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1 Introduction

The perturbation theory of general relativity (GR) is one of the most successful techniques of
gravity. The recent observations, such as the gravitational wave detection [1, 2] and cosmic
microwave background [3, 4], confirmed the validity of the perturbative GR. However,
the perturbative GR usually involves too many calculations both in the classical and the
quantum levels. The main source of such complications is infinite expansions of the metric
perturbation from the square root of the metric determinant

√
−g and the inverse metric g−1.

These generate infinitely many irregular Feynman vertices that we cannot fully handle. In
particular the calculation of graviton scattering amplitude through the traditional approach
using the Feynman diagram is limited despite its importance. Therefore, the development
of tools that simplifies the computation is important in perturbative gravity.
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As an alternative theory of gravity, double field theory (DFT) reformulates the closed
string low energy effective field theory by requiring the manifest O(D,D) T-duality [5–11].
It provides a geometric framework for the entire massless NS-NS sector encoded in DFT
field variables: the generalised metric and the DFT dilaton. DFT is equivalent to GR but
more strongly constrained by the O(D,D) structure, and the doubled local Lorentz groups,
which cannot be seen in GR directly. In contrast to GR, the inverse and the square root of
the determinant of the generalised metric are trivial, and these do not appear in the DFT
action. These structures simplify the calculations in DFT compare to GR. For instance,
the supersymmetric DFT has a more straightforward SUSY structure than the conventional
supergravities [12–16].

In the first part of this work, we construct the general framework of the perturbative DFT
to all orders in fluctuation. This framework extends the previous studies of the finite order
perturbation theory of DFT up to cubic orders [17, 18]. We solve the perturbative O(D,D)
constraint exactly and analyse the structure of the perturbed generalised metric according
to the chirality for the background projection operators. The graviton field is identified in
the mixed chirality sector, and the chiral and the antichiral sectors are composite fields of
the graviton fields. We further find the exact map between the perturbative generalised
metric in DFT and the perturbative metric in GR. This map shows that the perturbative
DFT is the consistent theory of perturbative gravity. We introduce a gauge fixing condition,
which yields the same with the de Donder gauge condition and derive the perturbative EoM
to arbitrary order in perturbation.

In addition to being a powerful calculation tool, a remarkable aspect of DFT is the
relation with the double copy. The double copy is a relation between gravity and the
Yang-Mills theory, which originated in graviton scattering, and it defines a map between
graviton and gluon amplitudes [19–30]. It turns out that DFT and the double copy
share the common origin from the closed string theory, in particular the factorisation into
left- and right-moving sectors [31–39]. The double copy prescription has recently been
extended to solutions of the classical equations of motion (EoM), the so-called classical
double copy [34, 40–42], by establishing the map between the gravity and gauge theory
solutions [36, 43–79]. However, despite the remarkable developments, there is no known
algorithmic prescription for understanding the relation between the single/double copy
maps of classical solutions and the KLT relation for the tree-level scattering amplitudes.

To address this issue we exploit the so-called perturbiner method by Rosly and Seli-
vanov [80–84] that provides a direct connection between solutions of EoM and tree-level
scattering amplitudes. The perturbiner expansion is a generating function of the Berends-
Giele currents in Yang-Mills theory, which gives an efficient tool for computing the gluon
scattering amplitudes.1 Berends-Giele constructed the recursion relation [91] in terms of the
off-shell currents using the recursive structure of the Feynman vertices of YM theory. On
the other hand, the perturbiner method generates the same recursion relation by applying
the perturbiner expansion to the classical equations of motion (EoM). This method has
been applied to some non-gravitational effective field theories successfully [92–94]. Thus

1See also [85–90] for the L∞ algebra in the BG recursion relation.

– 2 –



J
H
E
P
0
1
(
2
0
2
2
)
1
8
6

it is natural to seek the off-shell recursion relation for gravity. However, the structure
of the perturbative GR is completely different from the Yang-Mills theory. As we have
stated, infinitely many irregular Feynman vertices arise in the perturbative GR, and it
makes difficult to find the recursive structure. Therefore, the perturbiner method that does
not use the Feynman vertices is suitable in developing the off-shell recursion for gravity.
Recently, there have been several works deriving the graviton off-shell recursions from the
perturbative GR [32, 33, 95, 96], and the associated graviton off-shell currents have been
obtained using the recursions.

The second part of this work constructs the graviton off-shell recursion through the
perturbiner method for the perturbative DFT. Exploiting the spinor-helicity formalism, we
obtain the explicit graviton off-shell currents by solving the recursion iteratively. Remarkably,
the graviton currents exhibit the current KLT relation, representing the graviton currents by
the square of gluon currents. Recently, the current KLT relation for the non-gravitational
effective theories are studied in [93], and the color-kinematic duality for the off-shell currents
is introduced in [96]. Comparing with the non-gravitational current KLT relation, the
gravitational case contains contributions from the regular terms for the propagators of the
off-shell leg, which do not contribute to the scattering amplitudes. Since the perturbiner
expansions are the solutions of the EoM, the current KLT relation gives another viewpoint on
the perturbative classical double copy. As a consistency check, we examine the conservation
of our graviton off-shell currents. First, we demonstrate that the currents are conserved up
to gauge fixing conditions when the gauge choice is nonlinear in fields. To support this, we
check the off-shell conservation of gluon currents under the Gervais-Neveu gauge condition,
which is quadratic in the gauge field. The conservation equation for the graviton currents
yields the gauge condition of the generalised metric, and it confirms our results.

The structure of this paper is as follows. In section 2 we will construct the perturbation
theory of DFT. We will analyze the properties of the perturbed generalised metric and
compare with the usual metric perturbation. We will consider the equations of motion for
the perturbed generalised metric which corresponds to the perturbed Einstein equation.
In section 3, we will review the perturbiner method for the Yang-Mills theory and then
apply to the DFT. We will introduce the perturbiner expansion for the graviton field and
construct the off-shell recursion relation for graviton off-shell currents by substituting the
expansion into the perturbative DFT EoM. In section 4 we will solve the graviton recursion
relation iteratively and show the current KLT relation. Section 5 discuss the conservation
of currents in nonlinear gauge fixing. Section 6 gives our conclusion.

2 Perturbation of double field theory

In this section, we construct the perturbation theory of double field theory (DFT) as an
alternative tool to the perturbative GR. We first analyse the structure of the perturbation
of the generalised metric by solving the O(D,D) constraint exactly. We find the relation
between the generalised metric perturbation and the metric perturbation in GR. Next, we
construct action and EoM of the perturbative DFT for pure gravity including all-orders in
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the generalised metric perturbation. We also discuss the gauge choice of the generalised
metric, which is closely related to the de Donder gauge fixing in perturbative GR.

2.1 Perturbation of the generalised metric

Double field theory is a reformulation of low energy effective field theory of the closed string
theory that is manifest under O(D,D) T-duality. The field content of DFT is given by
O(D,D) tensors due to the manifest O(D,D) covariance: the generalised metric HMN and
DFT dilaton d. The generalised metric is not only an arbitrary symmetric 2D × 2D matrix
but also constrained by the O(D,D) constraint,

HMNJ NPHPQ = JMQ , (2.1)

where JMN is the O(D,D) metric parametrised as

JMN =
(

0 δµν
δµ
ν 0

)
. (2.2)

Note that JMN defines the inner product for the doubled tangent space instead of HMN .
Thus we should raise and lower the O(D,D) vector indices using JMN and JMN respectively.

If we contract JMN with (2.1), the O(D,D) constraint can be recast by

HMNHNP = δM
P , (2.3)

which means that the inverse of the generalised metric HMN is itself. This property ensures
to define a pair of projection operators PMN and P̄MN in terms of H

PM
N = 1

2
(
δM

N +HMN
)
, P̄M

N = 1
2
(
δM

N −HMN
)
. (2.4)

These satisfy the standard properties of projection operators, P 2 = P and P̄ 2 = P̄ and
PP̄ = P̄P = 0. We can also define chiralities associated with the projection operators. The
chiral and antichiral sectors of the doubled tangent space are associated with the P and
P̄ respectively.

The characteristic feature of DFT related with the double copy is the double local
Lorentz group

O(1, D − 1)L ×O(1, D − 1)R , (2.5)

which is a Lorentzian version of the maximal compact subgroup of O(D,D). In the closed
string point of view, it arises from the left-right mover decomposition of the closed-string
mode expansion and shares a common origin with the KLT relation [19]. This structure
leads to the double-vielbein or generalised frame fields, VMm and V̄Mm̄, where m and m̄ are
local frame indices associated with the double Lorentz group, O(1, D−1)L and O(1, D−1)R
respectively [97, 98]. These satisfy the defining conditions

VMmη
mn(V t)nN = PMN , V̄Mm̄η̄

m̄n̄(V̄ t)ˆ̄nN̂ = −P̄MN , (2.6)

where ηmn = η̄m̄n̄ = diag(−1, 1, · · · , 1).
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We can parametrise H in terms of the massless NS-NS fields, metric gµν and the
antisymmetric two-form Bµν

H =
(

gµν −gµρBρν
Bµρg

ρν gµν −BµρgρσBσν

)
. (2.7)

Further, the DFT dilaton d, which plays a role of is represented by

e−2d =
√
−ge−2φ . (2.8)

Similarly, the parametrization of the double-vielbeins are given by

VM
m = 1√

2

(
(e−1)µm

eµ
m

)
, V̄M

m̄ = 1√
2

(
(ē−1)µm̄

−ēµm̄

)
, (2.9)

where eµ
m and ēµ

m̄ are local frame fields associated with the same metric, gµν =
eµ
meµ

nηmn = ēµ
m̄ēµ

n̄η̄m̄n̄. These are related by the local Lorentz group.
Let us consider the perturbative expansion of the generalised metric around a flat

background H0MN

HMN = H0MN + κΠMN , H0MN =
(
ηµν 0
0 ηµν

)
, (2.10)

where Π is the fluctuation of the generalised metric and κ is an expansion parameter and
ηµν = diag(−1, 1, 1, · · · , 1). Introducing background projection operators with respect to
H0 using (2.4), P0 = 1

2
(
δ +H0

)
and P̄0 = 1

2
(
δ −H0

)
, we decompose the fluctuation Π into

four pieces according to the background chiralities

P0M
PP0N

QΠPQ = ∆MN , P0M
P P̄0N

QΠPQ = EMN ,

P̄0M
PP0N

QΠPQ = ĒMN , P̄0M
P P̄0N

QΠPQ = ∆̄MN .
(2.11)

Here ∆ and ∆̄ are symmetric, and Ē = E t. Then the perturbation of generalised metric (2.10)
is rewritten by

HMN = H0MN + κ
(
EMN + ĒMN + ∆MN + ∆̄MN

)
. (2.12)

The fluctuations E , Ē , ∆ and ∆̄ are not arbitrary, but constrained by the O(D,D)
constraint (2.1). One may decompose the constraint according to the background chiralities
as (2.11)

2∆MN + ∆M
P∆PN + κ2EMP ĒPN = 0 ,

−2∆̄MN + ∆̄M
P ∆̄PN + κ2ĒMPEPN = 0 ,

κ∆M
PEPN + κEMP ∆̄PN = 0 ,

κ∆̄M
P ĒPN + κĒMP∆PN = 0 ,

(2.13)

where we have absorbed κ into ∆ and ∆̄ for convenience. One can solve these constraints
perturbatively in κ. The first and the second equations imply that ∆ and ∆̄ cannot be a
fundamental degrees of freedom, but functions of E and Ē . In other words, E is the linear
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perturbation of H.2 The third and fourth equations imply that ∆ and ∆̄ are expanded by
the product between E and Ē

∆MN =
∑
n=1

an
(
κ2EĒ

)n
MN , ∆̄MN =

∑
n=1

bn
(
κ2ĒE

)n
MN . (2.14)

and the coefficients of the series are related by an = −bn. If we substitute these results into
the first and second equations, we have the following recursion relation and initial condition

an+1 + 1
2

n∑
p=1

an+1−p · ap = 0 , for n > 1

a1 = −1
2 .

(2.15)

There is an exact solution for the recurrence relation given by the binomial expansion

an = (−1)n
(

1
2
n

)
for n ≥ 1 , (2.16)

which is nothing but the coefficients of the Taylor expansion of the square root. Then ∆
and ∆̄ are represented by

∆MN =
(
−1 +

√
1− κ2EĒ

)
MN ,

∆̄MN =
(

1−
√

1− κ2ĒE
)
MN ,

(2.17)

and the first few terms are

∆MN = −1
2
(
κ2EĒ

)
MN
− 1

8
(
κ2EĒ

)2
MN
− 1

16
(
κ2EĒ

)3
MN
− · · ·

∆̄MN = 1
2
(
κ2ĒE

)
MN

+ 1
8
(
κ2ĒE

)2
MN

+ 1
16
(
κ2ĒE

)3
MN

+ · · · .
(2.18)

Note that the components of the O(D,D) vector indices are not independent and have
redundancies. To remove such redundancies, we introduce a pair of projection operators
that project out the O(D,D) vector indices to D-dimensional undoubled vector indices by
using projectors. Let us introduce a pair of projectors Θµ

M and Θ̄µ
M defined in terms of

the background double-vielbeins, V0 and V̄0 (2.9)

Θµ
M = e0µ

m(V t
0
)
m
M = 1√

2

(
δµ
ν

ηµν

)
, Θ̄µ

M = ē0µ
m̄(V̄ t

0
)
m̄
M = 1√

2

(
δµ
ν

−ηµν

)
. (2.19)

We may convert the O(D,D) vector indices, M,N,P, · · · , into the conventional
D-dimensional vector indices, µ, ν, ρ, · · · , using them.

2Of course E does not have to be linear perturbation only. It may be expanded further by

κE = κE(2) + κ2E(2) + κ3E(3) + · · · .

The higher order terms E(n) where n > 1 corresponds to the higher order perturbations of metric in GR. In
this paper, we will focus on the linear perturbation and identify E = E(1).

– 6 –
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From the properties of V0 and V̄0, Θµ
M and Θ̄µ

M satisfy the following relations

PMN
0 = ηµνΘµ

MΘν
N , P̄MN

0 =−ηµνΘ̄µ
M Θ̄ν

N ,

Θµ
MΘν

NJMN = ηµν , Θ̄µ
M Θ̄ν

NJMN =−ηµν , ΘM
µ Θ̄ν

NJMN = 0
(2.20)

Using these operators, we denote the projected perturbations of H as

Eµν = Θµ
M Θ̄ν

NEMN = Θµ
M Θ̄ν

NΠMN , Ēµν = Θ̄µ
MΘν

N ĒMN = Θ̄µ
MΘν

NΠMN ,

∆µν = Θµ
MΘν

N∆MN = Θµ
MΘν

NΠMN , ∆̄µν = Θ̄µ
M Θ̄ν

N∆̄MN = Θ̄µ
M Θ̄ν

NΠMN .

(2.21)

Let us confine ourselves to the pure gravity and ignore other massless NSNS fields, B
and φ. Then the generalised metric and the DFT dilaton are simply

HMN =
(
gµν 0
0 gµν

)
, e−2d =

√
−g , (2.22)

and we have the following additional relations among the fluctuations

Eµν = Ēµν , ∆µν = ∆̄µν . (2.23)

Then the expansion of the ∆µν (or ∆̄µν) in terms of Eµν (2.17) reduces to

∆µν = ∆̄µν = −ηµρ
(

1−
√

1 + η−1Eη−1E
)
ρ
ν

= Eµρ
(1

2E
ρ
ν −

1
8
(
E3
)ρ

ν + 1
16
(
E5
)ρ

ν + · · ·
) (2.24)

We now compare Eµν and ∆µν with the metric perturbation, gµν = η + hµν or gµν =
ηµν − h̃µν , where h̃µν = hµν − (h2)µν + (h3)µν − · · · . Using the parametrisation of the
generalised metric (2.7), we can read off what is ΠMN in terms of the metric fluctuations
when B = 0,

ΠMN =
(
−hµν 0

0 h̃µν

)
. (2.25)

Substituting the ΠMN into (2.21), we can represent E and ∆ in terms of h and h̃

Eµν = 1
2
(
h+ h̃

)
µν
, ∆µν = 1

2
(
− h+ h̃

)
µν
, (2.26)

or
gµν = ηµν − Eµν + ∆µν , gµν = ηµν + Eµν + ∆µν (2.27)

This shows the equivalence of perturbative expansion of the generalised metric and the
usual metric perturbation in GR up to field redefinition. Furthermore, it is interesting to
note that the relation between E and ∆ is not restricted to the linearised perturbation.
Therefore, E can encodes not even linear perturbation hµν , but also all the higher order
perturbation of metric h(n) with n > 1 by the following expansion

κEµν = κhµν +
∞∑
n=2

knh(n)
µν . (2.28)

– 7 –
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2.2 Perturbation of DFT equations of motion for pure gravity

We now discuss the perturbative expansion of the equations of motion (EoM) of DFT.
Similar to GR, the generalised curvature tensors are the EoMs of DFT. The EoM of
the DFT dilaton and the generalised metric are the generalised curvature scalar R and
the generalised curvature tensor RMN respectively [11, 97, 98]. Note that the generalised
curvature scalar is the DFT Lagrangian

R = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+ 1
8H

MN∂MHKL∂NHKL −
1
2H

MN∂MHKL∂KHNL ,
(2.29)

Since the variation of the generalised metric has to be constrained by the O(D,D) con-
straint (2.1), δHMN = P(M

P P̄N)
QδHPQ, EoM of H not an arbitrary variation of the

Lagrangian with respect to H, but we have to remove the unphysical variations in δH using
the projectors

RKL = PK
M P̄L

NKMN , (2.30)

where KMN = δL
δHMN ,

KMN = 1
8∂MH

PQ∂NHPQ −
1
4
(
∂P − 2∂Pd

)(
HPQ∂QHMN

)
+ 2∂M∂Nd

− 1
2∂(MHPQ∂|P |HN)Q + 1

2
(
∂P − 2∂Pd

)(
HPQ∂(MHN)Q +H(M

Q∂QHN)
P
)
.

(2.31)
The gauge symmetry of DFT is the generalised diffeomorphism or the generalised Lie

derivative which acts on the DFT fields as

L̂XHMN = XP∂PHMN +
(
∂MX

P − ∂PXM

)
HPN +

(
∂NX

P − ∂PXN

)
HMP ,

L̂Xd = XM∂Md−
1
2∂MX

M ,
(2.32)

where the generalised metric H is a rank-2 tensor and the DFT dilaton d is a scalar density
with respect to the generalised Lie derivative. The gauge parameter XM combines the
diffeomorphism parameter ξµ and the one-form gauge parameter Λν for the Kalb-Ramond
field in an O(D,D) covariant manner

XM =
(
ξµ

Λµ

)
. (2.33)

Then the infinitesimal transformation of EMN and ∆MN are

L̂XEMN = 2P0M
P P̄0N

Q
(
∂QXP − ∂PXQ

)
,

L̂X∆MN = 0 .
(2.34)

To remove the gauge degrees of freedom, we have to impose a proper gauge fixing
condition. Here we introduce the following gauge condition

∂M
(
e−2dHMN) = 0 . (2.35)

– 8 –
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We may rewrite this gauge condition in undoubled D-dimensional form by using the
projectors, Θµ

M and Θ̄µ
M , and substituting the perturbation of HMN (2.21)

∂µ
(
Eµν −∆µν

)
+ 2∂µd

(
ηµν − Eµν + ∆µν

)
= 0 . (2.36)

Obviously it is a nonlinear gauge condition in Eµν because ∆µν is expanded by Eµν (2.24).
One can show that this is the same as the de Donder gauge condition in GR (or harmonic
coordinate condition) from (2.8) and (2.27)

∂µ
(√
−ggµν

)
= 0 . (2.37)

Since the DFT EoM for pure gravity is equivalent to the vacuum Einstein equation, our gauge
condition (2.39) also provides a well-posed initial value problem of Cauchy. However, great
care needs to be taken with consistency of the gauge choice in the case where the dilaton is
nontrivial [99, 100]. If we introduce the linearised metric perturbation

√
−ggµν = ηµν+hµν ,3

then the de Donder gauge condition reduces to

∂µh
µν = 0, (2.38)

and it is equivalent to (2.36).
Imposing the gauge fixing condition (2.35), the equations of motion reduces to

R = 2HMN∂M∂Nd+ 1
8H

MN∂MHKL∂NHKL −
1
2H

MN∂MHKL∂KHNL ,

RKL = PK
M P̄L

N K̃MN ,
(2.39)

where K̃MN is the gauge fixed version of KMN

K̃MN = 1
2∂MP

PQ∂NPPQ − PPQ∂P∂QPMN − 4∂(MP
PQ∂|P |PN)Q + 2∂PPMQ∂

QPNP .

(2.40)
Interestingly, DFT dilaton d does not appear in RMN after the gauge fixing. This is no
surprise, because for pure gravity d does not give a new degree of freedom — it is just the
determinant of metric.

Note that the components of RMN are not independent — it contains redundant
equations due to the manifest O(D,D) invariance. There are total (2D)2 components in
RMN , but the number of independent equations should be D2 only: D(D+1)

2 for gµν and
D(D−1)

2 for Bµν . To remove the redundancies, we project out RMN to the D-dimensional
undoubled form using Θµ

M and Θ̄µ
M (2.19). There are four distinct equations,

Θµ
MΘν

NRMN : − 1
2Θµ

MΘν
N
(

ΠN
P K̃MP −

1
2ΠM

PΠN
QK̃PQ

)
= 0 ,

Θµ
M Θ̄ν

NRMN : Θµ
M Θ̄ν

N
(
K̃MN −

1
2ΠN

P K̃MP + 1
2ΠM

P K̃PN −
1
4ΠM

PΠN
QK̃PQ

)
= 0 ,

Θ̄µ
MΘν

NRMN : − 1
4Θ̄µ

MΘν
NΠM

PΠN
QK̃PQ = 0 ,

Θ̄µ
M Θ̄ν

NRMN : 1
2Θ̄µ

M Θ̄ν
N
(

ΠM
P K̃PN −

1
2ΠM

PΠN
QK̃PQ

)
= 0 . (2.41)

3It is the opposite convention to the usual metric perturbation
√
−ggµν = ηµν + hµν . These two choices

are related by a field redefinition.
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As one can see, the chiral and the antichiral parts, Θµ
MΘν

NRMN and Θ̄µ
M Θ̄ν

NRMN , can
be represented by the mixed chirality parts, Θµ

M Θ̄ν
NRMN and Θ̄µ

MΘν
NRMN . Finally,

combining the two mixed chirality sectors, we have the minimal EoM as

Θµ
M Θ̄ν

N
(
K̃MN −

1
2K̃MPEPN −

1
2K̃MP ∆̄P

N + 1
2EM

P K̃PN + 1
2∆M

P K̃PN
)

= 0 .
(2.42)

We now present the perturbative DFT equations of motion in undoubled D-dimensional
form using Θµ

M and Θ̄µ
M

(δ + ∆) (µ
ρ(X + Y + Z −�E

)
ν)ρ − E(µ

ρ(X − Y −W )
ν)ρ = 0 , (2.43)

where Xµν , Yµν , Zµν and Wµν are auxiliary fields defined as

Xµν = −1
2∂(µ(E −∆)ρσ∂ν)(E + ∆)ρσ + 2∂(µ(E −∆)ρσ∂|ρ|(E + ∆)ν)σ ,

Yµν = −∂ρ(E −∆)µσ∂σ(E −∆)νρ ,
Zµν = (E −∆)ρσ∂ρ∂σEµν , Wµν =

(
η − E + ∆

)ρσ
∂ρ∂σ∆µν .

(2.44)

This equation describes the graviton dynamics in terms of the generalised metric
perturbations, Eµν and ∆µν , which yields the same result as perturbative Einstein equation
for the pure gravity.

3 Off-shell recursion for gravity

Berends-Giele (BG) recursion in Yang-Mills theory provides an efficient algorithm for
computing color-ordered amplitudes iteratively [91]. The recursion was obtained by using
the recursive structure of YM’s Feynman vertices. The main ingredient of this technique
is the off-shell current J12···n

µ corresponding to a Feynman diagram with n on-shell legs
and one off-shell leg. The off-shell currents give (n + 1)-point color ordered amplitude
A(1, 2, · · · , n+ 1) as follows:4

A(1, 2, · · · , n+ 1) = lim
s12···n→0

s12···nε
n+1
µ J12···n

µ (3.1)

where εn+1
µ is the polarization vector for the (n + 1)-th external gluon and s12···n =

−(k1 + k2 + · · ·+ kn)2. Note that only simple poles with respect to s12···n of the currents
contribute to the amplitudes.

However, the conventional method deriving the off-shell recursion relations using
Feynman vertices is not available for perturbative gravity due to the infinitely many
irregular Feynman vertices. Unlike the YM case, new Feynman vertices arise as the number
of external legs is increased. To circumvent this problem, we will adopt another approach,
the so-called perturbiner expansion, which uses equations of motion rather than Feynman

4Throughout this paper, we will not distinguish the position of the spacetime indices in the off-shell cur-
rents.
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vertices. Recently, the perturbiner method has been applied to the perturbative GR [95].
Here, we will construct the graviton recursion relation using the perturbiner method for the
perturbative DFT obtained in the previous section.

3.1 Perturbiner method for Yang-Mills theory

We now briefly review the perturbiner expansion, which generates the BG currents and their
recursion relations. The original formulation of the BG recursion relation due to Berends
and Giele considers the structure of Feynman diagrams by defining the off-shell currents,
which is a Feynman diagram with one off-shell leg. On the other hand, the perturbiner
expansion is a multi-particle expansion of the Lie algebra valued gauge field Aµ in the
plane-wave basis [80–84]

Aµ =
∑
i

J iµT
aieik

i·x +
∑
i,j

J ijµ T
aiT ajeik

ij ·x +
∑
i,j,k

J ijkµ T aiT ajT akeik
ijk·x + · · · , (3.2)

where the coefficients of the expansion, J iµ, J ijµ , · · · , are the BG currents [101–103] and
i, j, k · · · are letters which represent single-particle labels. Here T ai are the Lie group
generators, and kijk···µ = kiµ + kjµ + kkµ + · · · . We may simplify the expansion as

Aµ =
∑
P

JPµ T
P eikP ·x (3.3)

where
TP = T aiT ajT ak · · · , kPµ = kiµ + kjµ + kkµ + · · · , (3.4)

and P,Q,R · · · are words which consist of the letters, such as P = ijkl · · · , which are
multi-particle labels. We call the length of the words ‘rank’ and denote as |P |, |Q| and
|R| etc.

The conventional method of constructing the BG recursion relations is using the
recursive structure of Feynman diagrams. On the other hand, in the perturbiner method,
the BG recursion arises by substituting the perturbiner expansion into the EoM. Thus the
perturbiner expansions are solutions of the EoM. Since scattering amplitudes are associated
with the BG currents, the perturbiner method connects the tree-level scattering amplitudes
and solutions of equations of motion manifestly.

The EoM of the YM theory in the Lorentz gauge, ∂µAµ = 0, is given by

�Aµ = i√
2

[Aν , ∂νAµ + Fνµ] ,

Fµν = ∂µAν − ∂νAµ −
i√
2

[Aµ,Aν ] ,
(3.5)

where our Lie algebra convention is

Tr(T aT b) = δab , [T a, T b] = ifabcT c . (3.6)

Note that we treat the field strength Fµν as an auxiliary field to avoid the double commutators
in the EoM. Then it requires a perturbiner expansion associated Fµν

Fµν =
∑
P

FPµνT
P eikP ·x . (3.7)
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As we have mentioned, the gluon recursion can be obtained by substituting the
perturbiner expansion (3.2) into the above EoM

JPµ = i√
2sP

∑
P=QR

(
i(JQ · kR)JRµ + JQν F

R
νµ − (Q↔ R)

)
,

FPµν = ikPµ J
P
ν − ikPν JPµ −

i√
2
∑

P=QR

(
JQµ J

R
ν − (Q↔ R)

)
,

(3.8)

where the sum goes over all deconcatenations of the given word P = p1p2 · · · p|P | into two
words Q = p1p2 · · · pj and R = pj+1pj+2 · · · p|P | for 1 ≤ j ≤ |P |. For instance, for a few
word P , all possible (Q,R) pairs are

P = 12 (Q,R) = (1, 2) ,
P = 123 (Q,R) = (1, 23), (12, 3) ,
P = 1234 (Q,R) = (1, 234), (12, 34), (123, 4) .

(3.9)

The initial condition of the BG recursion is identified with the polarization vector, J iµ = εiµ.
We list the explicit expression of the gluon off-shell currents in appendix B

3.2 Perturbiner expansion for DFT

We now define the perturbiner expansion for graviton and construct the off-shell recursion
relations for pure gravity. The graviton perturbiner expansion is not the same as the
gluon case. The main difference in the graviton currents is the colour indices. For gluon
currents, matrix products of the Lie algebra generators T iT jT k · · · are used to organize the
perturbiner expansion, and the ordering of letters is important due to the noncommutativity
of T i. However, graviton field Eµν does not carry colour indices, and we can only use the
plane-wave basis eikP ·x to separate the states in the expansion [92, 93]. Since the letters
in the plane-wave basis are commute, the ordering of letters in graviton perturbiners is
irrelevant. Thus the graviton currents satisfy J αµν = J βµν for any α, β ∈ Sn, where S12···n is
a permutation group with the set {1, 2, · · · , n}.

We introduce the graviton perturbiner expansion using the ordered words

Eµν =
∑
i

J iµνeiki·x +
∑
i<j

J ijµνeikij ·x +
∑
i<j<k

J ijkµν e
ikijk·x + · · · ,

=
∑
P
J PµνeikP ·x ,

(3.10)

where J Pµν is the graviton off-shell currents and P is an ordered words P = p1p2 · · · p|P| with
p1 < p2 < · · · < p|P|. Comparing with the words for gluons, for instance a length 2 word
for gluon P = 12 is different from 21, however, a length 2 words for graviton P = 12 = 21.
Like the gluon perturbiner expansion, the coefficient of the expansion J Pµν are the graviton
BG currents. Since the EoM of the perturbative DFT (2.44) consists of the additional
auxiliary fields ∆µν , Xµν , Yµν , Zµν and Wµν other than Eµν , we introduce their perturbiner
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expansions as well

∆µν =
∑
P
∆Pµνe

ikP ·x , Xµν =
∑
P
XPµνeikP ·x , Yµν =

∑
P
YPµνeikP ·x ,

Zµν =
∑
P
ZPµνeikP ·x , Wµν =

∑
P
WPµνeikP ·x .

(3.11)

Note that all these auxiliary currents starts from the rank-2, i.e. ∆i
µν = X iµν = Y iµν = Z iµν =

W i
µν = 0.
Recall that the BG recursion relation for YM theory can be obtained by substituting

the perturbiner expansion into the YM EoM. Similarly, if we substitute the perturbiner
expansions of graviton and auxiliary fields into the EoM of perturbative DFT(2.43), we have

J Pµν = 1
sP

[(
XP + YP + ZP

)
µν

+
∑

P=Q∪R
JQρ(µ

(
−XR + YR +WR

)
ν)ρ

+
∑

P=Q∪R
∆Qρ(µ

(
XR + YR + ZR − sR∆R

)
ν)ρ

]
,

(3.12)

where each auxiliary current is

∆Pµν = 1
2(J 2)Pµν −

1
8

∑
P=Q∪R

(J 2)Qµρ(J 2)Rνρ + 1
16

∑
P=Q∪R∪S

(J 2)Qµρ(J 2)Rρσ(J 2)Sνσ − · · · ,

XPµν =
∑

P=Q∪R

[1
2k
Q
(µk
R
ν)
(
JQρσ −∆Qρσ

)(
JRρσ +∆Rρσ

)
− 2kQ(µk

R
|ρ|
(
JQρσ −∆Qρσ

)(
JR+∆R

)
ν)σ

]
,

YPµν =
∑

P=Q∪R

(
JQµρ −∆Qµρ

)
kRρ
(
JRνσ −∆Rνσ

)
kQσ ,

ZPµν = −
∑

P=Q∪R
kRρ k

R
σ

(
JQρσ −∆Qρσ

)
JRµν ,

WPµν = sP∆
P
µν +

∑
P=Q∪R

kRρ k
R
σ

(
JQρσ −∆Qρσ

)
∆Rµν .

(3.13)
Remarkably, all the equations are quadratic in currents except ∆Pµν . We present the explicit
form of the recursion relations up to rank-4 in the appendix A. We will solve this recursions
iteratively in the next section. As for the gluon currents, the initial condition of the graviton
recursion is

J iµν = εiµν , (3.14)

where εiµν is the graviton polarization tensor. Further, (n + 1)-point graviton scattering
amplitudes M(1, 2, · · · , n+ 1) can be represented by the rank-n graviton off-shell current

M(1, 2, · · · , n+ 1) = lim
s12···n→0

s12···nε
n+1
µν J 12···n

µν . (3.15)

4 Solving the recursions and the classical double copy for currents

We now iteratively solve the off-shell recursion relations obtained in the previous section.
Note that the graviton currents are constructed in [33, 95] by solving the recursions based on
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the perturbative GR. Our result is consistent with the earlier works since it gives the same
graviton scattering amplitudes. Though the recursions are irrelevant to the dimensionality,
we assume 4-dimensional spacetime to employ the spinor-helicity formalism. The off-shell
currents should have a proper double copy structure due to their relation with the scattering
amplitude. Mizera and Skrzypek proposed the KLT relation for off-shell currents of the
non-gravitational effective field theories [93]. Recently Cheung and Mangan introduced a
map between gluon and graviton currents based on the color-kinematic duality [96].

Then we will present the current KLT relation for gravity by using the explicit form
of the gluon and graviton currents. In the computation of the off-shell currents, we will
specify helicities of the on-shell external states. We show that the current KLT relation
requires regular terms for the propagator of the off-shell leg, which does not contribute to
the scattering amplitude in addition to the gauge transformation terms introduced in [93].

4.1 Current KLT relation

In order to see the general structure of the graviton currents, we solve the graviton recursion
up to rank-3 without restriction on helicity. We present, by explicit construction, the current
KLT relation generalising the conventional KLT relation for graviton scattering amplitudes.

Let us start from the rank-2 current. If we substitute the initial condition (3.14), we
obtain the rank-2 currents from the recursion in (A.2) and (A.3)

J 12
µν = 1

2s12

[
− 2(ε1·ε2)

(
k1·ε2

(
k2
µε

1
ν + k2

νε
1
µ

)
+ k2·ε1

(
k1
µε

2
ν + k1

νε
2
µ

) )
+ (ε1·ε2)2

(
k2
µk

1
ν + k1

µk
2
ν

)
− 2

(
(k1·ε2)ε1µ − (k2·ε1)ε2µ

)(
(k1·ε2)ε1ν − (k2·ε1)ε2ν

)]
.

(4.1)
The rank-2 gluon current is given by

J12
µ =

(ε1·ε2)
(
k2
µ − k1

µ

)
+ 2(k1·ε2)ε1µ − 2(k2·ε1)ε2µ√

2s12
. (4.2)

Then we can show that the double copy for the BG currents. It should be consistent with
the KLT relation for the 3-pt scattering amplitude

M3(1, 2, 3) = 1
s12

A3(1, 2, 3)A3(1, 2, 3) . (4.3)

Using the relation between the scattering amplitude and BG currents, we expect J 12
µν has

to accompany at least J12
µ S[2|2]1J12

ν . If we compare them we find the following relation

J 12
µν = J12

µ S[2|2]1J12
ν + k12

µ ∆ν + k12
µ ∆ν + k12

µ k
12
ν ∆ , (4.4)

where

∆µ = −
ε1·ε2

(
(k1·ε2)ε1µ + (k2·ε1)ε2µ

)
2s12

, ∆ = (ε1·ε2)2

4s12
. (4.5)

The last three terms on the righthand side of (4.4) can be interpreted to the gauge
transformation of the graviton field, and it does not contribute to the scattering amplitudes
because k12

µ is orthogonal with the ε3 in the on-shell limit, k12 · ε3 = 0.
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Now let us consider the rank-3 currents. Note that the KLT relation for 4-pt graviton
scattering amplitude is

M(1, 2, 3, 4) = 1
s123

(
A(1, 2, 3, 4) A(1, 3, 2, 4)

)(S[23|23]1 S[23|32]1
S[32|23]1 S[32|32]1

)(
A(1, 2, 3, 4)
A(1, 3, 2, 4)

)
,

(4.6)
where the components of the KLT kernel are

S[23|23]1 = s12(s13 + s23)
4 , S[23|32]1 = s12s13

4 , S[32|32]1 = s13(s12 + s23)
4

(4.7)
Thus the 4-pt gluon color ordered amplitudes contribute to the KLT relation are A(1, 2, 3, 4)
and A(1, 3, 2, 4).

From the relation between the BG current and color-ordered amplitude, A(1, 2, 3, 4)
and A(1, 3, 2, 4) are associated with J123

µ and J132
µ respectively. Solving the rank-3 recursion

relation (3.8) gives

J123
µ = 2

s123

[(
Q132k

2
µ −Q231k

1
µ +R123k

3
µ

s12
+ (1↔ 3)

)

−
((

P123 + P132 + ε2·ε3
2

)
s13
s23

ε1µ + cycl[1,2,3]
)]

+ regular terms + k123
µ Ψ123 ,

(4.8)
where Pijk, Qijk and Rijk are defined by

Pijk =
ki·εj

(
ki·εk + kj ·εk

)
sij

, sijPijk − sikPikj = (ki·εj)(kj ·εk)− (ki·εk)(kk·εj) ,

Qijk = (ki·εj)(εi·εk) , Rijk = Qijk −Qjik .
(4.9)

Since the only simple poles in the currents contribute to the color-ordered amplitudes, we
single out the regular terms in s123 → 0

regular terms :
(

2P123 + ε2·ε3
2

)
ε1µ
s23

+
(
2P321 + ε1·ε2

2
) ε3µ
s12

. (4.10)

The last term in (4.8) can be interpreted to a gauge transformation and does not contribute
to the scattering amplitude

Ψ123 = 1
2s123

[ 1
s12

(
Q231 −Q132 − 2R123

)
+ (1↔ 2)

)]
. (4.11)

Similarly, J132
µ can be obtained by replacing 2→ 3 and 3→ 2.

We now consider the rank-3 graviton current J123
µ . It is obtained by solving the recursion

relation (A.4), but the explicit form is rather messy. The for the double copy of the BG
currents is

J 123
µν =

∑
ρ,σ∈S{2,3}

J1α
µ S[α|β]1J1β

ν + regular terms + 2k123
(µ ∆123

ν) + k123
µ k123

ν ∆123 . (4.12)
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where S{2,3} is the permutation group of the set {2, 3}, and ∆ and ∆µ are the gauge
transformation

∆ = s12(s13 + s23)
4

(
Ψ123)2 + s12s13

2 Ψ123Ψ132 + s13(s12 + s23)
4

(
Ψ132)2 , (4.13)

and

∆µ =
(s13Q231 + s12Q321) (2P123 + 2P132 + ε2·ε3) ε1µ

2s23
−

(s13Q231 + s12Q321)2 k1
µ

2s12s13s23

+ cyclic(1, 2, 3) .
(4.14)

We may generalise the double copy in the rank-3 graviton current to higher rank. Recall
that the graviton and gluon scattering amplitudes are associated with their BG currents as

M(1, 2, · · · , n+ 1) = lim
s12···n→0

s12···nε
n+1
µν J 123···n

µν ,

An(1, 2, · · · , n+ 1) = lim
s12···n→0

s12···nε
n+1
µ J12···n

µ .
(4.15)

This means that the gluon and graviton currents always have simple poles of s12···n, and
the simple poles only contribute to the scattering amplitudes. We may expect the double
copy structure even in the currents level. The (n− 2)!-form of the KLT relation [104, 105]
is given by

Mn = lim
k2
n→0

∑
ρ,τ∈Sn−2

AYM
n (1, ρ, n) S[ρ|τ ]1

s12 · · ·n− 1A
YM
n (1, τ, n) . (4.16)

Since the KLT relation (4.16) is only guaranteed for the scattering amplitude level, the
regular terms do not have to satisfy the KLT relation. Thus we propose the general KLT
relation for the graviton currents as follows:

J12···n
µν =

∑
σ,τ∈Sn−1

J1σ
µ S[σ|τ ]1J1τ

ν + regular terms + kPµ ∆ν + ∆µk
P
ν + kPµ k

P
ν ∆ .

(4.17)

4.2 Currents in the spinor-helicity basis

The off-shell currents are more complicated as the rank increases in general. In order to
verify the current KLT relation (4.17) explicitly, we have to multiply two gluon currents
with the

(
(n− 1)!

)2 different combinations and add all of them by multiplying the elements
of the KLT kernel S[α|β]1 in a specific way. The checking process requires huge calculations
indeed. Thus it is essential to reduce the number of terms in each gluon current, so that we
employ the spinor-helicity formalism for the rank-4 currents. In this formalism, a proper
choice of reference momenta of polarization vectors/tensors greatly simplifies the form of the
currents. There are two distinct classes in helicity choice for the graviton and gluon currents:

1. MHV currents: (1+, 2+, 3+, · · · ) and (1−, 2+, 3+, · · · )

2. More than two opposite helicities: (1−, 2−, 3+, · · · ) and (1−, 2−, 3−, 4+, · · · ) etc
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Usually the term ‘MHV’ is typically used in scattering amplitudes with n−2 gluons/gravitons
of positive helicity and two gluons/gravitons of negative helicity. Here we use the term
‘MHV currents’ for all positive helicity or with n − 1 positive helicity and one negative
helicity, which is related with the MHV amplitudes. In the MHV current case, we can
choose reference momenta so that all the polarization vectors/tensors are orthogonal to
each other εi · εj = 0. As we will show later, in this case all the currents become null and
orthogonal to each other. Then the graviton and gluon recursions reduce to a simpler form
as in (4.25). On the other hand, we have to consider the full recursion relation for the
second class.

The helicity-2 polarization tensors εiµν for gravitons are given by a simple product of
two polarization vectors,

εi+µν = εi+µ ε
i+
ν , εi−µν = εi−µ ε

i−
ν . (4.18)

The polarization vectors for the on-shell states satisfy

εi · εi = 0 , ki · εi = 0 . (4.19)

Note that any four-dimensional vector can be represented by a pair of Weyl spinors using
the gamma matrices, pµγµ = −|p〉[p|+ |p]〈p|. Then the polarization vectors with external
momenta ki, εiµ(ki), are written by

εi−µ (ki; q) = −〈i |γ
µ| q]√

2[qi]
, εi+µ (ki; q) = −〈q |γ

µ| i]√
2〈qi〉

, (4.20)

where qµ is an auxiliary null vector, called the reference momentum, reflecting the gauge sym-
metry of the massless vector fields. This representation satisfies the on-shell conditions (4.19)
automatically. We further introduce the generalised Mandelstam variables

sij = − (ki + kj)2 , sijk = − (ki + kj + kk)2 , etc (4.21)

These are represented by spinors by the Fierz identity, 〈1 |γµ| 2] 〈3 |γµ| 4] = 2〈13〉[24],

sij = −〈ij〉 [ij] . (4.22)

4.3 Class 1: MHV currents

Here we consider the MHV currents: all positive helicity or one negative helicity. Without
loss of generality we make a choice of the reference momenta as follows:

(1+, 2+, 3+, · · · ) : for all εi+µ ,we choose the same qµ

(1−, 2+, 3+, · · · ) :

for ε1−µ , qµ = k2
µ

for εi+ , qµ = k1
µ , i > 1

.
(4.23)

Under this choice, the polarization vectors are orthogonal to each other. Since the graviton
polarization tensors consist with the polarization vector E iµν = εiµε

i
ν , the polarization tensors

are also orthogonal to each other

εiµνε
j
νρ = 0 , for all i, j . (4.24)
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In this case the graviton recursion admits a special subsector. Using the nilpotency and
orthogonality of the polarization tensors, one can show that all the MHV graviton currents
are orthogonal to each other, JPµνJQνρ = 0, where Q and R are arbitrary words. From this
property, the recursion relation for the MHV currents reduces to

J Pµν = − 1
sP

∑
P=Q∪R

((
kRρ JQρσkRσ

)
JRµν −

(
JQµρkRρ

)(
JRνσkQσ

))
. (4.25)

We can prove the orthogonality between the MHV currents by induction. By assumption, the
rank-1 currents identified with the polarization tensors are orthogonal to each other (4.24).
Next, let us assume that all the currents up to rank-p are orthogonal to each other

JQµνJRνρ = 0 , |Q| ≤ p and |R| ≤ p . (4.26)

Under this condition, the graviton recursion relation reduces to (4.25) because all the terms
including contractions between the graviton currents vanish. Then, from (4.25) and (4.26),
we can show that all the rank-(p + 1) currents, J Pµν and J P ′νρ with |P| = |P ′| = (p + 1),
are orthogonal with the lower rank currents J PµνJQνρ = 0, where |Q| ≤ p and themselves,
J PµνJ P

′
νρ = 0.
A corollary of the MHV recursion relation (4.25) is that the MHV graviton currents

are proportional to the polarization vectors. In other words the graviton currents do not
contain terms that are proportional to the external momenta kiµ. One can show this by
induction as before. The rank-1 current is trivial. If we assume that the up to rank-n
currents are written in the following form

J Pµν =
∑
i∈P
J Pij εi(µε

j
ν) , |P| ≤ n , (4.27)

and substitute into the recursion relation for the rank-(n+ 1) current (4.25), we can easily
show that the rank-(n+ 1) current can be also written in the same form as (4.27).

So far we have discussed only for the graviton currents, however the MHV gluon currents
also satisfy the same properties [91],

JPµ J
Q
µ = 0 , JPµ =

∑
i

JPi ε
i
µ , (4.28)

and the recursion relation is reduced into a simple form

JPµ = i

sP

∑
P=QR

((
JQ · kR

)
JRµ −

(
JR · kQ

)
JQµ

)
. (4.29)

Note that the MHV currents for gluon and graviton both cannot have the gauge transforma-
tion terms because the MHV recursions (4.25) and (4.29) do not have terms proportional
to the kPµ or kPµ respectively. Further we propose the exact KLT relation for the MHV
currents even without any discrepancy in regular terms

J Pµν =
∑

α,β∈SP∗
J1α
µ S[α|β]1J1β

ν , (4.30)

where SP∗ is a permutation group for the word P∗ = {P2,P3, · · · ,P|P |}.
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Let us compute the MHV graviton currents and examine the exact current KLT relation
up to rank-4.

• Rank-2. If we compute the rank-2 MHV graviton currents from the recursion (4.25),
we have

J12
µν = − 1

s12

(
(k1 · ε2)2ε1µε

1
ν − (k2 · ε1)(k1 · ε2)ε1(µε

2
ν) + (1↔ 2)

)
. (4.31)

Similarly the rank-2 MHV gluon currents are

J12
µ = −

√
2

s12

(
(k2 · ε1)ε2µ − (k1 · ε2)ε1µ

)
. (4.32)

It is straightforward to show that these currents satisfy the current KLT relation

J 12
µν = J12

µ S[2|2]1J12
ν ,

where S[2|2]1 = −1
2s12.

• Rank-3. The rank-3 graviton BG current is obtained from the recursion relation (4.25)

J 123
µν = −1

2
1
s123

k123
ρ k123

σ

[
J 12
ρσJ 3

µν − J 12
ρµJ 3

σν + J 3
ρσJ 12

µν − J 3
ρµJ 12

σν + Perm [1,2,3]
]
. (4.33)

Using the KLT relation for the rank-2 currents, we have

J 123
µν = s12

2s123

[(
(k3 · J12)ε3µ−(k12 · ε3)J12

µ

)(
(k3 · J12)ε3ν − (k12 · ε3)J12

ν

)]
+cyclic[1,2,3] .

(4.34)
For simplicity we introduce a new current, Ĵ ij,kµ = (kk ·J ij)εkµ−(kij ·εk)J ijµ . This current

is antisymmetric under the interchange of i and j, Ĵ ij,kµ = −Ĵ ji,kµ , due to the property of
the rank-2 currents that J ijµ = −J jiµ . Then the rank-3 gluon currents are recast

J ijkµ = −
√

2
sijk

[
Ĵ ij,kµ − Ĵ jk,iµ

]
, J ikjµ = −

√
2

sijk

[
Ĵ ik,jµ + Ĵ jk,iµ

]
. (4.35)

Conversely, Ĵ ij,kµ can be written in terms of the rank-3 currents

Ĵ ij,kµ = 1√
2
(
sikJ

kij
µ − sjkJkjiµ

)
. (4.36)

We then rewrite J 123
µν in (4.34) using the new currents

J 123
µν = 1

2s123

(
s12Ĵ

12,3
µ Ĵ12,3

ν + s23Ĵ
23,1
µ Ĵ23,1

ν + s13Ĵ
13,2
µ Ĵ13,2

ν

)
. (4.37)

Comparing this with the exact KLT relation (4.30), we have

J 123
µν = J123

µ S[23|23]1J123
ν + 2J123

(µ S[23|32]1J132
ν) + J132

µ S[32|32]1J132
ν

− 1
2s2

123

(
s12Ĵ12,3

µ − s13Ĵ13,2
µ + s23Ĵ23,1

µ

)(
s12Ĵ12,3

ν − s13Ĵ13,2
ν + s23Ĵ23,1

ν

)
.

(4.38)
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Using the identity (4.36), we can rewrite the parenthesis in the last line reduces to

1
2
√

2s123

(
s12s13

(
J312
µ − J213

µ

))
+ s12s23

(
J123
µ − J321

µ

))
+ s13s23

(
J231
µ − J132

µ

))
= 0 , (4.39)

and it vanishes due to the reflection identity for the rank-3 gluon currents

J ijkµ = Jkjiµ . (4.40)

This shows the rank-3 graviton current J ijkµν satisfies the exact KLT relation.

• Rank-4. The structure of the rank-4 currents are similar to the rank-3 currents. From
the recursion, the rank-4 graviton currents are given by

J 1234
µν = − 2

s1234
k1234
ρ k1234

σ

[ 1
3!J

123
ρ[σ J

4
µ]ν + 1

4J
12
ρ[σJ

34
µ]ν + 1

3!J
4
ρ[σJ

123
µ]ν

]
+ Perm[1, 2, 3, 4] . (4.41)

We introduce a pair of currents generalising the rank-3 counterpart Ĵ ij,kµ (4.37)

Ĵ ijk,lµ = (kk · J ijk)J lµ − (kijk · J l)J ijkµ ,

Ĵ ij,klµ = (kkl · J ij)Jklµ − (kij · Jkl)J ijµ .
(4.42)

Then the graviton current (4.41) can be recast in the following form

J 1234
µν = − 1

s1234

[ ∑
α,β∈S{2,3}

S[α|β]1Ĵ1α,4
µ Ĵ1β,4

ν +
∑

α,β∈S{2,4}

S[α|β]1Ĵ1α,3
µ Ĵ1β,3

ν

+
∑

α,β∈S{3,4}

S[α|β]1Ĵ1α,2
µ Ĵ1β,2

ν +
∑

α,β∈S{3,4}

S[α|β]2Ĵ2α,1
µ Ĵ2β,1

ν

+ 1
4s12s34Ĵ

12,34
µ Ĵ12,34

ν + 1
4s13s24Ĵ

13,24
µ Ĵ13,24

ν + 1
4s14s23Ĵ

14,23
µ Ĵ14,23

ν

]
.

(4.43)
Similarly, the rank-4 gluon recursion is given by

J1234
µ = −

√
2

s1234

[(
J1 · k234)J234

µ −
(
J234 · k1)J1

µ +
(
J12 · k34)J34

µ −
(
J34 · k12)J12

µ

+
(
J123 · k4)J4

µ −
(
J4 · k123)J123

µ

]
,

(4.44)

and we can recast the current using (4.42)

J1234
µ = −

√
2

s1234

[
Ĵ123,4
µ − Ĵ234,1

µ + Ĵ12,34
µ

]
, (4.45)

or conversely

Ĵ123,4
µ = 1√

2

(
s14J

4123
µ − s24J

4213
µ − s24J

4231
µ − s34J

1234
µ

)
,

Ĵ12,34
µ = 1√

2

(
s13J

2134
µ − s14J

2143
µ + s24J

1243
µ − s23J

1234
µ

)
.

(4.46)
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Substituting (4.45) into the exact current KLT relation and comparing with the graviton
current (4.43), we have

J 1234
µν −

∑
α,β∈S{2,3,4}

J1α
µ S[α|β]1J1β

ν

= 1
4s1234

[
s12s23Ĵ

123,4
µ Ĵ123,4

ν + permutation[1, 2, 3, 4]

+ s12s34Ĵ
12,34
µ Ĵ12,34

ν + s13s24Ĵ
13,24
µ Ĵ13,24

ν + s14s23Ĵ
14,23
µ Ĵ14,23

ν

]
,

− 1
8

[
s12s23s34J

1234
µ J1234

ν + permutation[1, 2, 3, 4]

+ s12
(
s13s14 + s23s24

)(
J2134
µ + J2143

µ

)(
J2134
ν + J2143

ν

)
+
(
s13s23s34

(
J1324
µ + J1342

µ

)(
J1324
ν + J1342

ν

)
+
(
3↔ 4

))]
.

(4.47)

One can show that the right hand side vanishes exactly, and this shows the exact current
KLT relation for the rank-4 currents.

4.4 Class 2: Two opposite helicities

Let us consider the second class involving two opposite helicities. The first nontrivial
currents in this class starts from rank-4, such as (1−, 2−, 3+, 4+). Our reference momenta
convention is

ε1µν : q1 = k3 , ε2µν : q2 = k3 , εiµν : qi = k1 , for i ≥ 3 . (4.48)

Using the convention, we have

ki · ε1− = − s1i[i3]√
2[1i][31]

, ki · ε2− = − si2[i3]√
2[2i][32]

, ki · εj+ = − sij 〈i1〉√
2 〈ji〉 〈1j〉

,

ε2− · ε4+ = 〈12〉 [34]
〈14〉 [23] , ε2− · εi = 0 ,

(4.49)
where 1 ≤ i, j ≤ 4. Further we have the following identities:

(k1 · ε2)(k3 · ε4) = −s13
2 (ε2 · ε4) ,

(k2 · ε4)(k4 · ε2) = −s24
2 (ε2 · ε4) ,

(k2 · ε3)(k4 · ε1) = (k2 · ε1)(k4 · ε3) .

(4.50)

We now present the rank-4 graviton current J 1234
µν . It is straightforward to compute

the explicit expression of the graviton current by solving the recursion, however, we just
write down it using the current KLT relation because of the lengthy expression

J 1234
µν =

∑
α,β∈S{2,3,4}

J1α
µ S[α|β]1J1β

ν + 2k1234
(µ ∆1234

ν) + k1234
µ k1234

ν ∆1234 + regular terms .

(4.51)
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We may decompose the gauge transformations, ∆1234
µ and ∆1234, into two parts according

to their origin, from the gluon currents, k1234
µ ΨP , or the graviton current. (See appendix B

for the explicit form of ΨP ) If we denote the contribution from the graviton currents as
Φ1234
µ and Φ1234, the total gauge transformation are written as

∆1234
µ = Φ1234

µ +
∑

α,β∈S{2,3,4}

Ψ1αS[α|β]1J1β
µ

∆1234 = Φ1234 +
∑

α,β∈S{2,3,4}

Ψ1αS[α|β]1Ψ1β .
(4.52)

where

Φ1234 =
Q2

234,1
2

[
2(s24 − s13)
s24s124s234

+ s123s134

(2(s13−s24)
s24

− (s14+s24)s13(s23 + s24)
s14s23s24

+ s12s34
s14s23

)

+ s13(s14 + s24)(s23 + s24)− s12s24s34
s124s14s23s234s24

+ 2
s24

(
s24+s34
s34

(s13+s14
s12s234

)
+ s14
s12s124

)]
,

(4.53)
and ΨP and Φ1234

µ are in appendix C. Here Qijk,l = Qijk(kk·εl).
Finally, we comment on the ambiguity of the graviton off-shell currents. Since the

on-shell amplitudes are completely independent of regular terms and gauge transformations,
these can be added or subtracted to the off-shell currents, and the form of the currents is
not unique. In section 2, we discussed that redundancies reside in the DFT EoM. Thus we
extracted the essential part of EoM by using the background projection operators Θµ

M and
Θ̄µ

M . Even though our EoM (2.44) is compact and useful to solve it, however, it may not
be optimized for describing the current KLT relation. If we compute the KLT relation using
the off-shell currents from the redefined EoM, then the regular and gauge transformation
terms would be reduced or disappeared.

5 Conservation of the off-shell currents

One of the characteristic features of the BG current is off-shell conservation. It represents
gauge invariance as the Ward identity of the on-shell scattering amplitudes and gives a
non-trivial test of the off-shell currents. For instance, the gluon currents in the Lorentz
gauge condition satisfy kP · JP = 0 without using equations of motion. In this section,
we will consider the conservation of the off-shell currents in a nonlinear gauge condition.
We will show that the conservation should be hold up to the gauge condition we have
imposed. As an example, we will examine the conservation of the gluon currents under the
Gervais-Neveu gauge condition. We then show that conservation of our graviton currents
satisfies in the same way.

5.1 Conservation of gluon currents in Gervais-Neveu gauge condition

Before discussing the graviton current case, let us consider the gluon current conservation
in the Gervais-Neveu (GN) gauge condition as a toy model. It is a nonlinear gauge choice
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in gauge field Aµ
∂µAµ = i√

2
AµAµ . (5.1)

The perturbiner expansion of Aµ is still the same as (3.3) because it is independent of the
gauge choice. Substituting the perturbiner expansion into the GN gauge condition (5.1) gives

kPµ J̃
P
µ = 1√

2
∑

P=QR
J̃Q · J̃R , (5.2)

where J̃Pµ represents the gluon currents in the GN gauge condition. This implies that the
conservation of currents in a nonlinear gauge condition should be modified. In the Lorentz
gauge fixing, the right hand side is trivial, kPµ JPµ = 0, and it is consistent with the usual
conservation of currents. However, in GN gauge condition, there is no reason the right hand
side of (5.2) vanish in general. Then the current conservation holds up to the GN gauge
condition. We will check (5.2) explicitly by computing the kPµ J̃Pµ by computing the gluon
currents by solving the recursion relation.

Under the GN gauge condition, the action is reduces to

LYM = Tr
(
−1

2∂
µAν∂µAν − i

√
2∂µAνAνAµ + 1

4AµAνA
µAν

)
, (5.3)

and the corresponding equations of motion is

�Aµ + i
√

2
(
[∂νAµ,Aν ]−

(
∂µAν

)
Aν
)

+ [Aν ,Aµ]Aν = 0 , (5.4)

or in terms of the field strength Fµν = ∂µAν − ∂νAµ − i√
2 [Aµ,Aν ],

�Aµ = i
√

2
(
FµνAν + Aν∂νAµ

)
. (5.5)

As before, if we substitute the perturbiner expansion into the above EoM, we get the
recursion relation for the off-shell gluon currents

J̃Pµ = i
√

2
sP

∑
P=QR

(
F̃Qµν J̃

R
ν + i

(
J̃Q · kR

)
J̃Rµ

)
, (5.6)

where J̃ and F̃ represent the currents in the GN gauge choice. The recursion relation of
F̃Pµν is the same as the FPµν in (3.8).

Let us now compute the currents J̃Pµ explicitly using (5.6) and examine the current
conservation. The rank-2 current is given by

J̃ ijµ =
√

2
sij

[
(ki·εj)εiµ − (kj ·εi)εjµ − (εi·εj)kiµ

]
, (5.7)

and comparing the Lorentz gauge result, the difference is the gauge transformation

J ijµν − J̃ ijµν =
(
εi·εj

)
kijµ√

2sij
. (5.8)
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The conservation of J̃ ijµ is

kijµ J̃
ij
µ = εi·εj√

2
= 1√

2
J̃ i · J̃ j , (5.9)

and this exactly reproduces the GN gauge condition (5.2).
Next, the rank-3 gluon current is

J̃ ijkµ = 1
sijk

[(sij + sjk) (2Pijk + εj ·εk)− 2Pikjsik
sjk

εiµ − 2
(
Pjik + Pjki + εi·εk

2
)
εjµ

− sik (2Pjik + εj ·εk)− 2Pkji (sij + sjk)
sij

εkµ

+
2 (sijTkji − sjkTijk) kiµ + 2

(
sjkTjik + sijS

+
jik

)
kjµ

s12s23

]
.

(5.10)

Again, the difference with the rank-3 gluon currents in the Lorentz gauge is as follows

J ijkµ − J̃ ijkµ = −
kijkµ
sijk

(
S+
jik + 2Tkji

2sjk
+

2Tjik − S+
jki

2sij

)
+

(εi·εj)εkµ
2sij

−
(εj ·εk)εiµ

2sjk
, (5.11)

where the first term on the right hand side is a gauge transformation and the second term
is a regular term. If we contract kijkµ with J̃ ijkµ , we get

kijkµ J̃ ijkµ = −Tjik
sij
− Tkji
sjk

= 1√
2

(J̃ ijµ J̃kµ + J̃ iµJ̃
jk
µ ) . (5.12)

This is the GN gauge condition as we expected.

5.2 Conservation of the graviton currents

We now consider the graviton currents case. We have introduced the gauge choice in
undoubled D-dimensional form (2.36). As we have seen in the GN gauge choice, we get the
conservation of graviton currents by substituting the perturbiner expansion (3.10) and (3.11)
into the gauge condition

kPν J Pνµ = kPν ∆Pνµ − 2kPµ dP + 2
∑

P=Q∪R
(JQµν −∆Qµν)kRν dR , (5.13)

where dP is the dilaton currents generated from the perturbiner expansion of d

d =
∑
P
dPeikP ·x . (5.14)

The EoM of the DFT dilaton d is given by the generalised Ricci scalar R (2.39). If we
substitute the perturbation of the generalised metric (2.12), we have

�d = −1
4
(
Xµ

µ + Y µ
µ
)

+ 1
4E

µν(4∂µ∂νd+Xµν − Yµν
)
− 1

4∆
µν(4∂µ∂νd+Xµν + Yµν

)
,

(5.15)
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where Xµν and Yµν are the auxiliary fields introduced in (2.44). Then the recursion relation
for dP is derived from the EoM of d (5.15)

dP = − 1
4sP

[
XP + YP −

∑
P=Q∪R

JQµν
(
XRµν − YRµν − 4kRµ kRν dR

)
+

∑
P=Q∪R

∆Qµν
(
XRµν + YRµν − 4kRµ kRν dR

)]
,

(5.16)

where XP and YP are the trace of XPµν and YPµν respectively. Note that the rank-1 dilaton
currents di vanish because X iµν = Y iµν = 0, and it starts from the rank-2.

We now compute the left hand side of (5.13) explicitly using the graviton currents and
verify the right hand side. Up to rank-3, we do not impose helicity on the polarization
tensor. Let’s consider the rank-1 conservation equation. It is ensured by the transverse
condition of the polarization tensor

kiνJ iνµ = kiνε
i
νµ = 0 . (5.17)

Next, we compute the off-shell conservation for the rank-2 graviton currents kijν J ijνµ.
If we use the explicit form of the rank-2 graviton current (4.2), the conservation equation
reduces to

kijν J ijνµ = (εi·εj)
2

[
(ki·εj)εiµ + (kj ·εi)εjµ

]
−
((ki·εj)(kj ·εi)(εi·εj)

sij
+ (εi·εj)2

4

)
kijµ . (5.18)

One can show that the first and the second terms on the right hand side are the same as
kijν ∆ij

νµ and −2kijµ dij , respectively. Thus it satisfies the rank-2 gauge fixing condition

kijν J ijνµ = kijν ∆ij
νµ − 2kijµ dij . (5.19)

Finally, let’s consider the rank-3 case. The rank-3 gauge fixing condition is written by

kijkν J ijkνµ = kijkν ∆ijk
νµ − 2kijkµ dijk +

∑
Perm[ijk]

J iµνkjkν djk . (5.20)

We compute each term on the right hand side and compare with the left hand side. The
first terms is

kijkν ∆ijk
νµ =

[
εj ·εk

8
(
2Qjki −Qjik +

sij
(
2Qkji −Qkij

)
sjk

− 2Pjki(kk·εj)
)
− PijkTijk

2

− (ki·εj)(kj ·εk)Tjki
2sjk

+ (j ↔ k)
]
εiµ +

[
S+
ikj

(
Qjki − 2Qjik

)
4sij

+ (j ↔ k)
]
kiµ

+ cyclic[i, j, k] ,
(5.21)

the second term is

−2dijkkijkµ = 1
sijk

[
(Qijk +Qjki +Qkij)2

12 + sik
sij

(
(Tijk)2

4 + PikjS
+
ikj(kj ·εi)

)

+ PijkRijk(kk·εi) + (i↔ j)
]
kijkµ + cyclic[i, j, k] ,

(5.22)
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and the last term is∑
Perm[ijk]

J iµνkjkν djk = εj ·εk
4
(
S+
jik + 4Pjki(kk·εj)

)
εiµ + cyclic[i, j, k] . (5.23)

If we compare these results with the left hand side of (5.20), the gauge condition is exactly
satisfied. This shows the rank-3 graviton off-shell conservation. We can continue this job to
any higher rank currents.

As a final comment, we consider the conservation of the MHV case, kPµ J Pµν = 0. By
substituting the graviton currents (4.25), we can show that the MHV currents trivially
satisfy the off-shell conservation exactly

kPµ J Pµν = − 1
sP
kPµ k

P
ρ k
P
σ

∑
P=Q∪R

(
JQρσJ

R
µν − JQµρJRσν

)
,

= − 1
sP
kPµ k

P
ρ k
P
σ

∑
P=Q∪R

(
JQρσJ

R
µν − JQρσJRµν

)
= 0 .

(5.24)

6 Conclusion

This paper presents the classical double copy for graviton off-shell currents. To this end,
we have first formulated the perturbative DFT with all-orders of perturbations of the
generalised metric. We have found the explicit field redefinition between the perturbation of
the generalised metric and metric perturbations in GR. This shows the equivalence between
perturbative DFT and the perturbative GR. The key point of this paper was to show that
the graviton off-shell currents satisfy the current KLT relation representing the graviton
currents in terms of the gluon currents.

Next we have constructed the off-shell recursion relation for gravity from the perturbiner
method for the perturbative DFT instead of the recursive structure of the Feynman vertices.
We obtained the graviton off-shell currents up to rank-4 by solving the graviton off-
shell recursion relation iteratively. This method directly connects the graviton scattering
amplitudes to the solution of the perturbative EoM. Thus it fits with our purpose of
understanding the perturbative classical double copy via the current KLT relation. Using
the explicit graviton currents, we have presented the current KLT relation that relates the
gluon and the graviton currents up to the gauge transformations and the regular terms. As
a nontrivial test for the graviton off-shell currents, we checked the off-shell conservation, a
characteristic of the currents. However, we showed that the graviton current conservation
does not hold exactly for our nonlinear gage conditions, but the currents are conserved
up to the gauge condition. To support this, we examined the gluon currents with the
Gervais-Neveu gauge condition, which is nonlinear in the gauge field, are conserved up to
the gauge condition.

In this work, we have focused on the pure gravity case for simplicity. Since DFT
naturally unifies the other massless NSNS fields, the Kalb-Ramond field Bµν and dilaton φ,
as well as the gauge multiplet in the heterotic string, it would be straightforward to apply
the same procedure in pure gravity to the entire NSNS sector or N = 4 supergravities.
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Another essential feature of DFT that we have left out is the doubled local Lorentz group.
It should be related to the manifest double copy structure for the graviton currents, and
it would be helpful for describing the double copy structure in various applications of
perturbative gravity. We remain these as future work.

An important issue related to the classical double copy is how to construct the exact
current KLT relation for general helicities by removing the regular terms and the gauge
transformation. Once we have the exact KLT relation, we can directly write down pertur-
bative gravity solutions using gauge theory solutions, as in the scattering amplitude. From
the perturbiner method point of view, this issue is related to the form of EoM because the
field equations determine the form of off-shell recursions and currents. Note that EoM is
not unique since we can freely add or subtract trivial terms that vanish in on-shell (in a
sense that satisfies the EoM). Also, gauge choice and field redefinitions change the form of
EoM. We will investigate the exact KLT relation in future work.

It is also interesting to extend our results to curved backgrounds. It would be straight-
forward to apply the flat background results to curved backgrounds. As we have pointed
out, the perturbative DFT is simpler than GR due to the O(D,D) structure and doubled
Lorentz group. We can apply the perturbative DFT to various perturbative gravity applica-
tions, particularly black holes or cosmological backgrounds, especially (A)dS space. Since
the perturbiner methods are not restricted to a flat background, we may apply them to
understand the (classical) double copy for curved backgrounds.
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A Explicit form of the graviton recursions

In this appendix we present the explicit expressions of the graviton recursion relation by
expanding the currents of the graviton and the auxiliary fields (3.12) and (3.13) up to
rank-4.

• Rank-1. In this case the graviton currents are identified with the polarization tensor
J iµν = εiµν as the initial condition for the recursion. The auxiliary currents vanish ∆i

µν =
X iµν = Y iµν = Z iµν = W i

µν = 0 . Then the rank-1 recursion gives the mass-shell condition
(ki)2 = 0. (

ki · ki
)
J iµν =

(
ki
)2
εiµν = 0 . (A.1)
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• Rank-2. The rank-2 graviton currents are given by

J ijµν = 1
sij

(
X ij + Y ij + Z ij

)
µν
, (A.2)

and the auxiliary currents are

∆ij
µν = 1

2J
i
µρJ

j
νρ + (i↔ j) ,

X ijµν = 1
2k

i
(µk

j
ν)J

i
ρσJ jρσ − 2ki(µJ

j
ν)ρJ

i
ρσk

j
σ + (i↔ j) ,

Y ijµν = (J iµρkjρ
)(
J jνσkiσ

)
+ (i↔ j) ,

Z ijµν = −
(
kjρk

j
σJ iρσ

)
J jµν + (i↔ j) ,

W ij
µν = sij∆

ij
µν + (i↔ j) .

(A.3)

As we have assumed, all the currents are symmetric under the exchanging i and j.

• Rank-3. The rank-3 graviton currents are represented by

J ijkµν = 1
sijk

(
X ijkµν + Y ijkµν + Z ijkµν

)
+ 1

2!
1
sijk

∑
Perm[ijk]

J iρ(µ
(
−X jk + Yjk +Wjk)

ν)ρ , (A.4)

and the auxiliary fields are

∆ijk
µν = 1

4
∑

Perm[ijk]
J iµρJ jkρν ,

X ijkµν =
∑

Perm[ijk]

[1
4k

i
µk

jk
ν J iρσ(J jkρσ +∆jk

ρσ) + 1
4k

ij
µ k

k
ν (J ijρσ −∆ij

ρσ)J kρσ ,

− ki(µ (J +∆)jkν)ρ J
iρσkjkσ − k

ij
(µJ

k
ν)ρ(J

ij
ρσ +∆ij

ρσ)kkσ
]
,

Y ijkµν =
∑

Perm[ijk]

[1
2(J iµρkjkρ

)(
J jkνσ −∆jk

νσ

)
kiσ + (µ↔ ν)

]
,

Z ijkµν = − 1
2!

∑
Perm[ijk]

[(
kjkρ k

jk
σ J iρσ

)
J jkµν + kkρk

k
σ

(
J ijρσ −∆ij

ρσ

)
J kµν

]
,

W ijk
µν = sijk∆

ijk
µν + 1

2!
∑

Perm[ijk]

(
kjkρ k

jk
σ J iρσ

)
∆jk
µν .

(A.5)

Here
∑

Perm[i,j,k]
denotes the sum over all permutations of the set {i, j, k}. It can be extended

to the higher permutation group straightforwardly.

• Rank-4. The rank-4 graviton current is given by

J ijklµν = 1
sijkl

(
X ijklµν + Y ijklµν + Z ijklµν

)
+ 1
sijk

∑
Perm[ijkl]

[ 1
3!J

i
ρ(µ
(
−X jkl + Yjkl +Wjkl)

ν)ρ + 1
4J

ij
ρ(µ
(
−X kl + Ykl +Wkl)

ν)ρ

+ 1
4∆

ij
ρ(µ
(
X kl + Ykl + Zkl − skl∆kl)

ν)ρ

]
, (A.6)
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and the auxiliary currents are

∆ijkl
µν = 1

2
∑

Perm[ijkl]

[ 1
3!J

i
µρJ jklρν + 1

4J
ij
µρJ klρν −

1
16(J )2 ij

µρ (J )2 kl
νρ

]
,

X ijklµν = 1
2

∑
Perm[ijkl]

[ 1
3!k

i
(µk

jkl
ν) J

i
ρσ(J +∆)jklρσ + 1

4k
ij
(µk

kl
ν)(J −∆)ijρσ(J +∆)klρσ

+ 1
3!k

ijk
(µ k

l
ν)(J −∆)ijkρσ J lρσ

]
,

− 2
∑

Perm[ijkl]

[ 1
3!k

i
(µ(J +∆)jklν)ρJ

i
ρσk

jkl
σ + 1

4k
ij
(µ(J +∆)klν)ρ(J −∆)ijρσkklσ

+ 1
3!k

ijk
(µ J

l
ν)ρ(J −∆)ijkρσ klσ

]
,

Y ijklµν =
∑

Perm[ijkl]

[ 1
3!(J −∆)ijkµρ klρJ lνσkijkσ + 1

4(J −∆)ijµρkklρ (J −∆)klνσkijσ

+ 1
3!J

i
µρk

jkl
ρ (J −∆)jklνσ k

i
σ

]
,

Z ijklµν = −
∑

Perm[ijkl]

[1
4k

ij
ρ k

ij
σ (Jklρσ −∆kl

ρσ)∆ij
µν + 1

3!k
ijk
ρ kijkσ (J iρσ −∆i

ρσ)∆ijk
µν

]
,

W ijkl
µν =

∑
Perm[ijkl]

[1
4k

ij
ρ k

ij
σ (J klρσ −∆kl

ρσ)∆ij
µν + 1

3!k
ijk
ρ kijkσ (J lρσ −∆l

ρσ)∆ijk
µν

]
+ sijkl∆

ijkl
µν .

(A.7)

B Gluon off-shell currents in the Lorentz gauge

We present the explicit form of the gluon currents with up to rank-4 by solving the gluon
recursion relations in (3.8).

• Rank-1. The rank-1 current is the initial condition of the BG recursion relation, which
is identified with the polarization vectors

J iµ = εiµ (B.1)

The rank-1 field strength is given by

F iµν = ikiµJ
i
ν − ikiνJ iµ . (B.2)

• Rank-2. The rank-2 recursion relation is given by

J ijµ = i√
2sij

(
i
(
J i · kj

)
J jµ + J iνF

j
νµ − (i↔ j)

)
F ijµν = i

(
kijµ J

ij
ν − kijν J ijµ −

1√
2
(
J iµJ

j
ν − J iνJ jµ

)) (B.3)

If we substitute the initial condition into the rank-2 current, we get easily the J ijµ as

J ijµ =
εi·εj

(
kjµ − kiµ

)
+ 2

(
ki·εj

)
εiµ − 2

(
kj ·εi

)
εjµ√

2sij
. (B.4)
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• Rank-3. The recursion relation for the rank-3 current is given by

J ijkµ = i√
2sijk

(
i
(
J i · kjk

)
J jkµ + J iνF

jk
νµ −

(
i↔ jk

)
+ i
(
J ij · kk

)
Jkµ + J ijν F

k
νµ − (ij ↔ k)

)
,

F ijkµν = 2ikijk[µ J
ijk
ν] − i

√
2
(
J i[µJ

jk
ν] + J ij[µJ

k
ν]

)
.

(B.5)

We can solve the recursion relation by substituting the rank-1 and rank-2 currents

J ijkµ = 2
sijk

[
Qikjk

j
µ −Qjkikiµ +Rijkk

k
µ

s12
+
Qkijk

j
µ −Qjikkkµ +Rkjik

i
µ

s23

−
(
sik
(
Pijk + Pikj

)
sjk

+ sik(εj ·εk)
2sjk

)
ε1µ −

(
Pjik + Pjki + εi·εk

j

)
εjµ

−
(
sik
(
Pkji + Pkij

)
sij

+ sik(εi·εj)
2sij

)
εkµ

]
+ regular terms + kijkµ Ψijk ,

(B.6)

where

regular terms :
(

2Pijk + εj ·εk
2

)
εiµ
sjk

+
(
2Pkji + εi·εj

2
) εkµ
s12

. (B.7)

The last term in (B.6) can be interpreted to a gauge transformation and does not contribute
to the scattering amplitude

Ψ123 = 1
2sijk

[ 1
s12

(
Q231 −Q132 − 2R123

)
− 1
s23

(
Q312 −Q213 − 2R231

)]
. (B.8)

• Rank-4. For the rank-4 current KLT relation, we need six gluon currents: J1234
µ , J1243

µ ,
J1324
µ , J1342

µ , J1423
µ and J1432

µ . We introduce the following functions generalising (4.9)

Pijk = ki·εj(ki·εk + kj ·εk)
sij

, Qijk = (ki·εj)(εi·εk), Rijk = Qijk −Qjik ,

S±ijk = Qijk ±Qkji , Tijk = Rijk +Qjki ,

Qijk,l = Qijk(kk·εl), Qi,jkl = (ki·εj)Qjkl , Q′i,jkl = (kj ·εi)Qjkl ,
Pi,jkl = (ki·εj)Pjkl , P ′i,jkl = (kj ·εi)Pjkl, Pijk,l = Pijk(kj ·εl + kk·εl) .

(B.9)

We introduce a rescaled currents ĴPµ = s1234
2
√

2 J
P
µ for simplicity. Then the explicit form of the

rank-4 gluon currents are as follows:

1. s1234
2
√

2 J
1234
µ

Ĵ1234
µ = −

[ 1
s23
− s13 + s14

s12s34

]
Q214,3
s234

k1
µ −

1
s34

[
Q214,3
s12

+
Q214,3 +Q′1,432

s234

]
k2
µ

− 1
s23

[(s12 + s23)Q′1,234
s12s123

+
Q′1,234 +Q234,1

s234

]
k4
µ
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−
[(s13 + s14)

(
P123(k3·ε4)− P124(k4·ε3)

)
s34s234

− (s12 + s23)P1,234
s12s123

− P1,234
s234

− (s13 + s14)Q432
2s34s234

+ s14Q234
2s23s234

]
ε1µ

+
[(s13+s14)(P213,4−P214,3)

s34s234
−

(s12+s23)P ′1,234
s12s123

−
P ′1,234+P234,1+P2,341−P2,431

s234

]
ε2µ

+
[
P342(k2·ε1)− P341(k1·ε2)

s12
+ s24P3,421

s34s234
+ Q214

2s12
+ S+

214
2s234

]
ε3µ

+
[(s12 + s23)(P4,213 − P4,123)

s23s123
+ P431,2 − P432,1

s12
+ s24P421,3

s23s234
−
s24P

′
3,421

s34s234

]
ε4µ

+ s1234
(
regular terms

)
+ k1234

µ Λ1234 (B.10)

where the regular terms are

− Q214,3
s12s34s234

k1
µ+ 1

s234

[(P123k3·ε4 − P124k4·ε3)
s34

+Q234
4s23

−Q432
4s34

]
ε1µ+P214,3 − P213,4

s34s234
ε2µ , (B.11)

and

Λ1234 = 1
2

[
Q214,3
s12s34

+
(s12 + s23)Q′1,234

s12s23s123
+

3Q214,3 +Q′1,234
2s23s234

+
3Q214,3 +Q′1,432

2s34s234

]
. (B.12)

2. s1234
2
√

2 J
1243
µ

Ĵ1243
µ =

[ 1
s234
− s13+s23
s12s124

]
Q214,3
s34

k1
µ−
[
Q′1,234
s12s124

−
(s13−s24)(Q234,1+Q′1,234)

s24s124s234

]
k4
µ

−
[(s13+s23)Q214,3

s12s34s124
−

(s13s24+s13s34+s23s24)(Q214,3+Q′1,432)
s24s34s124s234

]
k2
µ

−
[(s13+s14)

(
P124(k4·ε3)−P123(k3·ε4)

)
s34s234

+ (s13−s24)P1,243
s124s234

− s24P1,243
s12s124

− s14(s13−s24)S+
234

2s24s124s234
+
(
s13+s14
s34

+ s13
s24

)
Q432
2s234

]
ε1µ

+
[(s13+s14)(P214,3−P213,4)

s34s234
+

(s13−s24)(P ′1,243+P243,1)
s124s234

−
s24P

′
1,243

s12s124
+P2,341−P2,431

s234

]
ε2µ

+
[(s13+s23)

(
P342(k2·ε1)−P341(k1·ε2)

)
s12s124

− s23(s13−s24)P3,421
s34s124s234

+ s13P3,421
s34s124

− s23(s13−s24)S+
214

2s24s124s234
+
(
s13+s23
s12

+ s13
s24

)
Q214
2s124

]
ε3µ

−
[(s13+s23)(P432,1−P431,2)

s12s124
+

(s13−s24)(P ′3,421+P421,3)
s124s234

−
s24P

′
3,421

s34s234
+P4,123−P4,213

s124

]
ε4µ+s1234

(
regular terms

)
+k1234

µ Λ1243

(B.13)

– 31 –



J
H
E
P
0
1
(
2
0
2
2
)
1
8
6

where the regular terms are

Q214,3
s12s34s124

k1
µ + 1

s34s124

[
Q214,3
s12

+
(s24 + s34)(Q214,3 +Q′1,432)

s24s234

]
k2
µ +

Q214,3 +Q′1,234
s24s124s234

k4
µ

+ 1
s234

[(P124k4·ε3 − P123k3·ε4)
s34

+ P1,243
s124

− s14S
+
234

2s24s124
+ (Q234 + 3Q432)

8s24
+ Q432

4s34

]
ε1µ

− 1
s234

[
P214,3 − P213,4

s34
+
P ′1,243 + P243,1

s124

]
ε2µ

− 1
s124

[(P342k2·ε1 − P341k1·ε2)
s12

+ (s24 + s34)P3,421
s34s234

− s23S
+
214

2s24s234
+(Q412+3Q214)

8s24
+Q214

4s12

]
ε3µ

+ 1
s124

[
P432,1 − P431,2

s12
+
P ′3,421 + P421,3

s234

]
ε4µ −

(Q′1,432 −Q′1,234)
8s24s124s234

k1234
µ .

(B.14)
and

Λ1243 = 1
2

[(s13−s24)(Q′1,432−Q′1,234)
4s24s124s234

− Q214,3
s12s34

−
Q214,3−Q′1,234

2s12s124
−

3Q214,3+Q′1,432
2s34s234

]
(B.15)

3. s1234
2
√

2 J
1324
µ

Ĵ1324
µ = Q234,1

s23s234
k1
µ −

Q214,3+Q′1,432
s24s234

k2
µ + 1

s23

[
Q′1,234
s123

+
(s23+s24)(Q234,1+Q′1,234)

s24s234

]
k4
µ

−
[
P1,234 + P1,243

s234
+ P1,234

s123
+ s12Q432 − s14Q234

2s24s234
− s14Q234

2s23s234

]
ε1µ

+
[
P ′1,234
s123

+
P ′1,234 + P ′1,243 + P234,1 + P243,1

s234

]
ε2µ

+
[
P3,421
s234

+ s34Q214 − (s23 + s24)Q412
2s24s234

]
ε3µ

−
[
s12(P4,213 − P4,123)

s23s123
+ s24P421,3

s23s234
+
P421,3 + P ′3,421

s234

]
ε4µ

+ s1234
(
regular terms

)
+ k1234

µ Λ1324

(B.16)
where the regular terms are

− 1
4s234

[
Q234 −Q432

2s24
+ Q234

s23

]
ε1µ (B.17)

and

Λ1324 = −1
2

[
Q′1,234
s23s123

+
Q′1,234 −Q′1,432

4s24s234
+
Q′1,234 + 3Q214,3

2s23s234

]
(B.18)
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4. s1234
2
√

2 J
1342
µ

Ĵ1342
µ = Q214,3

s34s234
k1
µ + 1

s34

[
Q′1,432
s134

+
(s24 + s34)(Q214,3 +Q′1,432)

s24s234

]
k2
µ

−
Q234,1 +Q′1,234

s24s234
k4
µ +

[(s24 + s34)P ′3,421
s34s234

+
s14P

′
3,412

s34s134
+ P421,3

s234

]
ε4µ

+
[
s12
(
P124(k4·ε3)−P123(k3·ε4)

)
s34s234

+P1,243
s234

+ s12Q432−s14Q234
2s24s234

+ s12Q432
2s34s234

]
ε1µ

+
[
P2,341−P2,431

s134
+
P2,341−P241,3 − P ′3,241

s234
+ s12P213,4 − s24P241,3

s34s234

]
ε2µ

−
[(s24 + s34)P3,421

s34s234
+ s14P3,412

s34s134
− s23Q412 − (s24 + s34)Q214

2s24s234

]
ε3µ

+ s1234
(
regular terms

)
+ k1234

µ Λ1342

(B.19)
where the regular terms are

− 1
4s234

[
Q432 −Q234

2s24
+ Q432

s34

]
ε1µ , (B.20)

and

Λ1342 = −1
2

[
Q′1,432
s34s134

+
Q′1,432 −Q′1,234

4s24s234
+

3Q214,3 +Q′1,432
2s34s234

]
(B.21)

5. s1234
2
√

2 J
1423
µ

J̃1423
µ =

[ 1
s234
−s13 + s34

s14s124

]
Q234,1
s23

k1
µ −

[
Q′1,432
s14s124

−
(s13 − s24)(Q214,3 +Q′1,432)

s24s124s234

]
k2
µ

−
[(s13 + s34)Q234,1

s14s23s124
−

(s13s23 + s13s24 + s24s34)(Q234,1 +Q′1,234)
s23s24s124s234

]
k4
µ

−
[
P1,234+P1,243

s234
+ P1,243

s124
− s12(s13 − s24)S+

234
2s24s124s234

+
(s12 + s13

s23
+ s13
s24

)Q234
2s234

]
ε1µ

+
[
P234,1
s14

+
P ′1,243
s124

+ (s14 + s24)P243,1
s14s124

+
P ′1,234 + P ′1,243 + P234,1 + P243,1

s234

]
ε2µ

+
[
P3,412 + P3,421

s124
+ P3,421

s234
− s34(s13 − s24)S+

214
2s24s124s234

+
(s13 + s34

s14
+ s13
s24

)Q412
2s124

]
ε3µ

−
[
P412,3
s23

+
P ′3,421
s234

+ (s23 + s24)P421,3
s23s234

+
P ′3,412 + P ′3,421 + P412,3 + P421,3

s124

]
ε4µ

+ s1234
(
regular terms

)
+ k1234

µ Λ1423 ,
(B.22)
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where the regular terms are

Q214,3
s14s23s124

k1
µ +

(Q214,3 +Q′1,432)
s24s124s234

k2
µ + Q214,3

s14s23s124
k3
µ +

(s23 + s24)(Q214,3 +Q′1,234)
s23s24s124s234

k4
µ

− 1
2s234

[
s12S

+
234

s24s124
− Q432 + 3Q234

4s24
− Q234

2s23

]
ε1µ

+ 1
2s124

[
s34S

+
214

s24s234
− Q214 + 3Q412

4s24
− Q412

2s14

]
ε3µ −

(Q′1,234 −Q′1,432)
8s24s124s234

k1234
µ ,

(B.23)
and

Λ1423 = 1
2

[
(s13−s24)(Q′1,234−Q′1,432)

4s24s124s234
− Q214,3
s14s23

−
Q214,3 −Q′1,432

2s14s124
−

3Q214,3 +Q′1,234
2s23s234

]
.

(B.24)

6. s1234
2
√

2 J
1432
µ

J̃1432
µ = −

[ 1
s34
− s12 + s13

s14s23

]
Q214,3
s234

k1
µ −

1
s23

[
Q214,3
s14

+
Q214,3 +Q′1,234

s234

]
k4
µ

− 1
s34

[(s14 + s34)Q′1,432
s14s134

+
Q214,3 +Q′1,432

s234

]
k2
µ

+
[
s12(P123k3·ε4 − P124k4·ε3)

s34s234
+ P1,234

s234
+ (s12 + s13)Q234

2s23s234
− s12Q432

2s34s234

]
ε1µ

−
[(s14 + s34)(P2,341 − P2,431)

s14s134
− (s12 + s13)P234,1

s14s234
+
P ′1,234 + P2,341

s234

+ s12P213,4 − s24P241,3
s34s234

]
ε2µ +

[(s14 + s34)P3,412
s34s134

+ s24P3,421
s34s234

+ Q412
2s14

+ S+
214

2s234

]
ε3µ

−
[(s14 + s34)P ′3,412

s34s134
− P412,3

s23
− s24P421,3

s23s234
+
s24P

′
3,421

s34s234

]
ε4µ

+ s1234
(
regular terms

)
+ k1234

µ Λ1432 ,
(B.25)

where the regular terms are

− Q214,3
s14s23s234

k1
µ + s23Q432 − s34Q234

4s23s34s234
ε1µ −

P234,1
s14s234

ε2µ , (B.26)

and

Λ1432 = 1
2

[
Q214,3
s14s23

+
(s14 + s34)Q′1,432

s14s34s134
+

3Q214,3 +Q′1,234
2s23s234

+
3Q214,3 +Q′1,432

2s34s234

]
. (B.27)

C Gauge transformation terms in the rank-4 current KLT relation

In this appendix, we express the explicit form of Φ1234
µ in (4.52). It consists of two parts:

terms proportional to kiµ and terms proportional to εiµ

Φ1234
µ = Aik

i
µ +Biε

i
µ . (C.1)
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Each Ai term are as follows:

A1 = s123s134
2s24

(
s13(s14 + s24)(s23 + s24)− s12s24s34

s14s23
Q2

234,1 + 2(s24 − s13)Q′1,234Q
′
3,412

)

A2 =
Q′1,432
2s24s34

[
2Q432,1s123s134(s23s24 + s13(s24 + s34))

−
Q′1,432
s14

(
s12
((
s14(s13 + s14)(s13 + s14 + 2s23) + s13s24(2s14 + s24)

+ s24(2s14 + s23 + s24)(s13 + 2s14 + s23) + s3
24
)
s34

+ s14s24(s12 + s34)2 − (s14 + s24)s2
34(2s12 + s34)

)
+ (s13 + s23)(s14 + s24)

(
s13s23s34 − s12(s14 + s34)(s24 + s34)

)
+ s2

12
(
s234s24(s14 + s34) + s14s134(s24 + s34)

))]

A3 = −s123s134 (s12(s13 − s24)(s24 + s34) + s24s123s234)
2s12s24s34

Q2
214,3

A4 = s134
2s24

[
2(s13(s23 + s24) + s24s34)s123Q

′
1,234Q234,1

s23

− (Q′1,234)2
(
− s234s24s34

s12
+ s13s24s14

s23
+ s13(s14 + s34) + s24s34(s14 − s23)

s23

)
+ (Q234,1)2s123

(
s13(s14 + s24)(s23 + s24)− s12s24s34

s14s23

+ s23(s13 − s24)
s34

− s234(s23s24 + s13(s12 + s24))
s12s34

)]
.

(C.2)
Next we denote the Bi:

B1 = Q234,1

2s124s234

[(
s13 +s14 + s13(s14 +s24)−s12s34

s23

)
Q234−

(s13 +s14)(s13 +s23)
s34

Q432

+s12s24Q432 +2s124P1,234−
2P124(k4·ε3)

(
s12(s24−s13)−s123s234

)
s34

−2P123
(
(k3·ε4) (s13 +s14)s124

s34
−(k2·ε4)s234

)]
ε1µ

B2 = 2P2,431s34

s24s124s234

[
(s13−s24)Q′1,234 + s12s24+s13(s14 +s24)

s14
Q234,1−

s23s24 +s13(s24+s34)
s34

Q432,1

− s13s24(s14 +s24)s34−s12s23s24(s14 +s34)+s12s13s14(s24 +s34)
2s14s34s134

Q′1,432

]
− s12s13 +(s13 +s14)s24

s24s124s234
P214,3Q

′
1,234 + P213,4(s13 +s14)−2P2,341s34

s34s234
Q432,1

+ s13s34 +s12(s14 +s34)
s14s134s234

P2,341Q
′
1,432−

(
(s13−s24)(s24 +s34)

s24s234
+ s123

s12

)
P214,3Q432,1

s124s34

B3 = 0
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B4 = Q234,1

s124

[
− s12P4,213

s234

(
3s13

s24
+ 2(s13 +s34)

s23
+ s13 +s14

s12

)
+ 2(s24−s13)s34P432,1

s24s234

− s34P
′
1,432

s14s24s234
(s12s24 +s13(s14 +s24))− (s13 +s34)s12P4,123

s14s23

+ (k2·ε3)(k4·ε1)(k4·ε2)
s14s234

(
s13(s14 +s24)−s12s34

s23
+s13 + s13s14

s24

)
+ s34P431,2

s14

+ k1·ε2

s12

(
P213s12

s12s23s123
(s23s34 +s12(s13 +s34))−ke21ke43

)]
+ Q′1,234P4,213

s123s124s23s234s24

(
s12s14s24(s13 +s34)+s23s24s34(s13 +s14)+s12s13s23(s14 +s34)

)
(C.3)
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