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1 Introduction

By now it is well-known that not all effective field theories (EFTs) can be UV completed.
One famous example is the EFT of a massless scalar with higher derivative interaction

S = 1
2

∫
dDx

(
−(∂φ)2 + µφ2�2φ2 + · · ·

)
, (1.1)

which does not admit a UV completion for µ < 0 [1]. Conceptually, this represents a
substantial departure from our traditional understanding of Wilsonian EFTs. In fact,
this remarkable result led to the proof of the 4D a-theorem establishing irreversibility of
unitary renormalization group flows between conformal fixed points [2]. More generally
this constraint is related to the idea of “swampland” of EFTs that cannot be obtained as
a low energy approximation of a consistent theory of quantum gravity (oftentimes string
theory) [3–8].

The constraint on the EFT (1.1) is not actually an accident, but part of a general
feature of low energy EFTs with higher derivative interactions. There is a growing body of
literature with similar precise bounds on IR couplings of an EFT from UV consistency [9–
25]. All these bounds have one thing in common that they do not depend on the details
of the UV completion. However, these types of bounds are generally derived under the
assumption that the 2→ 2 scattering amplitude obeys (i) analyticity (in the usual regime),
(ii) partial wave unitarity, (iii) crossing symmetry, and (iv) Regge boundedness conditions
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even in the UV. Such S-matrix based arguments can be unsatisfying since some of these
assumptions (even though well-motivated) have not yet been rigorously established.1

Another technical challenge of these EFT arguments is to incorporate dynamical grav-
ity mainly because of the graviton pole in the 2 → 2 scattering amplitude. Recently, an
elegant framework has been introduced in [47] that bypasses this problem by studying
scattering amplitudes at finite impact parameter (see [48] for related discussions). Under
the same assumptions about the 2→ 2 scattering amplitude, this framework leads to non-
trivial and rigorous two sided bounds on coupling constants of higher derivative interactions
in D > 4 dimensions. The analysis necessarily requires that the 2 → 2 scattering ampli-
tude A(s, t) < |s|2 for large s (at fixed t < 0). However, it is unclear whether this Regge
boundedness condition is valid in the presence of dynamical gravity.2 Nevertheless, these
bounds provide compelling evidence in favor of the expectation that all higher derivative
interactions must have order one coupling constants in the units of the UV cut-off scale.
The main motivation of this paper is to derive similar bounds on EFTs in anti-de Sitter
(AdS) spacetime where such loopholes can be avoided.

In this paper, we will address a closely related question: what scalar EFTs in AdSD
cannot be embedded into a UV theory that is dual to a CFTD−1 obeying the usual CFT
axioms? We will provide a partial answer to this question by leveraging the huge ad-
vancement in constraining the space of consistent CFTs from well-established conformal
bootstrap axioms (for a review see [56]). The main logic of our argument parallels recent
developments in constraining EFTs in AdS (with or without dynamical gravity) from rig-
orous analysis in the dual CFT [26, 29, 32, 57–74]. For example, the sign constraint on the
φ2�2φ2 coupling in the EFT (1.1) can be derived in AdS from the conformal bootstrap [58].

The main advantage of our AdS argument is that the bounds follow directly from the
conformal bootstrap axioms which are, both conceptually and technically, well-understood,
at least at the level of four-point correlators. We will derive the φ2�2φ2 constraint (with
and without dynamical gravity) as a special case of an infinite set of similar constraints on
higher derivative interactions of the form φ2�kφ2 from a simple CFT setup.

We consider a scalar EFT in AdSD with an effective action3

S = SEH + 1
2

∫
dDx
√
−g

−gµν∇µφ∇νφ−m2φ2 +µ
∑

k=2,3,4,···

(
λk

nk(∆)M2(k−2)

)
φ2�kφ2

+ · · · ,

(1.2)
1In recent years, significant progress has been made both in analytical and numerical approaches to the

S-matrix bootstrap [26–46].
2Note that the Froissart bound [49–51] does not hold without a mass gap in the theory. Hence, the

Regge boundedness condition A(s, t) < |s|2 is subtle whenever there are massless states in the theory, even
in the absence of gravity. For example, the same issue persists even for the 4-point scattering amplitude of
the dilaton that led to the proof of the 4D a-theorem in [2]. However, in that case, the Regge boundedness
follows from conformal invariance of the UV fixed point [52, 53]. On the other hand, the same argument
for the 4-point dilaton amplitude in 6D imposes a weaker condition A(s, t) < |s|3 [54, 55].

3We are ignoring φ3, φ4, φ2�φ2, and all other higher derivative interactions that cannot be written as
φ2�kφ2 since these interactions, as well as presence of other low spin (J ≤ 1) fields, will not affect the final
bounds. However, these interactions can sometimes create obstruction to a flat space limit, especially at
low spacetime dimensions. We will discuss this in section 4.3.
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where, SEH is the Einstein-Hilbert action with a negative cosmological constant and M

is the mass-scale of new physics. We allow for the possibility that the scalar field has a
mass 0 ≤ m2 � M2. First, let us explain our convention. We have defined a positive
coupling constant µ ≥ 0 which has the dimension 1/MD. The coupling constants λk
are dimensionless and normalized by introducing (dimensionless and known) O(1) positive
numerical factors nk(∆).4 The choice of this particular normalization makes the final
bounds rather simple. Moreover, without loss of generality, we will assume that λ2 is order
one, however, to begin with we do not assume that the other coupling constants are order
one as well. Our goal is to derive necessary conditions (analytically) for the tree level
EFT (1.2) to have a UV completion.5 In particular, we will impose precise constraints on
λk coupling constants, irrespective of the details of the UV physics, from the requirement
that the dual CFT satisfies the bootstrap axioms.

There are non-trivial constraints on the EFT (1.2) even when gravity is non-dynamical
(GN = 0). So, first we focus on this simpler case. The EFT (1.2) in AdS with large radius
RAdSM � 1 enjoys a dual CFT description in D − 1 spacetime dimensions. Specifically,
it was shown by [75] and subsequent authors [76–87], that the scalar EFTs in AdSD of
the form (1.2) are in one-to-one correspondence with perturbative solutions of crossing
symmetry in CFTD−1. This interacting dual CFT has a scalar primary operator O which
is dual to the AdS field φ with dimension ∆ given by m2R2

AdS = ∆(∆ − D + 1). Since
there is no dynamical gravity, the stress tensor of the dual CFT must decouple from the
low energy spectrum. This implies that we are in the limit of large central charge cT →∞
with RAdSM ≡ ∆gap fixed (but large).6 Of course, the dual CFT should be thought of
as an “effective” CFT which is embedded in some bigger CFT satisfying the usual CFT
axioms. We utilize this dual description to study CFT Regge correlators associated with
the EFT (1.2). At the leading order in µ, these CFT Regge correlators grow in a very
specific way within the regime of validity of the EFT (1.2). In fact, this type of Regge
growth is known to be highly constrained by the argument of [88] (see section 6). In this
paper, we revisit these bounds on the Regge growth of CFT correlators and show that they
impose precise constraints on the EFT (1.2). In particular, in the limit of large RAdSM we
conclude that the coupling constants λk, irrespective of the rest of the theory, must obey
the following conditions for the EFT (1.2) (with µ ≥ 0) to be embedded into a UV theory
that is dual to a CFT obeying the CFT axioms:7

• Positivity — For all even k ≥ 2
λk > 0 . (1.3)

4The numerical factor nk(∆) > 0 is defined in (4.17) as ratios of Γ-functions. Note that n2(∆) =
n4(∆) = 1. Moreover, in the large AdS radius limit with finite and non-zero m, this factor nk(∆) = 1 for
all finite k. For large AdS radius, the numerical factor nk(∆) is non-trivial (i.e., nk(∆) 6= 1) only in the
massless limit (or for k � mRAdS).

5We assume that the EFT (1.2) is weakly coupled such that GN (if non-zero) and µ are small and of
the same order in the units of the cut-off scale M .

6The central charge cT is the overall coefficient of the CFT stress tensor two-point function.
7All bounds obtained in this paper are valid in spacetime dimensions D ≥ 4. We also expect that our

analysis is valid even for D = 3 as long as 0 ≤ m2 �M2 and the field φ has shift symmetry or Z2 symmetry.
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• Monotonicity — λk as a function of even k decreases monotonically8

λk+2 ≤ λk (1.4)

for all even k ≥ 2.

• Log-Convexity— λk, for even k, satisfies a global log-convexity condition and hence
for any even k1, k2, and k3

1
k2 − k1

ln λk1

λk2

≥ 1
k3 − k1

ln λk1

λk3

, k3 > k2 > k1 ≥ 2 . (1.5)

We emphasize that these constraints (for a pictorial depiction see figure 1) follow directly
from analyticity, positivity, and crossing symmetry of CFT four-point correlators — prop-
erties that are contained in the conformal bootstrap axioms. The above conditions, among
other things, imply that all higher derivative interactions φ2�kφ2 with even k must have
order one coupling constants in the units of the UV cut-off scale M . However, we believe
that (1.3)–(1.5) are necessary conditions but they are far from being sufficient. For exam-
ple, it is expected that similar bounds exist even for odd k. Whereas, our setup does not
impose any restriction on the odd λk couplings other than all λk couplings in AdS, even or
odd, with k ≥ 3 must vanish when λ2 = 0.9

Of course, the next key step is to include dynamical gravity (GN 6= 0). In our setup,
the inclusion of gravity is a rather trivial generalization. Now the central charge of the
dual CFT is large cT � ∆gap � 1 but finite. The bulk graviton contributes only to the
leading growing term of the Regge correlator of the dual CFT. This immediately implies
that the constraints (1.3)–(1.5) remain unchanged for all even k ≥ 4. On the other hand, all
conditions involving λ2 now receive corrections from gravity. For example, gravity allows
for the φ2�2φ2 interaction to have a negative coupling constant

µλ2 > −πND(∆)GNR2
AdS , (1.6)

where ND(∆) is a positive order one numerical factor given in appendix F. It is how-
ever unclear how to extract a precise bound from (1.6) in the flat space limit. The AdS
bound (1.6), as we will explain, suggests that in the flat space limit µλ2M

D > −ε, where ε
is some small positive number. This is certainly consistent with the results of [47], however,
we do not have a precise definition of ε. Nevertheless, this raises an interesting concep-
tual question of whether, and in what sense, the 4D a-theorem is valid in the presence of
dynamical gravity.

Finally, we will generalize our analysis for EFTs of multiple scalar fields in AdS. The
main motivation for this generalization is to demonstrate that there are other tools avail-
able when we go beyond a single scalar field. For example, the same CFT consistency

8It should be noted that this condition, unlike other two conditions, depends on our exact definition of
the cut-off scale M . For an arbitrary definition of M , there must always exist a rescaling M → XM with
order one X which makes the EFT consistent with the condition (1.4).

9This can be alternatively stated as λ2 > 0 with µ ≥ 0. This condition is more subtle in the exact flat
space limit, as we explain later. In flat space λ2 = 0 does not necessarily requires λk = 0 for odd k. For an
example see [55].
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Figure 1. The coupling constants λk for even k ≥ 2, without dynamical gravity, must obey the
conditions (1.3)–(1.5). There is always some choice of the scale M (and µ) for which the coupling
constants have this generic structure. When gravity is included, only bounds on λ2 become weaker.

conditions of [88] now also impose two-sided bounds on odd k ≥ 3 higher derivative inter-
actions involving multiple fields (see [25] for similar bounds on flat space multi-field EFTs).
Furthermore, for multiple fields there are interference effects that are also constrained by
the CFT axioms leading to an infinite set of non-linear bounds among various higher deriva-
tive coupling constants.10 These additional tools will certainly be useful for bounding the
four-graviton scattering amplitude in AdS by using the dual CFT description.

Our CFT setup, from the dual gravity perspective, is probing local high energy scatter-
ing deep in the bulk. Since the local high energy scattering is insensitive to the spacetime
curvature, on physical grounds we expect that AdS bounds obtained in this paper persist
even in the flat space limit (other than the caveat mentioned after equation (1.6)). Indeed,
we checked that weakly coupled string amplitudes satisfy all the conditions derived in this
paper. However, there is one obvious but important issue that we must address. Any strict
AdS inequality A > 0 must be regarded as A ≥ 0 in the flat space limit since the A = 0
case can no longer be ruled out due to finite curvature effects.

An important feature of our AdS bounds is that they differ significantly for massive
and massless scalars, especially when we take the flat space limit. In particular, when
we take the large RAdS limit (with fixed m), our bounds agree completely with the ones
obtained from the flat space dispersive sum-rules under the same set of assumptions about
the four-point amplitude as mentioned in the beginning.11 On the other hand, when we
take m = 0 first and then RAdS →∞, two sets of bounds differ significantly. This perhaps
indicates that the Regge boundedness condition of the flat space amplitude can break down
in the presence of massless states (see section 5).

10Note that the same interference effects were utilized in [72] to derive non-linear bounds on the dilaton-
axion effective action associated with 4D RG flows with global symmetry breaking.

11This is true even when we take m→ 0 after taking the large radius limit. See section 5.
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At this stage, one may wish to compare our bounds with the flat space bounds of [47].
Indeed, there is some overlap between these two sets of bounds. Of course, from our
CFT setup, it is not immediately clear how to obtain any constraints on odd k coupling
constants for a single scalar field. Such bounds will perhaps require a more sophisticated
CFT analysis. Nevertheless, we observe that our constraints, in the flat space limit, are
consistent with the bounds of [47].

The rest of the paper is organized as follows. In section 2 we begin by explaining our
general setup. In section 3 we review the bounds of [88] on certain CFT Regge correlators
and explain how they follow from the conformal bootstrap axioms. We use this CFT
constraints in section 4 to derive bounds (1.3)–(1.5) on the scalar EFT in AdS without
dynamical gravity. Then in section 5 we discuss some implications of these constraints for
massless external scalars in the flat space limit. Section 6 studies the consequences of the
inclusion of gravity. In section 7 we extend our analysis to impose bounds on the EFT of
two scalar fields. Section 8 contains our conclusions and final comments. Some additional
aspects of our analysis are included in several appendices. In particular, in appendix A we
demonstrate how Rindler positivity in CFT follows from unitarity and crossing symmetry.

2 Scalar EFT in AdS

We consider an EFT of a single massless or massive scalar field in AdS with higher deriva-
tive interactions. We start with the following low energy effective action with four-point
interactions

S = 1
16πGN

∫
dDx
√
−g

(
R+ (D − 1)(D − 2)

R2
AdS

)

+ 1
2

∫
dDx
√
−g

(
−gµν∇µφ∇νφ−m2φ2 + α3φ

3 +
∞∑
k=0

µk φ
2�kφ2

)
+ · · · , (2.1)

where, α3 and µk are coupling constants.12 The AdS radius RAdS is large but finite. Our
goal is to derive constraints on the coefficients µk. In the process, the form of the effective
action (1.2) will emerge automatically. Note that different higher derivative interactions, in
general, can be suppressed by different scales. However, we will assume that all interactions
are suppressed by some small coupling 0 < µ� 1:

GN , α
2
3, µk ∼ µ . (2.2)

We intend to impose constraint on the weakly coupled effective theory and hence we work
in the leading order in µ.13 This will be implemented by keeping only tree level processes.

12Note that at the tree level the k = 1 term can be removed by using the equation of motion. So, we will
ignore the k = 1 interaction completely.

13One can think of µ as the analog of the string coupling in string theory. Similarly, the cut-off scale M
in the effective action (1.2) can be regarded as the string scale.
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2.1 Other higher-derivative interactions

The observant reader may have noticed that the effective action (2.1) can have other higher
derivative 4-φ interactions. For example, even in flat space there are multiple inequivalent 4-
φ interactions with 12 or more derivatives. Now we argue that these other higher-derivative
4-φ interactions will not affect any of the bounds obtained in this paper (provided µ2 is
non-zero).

First, let us consider the flat space EFT (massive or massless) with 4-φ interactions.
At the 2k-derivative level, there are exactly two types of interactions:

akφ
2�kφ2 +

a+b+c=k∑
a,b,c>0

b
{a,b,c}
k (∂µ1 · · · ∂µkφ) (∂µ1 · · · ∂µaφ) (∂µ1 · · · ∂µbφ) (∂µ1 · · · ∂µcφ) . (2.3)

All other possible interactions can be written in the above form by utilizing the free equation
of motion and integration by parts. Note that the second term can only be non-zero and
independent (when we use the equation of motion) for k ≥ 6.14

Now we move on to the AdS case and replace ∂µ → ∇µ. In AdS, derivatives do
not commute in general. So, one may construct several more terms from the second term
of (2.3) by choosing different ordering of derivatives. However, different derivative orderings
differ only by factors of 1/R2

AdS

(· · · ∇µ∇ν · · · )φ− (· · · ∇ν∇µ · · · )φ ∼
1

R2
AdS

(· · · )φ (2.4)

and hence derivative ordering is not important in the large RAdSM limit, where M is the
cut-off scale of the EFT (2.1). In this paper, we will impose constraints on the EFT (2.1)
by studying the CFT Regge correlator G(η, σ), as defined in section 3, of the dual CFT.
In the CFT Regge limit σ → 0, the first term of (2.3) contributes to G(η, σ)

akφ
2�kφ2 ⇒ ∼ i ak

RD+2k−4
AdS

1
σk−1 , (2.5)

for even k. On the other hand, the Regge contribution from the second term of (2.3) grows
as 1

σk−3 or slower.15 Similarly, contributions from φ2�kφ2 with odd k are always subleading
since they are suppressed by higher powers of 1/RAdS. Hence, the leading contributions to
G(η, σ) in the Regge limit always come from φ2�kφ2 terms with even k. This implies that
the additional higher derivative 4-φ interactions of (2.3) will not affect the argument of this
paper in any way. So, we can safely ignore these other higher derivative 4-φ interactions
in the effective action (2.1). Moreover, we also see that odd k interactions of (2.1) are not
bounded by our CFT argument.

From the flat space perspective the above discussion can be understood as follows.
Roughly speaking, the CFT argument of this paper is only sensitive to the forward limit
(t = 0) of the tree level 4-point scattering amplitude (for large s) associated with the

14For example, for k = 3 the second term can be equivalently written as φ2�3φ2 plus terms with 4 or
less derivatives.

15See section 4.4 for details.
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effective action (2.1). The second term of (2.3) does not contribute to the forward amplitude
since a, b, c > 0. So, it is not surprising that these other higher derivative 4-φ interactions
cannot affect any of the bounds obtained in this paper.

2.2 Dual CFT

We will impose constraints on this action from the consistency of the dual CFTd, where
D = d+ 1. The AdS theory (2.1) is dual to an interacting CFT in d-dimensions. The bulk
field φ is dual to a scalar primary operator O with dimension m2R2

AdS = ∆(∆ − d). The
two-point function is completely fixed by conformal invariance16

〈O(x1)O(x2)〉 = (2∆− d)C∆
x2∆

12
, C∆ = Γ[∆]

πd/2Γ[∆− d/2]
. (2.6)

Of course, the graviton hµν is dual to the CFT stress tensor Tµν . The EFT (2.1) is a well
behaved theory at energies below the cut-off scale M . Our goal is to impose constraints
on the coupling constants by requiring that the EFT is the low energy description of a UV
complete theory. Equivalently, in the CFT side we will assume that the dual CFT is well
behaved. Next, we discuss exactly what we mean by a well behaved CFT.

2.3 CFT axioms

We make the assumption that the dual CFT obeys the Euclidean bootstrap axioms. In
particular, we only make use of the following three properties:

(i) OPE Unitarity — All OPE coefficients of real operators are real.

(ii) Crossing Symmetry — CFT four-point correlators are crossing symmetric.

(iii) Analyticity — Lorentzian CFT four-point correlators are analytic in the usual domain
(see figure 3).

These CFT properties are well-established and they imply rigorous non-perturbative con-
straints on certain Regge correlators as derived in [88]. We will use these constraints to
derive precise bounds on the higher-derivative couplings of the EFT (2.1).

3 A review of the bounds on CFT Regge correlators

In this section we review the bounds of [88] on CFT Regge correlators for scalar external
operators. Points x ∈ R1,d−1 in CFTd are denoted as follows:

x = (t, y, ~x) ≡ (x−, x+, ~x) , (3.1)

where, x± = t± y are lightcone coordinates. We study the Lorentzian CFT correlator17

G = 〈O2(1)O1(ρ)O†1(−ρ)O†2(−1)〉
〈O2(1)O†2(−1)〉〈O1(ρ)O†1(−ρ)〉

(3.2)

16For a review see appendix C.
17The Hermitian conjugatation in (3.2) acts only on operators, not on coordinates.
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x+x−

O2(1) O†2(−1)

O1(ρ)

O†1(−ρ)

Figure 2. Lorentzian four-point correlator (3.2) where all operators are restricted to a 2d subspace.

Figure 3. Analytic structure of the correlator (3.2) — branch cuts appear only when two operators
become null separated. The Regge limit is obtained from the Euclidean correlator by analytically
continuing ρ along the path shown.

of two arbitrary CFT scalar operators, where operators inside the correlator are ordered
as written. All the points are restricted to be on a 2d subspace:

1 ≡ (t = 0, y = −1,~0) , ρ ≡ (x− = ρ, x+ = −ρ̄,~0) ,
−1 ≡ (t = 0, y = 1,~0) , −ρ ≡ (x− = −ρ, x+ = ρ̄,~0) (3.3)

with 1 > ρ̄ > 0 and ρ > 1, as shown in figure 2. The operator ordering in (3.2) is
important since some of the operators, as shown in the figure 2, are timelike separated.
This Lorentzian correlator can be obtained from the Euclidean correlator by analytically
continuing ρ along the path shown in figure 3.

For later convenience, we parametrize

ρ = 1
σ
, ρ̄ = ση (3.4)

– 9 –
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with η > 0 and hence G ≡ G(η, σ). The CFT Regge limit can be reached by taking

σ → 0 , with η = fixed > 0 (3.5)

of the correlator G(η, σ). The Regge correlator G(η, σ), as a function of complex σ, is
analytic near σ ∼ 0 (for 0 < η < 1) on the lower-half σ-plane [88–90].

3.1 Boundedness of the Regge correlator

We can define another Lorentzian correlator

G0(η, σ) = 〈O2(1)O1(ρ)O†2(−1)O†1(−ρ)〉
〈O2(1)O†2(−1)〉〈O1(ρ)O†1(−ρ)〉

(3.6)

which is determined by Euclidean OPE and hence in the limit (3.5)

G0(η, σ) = 1 + · · · , (3.7)

where dots represent terms that are suppressed by positive powers of σ. The Regge corre-
lator G(η, σ) is bounded by the “Euclidean” correlator G0(η, σ). In particular, for real σ
with |σ| < 1 OPE unitarity and crossing symmetry imply

|G(η, σ)| ≤ G0(η, σ) , (3.8)

where, G0(η, σ) > 0. In the strict Regge limit (3.5), this simplifies to

|G(η, σ)| ≤ 1 +O(σa) (3.9)

with a > 0.
More generally, the bound (3.8) follows from Rindler positivity as described in [88,

89]. For CFT correlators of scalar operators, Rindler positivity is a consequence of OPE
unitarity and crossing symmetry. This is reviewed in appendix A (see also [90]).

3.2 CFT constraints

Next, we focus on Regge correlators with a very specific Regge behavior for some range
of σ:

G(η, σ) = 1 + i
∑

L=1,2,···

cL(η)
σL−1 , σ∗ ≤ |σ| � η < 1 (3.10)

up to terms that decay in the Regge limit. The cut-off σ∗ dictates the regime of validity
of the Regge expansion (3.10). Later we will relate σ∗ to 1/∆2

gap.
The Regge correlator G(η, σ), as a function of complex σ, is analytic near σ ∼ 0 on the

lower-half σ-plane [88, 89]. Using this analyticity property we can write a CFT dispersion
relation for cL(η) [88]:

cL(η) = 1
π

∫ R

−R
dσ σL−2(1− Re G(η, σ)) , σ∗ ≤ R� η < 1 , (3.11)

where L ≥ 2. The above relation leads to bounds on cL(η) for all 0 < η < 1. Note that the
left hand side does not depend on R. This implies Re G(η, σ) deviates significantly from
1 only when σ . σ∗. This is closely related to the fact that the tree level 4-pt scattering
amplitude for the EFT (2.1) has no imaginary part.
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Positivity. The boundedness condition (3.9) immediately implies [88]

cL(η) ≥ 0 , for even L ≥ 2 (3.12)

for 0 < η < 1. One can worry whether the O(σa) correction terms in (3.9) can affect the
above positivity condition for higher L. For the CFT dual to (2.1), we can always take a
limit where R is small enough such that these corrections are suppressed.18

Parametric separation. The fact that Re G(η, σ) ≤ 1 also implies [88]

cL+2(η)
cL(η) ≤ σ

2
∗ ,

|cL+1(η)|
cL(η) ≤ σ∗ (3.13)

for all even L ≥ 2 and 0 < η < 1. Therefore |cL(η)|, as a function of L, must decrease
monotonically as a power law. Furthermore, the above bound along with the condition (3.9)
also require that the Regge correlator (3.10) is consistent only if

c2 . σ∗ . (3.14)

Log-convexity for even L. The Cauchy-Schwarz inequality of integrable functions leads
to the log-convexity condition for cL(η) with even L [88]:

(
cL+2(η)
cL(η)

)2
≤ cL+4(η)

cL(η) , for even L ≥ 2 (3.15)

and 0 < η < 1.

Boundedness of odd L. There is no sign constraint on cL(η) with odd L. However,
the absolute value of cL(η) for odd L is bounded [88]

|cL(η)| ≤
√
cL−1(η)cL+1(η) , for odd L ≥ 3 (3.16)

and 0 < η < 1. This also follows from the positivity condition (3.9) and the Cauchy-
Schwarz inequality.

Note that the chaos sign and the growth bounds of [91] are contained in the above
consistency conditions. The condition (3.12) is a generalization of the chaos sign bound.
Whereas, the condition (3.13) implies that the Regge correlator (3.10) must not grow faster
than 1/σ within the regime of validity σ∗ ≤ |σ| � η < 1.

Finally, let us note that the above constraints hold for arbitrary external operators
with or without spins (and not necessarily primary)19 as long as the Regge correlator has
the form (3.10). For such a general case, the positivity of the integrand in (3.11) follows
from Rindler positivity.

18At the end of this section we will discuss more about these corrections.
19See [88] for details.
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3.3 Correction terms and validity of the CFT dispersion relation

All of the above constraints depend on the dispersion relation (3.11). So, it is only natural
to ask whether there are corrections to this dispersion relation. In this section, we argue
that any such correction terms do not affect the dispersion relation (3.11) since they are
always suppressed for CFTs that are dual to some EFT in AdS. Casual readers may skip
this subsection.

The first correction comes from the O(σa) terms of (3.9). Moreover, similar O(σa)
correction terms can be present in the Regge expansion (3.10). So, the leading correction
to the dispersion relation (3.11) comes from a term

δ(1− Re G(η, σ)) ∼ (δc)σa with a > 0 (3.17)

since all terms with negative a have integer a with imaginary coefficients.20

First, let us justify the dispersion relation (3.11) for the scenario where operators O1
and O2 are different. In this case, especially for CFTs that are dual to some EFT in AdS,
it is easy to see that a ≥ d since CFT operators that are exchanged are either double trace
operators or single trace operators with a = ∆ ≥ d from a bulk three-point interaction.21

In particular, the contribution of a correction term (3.17) to the dispersion relation of c2
is given by

1
π

∫ R

−R
dσ(1− Re G(η, σ)) ∼ c2 + Re δc

∫ R

−R
dσσa = c2 +O(1)|δc|Ra+1 (3.18)

where the line integrals are evaluated just below the real σ-axis. Now, note that the
leading contribution to c2 ∼ µ2

RDAdS
, whereas, the leading contribution to δc comes from

scalar three-point couplings: δc ∼ α2
3

RD−6
AdS

. Therefore, for any non-zero c2, the correction
term is suppressed for

R�
( |µ2|
α2

3

) 1
D 1
R

6/D
AdS

. (3.19)

On the other hand, the cut-off σ∗ scales as 1/R2
AdS.22 Therefore, for large RAdS we can

always choose 1 � R ≥ σ∗ such that the correction term is parametrically suppressed
for D ≥ 4.23 If three-point bulk interactions such as α3 are absent, all other corrections
(even from the bulk graviton exchange) to the sum-rule are more suppressed. Hence, the
dispersive sum-rule for c2 can always be trusted, at least for D ≥ 4, for small R→ 0.

20It is important to note that any correction term with integer (positive or negative) power of σ and an
imaginary coefficient cannot affect the sum-rule (3.11) [88].

21Let us recall that we are restricting to the case where all fields have m2 ≥ 0.
22This can be seen easily from the scaling of individual terms of the expansion (3.10) for the bulk

theory (2.1). In particular, the expansion (3.10) for the Regge correlator of the dual CFT is an expansion
in the quantity 1/σR2

AdS, as can be seen from (4.2). The cut-off σ∗ is controlled by the relative strength of
consecutive terms in the expansion (3.10) and hence σ∗ ∝ 1/R2

AdS.
23Note that α2

3
|µ2|

= m6
0, where m0 is some mass scale. We are making the mild assumption that m0 is

not parametrically larger than the cut-off scale M associated with the bulk theory (2.1). More precisely,
we are assuming that mass scales m0 and M do not scale with RAdS.

– 12 –



J
H
E
P
0
1
(
2
0
2
2
)
1
7
6

Let us now analyze the relation (3.11) for higher L. Note that we can estimate:

1− Re G(η, σ) ∼ πc2
2σ∗

(3.20)

which implies

1
π

∫ σ∗

−σ∗
dσ σL−2(1− Re G(η, σ)) ∼ cL +O(1)|δc|σa+L−1

∗ (3.21)

where we see from (3.20) that |cL| ∼ c2σ
L−2
∗ and hence the second term can be ignored

just like before even for L > 2.24

When O1 = O2, there is a loophole in the above argument which we now fix. The
disconnected Witten diagrams associated with the 4-pt correlator of the scalar operator of
dimension ∆ have the leading correction term ∼ σ2∆ with order 1 coefficient. However, one
can subtract these contributions without affecting any of the bounds on cL. For example,
when ∆ of the external scalar operator is an integer, we can replace 1−Re G(η, σ) in the
sum-rule (3.11) by Gfree

0 (η, σ)−Re G(η, σ), where Gfree
0 (η, σ) is the correlator (3.6) for the

AdS theory (2.1) without any interactions. This new sum-rule holds because Gfree
0 (η, σ)

is analytic on the lower-half σ plane for integer ∆. Moreover, Gfree
0 (η, σ) − Re G(η, σ) is

positive on the real line up to correction terms that are exactly the same as the above
discussion of nonidentical operators. So, we repeat the same argument again to conclude
that the modified dispersive sum-rule for cL is reliable for D ≥ 4 and integer ∆. This is
sufficient for us, since for any fixed m2, we can always tune RAdS such that ∆ is an integer.
In any case, for non-integer ∆ one can still write a more general sum-rule for G(η, σ)
by subtracting contributions from the identity operator in all channels. The procedure is
outlined in appendix B.

To summarize, we conclude that the CFT dual to the AdS theory (2.1) must obey the
consistency conditions (3.12), (3.13), (3.15), and (3.16) for D ≥ 4.

4 Constraining scalar EFT in AdS without gravity

The main goal of this section is to impose bounds on the EFT (2.1) from CFT consis-
tency conditions. To that end, we compute contributions of each EFT interactions to the
Lorentzian correlator

G(η, σ) = 〈O(1)O(ρ)O(−ρ)O(−1)〉
〈O(1)O(−1)〉〈O(ρ)O(−ρ)〉 (4.1)

in the Regge limit (3.5), where operator O is dual to the scalar field φ. First, we consider
the purely non-gravitational case by setting GN = 0. The leading contribution to the
correlator G(η, σ) comes from the disconnected Witten diagrams. The dominant subleading
contribution comes from the tree level Witten diagrams that are shown in figure 4.

Before we proceed with the computation, let us review what is already known about
the Regge limit. For example, from [75, 92] we know the scaling of the leading Regge

24For odd L, it is possible that |cL| � c2σ
L−2
∗ because of cancellations implying that the dispersion rela-

tion (3.11) is not reliable. However, in this case all of the CFT bounds for odd L are satisfied automatically.
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Figure 4. The tree-level Witten diagrams that are relevant in the Regge limit for GN = 0. Of
course, the exchange diagram should be summed over all channels.

contribution of each interaction in (2.1):

α3φ
3 ⇒ ∼ iα2

3R
6−D
AdS σ ,

µ2nφ
2�2nφ2 ⇒ ∼ i µ2n

RD+4n−4
AdS

1
σ2n−1 ,

µ2n+1φ
2�2n+1φ2 ⇒ ∼ i µ2n+1

RD+4n−2
AdS

1
σ2n−1 , (4.2)

for integer n. From the scaling behavior (4.2) it is clear that the Regge correlator (4.1)
has the desired expansion (3.10) up to terms that are suppressed by positive powers of σ.
Notice that contributions of φ2�kφ2 for odd k are always suppressed in the large RAdS
limit. Hence, the above scaling behavior implies that we can only impose constraints
on interactions µ2nφ

2�2nφ2 for n = 1, 2, · · · from the CFT consistency conditions of the
preceding section.

We observe that the leading contribution to cL with even L ≥ 2 comes entirely from
the interaction φ2�Lφ2. Contributions from k > L interactions to cL are all suppressed
in the large RAdS limit. It is also clear from (4.2) that cL with odd L are all zero. This
simply follows from the fact that O is a real scalar operator.

So, it is sufficient for us to consider each interaction separately

SL = µL
2

∫
dDx
√
−gφ2�Lφ2 , (4.3)

with L > 0 being an even integer, where dDx ≡ dzddx. Note that
µL
2 φ2�Lφ2 ∼ 2L−1µLφ

2(∇µ1 · · · ∇µLφ)2 + · · · , (4.4)

where dots represent terms with lower number of derivatives after we impose the free
equation of motion.

It is more convenient to first compute the Euclidean correlator and then analytically
continue to obtain the Regge correlator. So, the on-shell Euclidean action associated
with (4.3) is obtained from (C.25)

S
(L)
on-shell = −2L−1µL

∫
dzddx

√
g φ2(∇µ1 · · · ∇µLφ)2 + · · · , (4.5)
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where again dots represent terms with lower number of derivatives that cannot contribute
to cL. This on-shell action can be further simplified by using the bulk-to-boundary propa-
gator (C.5)

S
(L)
on-shell = −2L−1µLC

4
∆

∫
AdS

∫
Φ4
K̃∆(z, x;x1)K̃∆(z, x;x2)

∇µ1 · · · ∇µLK̃∆(z, x;x3)∇µ1 · · · ∇µLK̃∆(z, x;x4) , (4.6)

where the derivatives are taken with respect to the bulk point {z, x}.25 In the above
expression, we have utilized the notations of [93]∫

AdS
≡
∫
dzddx

√
g ,

∫
Φ4
≡

4∏
i=1

∫
Φ(xi)ddxi , x2

ij = (xi − xj)2 . (4.7)

Note that x represents points on the AdS boundary. Moreover, the reduced bulk-to-
boundary propagator K̃∆(z, x;x′) is defined in (D.3) to reduce clutter. The boundary
value of the field φ(z, x) is given by Φ(x) which acts as the source for the CFTd primary
operator O(x) in the usual way.

We can now use the identity (D.4) to write S(L)
on-shell in terms of the D-function which

is defined in (D.1) in the standard way. We notice from equation (D.16) that all D-
functions decay in the Regge limit D∆1∆2∆3∆4 ∼ σ. On the other hand, x2

ij factors for the
kinematics (D.2) can grow as ∼ 1/σ. Therefore, terms in S

(L)
on-shell that have the largest

factors of x2
ij dominate in the Regge limit (3.5). This greatly simplifies the analysis since

we only care about the growing part of the Regge correlator G(η, σ). In particular, the
leading Regge contribution from the on-shell action (4.6) comes from

S
(L)
on-shell = −22L−1µLC

4
∆

(Γ (∆ + L)
Γ (∆)

)2 ∫
AdS

∫
Φ4
x2L

34 K̃∆(z, x;x1)K̃∆(z, x;x2)

×K̃∆+L(z, x;x3)K̃∆+L(z, x;x4) + · · · , (4.8)

where, dots represent terms that will not contribute to cL. It is now a straightforward
exercise to show that the leading Regge contribution of the interaction (4.3) is

G(η, σ) ∼ µL
(16η)∆22L−1C2

∆
(2∆− d)2RD+2L−4

AdS

(Γ (∆ + L)
Γ (∆)

)2 16
σL
D∆+L ∆ ∆+L ∆(η, σ) , (4.9)

where D = d+ 1. From the above result, we obtain an expression for cL for even L ≥ 2 in
the limit of large RAdS (with ∆ fixed):

cL(η) = κ∆µL

RD+2L−4
AdS

F2∆+L(η) (4.10)

where, κ∆ is a positive coefficient independent of L

κ∆ = 4

Γ(∆)2Γ
(
−D

2 + ∆ + 3
2

)2 (4.11)

25The coefficient C∆ is defined in (2.6).
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and the F -function is given by using (D.17):

F2∆+L(η) = 1
η
L−1

2
f∆+L ∆ ∆+L ∆

(
−1

2 log (η)
)
. (4.12)

which is positive for 0 < η < 1. As we mentioned before, all cL(η) coefficients with odd L
vanish exactly.

4.1 Bounds

We are now in a position to utilize the CFT constraints from section 3.2 to derive bounds
on the EFT (2.1).

4.1.1 Positivity

First, we impose the condition (3.12). The fact that both κ∆ and F2∆+L(η) for 0 < η < 1
are positive immediately implies

µk ≥ 0 , for even k ≥ 2 . (4.13)

Moreover, saturation of any one of (4.13) necessarily requires that the all of them are
saturated. These bounds are consistent with the flat space bound of [1] from analyticity
and unitarity of 2→ 2 scattering amplitudes. Note that there is no such positivity condition
on µk with odd k from the CFT consistency conditions.

4.1.2 Scale suppression of higher derivative interactions

We now impose the condition (3.13). First, let us apply (3.13) to L = 2:

µ4
µ2
≤ R4

AdSF2∆+2(η)
F2∆+4(η) σ2

∗ (4.14)

for all 0 < η < 1, where we are assuming that the AdS theory is interacting (µ2 > 0). First
thing we notice that a mass scale M = ∆gap/RAdS is emerging naturally where we have
identified

σ∗ ≡
1

∆2
gap

√√√√√Γ(2∆ + 3)Γ
(
−D

2 + 2∆ + 9
2

)
Γ(2∆ + 1)Γ

(
−D

2 + 2∆ + 5
2

) . (4.15)

This definition of ∆gap needs some explanation. It is expected that σ∗ ∝ 1/∆#
gap since

Re G(η, σ) deviates significantly from 1 when σ . σ∗ implying a breakdown of (3.10). The
exact power in (4.15) follows from the linear relationship between M = RAdS∆. The order
one numerical factor has been chosen such that in certain scenarios ∆gap has the physical
interpretation of the lightest heavy state exchanged.26 Given a UV complete CFT dual
and the low energy Regge behavior (3.10), one can compute σ∗ from the sum-rule (3.11)
with R = σ∗. Then (4.15) should be thought of as a precise definition of ∆gap. The bulk
cut-off scale is then given by the relation: M = ∆gap/RAdS. Of course, this definition of

26We will make this more precise in section 5.
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M is not unique. This definition is analogous to the definition of M in [47] and in certain
cases these two definitions are exactly equivalent, as we show in section 5.

The strongest bound from (4.14) is obtained for the value of η that minimizes the right
hand side. One can check that this is achieved in the limit η → 0. Therefore, by using
results from appendix D.3 we obtain a strict bound:

µk+2
µk
≤ nk(∆)
nk+2(∆)

(
RAdS
∆gap

)4

for even k ≥ 2 (4.16)

where, nk(∆) is given by

nk(∆) =
Γ
(
2∆ + k − D−1

2

)
Γ (2∆ + k − 1)

Γ
(
2∆− D−5

2

)
Γ (2∆ + 1)

Γ(2∆ + 3)Γ
(
2∆− D−9

2

)
Γ(2∆ + 1)Γ

(
2∆− D−5

2

)
1− k2

(4.17)

with m2R2
AdS = ∆(∆ − D + 1). Of course, the bound (4.16) depends heavily on our

definition of ∆gap (4.15). Notice that nk(∆) is the same coefficient that appears in (1.2).
The bound (4.16) validates our expectation that higher derivative interactions φ2�kφ2

are suppressed by inverse powers of ∆gap for even k. However, CFT consistency conditions
of the preceding section do not impose similar constraints on φ2�kφ2 interactions with odd
k. This perhaps suggests that our bounds are far from being optimal.

Let us make few comments about the coefficient nk(∆) which is a log-convex function
of k. From (4.17) we find that n2(∆) = n4(∆) = 1 for any m2 and D implying

µ4
µ2
≤ 1
M4 . (4.18)

We will derive this relation in flat space by assuming the Regge boundedness condition:
A(s, t = 0) < |s|2 for large s. In that case, M is the mass of the lightest massive state
exchanged. This explains the choice (4.15).

Furthermore, note that nk(∆) is non-trivial only in the massless limit m → 0. In
particular, if we take RAdS →∞ with fixed 0 < m�M , we obtain

nk(∆) ≈ 1 (4.19)

for all finite k � mRAdS. Therefore, for non-zero m, all our bounds simplify greatly.

4.1.3 Log-convexity condition

The CFT condition (3.15) leads to a rather strong condition on couplings µk that does not
depend on the exact definition of ∆gap (or equivalently the scale M). The optimal bound
again is achieved for η → 0, yielding

µ2
k+2

µkµk+4
≤ nk(∆)nk+4(∆)

nk+2(∆)2 for even k ≥ 2 (4.20)

where, nk(∆) is defined in (4.17). The right hand side is exactly 1 for k � mRAdS �
MRAdS, as discussed above.

Therefore, the EFT (2.1), in the absence of gravity, can be UV completed only when
it satisfies (4.20), irrespective of how the cut-off scale M is defined. It would be nice to
derive a similar bound for odd µk couplings.
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4.1.4 Odd couplings

We still can say few things about the odd µk couplings. First of all, if µ2 = 0 the leading
contribution to c2 comes from µ3. However, this contribution to c2 changes sign as we tune
η within the domain 0 < η < 1 for m2 ≥ 0 (see appendix E). Hence µ3 must vanish exactly.
Then the condition (3.13) implies that

µ2 = 0 ⇒ µk = 0 (4.21)

for even or odd k > 2.27 When µ2 > 0, the bound on odd µk couplings are rather weak.
The above argument then implies that |µk|µk−1

. R2
AdS for odd k ≥ 3.

4.2 Final effective action

Let us now summarize the results of this section by writing the AdS scalar effective ac-
tion (2.1) as follows

S[φ] = 1
2

∫
dDx
√
−g

(
−gµν∇µφ∇νφ−m2φ2 + α3φ

3 + µ0φ
4
)

+ µ

2

∫
dDx
√
−g

∑
k=2,3,4,···

λk
nk(∆)M2(k−2)φ

2�kφ2 + · · · , (4.22)

whereM = ∆gap/RAdS is the scale of new physics and the numerical factor nk(∆) is defined
in (4.17). The scalar field can have mass but 0 ≤ m2 �M2. Note that n2(∆) = n4(∆) = 1
for anym2 andD. For k > 4, nk(∆), in the large RAdS limit, differs from 1 only form = 0.28

So far gravity is non-dynamical GN = 0. We have defined a positive coupling constant
µ ≥ 0 which has the dimension 1/MD. The λ-coefficients are dimensionless, however, to
begin with we do not assume that they are O(1). We do assume the theory is weakly
coupled µMD ∼ |µ0|MD−4 ∼ α2

3M
D−6 � 1 and hence analyze the theory at tree level.

The main goal of this paper is to address the question: when can this EFT be UV
completed? Or equivalently what are the necessary conditions for this EFT to be embed-
ded into a UV theory that is dual to a CFT with ∆gap � 1 obeying the CFT axioms?
In this section, we conclude that the EFT (4.22), with µ ≥ 0, must have the following
properties (D ≥ 4):

(i) λk > 0 for all even k ≥ 2,

(ii) λk+2 ≤ λk for all even k ≥ 2,

(iii) 1
k2−k1

ln λk1
λk2
≥ 1

k3−k1
ln λk1

λk3
for all even k3 > k2 > k1 ≥ 2.

The last condition follow directly from the local log-convexity condition (4.20). It should
be noted again that the condition (ii) depends on the exact definition of ∆gap and hence the
scale M . On the other hand, other two conditions do not depend on the exact definition

27We assume that m2 ≥ 0. For negative mass2, see appendix E for comments.
28More generally, in the large RAdS limit, nk(∆) with k > 4 differs from 1 only for m→ 0 and RAdS →∞

with RAdSm fixed.
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of the scale M . For an arbitrary definition of M , the condition (ii) should be thought of
in the following way. There must always exist a rescaling M → XM , with order one X,
which makes the EFT consistent with the condition (ii).

It should also be emphasized that (i)–(iii) are necessary conditions but we believe they
are far from being sufficient. For example, it is expected that similar bounds exist even for
odd k.29 However, our argument does not impose any restriction on the odd λk couplings
other than |λk| . ∆2

gap.

4.3 Flat space limit

We end this section with some discussion on the flat space limit of the EFT (4.22). In this
section we restrict to the massless case: m = 0. The flat space limit should be taken in the
following way:

RAdS →∞ , ∆gap →∞ with ∆gap
RAdS

= M = fixed . (4.23)

In the massless case

n
(0)
k =

(3
2

)1− k2 Γ
(

3(D−1)
2 + k

)
Γ(2D + k − 3)

Γ
(

3D
2 + 1

2

)
Γ(2D − 1)

(D(D + 1)(2D − 1)(3D + 1))1− k2 (4.24)

increases fast for k > 4 as we increase k. In this limit, the constraints (i)–(iii) lead to bounds
on the flat space EFT of a massless scalar. We can compare these flat space bounds with
the results from [47] by relating various coupling constants:

g2 = 4µλ2 , g3 = 12µλ3

n
(0)
3 M2

, g4 = 2µλ4
M4 , g6 = µλ6

n
(0)
6 M8

, · · · . (4.25)

In particular, in the absence of gravity we obtain

g2, g4, g6, · · · ≥ 0 . (4.26)

Furthermore, with our definition ofM , we find that the bound (4.18) agrees with the bound
obtained in [47].

As we will explain in section 6, all bounds for gk with k > 2 remains unaffected even
when gravity is dynamical. Furthermore, we obtain a rather interesting inequality by
applying (iii):

g2
4

g2g6
≤ (2D + 1)(3D + 5)(3D + 7)

3D(2D − 1)(3D + 1) . (4.27)

It would be interesting to compare this bound with the analysis of [20]. It is possible to
derive an infinite set of such constraints from (iii). Note that constraints involving g2 will
only be affected when gravity is turned on. Let us stress that there is a discreet difference
between the massless case m = 0 and the massless limit m→ 0 when we take the flat space
limit. We will discuss this in the next section.

29Note that the condition (4.21) has been implemented by assuming the EFT has the form (4.22) along
with λ2 > 0.
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Unlike [20, 47], our analysis is insensitive to φ3 and φ4 interactions of (4.22). However,
we still need to pay attention to these interactions. In particular, the coupling constant α3
for the φ3 interaction has positive mass dimension for D ≤ 5. So, this coupling can lead
to large mixing effects in the dual CFT when we take the flat space limit RAdS →∞ [68].
In particular, when

|α3|R3−D/2
AdS ∼ 1 (4.28)

there is a large mixing between the naive generalized free field operator O and [OO]n,0
because of the decay channel φ → φφ. It is unclear whether the flat space bounds are
reliable when the mixing effect is large. Nevertheless, we can avoid this issue for D ≤ 5 by
giving the bulk field φ some Z2 symmetry. Or we can take the flat space limit of the AdS
theory (2.1) such that

RAdSM � 1 with |α3|R3−D/2
AdS � 1. (4.29)

There is one more subtlety that we must address. When the φ2�2φ2 interaction is
absent in the AdS EFT (4.22), all the higher derivative interactions φ2�kφ2 must also
vanish. However, our analysis does not require this to be true in the exact flat space limit.
For example, the coefficient of the φ2�2φ2 interaction can be suppressed by RAdS in such a
way that the dual CFT is well behaved. Moreover, the EFT can have a φ2�3φ2 interaction
which is not suppressed by RAdS but fine-tuned such that c2(η) is still positive. In this
scenario, the φ2�2φ2 interaction goes to zero in the flat space limit with a non-vanishing
φ2�3φ2 interaction. It has been recently conjectured that such EFTs emerge naturally in
the IR from 6D supersymmetric RG flows on to the Higgs branch [55]. So, such RG flows
in AdS6 with finite radius are expected to generate a φ2�2φ2 interaction for the dilaton
which is suppressed by 1/R2

AdS.

4.4 Other higher-derivative interactions

In this section, we figure out the Regge contribution of the second term of (2.3) in AdS.
One can easily check that the leading Regge contribution of the second term comes from
the on-shell action∫

AdS

∫
Φ4
x2c

34x
2b
24x

2a
14K̃∆+c(z, x;x1)K̃∆+b(z, x;x2)K̃∆+a(z, x;x3)K̃∆+k(z, x;x4) (4.30)

which grows slower than 1
σk−1 since a, b, c > 0. Hence, for even k, the leading Regge

contribution always comes from the first term of (2.3). This is sufficient to conclude that
these other higher derivative 4-φ interactions do not affect any of the bounds obtained in
this paper.

5 Flat space limit: massless & massive scalars

In this section, we compare bounds from the previous section with bounds obtained by
studying flat space scattering amplitudes. We again start with the effective action (2.1)
without dynamical gravity GN = 0. For simplicity we take the three-point coupling α3 = 0,
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so that the tree level 4-point scattering amplitude does not have poles at m2. The forward
limit (t = 0) of the tree level 4-point scattering amplitude associated with the effective
action (2.1) is given by

A(s, t = 0) = 8
∞∑
I=0

µ2Is
2I . (5.1)

At this point we make four assumptions: (1) the forward amplitude is bounded for large s:

A(s, t = 0) < |s|2 , (5.2)

(2) the amplitude is analytic in the upper-half complex s-plane, (3) the amplitude obeys
partial-wave unitarity implying Im A(s, t = 0) > 0 for real s, (4) the amplitude is crossing
symmetric.

These are the key assumptions which allow us to write a dispersive sum-rule for µ2I .
In particular, repeating the argument of [1], we can write

µk = 1
4π

∫ ∞
M2
∗

ds
Im A(s, t = 0)

sk+1 > 0 , (5.3)

for all even k ≥ 2, where M∗ is the cut-off scale at which ImA(s = M2
∗ , t = 0) becomes

non-zero. The cut-off scale M∗ ∝ M , however, the two scales can be different in general
by some order one proportionality constant.

From (5.3), we can also derive a monotonicity and a log-convexity conditions for
even k ≥ 2:

µk+2
µk
≤ 1
M4
∗
,

µ2
k+2

µkµk+4
≤ 1 . (5.4)

The second inequality can be used to derive a global log-convexity condition (1.5) for
even µk.

Thus, under the above assumptions we showed that the tree level amplitude, in the
forward limit, has a polynomial expansion in s2 with coefficients obeying (i) positivity, (ii)
monotonicity, and (iii) log-convexity conditions. At first sight, these conditions seem to be
stronger than the flat space limit of the AdS conditions (1.3)–(1.5). For the remainder of
this section we will address whether, and in what sense, the above bounds are related to
the AdS bounds.

5.1 Massive scalars

An important feature of our AdS bounds is that they differ significantly for massive and
massless scalars, especially when we take the flat space limit. First, we consider the massive
case 0 < m � M , where M is the cut-off scale defined in the previous section. We take
the flat space limit by MRAdS � 1, keeping m fixed. So, in this limit ∆ ≈ mRAdS � 1
and hence

nk(∆) = 1 (5.5)

for all k � mRAdS. Therefore, in this case, for all m > 0 and D ≥ 4 the AdS condi-
tions (1.3)–(1.5) are identical to conditions (5.3) and (5.4) that were derived from the flat
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space sum-rule, provided we identify M = M∗. This provides compelling evidence in favor
of the assumptions that were used to derive the sum-rule (5.3) for massive external scalars.
Moreover, for massive scalars, as we will explain in the next section, conditions (5.3)
and (5.4) remain valid for even k ≥ 4 even when there is dynamical gravity. This is rather
non-trivial since the validity of the Regge boundedness condition (5.2) is not obvious in
the presence of the graviton.

5.2 Massless scalars

The situation is a lot more subtle for massless external scalars. We can start with m = 0
and then take the large RAdS limit. One can also take a massless limit in which we first take
the large RAdS limit (with fixed m) and then m→ 0. Clearly, our bounds are different in
these two limits. In the latter case, we again obtain (5.5). Hence, conditions (5.3) and (5.4)
still hold. For example, in this case (4.27) becomes

g2
4

g2g6
≤ 1 . (5.6)

On the other hand, if we take m = 0 first, we obtain bounds from section 4.3. In
particular, now we have conditions (1.3)–(1.5) with nk(∆ = D− 1) ≡ n(0)

k given by (4.24).
These bounds are weaker than the conditions (5.3) and (5.4).

Furthermore, the massless limit can also be taken in a more general way: RAdS →∞,
m→ 0 with ∆ = fixed. In this case, we again obtain the weaker set of bounds (1.3)–(1.5)
with nk(∆) given by (4.17). Therefore, depending on how we take the massless limit (or
equivalently the value of ∆), we obtain a different set of constraints. We recover the flat
space conditions (5.3) and (5.4) only for ∆� 1. This suggests that in general some of the
assumptions that were used to derive the sum-rule (5.3) are not valid for massless scalars.
This is perhaps not surprising since the Regge boundedness condition (5.2) can break down
in the presence of massless states.

Nonetheless, we can still provide a general condition on the tree level amplitude of
massless scalars which does not require any assumption other than the usual CFT-axioms.
The tree level amplitude of massless scalars, in the forward limit, has a polynomial expan-
sion in s2

A(s, t = 0) =
∞∑
I=0

c2I
n2I(∆)

(
s

M2

)2I
(5.7)

with coefficients c2I obeying (i) positivity, (ii) monotonicity, and (iii) log-convexity con-
ditions (1.3)–(1.5) for I ≥ 1. Of course, M and ∆ are theory dependent but fixed for
a specific four-point amplitude.30 Whereas, the numerical coefficient n2I(∆) is theory
independent and given by (4.17).

In the presence of gravity, A(s, t) has a pole at t = 0. However, A(s, t→ 0) still must
satisfy the above condition for I ≥ 2.

30The cut-off scale M = XM∗ is proportional to the mass M∗ of the lightest particle exchanged. The
proportionality factor X ∼ O(1), however, it may differ from 1 in general. The parameter ∆ should be
regarded as a measure of the breakdown of the Regge boundedness condition (5.2).
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O

O

O

O

+ other channels
hµν

Figure 5. The leading gravitational contribution to the Lorentzian correlator (4.1) comes from the
Witten diagram with a single graviton exchange.

6 Scalar EFT with gravity

We now discuss the effects of gravity on the bounds on the EFT (4.22) by turning on
GN 6= 0:

S[φ, g] = 1
16πGN

∫
dDx
√
−g

(
R+ (D − 1)(D − 2)

R2
AdS

)
+ S[φ] , (6.1)

where, S[φ] is given by (4.22). We analyze the EFT at tree level, so we assume that the
theory is weakly coupled as described by (2.2). Now the central charge of the dual CFT is
large cT � ∆gap � 1 but finite. We again compute the Lorentzian correlator (4.1) in the
Regge limit (3.5), where operator O is dual to the scalar field φ. The leading contribution
to the connected part of the correlator G(η, σ) comes from Witten diagrams 4 plus the
graviton exchange Witten diagram as shown in figure 5.

In the Regge limit (3.5), contribution from the channel O(ρ)O(−ρ)→ hµν → O(1)O(−1)
grows as 1/σ. The other channels do not contribute at all to the Regge growth. So, in the
presence of gravity cL(η) for L > 2 remains unaffected. On the other hand, c2(η) receives
a contribution from gravity. In particular, the gravitational contribution to c2(η) can be
obtained from [61, 62, 94]

c2(η)|gravity = πGN

RD−2
AdS

κ∆F̃g(η) , (6.2)

where, the numerical factor κ∆ is defined in (4.11). The function F̃g(η) is given by an
integral of the harmonic functions Ωiν in the hyperbolic space (see (D.18))

F̃g(η) = 1
√
η

∫ ∞
−∞

dν
Γ
(

2∆+2−d/2+iν
2

)2
Γ
(

2∆+2−d/2−iν
2

)2

ν2 +
(
d
2

)2 Ωiν

(
−1

2 log (η)
)

(6.3)

where D = d+ 1. Therefore, the full c2(η) is given by

c2(η) = κ∆
RDAdS

F2∆+2(η)
(
µλ2 + πGNR

2
AdS

F̃g(η)
F2∆+2(η)

)
> 0 , (6.4)
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where the positivity follows from condition (3.12) for 0 < η < 1. One can check that the
optimal bound in this case is obtained in the limit η → 1. In this limit, we find that λ2 is
now allowed to have negative values:

λ2 > −
πGNR

2
AdS

µ
ND(∆) , (6.5)

where ND(∆) is an O(1) numerical factor given in appendix F. In particular, for the
massless case we find

N4 = 0.1775 , N5 = 0.0882 , N6 = 0.0525 , N7 = 0.0348 , N8 = 0.0247 , · · · .
(6.6)

Note that the bound (6.5) cannot be saturated in a way which is consistent with the
sum-rule (3.11).

So, we conclude that in the presence of gravity λ2 is not required to be positive. This is
consistent with the results of [47]. On the other hand, the bounds (i)–(iii) are still valid for
all even k ≥ 4. Before we proceed, we must note that λ2, if negative, cannot be arbitrarily
large even in the large RAdS limit. To see that, we write (6.5) as:

µλ2M
D > −

∆D
gap
cT
O(1) , (6.7)

where cT is the CFT central charge. Validity of our analysis requires that we take cT →∞
first and then ∆gap → ∞. This implies that we should use caution when we take the
flat space limit. In particular, we must take RAdS to be large such that 1√

GNMD−2
�

MRAdS � 1. Hence, the right hand side of the above expression remains small even in the
flat space limit.

We now analyze the bound (4.16) in the presence of gravity. Since, ck(η) for k ≥ 4
remains unchanged, we only need to analyze the k = 2 case. We assume that GN

µM2 ∼ O(1)
so that the gravity effects are significant. The optimal bound, in the presence of gravity,
is now obtained at the limit η → 1 yielding

0 ≤ λ4 ≤ ÑD(∆)
(
λ2 + πGNR

2
AdS

µ
ND(∆)

)
, (6.8)

where ÑD(∆) > 1 is given in appendix F. One may wish to recover the GN = 0 result (ii)
from the above inequality. The above bound is still valid when GN = 0, however, it is not
optimal. This is simply because of the order of limits. As we take GN

µM2 → 0, the optimal
bound is obtained for a value of η which is close to zero and hence the upper bound of
λ4 approaches λ2. The correction term from finite but small GN

µM2 now can be computed
numerically, though we will have to leave this for the future.

Finally, we focus on the log-convexity condition c4(η)2 ≤ c2(η)c6(η) in the presence
of gravity. We again assume that there is no parametric separation between GN and µ in
units of M : GN

µM2 ∼ O(1). Repeating the argument of the preceding section, however for
η → 1, we obtain

λ2
4
λ6
≤ ÑD(∆)
ÑD(∆ + 1)

(
λ2 + πGNR

2
AdS

µ
ND(∆)

)
(6.9)
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where, N -coefficients are given in appendix F. One can check that the pre-factor ÑD(∆)
ÑD(∆+1) >

1 and asymptotes to 1 for large ∆. Interestingly the ratio ÑD(∆)
ÑD(∆+1) is independent of the

spacetime dimension D.

6.1 Summary of bounds

Let us now summarize the results of this section. The EFT (6.1) has a well behaved CFT
dual with ∆gap � 1, if and only the EFT, with µ ≥ 0, has the following properties (D ≥ 4):

1. Conditions (i)–(iii) are satisfied for all even k ≥ 4,

2. λ2 is bounded from below by the relation (6.5),

3. λ4 is bounded from above by the relation (6.8),

4. λ2, λ4, and λ6 must satisfy the convexity condition (6.9).

Therefore, presence of gravity makes the EFT bounds weaker.

6.2 Flat space limit

Finally, let us make a few comments about the flat space limit of the above bounds. Clearly,
the constraint (1) persists even in the flat space limit. These constraints, in flat space, are
consistent with the bounds of [47].31

On the other hand, constraints (2)–(4) do not produce precise bounds for the flat space
EFT. For example, consider the condition (2) in the flat space limit. As discussed before,
the flat space limit should be taken such that 1√

GNMD−2
� MRAdS � 1. Therefore, the

condition (2), in the flat space limit, suggests that µλ2M
D > −ε, where ε is some small

number. This is certainly consistent with the results of [47] (for D ≥ 5), however, we
do not have a precise definition of ε. This perhaps suggests that ε is theory dependent.
Nevertheless, the important point is that ε is strictly positive.

7 Multiple scalar fields in AdS

In this section, we analyze EFTs of multiple scalars in AdS. The main motivation for
this section is to demonstrate that there are additional constraints from the same CFT
consistency conditions that must be satisfied when there are multiple fields. As we showed
earlier, odd k interactions with a single scalar field are not constrained from our CFT
analysis. However, in this section we will consider higher derivative interactions with
multiple scalar fields to demonstrate that some odd k interactions are constrained from the
CFT consistency conditions of section 3.2.

Furthermore, for multiple fields there are interference effects that are also constrained
by the same CFT consistency conditions. These interference effects have been utilized
in [72] to derive non-linear bounds on the dilaton-axion effective action associated with 4D

31It would be interesting to extend our analysis and compare with more recent results (such as [95]) on
all order higher derivative couplings in different string theories.
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RG flows with global symmetry breaking. In this section, we will derive such interference
bounds in a systematic way.

For the purpose of demonstration of the general idea, we choose a simple theory: an
EFT of two scalar fields (with the same mass) in AdS with Z2 symmetry and without
gravity GN = 0. We follow the convention of section 4.2 and start with the effective
action32

S[φ1, φ2] = 1
2

∫
dDx
√
−g

(
−gµν∇µφ1∇νφ1 − gµν∇µφ2∇νφ2 −m2(φ2

1 + φ2
2)
)

+ µ

2

∞∑
k=2

∫
dDx
√
−g

nk(∆)M2(k−2)

(
λ

(1)
k φ2

1�
kφ2

1 + λ
(2)
k φ2

2�
kφ2

2 + gkφ
2
1�

kφ2
2 + g̃kφ1φ2�

kφ1φ2
)

+ · · · , (7.1)

whereM = ∆gap/RAdS is the scale of new physics, µ ≥ 0, and the numerical factor nk(∆) is
defined in (4.17).33 Note that λ and g coefficients are dimensionless. The argument of the
previous sections still holds implying that both λ(1)

k and λ(2)
k must satisfy conditions (i)–(iii)

independently. However, as we will show in this section, there are additional non-trivial
constraints that involve gk and g̃k couplings.

The AdS theory (7.1) is dual to an interacting CFT in d = D−1 dimensions. The bulk
fields φ1 and φ2 are dual to two scalar operators O1 and O2 respectively, with dimensions
m2R2

AdS = ∆(∆ − d). The two point functions are given by (2.6). Let us now consider a
general four-point CFT correlator

G(η, σ) = 〈OB(1)OA(ρ)O†A(−ρ)O†B(−1)〉
〈OB(1)O†B(−1)〉〈OA(ρ)O†A(−ρ)〉

(7.2)

in the Regge limit (3.5). The operators are defined as

OA = O1 + aO2 , OB = O1 + bO2 , (7.3)

where, a and b are arbitrary complex numbers. We repeat the calculation of section 4 and
obtain an expression for cL(η) in the limit of large MRAdS (with mRAdS fixed):

cL(η) = κ∆µF2∆+L(η)
nL(∆)∆D+2L−4

gap (1 + |a|)2(1 + |b|)2

×
(
λ

(1)
L + λ

(2)
L |a|

2|b|2 + 1
4 g̃L

(
|a|2 + |b|2

)
+ 1

8(2gL + g̃L)(a+ a∗)(b+ b∗)
)

(7.4)

for even L ≥ 2, where κ∆ is a positive coefficient independent of L, as defined in equa-
tion (4.11). On the other hand, cL(η) for odd L is non-zero. In particular for odd L ≥ 3
we obtain

cL(η) = κ∆µF2∆+L(η)
nL(∆)∆D+2L−4

gap (1 + |a|)2(1 + |b|)2
1
8(g̃L − 2gL)(a− a∗)(b− b∗) . (7.5)

32Note that we are ignoring k = 0, 1-interactions. These interactions as well as any other interaction that
cannot be written in the form (7.1), if present, will not affect the bounds obtained in this section.

33Let us recall that in our convention n2(∆) = n4(∆) = 1 for all ∆ and D. Moreover, for ∆gap �
mRAdS � k, we have nk = 1.
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7.1 Bounds

We are now in a position to derive bounds by utilizing the CFT consistency conditions of
section 3.2. All CFT conditions of section 3.2 apply to cL(η) obtained in this section for
0 < η < 1 and all choices of a and b. As we have discussed before, it is sufficient to derive
constraints at the limit η → 0. However, now the bounds will also depend on the particular
choice of a and b.

Our CFT setup, as we discussed before, is probing local high energy scattering deep in
the bulk. Since the local high energy scattering is insensitive to the spacetime curvature,
the AdS bounds of this section remain valid even in the flat space limit.

7.1.1 Positivity for even k

The condition (3.12) now imposes

λ
(1)
k > 0 , λ

(2)
k > 0 , g̃k > 0 (7.6)

for even k ≥ 2 generalizing the bound (i). Furthermore, now we can derive a non-linear
interference bound by choosing a and b that minimize (7.4), yielding

|g̃k + 2gk| ≤ 4
√
λ

(1)
k λ

(2)
k + g̃k (7.7)

for all even k ≥ 2. Note that the above bounds are consistent with bounds obtained in [72]
on the dilaton-axion effective action.

7.1.2 Monotonicity for even k

The condition (3.13) leads to the following monotonicity conditions:

λ
(1)
k ≥ λ

(1)
k+2 , λ

(2)
k ≥ λ

(2)
k+2 , g̃k ≥ g̃k+2 (7.8)

for all even k ≥ 2 generalizing the bound (ii). We can again derive a non-linear interference
bound by optimizing with respect to a and b:

|(g̃k − g̃k+2) + 2(gk − gk+2)| ≤ 4
√

(λ(1)
k − λ

(1)
k+2)(λ(2)

k − λ
(2)
k+2) + (g̃k − g̃k+2) (7.9)

for all even k ≥ 2.

7.1.3 Boundedness for odd k

The condition (3.13) now imposes bounds also on odd k coupling constants. By optimizing
with respect to a and b, we find that

|g̃k − 2gk| ≤ 4
√
λ

(1)
k−1λ

(2)
k−1 + g̃k−1 (7.10)

for all odd k ≥ 3. Note that there is a particular combination of interactions for any odd
k which is not bounded from our argument.

– 27 –



J
H
E
P
0
1
(
2
0
2
2
)
1
7
6

7.1.4 Log-convexity for even k

To begin with, we can utilize (3.15) for different limits of a and b to obtain local log-
convexity conditions: λ(1)

k+2 ≤
√
λ

(1)
k λ

(1)
k+4, λ

(2)
k+2 ≤

√
λ

(2)
k λ

(2)
k+4, and g̃k+2 ≤

√
g̃kg̃k+4 for all

even k ≥ 2. These local conditions lead to the global log-convexity condition (iii) for λ(1)
k ,

λ
(2)
k , and g̃k individually for even k ≥ 2. Furthermore, there is again a more general local

log-convexity condition:

Ck+2(a, b)2 ≤ Ck(a, b)Ck+4(a, b) , even k ≥ 2 (7.11)

for all real a and b, where

Ck(a, b) = 4λ(1)
k + 4λ(2)

k a2b2 + g̃k (a+ b)2 + 4gkab > 0 . (7.12)

Of course, we can again write a global log-convexity condition for Ck(a, b) as before.
Note that the strongest bound can be obtained by optimizing (7.11) with respect to

a and b. The actual expression is not very illuminating and hence we will not transcribe
it here.

7.1.5 Log-convexity for odd k

Odd k-interactions also obey a local (but not global) log-convexity condition. This can be
obtained by using (3.16):

(g̃k − 2gk)2 ≤ 1
y2

(
2λ(1)

k−1 + 2λ(2)
k−1y

2 + g̃k−1y
) (

2λ(1)
k+1 + 2λ(2)

k+1y
2 + g̃k+1y

)
(7.13)

for all odd k ≥ 3 and 0 < y <∞. Of course, the optimal bound is obtained by minimizing
the right hand side with respect to y.

Finally, we wish to note that now the fields can couple to a massive or a massless gauge
field. However, that will not alter equations (7.4) or (7.5) and hence the bounds remain
unchanged. On the other hand, when we couple the theory (7.1) to gravity, as we discussed
in the previous section, it will contribute to c2(η). So, all bounds for k ≥ 4 (even or odd)
are valid even when GN 6= 0.

7.2 Application: complex scalar field

Let us now consider a complex scalar field

S = 1
2

∫
dDx
√
−g

(
−∇µφ†∇µφ+m2φφ†+

∞∑
k=0

µ

nk(∆)M2(k−2)

(
αkφ

2�kφ†
2 +βkφφ

†�kφφ†
))

.

(7.14)
Results of this section apply to this EFT as well. In particular, bounds on this EFT can
be obtained easily once we identify

λ
(1)
k = λ

(2)
k = αk + βk , gk = 2(βk − αk) , g̃k = 4αk . (7.15)
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8 Conclusions & comments

In this paper we addressed the question of what EFTs in AdSD cannot be embedded into a
UV theory that is dual to a CFTD−1 obeying the usual CFT axioms. We considered EFTs
of scalar fields in AdS spacetime of large radius and derived precise constraints (1.3)–(1.5)
on the coupling constants of higher derivative interactions φ2�kφ2 from the dual CFT.
Our derivation of the bounds does not make any assumptions about the dual CFT beyond
the well established conformal bootstrap axioms. Furthermore, we showed that inclusion
of gravity only affects constraints involving the φ2�2φ2 interaction which now can have a
negative coupling constant even in D = 4. It is unclear whether this fact survives in the
exact flat space limit. It will be interesting to explore this further since positivity of this
interaction is essential in the proof of the 4D a-theorem.

Our CFT setup was a Lorentzian four-point correlator in the Regge limit which was
designed to probe local high energy scattering deep in the AdS. We utilized the fact that
the growth of this CFT Regge correlator is highly constrained from the argument of [88].
Conceptually, bounds obtained in this paper are closely related to the CFT Nachtmann
theorem of [88, 96]. In fact, the CFT Nachtmann theorem was derived in [88] by starting
from the same four-point correlator, however, in the Lorentzian lightcone limit (η → 0,
then σ → 0). Moreover, the condition (1.3) can be derived from the CFT Nachtmann
theorem (with some caveat, as we explain later) once we identify anomalous dimensions
γn,` of double-trace operators [OO]n,` are related to λ` (for even `) as follows [75, 97]

γn,` ∝ −λ` . (8.1)

On the other hand, constraints (1.4)–(1.5) are strictly stronger than what one obtains from
the Nachtmann theorem.34 Furthermore, one should exercise caution while applying the
Nachtmann theorem to an “effective” CFT which is defined order by order in perturbation
theory. Of course, even for such a CFT the Nachtmann theorem of [88, 96] does hold,
however, identifying families of minimal twist operators can be subtle. It is particularly
complicated when the family of minimal twist operators consists of different set of oper-
ators at different orders in perturbation theory. We emphasize that for “effective” CFTs
constraints obtained from the CFT Regge limit are more reliable since they follow directly
from the CFT sum-rule (3.11).

We have analyzed the EFT (1.2) at tree level. We note that the CFT consistency
conditions of [88] that we have utilized in this paper apply even when we include corrections
from EFT loops. In fact, the CFT consistency conditions of [88] (see section 6) hold even
for arbitrary external CFT operators with or without spins (and not necessarily local or
primary). So, it is a straightforward exercise to extend our analysis to derive bounds on
the graviton four-point scattering amplitude in AdS by studying Regge correlators of the
stress tensor operator in the dual CFT. It would be interesting to compare such bounds
with similar classical bounds of [98] from “Classical Regge Growth” (CRG) conjecture and
EFT bounds of [99, 100] from unitarity and crossing. We will have to leave this question
for the future.

34This is a direct consequence of the fact that the order of limits η, σ → 0 is non-trivial.
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Finally, we end with some general comments about the swampland bounds on EFTs in
flat space which are obtained by using various properties of 4-point scattering amplitudes.
We mainly focus on two types of flat space arguments: (i) based on dispersive sum rules,
(ii) based on positivity of the eikonal phase-shift. The first type of arguments, as explained
in the introduction, lead to precise bounds, however, require some assumption about the
Regge boundedness of the 4-point amplitude. Whereas, positivity of the eikonal phase-shift
seems to be a more rigorous condition [101]35 which leads to non-trivial constraints [39,
67, 68, 101, 105–110], however, these constraints in some sense are parametric in nature.
On the other hand, by now it is known that both types of bounds can be obtained in AdS
from the same CFT sum-rule (3.11). So, roughly speaking our CFT Regge correlator (3.2)
is the AdS analogous of the flat space finite impact parameter scattering amplitude A(s,~b)
of [20], since both capture two types of constraints described above. It would be interesting
to derive the full set of constraints of [47] by viewing a flat space EFT as the flat space
limit of the EFT in AdS.

More generally, it would be nice to unify the flat space bounds and the AdS bounds
in a more systematic way. This can be achieved at the level of individual bounds, however
a more useful goal would be to rigorously derive the Regge boundedness condition (and
the closely related CRG condition of [92, 98]) of the flat space amplitude directly from
the CFT axioms by taking the flat space limit.36 It is tempting to translate the results of
this paper in to a Regge boundedness condition for the flat space finite impact parameter
scattering amplitude A(s,~b) of [47] (or some variation of it) for arbitrary external states.
In particular, CFT conditions of section 3.2 suggest

Any finite impact parameter scattering amplitude A(s,~b) for large s cannot grow
faster than s2 within any range of s.

In other words, there can be terms in A(s,~b) that grow as s3, s4, · · · for large s but none of
them can dominate within any range of s. Classical version of this statement is very similar
to the CRG conjecture of [98], however, it is not equivalent since A(s,~b) is in the impact
parameter space. Note that this Regge boundedness condition, even if true, is weaker than
what is required in [47]. Nevertheless, it is of importance to have a rigorous proof of the
above Regge boundedness condition or some stronger version of it.
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A Rindler positivity from conformal bootstrap

In this appendix we will show that Rindler positivity, for scalar external operators, follows
from OPE unitarity and crossing symmetry. Consider the Euclidean correlator (0 < ρ, ρ̄ < 1)

〈O2(−ρ)O1(ρ)O†1(1)O†2(−1)〉E = 1
(16ρρ̄)

∆1+∆2
2

((1− ρ)(1− ρ̄)
(1 + ρ)(1 + ρ̄)

)∆12

×
∑
p

cO2O1pcO†2O
†
1p

(−1)`g∆21,∆12
∆,` (z, z̄) (A.1)

where ∆12 = ∆1 −∆2 and cross-ratios are

z = 4ρ
(1 + ρ)2 , z̄ = 4ρ̄

(1 + ρ̄)2 . (A.2)

Unitarity ensures that cO2O1pcO†2O
†
1p

> 0. Moreover, positivity of the conformal block
expansion in ρ, ρ̄ now implies

〈O2(−ρ)O1(ρ)O†1(1)O†2(−1)〉E = 1
(16ρρ̄)

∆1+∆2
2

∑
h,h̄

bh,h̄ρ
hρ̄h̄ , bh,h̄ ≥ 0 (A.3)

where h = 1
2(∆ ± `) and h̄ = 1

2(∆ ∓ `). The sum is over all operators both primaries
and their descendants. Note that bh,h̄ ≥ 0 also follows from reflection positivity, as shown
in [58]. The above facts immediately implies that for 1 > z, z̄ > 0∑

p

cO2O1pcO†2O
†
1p

(−1)`g∆21,∆12
∆,` (z, z̄)

= ((1− z)(1− z̄))∆21/2
∑
h,h̄

bh,h̄

(
1−
√

1− z
1 +
√

1− z

)h(1−
√

1− z̄
1 +
√

1− z̄

)h̄
. (A.4)

Rindler positivity. We now consider the correlator G of equation (3.2), however, in the
Euclidean regime (0 < ρ, ρ̄ < 1). In the direct channel expansion

GE =
∑
p

c
O1O

†
1p
c
O†2O2p

g0,0
∆,`(z, z̄) (A.5)

with
z = 4ρ

(1 + ρ)2 , z̄ = 4ρ̄
(1 + ρ̄)2 . (A.6)

The subscript E is there to remind ourselves that we are in the Euclidean regime. Positivity
of this correlator is not obvious from the direct channel expansion. So, we expand in the
crossed channel

GE = (16ρρ̄)∆2

((1− ρ)(1− ρ̄))∆1+∆2

( 1
(1 + ρ)(1 + ρ̄)

)∆21 ∑
p

cO2O1pcO†2O
†
1p

(−1)`g∆21,∆12
∆,` (z, z̄)

(A.7)
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where now cross-ratios are

z = (1− ρ)2

(1 + ρ)2 , z̄ = (1− ρ̄)2

(1 + ρ̄)2 . (A.8)

Using the positive expansion (A.4), we can write

GE = (16ρρ̄)
∆1+∆2

2

((1− ρ)(1− ρ̄))∆1+∆2

∑
h,h̄

bh,h̄

(
1−√ρ
1 +√ρ

)2h(1−
√
ρ̄

1 +
√
ρ̄

)2h̄

(A.9)

which is positive for 0 < ρ, ρ̄ < 1.

Lorentzian correlators. Rindler positivity is most useful in the Lorentzian regime ρ > 1
and 0 < ρ̄ < 1. So, we now consider this regime where some of the operators are time-like
separated and hence operator ordering does matter. The positive ordered correlator G0,
as defined in (3.6), in the Lorentzian regime (ρ > 1 and 0 < ρ̄ < 1) is given directly by the
Euclidean correlator and hence

G0 = (16ρρ̄)
∆1+∆2

2

(ρ(1− 1/ρ)(1− ρ̄))∆1+∆2

∑
h,h̄

bh,h̄

(
1− 1/√ρ
1 + 1/√ρ

)2h(1−
√
ρ̄

1 +
√
ρ̄

)2h̄

≥ 0 . (A.10)

This establishes Rindler positivity in the Lorentzian regime.
This leads to the other Lorentzian correlator G, as defined in (3.2) and another distinct

Lorentzian correlator that we can define

G = 〈O2(1)O1(ρ)O†1(−ρ)O†2(−1)〉
〈O2(1)O†2(−1)〉〈O1(ρ)O†1(−ρ)〉

, G̃ = 〈O1(ρ)O2(1)O†2(−1)O†1(−ρ)〉
〈O2(1)O†2(−1)〉〈O1(ρ)O†1(−ρ)〉

. (A.11)

These Lorentzian correlators, in the regime ρ > 1 and 0 < ρ̄ < 1, are obtained from analytic
continuations of the Euclidean correlator

G̃ = (16ρρ̄)
∆1+∆2

2

(ρ(1− 1/ρ)(1− ρ̄))∆1+∆2

∑
h,h̄

bh,h̄

(
1− 1/√ρ
1 + 1/√ρ

)2h(1−
√
ρ̄

1 +
√
ρ̄

)2h̄

eiπ(2h−∆ψ−∆O)

(A.12)

and similarly

G = (16ρρ̄)
∆1+∆2

2

(ρ(1− 1/ρ)(1− ρ̄))∆1+∆2

∑
h,h̄

bh,h̄

(
1− 1/√ρ
1 + 1/√ρ

)2h(1−
√
ρ̄

1 +
√
ρ̄

)2h̄

e−iπ(2h−∆ψ−∆O) .

(A.13)

From the above expansions, we conclude that the Lorentzian correlators G0, G, and G̃, in
the regime ρ > 1 and 0 < ρ̄ < 1, obey the following properties:

G0 ≥ 0 , G = G̃∗ , (A.14)
|G| ≤ G0 , |G̃| ≤ G0 . (A.15)
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B A sum-rule by subtracting the identity operator

In this section, we derive a sum-rule similar to (3.11) by subtracting the identity operator
from all channels. This discussion is only important when O1 = O2 = O in the corre-
lator (3.6) with ∆1 = ∆2 = ∆. We will restrict to real scalar operators, however, this
discussion can be easily generalized for complex scalars.

In this case, we write (A.10) and (A.13) as

G0 = (16ρρ̄)∆

ρ2∆ ((1− 1/ρ)(1− ρ̄))2∆

1 +
∑
h,h̄ 6=0

bh,h̄

(
1− 1/√ρ
1 + 1/√ρ

)2h(1−
√
ρ̄

1 +
√
ρ̄

)2h̄
 (B.1)

and

G = (16ρρ̄)∆ e2πi∆

ρ2∆ ((1− 1/ρ)(1− ρ̄))2∆

1 +
∑
h,h̄ 6=0

bh,h̄

(
1− 1/√ρ
1 + 1/√ρ

)2h(1−
√
ρ̄

1 +
√
ρ̄

)2h̄

e−2πih

 (B.2)

by isolating the contribution from the identity operator. We can compare these correlators
with correlators for the CFT which is dual to a free scalar theory in AdS. In this generalized
free CFT, the corresponding correlators are

Gfree
0 = 1 + (16ρρ̄)∆

ρ2∆ ((1− 1/ρ)(1− ρ̄))2∆ + (16ρρ̄)∆

ρ2∆ ((1 + 1/ρ)(1 + ρ̄))2∆ (B.3)

and

Gfree = 1 + (16ρρ̄)∆ e2πi∆

ρ2∆ ((1− 1/ρ)(1− ρ̄))2∆ + (16ρρ̄)∆

ρ2∆ ((1 + 1/ρ)(1 + ρ̄))2∆ . (B.4)

These two correlators of the generalized free theory are different only when ∆ is not an
integer. We now define subtracted correlators:

δG0(η, σ) = G0 −Gfree
0 , δG(η, σ) = G−Gfree , (B.5)

where η and σ are defined in (3.4). Moreover, note that for positive |σ| < 1 and 0 < η < 1

Re (δG0(η, σ)− δG(η, σ)) =
∑
h,h̄ 6=0

bh,h̄

(
1−
√
σ

1 +
√
σ

)2h(1−√ησ
1 +√ησ

)2h̄

(1− cos(2πh)) ≥ 0

(B.6)
which follows from bh,h̄ ≥ 0. This positivity is true for all unitary CFTs. For negative
|σ| < 1, the same positivity condition can be derived by starting from G̃ correlator at
positive σ.

Now we can perform a contour integral on the complex lower-half σ-plane, as described
in [88]. This now yields a modified sum-rule for the expansion (3.10)

cL(η) = 1
π

∫ R

−R
dσ σL−2Re (δG0(η, σ)− δG(η, σ)) , σ∗ ≤ R� η < 1 , (B.7)

which is a more formal (and precise) version of the sum-rule (3.11).
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The above sum-rule has one key advantage. In order to illustrate that we focus on
CFTs that are dual to some EFT in AdS. Clearly these subtracted correlators come entirely
from the interacting part of the AdS EFT. The possible corrections to the above sum-rule
comes from terms

(δG0(η, σ)− δG(η, σ)) ∼ (δc)σa with a ≥ d (B.8)

where δc is obtained entirely from the interacting part of the EFT. Hence, the entire
argument of section 3.3 about the correction terms now can be repeated implying that
the consistency conditions (3.12), (3.13), (3.15), and (3.16) are valid even when ∆ is non-
integer.

The observant reader may have noticed that the correlator δG0(η, σ), in general, is not
a well-defined object on the complex lower-half σ-plane. However, we can always define a
function δG(−)

0 (η, σ) which is analytic on the lower half σ-plane (minus the real line) and
has the property ReδG(−)

0 (η, σ) = δG0(η, σ) on the real line (Im σ → 0−). For example,
δG0(η, σ), in the limit σ → 0, has terms like

δG0(η, σ) ∼ ca|σ|a (B.9)

with positive a. We can define δG(−)
0 (η, σ) as a function on the lower-half σ plane with

terms
δG

(−)
0 (η, σ) ∼ ca

(
1 + i tan

(
πa

2

))
σa (B.10)

and derive the sum-rule (B.7) using δG(−)
0 (η, σ). Clearly, any additional correction that

can occur because of δG(−)
0 (η, σ) will also obey (B.8) and hence the sum-rule (B.7) is valid

for CFTs dual to any AdS EFT for D ≥ 4. The sum-rule is valid even for D = 3 as long
as 0 ≤ m2 �M2 and the φ3 interaction is absent.

C Correlators of CFTs dual to EFTs in AdS

Derivation of our bounds depends heavily on determining the exact numerical factors. So,
we review the computation of correlators in the AdS/CFT correspondence. The tree level
Witten diagrams can be obtained from the Euclidean on-shell action:

e−Son-shell[Φ] = 〈e
∫

ΦO〉 , (C.1)

where Φ is the boundary value of the bulk field φ with CFT dual O. For simplicity we will
work in the Euclidean signature with the metric

ds2 = dz2 + δµνdx
µdxν

z2 . (C.2)

We start with a single scalar field in AdS:

S = 1
2

∫
dd+1x

√
g
[
gµν∂µφ∂νφ+m2φ2

]
(C.3)

which leads to the equation of motion

(�−m2)φ = 0 . (C.4)
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Bulk-to-boundary propagator. This has the solution

φ(z, x) = C∆

∫
ddx′

z∆

(z2 + |x− x′|2)∆ Φ(x′) ≡
∫
ddx′K∆(z, x;x′)Φ(x′) (C.5)

with m2 = ∆(∆− d) and
C∆ = Γ[∆]

πd/2Γ[∆− d/2]
. (C.6)

Note that the bulk to boundary propagator satisfies

(�(z, x)−m2)K∆(z, x;x′) = 0 . (C.7)

Furthermore, note that

K∆(z → 0, x;x′) = zd−∆
(
δd(x− x′) +O(z2)

)
+ z∆

(
C∆

|x− x′|2∆ +O(z2)
)
. (C.8)

Bulk-to-bulk propagator. The bulk-to-bulk propagator is defined as the solution of
the differential equation

(�(z, x)−m2)G∆(z, x; z′, x′) = 1√
g(z, x)

δ(z − z′)δd(x− x′) . (C.9)

The propagator can be explicitly written as

G∆(z, x; z′, x′) = −
2∆ξ∆Γ(∆)Γ

(
−d

2 + ∆ + 1
2

)
(4π) d+1

2 Γ(−d+ 2∆ + 1)
2F1

(∆
2 ,

∆
2 + 1

2;−d2 + ∆ + 1; ξ2
)

(C.10)

where,
ξ = 2zz′

z2 + z′2 + (x− x′)2 . (C.11)

Let us also note the asymptotic behavior of the propagator

G∆(z → ε, x; z′, x′) = − ε∆

2∆− dK∆(z′, x′;x) . (C.12)

C.1 CFT 2-pt functions

The on-shell action is given by

Son-shell = −1
2

∫
z=ε

ddx
1

zd−1φ(z, x)∂zφ(z, x)

= − 1
4εd−1

∫
z=ε

ddx∂z(φ(z, x))2 . (C.13)

This on-shell action can be evaluated by using the asymptotic expression for the bulk-to-
boundary propagator yielding37

Son-shell = −C∆d

2

∫
ddxddx′

Φ(x′)Φ(x)
|x− x′|2∆ −

d−∆
2ε2∆−d

∫
ddxΦ(x′)2 . (C.14)

37The following identity can be useful:∫
ddx

(
z

z2 + x2

)∆1
(

z

z2 + |x− x′|2

)∆2

= πd/2Γ(∆1 + ∆2 − d/2)
Γ(∆1)Γ(∆2)

∫ 1

0
ds

z∆1+∆2s∆2−1(1− s)∆1−1(
s(1− s)x′2 + z2

)∆1+∆2−d/2
.
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The divergent term can be removed by adding a counter-term at z = ε:

Sct = d−∆
2εd

∫
z=ε

ddx φ(z, x)2 . (C.15)

The on-shell counter-term also contributes a finite part

Sct = d−∆
2ε2∆−d

∫
ddxΦ(x)2 + C∆(d−∆)

∫
ddxddx′

Φ(x)Φ(x′)
|x− x′|2∆ (C.16)

and hence the total on-shell action becomes

Son-shell = −(2∆− d)C∆
2

∫
ddxddx′

Φ(x′)Φ(x)
|x− x′|2∆ . (C.17)

Finally the two-point function is

〈O(x1)O(x2)〉 = (2∆− d)C∆
|x1 − x2|2∆ . (C.18)

C.2 Perturbative expansion of the Euclidean on-shell action

We now study the following Euclidean bulk action

S =
∫
dd+1x

√
g

(1
2(∂φ)2 + 1

2m
2φ2 + Lint

)
. (C.19)

The bulk equation of motion is now given by

(�−m2)φ = δLint
δφ

. (C.20)

We can again write down a formal solution of the equation of motion

φ(x, z) =
∫
ddx′K∆(z, x;x′)Φ(x′) +

∫
ddx′dz′

√
g′G∆(z, x; z′, x′)δLint

δφ
(z′, x′) (C.21)

and the on-shell action is given by

Son-shell = − 1
4εd−1

∫
z=ε

ddx∂z(φ(z, x))2 + d−∆
2εd

∫
z=ε

ddx φ(z, x)2

+
∫
ddxdz

√
g

(
Lint −

1
2φ

δLint
δφ

)
(C.22)

≡ S0 + Sct + Sint . (C.23)

First, we find that

S0 + Sct =− c∆(2∆− d)
2

∫
z=ε

ddx1d
dx2

Φ(x1)Φ(x2)
|x1 − x2|2∆

+ 1
2

∫
z=ε

ddx1

∫
ddx′dz′

√
gK∆(x1; z′, x′)Φ(~x1)δLint

δφ
(z′, x′) . (C.24)
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So the total Euclidean on-shell action can be written in a nice form

Son-shell = −c∆(2∆− d)
2

∫
z=ε

ddx1d
dx2

Φ(x1)Φ(x2)
|x1 − x2|2∆ +

∫
ddxdz

√
gLint(z, x)

− 1
2

∫
ddxdz

√
g

∫
ddx′dz′

√
g′G∆(z, x; z′, x′)δLint

δφ
(z′, x′)δLint

δφ
(z, x) , (C.25)

where, the bulk field φ should be understood as

φ(x, z) =
∫
ddx′K∆(z, x;x′)Φ(x′) +

∫
ddx′dz′

√
g′G∆(z, x; z′, x′)δLint

δφ
(z′, x′) . (C.26)

We can use equation (C.26) to perform a perturbative expansion of (C.25). Note that
contact diagrams receive contributions only from the second term in (C.25). On the other
hand, both the second and the third term can contribute to an exchange diagram.

C.3 Example

Let us now consider the example

S =
∫
dd+1x

√
g

(1
2(∂φ)2 + 1

2m
2φ2 + λ3φ

3 + λ4φ
4
)
. (C.27)

The bulk equation of motion is now given by

(�−m2)φ = 3λ3φ
2 + 4λ4φ

3 ≡ δLint
δφ

. (C.28)

Three-point function. We can now write down the cubic action by using (C.25):

S(3) = λ3

∫
ddxdz

√
g

∫
ddx1d

dx2d
dx3K∆(z, x;x1)K∆(z, x;x2)K∆(z, x;x3)Φ(x1)Φ(x2)Φ(x3)

(C.29)
and hence the tree-level three-point function is given by

〈O(x1)O(x2)O(x3)〉 = −6λ3

∫
ddxdz

√
gK∆(z, x;x1)K∆(z, x;x2)K∆(z, x;x3) . (C.30)

For the sake of completeness let us note that [111]∫
ddxdz

√
gK∆1(z, x;x1)K∆2(z, x;x2)K∆3(z, x;x3) = aijk

|x1 − x2|∆12 |x1 − x3|∆13 |x3 − x2|∆32

(C.31)

with

aijk =
Γ
(

∆12
2

)
Γ
(

∆32
2

)
Γ
(

∆13
2

)
Γ
(∑

i
∆i−d
2

)
2πdΓ

(
∆1 − d

2

)
Γ
(
∆2 − d

2

)
Γ
(
∆3 − d

2

) (C.32)

and ∆ij = ∆i + ∆j −∆k.
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Four-point function. The four-point function receives contributions from both contact
diagrams and exchanged diagrams. In the leading order the quartic on-shell action is
given by

S(4) = λ4

∫
ddxdz

√
gφ4 + 9

2λ
2
3

∫
ddxdz

√
g

∫
ddx′dz′

√
g′G∆(z, x; z′, x′)φ2(z, x)φ2(z′, x′) .

(C.33)
So the full four-point function is given by

〈O(x1)O(x2)O(x3)O(x4)〉 = −(4!)λ4(contact Witten diagram)
− (3!)2λ2

3(three exchanged Witten diagrams) . (C.34)

D Properties of D-functions

The D(η, σ)-function in AdSd+1 is defined as

D∆1∆2∆3∆4(η, σ) =
∫
dd+1x

√
g

4∏
i=1

K̃∆i
(z, x;xi) (D.1)

where boundary xi-points are given by (3.3):

x1 = −x2 = ρ , x4 = −x3 = 1 . (D.2)

Note that K̃ is the reduced bulk to boundary propagator

K̃∆(x′) ≡ K̃∆(z, x;x′) = z∆

(z2 + |x− x′|2)∆ . (D.3)

D.1 Some useful identities

The following identities will be very useful for us.

First identity. From [112], we write

gµν∂µK̃∆1(z, x;x1)∂νK̃∆2(z, x;x2) = ∆1∆2
(
K̃∆1(z, x;x1)K̃∆2(z, x;x2)

−2x2
12K̃∆1+1(z, x;x1)K̃∆2+1(z, x;x2)

)
, (D.4)

where, derivatives are taken with respect to bulk coordinates.

Second identity. From [112], we can also write

D∆+1 ∆ ∆ ∆+1(η, σ) = D∆ ∆+1 ∆+1 ∆(η, σ) , (D.5)
D∆+1 ∆ ∆+1 ∆(η, σ) = D∆ ∆+1 ∆ ∆+1(η, σ) . (D.6)
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Third identity. Let us now write our D-functions in terms of D-functions of [113]38

D∆∆+1∆+1∆(u, v) = 2Γ[∆]2Γ[∆ + 1]2
Γ (2∆ + 1− h)

(16ρρ̄)∆+1

(1− ρ)(1− ρ̄)D∆∆+1∆+1∆(η, σ) , (D.7)

D∆+1∆∆+1∆(u, v) = 2Γ[∆]2Γ[∆ + 1]2
Γ (2∆ + 1− h)

(16ρρ̄)∆+1

(1 + ρ)(1 + ρ̄)D∆+1∆∆+1∆(η, σ) , (D.8)

D∆∆∆∆(u, v) = 2Γ[∆]4
Γ (2∆− h)(16ρρ̄)∆D∆∆∆∆(η, σ) , (D.9)

where,

u = (1 + ρ)2(1 + ρ̄)2

16ρρ̄ = (1 + σ)2(1 + ησ)2

16ησ2 , (D.10)

v = (1− ρ)2(1− ρ̄)2

16ρρ̄ = (1− σ)2(1− ησ)2

16ησ2 . (D.11)

From [113], we can relate

D∆∆+1∆+1∆(u, v) = −∂vD∆∆∆∆(u, v) , D∆+1∆∆+1∆(u, v) = −∂uD∆∆∆∆(u, v) . (D.12)

Therefore, we can derive the following expression

(1− ρ)3(1− ρ̄)3D∆∆+1∆+1∆(η, σ) + (1 + ρ)3(1 + ρ̄)3D∆+1∆∆+1∆(η, σ)

= − Γ (2∆ + 1− h)
2Γ[∆]2Γ[∆ + 1]2(16η)∆−1

(
v2∂v + u2∂u

)
D∆∆∆∆(u, v)

= −16 (2∆− h)
∆2η∆−1

(
v2∂v + u2∂u

)
η∆D∆∆∆∆(u, v)

= −16 (2∆− h)
∆2

(
f1(η, σ)
η∆−1 ∂ηη

∆ + f2(η, σ)∂σ
)
D∆∆∆∆(η, σ) , (D.13)

where, h = d/2 and

f1(η, σ) = (η + 1)
(
σ2 (η (3ησ2 + η + 8

)
+ 1

)
+ 3

)
16(η − 1)σ2 , (D.14)

f2(η, σ) = (1− σ)(σ + 1)
(
η(η + 2)σ2 + 1

) (
η
(
ησ2 + 2

)
+ 1

)
16(η − 1)σ (ησ2 − 1) . (D.15)

D.2 Regge limit of the D-functions

Following [93], in the Regge limit we obtain

D∆1∆2∆3∆4(η, σ) = i
πd21−

∑
i
∆iσ

η
∆1+∆2−1

2
∏
i Γ(∆i)

f∆1∆2∆3∆4

(
−1

2 log (η)
)

(D.16)

38Our D-functions are D̄ functions of [113].
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where,

f∆1∆2∆3∆4(s) =
∫ ∞
−∞

dνΩiν(s)Γ
(∆3 + ∆4 − d/2 + iν

2

)
Γ
(∆3 + ∆4 − d/2− iν

2

)

× Γ
(∆1 + ∆2 − d/2 + iν

2

)
Γ
(∆1 + ∆2 − d/2− iν

2

)
. (D.17)

Harmonic functions Ωiν on Hd−1 are known in any dimension [62]

ΩE (s) =−
E sin(πE)Γ

(
d−2

2 + E
)

Γ
(
d−2

2 − E
)

2d−1π
d+1

2 Γ
(
d−1

2

)
× 2F1

(
d− 2

2 + E,
d− 2

2 − E, d− 1
2 ,

1− cosh(s)
2

)
. (D.18)

D.3 F -function

The F -function is defined as

F2∆+L(η) = 1
η
L−1

2
f∆+L ∆ ∆+L ∆

(
−1

2 log (η)
)
. (D.19)

In the limit η → 0, we obtain from (D.17) (see appendix D of [93]):

F2∆+L(η → 0) = 2π1− d2 Γ
(

2∆ + L− d

2

)
Γ (2∆ + L− 1) η∆ ln

(1
η

)
(D.20)

where D = d+ 1.

D.4 Another identity

We can also derive an exact identity

∂ηf∆∆∆∆

(
−1

2 log η
)

= 1− η
(4∆− d)η3/2 f∆+1∆∆+1∆

(
−1

2 log η
)
. (D.21)

This will be useful later.

E Regge contributions of odd couplings

In this appendix, our goal is to establish (4.21). To this end, we first prove (4.21) for k = 3.
This will necessarily imply (4.21) for all odd k ≥ 3, as we explain at the end.

Using the explicit form of the dilaton effective action (2.1), we obtain the leading
on-shell Euclidean effective action for k = 3:

S
(k=3)
on-shell = −µ3

2

∫
dDx

√
gφ2�3φ2 . (E.1)

The above on-shell action can be rewritten at the leading order in perturbation theory by
using the bulk-to-boundary propagator. We notice from [93] that all D-functions decay
in the Regge limit D∆1∆2∆3∆4(ρ, ρ̄) ∼ 1

ρ . On the other hand, x2
ij factors can grow as

∼ ρ. Therefore, terms in (E.1) that have at least two factors of x2
ij can grow in the Regge
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limit (3.5). This greatly simplifies the analysis since we only care about the growing part
of the Regge correlator. In particular, the on-shell four-point interaction (E.1) can be
approximated as

S
(k=3)
on-shell ∝ −µ3

∫
Φ4

∫
AdS

(
−x4

12x
2
34K̃∆+2(z, x;x1)K̃∆+2(z, x;x2)K̃∆+1(z, x;x3)K̃∆+1(z, x;x3)

+ 2− d+ 4∆− 2d∆ + 4∆2

2(∆ + 1)2 x2
12x

2
34K̃∆+1(z, x;x1)K̃∆+1(z, x;x2)K̃∆+1(z, x;x3)K̃∆+1(z, x;x3)

+2∆− d
2∆ x4

12K̃∆+2(z, x;x1)K̃∆+2(z, x;x2)K̃∆(z, x;x3)K̃∆(z, x;x3)
)

+ · · · , (E.2)

where dots represent terms that do not contribute to the Regge growth. Note that we are
not keeping track of the overall (positive) numerical factor, since our conclusion will not
depend on it. It is now a straightforward exercise to compute the Regge contribution of
the k = 3 term:

G(η, σ)∼µ3

(
2− d+ 4∆− 2d∆ + 4∆2

2(∆ + 1)2 ρ2D∆+1 ∆+1 ∆+1 ∆+1(η, σ) + 2∆− d
2∆ ρ2D∆+2 ∆ ∆+2 ∆(η, σ)

− 1
4(1− ρ)3(1− ρ̄)3D∆+2 ∆+1 ∆+1 ∆+2(η, σ)− 1

4(1 + ρ)3(1 + ρ̄)3D∆+2 ∆+1 ∆+2 ∆+1(η, σ)

− 1
4(1− ρ)3(1− ρ̄)3D∆+1 ∆+2 ∆+2 ∆+1(η, σ)− 1

4(1 + ρ)3(1 + ρ̄)3D∆+1 ∆+2 ∆+1 ∆+2(η, σ)
)

+O
(
σ0) . (E.3)

In the above expression, we have also exploited the fact that all D∆1∆2∆3∆4(ρ, ρ̄) functions
with fixed ∆1 + ∆2 = ∆3 + ∆4 have the same leading Regge behavior [93]. Moreover, in
the Regge limit, one can also relate [93]

D∆+1 ∆+1 ∆+1 ∆+1(η, σ) = (∆ + 1)2

∆2 D∆+2 ∆ ∆+2 ∆(η, σ) +O
(
σ2
)
. (E.4)

We can now use various identities discussed in appendix D.1 to obtain

G(η, σ) ∼ i µ3

η∆+ 1
2σ

(
−12(d− 1)∆− 3d+ 24∆2 + 4

2 f∆+1 ∆+1 ∆+1 ∆+1

(
−1

2 log η
)

−3(η + 1)
√
η

f∆+2 ∆+1 ∆+2 ∆+1

(
−1

2 log η
))

+O
(
σ0
)
, (E.5)

where, f -functions are given by (D.17). One now can check that the quantity inside the
parentheses, for m2 ≥ 0, changes sign as we increase η. For example, for η → 0 it is
negative. Whereas, for η → 1 it becomes positive for m2 ≥ 0. Hence, if µ2 = 0, then the
condition (3.12) necessarily requires

µ3 = 0 , m2 ≥ 0 . (E.6)

Furthermore, the condition (3.13) now also requires that

µk = 0 (E.7)

for all k ≥ 4.
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Interestingly, for negative m2 there is always a range of ∆ for which the quantity inside
the parentheses does not change sign. In such a case, we can only derive a sign constraint
on µ3. The condition (3.13) now rules out all even µk with k ≥ 4, however, odd µk with
k ≥ 5 are not ruled out. It is possible that CFT conditions (3.12) and (3.13) for L > 2
might rule out such a scenario. Nonetheless, we will restrict to m2 ≥ 0 to avoid this possible
loophole.

F N -coefficients

F.1 ND(∆)

ND(∆) is a numerical coefficient that appears in the bound of φ2�2φ2 interaction in the
presence of gravity. First, let us note that the Harmonic function (D.18) function has the
following behavior in the limit η → 1:

Ω̃iν = Ωiν

(
−1

2 log (η)
)
η→1

=
21−dπ−

d
2−

1
2 ν sinh(πν)Γ

(
d
2 − iν − 1

)
Γ
(
d
2 + iν − 1

)
Γ
(
d−1

2

) .

(F.1)

The ND(∆) coefficient is now given by the ratio:

ND(∆) =

∫∞
−∞ dν

Γ
( 2∆+2−d/2+iν

2

)2
Γ
( 2∆+2−d/2−iν

2

)2
ν2+( d2 )2 Ω̃iν∫∞

−∞ dνΓ
(

2∆+2−d/2+iν
2

)2
Γ
(

2∆+2−d/2−iν
2

)2
Ω̃iν

(F.2)

where D = d + 1. This factor can be easily computed in Mathematica. In particular, we
find that for large ∆ and D > 4:

ND(∆� 1) ≈ 1
(D − 4)∆ . (F.3)

F.2 ÑD(∆)

The ÑD(∆) coefficient is now given by the ratio:

ÑD(∆) =
Γ
(
2∆− D−9

2

)
Γ (2∆ + 3)

Γ
(
2∆− D−5

2

)
Γ (2∆ + 1)

∫∞
−∞ dνΓ

(
2∆+2−d/2+iν

2

)2
Γ
(

2∆+2−d/2−iν
2

)2
Ω̃iν∫∞

−∞ dνΓ
(

2∆+4−d/2+iν
2

)2
Γ
(

2∆+4−d/2−iν
2

)2
Ω̃iν

(F.4)
where D = d+ 1. Note that ÑD(∆) > 1.
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