usage of the off-shell Ward-Takahashi identity for an axial
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current with a non-anticommuting γ5, for efficiently determining the renormalization con-
stants of axial currents, especially for the anomalous singlet one. The perturbative results
for the renormalization constants of singlet and non-singlet axial currents determined in
this way at four-loop order in QCD are presented in section 4. We conclude in section 5.

2 Preliminaries

In this section, we specify the notations and conventions for the quantities considered in
the rest of this article. We use the non-anticommuting definition of γ5 in dimensional
regularization, originally introduced by ’t Hooft-Veltman [1] and Breitenlohner-Maison [6]

γ5 = − i

4!ε
µνρσγµγνγργσ , (2.1)

but with the Levi-Civita tensor1 εµνρσ treated according to refs. [15, 16, 45], sometimes
called Larin’s prescription in the literature. As summarized in refs. [15, 16], the properly
renormalized non-singlet and singlet axial current operator with a non-anticommuting γ5
in QCD with nf massless quarks can be written as[

Ja,µ5,ns

]
R

= Zns ψ̄
B γµγ5 t

aψB

= Zfns Z
ms
ns ψ̄

B −i
3! ε

µνρσγνγργσ t
aψB , (2.2)[

Jµ5,s

]
R

= Zs
∑
q

ψ̄Bq γ
µγ5 ψ

B
q

= Zfs Z
ms
s

∑
q

ψ̄Bq
−i
3! ε

µνρσγνγργσ ψ
B
q , (2.3)

where the subscript R at a square bracket denotes operator renormalization. In the non-
singlet current eq. (2.2), ta denotes a (normalized) generator of a flavor group in the
representation spanned by the bare quark flavor-multiplet ψB. Each ψBq in the singlet
current eq. (2.3) denotes a bare quark field of flavor q with mass dimension2 (D−1)/2, and
the sum extends over all nf quark fields active in the theory. In order to correctly define a
hermitian axial current with a non-anticommuting γ5, the necessary “symmetrization” of
the matrix product, γµγ5 → 1

2
(
γµγ5− γ5γ

µ
)
, before substituting eq. (2.1) is understood in

the second equality in eqs. (2.2), (2.3).
The non-singlet axial current Ja,µ5,ns is conserved, up to the classically-expected mass

term 2mψ̄iγ5t
aψ which vanishes for massless quark fields, and hence is non-anomalous.

This property is sufficient to ensure that Ja,µ5,ns should remain un-renormalized if one
had used an anticommuting γ5, similarly to the non-renormalization of the vector cur-
rent [Jµ]R = ψ̄BγµψB. The appearance of the ultraviolet (UV) renormalization constant
Zns ≡ Zfns Z

ms
ns is thus solely to amend the spurious terms originating from the apparent

1We use the convention ε0123 = −ε0123 = +1.
2In ref. [39], a global factor µ4−D in the mass scale µ of dimensional regularization was introduced in

order for the mass dimension of the r.h.s. operator be equal to the canonical dimension of the l.h.s. in four
dimensions.
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loss of γ5’s anticommutativity in the chosen prescription (2.1), such that the following
current conservation equation

∂µ
[
Ja,µ5,s

]
R

= 0 , (2.4)

holds for the renormalized non-singlet axial current. In this way, the γ5’s anticommutativity
is effectively restored for the non-singlet axial current [15, 16, 41]. This also implies that the
renormalization constant Zns ≡ Zfns Zmsns , as a whole, has a vanishing anomalous dimension,
namely µ2 d lnZns

dµ2 = 0.
On the other hand, the singlet axial current Jµ5,s in eq. (2.3) is not conserved, due to the

quantum anomaly [3, 4], and does require genuine UV renormalization regardless of the γ5
prescription in use. Furthermore, it is known to renormalize multiplicatively [3, 46]. The
factor Zs ≡ Zfs Zmss denotes the corresponding UV renormalization constant, conveniently
parameterized as the product of a pure MS-renormalization factor Zmss and an additional
finite renormalization factor Zfs . The latter is needed to restore the correct form of the
axial Ward identity, or rather the all-order axial-anomaly equation [3, 40], which in terms
of renormalized local composite operators reads

[
∂µJ

µ
5,s
]
R

= as nf TF

[
FF̃

]
R
, (2.5)

where TF = 1/2, FF̃ ≡ −εµνρσF aµνF aρσ = εµνρσF
a
µνF

a
ρσ denotes the contraction of the field

strength tensor F aµν = ∂µA
a
ν −∂νAaµ+ gs f

abcAbµA
c
ν of the gluon field Aaµ with its dual form.

We use the shorthand notation as ≡ αs
4π = g2

s
16π2 for the QCD coupling, and fabc denotes

the structure constants of the non-Abelian color group of QCD. The renormalization-group
(RG) equation of as in D dimensions reads

µ2 d ln as
dµ2 = −ε− µ2 d lnZas

dµ2 ≡ −ε+ β , (2.6)

where Zas stands for the MS coupling renormalization constant and β ≡ −µ2 d lnZas
dµ2 de-

notes the QCD beta function, i.e. the anomalous dimension of the renormalized as in 4
dimensions (µ denotes the mass scale in dimensional regularization). In contrast to the
l.h.s. of eq. (2.5), the renormalization of the axial-anomaly operator FF̃ is not strictly
multiplicative (as known from ref. [3]), but involves mixing with the divergence of the axial
current operator [11, 47],

[
FF̃

]
R

= ZFF̃
[
FF̃

]
B

+ ZFJ
[
∂µJ

µ
5,s
]
B
, (2.7)

where the subscript B implies that the fields in the local composite operators are bare. In
the computation of the matrix elements of the axial-anomaly operator FF̃ , we employ its
equivalent form in terms of the divergence of the Chern-Simons current Kµ, namely

FF̃ = ∂µK
µ

= ∂µ

(
−4 εµνρσ

(
Aaν∂ρA

a
σ + gs

1
3f

abcAaνA
b
ρA

c
σ

))
, (2.8)
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where, unlike Jµ5,s, the currentKµ ≡ −4 εµνρσ
(
Aaν∂ρA

a
σ + gs

1
3f

abcAaνA
b
ρA

c
σ

)
is not a gauge-

invariant object [11, 47]. The Feynman rules for the r.h.s. of eq. (2.5) used in our calculation
are directly based on eq. (2.8). As verified explicitly to O(α4

s) in ref. [39], the equality
ZFF̃ = Zas holds, which was proved recently in ref. [48]. For the sake of self-explanatory
notations, we keep the symbol ZFF̃ in the following discussion.

The renormalization of the operators ∂µJµ5 and FF̃ specified above can be arranged
into the following matrix form([

∂µJ
µ
5,s
]
R[

FF̃
]
R

)
=
(
Zs 0
ZFJ ZFF̃

)
·
([
∂µJ

µ
5,s
]
B[

FF̃
]
B

)
. (2.9)

The matrix of anomalous dimensions of these two renormalized operators is defined by

d
d lnµ2

([
∂µJ

µ
5,s
]
R[

FF̃
]
R

)
=
(
γs 0
γF J γF F̃

)
·
([
∂µJ

µ
5,s
]
R[

FF̃
]
R

)
. (2.10)

3 The axial Ward-Takahashi identity

Given the operator-level axial anomaly equation (2.5) in the canonical quantization for-
malism, one can derive the following anomalous Ward-Takahashi identity [3] in the mo-
mentum space:

qµ Γµ5,s(p′, p) = −as nf TF Λ(p′, p) + γ5 Ŝ
−1(p) + Ŝ−1(p′) γ5 , (3.1)

for the singlet axial current with massless quark fields.3 Diagrammatically, this equation
can be illustrated as in figure 1. Γµ5,s(p′, p) in eq. (3.1) is the amputated one-particle
irreducible (1PI) 3-point vertex function, computed using the renormalized singlet axial
current operator (i.e. eq. (2.3)) with a momentum insertion q = p′− p. Ŝ(p) in the contact
terms on the r.h.s. is defined by the full propagator of an off-shell massless quark,

i δij Ŝ(p) = i δij
Z2

/p− ΣR(p) ,

where Z2 stands for the quark wavefunction renormalization constant, ΣR(p) is the renor-
malized quark self-energy function and δij is the identity color factor in the fundamental
representation of the color algebra. Λ(p′, p) denotes the amputated 1PI 3-point function∫

d4xd4x′ eip
′·x′−ip·x 〈0|T̂

[
ψB(x′) ψ̄B(x)

[
FF̃

]
R

(0)
]
|0〉|amp ,

computed using the renormalized axial anomaly operator, i.e. the r.h.s. of eq. (2.5).
The non-anomalous Ward-Takahashi identity for the renormalized non-singlet axial

current operator takes the usual form where the anomaly term in eq. (3.1) is absent,
namely,

qµ Γa,µ5,ns(p′, p) = taγ5 Ŝ
−1(p) + Ŝ−1(p′) γ5t

a , (3.2)
3The trivial identity color factor in the fundamental representation is suppressed; in case of massive quark

fields, there will be an additional contribution generated by the classically-expected mass term 2mψ̄iγ5ψ.
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= + +
qµ

[Jµ
5,s]R

q

asnfTF [FF̃ ]R

p′

p

p′

p

γ5 p p′ γ5

q q

Figure 1. An illustration of the anomalous Ward-Takahashi identity (3.1). The first diagram on
the r.h.s. is only one of three types of contributions, while the other two involve a local vertex with
either three gluons or two quarks as implied by eqs. (2.8) and (2.9).

which is very similar to the well-known Ward-Takahashi identity for a (color-neutral) con-
served vector current. Similarly, Γa,µ5,ns(p′, p) in eq. (3.2) is the amputated 1PI vertex func-
tion computed using the renormalized non-singlet axial current operator (i.e. eq. (2.2))
with a momentum insertion q = p′ − p.

One critical feature of eq. (3.1) and eq. (3.2), important for our approach, deserves a
comment: the γ5 matrix in the r.h.s. contact terms multiplies the quark self-energy func-
tions from outside, hence never appears within any loop correction, and clearly never on a
closed fermion loop as illustrated in figure 1. Indeed, the γ5 matrix in the contact terms
of the axial Ward-Takahashi identities (2.2), (2.3) is always on an open quark line and
essentially “external”. Because of this, one can simply shift it, while respecting anticom-
mutativity, into the external projector used in the computation, and subsequently combine
it with the γ5 present in the said external projector. Therefore, one will not need any
γ5-related renormalization constant, such as those in eqs. (2.2), (2.3), in the calculation of
the final renormalized contributions from the contact terms in the axial Ward-Takahashi
identities (3.1), (3.2). In particular, if one would combine these two γ5 matrices using the
original definition by ’t Hooft-Veltman [1] and Breitenlohner-Maison [6], one would have
γ2

5 equal to an identity matrix in spinor space, and hence each of the r.h.s. contact terms
would contribute the same value as the self-energy function of an off-shell quark without
any γ5 matrices involved. Alternatively, if one proceeds literally according to the variant in
refs. [15, 16], γ2

5 would no longer be the identity matrix, albeit, still proportional to it by a
polynomial factor in D. Consequently, the intermediate singular expressions on the r.h.s.
would not be identical to the self-energy function of an off-shell quark; but the same finite
remainder in the 4-dimensional limit will be produced (without the need of any γ5-related
renormalization constant).

To determine the renormalization constants defined in eqs. (2.2), (2.3), we compute
first the bare expressions of both sides of the axial Ward-Takahashi identities eq. (3.1) and
eq. (3.2). The perturbative QCD corrections to these matrix elements or correlation func-
tions are computed in terms of Feynman diagrams, which are manipulated in the usual way.
The technical workflow follows closely our previous work [39] where we refer for details, in
particular the tool chain in use. As mentioned in the introduction, to have a non-vanishing
divergence of the axial current, namely l.h.s. of eqs. (2.2), (2.3), one has to allow a non-
zero momentum insertion through the axial current operator. On the other hand, to keep a
propagator-type kinematic configuration, and also to avoid dealing with infrared/collinear
divergences, one of the external quarks must be off-shell, carrying away the same amount
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of momentum inserted through the axial current operator. This then forces us to take the
kinematic configuration q = −p with p′ = 0. Consequently, the quark self-energy term
Ŝ−1(p′) in the r.h.s. of eq. (3.1) and eq. (3.2) vanishes completely in dimensional regular-
ization. At this kinematic limit, there is essentially just one Lorentz structure /qγ5 (at least
in 4 dimensions). We project the aforementioned bare correlation functions of both sides
onto this common Lorentz structure, obtaining respectively a Lorentz scalar quantity. The
pure MS parts of the renormalization constants in eqs. (2.2), (2.3), namely Zmss and Zmsns ,
can be determined from the remaining pole parts in these scalar projections after removing
those that can be accounted for by the wavefunction renormalization of the external quark
fields, by the αs renormalization and by the renormalization of the general-covariant-gauge
fixing parameter ξ. The non-MS finite renormalization constants, Zfs and Zfns, are deter-
mined by demanding the renormalized axial Ward-Takahashi identities at q = −p to hold
order-by-order in the perturbative coupling as in the 4 dimensional limit.

4 Results

Below we present our final perturbative results for the renormalization constants defined
in eqs. (2.2), (2.3) for axial currents, as well as the ZFJ in eq. (2.9), at the four-loop order
in QCD with nf massless quarks. The perturbative QCD coupling as ≡ αs

4π is renormalized
in the MS scheme.

4.1 The non-singlet axial current

We start with the simple case, the renormalization constant Zns ≡ Zfns Z
ms
ns for the non-

anomalous non-singlet axial current. The result for the MS part reads:

Zmsns = 1 + a2
s

{
CACF

(22
3ε

)
+ CFnf

(
− 4

3ε

)}
+a3

s

{
C2
ACF

(3578
81ε −

484
27ε2

)
+ CAC

2
F

(
−308

9ε

)
+ CACFnf

( 176
27ε2 −

832
81ε

)
+C2

Fnf

(32
9ε

)
+ CFn

2
f

( 8
81ε −

16
27ε2

)}
+a4

s

{
C3
ACF

(
1331
27ε3 −

26411
162ε2 +

36607
108 − 154ζ3

ε

)
+ C2

AC
2
F

(
121
ε2

+
440ζ3 − 29309

54
ε

)

+C2
ACFnf

(
−242

9ε3 + 631
9ε2 +

−4ζ3
3 −

8029
81

ε

)
+ CAC

3
F

( 935
6 − 264ζ3

ε

)

+CAC2
Fnf

( 2381
27 −

152ζ3
3

ε
− 88

3ε2

)
+ CACFn

2
f

(
44
9ε3 −

206
27ε2 +

16ζ3
3 + 367

162
ε

)

+C3
Fnf

(
48ζ3 − 40

3
ε

)
+ C2

Fn
2
f

(
4

3ε2 +
20
27 −

16ζ3
3

ε

)

+CFn3
f

(
− 8

27ε3 + 4
81ε2 + 26

81ε

)}
. (4.1)
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The definition of the quadratic Casimir color constants is as usual: CA = Nc , CF =
(N2

c − 1)/(2Nc) with Nc = 3 in QCD and the color-trace normalization factor TF = 1/2.
The result for the finite part reads:

Zfns = 1 + as
{
CF (−4)

}
+ a2

s

{
CACF

(
−107

9

)
+ C2

F (22) + CFnf

(2
9

)}
+a3

s

{
C2
ACF

(
56ζ3 −

2147
27

)
+ CAC

2
F

(5834
27 − 160ζ3

)
+ CACFnf

(32ζ3
3 + 356

81

)
+C3

F

(
96ζ3 −

370
3

)
+ C2

Fnf

(
−32ζ3

3 − 62
27

)
+ CFn

2
f

(52
81

)}
+a4

s

{
C3
ACF

(
10498ζ3

27 − 4120ζ5
3 − 77π4

30 − 324575
648

)

+C2
AC

2
F

(
−1570ζ3 + 17020ζ5

3 + 22π4

3 + 10619
6

)

+C2
ACFnf

(
1118ζ3

9 − 200ζ5
3 − π4

45 + 18841
324

)

+CAC3
F

(
3332ζ3

3 − 6760ζ5 −
22π4

5 − 232949
108

)

+CAC2
Fnf

(
−1312ζ3

9 − 40ζ5
3 − 38π4

45 − 1705
81

)

+CACFn2
f

(
−88ζ3

9 + 4π4

45 + 73
54

)
+ C4

F

(
564ζ3 + 1840ζ5 + 1553

2

)

+C3
Fnf

(
116ζ3

3 + 80ζ5 + 4π4

5 − 850
27

)
+ C2

Fn
2
f

(
88ζ3

9 − 4π4

45 −
719
81

)

+CFn3
f

(5
9 −

16ζ3
27

)
+ C1CFnf

(
128ζ3 −

608
3

)
+C2CF

(
1520ζ3 + 1920ζ5 −

32
3

)}
, (4.2)

where the additional color constants are defined in terms of symmetric color tensors4 as

C1 ≡
dabcdF dabcdF

N2
c − 1 = N4

c − 6N2
c + 18

96N2
c

,

C2 ≡
dabcdF dabcdA

N2
c − 1 = Nc

(
N2
c + 6

)
48 . (4.3)

Up to three-loop order, we have reproduced the results in ref. [15]. We have checked that the
anomalous dimension of the above Zns vanishes up to four-loop order (in the 4-dimensional
limit), as expected from eq. (2.4). In addition, we performed an alternative calculation of
Zns following the recipe of refs. [15, 16, 41] at four-loop order, and we confirm that the
same result follows.

4The symmetric tensor dabcd
F is defined by the color trace 1

6Tr
(
T aT bT cT d + T aT bT dT c + T aT cT bT d +

T aT cT dT b + T aT dT bT c + T aT dT cT b
)
with T a the generators of the fundamental representation of the

SU(Nc) group, and similarly dabcd
A for the adjoint representation.
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4.2 The singlet axial current

Now we come to the more interesting and useful case of the anomalous singlet axial current
operator. The result for the MS part reads:

Zmss = 1 + a2
s

{
CACF

(22
3ε

)
+ CFnf

( 5
3ε

)}
+a3

s

{
C2
ACF

(3578
81ε −

484
27ε2

)
+ CAC

2
F

(
−308

9ε

)
+ CACFnf

(149
81ε −

22
27ε2

)
+C2

Fnf

(
−22

9ε

)
+ CFn

2
f

( 20
27ε2 + 26

81ε

)}
+a4

s

{
C3
ACF

(
1331
27ε3 −

26411
162ε2 +

36607
108 − 154ζ3

ε

)

+C2
AC

2
F

(
121
ε2

+
440ζ3 − 29309

54
ε

)
+ C2

ACFnf

(
− 121

18ε3 + 713
36ε2 +

−437ζ3
6 − 15593

648
ε

)

+CAC3
F

( 935
6 − 264ζ3

ε

)
+ CAC

2
Fnf

(
55
6ε2 +

46ζ3
3 −

1897
108

ε

)

+CACFn2
f

(
− 22

9ε3 + 76
27ε2 +

−53ζ3
3 −

31
81

ε

)
+ C3

Fnf

(
48ζ3 + 29

12
ε

)

+C2
Fn

2
f

(
11
6ε2 +

56ζ3
3 −

851
54

ε

)
+ CFn

3
f

( 10
27ε3 + 13

81ε2 −
35

162ε

)}
. (4.4)

The result for the finite part reads:

Zfs = 1 + as
{
CF (−4)

}
+ a2

s

{
CACF

(
−107

9

)
, C2

F (22) + CFnf

(31
18

)}
+a3

s

{
C2
ACF

(
56ζ3 −

2147
27

)
+ CAC

2
F

(5834
27 − 160ζ3

)
+ CACFnf

(110ζ3
3 − 133

81

)
+C3

F

(
96ζ3 −

370
3

)
+ C2

Fnf

(497
54 −

104ζ3
3

)
+ CFn

2
f

(316
81

)}
+a4

s

{
C3
ACF

(
10498ζ3

27 − 4120ζ5
3 − 77π4

30 − 324575
648

)

+C2
AC

2
F

(
−1570ζ3 + 17020ζ5

3 + 22π4

3 + 10619
6

)

+C2
ACFnf

(
3941ζ3

9 − 845ζ5
4 − 437π4

360 + 98815
1296

)

+CAC3
F

(
3332ζ3

3 − 6760ζ5 −
22π4

5 − 232949
108

)

+CAC2
Fnf

(
−8807ζ3

18 − 370ζ5
3 + 23π4

90 + 10687
162

)

+CACFn2
f

(
−1037ζ3

18 + 91π4

180 −
235
36

)
+ C4

F

(
564ζ3 + 1840ζ5 + 1553

2

)
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+C3
Fnf

(
443ζ3

3 + 260ζ5 + 4π4

5 − 43025
216

)
+ C2

Fn
2
f

(
484ζ3

9 − 22π4

45 − 5971
648

)

+CFn3
f

(17
4 −

124ζ3
27

)
+ C1CFnf

(
264ζ3 − 520ζ5 −

320
3

)
+C2CF

(
1520ζ3 + 1920ζ5 −

32
3

)}
. (4.5)

Up to three-loop order, we have reproduced the results in refs. [16, 39] determined by com-
puting the VVA-amplitudes. As can be easily checked using these results, the differences
Zmss − Zmsns and Zfs − Zfns all start from O(a2

s) and are proportional to nf CF . As dis-
cussed in section 2, the renormalized singlet axial current does have a non-zero anomalous
dimension, which reads:

γs = µ2 d ln
(
Zfs Z

ms
s

)
dµ2

= as
{
CF (4ε)

}
+ a2

s

{
CACF

(214ε
9

)
+ C2

F (−28ε) + CFnf

(
−31ε

9 − 6
)}

+a3
s

{
C2
ACF

((2147
9 − 168ζ3

)
ε

)
+ CAC

2
F

((
480ζ3 −

4550
9

)
ε

)
+CACFnf

((133
27 − 110ζ3

)
ε− 142

3

)
+ C3

F ((170− 288ζ3) ε)

+C2
Fnf

((
104ζ3 −

869
18

)
ε+ 18

)
+ CFn

2
f

(4
3 −

316ε
27

)}
+a4

s

{
C3
ACF

((
−41992ζ3

27 + 16480ζ5
3 + 154π4

15 + 324575
162

)
ε

)

+C2
AC

2
F

((
5384ζ3 −

68080ζ5
3 − 88π4

3 − 447472
81

)
ε

)

+C2
ACFnf

((
−15764ζ3

9 + 845ζ5 + 437π4

90 − 98815
324

)
ε− 1607

6

)
(4.6)

+CAC3
F

((
−5648ζ3

3 + 27040ζ5 + 88π4

5 + 43967
9

)
ε

)

+CAC2
Fnf

((
12334ζ3

9 + 1480ζ5
3 − 46π4

45 − 25880
81

)
ε+ 461

2

)

+CACFn2
f

(
144ζ3 +

(
2074ζ3

9 − 91π4

45 + 235
9

)
ε− 82

3

)

+C3
Fnf

((
−36ζ3 − 1040ζ5 −

16π4

5 + 4145
6

)
ε− 63

)

+C2
Fn

2
f

(
−144ζ3 +

(
−1936ζ3

9 + 88π4

45 − 530
27

)
ε+ 107

)

+C4
F

((
−3792ζ3 − 7360ζ5 −

3950
3

)
ε

)
+ CFn

3
f

((496ζ3
27 − 17

)
ε+ 26

3

)
+C1CFnf

((
−1056ζ3 + 2080ζ5 + 1280

3

)
ε

)
+ C2CF

((
−6080ζ3 − 7680ζ5 + 128

3

)
ε

)}
.
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We note that due to the appearance of the finite renormalization Zfs , the anomalous di-
mension of Zs given above contains terms linear in ε, due to the usage of the D-dimensional
QCD beta function defined in eq. (2.6).

As mentioned in the introduction, among the practical applications of the knowl-
edge of the renormalization of the anomalous singlet axial current is the determination
of the structure of the non-decoupling heavy-quark mass logarithms in the axial quark
form factors, which are present in an anomaly-free theory such as the Standard Model. It
is known [25–29] that the effect of top-quark loops in axial quark form factors does not
decouple in the large top-quark mass or low-energy limit due to the presence of the axial-
anomaly type diagrams. A Wilson coefficient in front of the renormalized singlet axial
current operator can be introduced in the low-energy or heavy-top effective Lagrangian,
which encodes all non-decoupling top-quark mass logarithms remaining in the total “phys-
ical” (non-anomalous) quark form factors (See, for instance, refs. [27, 30] for a detailed
discussion). The terms in this Wilson coefficient featuring the mass logarithms at the four-
loop order can be determined from the anomalous dimension of the singlet axial current
given in eq. (4.6) in 4 dimensions, by solving the corresponding RG equation (e.g. in the
form given by eq. (6.3) of ref. [30]), provided the full knowledge of the lower-order results
available in refs. [30, 49]. Following the conventions of ref. [30], the renormalized low-energy
effective Lagrangian with the axial current coupling to the Z-boson field Zµ reads:

δLReff = µε
(
Zns

nf∑
i=1

ai ψ̄
B
i γ

µγ5 ψ
B
i + ab Zps

[
Jµ5,s

]
B

+ atCw(as, µ/mt)
(
Zns + nf Zps

) [
Jµ5,s

]
B

)
Zµ , (4.7)

where Cw(as, µ/mt) with mt the on-shell top-quark mass is the aforementioned Wilson
coefficient. Furthermore, the axial electroweak coupling of the quark i is denoted by ai.
The renormalization constant Zps ≡ 1

nf

(
Zs − Zns

)
is defined as the difference between

the non-singlet and singlet axial-current renormalization constants defined respectively in
eq. (2.2) and eq. (2.3), further normalized to the case of a single quark flavor with axial
coupling. Here, nf = 5 and as is to be taken after decoupling the top quark in the
mt →∞ limit. Following from the RG invariance of the effective Lagrangian eq. (4.7), the
RG equation for Cw(as, µ/mt) reads:

µ2 d
dµ2Cw(as, µ/mt) = µ2 ∂

∂µ2Cw(as, µ/mt) + β as
∂

∂as
Cw(as, µ/mt)

= γs
nf
− γsCw(as, µ/mt) , (4.8)

where only the 4-dimensional limit of γs in eq. (4.6) is needed. Solving eq. (4.8) with a
perturbative ansatz for Cw(as, µ/mt), the logarithmic part of this Wilson coefficient can be
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explicitly reconstructed up to O(α4
s):

Cw(as, µ/mt)|log = a2
s

{
CF (−6Lµ)

}
+a3

s

{
CACF

(
− 22L2

µ −
76Lµ

3

)
+ C2

F (18Lµ) + CFnf

(
4L2

µ −
8Lµ

3

)}
+a4

s

{
C2
ACF

(
−

242L3
µ

3 −
622L2

µ

3 − 10868Lµ
9 + 924ζ3Lµ

)
+ C3

F (−63Lµ)

+CFnf
(
− 328Lµ

9

)
+ CAC

2
F

(
− 792ζ3Lµ + 99L2

µ − 50Lµ
)

+CFn2
f

(
−

8L3
µ

3 +
8L2

µ

3 − 296Lµ
9

)
+ CACF

(1804Lµ
9

)
+CACFnf

(88L3
µ

3 +
92L2

µ

3 + 3280Lµ
9 − 24ζ3Lµ

)
+C2

Fnf
(
164Lµ − 24L2

µ

)}
+ O(α5

s) , (4.9)

where Lµ ≡ ln µ2

m2
t
.5 The constant part of Cw(as, µ/mt), however, needs to be fixed by

matching to an explicit calculation in the heavy-top limit. We plan to come back to this
in the future.

4.3 The axial anomaly operator

As argued in the literature, e.g. refs. [16, 39, 47, 48, 50], it follows from the ABJ equation
with the proven relation ZFF̃ = Zas , that the equality

γs = nf TF as γF J (4.10)

with γs and γF J defined in eq. (2.10) must hold true, albeit only in the limit ε = 0. In
principle, in the matrix of renormalization constants in eq. (2.9) for the local composite
operators appearing in the ABJ equation, one only needs to compute Zs. This relation
also provides a check of our 4-loop result eq. (4.6), as ZFJ was already known to three-loop
order [51, 52].

The operator
[
FF̃

]
R
is only required up to O(α3

s) in the calculation of Zs at four-loop
order by means of eq. (3.1). Nevertheless, it is possible to obtain ZFJ up to O(α4

s) using
the same techniques as for the other renormalisation constants. Indeed, we evaluate the
matrix element of eq. (2.7) corresponding to the first contribution on the r.h.s. in figure 1
at q = −p with p′ = 0 up to four-loop order as before. In this way we obtain:

ZFJ = as

{
CF

(12
ε

)}
+a2

s

{
CACF

(142
3ε −

44
ε2

)
+ C2

F

(
−42
ε

)
+ CFnf

( 8
ε2
− 4

3ε

)}
5We note that the number of the heavy decoupled quarks is set as 1 in eq. (4.9), and this is the reason

why there appear terms with factors like CACF , CFnf in the O(α4
s) result.
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+a3
s

{
C2
ACF

(484
3ε3 −

2378
9ε2 + 1607

9ε

)
+ CAC

2
F

(550
3ε2 −

2947
9ε

)
+CACFnf

(
−176

3ε3 + 568
9ε2 +

164
9 − 96ζ3

ε

)
+ C3

F

(178
ε

)

+C2
Fnf

(
96ζ3 − 548

9
ε

− 16
3ε2

)
+ CFn

2
f

( 16
3ε3 −

8
9ε2 −

52
9ε

)}

+a4
s

{
C3
ACF

(
−5324

9ε4 + 36256
27ε3 −

37111
27ε2 +

8540ζ3
9 − 1760ζ5 + 110140

81
ε

)

+C2
AC

2
F

(
−726
ε3

+ 50320
27ε2 +

−800ζ3 + 1760ζ5 − 200645
81

ε

)

+C2
ACFnf

(
968
3ε4 −

5270
9ε3 +

352ζ3 + 3052
9

ε2
+
−5060ζ3

3 + 800ζ5 + 88π4

15 −
35143
162

ε

)

+CAC2
Fnf

(
220
3ε3 +

2143
27 − 352ζ3

ε2
+

5258ζ3
3 + 160ζ5 − 88π4

15 −
77101
162

ε

)

+CACFn2
f

(
−176

3ε4 + 196
3ε3 +

191
9 − 64ζ3

ε2
+

272ζ3
3 − 16π4

15 + 1954
81

ε

)

+C4
F

(
288ζ3 − 1397

2
ε

)
+ C3

Fnf

(
22
3ε2 +

−280ζ3
3 − 960ζ5 + 5471

9
ε

)

+C2
Fn

2
f

(
32
3ε3 +

64ζ3 − 1352
27

ε2
+
−272ζ3

3 + 16π4

15 −
1874
81

ε

)

+CAC3
F

( 18781
9 − 1088ζ3

3
ε

− 2728
3ε2

)
+ CFn

3
f

(
32
9ε4 −

16
27ε3 −

104
27ε2 +

64ζ3
9 −

20
3

ε

)}
.

(4.11)

5 Conclusion

We have computed the renormalization constants of the axial currents, both singlet and
non-singlet, in dimensional regularization up to four-loop order in QCD, using the off-shell
axial Ward-Takahashi identities with a non-anticommuting γ5. We determined, in addition,
the mixing renormalization constant ZFJ at the four-loop order by explicit diagrammatic
computation. With our recipe provided in this article, it seems to even be possible to
determine the renormalization constants for a flavor singlet (and non-singlet) axial current
at O(α5

s) via a five-loop calculation, provided the propagator-type five-loop integrals can
be evaluated.
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