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1 Introduction

Since decades, one of the major goals of theoretical physics is to understand the quanti-
zation of gravity. The simplest gravitational theory can be formulated in two dimensions.
In two dimensions, the pure gravitational (in the absence of any matter field) action is
topological i.e. the equations of motion are trivially satisfied and the action is proportional
to the Euler Characteristic of the manifold.1 Thus to understand the two dimensional
gravitational dynamics, we need to non-minimally couple matter fields with gravity.2 One
such model is Callan-Giddings-Harvey-Strominger (CGHS) model in asymptotically flat
space [1], whereas another such model is Jackiw-Teitelboim (JT) [2, 3] theory, whose solu-
tion is asymptotically Anti de-Sitter(AdS) spacetime.

These gravitational theories, especially JT have drawn a great deal of attention in past
few years. In the low energy limit, JT appears as gravitational dual to Sachdev-Ye-Kitaev
(SYK) model, a solvable 0 + 1 dimensional model of Majorana fermions with all possible
random interactions [4–9].3 For both SYK and JT, the time reparameterization symmetry
is explicitly broken at the boundary of the spacetime, and the effective low energy dynamics
is described by a Schwarzian action [10, 11]. In this article, we shall be interested in the
JT gravity model.

Pure AdS2 is unique compared to any higher dimensional AdS geometry. It lacks
finite energy excitations in presence of gravitational backreaction as their existence modify
the asymptotic boundary conditions [12]. For this reason, AdS2/CFT1 duality is not as
well understood as higher dimensional AdS/CFT correspondence. On the contrary, JT
gravity allows finite energy excitations in two dimensions, as the non trivial dilaton profile
allows gravitational backreactions [13, 14]. Since the boundary conformal symmetry is
slightly broken for JT, its solution is nearly AdS2 or NAdS2, also the boundary symmetry
now is also nearly conformal or NCFT1. Thus JT theory is a good candidate to study
NAdS2/NCFT1 correspondence.

Recently it has been shown that JT gravity also describes the dynamics of the near
horizon geometry of near-extremal black holes [9, 15]. The near horizon geometry of an
extremal black hole has an AdS2 part and possesses SL(2, R) isometry which is weakly
broken in the near-extremal limit, resulting in a NAdS2 geometry. A JT-like action appears
through the dimensional reduction of higher dimensional gravity. The connection between
JT gravity and the near horizon dynamics of higher dimensional near-extremal charged
and rotating black hole solution has been discussed in [16–18]. So far, the connection
between the near-extremal black hole and JT gravity and other aspects of JT gravity like
its connection with Matrix model has been proposed for two-derivative action [9, 15–24].
In this paper, we check the validity of this proposal under small perturbations. We show
that a JT-like action describes the dynamics of a near-extremal near horizon black hole
physics appearing in four dimensional Einstein-Maxwell theory even with arbitrary small

1The partition function for the same requires gauge fixing and hence brings non-triviality to the system.
2Minimally coupled matter field also does not bring any dynamics in the system.
3Another interesting 2D non-minimally coupled gravity model is CGHS model that appears in the study

of cosmology.
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four derivative interactions involving metric and gauge field. The resultant JT theory gets
modified by a precise two dimensional higher derivative interaction term.

Higher curvature terms occur at the low energy effective action in string theory as
stringy corrections [25–28]. Properties of Einstein gravity have been widely studied in
the presence of higher derivative terms e.g. in the context of hydrodynamics in AdS/CFT
(on the CFT side, higher curvature terms correspond to finite t’Hooft coupling, finite
N corrections) [29, 30], entropy function formalism [31], large dimensional black hole
membrane paradigm [32] etc. If higher derivative terms are not treated perturbatively,
ghosts(unphysical states) may appear in the spectrum. This issue can be solved by
considering particular combinations of the higher curvature terms, known as Lovelock
terms, such that the equations of motion remain two derivative equations [33]. At four
derivative level, terms of the Lovelock combination is known as the Gauss-Bonnet term:
R2 − 4RABRAB + RABCDR

ABCD. However in four-dimension, it is a topological term.
Hence in this paper, we first consider an arbitrary quadratic curvature combination in-
volving metric as λ(α1R

2 + α2RABR
AB + α3RABCDR

ABCD), where λ is a dimensionless
parameter controlling the strength of the curvature-squared terms, and α1, α2 and α3 are
arbitrary coefficients of dimensions length square. To avoid ghosts (unphysical states), we
treat these terms perturbatively. We consider the coupling constant λ very small λ � 1
and take into account those terms which are linear in λ. Starting with a Einstein-Hilbert-
Maxwell action in presence of such a quadratic curvature combination in four dimensions,
we aim to get higher curvature modified JT-like action upon dimensional reduction, that
will describe the dynamics of near-extremal black holes of the four dimensional theory.
Our goal is legitimate, as the near-horizon geometry of an extremal black hole in the
presence of higher derivative corrections still contains an AdS2 factor, with a modified
radius. Recently in [34], a solution to quadratic corrected 2D gravity theory is presented
and the corresponding boundary CFT also has been studied. In the current manuscript
we present the higher derivative corrected 2D gravity, whose dynamics is again captured
by the boundary. Since we begin with the most generic four derivative curvature terms
in four dimensions, one expects to get the most generic four derivative metric curvature
corrections in two dimensional dilaton gravity theory, whose dynamics is still given by a
Schwarzian action at the boundary. However the result of our computations shows that
the corresponding JT theory only gets modified by R2 term.4 The same feature continues
even when we incorporate other possible four derivative interactions involving the metric
and matter field.

Moving forward to a semi classical analysis, earlier it was thought that for a black hole
with fixed charge, the difference of energies between extremal state and near-extremal state
scales with temperature T as ∆M = M −Mext ∼ T 2

Mgap
. As the required energy for a single

Hawking quantum to radiate is of the order of the temperature T , thus when T . Mgap,
the black hole would not have required energy to radiate. Hence the semi-classical analysis
must breakdown (since a black hole is supposed to radiate with non-zero temperature).

4Various aspects of R2-corrected 2D dilaton gravity theories have been studied in [35–38]. In our present
study of near-extremal dynamics, we get perturbative R2 correction to JT theory upon the dimensional
reduction of higher derivative corrected four-dimensional theory.
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To make sense of semi classical analysis it was believed that there is a mass gap Mgap
between the extremal state and the closest near-extremal state in the mass spectrum for
a fixed charged black hole, that prevents Hawking radiation for T . Mgap. Although
the existence of a mass gap is well supported for supersymmetric black holes [39] but in
absence of supersymmetry, it is questionable. This issue has been resolved going beyond the
semi classical regime, by considering the effects of quantum fluctuations. Recently in [40],
considering quantum fluctuations it has been showed that for a fixed charge Reissner-
Nordström black hole,5 the ∆M acquires an extra term such that even at low temperature
∆M ∼ 3

2T . As a consequence, the mass gap between the extremal and near-extremal black
hole vanishes at low temperature, thus enabling Hawking radiation. This analysis provides
a proper statistical description of black hole thermodynamics at low temperature. Hence,
the entropy of near-extremal black hole possesses an extra correction, a logarithmic term
in temperature which precisely omits the mass gap. Following their method, we also see
the logarithmic correction in the entropy in presence of higher derivative curvature.

Organisation of this paper is as follows: in section 2, we discuss the generic form of two-
dimensional dilaton gravity theories with four-derivative corrections and also, we review
some aspects of JT gravity which will be important for our computations. In section 3
we present the modified JT theory that captures the low energy behavior of a spherically
symmetric near-extremal black hole in four dimensional Einstein-Maxwell theory with four
derivative metric interactions. This is the main result of this paper. We discuss the effects of
more generic four derivative corrections involving the gauge field in section 4. We conclude
the paper in section 5. The paper contains six appendices, where we have included the
relevant computational details.

2 Dilaton gravity theories in two dimensions

2.1 Some generalities

The Einstein-Hilbert action in two dimensions is given by,

SEH = 1
16πG2

∫
d2x
√
−gR, (2.1)

where, G2 is the dimensionless two dimensional Newton’s constant and R is the Ricci scalar
constructed out of the two dimensional metric g. The Gibbons-Hawking boundary term

1
16πG2

∫
dx
√
−hK should be added to the above action to make the total variation zero.

Here, hµν = gµν − nµnν is the induced metric on the one dimensional boundary having
normal nµ and extrinsic curvature K = ∇µnµ. This action is topological and proportional
to the Euler Characteristic of the manifold. Variation of the action does not give any
equation of motion since in two dimensions, Einstein tensor is identically zero for any
metric. To make the theory non-trivial without deviating much, a non-minimally coupled
scalar namely dilaton can be added. These dilaton-gravity theories in two dimensions
have no local on-shell degrees of freedom. The most generic two derivative dilaton-gravity

5Whose near-extremal dynamics is captured by the corresponding dimensional reduced JT action.
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action [24] has the following form (appendix A),

S = − 1
16πG2

∫
d2x
√
g (φR+ V (φ)) . (2.2)

For a well-defined variational principle, the action should be supplemented by an extrinsic
curvature term at the boundary. We get the action for JT gravity for a particular choice
of V (φ) in the above action that will be described in the next section. The most generic
action having terms up to four derivatives is given by (A.10),6

S = − 1
16πG2

∫
d2x
√
g
[
φR+ V (φ) + λW1(φ)(∇φ)4 + λW2(φ)R(∇φ)2 + λW3(φ)R2

]
. (2.3)

In higher dimensions, the four derivative corrected action contains terms quadratic
in Riemann tensor, Ricci tensor and Ricci scalar. But in two dimensions, the Riemann
tensor has only one component and that can be thought of as Ricci scalar R, thus the
higher derivative corrected action has terms involving R and derivatives of the dilaton φ.7

2.2 A brief overview of the Jackiw-Teitelboim (JT) gravity

In this section, following [2, 3, 9], we shall briefly review some important aspects of Jackiw-
Teitelboim gravity model that would be required for our present study. Experts may skip
this section and directly study from section 3.

The Jackiw-Teitelboim or JT gravity model is a specific kind of two dimensional dilaton
gravity theory, described by the action (2.2) with a linear dilaton potential V (φ) = −Λ2φ.
The action in Lorentzian signature is given by,

SJT = 1
16πG2

[∫
d2x
√
−gφ (R− Λ2) + 2

∫
dx
√
−hφK

]
, (2.4)

where Λ2 is the two dimensional cosmological constant. In the full action, we add the
topological Einstein-Hilbert term with the JT part, thus the full action is S = φ0SEH +SJT.
Here φ0 is a constant, whose implications will be clarified in the next subsection. The
equation of motion of the scalar φ sets the curvature to a constant value Λ2, thus depending
on the sign of Λ2 we get asymptotically dS or AdS spacetime. In this work we consider
Λ2 = − 2

L2
2
, for which the spacetime is asymptotically AdS2, having a length scale L2.

Equations of motion of the scalar and the metric are respectively,

R+ 2
L2

2
= 0, (2.5)

∇µ∇νφ−∇2φgµν + φ

L2
2
gµν = 0. (2.6)

6Since the four-derivative terms are of perturbative nature, one can construct appropriate GH boundary
term for a well-defined variational problem that will depend on the functions Wi(φ) and the extrinsic
curvature. As we will see later, for our study only the R2 term will be of importance and the corresponding
G boundary term is evaluated in 3.7.

7In principle, there could be more higher order terms [41], but those can be absorbed by appropriate
field redefinition (appendix A).
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The solutions of the equation (2.5) are locally AdS2. The generic form of the solution
is [42],

ds2 = −
(
r2

L2
2
−m2

)
dt2L + dr2

r2

L2
2
−m2

. (2.7)

For m2 ≥ 0, the spacetime has horizons. These solutions, characterized by m2, cover
patches of AdS2 but they can be maximally extended to global AdS2 using coordinate
transformations.8 Therefore, they describe the same spacetime and these solutions are
physically equivalent.

The dilaton can take non-negative values only.9 From (2.6), the only constant solution
of the dilaton is φ = 0. When φ is constant, the extension from (2.7) to global AdS2 is
well defined. But for a varying solution e.g. φ ∼ r, the metric (2.7) cannot be maximally
extended since the dilaton becomes negative in the region r < 0. The requirement of its
positivity prevents the maximal extension of the spacetime and hence it should be restricted
to φ ≥ 0 region. With the non-trivial dilaton, the full solutions of the theory (i.e. metric
and dilaton) are nonequivalent depending on m2. We will be interested in “black hole”
solutions (m2 ≥ 0) i.e. solutions having horizons and temperature. For these solutions, the
metric can be put into Poincaré AdS2 form in Euclidean signature,10

ds2 = gµνdx
µdxν = L2

2
z2 (dt2 + dz2). (2.8)

The generic solution to the dilaton equation (2.6) is given by [9],

φ(t, z) = K1 +K2t+K3(t2 + z2)
z

, (2.9)

where K1,K2 and K3 are integration constants and φ ≥ 0. This non-trivial dilaton solution
breaks the SL(2, R) isometry of AdS2 to U(1), generated by the vector field Xµ = εµν∇νφ.

2.2.1 Breaking of boundary time reparametrization symmetry

The spacetime (2.8) has a one-dimensional timelike boundary at z = 0 [9]. Since the
fields diverge near the boundary, we cut the spacetime along a curve C : (t(u), z(u)),
parametrized by boundary time coordinate u ∈ [0, β0]. We fix the length of the boundary
curve by imposing Dirichlet boundary condition on the metric,

h = g|C = L2
2
ε2 , (2.10)

where the length of the boundary curve is given by,

lbdy =
∫
C
du
√
h = β0L2

ε
. (2.11)

8the same also holds true for the euclidean solution.
9This statement will be justified later, where the v.e.v. of the dilaton will be related to the radius of the

compact dimensions.
10Since we are interested in the Euclidean path integral, we will consider Euclidean time tL → it.
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Since the metric (2.8) should satisfy the boundary condition (2.10), we find that

guu = L2
2
z2 (t′2 + z′2) = L2

2
ε2 . (2.12)

For small ε, solution to this equation is given by,

z(u) ' εt′(u), (2.13)

where, the primes denote derivatives w.r.t. u. Clearly, the shape of the boundary curve is
determined by the function t(u) such that t′(u) > 0.

Although locally the spacetime is AdS2, different choices of the function t(u) corre-
spond to different geometries since the cut out shape depends on the form of the function.
For a constant dilaton solution i.e. φ = 0, each of these geometries correspond to the
ground state since the Einstein-Hilbert action is topological and it takes the same value
for any cut out shape given by t(u), for any value of the constant φ0. Thus we have a time
reparametrization symmetry near the boundary, whose generators are as follows,

ξt = χ(t), ξz = z
dχ(t)
dt

. (2.14)

This is the realization of asymptotic symmetry of AdS2. These reparametrizations map
one boundary curve to another e.g. t → t + χ(t), though not all of them are different.
Since the isometry group of AdS2 is SL(2, R), functions t(u) and t̂(u), which are related
by SL(2, R) transformations,11 they correspond to the same cutout shape.

The ground state geometries are then characterized by different functions t(u) up to
SL(2, R) identification. The time reparametrization symmetry is spontaneously broken to
SL(2, R) by the choice of AdS2 vacuum.

On the contrary the time reparametrization symmetry is explicitly broken in the JT
action. Boundary condition for the dilaton is taken as

φ|C = φb
ε
, (2.16)

where φb is a dimensionful number specifying the boundary value of the dilaton. This
φb characterizes the scale of symmetry breaking. We consider φb � φ0L2 such that the
symmetry is slightly broken. The generic solution (2.9) of the dilaton should satisfy this
boundary condition. Thus using (2.13) and (2.16), we find:

K1 +K2t+K3t
2

t′
= φb. (2.17)

Solving this equation for the function t(u), we get the classical shape of the boundary.
11The transformation relation is:

t̂(u) = αt(u) + β

γt(u) + δ
; αδ − γβ = 1. (2.15)

– 7 –
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2.2.2 Effective boundary action

The Euclidean path integral corresponding to the action S = φ0SEH + SJT is as follows,

Z =
∫
DφDgµνe−φ0SEH−SJT . (2.18)

Using Gauss-Bonnet theorem, the Einstein-Hilbert action is given by,12

SEH = − 1
8Gχ(M), (2.19)

where χ(M) = 2 − 2g − n is the Euler Characteristic of the manifold M of genus g with
n boundaries. For large value of φ0, the dominant contribution to the partition function
comes from disk topology with one boundary i.e. g = 0, n = 1 and higher genus manifolds
with multiple boundaries have exponentially suppressed contribution. Thus the partition
function takes the following form

Z = e
φ0
8G (2−2g−n)

∫
DφDgµνe−SJT = e

φ0
8G (2−2g−n)ZJT. (2.20)

Since there are no local bulk excitations, the dynamics is effectively governed by a
boundary action. This can be understood by integrating out the dilaton field in the JT
path integral13 corresponding to action (2.4) for Λ2 = − 2

L2
2
,

ZJT =
∫
DφDgµνexp

[ 1
16πG2

∫
d2x
√
gφ

(
R+ 2

L2
2

)
+ 1

8πG2

∫
φ=φb

dx
√
hφK

]
. (2.21)

The dilaton acts as a Lagrange multiplier in this integral. Integrating the dilaton along the
imaginary line with Dirichlet boundary condition at the boundary, we get a delta function,
hence

ZJT =
∫
Dgµνδ

(
R+ 2

L2
2

)
exp

[ 1
8πG2

∫
φ=φb

dx
√
hφK

]
. (2.22)

Using the delta function, the above path integral reduces to sum over field configurations
for which the condition R+ 2

L2
2

= 0 is met.
The effective theory can also be obtained by simply imposing the φ equation of mo-

tion (2.5) in the action. The bulk term of (2.4) vanishes and it reduces to the boundary
term involving the extrinsic curvature at the boundary C : (t(u), z(u)),

I = − 1
8πG2

∫
C
du
L2
ε

φb
ε
K, (2.23)

where the extrinsic curvature K is given by

K = t′(t′2 + z′2 + zz′′)− zz′t′′
L2(t′2 + z′2)3/2 . (2.24)

12This term contributes to the entropy of the higher dimensional extremal black hole, whereas the action
with dynamical dilaton contributes to the entropy beyond extremality.

13We will discuss only the disk topology here.
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Using the boundary condition (2.13) we get,

K = 1
L2

(
1 + ε2Sch[t(u), u]

)
. (2.25)

Here Sch[t(u), u] is the Schwarzian derivative of the time reparametrization mode t(u),
defined as

Sch[t(u), u] = −1
2
t′′2

t′2
+
(
t′′

t′

)′
. (2.26)

Then the effective action takes the following form14

I[t(u)] = − φb
8πG2

∫
duSch[t(u), u]. (2.27)

Evidently, the time reparametrization modes t(u) acquire an action. Variation of the action
gives the classical value of t(u). It should be noted that the action is SL(2, R) invariant.
This is a gauge freedom in the choice of modes since different t(u) related by SL(2, R)
transformations correspond to the same configuration. Hence, the path integral (2.22)
gets contribution from the boundary modes t(u) up to SL(2, R) identification with an
appropriate choice of boundary diffeomorphism invariant measure [21] and is given by

ZJT(β0) =
∫

dµ(t)
SL(2, R)exp

(
φ̄b

∫ β0

0
duSch[t(u), u]

)
. (2.28)

Here β0 is the range of the time direction and corresponds to the inverse temperature
β0 = 1/T0. φ̄b is the coupling constant of the Schwarzian theory, given as follows

φ̄b = φb
8πG2

. (2.29)

The functions t(u) are elements of Diff(S1)/SL(2, R), which is a symplectic manifold. Since
the path integral is over this manifold, the measure dµ(t) can be chosen to be the natural
measure induced from the symplectic form given by [43]

dµ(t) =
∏ dt

t′
. (2.30)

Furthermore in (2.28) dµ(t)
SL(2,R) implies measure dµ(t) modded by SL(2, R). Since the bound-

ary action is SL(2, R) invariant, the modes related by these gauge transformations should
be identified in the measure.

2.2.3 Evaluation of exact partition function

The classical solution of the boundary action (2.27) is of the form:

t(u) = tan
(
πu

β0

)
. (2.31)

14The constant term in the expression of K diverges as ε→ 0, but it can be removed by adding a counter
term 1

8πG2L2

∫
dx
√
hφ to the action. The resulting effective action is independent of ε.
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Doing a saddle point analysis, the dominant contribution to the partition function above
extremality is obtained from the on-shell action,

− ln δZ(T0) ' Ion-shell = −2π2φ̄bT0, (2.32)

whereas the free energy, mass, and entropy above extremality are,

δF = −T0 ln δZ(T0) = −2π2φ̄bT
2
0 , (2.33)

δS = −∂δF
∂T0

= 4π2φ̄bT0, (2.34)

δM = δF + T0δS = 2π2φ̄bT
2
0 . (2.35)

The ground state is given by the T0 → 0 limit such that δF = 0. In this limit, the time
reparametrization symmetry gets restored and this configuration is that of an extremal
black hole.

It was shown in [43] that the partition function is one-loop exact. Hence it is enough
to consider the contribution of small fluctuations around the classical solution,

t(u) = tan π

β0
(u+ ρ(u)). (2.36)

Expanding the action (2.27) to quadratic order in fluctuations, we find

I[ρ(u)] =− φ̄b
∫ β0

0
du

[
2π2

β2
0

+
(

4π2

β2
0
ρ′ + ρ′′′

)
+
(

2π2

β2
0
ρ′2 − 3

2ρ
′′2 − ρ′ρ′′′

)]
,

=− 2π2φ̄b
β0

− φ̄b
∫ β0

0
du

(
2π2

β2
0
ρ′2 − 3

2ρ
′′2 − ρ′ρ′′′

)
. (2.37)

The linear order term drops out due to periodicity of the boundary time coordinate. The
fluctuation parameter ρ(u) can be decomposed in Fourier modes,

ρ(u) =
∑
|n|≥2

cne
−i 2πn

β0
u
. (2.38)

Since ρ(u) is real, we have c∗n = c−n. The measure (2.30) now depends on these modes,
given by

dµ = (2π)3

β2
0

∏
n≥2

(n3 − n)dcndc∗n. (2.39)

The modes corresponding to n = 0,±1 are removed from the measure by construction since
these correspond to fluctuations due to infinitesimal SL(2, R) transformations. For this
quadratic action, the partition function takes the form of a Gaussian integral in fluctuations,

ZJT(β0) = e
2π2φb
β0

(2π)3

β2
0

∏
n≥2

(n3 − n)
∫
dcndc

∗
nexp

(
16π4φ̄b
β3

0
(n2 − n4)cnc∗n

)
. (2.40)
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The modes cn can be integrated out to give,

ZJT(T0) '
(
φ̄bT0

)3/2
e2π2φ̄bT0 , (2.41)

here we have substituted β0 = 1/T0. The corresponding thermodynamic quantities are
expressed in terms of the coupling φ̄b and the temperature parameter T0 as follows,15

δF = −2π2φ̄bT
2
0 −

3T0
2 log

(
φ̄bT0

)
, (2.42)

δS = 3
2 + 4π2φ̄bT0 + 3

2 log
(
φ̄bT0

)
, (2.43)

δM = 2π2φ̄bT
2
0 + 3T0

2 . (2.44)

3 Spherically symmetric near-extremal black hole in higher derivative
theory

The near-horizon geometry of a spherically symmetric extremal black hole in d+ 2 dimen-
sions factorises in AdS2×Sd. It has been shown in [44, 45] that if we dimensionally reduce
a higher dimensional Einstein-Hilbert-Maxwell theory on a spherically symmetric back-
ground and restrict ourselves to the s-wave sector, the effective lower dimensional theory
of the massless fields consist of a metric, gauge field and a dilaton. The classical solu-
tion of the effective theory rightly reproduces the extremal near horizon geometry of the
higher dimensional theory. Fluctuating this effective theory around the classical solution
results in JT gravity and it corresponds to the dynamics of near-extremal black holes in
the higher dimensions. The partition function of the JT gravity correctly gives the entropy
difference beyond that of an extremal black hole. In this paper we show that the above
equivalence of the near-extremal black hole dynamics to JT gravity holds even in presence
of a small perturbative correction to the higher dimensional theory. In particular we study
the JT equivalent model that appears after the dimensional reduction of four dimensional
Einstein-Hilbert-Maxwell theory in the presence of four derivative metric interactions on a
spherically symmetric background. We begin with an action in four dimensional spacetime
with a negative cosmological constant in presence of arbitrary four derivative corrections.
The bulk action is given by,

Ŝbulk = 1
16πG

∫
d4x

√
−ĝ
(
R̂− 2Λ− F̂ABF̂AB + λα1R̂

2 + λα2R̂ABR̂
AB

+λα3R̂ABCDR̂
ABCD

)
. (3.1)

Here G is the four dimensional Newton’s constant with dimension of length square and
the higher derivative coefficients α1, α2, α3 also have the dimension of length square. λ

is a dimensionless number controlling the strengths of the higher derivative terms. The
Gauss-Bonnet combination R̂2

GB = R̂2 − 4R̂ABR̂AB + R̂ABCDR̂
ABCD is a topological term

15From higher dimensional perspective, these quantities with appropriate choice of φb and G2 capture
the thermodynamics of a near-extremal black hole with temperature T0.
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in four dimensions and does not contribute to the equations of motion. Motivated by this,
the higher derivative part of the action can be rewritten as,

α1R̂
2 + α2R̂ABR̂

AB + α3R̂ABCDR̂
ABCD = α̃1R̂

2 + α̃2R̂ABR̂
AB + α3R̂

2
GB, (3.2)

where we have used α̃1 = α1 − α3 and α̃2 = α2 + 4α3. The rewritten bulk action is,

Ŝbulk = 1
16πG

∫
d4x

√
−ĝ
(
R̂− 2Λ− F̂ABF̂AB + λ(α̃1R̂

2 + α̃2R̂ABR̂
AB + α3R̂

2
GB)

)
. (3.3)

The boundary action, consistent with Dirichlet boundary condition on the metric, is given
by [46],

Ŝbdy = 1
8πG

∫
d3x

√
−ĥ
[(

1− λ 24
L2 α̃1 − λ

6
L2 α̃2

)
K̂ + λα̃2(−K̂F̂ 2 + 2K̂F̂ABF̂CB n̂An̂C

+2K̂abF̂
aDF̂ bD ) + 2λα3(Ĵ − 2Ĝ(3)

ab K̂
ab)
]
, (3.4)

where Ĵ is the trace of:

Ĵab = 1
3(2K̂K̂acK̂

c
b + K̂cdK̂

cdK̂ab − 2K̂acK̂
cdK̂db − K̂2K̂ab). (3.5)

The four dimensional cosmological constant Λ is given in terms of the four dimensional
AdS radius L as follows

Λ = − 3
L2 . (3.6)

The boundary term has explicit dependence on the gauge field strength. Also we are
interested in fixed electrically charged solutions, hence we cannot apply Dirichlet boundary
condition on the gauge field. Instead we impose the boundary condition δ(nAFAb) = 0.
For a well-defined variational principle for the gauge field, consistent with this boundary
condition, we need to add the following Maxwell boundary term [47–49],

ŜMaxb = 1
4πG

∫
d3x

√
−ĥn̂C F̂CDÂD. (3.7)

Adding (3.3), (3.4), and (3.7), the full four dimensional action is given by

Ŝ = Ŝbulk + Ŝbdy + ŜMaxb. (3.8)

3.1 Attractor solutions

In four dimensions, the near horizon geometry of a spherically symmetric extremal black
hole takes the form AdS2 × S2. At the level of two-derivatives, the near horizon values of
the S2 radius and that of AdS2 of an extremal black hole are given by [31],

Φ2
0 = r2

h = L2

6

√1 + 12Q2

L2 − 1

 , (3.9)

L2
2 = L2

6

1− 1√
1 + 12Q2

L2

 = Φ2
0

1 + 6Φ2
0

L2

, (3.10)
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where we have considered an electrically charged solution with charge Q. These values
get corrected in the presence of higher derivative corrections though the form of the near
horizon geometry of the extremal black hole remains the same as before. The corrected
attractor values of S2 and AdS2 radii are as follows,16

Φ̃0 = r̃h = Φ0 + λ(2α̃1 + α̃2)L
2 + 3Φ2

0
L2 + 6Φ2

0

6Φ0
L2 , (3.11)

L̃2 = L2 + λ(2α̃1 + α̃2) L2 + 3Φ2
0

(L2 + 6Φ2
0)5/2 6Φ0L. (3.12)

Here we have rewritten the charge parameter Q in terms of the unmodified S2 radius
using (3.9). It can be noted that if we set the particular combination of coefficients (2α̃1 +
α̃2) to zero, the extremal solution remains unchanged. It is a consequence of the near-
horizon configuration of the extremal solution, which is a product of maximally symmetric
spaces. Although the extremal solution does not change under the condition (2α̃1+α̃2) = 0,
non-extremal solutions get modified.

3.2 Dimensional reduction of four dimensional theory over S2

In this section, we reduce the four dimensional theory (3.8) to two dimensions in the s-
wave sector of massless fields.17 We consider spherically symmetric configurations in four
dimensions having the following form

ds2 = g̃αβdx
αdxβ + Φ2(xα)(dθ2 + sin2 θdϕ2), xα = t, r, (3.13)

Âµ = Ãµ, Âi = 0. (3.14)

The form of the gauge field corresponds to electrically charged configurations. However,
magnetic charge can also be considered since these are related by duality transformations.
Using the above ansatz, we integrate the four dimensional action (3.8) over the angular
coordinates θ and ϕ. The reduced action involves the scalar Φ, the two-dimensional metric
g̃µν , the two-dimensional abelian gauge field Ãµ and their derivatives. In two dimensions,
the curvature tensors have only one independent component which is the Ricci scalar R̃.
Also, the extrinsic curvature tensor can be written in terms of its trace. In particular, in
two dimensions we have,

R̃αβγδ = R̃

2 (g̃αγ g̃βδ − g̃αδ g̃βγ), (3.15)

R̃αβ = R̃

2 g̃αβ , (3.16)

K̃αβ = K̃h̃αβ , (3.17)

16The attractor values are derived in C using entropy function formalism.
17In principle, for a consistent Kaluza Klein reduction, all the massless modes should be included which

involve SO(3) gauge fields [50, 51]. In appendix F, we argue why these modes are not required in the present
considerations.
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where, K̃ is the trace of extrinsic curvature and h̃αβ = g̃αβ − ñαñβ is the induced metric
on the one-dimensional timelike boundary having a normal ñµ. Using these relations we
find the full action after dimensional reduction,

S̃ = S̃(0) + S̃α̃ + S̃GB. (3.18)

Here we have split the reduced action into three parts for convenience. S̃(0) is the λ0 order
action i.e. it contains the two-derivative terms only. The λ1 order action is further split
into two parts: S̃α̃ (depending on the couplings α̃1 and α̃2) and S̃GB (depending on the
coupling α3 of the Gauss-Bonnet term). The parts are as follows:

• Reduced two derivative part:

S̃(0) = 1
4G

∫
d2x

√
−g̃

[
Φ2(R̃− 2Λ− F̃ 2) + 2 + 2(∇̃Φ)2

]
+ 1

2G

∫
dx

√
−h̃Φ2(K̃ + 2ñαF̃αβÃβ), (3.19)

• Reduced higher derivative parts with arbitrary coefficients:

S̃α̃ = λ

4G

∫
d2x

√
−g̃
[

(4α̃1 + 2α̃2) 1
Φ2 + 4α̃1R̃− (16α̃1 + 4α̃2) ∇̃

2Φ
Φ − 4α̃1R̃(∇̃Φ)2

− (8α̃1+ 4α̃2) (∇̃Φ)2

Φ2 +
(
α̃1+ α̃2

2

)
R̃2Φ2− (8α̃1 + 2α̃2) R̃Φ∇̃2Φ + 4α̃2(∇̃α∇̃βΦ)2

+ (16α̃1 + 2α̃2) (∇̃2Φ)2 + (4α̃1 + 2α̃2) (∇̃Φ)4

Φ2 + (16α̃1 + 4α̃2) ∇̃
2Φ(∇̃Φ)2

Φ

]

+ λ

2G

∫
dx

√
−h̃
[(
−24α̃1

L2 −
6α̃2
L2

)(
Φ2K̃ + 2Φñ · ∇̃Φ

)
+ α̃2

(
Φ2K̃F̃ 2

+2Φñ · ∇̃Φ
(
2F̃αγF̃ βγ ñαñβ − F̃ 2

) )]
, (3.20)

• Reduced Gauss-Bonnet part:

S̃GB = λα3
4G

∫
d2x

√
−g̃

[
4R̃
(
1− (∇̃Φ)2

)
+ 8(∇̃2Φ)2 − 8(∇̃α∇̃βΦ)2

]
+λα3

2G

∫
dx

√
−h̃

[
4K̃
(
1− (∇̃Φ)2 + 2(ñ · ∇̃Φ)2

)
+8ñ · ∇̃Φ

(
∇̃α∇̃βΦñαñβ − ∇̃2Φ

) ]
. (3.21)

The above equations correspond to the reduction of both, bulk and boundary actions.
Here we notice that some of the higher derivative terms in the action will drop off when
2α̃1 + α̃2 vanishes, but nevertheless other higher derivative terms survive.
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3.3 Classical solutions of two dimensional field variables

Solving equations of motions from the above two dimensional action, we find the classical
solutions of the fields. A generic solution of the gauge field is given by,

F̃αβ = Q

Φ2
√
−g̃ εαβ , (3.22)

Here, Q is an integration constant which we identify with the charge of the higher dimen-
sional black hole,

Q2 = Φ2
0

(
1 + 3Φ2

0
L2

)
. (3.23)

We consider a constant solution for the dilaton. Using the gauge field solution, we get the
value of the constant,

Φ = Φ̃0 ≡ Φ0 + λ(2α̃1 + α̃2)L
2 + 3Φ2

0
L2 + 6Φ2

0

6Φ0
L2 . (3.24)

The scalar curvature takes a constant, negative value as

R̃ = − 2
L̃2

2
= −2

(
1
L2

2
− λ(2α̃1 + α̃2)L

2 + 3Φ2
0

L2 + 6Φ2
0

12
L2Φ2

0

)
. (3.25)

These solutions with constant dilaton profile correctly capture the near horizon field con-
figuration of the four-dimensional extremal black hole having S2 and AdS2 radii given
by equations (3.11) and (3.12) respectively [17, 19]. As in the four dimensional case, for
2α̃1 + α̃2 = 0, the extremal solution does not get any higher derivative corrections.

3.4 A useful Weyl transformation

As our goal is to get a JT-like theory in lower dimensions, we need to get rid of the kinetic
term of the dilation Φ. To do so, in this section, we perform a Weyl re-scaling of the metric
around the constant solution of the dilaton as,

g̃αβ = Φ̃0
Φ gαβ . (3.26)

As an artefact of this re-scaling the kinetic term of the dilaton disappears from the two
derivative part of the action. This feature will be essential for the later part of the work
and we shall come back to it in the next section. In terms of the re-scaled metric, the
two-dimensional action (3.18) takes the following form,

S̄ = S̄(0) + S̄α̃ + S̄GB, (3.27)

where the respective parts of the action take the following forms,

• Two derivative part is

S̄(0) = 1
4G

∫
d2x
√
−g

(
Φ2R+ 2Φ̃0

Φ − 2ΛΦΦ̃0 −
Φ3

Φ̃0
F 2
)

+ 1
2G

∫
dx
√
−hΦ2

(
K + 2 Φ

Φ̃0
nαF

αβAβ

)
. (3.28)
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• Arbitrary higher derivative part has the following form

S̄α̃ = λ

4G

∫
d2x
√
−g
[

(4α̃1 + 2α̃2) Φ0
Φ3 + 4α̃1R− (12α̃1 + 4α̃2)

(
∇2Φ

Φ + (∇Φ)2

Φ2

)

+ Φ
Φ0

{(
α̃1 + α̃2

2

)
Φ2R2−(6α̃1 + α̃2) (Φ∇2Φ + (∇Φ)2)R+ 4α̃2∇α∇βΦ

(
∇α∇βΦ

+2∇αΦ∇βΦ
Φ

)
+
(

9α̃1 + α̃2
2

)
(∇2Φ)2 +

(
9α̃1 + 9α̃2

2

) (∇Φ)4

Φ2

+ (18α̃1 + α̃2) ∇
2Φ(∇Φ)2

Φ

}]
+ λ

2G

∫
dx
√
−h
[(
−24α̃1

L2 −
6α̃2
L2 + α̃2

Φ2

Φ2
0
F 2
)

Φ2K

+
(
−36α̃1

L2 −
9α̃2
L2 + 4α̃2

Φ2

Φ2
0
FαγF βγ nαnβ −

5α̃2
2

Φ2

Φ2
0
F 2
)

Φn · ∇Φ
]
, (3.29)

• Whereas Gauss-Bonnet part is

S̄GB = λα3
4G

∫
d2x
√
−g
[
4R+ Φ

Φ0

{
− 4R(∇Φ)2 + 4∇2Φ(∇Φ)2

Φ + 8(∇2Φ)2

−8∇α∇βΦ
(
∇α∇βΦ + 2∇αΦ∇βΦ

Φ

)}]
+ λα3

2G

∫
dx
√
−h
[
4K + Φ

Φ0

{
− 4K(∇Φ)2

+8K(n · ∇Φ)2 + n · ∇Φ
(

8∇α∇βΦnαnβ − 8∇2Φ + 4(n · ∇Φ)2

Φ − 2(∇Φ)2

Φ

)}]
.

(3.30)

The re-scaled action also admits a constant dilaton solution when the spacetime has con-
stant negative curvature as given by (3.24) and (3.25).

3.5 Integrating out the abelian gauge field

Since the gauge field in two dimensions does not have any dynamics, it can be integrated
out18 to obtain an effective action involving the metric and dilaton as given by:

S = S(0) + Sα̃ + SGB, (3.31)

where the respective parts of the action in Euclidean signature are,

• Two derivative part is

S(0) = − 1
4G

∫
d2x
√
g

(
Φ2R+ 2Φ̃0

Φ − 2ΛΦΦ̃0 −
2Q2Φ̃0

Φ3

)
− 1

2G

∫
dx
√
hΦ2K (3.32)

18It is shown in appendix D that gauge fields in two dimensions can be integrated out [52] and the
effective action depends on the choice of a measure, which in this case depends on the dilaton. Since the
field strength is constant at the boundary, the higher derivative boundary terms do not contribute in the
gauge field integration.
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• Arbitrary part is given by

Sα̃ =− λ

4G

∫
d2x
√
g

[
(4α̃1 + 2α̃2) Φ0

Φ3 + 4α̃1R− (24α̃1 + 8α̃2) (∇Φ)2

Φ2

+ Φ
Φ0

{(
α̃1+ α̃2

2

)
Φ2R2−(6α̃1 + α̃2) (Φ∇2Φ + (∇Φ)2)R+ 4α̃2∇α∇βΦ

(
∇α∇βΦ

+2∇αΦ∇βΦ
Φ

)
+
(

9α̃1 + α̃2
2

)
(∇2Φ)2 +

(
9α̃1 + 9α̃2

2

) (∇Φ)4

Φ2

+ (18α̃1 + α̃2) ∇
2Φ(∇Φ)2

Φ

}]
− λ

2G

∫
dx
√
h

[
(−6α̃1 − 2α̃2)n · ∇Φ

Φ −
(24α̃1
L2

+6α̃2
L2 + 2α̃2Q

2

Φ4

)
Φ2K −

(36α̃1
L2 + 9α̃2

L2 −
α̃2Q

2

Φ4

)
Φn · ∇Φ

]
(3.33)

• Gauss Bonnet part is

SGB =−λα3
4G

∫
d2x
√
g

[
4R+ Φ

Φ0

{
− 4R(∇Φ)2 + 4∇2Φ(∇Φ)2

Φ + 8(∇2Φ)2

−8∇α∇βΦ
(
∇α∇βΦ + 2∇αΦ∇βΦ

Φ

)}]
− λα3

2G

∫
dx
√
h

[
4K + Φ

Φ0

{
− 4K(∇Φ)2

+8K(n · ∇Φ)2+ n · ∇Φ
(

8∇α∇βΦnαnβ− 8∇2Φ + 4(n · ∇Φ)2

Φ − 2(∇Φ)2

Φ

)}]
(3.34)

Thus we get a two dimensional effective theory for metric and scalar that describes the
physics of four dimensional system around extremality.

3.6 Fluctuation around extremality

The constant dilaton solution (3.24) and (3.25) of the two-dimensional theory captures
the near-horizon configuration of a spherically symmetric extremal black hole solution of
the four dimensional theory [17, 19]. Since we are interested in a near-extremal solution,
we fluctuate the fields around their classical values [19]. In two dimensions, the metric
has three independent components, two of which can be removed by choosing a particular
gauge so that the dynamics of the two-dimensional metric is now captured by a scalar ω.
In this gauge, the metric takes the following form

ds2 = e2ω(dt2 + dz2). (3.35)

Fluctuations around the classical solutions are given by,

Φ = Φ̃0(1 + εφ), (3.36)
ω = ω0 + εΩ. (3.37)
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Here ε is a small parameter controlling the order of fluctuations and the background ex-
tremal solutions are,

Φ = Φ̃0, (3.38)

e2ω0 = L̃2
2
z2 . (3.39)

We expand the full action (3.31) order by order in ε, where the dynamical fields are Ω
and φ. The metric and related quantities in the following actions are evaluated for the
background. The action at the order of ε0 is given by,

S0 =− 1
4G

∫
d2x
√
g

[
(Φ̃2

0 + λ 4α̃1 + λ 4α3)R

+ λ(2α̃1 + α̃2)
{

24
L2

(
1 + 3Φ2

0
L2

)
+ 2

Φ2
0

+ 1
2R

2Φ2
0

}]

− 1
2G

∫
dx
√
h

(
Φ̃2

0 − λ 2α̃2 + λ 4α3 − λ(2α̃1 + α̃2)12Φ2
0

L2

)
K. (3.40)

S0 is a constant which corresponds to the extremal entropy (C.9). One gets the same
results as the Wald Entropy for the system as well.

Whereas the action at linear order of ε,

S1 =− 1
4G

∫
d2x
√
g

[
2φΦ̃2

0

(
R+ 2

L̃2
2

)
+ λ(2α̃1 + α̃2)

(
1
2R

2Φ2
0 −

2Φ2
0

L4
2

)
3φ

− λ(6α̃1 + α̃2)Φ2
0R∇2φ− 2∇2Ω

{
Φ̃2

0 + λ4α̃1 + λ4α3 + λ(2α̃1 + α̃2)Φ2
0R
}

+ λ(2α̃1 + α̃2)
{ 4

Φ2
0
− Φ2

0R
2 + 48

L4 (L2 + 3Φ2
0)
}

Ω
]

− 1
2G

∫
dx
√
h

[
2φK

(
Φ̃2

0 + λ 2α̃2 − λ
24α̃1Φ2

0
L2

)
− λ(6α̃1 + α̃2)Φ2

0
L2

2
n · ∇φ

+
{

Φ̃2
0 − 2λα̃2 + λ4α3 − λ(2α̃1 + α̃2)12Φ2

0
L2

}
n · ∇Ω

]
. (3.41)

For the asymptotically AdS2 background with length scale L̃2, the ∇2φ and ∇2Ω terms
are total derivatives and they exactly cancel with the boundary terms n · ∇φ and n · ∇Ω
respectively. Rest of the terms in the bulk expression i.e. the φ and Ω potential terms are
identically zero. The resulting linear action is independent of the metric fluctuation Ω and
it reduces to a boundary term only, as shown below

S1 = − Φ̃2
0
G

∫
φ=φb

dx
√
h

(
1 + λ

2α̃2
Φ2

0
− λ24α̃1

L2

)
φK. (3.42)

Equations of motion of the fields Ω and φ can be obtained from the ε2 action. Solving
these equations we get a time-independent solution for φ as the following

φ = A1
z

+A2z
2, (3.43)

– 18 –



J
H
E
P
0
1
(
2
0
2
2
)
1
2
4

where A1 ans A2 are constants. The first term in (3.43) is linearly increasing towards the
boundary, whereas the second term dies off very fast, hence irrelevant for our purposes.

3.7 Boundary action from a modified JT action

In this section, we find the higher derivative modification of the JT theory that reproduces
the same boundary dynamics as action (3.42). Since we are considering small fluctuations
around extremality, we expect this action to be linear in the scalar. A subclass of the
action (2.3), which is linear in φ, is given by,

S = − 1
16πG2

∫
d2x
√
g

[
φ

(
R+ 2

L2
2

)
+ λV φ+ λZφR2

]
. (3.44)

Here, V has dimension of inverse length square whereas Z has dimension of length square
which we shall choose accordingly. For λ = 0, the action is that of the two derivative
JT theory and it describes the near horizon dynamics of a near-extremal black hole in
Einstein-Hilbert-Maxwell theory. The φ e.o.m. sets the scalar curvature to a constant. We
want the metric to be AdS2 with radius L̃2 given by (3.12).19 Demanding the e.o.m. of φ
to be R = − 2

L̃2
2
, we fix the constant V ,

V = −(2α̃1 + α̃2)L
2 + 3Φ2

0
L2 + 6Φ2

0

24
L2Φ2

0
− 4Z
L4

2
. (3.45)

The action thus becomes,

S = − 1
16πG2

∫
d2x
√
g

[
φ

(
R+ 2

L̃2
2

)
+ λZφ

(
R2 − 4

L4
2

)]
. (3.46)

For a well-defined variational principle with Dirichlet boundary conditions on the fields we
add an appropriate boundary term following the similar method of [46],

SGH = − 1
8πG2

∫
dx
√
h

(
1− λ4Z

L2
2

)
φK. (3.47)

Comparing with the linear action (3.42), we find,

G2 = G

8πΦ̃2
0
, (3.48)

Z = 12α̃1Φ2
0 − α̃2L

2

2(L2 + 6Φ2
0) . (3.49)

The full action is given by,20

S =− 1
16πG2

∫
d2x
√
g

[
φ

(
R+ 2

L̃2
2

)
+ λ

12α̃1Φ2
0 − α̃2L

2

2(L2 + 6Φ2
0)

(
R2 − 4

L4
2

)
φ

]

− 1
8πG2

∫
dx
√
h

(
1 + λ

2α̃2
Φ2

0
− λ24α̃1

L2

)
φK. (3.50)

The dilaton has a linearly varying solution when the metric is AdS2.
19It is the near-horizon AdS2 radius of the four-dimensional near-extremal black hole.
20In addition, a counter-term should be added such that the effective action remains finite as ε → 0.

Since the boundary curvature is zero, the counter-term differs from that of a two-derivative theory by a
constant scaling [46].
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Similar to the JT gravity action, the dilaton acts as a Lagrange multiplier in the
higher derivative corrected action (3.50). The Euclidean path integral computation for
this higher derivative corrected theory can be performed similarly as in subsection 2.2.2.
In the corresponding Euclidean path integral, the dilaton can be integrated out along
an imaginary line with Dirichlet boundary condition. This results in a delta function
constraint on the metric configurations such that the fields having non-zero contribution
to the integral must satisfy,(

R+ 2
L̃2

2

)
+ λ

12α̃1Φ2
0 − α̃2L

2

2(L2 + 6Φ2
0)

(
R2 − 4

L4
2

)
= 0 (3.51)

Since the higher derivative terms are of perturbative nature, we need to find the scalar R
that solves the above equation perturbatively in λ. For λ = 0, this equation corresponds to
R+ 2/L2

2 = 0. Using this the full equation can be solved iteratively to λ-order and we get,

R+ 2
L̃2

2
= 0. (3.52)

These geometries are locally AdS2 with length L̃2, having wiggly boundary curves C :
(t(u), z(u)) = (t(u), εt′(u)) and the boundary conditions are,

g|C = L̃2
2
ε2 , (3.53)

φ|C = φb
ε
. (3.54)

The boundary value φb is identified with the location of the boundary in the ac-
tion (3.42). Using these boundary conditions, the effective action becomes a Schwarzian
of the boundary modes. The path integral reduces to sum over these modes t(u) with
SL(2, R) identification,

Z(β) =
∫

dµ(t)
SL(2, R)exp

[
φ̃b

∫ β

0
du Sch[t(u), u]

]
, (3.55)

where, β is the periodicity of the boundary time coordinate and the coupling constant φ̃b
for the boundary action is given by,

φ̃b = φ̄b

(
1 + λ

2α̃2
Φ2

0
− λ24α̃1

L2

)
. (3.56)

Here φ̄b = φb
8πG2

is the coupling (2.29) of the unmodified boundary theory.

3.8 Thermodynamic quantities for small temperature

Since the near-horizon low energy dynamics is governed by an effective boundary action,
the free energy and other thermodynamic quantities of the near-extremal black hole can
be obtained from the Euclidean partition function corresponding to the boundary theory.
It is evident from (3.55) that the effect of the higher derivative corrections is included as
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a multiplicative constant in the boundary action. Hence the integration can be performed
exactly like (2.28). Following the method reviewed in section 2.2.3, we obtain the partition
function,

ZJT(T ) '
(
φ̃bT

)3/2
exp

(
2π2φ̃bT

)
. (3.57)

The parameter T = 1
β is identified with the temperature21 of the near-extremal black

hole in the higher derivative corrected Einstein-Maxwell theory. Comparing with the four-
dimensional black hole solution (E.1), we can identify the S2 radius Φ(r) = r. The near
horizon AdS2 factor of the black hole solution can be put into the form (2.8), following the
transformation,

z = L̃2
2

r − Φ̃0
. (3.58)

From the definition of the dilaton fluctuation,

φ = r − Φ̃0

Φ̃0
= L̃2

2
Φ̃0z

. (3.59)

From this relation, we identify the boundary value of the dilaton,

φb = L̃2
2

Φ̃0
. (3.60)

Using the expression of Newton’s constant (3.48) and the boundary value of dilaton (3.60),
we get the coupling (3.56),

φ̃b = L̃2
2Φ̃0
G

(
1 + λ

2α̃2
Φ2

0
− λ24α̃1

L2

)
. (3.61)

The thermodynamic quantities above extremality can be computed from the expres-
sions of section 2.2.3 in terms of the modified coupling φ̃b and temperature T ,

δF = −2π2φ̃bT
2 − 3

2T log
(
φ̃bT

)
, (3.62)

δS = 3
2 + 4π2φ̃bT + 3

2 log
(
φ̃bT

)
, (3.63)

δM = 2π2φ̃bT
2 + 3

2T. (3.64)

In absence of higher derivative corrections i.e. for λ = 0, we have

φ̃b = φ̄b = L2
2Φ0
G

,

T = T0,

where L2 and Φ0 are the unmodified AdS2 and S2 radii of the extremal black hole and T0
is the unmodified temperature of a near-extremal black hole with the same charge.

21The temperature can be written in terms of unmodified temperature T0 as discussed in (E.12).
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The first term in (3.64) comes from the saddle point contribution to the partition
function, whereas the second term arises due to exact computation of the path integral. As
stated in the introduction, a naive semiclassical analysis would imply that the black hole
cannot radiate even though it has a small finite temperature and there exists a mass gap
Mgap between an extremal black hole and a near-extremal black hole (with the smallest
temperature) having the same charge. It was argued in [40] that in this regime, the semi-
classical description breaks down since the fluctuations around the classical solution have
considerable contribution to the partition function and hence these quantum corrections
should be taken into account. The quantum fluctuations result in logarithmic corrections
to free energy and entropy and it implies that there is no mass gap in the spectrum because
the black hole energy is always greater than the average energy of radiation. The constant
Mgap is rather related to the scale of SL(2, R) symmetry breaking. In our computation we
find that the entropy of a near-extremal black hole in higher derivative modified theory
also has a similar logarithmic correction. This is one of the prime results of this paper.

4 JT equivalence of 4D near-extremal near-horizon dynamics with more
generic four derivative interactions

So far we have only considered four derivative metric interaction terms in the four dimen-
sional theory. In general, there are other possible four derivative corrections involving gauge
field e.g. RF 2, RµνρσF

µνF ρσ, (F 2)2, Fµν F
ν
ρF

ρ
σ F

σ
µ and covariant derivatives of gauge field

strength e.g. ∇ρFµν∇ρFµν , Fµν∇ν∇ρFµρ, with arbitrary coupling constants. In this sec-
tion we briefly discuss the effects of such corrections to our results. Let us first understand
how the near horizon extremal geometry get modified due to presence of such generic four
derivative interactions. We note that,

• The extremal background will get modified due to corrections having no covariant
derivatives of the gauge field strength.

• Owing to the SO(2, 1)× SO(3) near horizon symmetry, the gauge field strength and
scalars take constant values near the horizon of an extremal black hole. Due to the
form of the near horizon field configuration, covariant derivatives of the fields vanish
in this background [31]. Hence, the extremal solution will get no contribution from
corrections involving covariant derivatives of the gauge field strength.

For electrically charged solutions, after dimensional reduction, we will have a theory
of gravity coupled to a scalar and gauge field like before. The constant scalar solution
in this dimensionally reduced theory will capture the near-horizon configuration of the
(un)modified extremal solution. Unlike our previous considerations, the gauge field solution
will be modified. However in two dimensions, the gauge field strength has to be proportional
to the Levi-Civita symbol. Hence, we can obtain an effective theory involving metric and
dilaton where the gauge field terms will act as potential terms for the dilaton, depending on
the charge. In this effective theory, we can consider small fluctuations around the extremal
background and these fluctuations describe the near-extremal dynamics. The linearized
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action should reduce to a boundary action like (3.42) with a pre-factor depending on the
coefficients of the higher derivative interactions.

The remaining analysis of thermodynamics is identical to that of section 3. The near-
extremal dynamics can also be derived from a modified JT action (3.44) with suitable
choices of the constants G2, φb, V, and Z such that effectively it becomes the equivalent of
the boundary action like (3.42). The constants will clearly depend on the coefficients of
the four derivative corrections which can be evaluated by explicit computations. The cor-
responding entropy above extremality, equivalent to (3.63) can also be computed as before.

Thus we find that the near-horizon dynamics of a near-extremal black hole at low en-
ergy in a four dimensional theory having arbitrary four derivative corrections is captured
by a JT-like action (3.44) that contains a R2 correction only. The scalar equation of mo-
tion in such a theory gives a constant negative curvature solution with a length scale given
by the near horizon AdS2 factor of the four dimensional extremal black hole. Effectively,
this theory can be described by a boundary action like (3.47). With appropriate boundary
conditions, this boundary term becomes a Schwarzian derivative of time reparametrization
modes. We find that the R2 corrected JT theory shares all the aspects of the JT model since
the coupling of the R2 interaction contributes to a modification to the coupling constant
of the boundary theory only, which just modifies the symmetry breaking scale by a small
amount. We expect this equivalence between a near-extremal black hole in a higher dimen-
sional theory with arbitrary four derivative corrections and a R2 corrected JT action (3.44)
to hold even when started from dimension D > 4 with more generic four derivative terms.

5 Conclusions and open problems

In this paper we have studied the most generic four derivative corrected four dimensional
near-extremal black hole. We find that all the thermodynamic characteristics of this class
of black holes are captured in a particular four derivative (R2) corrected JT gravity the-
ory. The dynamics of this higher derivative corrected JT theory is given by a boundary
Schwarzian action. In particular, we show that the Schwarzian captures the near-extremal
entropy above extremality of the corresponding black hole. The spectrum does not have a
mass gap at low enough temperature and it is consistent with the modified semi-classical
analysis.

Let us quickly recall the importance of the above study. In the context of understanding
the statistical source of black hole entropy, it was shown long back in [53, 54] that if
we take into account a class of higher derivative corrections to the effective action that
describes the black hole, the entropy of the black hole solution reproduces the statistical
entropy. This was particularly important for the small black hole solutions that get a zero
entropy at the level two derivative gravity theory. The higher derivative corrections to
the effective theory are capable of stretching the horizon of a small black hole in arbitrary
dimensions and thus produces a non zero entropy [55] for them. Thus higher derivative
corrections play a fundamental role in understanding black hole entropy. In the present
work, the analysis is performed for the near-extremal black holes. We have shown that the
higher derivative corrected thermodynamics of the near-extremal black hole physics can be
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suitably incorporated in a higher derivative modified JT theory. The equivalence of this
thermodynamic entropy to that of a statistical entropy still remains an open question.

A byproduct of our computations is the modifications of the M/Q ratio at fixed charge
Q. The near-extremal mass to charge ratio can be found using (3.64), which is a new result
of this paper. For very low temperatures, the second term in (3.64) dominates, which is ob-
tained from an exact path integral computation. Depending on the higher derivative mod-
ifications coming from the coupling of boundary theory and the temperature, the M/Q ra-
tio22 changes. This change can have implications on possible ranges of the higher-derivative
couplings of the theory, based on the Weak Gravity Conjecture [56, 57]. This study is out
of the scope of this present paper, but nevertheless is an interesting one to look for.

Let us finish the paper with possible open directions. JT serves as toy model in
various studies. It has been seen that JT and JT-like two derivative dilaton gravity model
is dual to random matrix model [21, 23, 58]. There is study on the Freudenthal duality of
near extremal black hole entropy in supergravity in the framework of JT gravity [59]. It
would be interesting to find the implications of the higher derivative correction terms on
these dualities. Gravitational deformation of JT can be thought as T T̄ deformation of JT
coupled with matter [60]. It would also be interesting to generalize this study in the higher
derivative modified JT theories.

Another interesting direction to pursue is to compare our present results of near-
extremal black hole entropy with other ways of computing the thermodynamics of non-
extremal black holes. In particular such a result was given in [61]. It would be interesting
to find the correspondence between these two apparently different constructions at two
derivative theory and to extend it further to higher the derivative case. We would report
on this comparison in future.
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A Most generic dilaton gravity action in two dimensions

A.1 Two derivative action

The most generic form of dilaton gravity theory in two dimensions having at most two
derivatives is given by,

S = − 1
16πG2

∫
d2x
√
g [U1(Φ)R+ U2(Φ)∇µΦ∇µΦ + U3(Φ)] . (A.1)

22The result at extremality is given in (E.8), which is in agreement with the results of [56]. For a particular
class of 4D near-extremal solution, the ratio in classical regime is given in (E.16).
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Two out of the three functions U1, U2, U3 can be eliminated [24]. Assuming U ′1(Φ) 6= 0, the
scalar can be redefined as,

φ = U1(Φ). (A.2)

In terms of the redefined field, the action (A.1) takes the form

S = − 1
16πG2

∫
d2x
√
g
[
φR+ Ũ2(φ)∇µφ∇µφ+ Ũ3(φ)

]
. (A.3)

The function Ũ2(φ) can be eliminated by redefining the metric using a Weyl transformation
of the following form,

gµν → exp (2σ(φ)) gµν . (A.4)

such that 2σ′(φ) = −Ũ2(φ). Finally, the action reduces to

S = − 1
16πG2

[∫
d2x
√
g (φR+ V (φ)) + 2

∫
dx
√
hφK

]
, (A.5)

where the boundary term is added to satisfy the variational principle.

A.2 Four-derivative action

The most generic four-derivative corrected dilaton gravity action is given by [41],

S = − 1
16πG2

∫
d2x
√
g
[
φR+ V (φ) + λZ1(φ)(∇φ)4 + λZ2(φ)∇µ∇νφ∇µφ∇νφ

+λZ3(φ)∇µ∇νφ∇µ∇νφ+ λZ4(φ)R(∇φ)2 + λZ5(φ)R∇2φ+ λZ6(φ)R2
]
, (A.6)

where Z1, Z2, Z3, Z4, Z5 and Z6 are arbitrary functions of the dilaton φ. λ is a dimen-
sionless parameter controlling the strength of four derivative terms. Since the number of
independent components of the Riemann tensor in two spacetime dimensions is one and
that can be thought of as Ricci scalar R, only R2, R(∇φ)2, R(∇2φ) and other four deriva-
tive combinations of the derivatives of φ appear in the action. Some of the four-derivative
terms can be absorbed in the two-derivative part of the action using the following field
redefinition

gµν →
[
1 + λk1(φ)∇2φ+ λk2(φ)(∇φ)2 + λk3(φ)R

]
gµν

+λk4(φ)∇µ∇νφ+ λk5(φ)∇µφ∇νφ. (A.7)

Under this field redefinition, the two-derivative part √g(φR+ V (φ)) transforms as,

√
g(φR+ V (φ)) + λ

√
g

(
V

2 −∇
2φ

) [
(2k1 + k4)∇2φ+ (2k2 + k5)(∇φ)2 + 2k3R

]
+ λ
√
g∇µ∇νφ

[
(k1∇2φ+ k2(∇φ)2 + k3R)gµν + k4∇µ∇νφ+ k5∇µφ∇νφ

]
.
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We want to absorb higher-derivative terms using the field redefinition, keeping the form
of the two-derivative part invariant i.e. we do not want any two-derivative correction to
√
g(φR+ V (φ)). From this demand, we get

2k1(φ) + k4(φ) = 0,
2k2(φ) + k5(φ) = 0.

We further redefine the dilaton φ→ φ+λk3(φ)V (φ). The transformation of √g(φR+V (φ))
term

√
g
[
φR+ V (φ) + λk1(φ)(∇2φ)2 + λk2(φ)∇2φ(∇φ)2 − 2λk1(φ)∇µ∇νφ∇µ∇νφ

− 2λk2(φ)∇µ∇νφ∇µφ∇νφ− λk3(φ)R∇2φ
]
.

The k1(∇2φ)2 and k2∇2φ(∇φ)2 terms can be rewritten as linear combinations of the
six higher derivative terms of (A.6) up to total derivatives

k2∇2φ(∇φ)2 = −k′2(∇φ)4 − 2k2∇µ∇νφ∇µφ∇νφ,

k1(∇2φ)2 = k′′1(∇φ)4 + 3k′1∇µ∇νφ∇µφ∇νφ+ k1∇µ∇νφ∇µ∇νφ+ k1
2 R(∇φ)2.

Therefore, the transformed two-derivative part of (A.6) takes the following form

√
g

[
φR+ V + λ

(
(k′′1 − k′2)(∇φ)4 + (3k′1 − 4k2)∇µ∇νφ∇µφ∇νφ

− k1∇µ∇νφ∇µ∇νφ+ k1
2 R(∇φ)2 − k3R∇2φ

)]
. (A.8)

Plugging in the above expression (A.8) in the action (A.6), three out of six four-derivative
terms can be removed by choosing the arbitrary functions k1, k2, and k3. One such choice is,

k1 = Z3, k2 = 1
4(Z2 + Z ′3), k3 = Z5. (A.9)

The four-derivative dilaton gravity action depending on four arbitrary functions can be
written as,

S= − 1
16πG2

∫
d2x
√
g
[
φR+ V (φ) + λW1(φ)(∇φ)4+λW2(φ)R(∇φ)2+λW3(φ)R2

]
. (A.10)

B Variational principle in the presence of higher derivative corrections

We consider the four-dimensional Einstein-Maxwell action

S
(0)
bulk = 1

16πG

∫
d4x
√
−g (R− 2Λ− FµνFµν) . (B.1)

The action contains two derivatives of the metric. Taking small variations of the metric
leads to δgµν terms and its derivatives at the boundary. If we consider Dirichlet boundary
conditions on the metric i.e. if we hold the metric fixed at the boundary, the variations and
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their tangential derivatives vanish at the boundary but normal derivatives at the boundary
survive. To make the variation of the action zero, we need to add the Gibbons-Hawking
boundary term at the boundary, given by

SGH = 1
8πG

∫
d3x
√
−hK. (B.2)

For negative cosmological constant Λ = − 3
L2 , the vacuum solution is AdS spacetime which

has a timelike boundary at spatial infinity. Here hµν = gµν − nµnν is the induced metric
and nµ is the normal to the boundary. K = ∇µnµ is the extrinsic curvature.

We add a generic Gauss-Bonnet correction to the bulk action given by,
1

16πG

∫
d4x
√
−gλ

(
α1R

2 + α2RµνR
µν + α3RµνρσR

µνρσ
)
. (B.3)

The correction term contains four-derivative terms of the metric. In general, it is difficult
to obtain an exact boundary term for this action. But the Gauss-Bonnet combination
R2

GB = R2 − 4RµνRµν + RµνρσR
µνρσ keeps the equations of motion23 of second order and

the boundary term can be generalized for this particular combination. Hence for simplicity
we rewrite the correction as,

1
16πG

∫
d4x
√
−gλ

(
α̃1R

2 + α̃2RµνR
µν + α3R

2
GB

)
. (B.4)

Here α̃1 = α1 − α3 and α̃2 = α2 + 4α3. For α̃1 = α̃2 = 0, the Gibbons-Hawking boundary
term can be generalized [28],

SGB
GH = λα3

4πG

∫
d3x
√
−h(J − 2G(3)

µνK
µν), (B.5)

Here J is the trace of Jµν = 1
3(2KKµρK

ρ
ν + KρσK

ρσKµν − 2KµρK
ρσKσν − K2Kµν) and

G
(3)
µν is the Einstein tensor corresponding to the induced metric.

However for α̃1 6= 0 and α̃2 6= 0, the equations of motion are higher order so that an
exact boundary term cannot be found. Since we will treat the higher derivative terms as
perturbative corrections to the two-derivative action, we can obtain a boundary term for
which the total variation is O(λ2). In this case, we use the leading equation of motion:

Rµν = − 3
L2 gµν + 2FµρF ρ

ν −
1
2gµνF

2. (B.6)

The boundary term is given by [46],
λ

8πG

∫
d3x
√
−h

[
α̃2(−KF 2 + 2FµρF νρ (Knµnν +Kµν))− 6

L2 (4α̃1 + α̃2)K
]
. (B.7)

For the gauge field, we cannot choose Dirichlet boundary condition since the boundary
term contains gauge field strength. Hence we choose a boundary condition δ(nµFµν) = 0
which corresponds to fixing electric charge. We need an additional boundary term for the
gauge field part of the bulk action. It is the Maxwell boundary term

1
8πG

∫
d3x
√
−hFµνnµAν . (B.8)

23In four dimensions, Gauss-Bonnet combination is a topological invariant and hence it does not contribute
to the equations of motion.
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C Computation of attractor values using entropy function

We consider a spherically symmetric, electrically charged, extremal black hole solution in a
theory described by the action (3.3). The near-horizon field configuration consistent with
the SO(2, 1)× SO(3) isometry of the AdS2 × S2 geometry is given by [31],

ds2 = v1

(
−r2dt2 + dr2

r2

)
+ v2(dθ2 + sin2 θdϕ2), (C.1)

Frt = e. (C.2)

Integrating the lagrangian density over the sphere for this field configuration

f(v1, v2, e) = 1
2G(v1 − v2) + 3v1v2

2GL2 + 1
2G

v2
v1
e2

+ λ

2G(2α̃1 + α̃2)
(
v1
v2

+ v2
v1

)
− 2λ
G

(α̃1 + α3). (C.3)

From the definition of electric charge Q = Gq, we identify

∂f

∂e
= q,

e = Qv1
v2

.

Taking Legendre transformation of f with respect to the variable e we get the entropy
function E(v1, v2, q) = 2π(eq − f), where

E(v1, v2, q) = π

G

v1
v2
Q2 − π

G
(v1 − v2)− 3π

G

v1v2
L2

− λπ

G
(2α̃1 + α̃2)

(
v1
v2

+ v2
v1

)
+ 4λ
G

(α̃1 + α3). (C.4)

Extremizing the entropy function with respect to v1 and v2 we get the attractor values.
Without the higher derivative corrections (λ = 0), we get the S2 and AdS2 radii

v2|λ=0 ≡ Φ2
0 = L2

6

√1 + 12Q2

L2 − 1

 , (C.5)

v1|λ=0 ≡ L2
2 = L2

6

1− 1√
1 + 12Q2

L2

 . (C.6)

Treating the higher derivative terms perturbatively, we obtain the modified S2 and AdS2
radii,

v2 = Φ̃2
0 = Φ2

0 + λ(2α̃1 + α̃2) 12Q2/L2√
1 + 12Q2

L2

, (C.7)

v1 = L̃2
2 = L2

2 + λ(2α̃1 + α̃2) 12Q2/L2

(1 + 12Q2

L2 )3/2
. (C.8)
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The entropy of the extremal black hole is given by the value of the entropy function at this
extrema

Sext = E(L̃2
2, Φ̃2

0, Q) = πΦ2
0

G
− λ(α̃2 − 2α3)2π

G
− λ(2α̃1 + α̃2) 36πΦ4

0
GL2(L2 + 6Φ2

0) . (C.9)

D Integrating out gauge fields in 2D

In this appendix, we shall integrate out the gauge field from the theory described in sec-
tion 3.4 following [52]. The gauge field dependent bulk part of the action (3.27) is as
follows,

Sg = − 1
4G

∫
d2x
√
−gΦ3

Φ̃0
F 2 = 1

2G

∫
F ∧ ∗F. (D.1)

In 2D, F must be proportional to the volume form Ω since it is a two-form and the
Hodge dual ∗F is a scalar:

F = fΩ, Ω = 1
2

Φ̃0
Φ3
√
gεµνdx

µ ∧ dxν . (D.2)

In Euclidean signature, (D.1) can be written in terms of the scalar f as,

Sg = − 1
2G

∫
Ωf2. (D.3)

We consider an action involving the gauge field and an auxiliary scalar X such that it is
linear in gauge field,

S = −G2

∫
ΩX2 − i

∫
XF. (D.4)

It can be readily seen from the path integral by performing a Gaussian integral for the
auxiliary scalar that the action (D.4) is equivalent to the action (D.3). It can also be
obtained by putting the X equation of motion back into (D.4) which is,

f = iGX. (D.5)

The gauge field can be easily integrated out using (D.4) since it is linear in field strength.
Using XF = d(XA)− dXA, (D.4) takes the following form,

S = −G2

∫
ΩX2 + i

∫
dXA− i

∫
∂
XA. (D.6)

The boundary term cancels with the Maxwell boundary term. The gauge field dependent
part24 of the path integral can be integrated out easily,∫

DAe−i
∫
dXA = δ(dX). (D.7)

24The gauge field strength terms at the boundary (3.29) at order λ do not affect the integration since
gauge field strength is constant at the boundary.
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The X integral now gets contribution from dX = 0 only, which fixes the value of X to
a constant Xb. Using (D.5), we relate this constant to the charge Q from asymptotic
boundary conditions,

X = Xb = −iQ
G
. (D.8)

The corresponding effective action depends on the measure Ω and acts as a potential term
for the field Φ in the full action,

Seff = Q2

2G

∫
d2x
√
g

Φ̃0
Φ3 . (D.9)

E Spherically symmetric charged black hole solution in four dimensions

A spherically symmetric electrically charged black hole in the four dimensional Einstein-
Maxwell theory with generic Gauss-Bonnet correction, described by the action (3.1), has
the following form

ds2 = −f1(r)dt2 + dr2

f2(r) + r2dΩ2, (E.1)

f1(r) = 1− 2M
r

+ Q2

r2 + r2

L2 + λα̃1
24Q2

L2r2 + λα̃2

(
2Q2

L2r2 −
2Q2

r4 + 2MQ2

r5 − 2Q4

5r6

)
, (E.2)

f2(r) = 1− 2M
r

+ Q2

r2 + r2

L2 + λα̃1
24Q2

L2r2 + λα̃2

(
6MQ2

r5 − 4Q2

r4 −
12Q4

5r6

)
, (E.3)

Frt = Q

r2 + λα̃2
Q3

r6 . (E.4)

The parameters M,Q,L have dimensions of length and the higher derivative coefficients
α̃1, α̃2 have dimensions of length square. For an extremal black hole, the horizon is lo-
cated at

rh = Φ̃0 = Φ0 + λ(2α̃1 + α̃2)L
2 + 3Φ2

0
L2 + 6Φ2

0

6Φ0
L2 . (E.5)

Φ0 is the extremal horizon without higher derivative corrections and it is related to the
charge by,

Q2 = Φ2
0

(
1 + 3Φ2

0
L2

)
. (E.6)

At extremality, the mass is given by,

Mext = Φ0 + 2Φ3
0

L2 − λ(L2 + 3Φ2
0) α̃2L

2 − 12(5α̃1 + α̃2)Φ2
0

5L4Φ0
. (E.7)

For fixed charge black hole, the mass to charge ratio at extremality is given by

Mext
Q

=
(
Mext
Q

)
λ=0

[
1 + λ

L2 + 3Φ2
0

5(L2 + 2Φ2
0)

(
(5α̃1 + α̃2) 12

L2 −
α̃2
Φ2

0

)]
. (E.8)

– 30 –



J
H
E
P
0
1
(
2
0
2
2
)
1
2
4

The corresponding unmodified ratio is,(
Mext
Q

)
λ=0

= L2 + 2Φ2
0

L
√
L2 + 3Φ2

0

. (E.9)

The above ratio is greater than one, as an artefact of the AdS geometry. In the presence of
the higher derivative modification, the ratio gets modified as in (E.8). Keeping the charge
fixed, if we slightly increase the mass above extremality, the extremal horizon splits into
two close but distinct horizons. The horizons are given by

r± = Φ̃0 ±∆, (E.10)

such that f1(r±) = f1(r±) = 0. The mass above extremality is proportional to ∆2. The
temperature of the near-extremal black hole is defined as,

T = 1
4π

√
f ′1(r+)f ′2(r+). (E.11)

The temperature gets modified due to the higher derivative corrections. The corrected
temperature is given by,

T = T0 − λT0
L2 + 3Φ2

0
2L2Φ2

0(L2 + 6Φ2
0)2 (α̃2L

4 + 6(6α̃1 + 5α̃2)L2Φ2
0 + 72(α̃1 + α̃2)Φ4

0), (E.12)

where T0 is the temperature of the near-extremal black hole in the absence of higher
derivative corrections. The shift in horizon can be expressed in terms of T0,

∆= T0
2πL2Φ2

0
L2 + 6Φ2

0

(
1−λ 3(L2 + 3Φ2

0)
2L2Φ2

0(L2+6Φ2
0)2 (α̃2L

4+ 2(−2α̃1 + 5α̃2)L2Φ2
0 + 24(α̃1+2α̃2)Φ4

0)
)
.

(E.13)

If instead, we fix the temperature to T0 even under the presence of higher derivative
corrections, the near extremal mass is given by,

MNE = Mext + 2π2L2Φ3
0

L2 + 6Φ2
0
T 2

0

+ λT 2
0

2π2Φ0(L2 + 3Φ2
0)

(L2 + 6Φ2
0)3 (α̃2L

4 + 6(6α̃1 + 5α̃2)L2Φ2
0 + 72(α̃1 + α̃2)Φ4

0) (E.14)

The shift in horizon is given as,

∆ = T0
2πL2Φ2

0
L2 + 6Φ2

0

(
1− λ (L2 + 3Φ2

0)
L2Φ2

0(L2 + 6Φ2
0)2 (α̃2L

4 − 24α̃1L
2Φ2

0 + 36α̃2Φ4
0)
)

(E.15)

Mass to charge ratio of the near-extremal black hole solution,

MNE

Q
=
(
MNE

Q

)
λ=0

[
1 + λ

L2 + 3Φ2
0

5(L2 + 2Φ2
0)

(
(5α̃1 + α̃2) 12

L2 −
α̃2
Φ2

0

)

+ λT 2
0

4π2L2(L2 + 3Φ2
0)

5(L2 + 2Φ2
0)2(L2 + 6Φ2

0)3
(
3α̃2L

6 + 20L4(3α̃1 + 4α̃2)Φ2
0

+ 276α̃2L
2Φ4

0 + 144(−5α̃1 + α̃2)Φ6
0
)]
. (E.16)
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F Kaluza-Klein reduction on S2

In general, an infinite tower of modes appear in lower dimensions upon the dimensional
reduction of a theory over a compact manifold. For the reduction of Einstein-Maxwell
theory over a sphere, the lower dimensional theory can be consistently truncated to the
massless sector consisting of finite number of modes [50].

We are interested in studying the near-horizon dynamics of a spherically symmetric
near-extremal black hole in four-dimensional Einstein-Hilbert-Maxwell theory under the
presence of four derivative interactions from two-dimensional perspective. The higher di-
mensional fields (i.e. metric and U(1) gauge field) can be decomposed in terms of spherical
harmonics Ylm(y), where yi denote the coordinates on S2 and the labels l,m correspond
to (2l + 1) dimensional representation of SO(3) with −l ≤ m ≤ +l [51].

The massless fields generated through the dimensional reduction are two dimensional
metric, dilaton, corresponding to the radius of the sphere, U(1) and SO(3) gauge fields.
The 2D metric, dilaton, and U(1) gauge field are constant on the sphere and these fields
correspond to the l = 0 sector of the decomposition. At l = 1 sector, only massless fields are
the SO(3) gauge fields which transform covariantly under the diffeomorphisms on S2. For
l ≥ 2, all the fields are massive. Therefore, the dimensional reduction ansatz for consistent
Kaluza-Klein reduction in massless sector has the following form,

ds2 = gµνdx
µdxν + Φ2(xα)gij(dyi +Ki

mAmµ dxµ)(dyj +Kj
nAnνdxν), (F.1)

Âµ = Ãµ, Âi = 0. (F.2)

Here, xµ are the coordinates on the 2D manifold with metric gµν and the metric on S2 is
gij , which has an SO(3) isometry group generated by the Killing vectors Ki

m. Am are the
SO(3) gauge fields and Ãµ is the U(1) gauge field.

Following [40, 52], the 2D gauge fields can be integrated out to give an effective action
for the metric and dilaton. This effective theory can also be simply obtained by plugging in
the equations of motion for the gauge fields in the action. In this theory, the effects of the
gauge fields are realized as a potential term for the dilaton depending on the U(1) charge Q
and SO(3) charges l(l+1). In the presence of higher derivative corrections, after integrating
out the gauge fields, we should get various interaction terms involving the metric and the
dilaton which will also depend on the charges Q and SO(3) charges l(l + 1).

In the effective theory, the constant dilaton solution with l = 0 describes the near-
horizon structure of a spherically symmetric extremal black hole. Since we are interested
in the thermodynamics of a spherically symmetric near-extremal black hole with the same
charges as the extremal solution, we can safely work with the l = 0 sector modes only
which leads to choosing the dimensional reduction ansatz (3.13). Nevertheless, if we uplift
a solution with non-zero values of l from two to four dimensions, it will correspond to
a rotating black hole. Therefore the SO(3) modes are important in the study of the
thermodynamics of Kerr-Newman black holes at low temperature.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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