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1 Introduction

In physics, a quantum anomaly occurs when classical symmetries fail at the quantum
level. The well known examples of this are the so-called Adler-Bell-Jackiw anomaly in
electrodynamics [1, 2], where the conservation of axial vector current is violated in quantum
theory, and the gauge anomalies, where quantum corrections do not preserve classical gauge
invariance. [3]. In this article, we face a type of quantum anomaly similar to what was
observed in [4], which is more related to the structure of the spacetime background than
quantum corrections, and where the conserved operators commute with the Hamiltonian,
but their action can produce non-physical eigenstates.

The phenomenon of a quantum anomaly produced by geometric constraints is not too
strange since it is natural to expect that spacetime has to influence on the dynamics of the
systems that live on it. The very well known examples where the geometry effects essentially
on the symmetry properties of the particle systems are provided by the integrable dynamics
of a test particle in the Kerr black hole due to the Carter integral [5], and the enhanced
supersymmetry that characterizes the motion of a spinning particle in a Kerr-Newman black
hole [6]. In these two cases we are dealing with hidden symmetries and the so-called Killing
and Killing-Yano tensors associated with them [7–12]. Other effects related with geometry
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are the Lense-Thirring effect produced by gravitoelectromagnetic fields [13, 14] and the
production of additional particles in quantum field theories in curved spaces [15, 16].

The specific issue of the “geometrical quantum anomaly” that we refer above was
observed by us earlier when we analyzed the problem of canonical quantization of non-
relativistic dynamics in the cosmic string spacetime [17], which is characterized by a
geometrical parameter α that encodes the information on the conical singularity of the
background [18–21]. Various authors explored this topic in the past [22–26], but their
research avoids going deeper into quantum symmetries, since they claim that there are
difficulties in defining self-adjoint operators correctly. In our case, we were able to construct
the well defined hidden symmetry generators and gave a non-linear algebraic description
of conformally invariant quantum systems [27] living in this spacetime only for natural
values of α. This goes in contrast with the classical level (and for this reason we have a
quantum anomaly), where the well defined on phase space hidden integrals of motion can
be constructed for any rational value of α.

In our study, the so-called conformal bridge transformation [28, 29] played a crucial role.
This relatively new technique relates asymptotically free conformally invariant models with
their harmonically confined versions. Therefore, if one system has an anomaly issue, then
the other also faces this problem [17]. On the other hand, the (super)conformally invariant
systems are the simplest integrable models that can be studied in different geometric
backgrounds, and which are essential with their own right due to appearance in various
applications in physics. For some recent interesting results see [30–33] and references therein.

One may expect that a way to cure the geometric anomaly in our case should again be
related to geometry. With this in mind, we address here the idea to include a homogeneous
rotation of angular velocity Ω about the cone’s symmetry axis in the corresponding spacetime
metric as a possible solution to the anomaly issue. As is well known, such a rotation induces
gravitoelectromagnetic fields [13, 14]. Historically, the importance of studying rotating
reference frames comes from the simple fact that the Earth’s rotation strongly influences
the experiments carried out on it. In quantum case, the rotation results, in particular,
in appearance of the Sagnac effect [34], the impossibility of forming rigid flows [35], and
modifications in the Hall effect [36, 37]. Since rotation also introduces a kind of singularity
at the point in which its axis intersects the two-dimensional surface, it is somewhat natural
to expect that its inclusion, at least, should provide some new insight in the context of
the quantum anomaly problem. In addition, by switching on of a rotationally-invariant
harmonic trap with its independent frequency parameter, one could also hope to dynamically
solve the anomaly problem.

Although the formulated idea has not worked as it was expected, we have obtained
several interesting results that apply to both single-particle and many-particle systems in
conical backgrounds, and this article aims to report them.

Let us describe the organization of the article and briefly summarize the results.
Section 2 investigates the geodesic motion in a homogeneously rotating conical background,
which we interpret as a cosmic string with a gravitoelectromagnetic field. We describe
there a particular type of an integral of motion which plays a role similar to that of the
Laplace-Runge-Lentz vector in the Kepler problem [11, 38]. At the classical level, this
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quantity is a well defined phase space function for arbitrary values of Ω but only when
α is rational. It has a well defined non-local quantum analog only for integer values of
α. In section 3, we supply the system with a harmonic trap potential with frequency ω
and study its classical dynamics. As a result, we obtain an analog of the Euclidean exotic
rotationally invariant harmonic oscillator (ERIHO) system [39], but now in the cosmic string
background. This system has closed orbits and integrals of motion associated with a hidden
symmetry only when both parameters |γ| = |Ω/ω| and α take rational values. In particular
case |γ| = 1, the system is equivalent to the Landau problem in a space with a topological
defect [40, 41]. In section 4, we consider the quantum version of the system using the
conformal bridge transformation [28, 29]. There we show that the quantum analogs of the
hidden symmetry generators are well defined operators that correctly reflect the degeneracy
of energy levels only when α takes integer values. In section 5, we consider the mean-field
theory approximation to study the Bose-Einstein condensation of the harmonically trapped
systems in a conical vessel in their Landau problem phases corresponding to γ = ±1.
Similar problem for the Euclidean case was considered in [42, 43]. As a result, we show
that the appearing vortex structure respects a singular point of the rotating cosmic string
background. In section 6, the discussion of the obtained results and outlook are presented.
In appendix A we show how the nontrivial integrals found in section 2 can be obtained from
the non-relativistic two-dimensional free particle in the inertial reference frame (Ω = 0).

2 Dynamics in rigidly rotating spacetimes

The weak field approximation of general relativity is characterized by appearance of electric-
and magnetic-like fields. They are usually called the gravitoelectric and gravitomagnetic
fields because their action on massive test particles is similar to the action of external electric
and magnetic fields on charged particles. An indirect verification of gravitoelectromagnetism
is provided by relativistic jets [44, 45] appearing in the study of rotating black holes, and in
the observed excess of energy and luminosity produced by quasars and active galactic nuclei,
which are explained by the Lense-Thirring effect [13, 14]. Recently, gravitomagnetism
has also been used to explain the rotation curves of galaxies as an alternative to dark
matter [46].

The dynamics of test particles in rigidly rotating spacetime backgrounds is essentially
affected by the appearance of gravitoelectromagnetic fields at the classical and quantum
levels. For special values of the parameters of such and similar systems, classical dynamics
of test particles can be completely integrable due to appearance of hidden symmetries, which
also reveal themselves in peculiar properties of the corresponding quantum systems [5, 6, 10–
12, 17, 39]. This section aims to investigate such effects for geodesic motion in a rotating
conical background.

2.1 Classical picture

The simplest case in which gravitoelectromagnetic effects can be observed corresponds to a
(3 + 1)-dimensional Minkowski vacuum subjected to a uniform rotation. The metric of this
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spacetime with the angular velocity Ω oriented along the z axis is given by

ds2 = −c2dt2 + (dρ2 + ρ2(dϕ+ Ωdt)2 + dz2) . (2.1)

Lagrangian of a non-relativistic test particle that experiences geodesic motion in this
background is obtained from the relativistic action

−mc
∫ √
−ds2 = −mc2

∫ √√√√1− 1
c2

((
dρ

dt

)2
+ ρ2

(
dϕ

dt
+ Ω

)2
+
(
dz

dt

)2)
dt (2.2)

by taking the limit c→∞. It is given by

L = LΩ + m

2 ż
2 , LΩ = m

2 (ρ̇2 + ρ2(ϕ̇+ Ω)2) , (2.3)

where the dot denotes time derivative. This is a Lagrangian of a free particle in a rotating
reference frame in cylindrical coordinates. It can be obtained in an alternative way from the
non-relativistic free particle system in inertial reference frame by means of a time dependent
canonical transformation, see appendix A. Written in Cartesian coordinates x1 = ρ cosϕ
and x2 = ρ sinϕ, Lagrangian LΩ takes the form

LΩ = m

2 ẋ
iẋi + m

2 Ω2xixi + qGM
c
ẋiAi , Ai = Ωc

2 εijxj . (2.4)

Here, Ai can be interpreted as a two-dimensional vector potential of a gravitomagnetic field
applied to a particle with gravitomagnetic charge qGM = −2m. As a result, two-dimensional
Lagrangian (2.4) corresponds to that of the Landau problem in symmetric gauge with
magnetic field BG = εij∂iAj = −Ωc, supplemented with an isotropic quadratic centrifugal
potential −1

2mΩ2xixi. The latter can be reinterpreted as the external gravitoelectric
potential applied to a particle with gravitoelectric charge qGE = −m.1 The canonical
Hamiltonian for the system (2.4) is

HΩ = 1
2mpipi − Ωpϕ , pϕ = x1p2 − x2p1 . (2.5)

The peculiarity of the system (2.4) is that the additional repulsive centrifugal potential
term exactly balances the confining effect of the magnetic field as is seen from the solution
of the classical equations of motion,

x+(t) = x1 + ix2 = ρeiϕ = e−iΩt (Bt+ C) , (2.6)

where B and C are complex constants of the dimensions of ẋ and x, respectively, and the
bracket term corresponds to a free dynamics of a particle in a plane.

A conical singularity can be introduced by reducing metric (2.1) to a conical surface
z(ρ) = ρ cotβ, that results in the (2+1)-dimensional spacetime with a metric

ds2 = −c2dt2 + α2dρ2 + ρ2(dϕ+ αΩdt)2 , (2.7)
0 < ρ <∞ , 0 ≤ ϕ ≤ 2π , α2 = 1 + cot2 β > 1 . (2.8)

1The ratio of the gravitomagnetic charge to the gravitoelectric charge equals two because, unlike
electromagnetism, gravity is a spin-2 field [47].
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To simplify future calculations, we have rescaled Ω→ αΩ. When Ω = 0, this metric can
be associated with a (2 + 1)-dimensional cosmic string spacetime with the identification
α = (1−4µc−2G)−1, where G is the Newton constant and µ is the linear mass density of the
string [17]. If we allow the parameter α to take values in the interval (0, 1), metric (2.7) can
be associated, on the one hand, with a geometric background describing radial dislocations
in superfluids [14], and, on the other hand, with metric of an anti-gravitating cosmic string
with negative mass density (which corresponds to a wormhole’s background) [14, 48].

Note here that in the case of Ω 6= 0, α > 1 one can consider metric (2.7), (2.8) as that
corresponding to a rotating conical vessel of an infinitesimal thickness. This interpretation
will be employed in section 5.

In the spacetime (2.7), the non-relativistic geodesic Lagrangian is given by

L
(α)
Ω = m

2
(
α2ρ̇2 + ρ2(ϕ̇+ αΩ)2

)
. (2.9)

It is obtained in the same way as for the flat case by substituting ds2 in (2.2) for the
metric (2.7), (2.8).2 In terms of the conical metric in Cartesian coordinates,

gij = δij + (α2 − 1) 1
(x1)2 + (x2)2

(
(x1)2 x1x2

x1x2 (x2)2

)
, (2.10)

Lagrangian (2.9) takes the form

L
(α)
Ω = m

2 gij ẋ
iẋj + m

2 Ω2gijx
ixj + qGM

c
gij ẋ

iA(α)j , A(α)i = αΩc
2 (x2,−x1) . (2.11)

For α > 1, A(α)i can be interpreted as a vector potential corresponding to the Landau
problem in the symmetric gauge with magnetic field B(α) = −αBG = αΩc, which is
perpendicular to the surface of the cone.

Classical Hamiltonian of the system (2.9) is

H
(α)
Ω = 1

2m

( 1
α2 p

2
ρ + 1

ρ2 p
2
ϕ

)
− αΩpϕ , (2.12)

from where one sees that the repulsive quadratic potential appearing in (2.11) again
compensates the confinement effect of the magnetic field. It is clear that the system is
rotationally invariant, pϕ = const, and so, has the integral of motion

H
(α)
0 = 1

2m

( 1
α2 p

2
ρ + 1

ρ2 p
2
ϕ

)
. (2.13)

The latter is the Hamiltonian of a free particle in a conical geometry in the inertial
reference frame.

In the case of arbitrary values of the parameter α, there are also formal dynamical
integrals of motion3

P
(α)
± = e±iαΩtΠ(α)

± , G
(α)
± = me±iαΩt Ξ(α)

± , (2.14)
2One can also start from the spacetime metric of the spinning cosmic string background, but the

non-relativistic limit has to be taken in a special way. We return to this point in the last section.
3Such explicitly depending on time integrals satisfy the evolution equation dA

dt
= {A,H(α)

Ω }+ ∂A
∂t

= 0.
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where
Π(α)
± =

(
pρ
α
± ipϕ

ρ

)
e±i

ϕ
α , Ξ(α)

± = αρe±i
ϕ
α − t

m
Π(α)
± (2.15)

are the analogues of the canonical momenta and the Galilean boost generators in the
conical geometry [17]. They are globally well defined phase space functions in the flat case
α = 1, see appendix A, as well as for integer values of α greater than one. Integrals (2.14)
generate the two-dimensional Heisenberg algebra, {G(α)

± , P
(α)
∓ } = 2m, {G(α)

± , P
(α)
± } = 0,

{G(α)
+ , G

(α)
− } = {P (α)

+ , P
(α)
− } = 0. From them, one can construct the well defined in the

phase space, rotationally invariant generators of dilatations, D(α), and special conformal
transformations, K(α),

D(α) = 1
4m(G(α)

+ P
(α)
− +G

(α)
− P

(α)
+ ) = 1

2ρpρ −H
(α)
0 t , (2.16)

K(α) = 1
2mG

(α)
+ G

(α)
− = 1

2mα
2ρ2 − 2D(α)t−H(α)

0 t2 . (2.17)

Quadratic in P (α)
± andG(α)

± dynamical integralsD(α) andK(α) together with the Hamiltonian
H

(α)
Ω = 1

2mP
(α)
+ P

(α)
− − αΩpϕ satisfy the centrally extended sl(2,R) conformal algebra

{D(α), H
(α)
Ω } = H

(α)
Ω + Z(α) , {D(α),K(α)} = −K(α) , {K(α), H

(α)
Ω } = 2D(α) , (2.18)

in which Z(α) = αΩpϕ = i Ω
2m(G(α)

+ P
(α)
− −G(α)

− P
(α)
+ ) plays a role of the central charge. The

Casimir of this algebra is

C = (D(α))2 − (H(α)
Ω + Z(α))K(α) + 1

4Ω2 (Z(α))2 = 0 . (2.19)

The central extension here is rather formal since the central charge can be absorbed by
changing the generator H(α)

Ω for H(α)
0 = H

(α)
Ω + Z(α) = 1

2mP
(α)
+ P

(α)
− , that transforms (2.18)

into gl(2,R) ∼= sl(2,R)⊕u(1) algebra, where sl(2,R) is the usual conformal algebra generated
by H(α)

0 , D(α) and K(α), and u(1) is generated by pϕ. The value of the sl(2,R) Casimir
C = (D(α))2 −H(α)

0 K(α) reduces in this case to −α2

4 p
2
ϕ.

From the dynamical integral (2.17) and Casimir (2.19) one gets that ρ2 as a function
of time is given by the quadratic polynomial

ρ2(t) = a(t− t∗)2 + b2 (2.20)

with a = 2H(α)
0 /(mα2), b2 = p2

ϕ/(2mH
(α)
0 ) and

t∗ = −D(α)/H
(α)
0 . (2.21)

One finds that at the moment of time t = t∗, the variable ρ takes the minimum value,

ρ(t∗) = b = (2mH(α)
0 )−

1
2 |pϕ| := ρ∗ , (2.22)

that corresponds to the ‘perihelion’ of the trajectory.
To find the angle evolution and identify the trajectories of the particle, we consider the

transformation
ρ→ αρ , ϕ→ α−1ϕ . (2.23)
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Under this rescaling of the variables, Lagrangian (2.9) is transformed into LΩ in (2.4), and
therefore, locally the geodesic motion in metric (2.7) is given by x+(t) = x1(t) + ix2(t) =
ρ(t)eiϕ(t), where now

ρ(t) = α−1|Bt+ C| , eiϕ(t) = e−iαΩt|Bt+ C|−α(Bt+ C)α , (2.24)

and so,
x+(t) = α−1|w|1−α(w(t))α , w(t) = e−iΩt(Bt+ C) . (2.25)

Parametrizing complex integration constants as B = V eiϑ1 and C = Reiϑ2 , and employing
the corresponding Hamiltonian equations of motion of the system, one finds that the integral
H

(α)
0 , the angular momentum pϕ, the perihelion of the orbit ρ∗ and the corresponding

moment of time t∗ reduce to

H
(α)
0 = m

2 V
2 , pϕ = α−1mVR sin(ϑ1 − ϑ2) , (2.26)

ρ∗ = α−1R| sin(ϑ1 − ϑ2)| , t∗ = −RV −1 cos(ϑ1 − ϑ2) , (2.27)

while the total mechanical energy is expressed as H(α)
Ω = m

2 V
2(1− 2ΩRV −1 sin(ϑ1 − ϑ2)) .

From these relations it follows that when the constants of integration are chosen so that
ϑ1 − ϑ2 = πn, n ∈ Z, the angular momentum is zero, and with V 6= 0 the particle falls to
the origin of the coordinate system being the vertex of the cone. One also notes that when
the mechanical energy H(α)

Ω takes positive (negative) values, the translational (rotational)
motion governed by H(α)

0 (−αΩpϕ) dominates. Furthermore, when V = 0, we have H(α)
0 = 0,

and the orbit is a circle of radius ρ∗.
The second equation in (2.24) can be written in an equivalent form

eiα
−1(ϕ−ϕ∗) = e−iΩ(t−t∗)

[ 1
ρ∗ρ

(
ρ2
∗ + i

pϕ
mα

(t− t∗)
)]

, (2.28)

where ϕ∗ = ϕ(t∗). After replacing here the time evolution parameter by its expression in
terms of the phase space functions,

t− t∗ = ρpρ

2H(α)
0

, (2.29)

that is directly obtained from (2.21) and the definition of D(α), and multiplying (2.28) by
∓(2mH(α)

0 )1/2e−iα
−1ϕ, we get as a result the following complex pair I(α)

± of the true (not
depending explicitly on time) mutually conjugate integrals of motion,

I
(α)
± = exp

(
±i Ωρpρ

2H(α)
0

)
Π(α)
± , (2.30)

see eq. (2.15) and appendix A. In the case of α = 1 and Ω = 0 these integrals reduce to the
complex linear combinations p± = p1 ± ip2 of the momentum vector components of the free
particle in R2.4 Obviously the quantities f(H(α)

0 , pϕ)I(α)
± also are integrals of motion for

arbitrary choice of the function f(ξ, η).
4The conical background (α 6= 1) topologically is like the punctured Euclidean plane R2 − (0, 0).
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The integrals I(α)
+ and I(α)

− have the Poisson brackets {I(α)
+ , I

(α)
− } = 2imαΩ , and so,

are similar to the complex linear combinations of the integrals corresponding to a center of
a circular orbit in the Landau problem in a plane. However, due to the phase factor, these
integrals are globally well defined functions in the phase space only in the cases of α = 1/k
with k = 1, 2, . . .. For general case of rational values α = q/k with q = 1, 2, . . ., the integrals

(I(q/k)
± )q = exp

(
±i qΩρpρ

2H(q/k)
0

)
(Π(q/k)
± )q (2.31)

can be considered instead of (2.30) since they do not have the phase problem. Here and
in what follows we assume that the fraction q/k is irreducible, i.e., q and k are mutually
prime.

Another way to obtain the formal integrals (2.30) is by starting from the integrals of
the system in the reference frame at rest (Ω = 0), and applying to them the canonical
transformation

exp
(
λF (α)

)
? f = f +

∞∑
n=1

λn

n! {F
(α), {. . . , {F (α), f } . . .}}︸ ︷︷ ︸

n

:= TF (α)(λ) ? (f) , (2.32)

F (α) = α
ρpρpϕ

2H(α)
0

, λ = −Ω . (2.33)

The chosen generator F (α) of the canonical transformation includes dependence on the
dilatation dynamical integral D(α) taken at t = 0, see eq. (2.16), and so, is not an integral
of motion. By means of the Poisson brackets relations{

F (α), H
(α)
0

}
= αpϕ ,

{
F (α), pϕ

}
= 0 , (2.34){

F (α),
1
2ρpρ

}
= F (α) ,

{1
2ρpρ,Π

(α)
±

}
= 1

2Π(α)
± ,

{
pϕ,Π(α)

±

}
= ∓iΠ(α)

± , (2.35)

one gets as a result

TF (α) (−Ω) ? (H(α)
0 ) = H

(α)
Ω , TF (α)(−Ω) ? ((H(α)

0 )−
1
2 Π(α)
± ) = (H(α)

0 )−
1
2 I

(α)
± , (2.36)

from were it is deduced

TF (α)(−Ω) ?
(
((H(α)

0 + αΩpϕ)2)1/4(H(α)
0 )−

1
2 Π(α)
±

)
= I

(α)
± . (2.37)

In the case α = q/k we get TF (q/k)(−Ω) ? ((H(q/k)
0 )−

q
2 (Π(q/k)

± )q) = (H(q/k)
0 )−

q
2 (I(q/k)
± )q .

This technique will be useful for the quantum analysis in the next section.
To complete the classical analysis, we visualise the trajectories of the particle for different

values of α. To draw them in the (x1, x2) plane, where x1 and x2 are real and imaginary
parts of x+ in (2.25), it is necessary to take into account some properties associated with
the function fα(w) = wα in the w complex plane. First, the function fα(w) is analytic in
the w complex plane when α is an integer number, and then there are no problems to draw
the orbit. On the other hand, when α = q/k with q, k = 1, 2, . . ., fq/k(w) is a k-valued
function, and its entire domain corresponds to a Riemann surface with k sheets. In this

– 8 –



J
H
E
P
0
1
(
2
0
2
2
)
1
7
9

-60 -40 -20 20 40 60
x1

-60

-40

-20

20

40

60

x2

(a) α = 1/3, ϕ̇∗ < 0.

-30 -20 -10 10 20 30
x1

-30

-20

-10

10

20

30

x2

(b) α = 1/2, ϕ̇∗ < 0.

-20 -10 10 20
x1

-20

-10

10

20

x2

(c) α = 1, ϕ̇∗ < 0.

-15 -10 -5 5 10 15
x1

-15

-10

-5

5

10

15

x2

(d) α = 4/3, ϕ̇∗ < 0.

-10 -5 5 10
x1

-10

-5

5

10

x2

(e) α = 3/2, ϕ̇∗ < 0.

-20 -10 10 20
x1

-20

-10

10

20

x2

(f) α = 2, ϕ̇∗ < 0.

-600 -400 -200 200 400
x1

-600

-400

-200

200

400

x2

(g) α = 1/2, ϕ̇∗ > 0.

-30 -20 -10 10 20 30
x1

-30

-20

-10

10

20

30

x2

(h) α = 1, ϕ̇∗ = 0.

-40 -20 20 40
x1

-40

-20

20

40

x2

(i) α = 3/2, ϕ̇∗ > 0.

Figure 1. Trajectories for different rational values of the cone parameter α and Ω > 0. The
colour change in the trajectories indicates the transition from one Riemann surface sheet to
another. In figures 1a and 1d (1b, 1e, 1g and 1i) the corresponding Riemann surface has three
(two) sheets, while in figures 1c and 1f the Riemann surface is the complex plane itself. For
ϕ̇∗ = ϕ̇(t∗) = α(V (R sin(ϑ1 − ϑ2))−1 − Ω) > 0, the external angular velocity Ω > 0 is subtracted
from the intrinsic angular velocity of the particle at the position of “perihelion” of the orbit, producing
a small loop that does not enclose the origin. For ϕ̇∗ < 0, such small loops are not generated. When
ϕ̇∗ = 0, a cusp appears (figure 1h).

case, for k > 1 we have to take care on which sheet we are in a definite moment of time.
Finally, fα(w) with irrational α is an infinite-valued function, whose domain corresponds to
a Riemann surface with infinite number of sheets. In figure 1 some examples of trajectories
are presented by following the indicated peculiarities.

2.2 Quantum picture

After quantization we get the Hamiltonian operator

Ĥ
(α)
Ω = Ĥ

(α)
0 − αΩp̂ϕ , (2.38)
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which represents a linear combination of the free particle Hamiltonian in a conical back-
ground [17] and the quantum angular momentum operator,

Ĥ
(α)
0 = − ~2

2m

(
1
α2ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1
ρ2

∂2

∂ϕ2

)
, p̂ϕ = −i~ ∂

∂ϕ
. (2.39)

The eigenstates that simultaneously diagonalize these two operators, and therefore are the
eigenstates of the system (2.38), are given by the functions

ψ
(α)
κ,` (r, ϕ) =

√
κ

2παJα|`|(κr)e
i`ϕ , (2.40)

where Jβ(η) are the Bessel functions of the first kind. These states satisfy the eigenvalue
equations

Ĥ
(α)
0 ψ

(α)
κ,` (r, ϕ) = ~2κ2

2mα2ψ
(α)
κ,` (r, ϕ) , p̂ϕψ

(α)
κ,` (r, ϕ) = ~`ψ(α)

κ,` (r, ϕ) , (2.41)

Ĥ
(α)
Ω ψ

(α)
κ,` = E

(α)
κ,` ψ

(α)
κ,` , E

(α)
κ,` = ~2κ2

2mα2 − αΩ~` , κ > 0 , ` = 0,±1, . . . , (2.42)

as well as the orthogonality relation
〈
ψ

(α)
κ,`

∣∣∣ψ(α)
κ′,`′

〉
= δ`,`′δ(κ− κ′), where

〈Ψ1|Ψ2〉 =
∫∫

Ψ∗1Ψ2
√
g dx1dx2 = α

∫ ∞
0

rdr

∫ 2π

0
dϕΨ∗1Ψ2 (2.43)

is the inner product in conical geometry, g = det (gij). The formal eigenfunctions corre-
sponding to κ = 0 and ` 6= 0, which are given by rα|`|ei`ϕ and r−α|`|ei`ϕ, are excluded from
the physical sets of eigenstates since they are not Dirac delta normalizable with respect
to the scalar product (2.43). The physical eigenstates with zero energy correspond to all
those functions whose quantum numbers satisfy the condition ~κ2 = 2mα3Ω`, as well as
the constant function when κ = ` = 0. The latter does not belong to the set (2.40), but can
be obtained by a limiting procedure

lim
κ→0

√
2πα
κ
ψ

(α)
κ,0 = 1 . (2.44)

For the sake of definiteness in what follows we assume Ω > 0.
It is notable that unlike the energy eigenvalues, the form of the eigenfunctions ψ(α)

κ,` (r, ϕ)
is independent of the value of the external angular velocity Ω. Therefore, if for certain
values of α, the system has well defined integral operators related to a degeneration of
the spectrum, they should modify coherently both indices (discrete and continuous) in a
corresponding wave function. In this way from the condition E(α)

κ,` = E
(α)
κ̃,`±1 we obtain

κ̃ = κ± = κ

√
1± 2mα3Ω

~κ2 . (2.45)

This relation implies that when ~κ2 < 2mα3Ω, κ− becomes an imaginary number, and
therefore, physical integral operators that produce the transformation ψ

(α)
κ,` → ψ

(α)
κ−,`−1
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must annihilate all physical eigenstates with ~κ2 ≤ 2mα3Ω. No restrictions appear for the
eigenvalue ` here.

In order to try to construct such symmetry integral operators, we introduce the operators

Ŵ
(α)
− = e−i

Ω
~ F̂ , Ŵ

(α)
+ = (Ŵ (α)

− )−1 = ei
Ω
~ F̂ . (2.46)

The quantum version F̂ of the classical quantity (2.33) we fix so that the commutation
relations

[F̂ (α), Ĥ
(α)
0 ] = i~αp̂ϕ , [F̂ (α), p̂ϕ] = 0 (2.47)

will be satisfied in correspondence with (2.34). This implies the relations

[Ĥ(α)
0 , Ŵ

(α)
± ] = ±Ωαp̂ϕW (α)

± , [p̂ϕ, Ŵ (α)
± ] = 0 . (2.48)

The appearance of the quantity (H(α)
0 )−1 in the classical definition of F means that some

non-trivial quantization prescription must be employed to escape a singularity in the
corresponding quantum operators. By taking the symmetric ordering,5

F̂ (α) = α

4
[
p̂ϕ
(
(Ĥ(α)

0 )−1D̂
(α)
0 + D̂

(α)
0 (Ĥ(α)

0 )−1
)

+
(
(Ĥ(α)

0 )−1D̂
(α)
0 + D̂

(α)
0 (Ĥ(α)

0 )−1
)
p̂ϕ
]
,

(2.49)
we produce the Hermitian operator, F̂ (α) = F̂ (α)†, where D̂(α)

0 = −i~
2 (ρ ∂

∂ρ + 1) coincides
with the dilatation operator taken at t = 0. In this construction Ŵ (α)

± formally are unitary
and their action is well defined on eigenstates of the form (2.40). However, the action of
the operator (2.49) on the constant wave function is not defined. As this last eigenstate
corresponds to a free particle at rest in the inertial reference frame, with zero eigenvalue
of Ĥ(α)

0 and zero angular momentum, it seems reasonable to treat it separately for the
moment. With these considerations, operator (2.49) is simplified,

F̂ (α) = α

2 (Ĥ(α)
0 )−1(2D̂(α)

0 − i~)p̂ϕ . (2.50)

Then, the unitary operator Ŵ (α)
+ and its inverse, Ŵ (α)

− = Ŵ
(α)
+
†, can be employed to produce

the following unitary transformation,

Ŵ
(α)
− Ĥ

(α)
0 Ŵ

(α)
+ = Ĥ

(α)
Ω , Ŵ

(α)
− p̂ϕŴ

(α)
+ = p̂ϕ , (2.51)

and as a consequence, the transformed eigenstates Ψ(α)
κ,` = Ŵ

(α)
− ψ

(α)
κ,` should satisfy

Ĥ
(α)
0 Ψ(α)

κ,` =
(

~2κ2

2mα2 + ~αΩ`
)

Ψ(α)
κ,` , p̂ϕΨ(α)

κ,` = ~`Ψ(α)
κ,` , Ĥ

(α)
Ω Ψ(α)

κ,` = ~2κ2

2mα2 Ψ(α)
κ,` .

(2.52)
From these expressions we conclude that the transformed states have to be of the form

Ψ(α)
κ,` ∼ ψ

(α)
κ`,`

, κ` = κ

√
1 + 2mα3Ω`

~κ2 . (2.53)

5A commutator of the form [(Ĥ(α)
0 )−1, Ô], with an arbitrary well defined operator Ô, is singular when it

is applied to a constant wave function. For this reason the constant wave function has to be excluded from
the domain of the operator (2.49).
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However, in this way non-physical eigenstates can be obtained for negative values of ` for
Ω > 0. For this reason we continue using states (2.40) instead of (2.53). To construct
the symmetry operators associated with degeneracy of energy eigenvalues, we apply the
similarity transformation to the integral operators of the free particle in a conical geometry
in the reference frame at rest, Ω = 0. It is known from the previous work [17] that such
symmetry operators exist only when α = q (otherwise, they can produce non-physical
eigenstates), and are given by

(Π̂(q)
± )q , where Π̂(q)

± = −i~e±i
ϕ
q

(1
q

∂

∂ρ
± i1

ρ

∂

∂ϕ

)
. (2.54)

After applying the unitary transformation to them one gets the mutually Hermitian conjugate
operators

(Î(q)
+ )q = Ŵ

(q)
− (Π̂(q)

+ )qŴ (q)
+ , (Î(q)

− )q = ((Î(q)
+ )q)† . (2.55)

These operators commute with the Hamiltonian Ĥ(α)
Ω and can be applied to all physical

states of the form (2.40). Their action can be deduced by means of the commutation
relations

[Ĥ(q)
0 , (Î(q)

± )q] = ±qΩ~(Î(q)
± )q , [p̂ϕ, (Î(q)

± )q] = ±~(Î(q)
± )q , (2.56)

from which one obtains
(Î(q)
± )qψ(α)

κ,` ∼ ψ
(α)
κ±,`±1 , (2.57)

where κ± correspond to (2.45). The operators (Î(q)
± )q produce exactly the necessary change

of the index in the wave functions which does not change the corresponding energy eigenvalue.
Nevertheless, in the cases when κ satisfies the condition ~κ2 < 2mq3Ω, the operator (Î(q)

− )q

produces non-physical eigenstates. To avoid this problem, we can take the regularized
operators

Î− = (Î(q)
− )qΘ

( 1
~ΩĤ

(q)
0 − q

)
, Î+ = Θ

( 1
~ΩĤ

(q)
0 − q

)
(Î(q)

+ )q , (2.58)

where Θ(η) is the Heaviside step function. When Î− acts on the eigenstates, the Heaviside
function annihilates all those physical eigenstates, which can potentiality be transformed
into non-physical states by the action of (Î(q)

− )q. On the other hand, (Î(q)
+ )q cannot produce

non-physical states, and if ~κ2 < 2mq3Ω, then ~κ2
+ = ~κ2 + 2mq3Ω ≥ 2mq3Ω. As a

consequence, the action of the operator Θ
(

1
~ΩĤ

(q)
0 − q

)
after the application of (Î(q)

+ )q

reduces to multiplication by one. The action of the symmetry operators (2.58) is well
defined on all energy eigenstates including the constant wave function corresponding to
zero eigenvalue of the operator Ĥ(α)

0 .
In conclusion of this section we note that as classically the system reveals a hidden

symmetry in the case of rational values of the conical background parameter α, while at the
quantum level we are able to identify the hidden symmetry described by non-local operators
in the case of only integer values of α, we face a kind of a quantum anomaly here.

A rather natural question is if the anomaly related to the geometry of the system can
be “cured” by a dynamic extension of the system. We investigate such a kind of extension
of the system in the next section.
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3 Classical ERIHO system in a conical space

Recently, in [39] we considered the exotic rotationally invariant harmonic oscillator generated
from the planar free particle system by application of the conformal bridge transformation [28,
29]. The model is described by the Hamiltonian6

Hγ = 1
2mpipi + 1

2mω
2xixi + γωεijxipj = 1

2m
(
p2
ρ + ρ−2p2

ϕ

)
+ 1

2mω
2ρ2 + γωpϕ , (3.1)

and its peculiar properties were studied by us from the perspective of symmetries. The
solutions of the equations of motion of the system correspond to closed trajectories only
when γ is a rational number. This property is reflected in the existence of the additional
integrals of motion in the case γ ∈ Q, which define the orientation of the orbit like the
Laplace-Runge-Lenz vector in Kepler’s problem. At the quantum level, these additional
integrals explain the degeneracy of the spectrum of the model that only appears when γ
takes rational values. In spite of the explicit rotational invariance of (3.1), the classical and
quantum properties of the model resemble those of the planar anisotropic Euclidean and
Minkowskian harmonic oscillator systems. This is not accidental since both systems turn
out to be related by a non-trivial unitary so(2)-non-invariant transform composed from the
special su(2) rotation considered by us earlier in [17] and supplemented by an additional
Bogolyubov transformation.

After changing ω → Ω = −γω, one finds that the Lagrangian of the system (3.1) can
be presented in the form

Lγ = LΩ −
1
2m(γ−1Ω)2xixi = m

2 ẋ
iẋi − m

2 (γ−2 − 1)Ω2xixi + qGM
c
ẋiAi , (3.2)

where LΩ is given by eq. (2.4). As a consequence, the model (3.1) admits two other physical
interpretations [39]. First, it corresponds to a two-dimensional isotropic harmonic oscillator
in a non-inertial reference frame rotating with angular velocity Ω. Alternatively, it can
be considered as the Landau problem in the presence of an additional external harmonic
potential Vγ = m

2 (γ−2 − 1)Ω2xixi. When γ2 < 1 (γ2 > 1), the sign of this quadratic
potential is positive (negative), so it produces an attractive (repulsive) harmonic force on
the particle. The intermediate case γ2 = 1 corresponds to the two Landau phases of the
system different in two possible orientations of the magnetic field orthogonal to the plane,
which are defined by the sign of γ.

In this section we explore the direct classical and quantum generalization of the ERIHO
system to a conical spacetime. As we will see, in this case one has to take into account
both parameters γ and α to find closed trajectories with which the integrals of motion of
the hidden symmetry are associated. Before the detailed analysis, one would expect that
the presence of an additional parameter γ, which is associated here with an additional
“gravitoelectric” harmonic potential, could “cure” the quantum anomaly related with the
background geometry, that was described in the previous section. In particular case of
γ2 = 1, this also will allow us to investigate the Landau problem in conical background
from the perspective of dynamics and symmetries.

6In [39], the notation g is used instead of the parameter γ here.
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3.1 Classical picture

To find the analogue of the ERIHO system in a conical background, we start by changing
the implicit flat metric tensor δij in Lagrangian (3.2) by the conical metric tensor (2.10),
that yields

L(α)
γ = L

(α)
Ω −

1
2mγ

−2Ω2gijx
ixj = m

2 gij ẋ
iẋj−m2 (γ−2−1)Ω2gijx

ixj+ qGM
c
gij ẋ

iA(α)j , (3.3)

where L(α)
Ω and A(α)i are given by (2.11). This Lagrangian means that, again, the system

can be interpreted as an isotropic harmonic oscillator in a conical background of a cosmic
string in a non-inertial uniformly rotating reference frame. Alternatively, we can consider
system (3.3) as the Landau problem in conical geometry, extended by an external quadratic
potential V (α)

γ = m
2 (γ−2 − 1)Ω2gijx

ixj = m
2 (γ−2 − 1)Ω2α2ρ2. From the nature of this

additional potential term it is clear that one has to distinguish the cases γ2 < 1 and γ2 > 1,
where this potential is attractive and repulsive, and the Landau phases at γ = ±1. The case
γ =∞ corresponds here to the system considered in the previous section. After performing
the Legendre transformation and by identifying Ω = −γω, one gets the Hamiltonian of the
system, which takes more simple form in polar coordinates,

H(α)
γ = 1

2m
(
α−2p2

ρ + ρ−2p2
ϕ

)
+ 1

2mω
2α2ρ2 + γωαpϕ . (3.4)

We assume without loss of generality that ω > 0. Comparing (3.4) with the Hamiltonian
of the Euclidean planar ERIHO system (3.1) [39], it is obvious that the former can be
obtained from the latter by means of the local canonical transformation

ρ→ αρ , pρ → α−1pρ , ϕ→ α−1ϕ , pϕ → αpϕ . (3.5)

So, (3.4) is the ERIHO system in a conical background.
In terms of Cartesian coordinates, canonical transformation (3.5) is

x1→Xα,1 = αρcos
(
ϕ

α

)
, x2→Xα,2 = αρ sin

(
ϕ

α

)
, (3.6)

p1→ Pα,1 = pρ
α

cos
(
ϕ

α

)
− pϕ
ρ

sin
(
ϕ

α

)
, p2→ Pα,2 = pρ

α
sin
(
ϕ

α

)
+ pϕ
ρ

cos
(
ϕ

α

)
, (3.7)

{Xα,i,Xα,j}= {Pα,i,Pα,j}= 0 , {Xα,i,Pα,j}= δij , (3.8)

while the conical metric ds2 = gijdx
idxj takes the form ds2 = dX2

α,1 + dX2
α,2. In local

canonical variables (Xα,i, Pα,i) Hamiltonian (3.4) has the form of the ERIHO Hamiltonian
in usual Cartesian coordinates,

H(α)
γ = 1

2m(P 2
α,1 + P 2

α,2) + mω2

2 (X2
α,1 +X2

α,2) + ωγεijXi,αPj,α . (3.9)
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To analyse the dynamics and symmetries of the system, it is convenient to pass over to the
following complex combinations of the local canonical variables,

b−α,1 = 1√
2

(a−α,1− ia
−
α,2) = 1

2e
−iϕ

α

(
α
√
mωρ+ pϕ√

mωρ
+ ipρ
α
√
mω

)
, b+α,1 = (b−α,1)∗ , (3.10)

b−α,2 = 1√
2

(a−α,1 + ia−α,2) = 1
2e

iϕ
α

(
α
√
mωρ− pϕ√

mωρ
+ ipρ
α
√
mω

)
, b+α,2 = (b−α,2)∗ , (3.11)

a±α,i =
√
mω

2

(
Xα,i∓

i

mω
Pα,i

)
. (3.12)

They satisfy the Poisson bracket relations {b−α,j , b
−
α,k} = {b+α,j , b

+
α,k} = 0, {b−α,j , b

+
α,k} = −iδjk,

and reduce the Hamiltonian to the form like that of the anisotropic harmonic oscillator,

H(α)
γ = ω

(
`1b

+
α,1b

−
α,1 + `2b

+
α,2b

−
α,2

)
, `1 = 1 + γ , `2 = 1− γ . (3.13)

However, here the angular momentum is

pϕ = α−1(b+α,1b
−
α,1 − b

+
α,2b

−
α,2) , (3.14)

and Hamiltonian (3.13) is rotationally invariant, {pϕ, H(α)
γ } = 0.

The equations of motion can easily be solved in variables b±α,i,

ḃ±α,i = {b±α,i, H
(α)
γ } = ±iω`ib±α,i ⇒ b±α,i(t) = e±iω`itb±α,i(0) := b±α,i . (3.15)

Using the relation
√
mω(Xα,1 + iXα,2) = b+α,1 + b−α,2, one gets

Xα,+(t) = Xα,1(t) + iXα,2(t) = R1e
iϑ1eiω`1t +R2e

−iϑ2e−iω`2t , (3.16)

where R1,2 ≥ 0, R2
1 + R2

2 > 0, and ϑ1,2 ∈ R are the constants of integration, b±α,i(0) =
Rie
±iϑi/

√
mω. From here one sees that Xα,+(t) is a periodic in time t function only when

(1+γ)/(1−γ) ∈ Q, that implies rational values for the parameter γ. This, however, does not
mean periodicity of the conical trajectories as Xα,i are not globally well defined functions of
polar coordinates for general values of the parameter α : Xα,i(ρ, ϕ = 0) 6= Xα,i(ρ, ϕ = 2π)
for α 6= 1/n, n = 2, 3, . . .. To find the evolution of the polar coordinates ρ(t) and ϕ(t), we
use the relations

ρ2(t) = 1
α2 |Xα,+(t)|2 , eiα

−1ϕ(t) =
(
Xα,+(t)
αρ(t)

)
⇒ eiϕ(t) =

(
Xα,+(t)
αρ(t)

)α
, (3.17)

x+(t) = x1(t) + ix2(t) = ρ(t)eiϕ(t) = 1
α
|Xα,+(t)|1−α(Xα,+(t))α . (3.18)

Similar to the free rotation case from the previous section, in order to visualize the trajectory,
we should be careful with the complex function fα = (Xα,+(t))α in dependence on the
value of α. The Xq/k,+(t) describes a curve that encircles the origin of coordinates in the
plane (Xα,1, Xα,2) when γ2 6= 1. The only exception is possible in the Landau case γ2 = 1
for certain selection of the initial data, that we discuss below. However, in general case
these curves are closed only when γ takes rational values. Then, for α = q/k, complex
function fq/k is k-valued, whose domain is a Riemann surface of k sheets, and we have to
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pay attention to the transitions from one sheet to another while we draw the trajectory.
When k = 1, the Riemann surface is the complex plane itself. For irrational α, function fα
is infinite-valued, and the path is not closed.

The closure of a trajectory implies the appearance of additional integrals of motion
corresponding to hidden symmetries. From the structure of the Hamiltonian we distinguish
the two obvious conserved quantities

J (α)
0 = 1

2(b+α,1b
−
α,1 + b+α,2b

−
α,2) , L(α) = 1

2(b+α,1b
−
α,1 − b

+
α,2b

−
α,2) = α

2 pϕ , (3.19)

in terms of which
H(α)
γ = 2ω(J (α)

0 + γL(α)) . (3.20)

These integrals are well defined for arbitrary values of γ and α, and so, they separately
cannot be responsible for the periodicity of the orbits. However, they enter into the
Hamiltonian (3.20) with a relative weight γ, and one can expect that the case of rational
values of γ could be special analogously to the ERIHO system with α = 1. Assuming that
γ2 < 1 and representing it by an irreducible fraction

γ = (s2 − s1)/(s2 + s1) , s1, s2 = 1, 2, . . . , (3.21)

with the help of (3.15) we find that the quantities

L+
α,s1,s2 = (b+α,1)s1(b−α,2)s2 , L−α,s1,s2 = (L+

α,s1,s2)∗ , (3.22)

are conserved in time. Indeed, the time dependence of the quantities (3.22) is given by the
exponential factors e±iω(`1s1−`2s2)t, which for rational γ of the form (3.21) reduce to one.
However, the integrals (3.22) have the angular dependence e±iα−1(s1+s2)ϕ and so, they are
not well defined phase space functions in general case. Instead of them, in dependence on
the value of α = q/k, we can construct the integrals

L (ε)±
α,s1,s2 = (L±α,s1,s2)ε , ε =


r if q = r(s1 + s2) , r = 1, 2, . . . ,

q if q 6= r(s1 + s2) ,
(3.23)

to be the well defined in the phase space functions. They satisfy the Poisson brackets
relations

{J (α)
0 ,L (ε)±

α,s1,s2} = ∓i ε2(s1 − s2)L (ε)±
α,s1,s2 , {L(α),L (ε)±

α,s1,s2} = ∓i ε2(s1 + s2)L (ε)±
α,s1,s2 ,

(3.24)

{L (ε)+
α,s1,s2 ,L

(ε)−
α,s1,s2} = Pα,s1,s2(H(α)

γ , pϕ) , (3.25)

where Pα,s1,s2 is a polynomial of the indicated arguments. Relations (3.24), (3.25) together
with {J (α)

0 ,L(α)} = 0 are identified as a non-linear deformation of the u(2) ∼= su(2)⊕ u(1)
Lie algebra, where the u(1) sub-algebra is generated by H(α)

γ . The u(2) algebra corresponds
to the symmetry of the two-dimensional Euclidean isotropic harmonic oscillator with α = 1
and γ = 0.
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In the case of γ2 < 1 with γ of the form (3.21), one can also consider the formal complex
quantities

J +
α,s1,s2 = (b+α,1)s1(b+α,2)s2 , J −α,s1,s2 = (J +

α,s1,s2)∗ , (3.26)

which are not conserved but have the dependence on time of the form e±iω(s1`1+s2`2)t.
These objects can be promoted to the dynamical integrals by multiplying them with the
corresponding time dependent inverse phase factors. The angular dependence of these
quantities is of the form e±iα

−1(s1−s2)ϕ. As in the previous case, for rational value of α
presented by an irreducible fraction α = q/k, the dynamical integrals

J (δ)±
α,s1,s2 = (J ±α,s1,s2)δ , δ =


r′ if q = r′|s2 − s1| , r′ = 1, 2, . . . ,

q if q 6= r′|s2 − s1| ,
(3.27)

are the well defined phase space functions. These quantities satisfy the Poisson brackets
relations

{J (α)
0 ,J (δ)±

α,s1,s2} = ∓i δ2(s1 + s2)J (δ)±
α,s1,s2 , {L(α),J (δ)±

α,s1,s2} = ∓i δ2(s1 − s2)J (δ)±
α,s1,s2 ,

(3.28)

{J (δ)+
α,s1,s2 ,J

(δ)−
α,s1,s2} = Qα,s1,s2(H(α)

γ , pϕ) , (3.29)

where Qα,s1,s2 is a polynomial of its arguments. This algebra corresponds to a non-linear
deformation of the gl(2,R) ∼= sl(2,R)⊕ u(1) dynamical symmetry. We notice here that the
gl(2,R) Lie algebra is the true symmetry of the Minkowskian isotropic oscillator described
by the rescaled Hamiltonian γ−1Hγ with γ−1 =∞ (s1 = s2 = 1) and α = 1 [39]. With the
help of these relations one can see that

{H(α)
1/γ ,J

(δ)±
α,s1,s2} = 0 , (3.30)

i.e. the quantities (3.27) are the true integrals for the system H
(α)
1/γ with rational γ−1 =

(s2 + s1)/(s2 − s1) ⇒ (γ−1)2 > 1, and α = q/k. For such system, the quantities (3.23)
multiplied by the corresponding time-dependent factors are the dynamical integrals of
motion. In correspondence with this, we note that in the limit γ → 0, the quantity γH(α)

1/γ
takes the form ωαpϕ = ωαb+α,iηijb

−
α,j with η = diag(1,−1), which can be interpreted as the

Minkowskian isotropic harmonic oscillator Hamiltonian in a conical geometry.
For a given rational value (3.21) of γ, the true integrals L

(ε),±
α,s1,s2 and the dynamical

quantities J
(δ),±
α,s1,s2 generate a non-linear algebra, which in the Euclidean isotropic case

α = 1, γ = 0 reduces to the linear sp(4,R) algebra [17, 39]. As in the Euclidean case, the
transformation γ → 1/γ changes the system H

(α)
γ into H(α)

1/γ , and the described additional
dynamical integrals of the former system are transmuted into the true integrals of motion
of the latter, and vise-versa in accordance with equation (3.30). This means that the
inversion transformation γ → 1/γ with γ given by eq. (3.21) generates a kind of duality
that interchanges the role of the additional true and dynamical symmetries. The difference
with the Euclidean case here is that the order in momenta of the true and dynamical
integrals is different in general, and it depends on the values of both parameters α and γ
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(more precisely, on the value of q and |s1 ± s2|). Then one can hope that the dependence
on additional rational parameter γ could allow us to “cure” the problem of the quantum
anomaly in the cosmic string background which occurs in the case of the rational values of
the parameter α different from integer values α = q. We analyze in detail this issue in the
next section.

With regard to the dynamical symmetry algebra, we can also construct the complex
dynamical integrals

J (α)
± = e∓2iωtb±α,1b

±
α,2 , (3.31)

which do not have the phase problem. Together with real integrals (3.19) they produce the
gl(2,R) ∼= sl(2,R)⊕ u(1) algebra

{J (α)
0 ,J (α)

± } = ∓iJ (α)
± , {Jα,−,J (α)

+ } = −2iJ (α)
0 , (3.32)

{L(α),J (α)
0 } = {L(α),J (α)

± } = 0 , (3.33)

where J (α)
0 , J (α)

+ and J (α)
− are generators of the conformal sl(2,R) subalgebra. As in the

case of the free particle, these generators of the sl(2,R) control the dynamics of the radial
variable ρ(t). As we will see, they can be related to generators of conformal symmetry of
the free particle system by conformal bridge transformation, and play an important role at
the quantum level.

The case of Landau phases corresponding to γ = 1 (γ = −1) can be obtained from the
cases γ2 < 1 or γ2 > 1 with rational γ by setting in (3.21) s1 = 0, s2 = 1, (s1 = 1, s2 = 0).
In Landau phases, the trajectory in the (Xα,1, Xα,2) plane reduces to a circular path,

γ = 1 : Xα,+(t) = Xα,1(t) + iXα,2(t) = R1e
iϑ1ei2ωt +R2e

−iϑ2 , (3.34)
γ = −1 : Xα,+(t) = Xα,1(t) + iXα,2(t) = R1e

iϑ1 +R2e
−iϑ2e−i2ωt . (3.35)

When γ = 1 (γ = −1), R1 (R2) is the radius and R2 (R1) corresponds to the radial
coordinate of the center of the orbit. When the radius is bigger (smaller) than the radial
position of the center, the path encircles (does not encircle) the origin of the system of
coordinates. When R1 = R2, the path goes through the origin, however this case corresponds
to the “falling to the center”, which is excluded from our analysis. Using this information,
one can draw the trajectory of the particle in the (x1, x2) plane when α = q by following the
geometric arguments similar to those for the free particle in conical background of ref. [17].

In this context, the complex integrals b∓α,2(0) =
√
mωR±iϑ2

2 (b±α,1(0) =
√
mωR±iϑ1

1 )
appear as complex linear combinations of the coordinates of the center of a circle in the plane
(Xα,1, Xα,2). As a consequence, when α = q/k, the well defined integrals L

(q),±
q
k
,0,1 = (b∓q

k
,2)q

(L (q),±
q
k
,1,0 = (b±q

k
,1)q) correspond, according to the transformation (3.17), to the image of this

center in the (x1, x2) plane. In figure 2 some examples of the trajectories are shown for
different rational values of the parameters α and γ. Particularly, in figures 2d, 2e and 2f we
present different examples of the trajectories corresponding to the system in the Landau
phases, which are characterized by different values of the center position of a circular orbit
(in the plane (Xα,1, Xα,2)) and α. Figure 3 illustrates the details corresponding to the
construction of the trajectories in the Landau phase γ = +1 for different integer values of α
and different choices of the constants R1 and R2.
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x1

x2

(a) γ = 0, α = 1/4.

x1

x2

(b) γ = 0, α = 4.

x1

x2

(c) γ = 0, α = 3/4.

x1

x2

(d) γ = 1, α = 2/3.

x1

x2

(e) γ = 1, α = 3.

x1

x2

(f) γ = 1, α = 7.
.

x1

x2

(g) γ = 1/2, α = 3/4.

x1

x2

(h) γ = 2, α = 3/4.

x1

x2

(i) γ = 1/3, α = 3/4.

x1

x2

(j) γ = 1/3, α = 5/3.

x1

x2

(k) γ = 3, α = 5/3.

x1

x2

(l) γ = 1/3, α = 3/5.

Figure 2. Trajectories for some values of the parameters α and γ. Different colours in the same
orbit indicate different branches for the angular variable ϕ(t) according to (3.17). Figures 2d, 2e
and 2f correspond to examples of the Landau phase γ = 1. In figure 2d the trajectory encloses the
origin of the coordinate system (here, R1 > R2 and the total change for the period is ∆ϕ = 4π),
contrary to the cases of 2e and 2f (in which ∆ϕ = 0 and R1 < R2). The last three figures correspond
to the trajectories with cusps that occur in the case R1|`1| = R2|`2|.
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Xα ,1

Xα ,2

x1

x2

(a) α = 7, γ = 1, R1 < R2 sin(π/α).

X1,α

X2 ,α

x1

x2

(b) α = 7, γ = 1, R1 = R2 sin(π/α).

(c) α = 4, γ = 1, R2 sin(π/α) < R1 < R2.

Figure 3. In figures 3a and 3b the trajectories of the particle in the (Xα,1, Xα,2) plane (left) and
(x1, x2) plane (right) are presented. The two red lines indicate the sector of the angle 2π/α, which
correspond to the edges of the “cut and flattened” cone space that have to be identified to each
other. In figure 3a the trajectory does not touch these lines, and therefore the particle’s orbit in
(x1, x2) plane is a simple loop. In figure 3b the trajectory touches the boundaries in the same
(identified) point, implying that there is a single point in the (x1, x2) plane through which the
particle passes twice within the period of motion. Finally, the trajectory in the plane (Xα,1, Xα,2)
crosses the boundaries in figure 3c (left), and to construct the real trajectory in the “flattened
cone” space we use the identity of the edges, and the velocity vector in corresponding points at the
edges is constructed by a parallel transport. So when the particle moves from point a to point b, it
“reappears” at point b′ on the opposite edge, and moves in the direction of point c, and so on. As
a result, there are two points on the path in the plane (x1, x2) through which the particle passes
twice within the period of motion. The same logic has to be employed in the analysis of the cases in
which the origin of the plane (Xα,1, Xα,2) is encircled by the corresponding trajectory.
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4 Quantum ERIHO in a conical background

To solve the quantum problem of the conical ERIHO system, we employ the conformal
bridge transformation (CBT) in this geometry. Earlier, this technique was used in the study
of the quantum isotropic harmonic oscillator in the cosmic string spacetime background [17].
Here, we just very briefly describe the main elements of the construction of ref. [17], in
order to apply it then for the study of the quantum conical ERIHO system.

4.1 CBT in a cosmic string background

Consider the quantum version of the conformal symmetry generators (2.13), (2.16) and (2.17),
which at t = 0 are given by

Ĥ
(α)
0 = − ~2

2m

(
1
α2ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1
ρ2

∂2

∂ϕ2

)
, D̂(α) = −i~2 (ρ ∂

∂ρ
+ 1) , K̂(α) = mα2

2 ρ2 .

(4.1)
They satisfy the so(2, 1) algebra,

[D̂(α), Ĥ
(α)
0 ] = i~Ĥ(α)

0 , [D̂(α), K̂(α)] = i~K̂(α) , [K̂(α), Ĥ
(α)
0 ] = i2~D̂(α) . (4.2)

Introduce the non-unitary operators

Ŝ = e−
ω
~ K̂

(α)
e

1
2~ω Ĥ

(α)
0 e

i
~ ln(2)D̂(α)

, Ŝ−1 = e−
i
~ ln(2)D̂(α)

e−
1

2~ω Ĥ
(α)
0 e

ω
~ K̂

(α)
. (4.3)

They produce a similarity transformation, whose application to generators (4.1) yields

Ŝ(Ĥ(α)
0 , D̂(α), K̂(α))Ŝ−1 = (−~ωĴ (α)

− ,−i~Ĵ (α)
0 , ~ω−1Ĵ (α)

+ ) , (4.4)

where

Ĵ (α)
0 = 1

2ω~(Ĥ(α)
0 + ω2K̂(α)) , Ĵ (α)

± = − 1
2ω~(Ĥ(α)

0 − ω2K̂(α) ± 2iD̂(α)) (4.5)

coincide with the dimensionless quantum version of the integrals (J (α)
0 ,J (α)

± ) taken at t = 0,
which are given by eqs. (3.19) and (3.31). These operators generate the quantum sl(2,R)
conformal algebra

[Ĵ (α)
0 , Ĵ (α)

± ] = ±Ĵ (α)
± , [Ĵ (α)

− , Ĵ (α)
+ ] = 2Ĵ (α)

0 . (4.6)

The dimensionless quantum version of the integral L(α) is invariant under this transformation,

Ŝ(L̂(α))Ŝ−1 = L̂(α) , L̂(α) = −iα2
∂

∂ϕ
. (4.7)

The described isotropic similarity transformation in a cosmic string background is useful to
solve the quantum problem of an isotropic harmonic oscillator in this geometry [17]. This
is because its Hamiltonian is given by

Ĥ(α)
osc = 2ω~Ĵ (α)

0 = − ~2

2m

(
1
α2ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1
ρ2

∂2

∂ϕ2

)
+ 1

2mω
2α2ρ2 , (4.8)
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and Ĵ (α)
± are identified as the second-order radial ladder operators. To find the corresponding

energy eigenstates, we apply the operator Ŝ to the states

Ω(α)
nρ,`

= ρ2nρ+α|`|ei`ϕ , nρ = 0, 2, . . . , ` = 0,±1,±2 , . . . , (4.9)

which simultaneously are the Jordan states of zero energy of the free particle Hamiltonian,
and the formal eigenstates of the PT -symmetric operator 2iD̂(α) with real eigenvalues [29].
These functions satisfy the relations

Ĥ
(α)
0 Ω(α)

nρ,`
= −2 ~2

mα2nρ(nρ + α|`|)Ω(α)
nρ−1,` , K̂(α)Ω(α)

nρ,`
= mα2

2 Ω(α)
nρ+1,` , (4.10)

2iD̂(α)Ω(α)
nρ,`

= ~(2nρ + α|`|+ 1)Ω(α)
nρ,`

, L̂(α)Ω(α)
nρ,`

= α`

2 Ω(α)
nρ,`

. (4.11)

The application of the conformal bridge generator Ŝ from the left to these equations yields

Ĥ(α)
oscψ

(α)
nρ,`

= ~ω(2nρ + α|`|+ 1)ψ(α)
nρ,`

, L̂(α)ψ
(α)
nρ,`

= 1
2α`ψ

(α)
nρ,`

, (4.12)

Ĵ (α)
+ ψ

(α)
nρ,`

(r, ϕ) = −
√

(nρ + 1)(nρ + α|`|+ 1)ψ(α)
nρ+1,`(r, ϕ) , (4.13)

Ĵ (α)
− ψ

(α)
nρ,`

(r, ϕ) = −
√
nρ(nρ + α|`|)ψ(α)

nρ−1,`(r, ϕ) , (4.14)

where we have used relations

ŜΩ(α)
nρ,`

(r, ϕ) = N (α)
nρ,`

ψ
(α)
nρ,`

(r, ϕ) , (4.15)

N (α)
nρ,`

= (−1)nρ
( 2~
mωα2

)nρ+α|`|
2 √

απnρ!Γ(nρ + α|`|+ 1) , (4.16)

and

ψ
(α)
nρ,`

(ρ, ϕ) =
(
mωα2

~

) 1
2
√

nρ!
παΓ(nρ + α|`|+ 1) ζ

α|l|L(α|`|)
nρ (ζ2)e−

ζ2
2 +i`ϕ , ζ =

√
mα2ω

~
ρ ,

(4.17)
with L(ν)

n (z) to be the generalized Laguerre polynomials. For more details on application
of this technique to other models, see [17, 29, 39]. Here, we just take into account that
the Hamiltonian of our conical ERIHO system is a linear combination of the integrals
J (α)

0 and L(α), the quantum versions of which are simultaneously diagonalized by wave
functions (4.17).

4.2 Quantum conical ERIHO system

The Hamiltonian operator of the quantum conical ERIHO system is given by

Ĥ
(α)
γ = 2~ω(Ĵ (α)

0 + γL̂(α))
= − ~2

2m

(
1
α2ρ

∂
∂ρ

(
ρ ∂
∂ρ

)
+ 1

ρ2
∂2

∂ϕ2

)
+ mω2α2

2 ρ2 − ωγαi~ ∂
∂ϕ .

(4.18)

Since the structure of this operator is a linear combination of the Hamiltonian of the
isotropic harmonic oscillator in the cone [17] and the angular momentum operator, it is
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easy to show that the eigenstates correspond to (4.17), and the spectrum is

E
(α,γ)
nρ,`

= ~ω(2nρ + α(1 + γ sign(`))|`|+ 1) , (4.19)

nρ = 0, 1, . . . , ` = 0,±1,±2, . . . . (4.20)

Indeed, operator (4.18) can be presented as

Ĥ(α)
γ = Ŝ2ω(iD̂(α) + γ~L̂(α))Ŝ−1 , (4.21)

and then 2ω(iD̂(α) + γ~L̂(α))Ω(α)
nρ,`

= E
(α,γ)
nρ,`

Ω(α)
nρ,`

. Note that the spectrum depends on the
two parameters α and γ, but the eigenfunctions depend only on the parameter α. When
|γ| < 1, the spectrum is always positive and bounded from below. Meanwhile, the system
with |γ| > 1 has negative energy levels, and the spectrum is not bounded from below. In
the Landau phases γ = ±1, E ≥ ~ω > 0, and each energy level is infinite degenerate since
(1 + γsign(`)) can vanish for an infinite set of different eigenstates. We will return to this
point in the next subsection.

We also find that, according to equations (4.13), (4.14), Ĵ (α)
± are still radial ladder

operators. Let us look now for other well defined operators. To this aim, we introduce a
new notation for the eigenstates and the spectrum,

ψ
(α,+)
nρ,l

= ψ
(α)
nρ,l

, ψ
(α,−)
nρ,l

= ψ
(α)
nρ,−l , E

(α,γ,±)
nρ,l

= E
(α,γ)
nρ,±l , l = |`| . (4.22)

With this notation, it is clear that the discrete formal transformation σ : l→ −l produces
the functions

σ(ψ(α,±)
nρ,l

) =
(
mωα2

~

) 1
2
√

nρ!
παΓ(nρ − αl + 1) ζ

−αlL(−αl)
nρ (ζ2)e−

ζ2
2 ∓ilϕ , (4.23)

which cannot be physical eigenstates in the general case. Only when α = q = 1, 2, . . .,
the identity

(−η)i

i! L(i−n)
n (η) = (−η)n

n! L
(n−i)
i (η) , i, n = 0, 1, . . . , (4.24)

allows us to show that

σ(ψ(q,±)
nρ,l

) =


(−1)lqψ(q,∓)

nρ−lq,l when nρ ≥ ql

0 otherwise
, σ(E(q,γ,±)

nρ,l
) = E

(q,γ,∓)
nρ−ql,l . (4.25)

Therefore, if the action of a certain operator on a particular eigenstate in the physical
Hilbert space can produce an eigenstate with negative lower second index, we conclude that
such operator is well defined only when α is an integer number. This helps us to see the
quantum anomaly.

Now, consider the formal operators

b̂−α,1 = 1
2e
−iϕ

α

√
mω

~

(
αρ+ ~

mωα

(
∂

∂ρ
− iα

ρ

∂

∂ϕ

))
, b̂+α,1 = (b̂α,1)† , (4.26)

b̂−α,2 = 1
2e

iϕ
α

√
mω

~

(
αρ+ ~

mωα

(
∂

∂ρ
+ iα

ρ

∂

∂ϕ

))
, b̂+α,2 = (b̂−α,2)† . (4.27)
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They are obtained via the conformal bridge transformation,

Ŝ(Ξ̂(α)
+ , Ξ̂(α)

− , Π̂(α)
+ , Π̂(α)

− )Ŝ−1 = (

√
2m~
ω

b̂+α,1,

√
2m~
ω

b̂+α,2,−i
√

2m~ωb̂−α,2,−i
√

2m~ωb̂−α,1) ,

(4.28)
applied to the free particle formal momenta Π̂(q)

± from (2.54) with q changed for α, and
Galilean boost generators taken at t = 0, see ref. [17],

Ξ̂(α)
± = αmρei

ϕ
α . (4.29)

To find the action of operators (4.26) and (4.27) and some powers of them on the eigenstates
ψ

(α,±)
nρ,l

, we first compute the action of (2.54) and (4.29) on functions Ω(α)
nρ,`

, and then we use
the relations (4.15) and (4.28). As a result we get

(b̂±α,1)j ψ(α,+)
nρ,l

(ρ, ϕ) =
√

Γ(nρ + αl + 1 + β±j)
Γ(nρ + αl + 1− β∓j)

ψ
(α,+)
nρ,l± j

α

(ρ, ϕ) , β± = 1± 1
2 , (4.30)

(b̂±α,1)j ψ(α,−)
nρ,l

(ρ, ϕ) = (−1)j
√

Γ(nρ + 1 + β±j)
Γ(nρ + 1− β∓j)

ψ
(α,−)
nρ±j,l∓ j

α

(ρ, ϕ) , (4.31)

(b̂±α,2)j ψ(α,−)
nρ,l

(ρ, ϕ) =
√

Γ(nρ + αl + 1 + β±j)
Γ(nρ + αl + 1− β∓j)

ψ
(α,−)
nρ,l± j

α

(ρ, ϕ) , (4.32)

(b̂±α,2)j ψ(α,+)
nρ,l

(ρ, ϕ) = (−1)j
√

Γ(nρ + 1 + β±j)
Γ(nρ + 1− β∓j)

ψ
(α,+)
nρ±j,l∓ j

α

(ρ, ϕ) . (4.33)

It is clear that when j = 1, we obtain a function outside the Hilbert space in general case
since the phase factor is multi-valued. When α = q/k, we can select j = q in these equations
in order to avoid problems with the phase factor, but we still have the problem of quantum
anomaly since when k > l, we can obtain the wave functions

ψ
( q
k
,±)

nρ,−|k−l|(ρ, ϕ) = σ(ψ( q
k
,∓)

nρ,|k−l|(ρ, ϕ))

on the right hand side of the corresponding equation. They will be physical eigenstates
only when k = 1, see eq. (4.25).

The action of operators Ĵ (α)
± = b̂±1,αb̂

±
2,α (that is an equivalent form of the second

definition in (4.5)) on eigenstates ψ(α,±)
nρ,l

produces a change of the radial quantum number
nρ (without touching l) for arbitrary values of α. Besides, exceptionally when α = q, we
have the well defined ladder operators (b̂±q,i)q, which allow to change the angular momentum
quantum number. In conclusion, only in this last case we can have a spectrum generating
set of the ladder operators (Ĵ (q)

± , (b̂±q,i)q), whose combined action allows us to generate from
a given eigenstate all the physical eigenstates that constitute a basis of the physical Hilbert
space. On the other hand, operators b̂±α,i are the building blocks for the construction of
any symmetry operator that correctly explains the emergent degeneracy of the spectrum in
dependence on the values of the parameters α and γ. According to our previous analysis,
this construction is only possible when α takes a positive integer value, that we imply from
now on.

Until now, the construction is valid for arbitrary values of the parameter γ.
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4.3 Spectral degeneracy

Case γ = s2−s1
s2+s1

. The quantum version of (3.23) corresponds to the operators

L̂ (ε)+
q,s1,s2 = (b̂+1,q)s1ε(b̂

−
2,q)s2ε , L̂ (ε)−

q,s1,s2 = (L̂ (ε)+
q,s1,s2)† . (4.34)

They are obtained via conformal bridge transformation (up to an inessential multiplicative
constant), from the higher order free particle symmetry operators

Ŝ (ε)+
q,s1,s2 = (Ξ̂(q)

+ )s1ε(Π̂(q)
+ )s2ε , Ŝ (ε)−

q,s1,s2 = (Π̂(q)
− )s1ε(Ξ̂(q)

− )s2ε , (4.35)

which commute with the combination 2ω(iD̂(q) + γ~L̂(q)) for the chosen value of the
parameter γ = (s2 − s1)/(s2 + s1).

The action of these operators is given by

L̂ (ε)±
q,s1,s2ψ

(q,+)
nρ,l

= (−1)εs2
√

Γ(nρ + 1 + β∓εs2)
Γ(nρ + 1− β±εs2)

Γ(nρ + ql + 1 + β±εs1)
Γ(nρ + ql + 1− β∓εs1)ψ

(q,+)
nρ∓εs2,l±

ε(s1+s2)
q

,

(4.36)

L̂ (ε)∓
q,s1,s2ψ

(q,−)
nρ,l

= (−1)εs1
√

Γ(nρ + 1 + β∓εs1)
Γ(nρ + 1− β±εs1)

Γ(nρ + ql + 1 + β±εs2)
Γ(nρ + ql + 1− β∓εs2)ψ

(q,−)
nρ∓εs1,l±

ε(s1+s2)
q

.

(4.37)

In accordance with eq. (3.23), the value of the parameter ε guarantees that ε/q is integer.
We conclude then that these operators are responsible for the degeneracy of the system
since the energy eigenvalues satisfy the relations

E
(q,γ,+)
nρ,l

= E
(q,γ,+)
nρ−εs2,l+ ε(s1+s2)

q

= E
(q,γ,+)
nρ+εs2,l− ε(s1+s2)

q

, (4.38)

E
(q,γ,−)
nρ,−l = E

(q,γ,−)
nρ−εs1,−l+ ε(s1+s2)

q

= E
(q,γ,−)
nρ+εs1,l− ε(s1+s2)

q

. (4.39)

The poles of the Gamma functions and relation (4.25) guarantee that only physical eigen-
states are produced by the action of these operators.

When γ = 1 (s1 = s2 = 1), equations (4.36), (4.37) are reduced to equations (6.57),
(6.58) of [17] when q is even (ε = q/2), and to (6.59), (6.60) when q is odd (ε = q). On the
other hand, when q = 1 (ε = 1), the integrals (4.34) are reduced to the integrals of the
Euclidean quantum ERIHO system described in ref. [39]. Precisely, another way to obtain
the integrals (4.34) is first applying the quantum version of the canonical transformation (3.5)
to the integrals of the Euclidean case, and then taking the power ε of the resulting objects,
just as it was done at the classical level.

Case γ = s2+s1
s2−s1

. The quantum version of (3.23) corresponds to

Ĵ (δ)+
q,s1,s2 = (b̂+1,q)s1δ(b̂

+
2,q)s2δ , Ĵ (δ)−

q,s1,s2 = (Ĵ (δ)+
q,s1,s2)† . (4.40)

These operators are obtained (up to a numerical factor) after the application of the conformal
bridge transformation to the higher order operators

T̂ (δ)+
q,s1,s2 = (Ξ̂(q)

+ )s1δ(Ξ̂(q)
− )s2δ , T̂ (δ)−

q,s1,s2 = (Π̂(q)
− )s1δ(Π̂(q)

+ )s2δ , (4.41)
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which commute with 2ω(iD̂(q) + γ~L̂(q)) for the chosen value of γ = (s2 + s1)/(s2 − s1).
In the same way as for the previous case, these integrals can also be obtained from their
version in the Euclidean case (α = 1) [39] by the application of the quantum version of the
canonical transformation (3.5) and by taking then the power ε of the resulting objects.

Their action on eigenstates is

Ĵ (δ)±
q,s1,s2ψ

(q,+)
nρ,l

= (−1)δs2
√

Γ(nρ + 1 + β±δs2)
Γ(nρ + 1− β∓δs2)

Γ(nρ + ql + 1 + β±δs1)
Γ(nρ + ql + 1− β∓δs1)ψ

(q,+)
nρ±δs2,l∓

δ(s2−s1)
q

,

(4.42)

Ĵ (δ)±
q,s1,s2ψ

(q,−)
nρ,l

= (−1)δs1
√

Γ(nρ + 1 + β±δs1)
Γ(nρ + 1− β∓δs1)

Γ(nρ + ql + 1 + β±δs2)
Γ(nρ + ql + 1− β∓δs2)ψ

(q,−)
nρ±δs1,l±

δ(s2−s1)
q

.

(4.43)

Again, δ/q is an integer number here, and these operators reflect the spectral degeneracy
according to the relations

E
(q,γ,+)
nρ,l

= E
(q,γ,+)
nρ+δs2,l− δ(s2−s1)

q

= E
(q,γ,+)
nρ−δs2,l+ δ(s2−s1)

q

, (4.44)

E
(q,γ,−)
nρ,−l = E

(q,γ,−)
nρ+δs1,l+ δ(s2−s1)

q

= E
(q,γ,−)
nρ−δs1,l−

δ(s2−s1)
q

. (4.45)

Here, the poles in the Gamma function appear only in the action of the operator Ĵ
(δ)−
q,s1,s2 ,

that reflects the infinite degeneracy of the system.
Now let us see in detail how this scheme works in the case of the Landau phases γ = ±1.

First, in the case γ = −1 (s1 = 1, s2 = 0, ε = q) the equations (4.36), (4.37) reduce to

L̂
(q)±
q,1,0 ψ

(q,−)
nρ,l

= (−1)q
√

Γ(nρ + 1 + qβ±)
Γ(nρ + 1− qβ∓)ψ

(q,−)
nρ±q,l∓1 , (4.46)

L̂
(q)±
q,1,0 ψ

(q,+)
nρ,l

=
√

Γ(nρ + q(l + β±) + 1)
Γ(nρ + q(l − β∓) + 1)ψ

(q,+)
nρ,l±1 , (4.47)

while for γ = 1 (s1 = 0, s1 = 1, ε = q), we get

L̂
(q)±
q,0,1 ψ

(q,+)
nρ,l

= (−1)q
√

Γ(nρ + 1 + qβ∓)
Γ(nρ + 1− qβ±)ψ

(q,+)
nρ∓q,l±1 , (4.48)

L̂
(q)±
q,0,1 ψ

(q,−)
nρ,l

=
√

Γ(nρ + q(l + β∓) + 1)
Γ(nρ + q(l − β±) + 1)ψ

(q,−)
nρ,l∓1 . (4.49)

Then, for the case γ = −1 (γ = 1), equation (4.47) (eq. (4.49)) shows us that the energy
levels are infinitely degenerate, since the operator L̂

(q)+
q,1,0 (L̂ (q)−

q,0,1 ) works as the raising ladder
operator for the quantum number l when it acts on the states of the form ψ

(q,+)
nρ,l

(ψ(q,−)
nρ,l

)
without annihilating any of them.

In this section we applied the conformal bridge transformation to identify the special
characteristics of the integrals of the quantum conical ERIHO system in a direct way. In
spite of our initial motivation to solve the anomaly problem by introducing an additional
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parameter into the dynamics, the model still carries the same quantum anomaly problem in
the conical background in the case of rational non-integer values of α [17]. We observed that
there is an interplay between the geometric conical parameter α and the real parameter γ,
which characterizes the ratio of frequencies associated with the isotropic harmonic potential
term and the rotational speed of the corresponding cosmic string spacetime. This interplay
is revealed first in the quantum spectrum of the model, that degenerates only in the case
when both parameters are rational and, secondly, in the integrals of motion, whose definition
depends on both parameters, and which can only be constructed when α is a positive
integer. In the special case of γ2 = 1 we obtained the two quantum Landau phases in the
conical background, and identified their corresponding integrals of motion. As these phases
are generated by application of the conformal bridge transformation to the free particle in
the conical background, the quantum Landau problem on the cone is anomaly free only in
the same cases of integer values of the parameter α = q.

5 A multi-particle generalization: vortices

It is a theoretical and experimental fact that the two dimensional multi-particle bosonic
systems confined by (isotropic or anisotropic) harmonic traps in a rotating reference frame
can experience Bose-Einstein condensation at low-temperatures [42, 43]. In the case of
isotropic harmonic traps, the Hamiltonian of such a system has the form of the sum of N
planar ERIHO Hamiltonians plus an interaction term which can represent the particles
collision or a sort of electromagnetic interaction between them. The condensation occurs
when this interaction potential is weak and the harmonic trap is stronger than the centrifugal
force, i.e., when |γ| ≤ 1 [42]. A special characteristics of the corresponding condensate wave
function is the emergence of quantum vortices, which in dependence on the form of the
interaction term are expected to be distributed in regular lattices [42, 43]. Having noted that
the shape of the classical and quantum solutions of the ERIHO system depends essentially
on the geometric background characterized by the cone parameter α, it is interesting to
see if there is any effect of it at the level of multi-particle systems. In particular, we
would like to see what happens with the formation of vortices in the wave function of the
condensate in this space. To this aim, in this section we first briefly review the elements of
Gross-Pitaevskii formalism to apply it to the condensate wave function in conical geometry.
Then, we analyze in detail the simplest case γ2 = 1, corresponding to the Landau phases of
the conical ERIHO model.

Let us start with the bosonic Hamiltonian of the multi-particle conical ERIHO system

Ĥ =
N∑
n=1

H(α)
γ (ri) + U(r1, . . . , rN ) , U(r1, . . . , rN ) =

∑
i<j

U(ri, rj) , (5.1)

where we have introduced a pairwise interaction between particles. It could be chosen, for
example, in the form of the contact potential derived in the Hartree-Fock approximation
for alkali gases [49, 50],

U(ri, rj) = 4π~as
m

δ(ri − rj) , (5.2)
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which we assume from now on. Here, m is interpreted as the reduced mass and the scattering
length parameter as is assumed to be small [43, 49, 50].

To analyze this system we follow the Gross-Pitaevskii formalism [42, 43, 49, 50]. The
first step is to perform a second quantization, obtaining as a result the Hamiltonian

Ĥ =
∫
dV Ψ̂†

(
Ĥ(α)
γ (r)

)
Ψ̂ + 1

2

∫
dV dV ′Ψ̂†(r)Ψ̂†(r′)U(r , r ′)Ψ̂(r)Ψ̂(r′) , dV = αρdρdϕ ,

(5.3)
where the field operators Ψ̂(r) =

∑
λ ψλ(r)âλ and Ψ̂†(r) =

∑
λ ψ
∗
λ(r)â†λ are constructed

in terms of a single particle wave-function ψλ(r). Here λ represents a set of quantum
numbers, the annihilation and creation operators of the Fock space are used to describe the
quantum state of the system made up of a variable or indeterminate number of particles,
and [Ψ̂(r), Ψ̂†(r ′)] = δ(r − r ′). The time evolution equation for Ψ̂(r) is given by

i~
∂

∂t
Ψ̂ = [Ψ̂, Ĥ] =

(
Ĥ(α)
γ (r) +

∫
dV ′Ψ̂†(r′)U(r , r ′)Ψ̂(r′)

)
Ψ̂(r) . (5.4)

At very low temperature, the field operator can be approximated by its mean value
ψ = 〈Ψ̂〉, which is called the order parameter, or the condensate wave-function [42, 43, 49].
By taking into account the potential (5.2), we arrive at a non-linear Schrödinger equation
in a conical space

i~
∂

∂t
ψ =

(
Ĥ(α)
γ + 4π~as

m
|ψ|2

)
ψ . (5.5)

To have Bose-Einstein condensate at low temperature, the ground energy level should be
equal to the chemical potential µ, and function ψ should satisfy

∫
dV |ψ|2 = N (assuming

that the number of particles in the condensate is Nc ∼ N). Therefore |ψ|2 = n(r) is
understood as the particle density in the condensate, and the anzats ψ(r , t) = e−i

µ
~ tψ(r)

gives us the stationary version of (5.5),

µψ(r) =
(
Ĥ(α)
γ + 4π~as

m
|ψ|2

)
ψ(r) . (5.6)

Finally, for the case as ∼ 0, one can use the variational method to approximate the ground
state, which should be close to the ground state of the single particle system.

The interesting cases to see here are γ = 1 and γ = −1, both of them corresponding
to the Landau phases of our conical ERIHO system, with different orientations of the
homogeneous magnetic field. Since the ground state is infinitely degenerate, in the case
γ± = ±1 the solution of (5.6) is approximated by

ψ(α,γ±) =
√
N

lcut∑
l=0

clψ
(α,±)
0,l ,

lcut∑
l=0

clc
∗
l = 1 , (5.7)

where lcut is a cut-off introduced by hand, and the usual criteria to select the com-
plex constants cl is by minimizing the non-linear potential term expectation value
4π~as
m

∫
αrdrdϕ|ψ(α)|4. Note that the structure of this function is a polynomial in the

variable rαeiϕ (times a Gaussian term) of degree lcut. In the planar case, the corresponding
nodes of this function represent quantized vortices in a superfluid, and here this also can
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happen, but now the influence of geometry of the space is expected to be essential. This is
more clear by following the Onsager and Feynman ideas [51, 52], and selecting the solution
of (5.5) in the form

ψ =
√
n(r , t)eiθ(r ,t) . (5.8)

By introducing this anzats, and ignoring the non-linear term, we get the following two
equations

∂

∂t
n(r , t) = ∇c · (n(r , t)v) , (5.9)

∂

∂t
Φ + 1

2v
2 + P

m
= 0 , (5.10)

where
Φ = ~θ

m
, v = ∇cΦ−

q

m
A , P = − ~2

2m
1√
n
∇c ·

(
∇c
√
n
)
, (5.11)

and ∇c is the curvilinear gradient operator that acting on a scalar function F and a vector
field G yields

∇cF = 1
α

∂F

∂ρ
er+ 1

ρ

∂F

∂ϕ
eϕ , ∇c ·G = 1

αρ

∂(ρGρ)
∂ρ

+ 1
ρ

∂Gϕ
∂ϕ

, (5.12)

∇c×G =
[ 1
αρ

∂(ρGϕ)
∂ρ

− 1
ρ

∂Gρ
∂ϕ

]
ez , ∇c ·(∇cF ) = 1

α2ρ

∂

∂ρ

(
ρ
∂F

∂ρ

)
+ 1
ρ2
∂2F

∂ϕ2 . (5.13)

Equation (5.9) has the form of the continuity equation for the particle density, and if we
interpret Φ as a fluid potential, then (5.10) looks like the Bernoulli equation for a charged
fluid coupled to a constant magnetic field, but now in a conical vessel space when α > 1,
or for a rotating condensate in the presence of radial dislocations [14] for α < 1. Then,
since in general case ∇c × (∇cF ) = 0 for a continuous scalar function F , we can only have
vortices when θ has singularities. Therefore, if we manage to write down the function (5.7)
in the form (5.8), it is seen that the points where vortices can appear are related to the
nodes of (5.7), where phase can not be defined. As we mentioned before, the polynomial
structure of the wave function depends on α, and this can affect the vortices location with
respect to the origin. In order to see this, let us consider the case lcut = 2 in (5.7), which
gives us the condensate wave-function (in units in which mωα2

~ = 1)

ψ(α)
a0,a1,a2(ρ,ϕ) =

√
αN

π(|a0|2 + |a1|2 + |a2|2)

(
a0 + a1(αρ)α√

Γ(α+1)
eiϕ+ a2(αρ)2α√

Γ(α+1)
ei2ϕ

)
e−

α2ρ2
2 .

(5.14)
Here,

∑lcut
0 clc

∗
l = 1, where cl = al(|a0|2 + |a1|2 + |a2|2)−

1
2 , l = 0, 1, 2. In table 1, we present

some numerical results for the coefficients al, that were obtained to minimize the integral

Ia0,a1,a2 =
∫ ∞

0

∫ 2π

0
αρdρdϕ|ψ(α)

a0,a1,a2(ρ, ϕ)|4 . (5.15)

For the cases 0 < α ≤ 1, two of the three parameters are zero. So, in these cases the solution
of the form (5.14) that minimizes Ia0,a1,a2 has only one vortex at the origin of coordinates.
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α a0 a1 a2 Ia0,a1,a2

1/4 0 0 1 1/(4π) ≈ 0.025

1/3 0 0 1 Γ(7/6)/(6π
3
2 Γ(5/3)) ≈ 0.031

1/2 0 0 1 1/(8π) ≈ 0.040
1 0 0 1 3/(16π) ≈ 0.060
2 1 0

√
112/19 ≈ 2.428 33/(131π) ≈ 0.080

3 1 0
√

992/199 ≈ 2.233 115/(397π) ≈ 0.092
4 1 0

√
32512/6179 ≈ 2.294 12866/(38691π) ≈ 0.106

Table 1. The values of parameters that minimize Ia0,a1,a2 for different values of α, where ai are
assumed to be real numbers (the imaginary part only contributes with a global sign in this particular
case). Note that the value of Ia0,a1,a2 grows with the increasing value of α.

(a) α = 1/2 (b) α = 1 (c) α = 2

(d) α = 3 (e) α = 4 (f) α = 3

Figure 4. Density plots of the function |ψ(α)
a0,a1,a2 |2/N for different values of α are shown in figures

from 4a to 4e, and the coefficients aj are chosen according to table 1. In figure 4f we consider
the density plot of the function |ψ(α)

a0,a1,a2,a3 |2/N with α = 3, where the complex values ai with
i = 0, . . . , 3 are such that Ia0,a1,a2,a3 = 0.073. Bright (dark) colours indicate maximum (minimum)
values of this function. Note that as α grows from 0 < α ≤ 1 to α = 2, 3, . . ., a local maximum
appears in the origin of coordinates and the two appearing vortices seem to degenerate in one single
region without particles.
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α a0 a1 Ia0,a1,0

1 0 1 1/(4π) ≈ 0.080
2 0 1 3/(8π) ≈ 0.119

3 1 2
√

3 ≈ 3.464 6/(13π) ≈ 0.147
4 1 4

√
7/19 ≈ 2.428 66/(131π) ≈ 0.160

Table 2. The values of the parameters that minimize Ia0,a1,a2=0 in dependence on α. Note that
the values of Ia0,a1,0 are greater than the values obtained in the case when a2 6= 0. When α grows,
one vortex has to appear far from the origin.

On the other hand, when α > 1, two parameters are non-zero, and as is seen from figure 4,
two vortices appear in the corresponding solutions.

If by hand we put a2 = 0 in function (5.14) and minimize the integral (5.15) for integer
values of α ≥ 1, we get the results presented in table 2. By comparison of tables 1 and 2
we learn that the condensate wave-function gives a better approximation to the ground
state of (5.6) when more terms in the series are taken into account, i.e., by introducing a
higher number of vortices. Also it is observable that when α grows, the local maximum
that appears at the origin of the coordinate (the vertex of the cone) corresponds to an
accumulation of particles near that point, and this prohibits the formation of vortices there.
Then, in contrast to the Euclidean case where there are no special points and the vortex
network corresponds to a triangular lattice [42, 43], one can expect that in the conical case
any underlying structure should be built around this singular point.

6 Discussion and outlook

In conclusion, we discuss several open problems that seem interesting from the perspective
of the obtained results.

1. We began our consideration with the (3 + 1) dimensional Minkowski space subjected
to a uniform rotation with angular velocity Ω about a fixed axis and introduced the
conical singularity by imposing a geometrical constraint. One can note that in the
case of Ω 6= 0, the spacetime metric (2.7) can be related to the metric of the spinning
cosmic string background [14, 53–55],

ds2
sp = −c2(dt+ 4c−4GJdϕ)2 + α2dρ2 + ρ2dϕ2 , (6.1)

where J is the linear angular momentum density of the string. This is achieved by
applying the coordinate transformation dϕ→ 1

2(dϕ−2αΩdt), dt→ dt+ 1
2αΩdϕ in (2.7),

followed by the identification J = c4

8αΩG . The peculiarity of this transformation is that
it requires the compactification of the time variable since ϕ = 0 ∼= ϕ = 2π implies
that the new time coordinate is periodic, t ∼= t+ π/(αΩ) [54]. The non-relativistic
limit can also be applied to the geodesic motion in background of the spinning cosmic
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string. For this, we present the action corresponding to the metric (6.1) in the form

Ssp = −mc
∫ √
−ds2

sp = −mc2
∫ √

1− 1
c2

[
α2ρ̇2 +

(
ρ2 − c2

4α2Ω2

)
ϕ̇2 − c2

αΩ ϕ̇
]
dt ,

(6.2)
and take the limit c → ∞, Ω → ∞ in such a way that c2/αΩ = θ = const. As a
result, we obtain Lagrangian of a non-relativistic anyon in the cone background,

Lany = m

2
(
α2ρ̇2 + ρ2ϕ̇2 − θϕ̇

)
, (6.3)

which also includes the planar case at α = 1. The non-relativistic limit we employed
is analogous to the Jackiw-Nair procedure considered earlier in the context of relation
of the physics of anyons to exotic extension of the planar Galilei group and non-
commutative geometry [56–58]. It would be interesting to study non-relativistic
system (6.3) from the perspective of hidden symmetries and quantum anomaly.

2. As we saw, the trajectories of the two-dimensional non-relativistic model in a conical
spacetime subjected to a homogeneous rotation can be obtained from the corresponding
orbits in the Euclidean plane in the inertial frame system (Ω = 0). This can be
achieved by applying the time-dependent canonical transformation supplied with an
additional α-dependent local canonical transformation to produce the cone geometry.
In this way we obtained the trajectories that lie on the corresponding finite- or infinite-
sheeted Riemann surfaces in dependence on whether the cone parameter α takes
a rational or irrational value. This procedure also helped us to obtain the formal
integrals, which are the building blocks for the construction of the well defined in
phase space symmetry generators in the case of rational values of α. As the problem
of geometric quantum anomaly arises when we employ the canonical quantization
procedure, one may wonder if the Riemann surface structure should play a special
role at the quantum level. It seems to be worthing to analyze the problem of the
quantum anomaly in more detail by using the method of geometric quantization with
taking into account the finite-sheeted Riemann surfaces structure.

3. In the case of geodesic dynamics in non-rotating (Ω = 0) cosmic string background
with an arbitrary integer value α = q of the geometric parameter we were able to
construct the well defined higher order integrals (2.54) that generalize the momenta
operators of a free particle in Euclidean geometry, and which reflect correctly the
degeneracy of quantum energy levels of the system. By means of the Ω-dependent
unitary transformation supplemented by a ‘Heaviside step function regularization’
procedure, we obtained the analogs (2.58) of these integrals, which are non-local
operators, and do the same job in the quantum systems with α = q and arbitrary
values of the rotation parameter Ω 6= 0. The conformal bridge transformation allowed
then us to construct on their basis the analogous integrals for the quantum conical
ERIHO systems with integer α = q. It is interesting to note here that in the case of
the free particle the presence of the frequency parameter Ω admits the construction
of a quantum combination ~Ω of the energy dimension, with which it is possible to
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regularize by means of the Heaviside step function (whose argument is dimensionless).
In the classical theory, the construction of a combination of parameters of the same
dimension would require the introduction by hand of an additional constant of the
dimension of length.

It would be natural to try to modify somehow the described approach to “cure” the
quantum anomaly that still persists in the case of rational values of α = q/k with
k > 1. For this, let us consider first the case of Ω = 0, and introduce the alternative
integrals

L
( q
k

)
+ =

(
Π̂( q

k
)

+

)q
Θ
(
p̂ϕ
~
− k

)
, L

( q
k

)
− = Θ

(
p̂ϕ
~
− k

)(
Π̂( q

k
)

−

)q
. (6.4)

J
( q
k

)
+ = Θ

(
k − p̂ϕ

~

)(
Π̂( q

k
)

+

)q
, J

( q
k

)
− =

(
Π̂( q

k
)

−

)q
Θ
(
k − p̂ϕ

~

)
. (6.5)

Due to inclusion of the Heaviside step function, these operators do not produce
non-physical eigenstates under their application to physical eigenstates. Their explicit
action is given by the following relations,

L
( q
k

)
+ ψ

( q
k

)
κ,j = 0 , j ≤ k − 1

L
( q
k

)
+ ψ

( q
k

)
κ,j ∼ ψ

( q
k

)
κ,j+k , j > k − 1

,


L

( q
k

)
− ψ

( q
k

)
κ,j = 0 , j ≤ 2k − 1

L
( q
k

)
− ψ

( q
k

)
κ,j ∼ ψ

( q
k

)
κ,j−k , j > 2k − 1

, (6.6)


J

( q
k

)
+ ψ

( q
k

)
κ,j = 0 , j ≤ k − 1

J
( q
k

)
+ ψ

( q
k

)
κ,j ∼ ψ

( q
k

)
κ,j+k , j < k − 1

,


J

( q
k

)
− ψ

( q
k

)
κ,j = 0 , j ≥ 2k − 1

J
( q
k

)
− ψ

( q
k

)
κ,j ∼ ψ

( q
k

)
κ,j−k , j ≥ k − 1

, j ∈ Z .

(6.7)
To generalize for the case with Ω 6= 0, we can follow the procedure described in
section 2.2. With these two pairs of operators, we have access to all the states with a
given energy eigenvalue, except the states of the form ψ

( q
k

)
κ,` with |`| < k − 1. Thus,

the question on identifying the symmetry operators that would correctly explain the
degeneracy of the energy spectrum when α is rational remains to be open. Perhaps,
the operators (6.4) and (6.5) still need to be supplemented with some additional
integrals, similar to what happens under the construction of the complete set of the
spectrum generating operators in rationally extended harmonic oscillator [59] and
rational deformations of conformal mechanics [60].

4. For the harmonic oscillator of frequency ω in a uniformly rotating cosmic string
background, the numerical factor γ = −Ω/ω can be introduced. This allows us to
identify the system as the conical version of the ERIHO model [29, 39], in which
closed trajectories and the associated integrals of the hidden symmetry appear when
both parameters α and γ take rational values. The model reveals a kind of duality
under the inversion transformation γ → 1/γ in the same way as this happens in
Euclidean version [39]. Namely, in the case |γ| < 1, the system is characterized by
a spectrum bounded from bellow, and its true (not depending explicitly on time)
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symmetry generators satisfy a non-linear version of the u(2) algebra. Besides, the
system also is characterized by a dynamical non-linear gl(2,R) algebra. Additionally,
it also is characterized by the conformal sl(2,R) symmetry. After applying the duality
transformation, we get a system with |γ′| = |γ−1| > 1, whose quantum spectrum is
not bounded from below, and the dynamical (explicitly depending on time) and true
symmetries are interchanged, while the conformal sl(2,R) symmetry is not changed.
In the intermediate case γ2 = 1, we use the gravitoelectromagnetic interpretation
to identify the model with the Landau problem (in symmetric gauge) in a conical
background. The sign of γ determines there orientation of the magnetic field. Such a
system corresponding to our case |γ| = 1 was considered earlier in [40, 41], where it
was shown that some energy levels have infinite degeneracy for arbitrary values of α.
However, the system was not investigated there in the light of classical and quantum
symmetries for special values of the parameter α, and this is just a particular case
in our analysis. On the other hand, note that the same classical trajectories as we
obtained for the case (0 < α < 1,Ω = 0) were recently observed for geodesics in the
conical BTZ spacetimes [61], and it would be interesting to see if the trajectories in
the case Ω 6= 0 can be related to the dynamics in such a kind of spacetimes as well.

5. Finally, we studied the multi-particle conical ERIHO system in its Landau phases
using the mean-field theory. Effectively, we have replaced the pair-wise interaction
(that could be a Coulomb one) by a contact potential. The numerical calculation in
the simplest examples shows that in the case 0 < α ≤ 1,7 the best approximation
of the wave function of the condensate is the one-vortex solution. In the case of
α > 1, the best approximation is obtained by considering multi-vortex configurations,
and the accumulation of the particles is possible (while the formation of vortices
is prohibited) at the vertex of the cone, where the probability density has a local
maximum. Naturally, one may ask if the approximation that we considered is good
enough from the point of view of a possible experimental realization, for example by
means of the Bose-Einstein condensate in a rotating harmonic trap, or in the system
of charged particles subjected to a magnetic field. Anyway, our numerical results
indicate that the cone’s vertex should necessarily produce some effect. It would also
be interesting to compare these results with a field theory approach, such as the
collective field theories, where the large N limit is applied [62]. This problem also
is interesting since it can bring some insight into a generalization of the conformal
bridge transformation for an infinite number of degrees of freedom.
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7The cases with 0 < α < 1 can be associated, in particular, with a geometric background describing
radial dislocations in superfluids [14].
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A Time-dependent canonical transformation

The system in a rotating flat geometry introduced at the beginning of section 2 can be
obtained from the non-relativistic two-dimensional free particle in the inertial reference
frame (Ω = 0),

S =
∫
Ldt , L = m

2
dχi
dt

dχi
dt

, → H = 1
2mπiπi , πi = m

dχi
dt

, (A.1)

by applying the time dependent canonical transformation χi → xi, πi → pi, which can be
presented in a form

x± = e∓iΩtχ± = ρe±i(Ωt+ϕ) , p± = e∓iΩtπ± . (A.2)

Here χ± = χ1 ± iχ2, π± = π1 ± iπ2, etc., and {χ±, π±} = 0, {χ±, π∓} = 2. Under
the time-dependent rotation transformation χi → xi, Lagrangian in (A.1) transforms
into Lagrangian (2.4), while the canonical transformation (A.2) applied to the action
one-form θ = πidχ

i − Hdt of the system (A.1) yields θ = pidx
i − HΩdt, where HΩ is

the Hamiltonian (2.5). At the same time, the angular momentum is invariant under
transformation (A.2), πϕ = εijχiπj = εijxipj = pϕ.

For the system (A.1), canonical momenta are the integrals of motion, d
dτ π± = {H,π±} =

0. On the other hand, according to (A.2), the explicitly depending on time phase space
functions

P± := e±iΩtp± = π± (A.3)

are the dynamical integrals of motion for the system HΩ, d
dtP± = ∂

∂tP± + {P±, HΩ} = 0.
Analogously, the explicitly depending on time phase space functions

X± = e±iΩt
(
χ± −

1
m
tπ±

)
(A.4)

are the dynamical integrals of motion for the system HΩ, where (χ±− 1
m tπ±) are the Galileo

boosts generators of the system (A.1). Quadratic rotationally invariant polynomials of (A.3)
and (A.4) provide us with the true integrals, pϕ = i

2(X+P− −X−P+) and HΩ = H0 −Ωpϕ,
where H0 = 1

2mP+P−, and the dynamical integrals,

D = 1
4(X+P− +X−P+) = 1

2ρpρ −H0t , (A.5)

K = m

2 X+X− = m

2 ρ
2 − 2Dt−H0t

2 , (A.6)

which correspond to the α = 1 case of (2.16), (2.17). Multiplying dynamical integrals (A.3)
with dynamical integrals exp(±iΩD/H0), we obtain

I
(1)
± = exp

(
± iΩ ρpρ

2H0

)
· p± . (A.7)

These are the well defined for H0 6= 0 true integrals of the system HΩ, to which the
integrals (2.30) reduce at α = 1.
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To establish the relation between the quantum Hamiltonians, consider the time-
dependent Schrödinger equation for the quantum analog of the system (A.1),

i~
∂

∂t
ψ(χ1, χ2, t) = − ~2

2m

(
∂2

∂χ2
1

+ ∂2

∂χ2
1

)
ψ(χ1, χ2, t) . (A.8)

Denoting Ψ(x1, x2, t) = Ψ(x1(t), x2(t), t) = ψ(χ1, χ2, t), where xi(t) are given by the first
relation in (A.2), we have i ∂∂tψ(χ1, χ2, t) =

(
i~ ∂
∂t + ~Ωp̂ϕ

)
Ψ(x1, x2, t), and equation (A.8)

takes the form

i~
∂

∂t
Ψ(x1, x2, t) = ĤΩΨ(x1, x2, t) , (A.9)

ĤΩ = −~2
(
∂2

∂x2
1

+ ∂2

∂x2
2

)
− Ωp̂ϕ , p̂ϕ = −i~

(
x1

∂

∂x2
− x2

∂

∂x2

)
. (A.10)

Applying the canonical transformation (3.5), the described procedure can be generalized
for the system in conical geometry.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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