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1 Introduction

The perturbation theory of general relativity (GR) is one of the most successful techniques of
gravity. The recent observations, such as the gravitational wave detection [1, 2] and cosmic
microwave background [3, 4], confirmed the validity of the perturbative GR. However,
the perturbative GR usually involves too many calculations both in the classical and the
quantum levels. The main source of such complications is infinite expansions of the metric
perturbation from the square root of the metric determinant \/—g and the inverse metric g—*.
These generate infinitely many irregular Feynman vertices that we cannot fully handle. In
particular the calculation of graviton scattering amplitude through the traditional approach
using the Feynman diagram is limited despite its importance. Therefore, the development

of tools that simplifies the computation is important in perturbative gravity.



As an alternative theory of gravity, double field theory (DFT) reformulates the closed
string low energy effective field theory by requiring the manifest O(D, D) T-duality [5-11].
It provides a geometric framework for the entire massless NS-NS sector encoded in DFT
field variables: the generalised metric and the DFT dilaton. DFT is equivalent to GR but
more strongly constrained by the O(D, D) structure, and the doubled local Lorentz groups,
which cannot be seen in GR directly. In contrast to GR, the inverse and the square root of
the determinant of the generalised metric are trivial, and these do not appear in the DFT
action. These structures simplify the calculations in DFT compare to GR. For instance,
the supersymmetric DFT has a more straightforward SUSY structure than the conventional
supergravities [12-16].

In the first part of this work, we construct the general framework of the perturbative DF'T
to all orders in fluctuation. This framework extends the previous studies of the finite order
perturbation theory of DFT up to cubic orders [17, 18]. We solve the perturbative O(D, D)
constraint exactly and analyse the structure of the perturbed generalised metric according
to the chirality for the background projection operators. The graviton field is identified in
the mixed chirality sector, and the chiral and the antichiral sectors are composite fields of
the graviton fields. We further find the exact map between the perturbative generalised
metric in DFT and the perturbative metric in GR. This map shows that the perturbative
DFT is the consistent theory of perturbative gravity. We introduce a gauge fixing condition,
which yields the same with the de Donder gauge condition and derive the perturbative EoM
to arbitrary order in perturbation.

In addition to being a powerful calculation tool, a remarkable aspect of DFT is the
relation with the double copy. The double copy is a relation between gravity and the
Yang-Mills theory, which originated in graviton scattering, and it defines a map between
graviton and gluon amplitudes [19-30]. It turns out that DFT and the double copy
share the common origin from the closed string theory, in particular the factorisation into
left- and right-moving sectors [31-39]. The double copy prescription has recently been
extended to solutions of the classical equations of motion (EoM), the so-called classical
double copy [34, 40-42], by establishing the map between the gravity and gauge theory
solutions [36, 43-79]. However, despite the remarkable developments, there is no known
algorithmic prescription for understanding the relation between the single/double copy
maps of classical solutions and the KLT relation for the tree-level scattering amplitudes.

To address this issue we exploit the so-called perturbiner method by Rosly and Seli-
vanov [80-84] that provides a direct connection between solutions of EoM and tree-level
scattering amplitudes. The perturbiner expansion is a generating function of the Berends-
Giele currents in Yang-Mills theory, which gives an efficient tool for computing the gluon
scattering amplitudes.! Berends-Giele constructed the recursion relation [91] in terms of the
off-shell currents using the recursive structure of the Feynman vertices of YM theory. On
the other hand, the perturbiner method generates the same recursion relation by applying
the perturbiner expansion to the classical equations of motion (EoM). This method has
been applied to some non-gravitational effective field theories successfully [92-94]. Thus

!See also [85-90] for the Lo algebra in the BG recursion relation.



it is natural to seek the off-shell recursion relation for gravity. However, the structure
of the perturbative GR is completely different from the Yang-Mills theory. As we have
stated, infinitely many irregular Feynman vertices arise in the perturbative GR, and it
makes difficult to find the recursive structure. Therefore, the perturbiner method that does
not use the Feynman vertices is suitable in developing the off-shell recursion for gravity.
Recently, there have been several works deriving the graviton off-shell recursions from the
perturbative GR [32, 33, 95, 96], and the associated graviton off-shell currents have been
obtained using the recursions.

The second part of this work constructs the graviton off-shell recursion through the
perturbiner method for the perturbative DFT. Exploiting the spinor-helicity formalism, we
obtain the explicit graviton off-shell currents by solving the recursion iteratively. Remarkably,
the graviton currents exhibit the current KLT relation, representing the graviton currents by
the square of gluon currents. Recently, the current KLT relation for the non-gravitational
effective theories are studied in [93], and the color-kinematic duality for the off-shell currents
is introduced in [96]. Comparing with the non-gravitational current KLT relation, the
gravitational case contains contributions from the regular terms for the propagators of the
off-shell leg, which do not contribute to the scattering amplitudes. Since the perturbiner
expansions are the solutions of the EoM, the current KLT relation gives another viewpoint on
the perturbative classical double copy. As a consistency check, we examine the conservation
of our graviton off-shell currents. First, we demonstrate that the currents are conserved up
to gauge fixing conditions when the gauge choice is nonlinear in fields. To support this, we
check the off-shell conservation of gluon currents under the Gervais-Neveu gauge condition,
which is quadratic in the gauge field. The conservation equation for the graviton currents
yields the gauge condition of the generalised metric, and it confirms our results.

The structure of this paper is as follows. In section 2 we will construct the perturbation
theory of DFT. We will analyze the properties of the perturbed generalised metric and
compare with the usual metric perturbation. We will consider the equations of motion for
the perturbed generalised metric which corresponds to the perturbed Einstein equation.
In section 3, we will review the perturbiner method for the Yang-Mills theory and then
apply to the DFT. We will introduce the perturbiner expansion for the graviton field and
construct the off-shell recursion relation for graviton off-shell currents by substituting the
expansion into the perturbative DFT EoM. In section 4 we will solve the graviton recursion
relation iteratively and show the current KLT relation. Section 5 discuss the conservation
of currents in nonlinear gauge fixing. Section 6 gives our conclusion.

2 Perturbation of double field theory

In this section, we construct the perturbation theory of double field theory (DFT) as an
alternative tool to the perturbative GR. We first analyse the structure of the perturbation
of the generalised metric by solving the O(D, D) constraint exactly. We find the relation
between the generalised metric perturbation and the metric perturbation in GR. Next, we
construct action and EoM of the perturbative DFT for pure gravity including all-orders in



the generalised metric perturbation. We also discuss the gauge choice of the generalised
metric, which is closely related to the de Donder gauge fixing in perturbative GR.

2.1 Perturbation of the generalised metric

Double field theory is a reformulation of low energy effective field theory of the closed string
theory that is manifest under O(D, D) T-duality. The field content of DFT is given by
O(D, D) tensors due to the manifest O(D, D) covariance: the generalised metric Hysn and
DFT dilaton d. The generalised metric is not only an arbitrary symmetric 2D x 2D matrix
but also constrained by the O(D, D) constraint,

HunI N Hpo = Tuq, (2.1)

where Jyn is the O(D, D) metric parametrised as

0 o*,
Jun = <5uV 0 ) . (2.2)

Note that Jysny defines the inner product for the doubled tangent space instead of Hsn.
Thus we should raise and lower the O(D, D) vector indices using J MN and Jun respectively.
If we contract JMY with (2.1), the O(D, D) constraint can be recast by

HMNHNP = 5MP , (2.3)

which means that the inverse of the generalised metric H /" is itself. This property ensures
to define a pair of projection operators Py~ and Py in terms of H

Py = %(5MN ), Pt = %(5MN ~ ™). (2.4)

These satisfy the standard properties of projection operators, P> = P and P? = P and

PP = PP = 0. We can also define chiralities associated with the projection operators. The

chiral and antichiral sectors of the doubled tangent space are associated with the P and
P respectively.

The characteristic feature of DFT related with the double copy is the double local
Lorentz group

O(1,D—-1)L x O(1,D — 1)g, (2.5)

which is a Lorentzian version of the maximal compact subgroup of O(D, D). In the closed
string point of view, it arises from the left-right mover decomposition of the closed-string
mode expansion and shares a common origin with the KLT relation [19]. This structure
leads to the double-vielbein or generalised frame fields, Va;™ and Vi, where m and m are
local frame indices associated with the double Lorentz group, O(1, D —1)r and O(1,D—1)g
respectively [97, 98]. These satisfy the defining conditions

Virmn™ (VN = Pun, Vi (V) e g = —Pun (2.6)

where ™" = " = diag(—1,1,---,1).



We can parametrise H in terms of the massless NS-NS fields, metric g, and the
antisymmetric two-form B,,,

my _ "B
n=|{0 e ). 27)
Bp9”" 9uv — Bupg”’ Bow

Further, the DF'T dilaton d, which plays a role of is represented by

e 2= \/—ge %, (2.8)

Similarly, the parametrization of the double-vielbeins are given by

m_ L ((e7hm 5 om_ L [(e7hem
Vi _\/§<€um>7 Vi _\/§<_éum>7 (2.9)

where €, and €,™ are local frame fields associated with the same metric, g, =
€€, Mmn = €,"€, " Nmn. These are related by the local Lorentz group.

Let us consider the perturbative expansion of the generalised metric around a flat
background Hopn

nt 0
Hun = Homn + kv, Homun = 0 n ; (2.10)
uv

where II is the fluctuation of the generalised metric and k is an expansion parameter and
N = diag(—1,1,1,---,1). Introducing background projection operators with respect to
Ho using (2.4), Py = %(5 + Ho) and Py = %(5 — Ho), we decompose the fluctuation II into
four pieces according to the background chiralities

Por" Pon®llpg = Ay, Pon Pon®llpg = Enw

] - oM & (2.11)
Port Pon®Tlpg = Enn, PorP Pon®Tlpg = Ay

Here A and A are symmetric, and £ = . Then the perturbation of generalised metric (2.10)
is rewritten by

Hun = Homn + H(EMN +EuN + Aun + AMN) . (2.12)

The fluctuations &£, £, A and A are not arbitrary, but constrained by the O(D, D)
constraint (2.1). One may decompose the constraint according to the background chiralities
as (2.11)

20N + AnTApy + K2EMTEPN =0,
—2AuN + AnTApy + K2 ETEPN =0,
/ﬁJAMPSPN + HEMPAPN =0,

kANTEpN + kEMT ApN =0,

(2.13)

where we have absorbed « into A and A for convenience. One can solve these constraints
perturbatively in x. The first and the second equations imply that A and A cannot be a
fundamental degrees of freedom, but functions of £ and £. In other words, £ is the linear



perturbation of H.2 The third and fourth equations imply that A and A are expanded by
the product between £ and £

AMN: Zan(KZS(C/_’)nMN, AMN = an(ﬁ2g(€)nMN. (214)
n=1 n=1
and the coefficients of the series are related by a, = —b,. If we substitute these results into

the first and second equations, we have the following recursion relation and initial condition

1 n
an+1 + §Zan+1_p-ap =0, forn>1
p=1 (2.15)
1

(11:—5.

There is an exact solution for the recurrence relation given by the binomial expansion

ap, = (—=1)" <%> forn>1, (2.16)

n

which is nothing but the coefficients of the Taylor expansion of the square root. Then A

Ayn = (—1 +v1-— I€255) MN ,

and A are represented by

Ayn = (1_m> . (2.17)
and the first few terms are
s = O
AMN:=%oﬁéshﬂv+é@3§gﬁﬂv+i%@gggﬁﬂv+.” ‘

Note that the components of the O(D, D) vector indices are not independent and have
redundancies. To remove such redundancies, we introduce a pair of projection operators
that project out the O(D, D) vector indices to D-dimensional undoubled vector indices by
using projectors. Let us introduce a pair of projectors @”M and (:)uM defined in terms of
the background double-vielbeins, Vy and Vp (2.9)

1 (46,% ~ - 1 6,7
OM=¢y,mVH) M=—|["" ), ©M=¢c,"(VH M=—1["" |. (219
M), = S () e —an i), = () e
We may convert the O(D,D) vector indices, M,N,P,---, into the conventional
D-dimensional vector indices, p, v, p, - - -, using them.

20f course € does not have to be linear perturbation only. It may be expanded further by
KE = KE® + KED + K€D 4 ...

The higher order terms £ where n > 1 corresponds to the higher order perturbations of metric in GR. In
this paper, we will focus on the linear perturbation and identify & = £,



From the properties of Vj and Vj, @uM and (:)MM satisfy the following relations

Pé\/[N — n;u/@ﬂM@yN’ PéWN — _nuyé,u,Mél/Ny
0,Me,N Tun=muw, 0,M0,N Tun=—nu, @ﬁ/léuNjMN =0
(2.20)
Using these operators, we denote the projected perturbations of H as
g;w = @uMéVNgMN = @,uMéVNHMNa _w/ = (:);LMGVN‘S‘_MN = é,uMQVNHMNa
A =0,"0,"Ayn =0,M0," Tlyy, AL =06,M6,"Ayn=0,M0, Tyy.
(2.21)

Let us confine ourselves to the pure gravity and ignore other massless NSNS fields, B
and ¢. Then the generalised metric and the DFT dilaton are simply

0 guw

L)
HuN = <g ) , e M=y, (2.22)
and we have the following additional relations among the fluctuations
g/j,l/ = gpl/7 A,uu = A,uu . (223)

Then the expansion of the A, (or A,,) in terms of £, (2.17) reduces to

A,UJ/ = A“y = —Tup (1 — 1/ 1+ 77—1577—15> py

1 1 P 1 p
- —gp (g3 — (&5 e
—6W<25V (&) () )
We now compare &£, and A, with the metric perturbation, g,, = 1+ hy, or g"" =

n" — h* . where h* = b — (h2)* 4+ (h3)" — ..., Using the parametrisation of the
generalised metric (2.7), we can read off what is Iy in terms of the metric fluctuations

when B =0,
—h
1I = - . 2.25
MN ( 0 h,w> (2.25)

(2.24)

Substituting the ITj;y into (2.21), we can represent £ and A in terms of h and h

1 -

1 ~

pv’ pv’
or

gwj = 77“” —EM + AP ) uv = Nuv + g,uu + A;,Ll/ (227)

This shows the equivalence of perturbative expansion of the generalised metric and the
usual metric perturbation in GR up to field redefinition. Furthermore, it is interesting to
note that the relation between £ and A is not restricted to the linearised perturbation.
Therefore, £ can encodes not even linear perturbation h,,, but also all the higher order
perturbation of metric A with n > 1 by the following expansion

K€ = Kby + > K h(). (2.28)

n=2



2.2 Perturbation of DFT equations of motion for pure gravity

We now discuss the perturbative expansion of the equations of motion (EoM) of DFT.
Similar to GR, the generalised curvature tensors are the EoMs of DFT. The EoM of
the DFT dilaton and the generalised metric are the generalised curvature scalar R and
the generalised curvature tensor Ry respectively [11, 97, 98]. Note that the generalised
curvature scalar is the DFT Lagrangian

R = AHMN 9 0nd — OpyONHMY — AHMN G, dONd + 400 HM N Ond
1 1 (2.29)
+ gHMNaMHKLaNHKL — §HMN8MHKL8KHNL ,

Since the variation of the generalised metric has to be constrained by the O(D, D) con-
straint (2.1), dHuyN = P(MPPN)QdeQ, EoM of H not an arbitrary variation of the
Lagrangian with respect to H, but we have to remove the unphysical variations in d4 using
the projectors

Ricr = PkMPLNKuw (2.30)

oL
Where ICMN = SHMN

1 1
Kain = SOuH0nHpq = 7(0p — 20pd) (K720 Har ) +200d

1 1
= S0 O p g + 5 (9p — 20pd) ("0 g + Hiar?0gHm ") -
(2.31)
The gauge symmetry of DFT is the generalised diffeomorphism or the generalised Lie
derivative which acts on the DFT fields as
ﬁ){HMN = XpapHMN + (3MXP — 8PXM> Hpn + (8NXP — 8PXN> Hyp,

A 1 (2.32)
Lxd=XMoyd— 5aMXM ,

where the generalised metric H is a rank-2 tensor and the DFT dilaton d is a scalar density
with respect to the generalised Lie derivative. The gauge parameter X combines the
diffeomorphism parameter £ and the one-form gauge parameter A, for the Kalb-Ramond
field in an O(D, D) covariant manner

é‘#
Xy = <Au> . (2.33)

Then the infinitesimal transformation of €y n and Ay are
LxEun = 2Pyt Pon®(00Xp — 0pXo ),
A ot Po (e o) (2.34)
LxAyn=0.

To remove the gauge degrees of freedom, we have to impose a proper gauge fixing
condition. Here we introduce the following gauge condition

A (e 2 HMNY = 0. (2.35)



We may rewrite this gauge condition in undoubled D-dimensional form by using the
projectors, @uM and C:)MM, and substituting the perturbation of Hysn (2.21)

(€ — D) + 20"d(ny — Egy + Dyu) = 0. (2.36)

Obviously it is a nonlinear gauge condition in £,, because A, is expanded by &, (2.24).
One can show that this is the same as the de Donder gauge condition in GR (or harmonic
coordinate condition) from (2.8) and (2.27)

Oy (V/=gg") = 0. (2.37)

Since the DFT EoM for pure gravity is equivalent to the vacuum Einstein equation, our gauge
condition (2.39) also provides a well-posed initial value problem of Cauchy. However, great
care needs to be taken with consistency of the gauge choice in the case where the dilaton is
nontrivial [99, 100]. If we introduce the linearised metric perturbation \/—ggh* = nH* +hH* 3
then the de Donder gauge condition reduces to

8,h" =0, (2.38)

and it is equivalent to (2.36).
Imposing the gauge fixing condition (2.35), the equations of motion reduces to

1 1
R = 2HMN 9y0nd + gHMNaMHKLaNHKL - §HMNBMHKL8KHNL , (2.39)

R = PKMPLNKMNa
where Kprn is the gauge fixed version of Ky

Kun = %aMPPQaNPPQ — PPR0pdg Pan — 40 PP0|p Pryyg + 20" Prrgd? Py p -
(2.40)
Interestingly, DFT dilaton d does not appear in Ry after the gauge fixing. This is no
surprise, because for pure gravity d does not give a new degree of freedom — it is just the
determinant of metric.
Note that the components of Rpsny are not independent — it contains redundant
equations due to the manifest O(D, D) invariance. There are total (2D)? components in

RN, but the number of independent equations should be D? only: DO+ g4, 9w and

2
w for B,,. To remove the redundancies, we project out Rpsn to the D-dimensional

undoubled form using ©,* and ©, (2.19). There are four distinct equations,
0,M0,"Ryn: — %euM@VN (HNPKMP - ;HMPHNQKPQ> =0,

0,M6,"Ryny :06,M0," (’CMN - %HNPICMP + %HMP/@PN - iHMPHNQICPQ) =0,
0,Me,"Ryn: — %éuM@VNHMPHNQ/%pQ =0,

_ _ 1= ~ - 1 -~
0,6, "Ry : §@uM@uN (HMP/CPN - 2HMPHNQICPQ) =0. (2.41)

3Tt is the opposite convention to the usual metric perturbation y/ —99uv = NMuv + buv. These two choices
are related by a field redefinition.



As one can see, the chiral and the antichiral parts, @MMG,,NRMN and (:)“M(:)VNRMN, can
be represented by the mixed chirality parts, @uM 0,VRyn and (:)MM 0, YRy n. Finally,
combining the two mixed chirality sectors, we have the minimal EoM as

— s 1- 1- - 1 - 1 -
0,6, (lCMN - §’CMP5PN - iKMPAPN + §5MP’CPN + QAMPICPN) =0.
(2.42)

We now present the perturbative DFT equations of motion in undoubled D-dimensional
form using @HM and (:)uM

s a

6 +A) (X +Y +Z-08),, — L (X ~Y —W),), =0, (2.43)

where X, Y, Z,, and W, are auxiliary fields defined as

1 - "
Xuw = =50u(€ = A)70,)(E + A)po + 20(,(E — A8y (€ + Ay
Y = —0°(€ = D)uod (€ = Ay, (2.44)
Zp,z/ = (8 - A)pgapao'gp,y y Wl“’ = (77 - & + A)paaanAHV .

\. .

This equation describes the graviton dynamics in terms of the generalised metric
perturbations, £, and A, which yields the same result as perturbative Einstein equation
for the pure gravity.

3 Off-shell recursion for gravity

Berends-Giele (BG) recursion in Yang-Mills theory provides an efficient algorithm for
computing color-ordered amplitudes iteratively [91]. The recursion was obtained by using
the recursive structure of YM’s Feynman vertices. The main ingredient of this technique
is the off-shell current Jﬁz"'” corresponding to a Feynman diagram with n on-shell legs
and one off-shell leg. The off-shell currents give (n + 1)-point color ordered amplitude
A(1,2,--- ,n+ 1) as follows:*

AL,2, n+1) = lim  spp.per 2" (3.1)

812..%*)0

1 is the polarization vector for the (n 4+ 1)-th external gluon and sj9..,, =

where eff
—(k' + k? 4+ --- + kE™)2. Note that only simple poles with respect to s'2" of the currents
contribute to the amplitudes.

However, the conventional method deriving the off-shell recursion relations using
Feynman vertices is not available for perturbative gravity due to the infinitely many
irregular Feynman vertices. Unlike the YM case, new Feynman vertices arise as the number
of external legs is increased. To circumvent this problem, we will adopt another approach,

the so-called perturbiner expansion, which uses equations of motion rather than Feynman

4Throughout this paper, we will not distinguish the position of the spacetime indices in the off-shell cur-
rents.

~10 -



vertices. Recently, the perturbiner method has been applied to the perturbative GR [95].
Here, we will construct the graviton recursion relation using the perturbiner method for the
perturbative DFT obtained in the previous section.

3.1 Perturbiner method for Yang-Mills theory

We now briefly review the perturbiner expansion, which generates the BG currents and their
recursion relations. The original formulation of the BG recursion relation due to Berends
and Giele considers the structure of Feynman diagrams by defining the off-shell currents,
which is a Feynman diagram with one off-shell leg. On the other hand, the perturbiner
expansion is a multi-particle expansion of the Lie algebra valued gauge field A, in the
plane-wave basis [80-84]

A,u, — Z J;Taieiki,z + Z JlijTaiTaj€ikij.x + Z J;jkTaiTajTakeikijk.x 4. 7 (32)
i 1, 5k
where the coefficients of the expansion, J/i, J/ij, .-+, are the BG currents [101-103] and
1,7, k--- are letters which represent single-particle labels. Here T'% are the Lie group
generators, and kzﬁk = k‘L + kﬁ + k‘,’j + ---. We may simplify the expansion as
Ay =Y JlT e (3.3)
P
where

TP = ook kizkz+ki+kﬁ+...7 (3.4)

and P,Q,R--- are words which consist of the letters, such as P = ijkl---, which are
multi-particle labels. We call the length of the words ‘rank’ and denote as |P|, |Q| and
|R| etc.

The conventional method of constructing the BG recursion relations is using the
recursive structure of Feynman diagrams. On the other hand, in the perturbiner method,
the BG recursion arises by substituting the perturbiner expansion into the EoM. Thus the
perturbiner expansions are solutions of the EoM. Since scattering amplitudes are associated
with the BG currents, the perturbiner method connects the tree-level scattering amplitudes
and solutions of equations of motion manifestly.

The EoM of the YM theory in the Lorentz gauge, A, = 0, is given by

?

OA, [AY,0,A, +TF,,],
V2 ; (3.5)
Fu =0,A, —0,A, — E[Am A,
where our Lie algebra convention is
Te(TT?) = 6%, (7%, T% = i febere. (3.6)

Note that we treat the field strength F,,, as an auxiliary field to avoid the double commutators
in the EoM. Then it requires a perturbiner expansion associated F,,

P P ikp-
Fuu = ZFHVT enr * . (37)
P

- 11 -



As we have mentioned, the gluon recursion can be obtained by substituting the
perturbiner expansion (3.2) into the above EoM

P _ . 1Q 1Ry 7R QR
W= r P_ZR (z(J KRR+ IZFR ~(Q e R)),
= (3.8)
Fh =ikl gl — ikl gl - Z (JeI = (@« R)),
P QR

where the sum goes over all deconcatenations of the given word P = pips - --pp| into two
words Q = p1p2---p; and R = pj1pjie---pjp) for 1 < j < |P|. For instance, for a few
word P, all possible (@, R) pairs are

P =12 (@ R)=(1,2),
P=123  (Q.R)=(1,23), (12.3), (3.9)
P =1234 (Q,R) = (1,234), (12,34), (123,4).

The initial condition of the BG recursion is identified with the polarization vector, J/i =¢

-
We list the explicit expression of the gluon off-shell currents in appendix B

3.2 Perturbiner expansion for DFT

We now define the perturbiner expansion for graviton and construct the off-shell recursion
relations for pure gravity. The graviton perturbiner expansion is not the same as the
gluon case. The main difference in the graviton currents is the colour indices. For gluon
currents, matrix products of the Lie algebra generators T*T9T* ... are used to organize the
perturbiner expansion, and the ordering of letters is important due to the noncommutativity
of T?. However, graviton field &y does not carry colour indices, and we can only use the
plane-wave basis e'*7® to separate the states in the expansion [92, 93]. Since the letters
in the plane-wave basis are commute, the ordering of letters in graviton perturbiners is
irrelevant. Thus the graviton currents satisfy J;, = J, fy for any «, 8 € Sy, where Si2...,, is
a permutation group with the set {1,2,--- ,n}.

We introduce the graviton perturbiner expansion using the ordered words

Gy = T4 T TR+ T e

1<j 1<j<k

_ Z P ke (3.10)
pv )
P

where jfy is the graviton off-shell currents and P is an ordered words P = p1ps - - - pjp| with
p1 <p2 <+ < pip|. Comparing with the words for gluons, for instance a length 2 word
for gluon P = 12 is different from 21, however, a length 2 words for graviton P = 12 = 21.
Like the gluon perturbiner expansion, the coefficient of the expansion jﬁ, are the graviton
BG currents. Since the EoM of the perturbative DFT (2.44) consists of the additional
auxiliary fields A, X, Y, Z, and Wy, other than &, we introduce their perturbiner

- 12 —



expansions as well

Ay = Z Aﬁyez‘kp-x , X = Z Xlﬁe’ﬂﬂ).a} ’ Y, = Z yfyeikp'w ’
P > >
' ' (3.11)
Z/LZ/ = Z nyelk’P'l? , Wuy — Z WZZIGZkP.‘T )
P P

Note that all these auxiliary currents starts from the rank-2, i.e. Afw = Xﬁy = y;'w = wa =
W = 0.

Recall that the BG recursion relation for YM theory can be obtained by substituting
the perturbiner expansion into the YM EoM. Similarly, if we substitute the perturbiner
expansions of graviton and auxiliary fields into the EoM of perturbative DET(2.43), we have

1
j,fuzsp[(X"’erPJrZP)WJr Yo TR (=X YR WR)

P=QUR Ve
B (3.12)
Q R R R R
+ > AZ (XT+ YT+ 27 —spA )V)p} ,
P=QUR
where each auxiliary current is

1 1 1

AL =50 -5 2 WRI0+5 2 (TeTm(Te =
P=QUR P=QURUS
1
P _ 91.R Q Q R R 91.R Q Q R R

X,uz/ - Z [Qk(uku) (jpcr - Apcr) (jpo + Apo) - 2k(uk|,o| (jpcr - Apcr) (j +A )y)g’ ’

P=QUR
yfl/ = Z (jugp - A;?p)kf(jljczr - Az}o)kc?7

P=QUR

P _ R1.R Q Q R
Z,uz/ - Z kp ko (jpa - Apa)j,uzn
P=QUR
Wh =spAl, + > kREF(T2 — AS) AL, .
P=QUR
(3.13)

Remarkably, all the equations are quadratic in currents except Aﬁy. We present the explicit
form of the recursion relations up to rank-4 in the appendix A. We will solve this recursions
iteratively in the next section. As for the gluon currents, the initial condition of the graviton
recursion is

‘7}31/ = 5;“/ , (314)

where 5fw is the graviton polarization tensor. Further, (n + 1)-point graviton scattering

amplitudes M (1,2,--- ,n+ 1) can be represented by the rank-n graviton off-shell current

M(1,2,--- ,n+1)= lim 0312...n5,’}j1j,}3"'". (3.15)

S$12...n—>
4 Solving the recursions and the classical double copy for currents

We now iteratively solve the off-shell recursion relations obtained in the previous section.
Note that the graviton currents are constructed in [33, 95] by solving the recursions based on
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the perturbative GR. Our result is consistent with the earlier works since it gives the same
graviton scattering amplitudes. Though the recursions are irrelevant to the dimensionality,
we assume 4-dimensional spacetime to employ the spinor-helicity formalism. The off-shell
currents should have a proper double copy structure due to their relation with the scattering
amplitude. Mizera and Skrzypek proposed the KLT relation for off-shell currents of the
non-gravitational effective field theories [93]. Recently Cheung and Mangan introduced a
map between gluon and graviton currents based on the color-kinematic duality [96].

Then we will present the current KLT relation for gravity by using the explicit form
of the gluon and graviton currents. In the computation of the off-shell currents, we will
specify helicities of the on-shell external states. We show that the current KLT relation
requires regular terms for the propagator of the off-shell leg, which does not contribute to
the scattering amplitude in addition to the gauge transformation terms introduced in [93].

4.1 Current KLT relation

In order to see the general structure of the graviton currents, we solve the graviton recursion
up to rank-3 without restriction on helicity. We present, by explicit construction, the current
KLT relation generalising the conventional KLT relation for graviton scattering amplitudes.

Let us start from the rank-2 current. If we substitute the initial condition (3.14), we
obtain the rank-2 currents from the recursion in (A.2) and (A.3)

jylg = 25112 [ — 2(€1-€2) <k1-62 (kiell, =+ k:?,elll) + ko-€1 (l{:}te?j + kiei) )

+ (€1-€9)* (kzk}, + kikg) — 2((k1'62)6L — (kg-el)ei) ((kl-eg)ell, — (k2-€1)612,):| .
(4.1)
The rank-2 gluon current is given by
(61'62) (k’i — k‘;) + 2(/{71'62)612 — 2(]62'61)6/3
V2512 '

Then we can show that the double copy for the BG currents. It should be consistent with

12 _
T = (4.2)

the KLT relation for the 3-pt scattering amplitude
1
Ms3(1,2,3) = — As(1,2,3)A3(1,2,3). (4.3)
512

Using the relation between the scattering amplitude and BG currents, we expect julyz has
to accompany at least J325[2]2]1.J)%. If we compare them we find the following relation

T = J2SRI20T° + kPA, + kP Ay + E2ESA, (4.4)
where
er-€2( (k1-e2)el + (kg-eq)e? Ry
Ap—— ( " #> RN ) (4.5)
2519 4519

The last three terms on the righthand side of (4.4) can be interpreted to the gauge
transformation of the graviton field, and it does not contribute to the scattering amplitudes
because k:}f is orthogonal with the € in the on-shell limit, k'2 - €3 = 0.
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Now let us consider the rank-3 currents. Note that the KLT relation for 4-pt graviton
scattering amplitude is

1
M(1,2,3,4) = — (A(1,2,3,4) A(1,3,2,4)) (

S[23[23); S[23132]1) [A(1,2,3,4)
S[32(23); S[32132]1 ) \ A(1,3,2,4)) °
(4.6)

where the components of the KLT kernel are

s12(813 + S23)
4 )

512513 s13(s12 + s23)

S[23]23]; = S[23]32]; = 1 S[32]32]; =

(4.7)

Thus the 4-pt gluon color ordered amplitudes contribute to the KLT relation are A(1,2,3,4)
and A(1,3,2,4).

From the relation between the BG current and color-ordered amplitude, A(1,2,3,4)

and A(1, 3,2, 4) are associated with JﬁZ?’ and J ﬁ32 respectively. Solving the rank-3 recursion

relation (3.8) gives

k2 — Qa31k; + Riask’,
7123 _ 2 [(QBQ 5 — Qamk, 123 u+(1<_>3))

I

5123 512

€9°€ S
- ( (P123 + Pizg 4+ = 3) ﬁei + cycl[1,2,3])

+ regular terms + ki23W123 ,

2 ) so3
(4.8)
where P;ji, Q;jx and R;j are defined by
k‘i-e' k‘,"Ek + k‘--ek
Py = i i) ; 5ijPiji — sikPiry = (ki-€j)(kj-ex) — (ki-ex) (kr-€5)
Sij (4.9)
Qijk = (ki€j)(€ivex) , Rijk = Qiji — Qjik -

Since the only simple poles in the currents contribute to the color-ordered amplitudes, we

single out the regular terms in s103 — 0

1 3
. € . €
regular terms : <2P123 + €2€3> R (2P321 + ﬂ)i . (4.10)
2 593 2 512

The last term in (4.8) can be interpreted to a gauge transformation and does not contribute
to the scattering amplitude

1 1
123 _ L _ _
|\ = 25193 |:812 (Q231 Q132 2R123) + (1 < 2)>:| . (411)
Similarly, J ;32 can be obtained by replacing 2 — 3 and 3 — 2.

We now consider the rank-3 graviton current .J 523. It is obtained by solving the recursion
relation (A.4), but the explicit form is rather messy. The for the double copy of the BG
currents is

jl}E?’ = Z JﬁaS[a\B]lJl}B + regular terms + 2k123A11,§3 + k}f?’ki%Aw?’ .

(n (4.12)

p7U€S{2,3}
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where Sy 3y is the permutation group of the set {2,3}, and A and A, are the gauge
transformation

A — 312(3114‘ 323) (\11123)2 + 3122313 ‘11123\11132 + 313(3124+ 323) (\11132)2, (4'13)

and

A (513Q231 + 512Q321) (2P123 + 2P132 + €2-€3) €,  (513Q031 + $12Q321)° k,
" 2823 2812813823 (4.14)

+ cyclic(1,2,3).

We may generalise the double copy in the rank-3 graviton current to higher rank. Recall
that the graviton and gluon scattering amplitudes are associated with their BG currents as

M(l, 27 Y e 1> - 5121??%0 812...71623_1»7/}33.“” ’ (4 15)
L _ . n+1 712--n ’
An(1,2,--- n+1) 3121}21%0 $12..n€,  J,7 .

This means that the gluon and graviton currents always have simple poles of sio...,, and
the simple poles only contribute to the scattering amplitudes. We may expect the double
copy structure even in the currents level. The (n — 2)!-form of the KLT relation [104, 105]
is given by

S
My=lim Y AM(,p, n)ﬂAzM(LT, n). (4.16)
I<:,2L—>Op7_€Sn72 S19---n—1

Since the KLT relation (4.16) is only guaranteed for the scattering amplitude level, the
regular terms do not have to satisfy the KLT relation. Thus we propose the general KLT
relation for the graviton currents as follows:

o= Y JS[o|r]1J,)7 + regular terms + kA, + AukL + kKA
o,TESH—1

(4.17)

4.2 Currents in the spinor-helicity basis

The off-shell currents are more complicated as the rank increases in general. In order to
verify the current KLT relation (4.17) explicitly, we have to multiply two gluon currents
with the ((n — 1)!)2 different combinations and add all of them by multiplying the elements
of the KLT kernel S[a|f]; in a specific way. The checking process requires huge calculations
indeed. Thus it is essential to reduce the number of terms in each gluon current, so that we
employ the spinor-helicity formalism for the rank-4 currents. In this formalism, a proper
choice of reference momenta of polarization vectors/tensors greatly simplifies the form of the
currents. There are two distinct classes in helicity choice for the graviton and gluon currents:

1. MHV currents: (1+4,2+,3+,---) and (1—,24+,3+4,---)

2. More than two opposite helicities: (1—,2—,3+,---) and (1—,2—,3—,4+,---) etc

~16 —



Usually the term ‘MHV” is typically used in scattering amplitudes with n—2 gluons/gravitons
of positive helicity and two gluons/gravitons of negative helicity. Here we use the term
‘MHV currents’ for all positive helicity or with n — 1 positive helicity and one negative
helicity, which is related with the MHV amplitudes. In the MHV current case, we can
choose reference momenta so that all the polarization vectors/tensors are orthogonal to
each other €' - ¢/ = 0. As we will show later, in this case all the currents become null and
orthogonal to each other. Then the graviton and gluon recursions reduce to a simpler form
as in (4.25). On the other hand, we have to consider the full recursion relation for the
second class.

The helicity-2 polarization tensors efw for gravitons are given by a simple product of
two polarization vectors,

it it it i— i i
=€, 6, Ew = € € - (4.18)

The polarization vectors for the on-shell states satisfy
e e =0, ki€ =0. (4.19)

Note that any four-dimensional vector can be represented by a pair of Weyl spinors using
the gamma matrices, p,v* = —|p)[p| + [p](p|. Then the polarization vectors with external
momenta k', €, (k'), are written by

— (i (i7" q] ey (g 1n"]1]
G (i) = =8 (kg = -0 (4:20)
8 v2[qi] ! V2(qi)
where g, is an auxiliary null vector, called the reference momentum, reflecting the gauge sym-
metry of the massless vector fields. This representation satisfies the on-shell conditions (4.19)
automatically. We further introduce the generalised Mandelstam variables

Sij = — (ki + k‘j)Q y Sijk = — (ki + k; + kk)2 , etc (4.21)
These are represented by spinors by the Fierz identity, (1 |[v*|2] (3 |y,|4] = 2(13)[24],
s = — (i) ). (1.22)
4.3 Class 1: MHV currents

Here we consider the MHV currents: all positive helicity or one negative helicity. Without
loss of generality we make a choice of the reference momenta as follows:

(14,24,3+,---) : for all eff,we choose the same g,

(-2t34.): | G =k (4.23)
) ; ) fOT€i+,qM:k}L’ i>1

Under this choice, the polarization vectors are orthogonal to each other. Since the graviton

polarization tensors consist with the polarization vector &, = €,¢€,,, the polarization tensors

are also orthogonal to each other

ecl, =0, foralli,j. (4.24)

17 -



In this case the graviton recursion admits a special subsector. Using the nilpotency and
orthogonality of the polarization tensors, one can show that all the MHV graviton currents
are orthogonal to each other, JE,JZ% = 0, where Q and R are arbitrary words. From this
property, the recursion relation for the MHV currents reduces to

1 R 7Q 1R\ 7R Ry (7R
*7;17;/ = _87 Z <(kp jp%ka )j/u/ - (jugpk;p )(juakg) : (4-25)
P p—qur
We can prove the orthogonality between the MHV currents by induction. By assumption, the
rank-1 currents identified with the polarization tensors are orthogonal to each other (4.24).

Next, let us assume that all the currents up to rank-p are orthogonal to each other
\7“%\71,72 =0, Q| <pand |R|<p. (4.26)

Under this condition, the graviton recursion relation reduces to (4.25) because all the terms
including contractions between the graviton currents vanish. Then, from (4.25) and (4.26),
we can show that all the rank-(p + 1) currents, jﬁ, and j,ZZ with |P| = |P/| = (p+ 1),
are orthogonal with the lower rank currents jﬁjygp = 0, where |Q| < p and themselves,
IhTh =0.

A corollary of the MHV recursion relation (4.25) is that the MHV graviton currents
are proportional to the polarization vectors. In other words the graviton currents do not
contain terms that are proportional to the external momenta k; One can show this by
induction as before. The rank-1 current is trivial. If we assume that the up to rank-n
currents are written in the following form

jﬁ = Z ‘756@6{/) , |7)| <n, (4.27)
i€P
and substitute into the recursion relation for the rank-(n + 1) current (4.25), we can easily
show that the rank-(n + 1) current can be also written in the same form as (4.27).
So far we have discussed only for the graviton currents, however the MHV gluon currents
also satisfy the same properties [91],
P P P_i
JrIg =0, Jr=>Jld, (4.28)

(]

and the recursion relation is reduced into a simple form

gl = " > (79K~ (SR k9)I2). (4.29)
P=QR

Note that the MHV currents for gluon and graviton both cannot have the gauge transforma-

tion terms because the MHV recursions (4.25) and (4.29) do not have terms proportional

to the kf or kﬁ respectively. Further we propose the exact KLT relation for the MHV

currents even without any discrepancy in regular terms

Jh =3 Jslalgl e, (4.30)
a,,BESP*
where Sp+ is a permutation group for the word P* = {P2,P3,- -+, P|p|}.
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Let us compute the MHV graviton currents and examine the exact current KLT relation
up to rank-4.

e Rank-2. If we compute the rank-2 MHV graviton currents from the recursion (4.25),

we have 1
T2 = —5((1& c)2ehel — (K- (K A)el e + (1o 2)) (4.31)
Similarly the rank-2 MHV gluon currents are
2
J;Q _ _\f((kQ _ el)ei — (K 62)6;) ‘ (4.32)

S12

It is straightforward to show that these currents satisfy the current KLT relation
T = J,°8[212117,7,
where 5[2‘2]1 = —%812.

e Rank-3. The rank-3 graviton BG current is obtained from the recursion relation (4.25)

11
Taod = 5 k)P k> [j12j3 Ton TS, + T Tne — T3, T + Perm [1,2,3]} . (4.33)
123

Using the KLT relation for the rank-2 currents, we have

g =R {((k?’ LT (k12 )2 (kP - T12)el — (k2 63)Jl}2)} +eyelie[1,2,3]

25123
(4.34)
For simplicity we introduce a new current, J}}k = (kk.Jii )el’j — (K- v )J;7. This current
is antisymmetric under the interchange of ¢ and j, jfjk = —jﬁi’k, due to the property of
the rank-2 currents that J;7 = —Jj'. Then the rank-3 gluon currents are recast
Tk =— vz [J” i Jg’ﬂ . I = V2 [J“w + JJ’“} : (4.35)
Sijk Sijk

Conversely, ffﬂk can be written in terms of the rank-3 currents

JR = — (s I8 — 55 T (4.36)

1
7

We then rewrite .7}}33 in (4.34) using the new currents

jjf?’ (31 J12 3J123 + s J23 1J23 1 s1 J13 2J13 2) (4.37)

25193

Comparing this with the exact KLT relation (4.30), we have
T’ = J,225(23(2310,% + 207 5(23]32], J,52 + 1,72 5([32(32]1.J,°

A (4.38)
(512&2,3 o 813JL1L3,2 + 523J33,1) <312J32’3 _ 813Jl}3,2 + 523J33,1> .

- —
25793
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Using the identity (4.36), we can rewrite the parenthesis in the last line reduces to

1
2v/25193

and it vanishes due to the reflection identity for the rank-3 gluon currents

(812813 (Jﬁm — ngg)) + 812823(JL1L23 — Jsm)) + 5138923 (Jisl — J/}L32)) =0, (4.39)

JIE = gkt (4.40)
This shows the rank-3 graviton current 7, Ij{,k satisfies the exact KLT relation.

e Rank-4. The structure of the rank-4 currents are similar to the rank-3 currents. From
the recursion, the rank-4 graviton currents are given by

2
1234 1234,1234
T =— k7 %k,

1 1

_ 123 74 12 734 4

—k E o R ol S
1234

1 123
i plo Y ulv 4 plo?ulv 31 p[U‘]u}l/ +Perm[1,2,3,4} . (441)
We introduce a pair of currents generalising the rank-3 counterpart jﬁ]k (4.37)

Sijkl _ (k. ijhy 7l ijk . 71y Tijk
ST = (kT TN, — (KT

o . . . 4.42
JL],]{JZ — (k,kl . J”)Jlljl _ (k,zj . Jk:l)JLg . ( )

Then the graviton current (4.41) can be recast in the following form

1 A A A A
753342—{ Yoo Sl iyt > SlalBh et
51234 a,B€S8(2 3} a,B€S8(2 43
+ > SRR YT SlalBla it
a,BES(3 43 a,BE€S3 4y

1 A A 1 N N 1 A A
12,34 712,34 13,24 713,24 14,23 714,23
-+ 1812834JM Jl, -+ 1813824%u J,, + 1814823Ju Jl, .

(4.43)
Similarly, the rank-4 gluon recursion is given by
1234 V2 17,234\ 7234 234 11y 71 12 1,34\ 734 34 112y 712
J, — (J -k )J# —(J*% -k )JH+(J -k )J# —(J* K )J#
1234 (4.44)
123 14\ 74 4 1123\ 7123
(B A (K }
and we can recast the current using (4.42)
1234 _ V2 £123,4 _ 7234,1 | 312,34
B == [Ju —JBL g } : (4.45)
or conversely
A 1
Jli23,4 _ ﬁ (514,];‘;123 _ 324J§213 _ 524J3231 o 534J;234) :
1 (4.46)
‘]A1L2734 _ \ﬁ (313J3134 . 514J5143 + 524J,i243 . 523!];234) .
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Substituting (4.45) into the exact current KLT relation and comparing with the graviton
current (4.43), we have

Tt — N JieS[alB g’
a,B€8(2,3 4}

= {512523 j;23’4j323’4 + permutation[1, 2, 3, 4]
451234

4 312334%2’34*]1}2’34 4 313324J;3’24J,}3’24 " 514323J;4’23J,}4’23 ’
(4.47)

1 .
~3 [312323334Jﬁ234JV1234 + permutation[1, 2, 3, 4]
+ s12(s13514 + s23504) (J2121 + T2 (7 4 219
+ (sgsazsaa(J3P24 + Ti¥2) (U5 4 T132) 4+ (3 o 4))] .

One can show that the right hand side vanishes exactly, and this shows the exact current
KLT relation for the rank-4 currents.

4.4 Class 2: Two opposite helicities

Let us consider the second class involving two opposite helicities. The first nontrivial
currents in this class starts from rank-4, such as (1—,2—,3+,44). Our reference momenta
convention is

ELW‘Jl:ka eiuzq2:k3, ef“,:qi:kzl, fori > 3. (4.48)
Using the convention, we have

EiLelm — s1[13)] gi.e2— — S [3] R (i1)
V2[1i][31] v2[2i][32] V2(ji) (15)
]

12) |34
o an_ (2]

RITIEER et
(4.49)
where 1 < 14,5 < 4. Further we have the following identities:
(k- @) - ey = =2 - e,
(k- k') = =21 - e, (4.50)

We now present the rank-4 graviton current j,}334. It is straightforward to compute
the explicit expression of the graviton current by solving the recursion, however, we just
write down it using the current KLT relation because of the lengthy expression

TG~ piaglafg], g+ AL | IZURIRAIZA | o,
a?IBES{273,4}
(4.51)
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We may decompose the gauge transformations, A}L234 and A'?34into two parts according
to their origin, from the gluon currents, k:;234\I/P , or the graviton current. (See appendix B
for the explicit form of ¥P) If we denote the contribution from the graviton currents as
<I>L234 and ®'234, the total gauge transformation are written as

A3 pl284 S gleglg|g), 18
a,B€8(2,3 4}

A1234 _ 1234 Z VAR 2
a,B€8(2 3,4}

(4.52)

where

2
1234 _ Q3341 | 2(s24 — $13)
2 82451245234

2(s13—524) B (s14+524)513(823 + S24) n 812834>

+ 81235134<
S24 514523524 514523

51245145235234524 524 534 5125124

(4.53)

n s13(514 + 524) (523 + $24) — 812824834+i <824+834 (81:3-1-6‘14)+ 514 >]
5125234
and ¥ and ¢L234 are in appendix C. Here Qjjr1 = Qiji(ki-€).

Finally, we comment on the ambiguity of the graviton off-shell currents. Since the
on-shell amplitudes are completely independent of regular terms and gauge transformations,
these can be added or subtracted to the off-shell currents, and the form of the currents is
not unique. In section 2, we discussed that redundancies reside in the DFT EoM. Thus we
extracted the essential part of EoM by using the background projection operators @#M and
éuM . Even though our EoM (2.44) is compact and useful to solve it, however, it may not
be optimized for describing the current KLT relation. If we compute the KLT relation using
the off-shell currents from the redefined EoM, then the regular and gauge transformation
terms would be reduced or disappeared.

5 Conservation of the off-shell currents

One of the characteristic features of the BG current is off-shell conservation. It represents
gauge invariance as the Ward identity of the on-shell scattering amplitudes and gives a
non-trivial test of the off-shell currents. For instance, the gluon currents in the Lorentz
gauge condition satisfy k¥ - J¥ = 0 without using equations of motion. In this section,
we will consider the conservation of the off-shell currents in a nonlinear gauge condition.
We will show that the conservation should be hold up to the gauge condition we have
imposed. As an example, we will examine the conservation of the gluon currents under the
Gervais-Neveu gauge condition. We then show that conservation of our graviton currents
satisfies in the same way.

5.1 Conservation of gluon currents in Gervais-Neveu gauge condition

Before discussing the graviton current case, let us consider the gluon current conservation
in the Gervais-Neveu (GN) gauge condition as a toy model. It is a nonlinear gauge choice
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in gauge field A,

oA, = %A#AN. (5.1)

The perturbiner expansion of A, is still the same as (3.3) because it is independent of the
gauge choice. Substituting the perturbiner expansion into the GN gauge condition (5.1) gives

- 1 - -
KPP = — Je . gk 5.2
ey ﬂp% (5.2)

where jlf represents the gluon currents in the GN gauge condition. This implies that the
conservation of currents in a nonlinear gauge condition should be modified. In the Lorentz
gauge fixing, the right hand side is trivial, kf J 5 = 0, and it is consistent with the usual
conservation of currents. However, in GN gauge condition, there is no reason the right hand
side of (5.2) vanish in general. Then the current conservation holds up to the GN gauge
condition. We will check (5.2) explicitly by computing the kf J 5 by computing the gluon
currents by solving the recursion relation.
Under the GN gauge condition, the action is reduces to

1 1
Lyn = Tr <—2aﬂA"aﬂAy — V20" AV AL A, + 4AMAVA“A”) , (5.3)

and the corresponding equations of motion is

OA, +iv2 ([0"Au, Ay] — (9,AY)A,) +[A,, A JAY =0, (5.4)
or in terms of the field strength F,, = 0,4, — 0,A, — %[Au, A,
DAy = iV2(FuA” + AY0,A,) . (5.5)

As before, if we substitute the perturbiner expansion into the above EoM, we get the
recursion relation for the off-shell gluon currents

sp V2 ~Q R | .(7Q LR\ 7R
W= (BQTE+i(J9- k™) I, (5.6)
P=QR
where J and F represent the currents in the GN gauge choice. The recursion relation of
Ffl, is the same as the Fﬁ, in (3.8). i
Let us now compute the currents J, 5 explicitly using (5.6) and examine the current
conservation. The rank-2 current is given by

i = (i), — (kjei)el, — (eej)ki | (5.7)
(]

and comparing the Lorentz gauge result, the difference is the gauge transformation

i gy, ok

V2
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The conservation of J;f is

o "y 1 . ..
ki Ji 6\/%3 =577 (5.9)

and this exactly reproduces the GN gauge condition (5.2).

Next, the rank-3 gluon current is

oy 1 [(sij + sjk) 2Pk + €j-€x) — 2Pisik €€L\ 5
J”L]k’ - = (] J %) J WRITWR v 2 P P t R
p Sijk Sjk u ( jik ki 5 >€“
Sik 2P“k+€"6k _2Pk” 5.._}_5"%
_Si (2P;; J°€k) ji (sij + 55 )Eﬁ (5.10)
Sij
| 20igThji = 5xTige) by + 2(s5aTjin + Sz‘jsﬁk)ki}]
512523 '

Again, the difference with the rank-3 gluon currents in the Lorentz gauge is as follows

ijk Tijk __
Jik — Jiik = — , (5.11)

_kﬁk S;k + 2Tkji " 2Tjik - Sjkz n (6,'-6]')62 (Ej'ek)EL
25ij 283']€

Sijk QSjk 251‘]'

where the first term on the right hand side is a gauge transformation and the second term
is a regular term. If we contract kf]k with jﬁjk , we get

kf;kjﬁjk _ _Tjik . Thji _ L( jis jk 4

sij  Sik V2

This is the GN gauge condition as we expected.

' JIkY (5.12)

5.2 Conservation of the graviton currents

We now consider the graviton currents case. We have introduced the gauge choice in
undoubled D-dimensional form (2.36). As we have seen in the GN gauge choice, we get the
conservation of graviton currents by substituting the perturbiner expansion (3.10) and (3.11)
into the gauge condition

kfjj; = ka;“ - 2k]jd7’ +2 ) (j#% - A%)k?}dn, (5.13)
P=QUR

where d” is the dilaton currents generated from the perturbiner expansion of d

d="> d e, (5.14)
P

The EoM of the DFT dilaton d is given by the generalised Ricci scalar R (2.39). If we
substitute the perturbation of the generalised metric (2.12), we have

Od = —% (XF, +YH,) + %51‘” (40,0, + Xy = Vi) — %AW (40,0, + Xy + Yiu)
(5.15)
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where X, and Y},, are the auxiliary fields introduced in (2.44). Then the recursion relation
for d¥ is derived from the EoM of d (5.15)

1
P P P o(vR R R1R R
d _—487){2( +37 = Y T2(XR - Y - kR
Pmaur (5.16)
Q R R R1.R R
+ Z A,LLV(X,UJ/+yILLV74k,LLkl/d ):|7
P=QUR

where X7 and VP are the trace of XZ;, and J/Zj, respectively. Note that the rank-1 dilaton
currents d' vanish because &), = Y/, = 0, and it starts from the rank-2.

We now compute the left hand side of (5.13) explicitly using the graviton currents and
verify the right hand side. Up to rank-3, we do not impose helicity on the polarization
tensor. Let’s consider the rank-1 conservation equation. It is ensured by the transverse
condition of the polarization tensor

kLT, = ke, =0. (5.17)

Next, we compute the off-shell conservation for the rank-2 graviton currents k% j,j/ﬂ
If we use the explicit form of the rank-2 graviton current (4.2), the conservation equation

reduces to
i i (€€j) ; ; (ki-€j)(kjei)(eires) | (€€)? 4
KT = 1 [(ki.ej)e#+(kj.ei)ei]< DEales )k;. (5.18)

One can show that the first and the second terms on the right hand side are the same as
kY Af]u and —Qkf]dij, respectively. Thus it satisfies the rank-2 gauge fixing condition

KT = KA, — 2k . (5.19)
Finally, let’s consider the rank-3 case. The rank-3 gauge fixing condition is written by
R N B LR SR (520
Perm[ijk]

We compute each term on the right hand side and compare with the left hand side. The
first terms is

€5€k
3

PixTijx
2

ik i 5ij (2Qkji — Quij
kJEADY = [ (2ij¢ — Qjik + i ;k i) _ 2iji(/fk'6j)) -
J

(ki'ﬁj)(kjfk)Tjki S?j(}j (ijl - 2jSk)

— +(je>k)1ei+[

+(j<—>l<;)]ki

25jk 45ij
+ cyclic[i, 7, k],
(5.21)
the second term is
2 2
ok i = 1 (Qijk + Qi + Qi) L Sik (Tijk) + Py S ()
Sijk 12 Sij 4 J
(5.22)

+ Piijijk(kk'ei) + (i <> j)‘| ki{k + cyclic[i, 7, k]
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and the last term is

i 1.4k gik _ 6] €k i C e
Per%jk}jwk:i &’ (Sﬂk 4iji(k:k-ej))e#—|—cychc[z,j,kz]. (5.23)

If we compare these results with the left hand side of (5.20), the gauge condition is exactly
satisfied. This shows the rank-3 graviton off-shell conservation. We can continue this job to
any higher rank currents.

As a final comment, we consider the conservation of the MHV case, k:fj;f, =0. By
substituting the graviton currents (4.25), we can show that the MHV currents trivially
satisfy the off-shell conservation exactly

KLTh = ——kpkpkﬂ’ oo (JRIR -T2 JR) :

whp Mo po py ppov
P=QUR

_ P1.P1LP Q 1R Q TR
= —714:# k) ke, > (JpUJW JPUJW) =0.
P=QUR

(5.24)

6 Conclusion

This paper presents the classical double copy for graviton off-shell currents. To this end,
we have first formulated the perturbative DFT with all-orders of perturbations of the
generalised metric. We have found the explicit field redefinition between the perturbation of
the generalised metric and metric perturbations in GR. This shows the equivalence between
perturbative DFT and the perturbative GR. The key point of this paper was to show that
the graviton off-shell currents satisfy the current KLT relation representing the graviton
currents in terms of the gluon currents.

Next we have constructed the off-shell recursion relation for gravity from the perturbiner
method for the perturbative DFT instead of the recursive structure of the Feynman vertices.
We obtained the graviton off-shell currents up to rank-4 by solving the graviton off-
shell recursion relation iteratively. This method directly connects the graviton scattering
amplitudes to the solution of the perturbative EoM. Thus it fits with our purpose of
understanding the perturbative classical double copy via the current KLT relation. Using
the explicit graviton currents, we have presented the current KLT relation that relates the
gluon and the graviton currents up to the gauge transformations and the regular terms. As
a nontrivial test for the graviton off-shell currents, we checked the off-shell conservation, a
characteristic of the currents. However, we showed that the graviton current conservation
does not hold exactly for our nonlinear gage conditions, but the currents are conserved
up to the gauge condition. To support this, we examined the gluon currents with the
Gervais-Neveu gauge condition, which is nonlinear in the gauge field, are conserved up to
the gauge condition.

In this work, we have focused on the pure gravity case for simplicity. Since DFT
naturally unifies the other massless NSNS fields, the Kalb-Ramond field B,,, and dilaton ¢,
as well as the gauge multiplet in the heterotic string, it would be straightforward to apply
the same procedure in pure gravity to the entire NSNS sector or N = 4 supergravities.
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Another essential feature of DFT that we have left out is the doubled local Lorentz group.
It should be related to the manifest double copy structure for the graviton currents, and
it would be helpful for describing the double copy structure in various applications of
perturbative gravity. We remain these as future work.

An important issue related to the classical double copy is how to construct the exact
current KLT relation for general helicities by removing the regular terms and the gauge
transformation. Once we have the exact KLT relation, we can directly write down pertur-
bative gravity solutions using gauge theory solutions, as in the scattering amplitude. From
the perturbiner method point of view, this issue is related to the form of EoM because the
field equations determine the form of off-shell recursions and currents. Note that EoM is
not unique since we can freely add or subtract trivial terms that vanish in on-shell (in a
sense that satisfies the EoM). Also, gauge choice and field redefinitions change the form of
EoM. We will investigate the exact KLT relation in future work.

It is also interesting to extend our results to curved backgrounds. It would be straight-
forward to apply the flat background results to curved backgrounds. As we have pointed
out, the perturbative DFT is simpler than GR due to the O(D, D) structure and doubled
Lorentz group. We can apply the perturbative DFT to various perturbative gravity applica-
tions, particularly black holes or cosmological backgrounds, especially (A)dS space. Since
the perturbiner methods are not restricted to a flat background, we may apply them to
understand the (classical) double copy for curved backgrounds.
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A Explicit form of the graviton recursions

In this appendix we present the explicit expressions of the graviton recursion relation by
expanding the currents of the graviton and the auxiliary fields (3.12) and (3.13) up to
rank-4.

e Rank-1. In this case the graviton currents are identified with the polarization tensor
wa = eiw as the initial condition for the recursion. The auxiliary currents vanish Afw =
X;V = yfw = wa = wa = 0. Then the rank-1 recursion gives the mass-shell condition
(k)2 = 0.

(K- k) Th, = (k)€ = 0. (A.1)
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e Rank-2. The rank-2 graviton currents are given by

T, = Zj(XU +YV+2Y) (A.2)
and the auxiliary currents are
- 1. . ,
ALJV = §JZLlej/p + (Z AEd .]) ’
Xl = KK T T — K T3, Tikd + 65 ) ",

Viiw = (Tugh) (Tloks) + (i 4 3),
2, = —(kpk] T50) Ty + (i 5)
Wi, = sii A, + (i 4 ).
As we have assumed, all the currents are symmetric under the exchanging i and j.

o Rank-3. The rank-3 graviton currents are represented by

. 1 . . . 1 1 . . . .
T = — X+ VI + 20+ 55— D T (=X wik) o (ag
21 plp )P
Sijk - Sijk Perm[ijk]
and the auxiliary fields are
g 1 S
k _ k
A= S T
Perm][ijk]
K= X | HETLTE A + (RIRT — AT
Perml[ijk]

) ik 100 1.7 i 17 1]
—k{, (T + A)fj)pj oLk k(ijyﬁp(jpg + Ap{,)k’;] ,

. 1 . A o (A.5)
Vir= > [5%#’“)(%& — AJRKL A+ (e uﬁ ,
Perm][ijk]
ijk ki1.jk 71 k ki.k g ) k
Z,ujy = _a Z[ | |:(ki) kzjf jpa)j;zu + kpka(jpzjr - Apjo)j;u/] ’
Perm[ijk

WLJV = SijkAiLjy + 5 (k‘z kg, jgo)AiLV .
Perml[ijk]

Here Z denotes the sum over all permutations of the set {4, 7, k}. It can be extended
Perm[i,j,k]
to the higher permutation group straightforwardly.

e Rank-4. The rank-4 graviton current is given by

jﬁ,]jkl _ (X;g/kl + yL]Vkl + ZLJVM)

Sijkl
1 1 . el kel ikl 1 ij Kl Kl kl
Sijk [3!‘7;(“( X W+ )V)ijij(u(*X YT W )u)p

Perm[ijkl]

1 .
+ 145 (A YRy 2R g AR

(n (A.6)

|’
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and the auxiliary currents are

” 1 1 . 1 .. 1 g
igkl __ 7 kl g kl 21 2 kl
Aujv 9 Z [3!‘7/10*75” + Zju%jpv o E(j)up](j)Vp ] )
Perml[ijkl]
g 1 1 . 1 .. g
ijkl i 1.3kl 7i Kl ij 1.kl i Kl
B =5 5 GRS T + A+ KR - 5T + A1
Perm[ijkl]
L ijk ijk 7l
+ gk(i;, kl/)(j - A)p]a jpa )
1, Wi 1 4 y
—2 Z [|k(u(\7 + A),j/’)gﬁ;jpakcjfkl + Zk(i(j + A)Iljép(j - A)pjakclil
Perm[ijkl]

1 ik g
ity 20Y l —A z]kkl]
+ 31 ju)p(j )po- o> (A7)

g 1 g 1 g g
Vil = |G~ AT+ 1T - AT — AL
Perml[ijkl] =~

1 . . o
+ g Tk T - K]

Z = Y |GHIRIS - AAD, + T, - AL AT
Perm[ijkl] ’
Wi = Y| RIS - AAD, + kIR, - Al A
Perm[ijkl] )
+Sijklﬂgfl.

B Gluon off-shell currents in the Lorentz gauge

We present the explicit form of the gluon currents with up to rank-4 by solving the gluon

recursion relations in (3.8).

e Rank-1. The rank-1 current is the initial condition of the BG recursion relation, which

is identified with the polarization vectors

The rank-1 field strength is given by
F, =ik}, J, — ik}, J,,. (B.2)

e Rank-2. The rank-2 recursion relation is given by
(i (S &) ]+ JLFd, — (i )
1
V2
If we substitute the initial condition into the rank-2 current, we get easily the Jij as
i _ €;°€j (kifl — k;) + 2(](51"6]‘)62 — 2(]45]"61')6{; ‘
g V2sij

g —
Ji oYL

Fii = z’(sz],]lfj — KT — — (T~ J;’Jg;))

(B.4)
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o Rank-3. The recursion relation for the rank-3 current is given by

ijk i iky Tik i ik - .
Jik = fswk( i(J0 RRY TR TR — (i s )

+i(JU KRR+ JIEE, — (i & k;)) , (B.5)
ik ijk Z]k) 7k i
Figl = 2P g7 — iv2(J, T+ T ).

We can solve the recursion relation by substituting the rank-1 and rank-2 currents

Jijk o i |:szzjk,]t - Q]ksz + Rzgkk Qk‘l] i szkk + Rkak
H Sijk 512 523
it (Pijk + Pirg)  sir(ej€x) \ 1 €€k
_ < sjk —+ QSjk €M — Pjik + P]k;z + j Eﬁ (BG)
- <Sik (Pl + Priy) + Sik(ei.ej)) GZ} + regular terms + k:fk‘l/”k ;
Sij 28ij
where
] k
€ €L €€\ €
regular terms : <2B~jk + ]2 ) Sir <2Pk]Z 22 J ) i . (B.7)

The last term in (B.6) can be interpreted to a gauge transformation and does not contribute
to the scattering amplitude

1 [512 (Q231 Q132 — 2R123) - 5:123 (Q312 — Q213 — 23231)] : (B.8)

28k

\11123

e Rank-4. For the rank-4 current KLT relation, we need six gluon currents: .J 334, J;243
Jl324  y1342 71423
w0 o

)

and J;432. We introduce the following functions generalising (4.9)

ki-ej(k'i-ﬁk + kj'fk)

Py, = o , Qijr = (ki-€j)(€i-e), Riji = Qijk — Qjik »
ij
Siip = Qijk £ Qrji s Tijk = Rijk + Qjki (B.9)
Qijkg = Qij(ki-€r), Qi gkt = (Kir€j)Qji Qi jw = (kj-ei)Qjnr
P; ik = (ki-€j)Pjpr P/ i1 = (kj-€) Pju, Pijk1 = Piji(kj-e + ki-er) .

We introduce a rescaled currents J£ = 21231 JF for simplicity. Then the explicit form of the

1 2V/2 TH
rank-4 gluon currents are as follows:

1. 51234 J1234

2v2 “H
/
1234 _ {1 szt 814} Qaua3pn 1 {Q214,3 N Q2143 + Q1,432 12
: Sa3 S12834 | sa3a M smal sio $234 :
/ /
1 [(812 + 523) Q1 934 n Q7,234 + Q234,1} ok
523 $125123 $234 :
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B {(813 + s14) (Pros(ks-€a) — Pioa(kaes))  (s12+523)Proza Prosa

5345234 5125123 5234
(5134 514)Quz2 | $14Q234 A
25345234 25935934 ] 1
/ /
n {(813+814)(P213,4—P214,3) (512+523) P] 234 P1,234+P23471+P2,341—P2,431}62
5345234 5125123 5934 K
Psgo(ko-€1) — Psgi(k1-€2)  s24P3a91 Q214 Syia | 3
+ + o2y e
512 8345234 2819 28934
/
+ {(312 + 593) (Pa,213 — Pa,123) + Py312 — Py321 + 524 Py21.3 _524P3,421]64
5235123 512 5935234 5345234
+ s1234 (regular terms) + ki234A1234 (B.10)
where the regular terms are
Q2143 1 1 [(Pioszks-€s — Prosks-€3) Qoza Quz2] 1 Poia3z — Poiza o
- k,+ + - €t €,, (B.11)
5128345234 5934 834 dsg3 4834 5345234
and
/ ! /
AL234 _ 11 Q2a3 n (512 + 523) Q7 934 n 3Q2143 + Q1 234 n 3Q2143 + Q7 439 (B.12)
2 | 512834 8125235123 259359234 253459234
81234 J1243
2v2 T K

I

1243 _ [ - 813+823} (Q214,3 el [ Q1 234 B (513 —524)(Q234,1 +Q/1,234)} ot

5234 S125124 | s3a M Lsi2s1m $2481245234 a
{(5134—523)@21473 B (813824+S13834+823824)(Q214,3+Q/1,432)} 2
$128345124 $2483451245234 .

B [(8134-814) (Pi2a(ka-€3)— Prog(ks-€a)) + (s13—524)P1,243

5345234 51245234

~subProas 514(813—824)Sa34 + (813+814 +813> Q432 } /!

8128124 252451245234 834 So4/ 28234

n {(313+814)(P214,3—P213,4) + (513—524)(P] 943+ P2431) _ 524 043 +P2,341—P2,431 2

5345234 51245234 5125124 5234

N {(3134—823) (Psa2(ko-€1) — Psai (k1-€2)) _ s23(s13— S24) P3 421

5125124 53451245234
+
N s13P5421  s23(813—524) 5514 N (813+823 813) Q214 } 3

8345124 259451245234 512 So4) 2s124|
/
{(813-%823)(13432,1 —Py312) n (513 —524)(P5 421+ Pa21,3)
8128124 51245234
/
$24P3 491 Py123—Pio13
— = ’ e;‘;+51234 (regular terms) +ki234A1243
5345234 5124

(B.13)
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where the regular terms are

! /
(Q214,3 Ly 1 [Q214,3 n (524 + 834)(Q214,3 + Q1 432) B2 4 Q214,3 + Q7 234 o
5125345124 ' S34S124 | S12 5245234 K 52451245234 '
1 {(P124k4-63 — Pro3ks-€q) + Proas 5145934 n (Q234 + 3Qu32) n Q432}61
8234 834 8124 28945124 8594 dsgq | M
- /
1 [Phas — Paiza L+ Py 943 + P243,1} 2
59234 | 534 5124 K
- +
1 [(Psagkorer — Panki-en) n (24 + s34) P3 a1 8235514 +(Q412+3Q214)+Q214}63
8124 L 812 8345234 25945234 8524 ds1o | M
- / ! /
+ 1 [Py321 — Pu312 n P 401 + P421,3} A (Q7,432 — Q1’234)k1234
5124 | 512 59234 K 852451245234
(B.14)
and
1[(513—524)(Q" 432— Q" 234) Q214,3— Q) 3Q214,3+ Q"
pi243 _ 1[(5137520)(Ch 430 =G o3a) Q2143 W2143— Q1934 321431 439
2 459481245234 512534 25195124 253459234
(B.15)
S1234 71324
3. 2V/2 Ju
!/ ! /
1824 _ (QQ234,1 ol Q2143+ 432 B2 4 1 [Q1,234+(523+524)(Q23471+Q1,234)]k4
. 5935234 5245234 H7 s93 | s123 5245234 K
[ Pr23a + Proa3 n P 934 n s12Qu32 — 514Q234 S14Q234]61
L 8234 8123 252459234 25935034 ] 1
r D/ / /
Pjogy  Plogy+ Piogs + Posan + Pasal o
+ + €,
L 5123 59234
n [ P3.421 n 534Q214 — (523 + 824)@412]63
L S234 28948234 K
- /
 [s12(Pa213 — Pajos) n 524 P21 3 n Pyo1 3+ P3,421}64
I 5235123 5235234 5934 K
+ s1234 (regular terms) + ki234A1324
(B.16)
where the regular terms are
1 [Q234 — Q32 n Q234}€1 (B.17)
45234 2594 so3 | ¥
and
/ / / /
AL324 _ 1 [ Q1 234 N Q7,234 — @1 432 N Q1 234 T 3Q214,3 (B.18)
2 [ 5235123 45945934 25935934
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4.

51234 J1342
2V/2

,u

J1342 Q2143 Qouas 1 1 [Q'l,432 n (524 + 534)(Q214,3 + Q/1,432)} 2
534 K

5345234
/ / /
Q2341+ Qo34 4 [(5240+834)P3401  S14P5410  Pio1s] 4
o S L + + e

_l’_

5134 5245234

5245234 5345234 5345134 5234 K

'812(P124(/€4-63)—P123(7€3'64))+P1,243 n 5120432 —514Q234 n 512Q432}61
I 5345234 5934 259459234 25345934 ] 1

- /
P 341— P2 431 n Py 341—Poar,3 — Py o4; n 512134 — 524P241,3} 2

where the regular terms are

and

51234 J1423
2v2

5134 59234 5345234 K
(524 + 534) P3 421 + s1aPsa12  s23Qu12 — (s24 + 834)@214} 3
5345234 5345134 2592489234 K
1234 (regular terms) + ki234A1342
(B.19)
1 _
B {szsz Q234 . Q432]61’ (B.20)
48934 2594 s34 | "
asaz _ 1 [ Q1432 Ql a32 — Q1234 n 3Q214,3 + Q1 430 (B.21)
2 8343134 45945234 258345234

w

guz _ [ 1 sis+ 834} Q23411 { Qiazz (513 — 524)(Qaua3 + Q/1,432)} 12
n

8234  S145124
[(s13 + S34) Q2341 _ (513523 + s13524 + 524534)(Q234,1 + Qi,234)]k4
“w

+ s1234 (regular terms)

523 5145124 52451245234

5145235124 52352451245234

[ Py 234+ P, P s12(s13 — 524)95; s12+s 5
1osatPross | Pross 12(813 — 524) 234+( 12 + 513 +£> Q234}61

5934 5124 252451245934 593 So4/ 28934 ] "

[Pysan . Pioss n (s14 + 524) Pa43 1 n P 934 + Pj 943+ Paza1 + P243,1} 2

_l’_

S14 5124 5145124 5234 K

- +
P3 412 + P3 401 n Pyao s3a(s13 — 524) 5514 n (513 + 834 813) Q412]63
n

5124 5934 252451245234 514 894/ 28124

"Pu2s  Pian n (523 + 524) Ps21.3 n P5 419+ P 401 + P2z + P42173} g

_l’_

523 5234 5235234 5124 a

+ k/,lL234A1423
(B.22)
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where the regular terms are

Q2143 B (Q214,3 + Q/1,432)k2 n Q2143 B3 4 (523 + 524)(Q214,3 + Q/1,234)k4
5145235124 ! 52451245234 ' 5145235124 ! 2352451245234 a
1 [81255?34 Qa3 +3Q231 Q234}€1

28934 | $245124 4594 2593 | 1
1 {8345314 Q214 +3Qu2 Q412]63 B (@234 — Q/1,432)k1234
25124 | 8248234 4s94 2514 ] # 8s24S1245234 1
(B.23)
and
/ / / /
Al423 _ 1 (513—524) (@] 234~ Q1 432) C Qanaz @2143 — Quuzp 3Q2143 + Qo3
2 459451245234 514523 28148124 25938234
(B.24)
6. sz g2
i _ [1 sz 813] Q2143 KL 1 {sz,s N Q2143 + Q/1,234} k!
534 514823 | S234 s23 | S14 5234
1 [(514 + 534) Q1 432 n Q2143 + Q/1,432] 2
834 5145134 5234 K
+ {812(131237?3'64 — Prosky-€3) n P 934 4 (12 + s13)Q234 812@432}61
8345234 8234 28935234 25345034 ] "
7 {(814 + 8340)(P2301 — Poaz1) (512 + s13) Pagan n P 934 + Pa3n
5145134 5145234 5234

+
512134 — 52424131 (s14 +534)P3a12 s2aP3421 . Qa2 S514 ] 3
+ €, + + €
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where the regular terms are
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C Gauge transformation terms in the rank-4 current KLT relation

In this appendix, we express the explicit form of CIJ}LQM in (4.52). It consists of two parts:
terms proportional to k‘L and terms proportional to eft
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