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ABSTRACT: Celestial operator product expansions (OPEs) arise from the collinear limit
of scattering amplitudes and play a vital role in celestial holography. In this paper, we
derive the celestial OPEs of massless fields in string theory from the worldsheet. By
studying the worldsheet OPEs of vertex operators in worldsheet CF'T and further examining
their behaviors in the collinear limit, we find that new vertex operators for the massless
fields in string theory are generated and become dominant in the collinear limit. Mellin
transforming to the conformal basis yields exactly the celestial OPEs in celestial CFT. We
also derive the celestial OPEs from the collinear factorization of string amplitudes and the
results derived in these two different methods are in perfect agreement with each other.
Our final formulae of celestial OPEs are applicable to general dimensions, corresponding to
Einstein-Yang-Mills theory supplemented by some possible higher derivative interactions.
Specializing to 4D, we reproduce all the celestial OPEs for gluon and graviton in the
literature. We consider various string theories, including the open and closed bosonic string,
as well as the closed superstring theory with N' =1 and N = 2 worldsheet supersymmetry.
In the case of N = 2 string, we also derive all the SL(2,R) descendant contributions in the
celestial OPE; the soft sector of such OPE just yields the wi4~ algebra after rewriting in
terms of chiral modes. Our stringy derivation of celestial OPEs thus initiates the first step
towards the microscopic realization of celestial CF'T dual to string theory in flat spacetime.
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1 Introduction

The quest for quantum gravity is one of the most fundamental questions in theoretical
physics. Although the quantization of quantum gravity is notoriously hard, string theory
has provided us with explicit examples of non-perturbative theories of quantum gravity.
Moreover, string theory enables us to learn some profound aspects of quantum gravity, in
particular the holographic nature. Although the holographic principle was first proposed
based on black hole entropy [1, 2], such an idea was very vague until a concrete model was
realized in string theory [3]. In string theory, such a holographic duality, now known as
the AdS/CFT correspondence, naturally arises from the duality between open and closed
strings. After more than two decades of intensive study, the AdS/CFT correspondence has
been tested very precisely and has also taught us even more profound aspects of quantum
gravity, like entanglement. Considering the very beautiful and successful story of AdS/CFT
correspondence, it is natural to wonder whether we can study quantum gravity beyond
AdS. One interesting and natural generalization is flat spacetime, where the boundary is
null and even non-smooth. This turns out to be very difficult and very little progress
was made in the past. On the other hand, the last two decades also witnessed fruitful
achievements in scattering amplitude both computationally and conceptually. In particular,
the idea of on-shellness, locality, unitarity and causality has been playing a crucial role.
Interestingly, scattering amplitudes are just the observables of quantum field theories in flat
spacetime. Bridging the ideas from two seemingly unrelated areas together, a promising
program towards flat holography, called celestial holography, starts to emerge in recent
years [4, 5]. The precursor of celestial holography comes from noticing the equivalence
between asymptotic symmetries and soft theorems [6, 7]. Since then various interesting
progress has been made. See [8, 9] for recent reviews. In spite, the study of celestial
holography has been mostly focusing on symmetries and using the bottom-up approach.
This is drastically different from the AdS/CFT correspondence which has various top-
down concrete realizations in string theory. It is then natural to ask whether we can also
find a concrete realization for celestial holography in string theory.! This is particularly
important for several reasons. First of all, the celestial amplitudes seem to be very UV
sensitive and it is only well-defined in theories, like string theory, where the UV behavior is
soft enough. Secondly, string theory may be a very promising candidate for establishing an
exact microscopic model for celestial holography. Once we have an exact model for celestial
holography, we can then test various salient ideas there. In AdS/CFT, string theory has
helped us to discover the correspondence between N = 4 SYM and type IIB string on
AdSs x S, which is believed to be exact and has been tested precisely.

The goal of this paper is to initiate the first step towards the microscopic realization of
celestial holography in string theory. More specifically, we will derive the celestial operator
production expansion (OPE) from string theory. Although we have not been able to
construct explicitly the celestial CFT for string theory, it turns out that the worldsheet of

'For previous studies of celestial holography related to (ambitwistor) string theory, see [10] for celestial
string amplitudes, and [11, 12] for conformally soft theorems and celestial double copy in ambitwistor string
theory.



string theory already implies something nontrivial about celestial holography. In particular,
we can derive the celestial OPEs from the worldsheet OPEs. Our derivations show that
there are indeed some universal connections between celestial sphere and string worldsheet.

The celestial OPEs characterize the behavior of two operators in the coincident limit
in celestial CFT (CCFT). They can be obtained from the collinear limit of scattering
amplitude by performing the Mellin transformation. Since the collinear factorization is
a universal property of scattering amplitude, the celestial OPE is supposed to also play
an important role in CCFT. Moreover, the soft sector of celestial OPEs also encodes the
underlying symmetry of CCFT and the bulk scattering amplitude. In particular, starting
from celestial OPEs, an infinite dimensional holographic symmetry algebra has been dis-
covered recently [13, 14].2 In the case of gravity, this symmetry algebra is just the w o0
algebra [14]. The supersymmetric extension and the infinite Ward identities associated
with this algebra were studied in [15]. See [16, 17] for other aspects of celestial OPEs.

The celestial OPEs can be obtained in several methods. The most direct way is to
consider the collinear limit of scattering amplitude and then perform the Mellin transforma-
tion [18-20]. Alternatively, one can bootstrap celestial OPEs using conformal symmetry
as well as the input from soft theorems [21]. Using these methods, the general formula
of celestial OPEs for spinning massless particles with cubic interactions in 4D has been
recently derived in [15, 22].

In this paper, we offer another derivation of celestial OPEs from the string worldsheet
perspective.? The general strategy is as follows. In celestial holography, the celestial ampli-
tudes are defined as the Mellin transformation of momentum space scattering amplitude?
and can be regarded as the correlation functions of celestial operators (Oa, (x1)Oa,(x2) - - -)
in some putative CCFT on the celestial sphere living at boundary null infinity [5, 24]. This
is very similar to the scattering amplitudes in string theory which are computed by the
correlator of vertex operators in worldsheet CF'T. One can make the relation more precise
by introducing the so-called conformal vertex operators, which are defined as the Mellin
transformation of the standard vertex operators. The celestial string amplitude can then be
alternatively regarded as the correlator of conformal vertex operators (Va, (x1)Va,(z2) - -)
in worldsheet CFT. The fact that the celestial amplitude can be computed in two different
ways thus suggests a map between worldsheet CFT and CCFT, and correspondingly a map
between conformal vertex operators VA and celestial operators Oa. Then the derivation of
OPEs of celestial operators, namely limg, 4, Oa, (21)Oa,(22), boils down to the compu-
tation of OPEs of conformal vertex operators limy, 2, VA, (21)Va, (22). It turns out that
the latter can be obtained by first computing worldsheet OPEs of two vertex operators and
then performing the Mellin transformation.? More precisely, the vertex operator is given by

2Tt is more precise to refer to this algebra as holographic chiral algebra as this algebra governs the chiral
subsector of soft particles with positive helicity only and all the symmetries are generated by chiral currents.

3The celestial OPEs in 4D can also be derived from ambitwistor string [23].

“In this paper, we only consider massless fields, which just correspond to the gluon and graviton/
dilaton/Kalb-Ramond field in string theory.

5In principle, one may compute the worldsheet OPE of two conformal vertex operators directly, and
then take the collinear limit. We will not pursue this approach in this paper, and leave it to the future.



some operator V,(z) in the worldsheet CFT integrating over the worldsheet.’® The celestial
OPE, namely limg, .z, VA, (21)Va,(z2) can ultimately be recovered from the worldsheet
OPE for a pair of vertex operators V), (21) and V,,(22). Explicit computation shows that
worldsheet OPE in the collinear limit p; - po — 0, which is equivalent to the celestial coin-
cident limit 21 — 3, localizes to a delta-function §2(z; — 22) on the worldsheet, and thus
produces another vertex operator after integrating over the worldsheet. This thus fulfills
our derivation of celestial OPEs from the worldsheet perspective. And the computation
essentially reduces to computing OPEs of free fields on the worldsheet.

We will consider various string theories, including open and closed bosonic string, and
closed superstring with N' =1 and N = 2 worldsheet supersymmetry. For bosonic string,
we compute the worldsheet OPE of two vertex operators for massless gluons in open string
and obtain the vertex operators for various open string fields including tachyon, gluon, etc.
In spite, we show that in the collinear limit, only the gluon in the OPE is dominant and
the rest can be ignored, up to some subtle boundary contact terms. The boundary contact
terms arise when the two vertex operators in the OPE hit another vertex operator. They
can partially be attributed to the remnant contribution from tachyon. On the other hand,
the gluon contribution in the worldsheet OPE of two gluon vertex operators comes with
a delta-function in the collinear limit. Doing a worldsheet integral and performing the
Mellin transformation thus give us the celestial OPEs for gluons. The same derivation is
also done for massless fields in the closed string, namely graviton, Kalb-Ramond two-form
field and dilaton, and we obtain the celestial OPEs for these fields. We also discuss the
OPEs between open and closed string massless fields. This is a bit different; at tree level
the open string vertex operator sits only at the boundary of the disk, while the closed
string vertex operator sits in the interior of the disk. Nevertheless, we manage deriving the
corresponding celestial OPEs, namely the fusion of gluon and graviton to another gluon.
However, it is known that graviton can also appear in the celestial OPE of two gluons [21].
The derivation of this OPE from the open-closed string setup is not clear, as one needs
to produce a graviton vertex operator in the interior of the disk from two gluon vertex
operators sitting on the boundary of the disk. We sidestep this problem by considering
heterotic string where one can realize both gluon and graviton/dilaton/Kalb-Ramond field
from the closed string. Using similar techniques in the bosonic string, we are able to derive
all the celestial OPEs involving gluon and graviton/dilaton/Kalb-Ramond field, including
the fusion of two gluons into one graviton. We also discuss the OPEs of NS-NS massless
fields in type I and type ITA/IIB string theory.

To further corroborate our celestial OPEs, we study string amplitudes in the collinear
limit and then perform the Mellin transformation, which offers another derivation of ce-
lestial OPEs. As in the generic theories of gauge and gravity, the three-point amplitude is
just enough to determine the leading behavior of celestial OPEs. After performing these
computations for string amplitudes, we find that the final results agree exactly with those
derived from worldsheet. Our derivation is for string theory in critical dimensional flat
spacetime, namely 26 dimensions for bosonic string and 10 dimensions for superstring.

SHere to be explicit, we only discuss the integrated form of vertex operators in closed string. The
discussions for open string and the unintegrated form of vertex operators are the same.



Nevertheless, the final formulae of celestial OPEs are supposed to be applicable to general
dimensions, corresponding to Einstein-Yang-Mills theory with some possible higher deriva-
tive corrections. Specializing to four dimensional spacetime, we recover all the gluon and
graviton OPEs obtained in the literature [15, 18, 21, 22].

Last but not least, we also generalize our discussions to the N' = 2 string theory [25-
27]. The N = 2 string theory has critical dimension four and is consistent in (2, 2) signature
instead of Minkowski signature. The simplest version of N/ = 2 theory has a massless de-
gree of freedom and the low energy effective action for AV = 2 string is described by some
kind of self-dual gravity. Following the same approach in other string theories, we study
the worldsheet OPE of two vertex operators in A/ = 2 string theory and derive the cor-
responding celestial OPE. The derivation is very similar to other string theories with less
supersymmetry. However, now we can go further beyond the previous derivations. It turns
out that in the spacetime with (2, 2) signature, we can even derive all the SL(2, R) descen-
dants in the OPE. We find that this essentially comes from the momentum conservation,”
and the fact that in (2,2) signature we can vary two celestial coordinates independently
and thus have more freedom to realize the collinear limit. These two features, SL(2,R)
descendants and independent celestial coordinates, are just the crucial ingredients in the
derivation of wi4s symmetry. Indeed, focusing on the soft sector of our OPE with de-
scendants and then performing the mode expansion, we recover the wjy~ algebra [13, 14].
We thus provide a stringy derivation of the w;; o Symmetry, although it is indirect.® In
a more direct derivation, one should be able to construct the chiral generators in wi4eo
algebra directly from N = 2 string worldsheet. We will make some comments and defer
the direct construction to the future.

This paper is organized as follows. In section 2, we will first discuss the kinematics in
general dimensions in terms of celestial variables, and then review the vertex operators in
bosonic string theory. A map between conformal vertex operators and celestial operators
will also be discussed. In section 3, we will derive the celestial OPEs from the worldsheet
OPEs in bosonic string theory. In section 4, we will generalize the worldsheet derivation
of celestial OPEs to superstring. In section 5, we will derive the celestial OPEs from the
collinear factorization of string amplitude. The specialization of celestial OPEs to 4D will
be presented. In section 6, we will derive the celestial OPE with descendants in ANV = 2
string theory, and then discuss the resulting wjo, algebra. In section 7, we will conclude
and discuss possible future directions. The paper also has two appendices. In appendix A
we will collect all the computation details of worldsheet OPEs of vertex operators in various
string theories. In appendix B, we will derive the celestial OPE between gluon and graviton
in the open-closed string setup from both the worldsheet perspective and the amplitude
approach.

Notation. The spacetime dimension is D+ 2 and the corresponding celestial sphere is D-
dimensional. We will use u,v,---=0,1,---, D, D+1 for spacetime indices and a, b, c,--- =

"Translational symmetry has also been used to constrain descendants in OPE purely at the level of
CCFT [22, 28].

8Note that the w1, algebra appeared before in self-dual gravity and N = 2 string, but in a different
way [25, 29].



1,-+-, D for celestial sphere indices. The spacetime metric is n** = diag(—1,+1,--- ,+1)
and the celestial sphere metric is §%°, hence we will raise or lower the position of celestial
sphere indices freely. Repeated indices are summed over. We use z{ to label the a-th
coordinate of the i-th particle/operator. We use y and z, z for the open and closed string
worldsheet coordinates, respectively, and z,z for the celestial sphere coordinates in four
dimensional spacetime. The polarizations are denoted as (, &, e, &, while € always refers to
infinitesimal quantity.

2 Preliminary

In this preliminary section, we will introduce some tools and background knowledge that
will be used in the later sections. We will first introduce the kinematics of massless fields
in terms of celestial sphere variables in general dimensions. Then we will review the vertex
operators in open and closed bosonic string theory. Finally we will introduce the notion of
conformal vertex operators and their relation with celestial operators.

2.1 Kinematics in general dimension

We consider D + 2-dimensional spacetime with D-dimensional celestial sphere at null in-
finity. A null momentum k can be parametrized as [30]

. . )2 ()2
kM (wp, @) = nwpk(z),  B(z) = <1+2()m12()> conkt=(=1,0%1).

(2.1)
where wy, > 0, n = £1 labels out-going/in-coming particles and (x)? = 3, 2%2%. We also
introduce the following basis of polarization vectors

el(x) = el(k) = Ok () = (29,0, —2%),  p=(0,b,D+1). (2.2)

These D polarization vectors transform under the vector representation of the little group
SO(D) for massless particles. And we have

nn=k-k=c,-n=e4-k=0, n-k=1, €aEh = Ogp . (2.3)
So the vectors {”—\g’, €a, ”—\7;} form a complete orthonormal basis. The little group rotates

polarization vectors e, but leaves n,]% invariant.
For different momenta, we further have the following identities
~ ~ 1 ~

k(l‘z) . l%(x]) = I%z . /fj = —*(ivij)z, k‘i . sa(xj) =X

2 “, ealm) ep(ry) =67, (24)

where x;; = z; — x;.

Taking the product of two polarizations, we get D? two-index tensors



It is reducible under the little group SO(D) and can be decomposed into symmetric trace-
less, anti-symmetric and singlet representation:

D+2)(D-1 D(D -1
O+20-1) PO,

D®D=

1. (2.6)

They just correspond to the polarizations of graviton, Kalb-Ramond (KR) 2-form field and
dilaton, respectively:

1 14 v 1 174
el = §(sggb +enel) - SOall el = muely =0, el = el = el
(2.7)
1
Eﬁfb] = §(€5€Z — EZSZ) = —E'{a“} = —a’ﬁ)’;} : (2.8)
w L p L
e = Seace = BH , (2.9)
where we also introduced
" () = 6%l (x)e (2) = ™ — nPk¥ (z) — n"k*(z) . (2.10)

We will also frequently use the abstract polarization tensors which satisfy various
properties. In particular, the polarization vector of gluon e* satisfies

e-e=1, k-e=0, et ~ et + \EH (2.11)

where the equivalence in the last equation is guaranteed by the gauge invariance. The last
property allows us to choose a gauge where

e-n=20. (2.12)
We can then decompose any gluon polarization vector as

et ~ ansg, (2.13)

up to a pure gauge.

Similarly, for closed string massless spectra, we will use e to denote the polarization
tensors. Let us first consider graviton and KR 2-form field, whose polarization tensors
satisfy

ey =1, kuet =k e =nuet =0, e =se", e ~el 4 k(Y 4 sCHEY
(2.14)
where k- ¢ = 0, and s = £1 for graviton and 2-form field, respectively. They can be
expanded in terms of basis (2.7), (2.8) that we constructed before:

D D
Vo v Vo pv
et ~ E Cab€ (gp) et ~ E Cab€lqp) » (2.15)
a,b=1 a,b=1
a<b or a=b<D a<b

for graviton and Kalb-Ramond 2-form field, respectively.



For dilaton, we have
ey =1, et = et ket =nu et =0, (2.16)

where n is another null direction defined such that n-n = 0,n -k = 1. This fixes the dilaton
polarization to be (2.9)

eV — %(nuu o nM]%V B nl/]%p) = gV — Z %555 . (2.17)

a

One easily check that e#"n,, = 1.
In four dimensional spacetime with D = 2, it is convenient to introduce complex
coordinates on the celestial sphere

1 z+z 9  —i(z—2)

T = , ¢ = —— z =zt +iz?, z=ua—iz?. (2.18)
2 2
Then we can represent the momentum as k = nwkl;:“ where
N 1 1
=S (14 (@2, 20,2001 = (2)?) = S (14 22,24 2,—i(z - 2),1-22) . (2.19)
2 2
The two polarization vectors are &} = (x1,1,0, —2b), eh = (22,0,1, —22). Tt is more
convenient to define the polarization vectors in the helicity basis:
1 1 1 1
e = (e —ieh) = —=(z,1,—i,-2), &' =—"<(ef +ieh)=—=(z,1,i,—2), (2.20
b= (e i) = s ) T (et +ist) = ). (220)

satisfying e -ey =e_-e_ =0, ey -e_ =1.
For graviton, the polarization tensors for two helicities are

g

L1 . .
el =elell = 5(511 —ehy Fiely F zeé‘f) = 57{’1) F 15?1”2) : (2.21)

2.2 Vertex operator in bosonic string

In this subsection, we review the vertex operators in open and closed bosonic string theory.

2.2.1 Open string vertex operator

At tree level, open string amplitudes are computed by the correlator of vertex operators
inserted at the boundary of the disk, or equivalently the boundary of upper half plane,
which we parametrize by y € R.

There are two types of vertex operators. The integrated vertex operators have the

following general structure”>°

V“W=/@W%@=/@¢”@W“W (2.22)

9Note that the product of operators at coincident points should always be understood as normal ordered
product.

10We will sometimes abuse the terminology of vertex operators and call both V and V vertex operators.
The exact meaning should be clear from the context.



while the unintegrated vertex operators take the form
VA(R) = )V () = ely) 7 M ()XW (2.23)

where ¢ is the ghost and the position y in the unintegrated vertex operator is arbitrary.
Here ¢ is the number of derivatives in 7/]:\,4 (e.g. 0yX(y) has £ = 1), and A are the extra
quantum numbers labelling the vertex operators, including the polarization vectors, Chan-
Paton factors, etc.

The spectra of fields in open string are given by

—k-k:M2:1<N D>:1<N—1), (2.24)

o 24 o

where N € Z>¢ is the level and in the last equality we set D = 24 for the consideration of
critical bosonic string.

When the momentum becomes on-shell, namely k? — —M? = (1 — N)/c/, the vertex
operator becomes BRST invariant and should has weight 1,

h(VkA,f) _ h(,y/kA,f) + h(elkX) -/ + ale — 17 (225)

Since on-shell momentum satisfies k? = (1 — N)/a/, we see that £ is essentially the level
N, namely N = /.
At level 0, we have tachyon whose vertex operator is given by!!

VO=ekX  MP=—= (2.26)
At level 1, we have gluons whose vertex operators are [31]
Vi = e Xttt XA M2 =0. (2.27)
where X = 8%X' The polarization e, satisfies (2.11)
k2 =k-e=0, e-e=1. (2.28)

For the gluon vertex operator, we also have the Chan-Paton factor ¢4, which is just the
gauge algebra generator with color index A. The corresponding structure constant, denoted

as fABC is fully anti-symmetric.

2.2.2 Closed string vertex operator

At tree level, the closed string amplitudes are computed as the correlator of vertex operators
on the sphere, or equivalently the complex plane, which is parametrized by coordinates z, z.
The integrated vertex operator has the structure

VAL() = / &2z V(2 5) = / &z YA (2, 2)ek X (7)) (2.29)

"For simplicity we will set all the coefficients in front of the vertex operators to be 1. Meanwhile, in
the final formulae of celestial OPEs, we will normalize the overall coefficient properly to make the result as
simple as possible. All the couplings can be easily restored, as we keep track of the overall factors in the
intermediate steps.



while the unintegrated vertex operator takes the form
VAUE) = e(2)e(2) VM (2, 2) = e(2)E(2) VA (2, )R X (22) | (2.30)

where ¢, ¢ are the ghosts and the position z, z in the unintegrated vertex operator is arbi-
trary. Here £ is the number of holomorphic derivatives in 7/,;4’[ (which is also the number of
anti-holomorphic derivatives), and A are the extra quantum numbers labelling the vertex
operators, such as the polarization tensors.

The closed string spectra are given by

2 ~ D 4
— . = 2 = — — ) — = — —
kok=M a,<N+N 224> ~(v-1). (2.31)
where we use the level matching condition N = N € Z>g, and in the last equality we set
D = 24 for critical bosonic string.
In order to be BRST invariant, the on-shell vertex operator should have holomorphic
and anti-holomorphic weights 1, namely

a/

BV = W) (e ) = 0+ TR =1, (2.32)
and the same for h. Therefore, on-shell momentum should satisfy &% = 4(1 — ¢)/a’. Com-
paring with the mass-shell condition in (2.31), we again have N = /.

At level 0, we have closed string tachyon whose vertex operator is given by
0 ik-X 2 4
V0= X M= (2.33)
At level 1, we have massless fields whose vertex operators are given by [31]
Vi = e, 0XFOXVeN X M?=0. (2.34)

Depending on the structure of polarization tensor e, , the vertex operator can represent
different fields, either graviton, or KR 2-form field, or dilaton. See (2.14)—(2.17) for the
properties and explicit forms of polarization tensors corresponding to these different fields.

2.3 CFT on the worldsheet and on the celestial sphere

Given the vertex operators, one can then compute the string amplitudes. In general, the
string amplitude is schematically computed by the following formula [31]

Al oy o) e S0 €[ dm (A ) VA ) - DA (s
topologies g,m
(2.35)
where we need to sum over all the topologies for the string worldsheet, and for each topology,
we need to incorporate the contribution from various ghosts properly and integrate over
the moduli space of Riemann surface. The world-sheet correlator is evaluated through
the path integral of Polyakov action with operator insertions. The computation of string

~10 -



amplitude is very hard as one goes to higher loops, but it simplifies dramatically at tree
level. At tree level, the topology is fixed and there are no moduli to integrate over.
As a consequence, the string amplitude at tree level is given by

Ap(ki ko, k) = (VA () VA28 (By) - VA (B, ) s - (2.36)

In the case of open string, the worldsheet is given by the disk, which is conformally equiv-
alent to the upper half complex plane. The vertex operators are inserted on the boundary
of the disk. In particular, among n vertex operators, three of them should take the uninte-
grated form (2.23) and the rest in the integrated form (2.22), in order to soak up the zero
modes. For gluon amplitudes, we should take a trace over the product of Chan-Paton fac-
tors t, which are ordered on the boundary according to their positions. So different ways
of inserting the vertex operators on the disk boundary give rise to different Chan-Paton
factors, and one needs to include all orderings of insertions. For closed string amplitude,
the worldsheet is given by the sphere, which is conformally equivalent to the whole complex
plane. Again to soak up the zero modes, we should choose three vertex operators in the
unintegrated form (2.23) and the rest in the integrated form (2.29).

On the other hand, the celestial amplitudes for massless particles are given by the
Mellin transformation of momentum space amplitudes [4, 5, 24]'2

Mn(fﬂl, s ,l’n) = H / de ijj_lAn(’fhwi];‘i), An(k‘z) = An(k‘l) 5D+2 (Z ]431) .
j=1"0 i=1

(2.37)
In contrast to the momentum space amplitude which has manifest translational invariance,
the celestial amplitude is designed to make the Lorentz symmetry manifest. Indeed, in
D + 2 dimensional Minkowski spacetime we have Lorentz group SO(1, D + 1), which is
also the conformal group of CFT in D dimensions. The place supporting such a conformal
group is just the celestial sphere, which sits at the boundary null infinity of spacetime. The
celestial amplitude defined above can thus be regarded as the correlator of some celestial
operators in a putative celestial conformal field theory living on the celestial sphere

My (z1,- - ,zn) = (Oa,(z1) - Oa, (zn))cs - (2.38)

Note that for simplicity of notation we have stripped off all the extra labels of the operators
except for their positions and dimensions. The representation of bulk scattering amplitude
in terms of boundary correlator is just reminiscent of the holographic principle.

So the string amplitude can be in principle obtained in two different ways, either (2.36)
or (2.38). To make the connection more precise, we can also define the vertex operators in
the conformal basis through a Mellin transformation

Vﬁ’e’”(x) = / dw WA WA (wk) . (2.39)
0

12WWe focus on massless fields in this paper. For massive fields, the Mellin transformation needs to be
modified, see [5, 24, 32].
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We will refer to it as the conformal vertex operators in this paper. Then the celestial string
amplitude is essentially given by the correlator of conformal vertex operators evaluated in
worldsheet CFT

Mp(x1,-- ,2n) = Va, (1) - VA, (Tn))wWs - (2.40)

The very similar structure between (2.38) and (2.40) suggests a map .# from world-
sheet CF'T (WSCFT) to celestial CFT (CCFT), such that the two Hilbert spaces are related
as follows

F Hwscrr — Hecorr - (2.41)

In particular, there is a one-to-one map between string conformal vertex operators and
celestial operators
F VA — OA. (2'42)

Our goal in this paper is to derive the celestial OPEs

O, (21)O0n, (32) ~ Zcﬁf@ (1, 22)On, (22) - (2.43)

Due to the map %, it is sufficient to compute

Va, (1) Va, (@2) ~ 37 O87 5 (21, 22)Va, (22) - (2.44)
J

We would like to have several remarks here. In spite of the similarity between (2.38)
and (2.40), the celestial CFT and worldsheet CFT are very different in many aspects.
The worldsheet CFT is always two dimensional, while the dimension of celestial CFT
depends on the bulk spacetime dimension. Moreover, the worldsheet CFT and thus its
correlator (2.36) are explicit and well-defined, while for celestial CFT which has many
unusual features, our understanding remains poor and is mostly about symmetry. The map
F suggests that these two are supposed to be related in some way. In particular, since the
integrated conformal vertex operator Va (x) arises after doing the worldsheet integration, it
is reasonable to speculate that the celestial CFT arises from worldsheet CF'T by some kind
of projection of worldsheet coordinates and going to the labelling space, namely momentum
k or A,z space. On the other hand, the similarity between (2.38) and (2.40) is for tree
level amplitude. At loop level, the string amplitude in (2.35) is more complicated and only
admits perturbative expansion. The CCFT correlator (2.38) is however defined formally
but exactly. To reconcile the difference, the celestial CFT is supposed to also admit some
expansion, and then one may compare the two sides order by order. This is indeed the case
in AdS/CFT where the gauge theory in the CFT side admits large- /N expansion and can
be compared with the loop expansion of string theory. Understanding these points may
be useful for us to establish a concrete and exact model of celestial holography in string

theory.

3 Celestial OPE from worldsheet OPE in bosonic string

In this section, we will discuss the derivation of celestial OPEs from worldsheet OPEs
following the strategy outlined in the introduction. The string theory we will consider in
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this section is bosonic strings, either open or closed. As a result, we are able to derive
the gluon OPEs and graviton/dilaton/KR field OPEs from open and closed strings, re-
spectively. The mixed OPEs involving both gluon and graviton/dilaton/KR field can be
derived from the open-closed string setup, which will be deferred to appendix B. All the
OPEs involving gluon, graviton/dilaton/KR as well as their mixture will also be discussed
in the heterotic superstring in the next section. In section 5, we will also confirm our
celestial OPEs through the collinear factorization of string amplitude.

3.1 OPE in open string

Let us now discuss how to derive the celestial gluon OPEs from the worldsheet OPEs in
open string theory. As we described before, it is sufficient to compute the OPE (2.44). For
this aim, in principle we need to know Va, (21, y1)Va,(22,y2) for arbitrary yi,ys, even if
they are very far away from each other on the worldsheet. Here Va(z,y) is essentially the
Mellin transformation of the integrand Vi (y) in (2.22). Since we are only interested in the
collinear limit z; — z9, it is reasonable to speculate that the celestial OPE is determined
by the worldsheet OPE.!® This will be our worldsheet approach to deriving the celestial
OPEs. In particular, the celestial gluon OPE can be derived by computing'?

VA(p»C)VB(Q»g):/dyldlﬂe(yl_y2)VpI?{((y1)Vf§(y2)+/dy1dy29(92_yl)‘/:;i(yQ)Vpé((yl) (3.1)
:/dyldyﬁ(yl —y2)C- XeP X (y1)&- X' X (yo)t 1P
+/dyldy29(y2—yl)f'Xeiq'X(y2)C'X€ip'X(yl)tBtA7 (3.2)

where we used the explicit form of gluon vertex operators in (2.27) and ¢, ¢ are the po-
larization vectors. We will first compute the worldsheet OPE of two V’s in the integrand;
then we will exam the behavior of this worldsheet OPE in the collinear limit. As we will
see, in the collinear limit, the worldsheet OPE actually localizes to a delta-function, which
just gives another vertex operator. Performing the Mellin transformation then leads us to
the celestial OPEs.

Before going to the details, let us add some comments about the formula above (3.2).
Since we are interested in the worldsheet OPE, the two vertex operators should be next to
each other and there is no other operator insertion between them. Nevertheless, we have
two different contributions in the formula above, corresponding to two different orderings
of vertex operators on the boundary. On the other hand, the formula above should be
understood in the correlator where other operator insertions indeed appear; this gives rise

13To be clear, the worldsheet OPE refers to the OPE of two operators approaching each other on the
worldsheet, namely z1 — 22, while the celestial OPE refers to the OPE of two celestial operators approaching
each other on the celestial sphere, namely x1 — x2. The celestial coincident limit x1 — x2 is equivalent to
the collinear limit.

Tnstead of considering two vertex operators in the integrated forms (2.22), one can also choose one
in the integrated form (2.22) and the other in the unintegrated form (2.23). Their OPE leads to another
unintegrated vertex operator. The final results for celestial OPEs obtained in these two ways are the same.
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to the upper and lower limits of integration for the integrals. As we will see, this brings
the subtle issue of boundary contact terms.

Now we can start the derivation of celestial OPEs. As the first step, we need to
compute the worldsheet OPE for the integrand in (3.2). This can be done as the fields X
are essentially free scalars. All the detailed computations of worldsheet OPEs are given in
appendix A. In particular, the worldsheet OPE for the integrand in (3.2) is given by (A.18):

¢ XX (1) X (y2) ~ —2a/yfs P RPN (6 - 20/C g € -p)

tiyia(Coq € X —€p X+ (C-€-20C-q&p)p-X) 4+ | (1),

where we assume y; > ya.

We will take p,q on-shell, namely p?> = ¢> = 0, then the polarization vectors (,&
satisfy the properties in (2.11). We are interested in the collinear limit where p,q are
almost parallel and thus p-q — 0, implying that p+ ¢ is almost on-shell. However, in order
to gain information from the OPE, we can not take the strict collinear limit. Instead, we
will denote K = p+ ¢ and choose a nearby null momentum k = wk/;: such that K = k + ev,
where v is a generic momentum of order one. Then we have

K =2p-q=k?+2ck-v+év-v=2ck- v+ O(?). (3.4)

Hence € has the same order of magnitude with p - ¢ in the collinear limit. Without loss
of generality, we will define € = 2a/p-¢q. Then K = p+ g = k + O(e). In the following
discussions, we will try to simplify (3.3) in such a collinear limit.
Given the null momentum k&, we can define the basis for polarization vectors £, (k) (2.2),
which satisfy (2.10)
M (k)ev (k) = "™ — n"kY — nVk" (3.5)

Contracting with p* X", we get
pcoca-X=p-X—-pnk-X—X-nk-p. (3.6)
Using n-p = 1 (2.3) and hence n-p = wyn - p = wy,'® the above equation can be written as
p-X=p- sasaXJr—k pX -n+ ka (3.7)
=P Eq&q- X—I—ip g X -n+ pk‘ X +0(e), (3.8)

where we used k-p= (p+q+ O(e))-p=p-q+ O(e) as p> = 0.
Similarly, we can contract (3.5) with ¢“X", yielding

(-5a5a-X:C-X—C-nl%-X—X-nl%-C:C-X—%X-nq-(—l—ﬁ’(e), (3.9)
k

15We will only consider the celestial OPEs of celestial operators corresponding to out-going particles in
this paper, son = 1.
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where we used k-C = (p+q+0(€))-¢ = q-C+O(e) and (-n = 0 due to (2.11) and (2.12) .16
As a result, we have

C-Xﬁ-p—c'eaaa-f(f'p+ijX%q-Cp‘éJr@’(E)? (3.10)
and similarly
6-X4~q=£-€a6a-XC-q+wlkX-npfq-CﬂLﬁ(E)- (3.11)
Taking the difference, we find
§-X(q—C X p=£Coecaca X(q—Ceaca-XEp+O(e). (3.12)
With (3.8) and (3.12), we can simplify the terms in the square bracket of (3.3)
(¢C-e—20'Coqe-p)+iyn(C-q&- X —&pC-X+(C-€—20/C-q€-p)p-X) (3.13)
Gty (Cra€rznen X =€ pCocaca X4 hogprensy X
+C-h~§(1p g X n+ pk: X)>+ﬁ(e),
where we have introduced
W =gt —2alq"p” . (- h =G =CE-2d/C g€ p. (3.14)

Therefore the worldsheet OPE (3.3) can be written as

¢ XePX(y)E - XelX (y) (3.15)
~ =20/ P12 ) X g (3.16)
—2za'y2apq1’(p+q (C q&-ec— §-p§-€c+C-h-§p-£C)5c-X (3.17)
— 2 « R €X np- qy2apq Leilp+a)-X (3.18)

Wk
—20/Ch € Lp 2001 gilpta)X (3.19)
+ 055 ) + ﬁ’(2ap-Q), (3.20)

where all terms on the right hand side are evaluated at y. This is the worldsheet OPE in
the collinear limit. To obtain the celestial OPE, we use the following identities to analyze

Note that ¢ - n = 0 can be realized by choosing a specific gauge. This is inessential as the amplitude is
gauge invariant or BRST invariant.
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the dominant contributions. For infinitesimal e and positive > 0, we have!”

e—1 e—1—n 2(_1)71 n e+n
ex’ " =20(x), ex :T5 (), e“"=0, n=0,1,2,---. (3.21)

We first observe that in the worldsheet OPE, if we only look at the X factors, (3.16)
and (3.17) are just the integrand in the vertex operators of tachyon and gluon. Furthermore,
if we take the limit 20/p-q¢ — 1 and use identities in (3.21), (3.16) gives the factor y29 772
d(y12)/(2a/p - ¢ — 1) and the pole just singles out the tachyon. Therefore in the limit
2a/p-q — 1, the term (3.16) dominates the OPE. Doing the y integral, (3.16) indeed gives
the tachyon vertex operator, whose mass-shell condition is just (p +¢)?> =2p-q = 1/a/.

The more interesting limit for our purpose is the collinear limit 2a/p - ¢ — 0. We will
argue that in this limit only (3.17) survives as a singular term in the OPE at leading order,
while the rest are sub-dominant.

For (3.18), the factor p- ¢ y%g‘/p'qfl in the collinear limit p- ¢ — 0 becomes §(y12) after
using (3.21). This is of order one, hence we will ignore it.

For (3.16), the factor 423772 just leads to &(y12)/p - ¢ following (3.21). This looks
singular in the collinear limit. For vertex operators, we need to perform the integral as
in (3.2), which schematically gives

[ v 0001 = 2)8 () DX (42) > [ s (5 — ) PPV X ) + [y 060N g

(3.22)
The [6(y1 —y2)]? factor in the first term arises from the collision of y1, 32 and it is a contact
type term. After integrating over y;, we end up with §(0) multiplied by [ dy2 el P+ X (1),
which is however not BRST closed as (p + ¢)2 — 0. The second type of term with an
unrestricted integration range is a total derivative, which normally does not have contri-
butions in amplitudes due to BRST invariance. When we insert it in the correlator, there
are also other operator insertions, then the second type of term gives rise to the bound-
ary term when the position of two operators in OPE coincides with the rest of operator
insertions. We will refer to these types of terms as boundary contact terms. Since these
boundary contact terms arise when operator insertions collide and correspond to very sin-
gular configurations, we expect that they would finally cancel out and play no role in our
OPE analysis. On the other hand, (3.16) corresponds to tachyon whose mass-squared is
negative, the boundary contact terms can thus be partially understood as the remnant
contribution from fields in string theory with lower masses. Physically, we also expect the
collinear limit should kill the contribution from these fields at leading order.

7 They arise from the generalized function

lim <|z|*" = §(z)

e—0
as well as its derivatives. For this representation of delta function, see https://mathworld.wolfram.com/
DeltaFunction.html. The equality here should be understood when we integrate them against some test
functions with proper fall-off conditions. In the current context of computing string amplitudes, this kind of
equality should be understood in the correlator of worldsheet CFT. In unitary CFT, any correlations at two
different points are power-law suppressed with distance, which is expected to give some fall-off conditions.
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For (3.19), 9e'Pt0X = 9ekX 1 G(e) = k- Xe'*X + O(e). Since the polarization
is along the momentum direction, this is supposed to a pure gauge or BRST-exact term
and hence does not contribute. Nevertheless, we can also analyze this term as before. The
factor yiy P01 hocomes § (y12)/p-q in the collinear limit. And then performing the integral
gives

[ durdy 01 = )3 (1200 TN (o) =5 [y 0N () (3.23)

which takes the same form we encountered in (3.22).
Actually we can combine (3.16) and (3.19) together and get

—2a’y%3/p'q726i(p+q)'XC h-&—2d'¢-h-€ %yfg/p'qflaei(m'q)'x (3.24)
k

2wpd'p - q+wi —wp
Wk

— 20y IO X g —2d/C-h-€ %Za[yfg’f"q—lei<p+q>~x} ’
where the first term is the same as (3.16) up to a constant, while the second term is a total
derivative and again would lead to at most boundary contact terms.

Therefore, up to the subtle boundary contact terms, all terms except for (3.17) in the
world-sheet OPE do not give rise to singular terms in the collinear limit p - ¢ — 0. So we
just need to focus on (3.17).

To proceed, we choose the polarization vectors as the basis defined in (2.2) ¢ =
ca(p), & = e(q), and furthermore use the notation p = wyp(x1), ¢ = wed(z2), k =
wkl%(arg) where x123 are the coordinates on the celestial sphere. Then the world-sheet
OPE (3.3), (3.17) becomes

ca(p) - XeP X (y1)en(q) - X&' (y2)

.2
~ —2i o/y]

5P X (o) (p) - g e1(9) 20 —24(a) P 2alp) 2o +ealp) he2b(a) pree )eer X

(3.25)
The next step is to rewrite all the terms on the right hand side in terms of celestial variables
wi, ;. Using identities in (2.4),

o) - ep(x;) = 6%, (3.26)

ea(p) - h-ep(q) = ca(p) - en(q) — 20/2a(p) - q £p(q) - p = 0% + 2d/wpwgaiyrly,  (3.27)

ca(p) - q ep(q) - ec = —wya§yd™, eb(q) - P ea(p) - €0 = wprhyd®. (3.28)

To simplify p-e., we need to use the momentum conservation. Using (2.1), the momentum
conservation K = p+ q = k + ev can be written as

14 (z1)2 | 1—(21)2 14 (22)2 . 1—(29)2 14+ (23)2  1—(z3)2

2 2
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where the infinitesimal quantity € is now given by
e=2a'p-q=—dwywy(212)?. (3.30)
From (3.29), it is easy to see that
Wk = wp +wg + O(€), wEry = wpx] + wexh + O(e). (3.31)
As a result, we have

w w
28y = —L 2% 4+ O(€), x4y = —L—2% + O(e) 3.32
13 Oy + g 12 (€) 32 wy + g 12 (€) ( )
and furthermore

Wplq
wp + Wy

p-ee=wpp-ec(k) = wpafs = Tiy + O(e). (3.33)

With these identities (3.27), (3.28), (3.33), the OPE (3.25) simplifies to

ea(p) - X (y1)ep(q) - X' (yo) (3.34)
b gac a 5bc_ WpWq ,.c § 9 b
~ eyﬁlwpx12 Tt oy P10 — 2005 Letaharty e X DX L ()
pP-q

~ —4i 5(y12) Ie(p,2a(p)i 0,50(a); ') £ - X TN 4 (),
where used (3.21) and have defined

ea(P) - qen(q) - ec —ep(q) - pea(p)-ec +ea(p)-h-ep(q) p-ec

Ie(p o) 0 2(a); ) =

2p-q
(3.35)
B wpx’béac —l—wqa:‘ﬁébc - ww}f:q $125“b 2a ” i x12wl{2x12
wpwq(T12)?
(3.36)
= —I.(0,55(@)i . 2ap)i ) (3.37)

which is anti-symmetric in p and ¢, as shown above.
Doing the integral as in (3.2), we thus get

V)V () = /dy1dy2 0(y1 —y2) ( 4i6(y12) L (p, Ea(p);q’gb(q);a/))gc.X T )t
+/dy1dy2 0(y2 —y1) (_4i5(y21)fc(q’5b(‘I)?p’ Ea(p)m/))gc'X OO et
- fABCIC(p’ €a(p);q,€b(Q);O/) X /dyg 5C.X ei(p+q)<X(y2)tC

o fABCIc(paga(p)§Q75b(Q)§O/) xVE(p+aq),
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where we used the anti-symmetric property of I. in (3.37) and the notation V,(p) =
V(p,ea(p)), Vo(q) = V(q,ep(q)) and so on. We also used the integral

/dy1dy2 O(y1 — y2)0(y12) f (y2) /dyz (0 /dyQ f(y2) (3.38)

with 6(0) = 5
Finally, we need to perform the Mellin transformation (2.39) in order to go to the
conformal basis. Using the following integral,

/ dwlw / dws wAQ Lw B(wl + w2)? F(w1 + w2) (3.39)
0
:B(A1+a,A2+ﬂ/ de P! F(w), Ap=Ai+Dstatftr,

0

we obtain the final result for celestial gluon OPE

VA, a(®1) VR, 4 (w2) (3.40)

N fABC ZL‘Cle(SbCB(Al —1, AQ) + IE?QCSaCB(Al, Ag — 1) — {Iﬁ?(sabB(Al, Ag)v (SL‘ )
($12)2 A1+Ag—1, c\ L2

b ,.c
ABC L7197 B(A1 + 1, Ay + 1)
—20/f 1 (212)? VA1+A2+1, c(@2).

3.1.1 General structure of worldsheet OPE

Based on our previous OPE analysis of two gluon vertex operators, we would like now to
discuss the general structure of worldsheet OPE. From (3.3) and the derivation above, one
expects that in general the world-sheet OPE takes the form

yA,Zleip-X(yl)/yB,fg eiq-X Z yza p-q+l—01— EQFA 1;B, zz( », q)y/c,gei(pﬂ).x(y?) 7
(3.41)
where
PN T[4 X e =30 h=ak e 2 =1,
| i (3.42)

Note that in (3.41) we did not impose the on-shell condition on the momenta and it holds
even off-shell.

Now we take p,q on-shell, namely setting p> = —m? = (1 — £1)/d/, ¢* = —m3 =
(1 —49)/d’, then we find

20p-q+L—t—la=0a'(p+q)* —2+¢. (3.43)
For p+q, we take it slightly off-shell, namely (p+q)? = —m3+¢/a’ = (1—¥¢3)/a’+¢/a’, then

2a/p'q+€—£1—52:(1—53)4-6—24-6:64-@—53—1. (3.44)
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Therefore (3.41) becomes

00
4//A,€1 eip-Xai/B,éz el'q-X _ Z yi—Z&—Z—&—lFé’fl;B,ﬁz (p7 q)n//C,Zei(p+q)-X (y2) (345)
=0
0 b 1 Al ¢ .
Y 8 ) Fa P (o, @)y TN (). (3.46)
/=0

where we used (3.21) and ignored some unimportant factors.
After doing the worldsheet integral, we then expect to find

1 .
2 ! Ali1y)BL A l1;B 2~ ,Cls
- (1-¢ : VY 2t~ FLo b2y S
(r+4q) ( 3)/a P q (p+ q)g —(1—t3)/ C,l3 piq T

(3.47)
where the dots are boundary contact terms of the form (3.22) arising from £ =0,--- ,¢3—1

as well some terms in ¢ = ¢3. The prefactor on the right hand side is just the propagator
1/((p+q)* +m3).

3.2 OPE in closed string

Now we switch to the closed string. As before, we need to first compute
V(p,e1)V(g, e2) = / d*21d2 Ve, (21, 21) Voeo (22, 22) (3.48)
= /d221d22’2 el,maX“éXﬂeip'X(zl, 51) egl,anVa_Xﬂeiq.X(Zg, 22), (3.49)

and then perform the Mellin transformation to obtain the celestial OPE.
As the starting point, we need to know the world-sheet OPE of two operators in the
integrand of (3.49), which is computed in (A.29):

OXPIXFPX (21 21)0XPOX TP X (29, 2) (3.50)
/2

P (3.51)

1 1
X K??W— 20/(1”10”) 41219 <q“8X”—p”8X“+ (7)‘“’— 2o/q”q”)p-8X> +} (3.52)

1 S 1 _
X [(n‘“’—zo/q“p”) +1Z19 (q“@X”—p”(?X“—i- (n““—Qa’q“q”)p-8X> —i—} (22,22).
(3.53)

This OPE is essentially the “square” of open string world-sheet OPE (3.3), up to the
rescaling of /. In particular, the terms proportional to z19, z12 can be simplified as in the
open string case; in each bracket, we can get expressions which are similar to (3.15).

Although many cross product terms from the left and right moving sectors in (3.50)
would be generated, we only need to consider the diagonal terms, namely those terms
which only depend on the modulus |z12|. The non-diagonal terms, like those with factor
z12, would become zero after integrating along the angular direction of z1s.
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Before simplifying this OPE, let us first introduce some useful identities. In the open
string case, (3.21) plays an important role. Now we would like to find similar identities for
the closed string. We first parametrize the complex coordinate as

z=u+iv= e, Z=u—iv=ge ", lz| = o. (3.54)
Then we have the following formula'®
1) 1 1
69 (2) = 6(u)d(v) = i) = —€0 2= |22, d?z = dudv = odddp,  (3.55)
O 2 27

where € is again infinitesimal and we used the identity in (3.21). Further taking derivatives
of the delta-function gives

96 (z) = —%6\2]6_22_1, 56 (z) = —%6\2’\“224 085 (z) = %eyzyf—‘*,
(3.56)

We are interested in the behavior of OPE (3.50) in the collinear limit p- ¢ — 0. As

in the open string case, one can show that most terms in the OPE are not relevant in the
collinear limit; they are either regular in the limit p - ¢ — 0, or only contribute boundary
contact terms. For example, the tachyon arising from the first term in two square brackets

of (3.50) takes the form

|212‘O‘/p'q_4ei(p+q)'X N 885(2)(212)6i(p+q).x 7 (3.57)
p-q
where we used identity in (3.56). Following (3.49), we need to integrate over z1, zo. This
type of total derivative can contribute at most boundary terms after doing the integral.
Other terms in the OPE (3.50) can be analyzed similarly. In particular, one can rewrite
terms in each square bracket in (3.50) and get expressions similar to the open string
case (3.15). Then one can show that most terms are not important for our purpose.
After doing simplification, the only relevant terms in OPE (3.50) in the collinear limit
p-q — 0 are given by

OXPOXH P X (21,2)0X"OX" X (29, Z3) (3.58)
O/Q ’ . 1
~ —T|z12\ap'q*262(p+q)'x X (q” el —p¥ el + (n‘“’ - io/q“ q”) p- £c> (3.59)
o 1 _
X (q“ el —p¥ el + (77’“’ — §a’q“ q”) D - 65) X e 0X ez-0X, (3.60)

which is just the “square” of (3.17).

1311 this convention, we thus have

z

-1 = w5 (), / &z ()5 () = £(0).

For the representation of delta function in polar coordinates, see https://mathworld.wolfram.com/
DeltaFunction.html.
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To simplify further, we choose the polarization tensors as the basis constructed in (2.5):
ehh(0) = ch )b (), ef(a) =ef(a)ef (a).- (3.61)

Any polarization for graviton/dilaton/KR field can be expanded in this basis using (2.15),
(2.17).
Contracting the OPE (3.58) with (3.61) and taking the limit p - ¢ — 0 gives

€ad #ﬁ(p)aX“éXﬂeip'X(zl, Z1)eg, VD(q)@X”éXDeip'X(ZQ, Z9) (3.62)
a’? 52 i(p+q)- X w v () 1% 1 /WIS JTR7
N_T ﬂa,p'q <212)6 X\q"ec—p g+ |\ n _504(] q |P-Ec)EqEp
o o 1 o _
X (q“ el —p¥ ekl + (77’“’ - io/q“ q”) D - Ee) ehey €c- 0X ez-0X (3.63)
~ ol 0%(212) Zee (P, €aa(D); €5 €43(0); @, &) £ 060X DX, (3.64)

where we used the identity in (3.55) and defined

oo (pr2aa(p); 0. 25(a): @, 8) (3.65)
1
- —2pq

{é‘a(p)-qsb(cﬂ -ec —€b(q) pealp)-ec + (6a(p) -ep(q) = %%(p)-qeb(q) -p> p-ec]
[ea(0)-a53(0) 20 —50) pea(p)-<o + (calo)-ex(0) - Gealo)-ac5(0)») -]

1 1
=wpwg(z12)” I (p, €a(p); 4,€5(q); 4a> I; (p, ea(p); 4,€5(q); 4ﬁ> - (3.66)
The expression for I (p, ea(P); ¢, €0(q); a’) is given in (3.35).

Following (3.49) and using (3.64), we can now compute the OPE between two vertex
operators of massless fields in closed string theory:

Vaa(0)Vyi(q) = /d2z1d222 Eaa up(p)OXMOX PN (21, 21)e,5 o (0)0XOX e (29, 22)

= /d221d222 T §%(212) Ica(p, 5a&(p);Q76bB(Q);a/aO/) et 050X70X°
(3.67)

x Lo (praa(p): . €45(0); 0/ @) Veelp + a) (3.68)

where we used the notation Vaz(p) = V(p, €qa(p)) and similarly for ¢, p + q.

Finally, we need to go to the conformal basis of the vertex operators (2.39). Using the
formula (3.39) and performing the Mellin transformation, we finally obtain the celestial
OPE for graviton/dilaton/KR field in closed string theory

Va,aa(21)Va, py(@2) ~ K, (3.69)
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where!?

(z12)* K= [<5b6655x‘f2x‘ng(A1 —1,A5+1) —6“66&5xl{2xf2B(A1 +1,A9) —5“b5géa:§2z‘}2B(A1 ,Ag+1)

1 = 5 . -
+26“b5“bx§2xizB(A1+1,A2+1)+5bc(5acx‘f2x’{23(A1,A2)>

+ (aHb,dHB,Al <—>A2):| VA1+A2’CE(.T2) (370)
o [ (1 -5 . T

"‘5 [(25abxf2$?2$§2$§23(A1 +2,A542) =5z yaly1d, 2, B(A1+2,A0+1)

Jr(a(—)d,b(—)B,C(—)E)) + (aeb,deB,Aﬁ%Ag)] VA +2s+2,c6(22) (3.71)
0/2 - 5

T {$%2$?2$§2$%2$?2$§23(A1 +37A2+3)] Vai+as+a,c6(T2). (3.72)

4 Celestial OPE from worldsheet OPE in superstring

In this section, we will generalize the previous discussions on OPEs in bosonic string
to superstring. The computations are similar, and especially we can also simplify the
results in the same way. The main difference is that in superstring, the worldsheet has
supersymmetry. As a result, the bosonic and fermionic contributions can cancel each other,
which leads to a simpler result. In particular, the o’ corrections to the worldsheet OPEs
and thus also to the celestial OPEs are absent in the supersymmetric sector. This behavior
agrees with the three-point amplitudes in superstring theory where the o’ corrections also
don’t appear in the supersymmetric sector.

We will be mainly focusing on the heterotic string case. The heterotic string is a good
playground for our studies of OPEs because we can realize both graviton and gluon easily
in terms of closed string. In this setup, we compute all the OPEs involving gluon and
graviton/dilaton/KR field, including their mixed OPEs. Up to o' corrections, the OPEs
derived in heterotic string agree with those derived in bosonic string. We will also briefly
discuss the case of type I and IIA /IIB string, which are very similar to heterotic string.

4.1 Heterotic string

In this subsection, we will first review the vertex operators of gluon and graviton/dilaton/
KR field in heterotic string, and then derive the celestial OPEs from worldsheet OPEs.

4.1.1 Vertex operator in heterotic string

In bosonic closed string, the vertex operators take two forms, either integrated form with
worldsheet integration or unintegrated form with c¢ attachment. In superstring theory,
the vertex operators further take a variety of forms, called pictures [33, 34]. In each
supersymmetric left or right moving sector, we can label the vertex operator with the
ghost charges g or §. The vertex operator in the ¢ or § picture contains a factor e4? or

9Note that the exchange in the parentheses is the simultaneous exchange of all items.
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e‘ﬁ’, where ¢ is the bosonized field of 8y ghost system and similarly for ¢. The vertex
operators in different pictures can be related via the picture changing operator. The total
ghost charges in each supersymmetric sector is determined by the worldsheet genus. In
particular, at tree level of interest in this paper, the total ghost charge should be —2 in
order to soak up the fermionic zero modes.

More specifically, in heterotic string, the gluon vertex operator in the picture —1 and
0 are respectively given by [34]

VD (2,2) = e T R X = v (2)V 0 (3), (4.1)
_ 1 - . _
VO (z,z) = JA <i8X" + o'k W”) P X = v (2) Vi (z), (4.2)
where J A(z) are the Kac-Moody currents in the left-moving sector, while ¢~> and LZJ are the
ghost and world-sheet fermion in the right-moving sector, respectively. Similarly, for the

massless graviton/dilaton/KR fields in heterotic string, their vertex operators in the —1
and 0 picture are given by

WD (2, 2) = e 0XMp e X =W, ()W Y (z), (4.3)
WO (z,z) = ox* (iéX” + %O/k : W”) P X =W ()W (z). (4.4)

In these vertex operators, we also write them in the product form of left and right

moving parts:

Vi(z) = JA(z)eF X | Wi(z) = dXFekXL (4.5)
Vi (@) = Wi (@) = (100 4 Jalk- g ) e, (4.6)
V(@) = Wi () = et ek, (4.7)

where X (z,2) = X1 (2) + Xg(z). This decomposition enables us to compute the OPE in
the left and right moving sectors independently. The Kac-Moody currents J4(z) satisfy

the OPE B ABC
ko J
T (21)IP (22) ~ S— + f (22) (4.8)
“12 212

Without loss of generality, one can set the level k to one, which can always be realized by
rescaling the Kac-Moody currents and structure constants.
4.1.2 Celestial OPE from heterotic worldsheet

Now we derive the celestial OPEs in heterotic string from worldsheet.
Gluon-gluon OPE. We want to compute the OPE between gluons. Although vertex op-
erators in different pictures are physically equivalent, it turns out to be simpler to consider

the OPE of two vertex operators in the —1 and 0 picture, namely V(_l)(zl, Zl)V(O)(ZQ, Z9),
which gives another vertex operator in —1 picture.
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We first consider the left-moving OPE V,(21) VL (22):

JAP XL (2) JB XL (25) = JA(21)JB (22) x €P XL (7)€ X0 (29)

k(;AB ABC’JC’ 1. )
= < 5 +f (22)+... X 22 pq(l+iz12p'6X+'")6Z<p+q)'XL(ZQ)
12 12

La'pg—1 k(SAB ABC +C AB . x
i —+f JC+iké B p.aX 4. | PTD XL (55

= Zi2 .
(4.9)
Following the derivation of (3.8), we have
1
p-OX =p-coce-OX+—p-qdX -n+ Lk -9X + O(e). (4.10)
Wk Wk

Due to the p - g factor, the second term on the right hand side is regular in the collinear
limit p-q — 0. For the third term, we can combine it with extra factors in (4.9), leading to

1 g— . Lo pg— .
22PN X O XL = 20T g kXL () (4.11)

where we used ¢'PT9)Xe = R X1 1 G(€) as p+ g = k + O(e) in the collinear limit. Since

the polarization is along the momentum direction, the is supposed to be a pure gauge and

thus can be ignored. The more subtle issue of boundary contact terms is the same as that

in open bosonic string case, see (3.23). Therefore, we can just keep the first term in (4.10).
As a result, in the collinear limit the left-moving OPE simplifies to

la'pq—1 (kéAB

JAP XL (5) JB XL (29) = 2l + fABCJC L k6B p.cp e OX + - - ) ¢lPta)Xe (22) .

212
(4.12)
For the right-moving OPE Vé‘l)(zl)vf(zo)(zg), it is computed in (A.41)
o _ 1 N
¢ e n(z) (i€ 0X + Jaly - g - ) 10 (z) (113)
O/ _lo/ -g—1 i . ~ ~ ~
~ G PN (C g e b~ 6 pCd - Eq ). (4.14)

Note that terms in the bracket of (4.14) are very similar to the terms proportional 312 in
the bracket of (3.3): one just needs to replace X with 1, exchange p, ¢ and ¢, £, and ignore

o corrections. Therefore we can also simplify the formula in the same manner. Following

the steps in the derivation of (3.8) and (3.12), we now have?’

_ -1 _ _
¢h=-pecec P+ —p-qgidon+ Lk-d+O(e), (4.15)
Wi Wk

and
C-qé-h—€EpCh=Cqbecea-Pp—E-plreseq-h+ Ofe). (4.16)

Note (p+q)-ec =k -z + Ole) = O(e) as k- = 0.
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These two formulae enable us simplify (4.14)

¢ ez (i X + Jalg- G- ) 0 (z) (4.17)

Il
@ _sa'pg-1

~ 5 ¢'trra) XR(C q§-ec—& pCez+(-&Ep- ec) X, (4.18)

/
Fgaly TN (e —pg b= C €2k g) . (419)
In the collinear limit p - ¢ — 0, the first term in (4.19) is regular. For the second term, we
can rewrite it as:2!

P Xrp o)y = R XRE ) 4 O(c). (4.20)

If we combine (4.20) with the factor 212 o= " from the left-moving sector,?? we get
|219|P92¢H Xn ) 2O70, Flerz) ek xn JEAPR L [ o g eieXn (4.21)

p-q p-q

Since the polarization is along the momentum direction, this is a pure gauge. More specif-
ically it is a BRST exact term and thus plays no role in string amplitude. Therefore, we
can drop all the terms in (4.19).

Combining the left-moving OPE (4.12) and right-moving OPE (4.18), we then find

e*‘igJA@“eip'X(zl, z1)JB (z’éX” + %a'q . 1;1/;”) e X (29, 29) (4.22)

o / 2 _—é ko4B ABC 7C | ;| sAB
~5|212|O‘p'q7 e ? —+f JY +iké P p-ecec-0X + -
212

x(g" el —p¥ k40 p-es) e P lPHOX (4.23)

5AB

First, we have the leading term k coming with a factor ‘212‘a’p-q—221—21' This leads to

zero after performing the z1, 25 integral due to the cancellation from the angular direction
of z19. After contracting with the basis of polarization, the rest of terms in (4.23) become

e~ ? T4 (p) - DX (21, 71) T4 <i55(q) L0X + %o/q -1 eg(q) - 1;) e X (29, Z9) (4.24)

«
~ Elmlo‘pq 2(6 (p) - qe5(q) - ee —3(q) - pea(p) - €z + €alp) - 5(q) p- Eé)
» [fABC e 9JC cs . B et X i kgAB e e, 0Xeg- Q;ez‘(pﬂ)-x} (4.25)
~ 21 6%(212) 1—5(1% ca(p): 4, €5(q); 0)

X [fABC e=9.JC s 1) ellrta) X 4 kd4B p . e, e9 £c-0Xez ) ei(pW)'X} ,  (4.26)

2'Recall that p + ¢ = k + ev where k is null Whlle p+ q is slightly off-shell.

a’p-g—

*2The left-moving sector may also contribute z12 , then in total we have |212|°‘/p'q72z1_21. This gives

zero after integrating along the angular direction of z12.
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where we used identity (3.55) and the expression for Iz(p,ea(p); q,;(q);0) in (3.35) but
without o corrections. Compared with (4.1), (4.3), it is easy to recognize that terms in the
square bracket are exactly the vertex operators of gluon and graviton/dilaton/KR field.
After performing the integral over z1, z5, we get

-1A 0)B -1C
Vi VO () ~ A5 I(pea(p)i 0, 55(0); 0) VTV (0 + q) (4.27)
-1)C
+648 p e Ie(p,2a(p); 0,55(0); O)WE (0 + ),
up to some coefficients in front of gluon and graviton contributions, respectively.
We can further write in terms of celestial variables. In particular,
WpWq

ee= Wb Ee = ¢ = % 4.28
P Ec=wpp e = wp(713) wp—i—wqu ( )

where we used (2.4) and (3.32).
Finally performing the Mellin transformation yields the celestial OPE of two gluons

Vﬁl,a(xl)Vf2,g($2)

. jasc 250 B(A) — 1, Ag) + 25,07 B(A1, Ay — 1) — 25,67 B(A 1, As) o (22)
(212)2 Aj+Ag—1, &\t2

. 750 B(AL, Ay + 1)+ 28,09 B(A1 + 1, Ag) — 2856®B(Ay +1, Ag+ 1
+5ABI12 = ( - 2 ) = ((1,112)2 2) 1 ( ! 2 )WA1+A2,05(1'2)a

(4.29)
where the first and second line just correspond to the gluon and graviton, respectively. The

OPE of gluons among themselves is the same as that in bosonic string case (3.40), except
for the absence of o’ corrections.

Gluon-graviton/dilaton/KR OPE. Now we consider the OPE between gluon and
graviton/dilaton/KR field, namely W (=1 (21, 1)V () (29, Z5). The left-moving OPE W (2;)
- VL(22) is simply given by
) . La/pg— ) )
OXPeP XL (21) JATXL (2g) = 22707} (—;a/q” + - ) JA T XL () (4.30)

which follows from the same derivation of (A.14). The right-moving OPE W}{l) (21)VP(€0) (Z2)
= Vé_l)(él)vlgo)(éz) has been discussed above and the final result is given in (4.18).
Combining the left and right moving sectors, we get

. . _ 1 - N\
e %y - 0Xeg - PP X (21, 7) JA (iag -0X" + io/p 1 eg - 1/1”) X (29, Zy) (4.31)

i 12 'pg—2 5oa o x
~ - |212]* P q-ea(sa~q55-55—55.pga.55+ga.55p.56>e b g, . i PO

(4.32)

~ —ima'6*(z12) 4 - €4 Ie(pﬁa(p); q,€5(q); 0) e P JAe; ) PO X (4.33)
Integrating over zi, 2o gives

WY 0) o g+ 2 I (p,2a () 0,530 0V A 0 +a), (4.34)

where we ignore the overall constant for simplicity.
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Further writing in terms of celestial variables and performing the Mellin transforma-
tion, we get

WAl,aa(ﬂfl)Vﬁ%g(:Ez) (4.35)

@ x?QégéB(Al —1,A5 + 1) + l‘%zéaéB(Al, Ag) — 13?25&BB(A1, Ay + 1) A
~ T2 ($12)2 VAl—‘rAg,é(ajz) .

Graviton/dilaton/KR OPE. Finally we want to discuss the OPE of graviton/dilaton/
KR field, namely W (=1 (2, 2, )W () (25, 2,). The OPE in the left moving sector Wy, (z1)Wp(22)
is given in (A.27) and it is the same as the left moving sector of closed bosonic string. Up
to the boundary contact terms, we can simplify this sector in the same way as that in the
bosonic string.

The right-moving OPE ng_l)(gl)wg))(ég) = Vlg_l)(él)VlgO) (z2) has been discussed
above and the final result is given in (4.18). Combining the left and right moving sectors,
we arrive at almost the same OPE as that in the closed bosonic string (3.58) except
that we need to remove the o' corrections in the right-moving sector (3.60), which are
absent in heterotic string due to supersymmetry (4.18). As a result, in heterotic string the
OPE (3.68) becomes

WS W (@) ~ Tee (pr 2aa(p)s 0, 645(0)s 0/, 0) WE D (0 + ). (4.36)

Then one can derive the celestial OPE in the same way as bosonic string. The final
result is given by (3.69): ignoring the o/ terms in (3.72), and keeping all the terms in (3.70)
as well as the o/ terms in (3.71) which are proportional to x%y2%52,.23

4.2 Type 1, ITA, IIB string

Now we briefly discuss the OPEs of closed string massless fields in type I and ITA/IIB
superstring. The vertex operators for massless NS-NS fields in type I and ITA/IIB string
are [34]

W(,L,l) (2,2) _ ef(pf(;;qﬁ‘uqzjueih)(’ (437)
w0 (z,z) = (i@X“ + %o/k: : ww) (z’éX v+ %a’k : M;“) e X (4.38)

Now both the left and right-moving sectors are supersymmetric. Note that for type I
superstring, the KR 2-form field is projected out and we are only left with graviton and
dilaton.

It is simpler to study OPE of two operators in —1 and 0 picture, namely W(1=1 (2, 7))
-W(0:0) (25, z,). The vertex operators (4.37), (4.38) can again be decomposed into the prod-
uct of left and right moving parts. For both the left and right moving sectors, the OPE

ZMore specifically, the terms in the square bracket of (3.71) is now given by:

[x‘f2x’{2x§2 (B(A1 42, A0+ 2)6%a%, — B(A1 4+ 1, Ag + 2)6"%, — B(AL +2, A0 + 1)5@%2)} .

~ 98 —



is given by (4.18) or its conjugate. Combining the two sectors together, the OPE of
WEL=D (2, 2) W00 (25, 7y) is similar to that in closed bosonic string (3.59), (3.60) ex-
cept that we need to replace 9X,0X — 1,1 and remove all the o’ corrections, which
are absent now due to greater supersymmetry. It is amusing that the tachyon also does
not appear in the OPE, although we have not performed the GSO projection. The final
celestial OPE is given by (3.69) with all o terms removed. The absence of o/ correction is
consistent with the string amplitude, as we will see in the next section.

5 Celestial OPE from collinear factorization

In the previous two sections, we have derived the celestial OPEs from the string worldsheet
perspective. In this section, we will compute the celestial OPEs using a different method
based on the collinear factorization of scattering amplitudes. It turns out that the two
approaches give the same result all the time.

Before going to the computational details, let us first describe the general strategy
of deriving celestial OPEs based on the collinear factorization. We are interested in the
scattering amplitude of massless fields. In the collinear limit two momenta become parallel
p1//p2, and the total momentum P = p; + py also becomes almost on-shell, namely P? =
2p1 - p2 — 0. The amplitude then factorizes in the collinear limit as?*

s s // s s s 1 s
An+l(p117p22"")MZA?)(pllvpf’_P )ﬁAn(Pv)v (5'1)

where s; are the extra quantum numbers labelling the particles. The prefactor in front of
A, is essentially the split function characterizing the collinear behavior:

_ 1
2p1 - p2

1
Spllt(pil —l—p;Q — Ps) = A3<pi17p§27 _Ps)

= 53 As(pi',p5?, —P?%). (5.2)

Therefore, once we know the three-point amplitude, we also know the split function. Per-
forming the Mellin transformation then gives the corresponding celestial OPEs.

5.1 Celestial OPE for gluon

In bosonic open string theory, the (color-ordered) amplitude for three gluons is given
by [31]*

A, = e1peaae3, T (4d) (5.3)

while in heterotic string, the three gluon amplitude is [34]

Al = e1pesae3, T (0), (5.4)

24Gince the two collinear particles are massless, the collinear limit thus singles out the massless field
propagator connecting As and A,. More generally, to identify the contribution from the field with mass
M, one can instead use the propagator 1/(P? + M?) in (5.2) and take the limit P? — —M?.

Z5Like footnote 11, we set the overall factors in all the string amplitudes to be one. In the final results of
celestial OPEs, we will choose proper overall factors to make the formulae as simple as possible. We also
use the subscripts g and G for gluon and graviton/dilaton/KR field, respectively.
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where we introduced the tensor

Oé/

T+ (o) = phy 1™ + psy 0™ + ply M + 2

Phs P51 Pla pij =pi —pj-  (5.5)

So up to o corrections, the three gluon amplitude is the same in bosonic and heterotic
string. This is not surprising as the low energy effective field actions of both theories contain
the Yang-Mills theory, which is responsible for the leading non-o’ amplitude above. The
absence of o’ correction in the heterotic string is due to supersymmetry, and it is consistent
with the absence of o/ corrections in the celestial OPEs in heterotic string that we derived
before from worldsheet.

Since the heterotic gluon amplitude can be regarded as the special limit of the bosonic
one without o' correction, we will just focus on the bosonic string gluon amplitude (5.3).
More explicitly, the three gluon amplitude (5.3) can be written as

/

(@
Aggg = €1-Pr3e2-e3tez-parey-ertes-piperezt erpasex P33 Pio (5.6)

= 2[61 - Paeg - €3 — €3 - prey - e3 — e3 - paeq - €3 + 2aer - pa e - 1 €3 'pz} ) (5.7)

where in the second equality we used momentum conservation p;+ps+p3 = 0and e;-p; =0
to simplify.

We choose p1, p2 out-going, namely 77 = 13 = 1, then p3 is incoming n3 = —1. We also
choose the polarization vectors as e; = q4,(p;). Using (2.4), we have

Pi- € = pi - €a,(T5) = niwidi - €a,(x) = Miwi x| €a;(Ti) - €a;(z5) = 6%%,  (5.8)

which enables us to rewrite (5.7) as

1
§Aggg(pi,€ai) =e1-papeg-e3—eg-preg-er —eg-paer-eg+2a’er-pyex-pres
(5.9)

= wom3} 0923 — 30U — w3 6M2 + 20/ wiwh 25 35S . (5.10)

To have sensible results for collinear factorization, we take pi,p2 on-shell but P =
p1 + po slightly off-shell. Then the momentum conservation P = p; + po = —p3 + €v is

1+ (x1)? 1—(x1)? 1+ (z9)2 1—(z9)? 1+ (x3)2 1—(x3)2
< <21) 71.(1l7 <21) >+W2( (22) 7$(217 (22) = w3 (23) 7$§7 ( 5)

w1

+ev,

(5.11)
where e characterizes the deviation from the strict collinear limit and v is an order one
vector. Note P?2 = 2p; - ps = —wiwa(z12)?> = —ep3 - v + O(e€), hence € ~ (w12)%. This
also introduces €(€) uncertainty in the numerator of (5.2), and thus an order one (z12)°
uncertainty in the split function. Nevertheless, it would not affect the singular terms in
the split function which we are really interested in.

From (5.11), we have

w1z] + wary = w3r§ + O(e), w1 +wr=w3+ O(e), (5.12)

— 30 —



and thus

w9 a a w1
—= 2%+ O(e), Ly = ———
w1 + wo 12 ( ) 32 w1 + wsy

Then (5.10) can be simplified further as

iy = xio + O(€). (5.13)

2,2
As(wi, €q,, @) = 2 |wpadl 59298 — () 29267193 4 %xﬁé‘““? + 20/ 122 x{ya3al3
T w1 + w2 w1 + wa
(5.14)
Substituting into (5.2), we get the split function
A3(wir€a,, )+ O
Split(py" +p3* = P*) = 3(%;;1’ .apiJr “ (5.15)
2,2
W (3092 4wy {35919 — e x130%192 — 20/ wﬁsz xi5x13x)3 0
=2 wiws (T12)? o).
(5.16)

Up to an overall factor, this is the same as the I introduced in (3.35).
Further performing the Mellin transformation leads to the following celestial OPE for
gluons:

Oil,al (w1)0§27a2 (‘/'U2)

ABC T2 B(A] — 1, Ag) 4 2926919 B(Ay, Ag — 1) — 29369192 B(A1, Ay) o
! (212)? A+As—1, az(T2)

ai a2 .43
ABC 1713213 B(A1+ 1, A0 +1)
— Zo/f (1'12)2 OA1+A2+1, as(l‘g) s

(5.17)
where we restore the color factor f48¢ and choose a proper overall normalization to make
the formula as simple as possible. Here Oﬁ ., denotes the celestial gluon operator with the
polarization vector ¢, and color index A. This agrees with (3.40) derived from worldsheet.

5.2 Celestial OPE for graviton/dilaton/KR field

In bosonic closed string theory, the amplitude for the closed string massless fields is given
by [31]
At = elu,,egaﬁegpgT“ap(a')T”BU(o/) . (5.18)
So up to the rescaling of o/, the closed string amplitude is essentially the “square” of the
open string amplitude (5.3). This is the simplest example of the famous KLT relation [35].
In heterotic string, the amplitude for massless fields is [34]

Al e = erwesnsespe TH (o) TV (0), (5.19)

where the o' corrections in the right moving sector is absent due to supersymmetry. For
type I and ITA/IIB string, they have supersymmetry in both left and right moving sectors,
and the corresponding massless NS-NS amplitude has no o/ corrections at all:

AYE L = e1ea056300 T (0)T7P (0) . (5.20)

The absence of o in three-point amplitude agrees with the absence of o’ correction in
celestial OPEs we derived before from worldsheet.
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Let us just focus on the amplitude of massless fields in closed bosonic string (5.18). As

before, we choose pi, ps out-going and p3 in-coming, namely n = 2 = —n3 = 1. We also

ng

v
(2

&;» which are the basis for polarizations. Then

choose the polarization tensors e;” = &} €
we can simplify the three-point amplitude and write it in terms of celestial variables. The
steps are almost identical to the open string case in the previous subsection, except for the

doubling. The final result is
~ 1 - 1
AE‘GG = A3 (C%’,Eai, 40/) As (wiagd“ 4O/> . (521)
Substituting into (5.2), we get the split function

~ . _ ¢ ﬁ3 (wz‘,e?ai, iO/) 113 (wz‘,efai, iO/)
Split(pi1at 4 pg2t2 —, pasds) — GGG _ _ 5
2p1 - p2 (712)%wiws

(5.22)

Up to an overall factor, the split function here is the same as that in (3.66). We then need
to perform Mellin transformation to obtain the celestial OPEs. The steps are identical,
and the results are also just given by (3.69)—(3.72) except for the replacement a — ai,
b—as,c—as, V— 0.

5.3 Celestial OPE for gluon and graviton/dilaton/KR field

In heterotic string, the three-point amplitude involving two gluons and one gravi-
ton/dilaton/KR field is [34]

A?gG = eluyegpeggp§3T”pU(0)6AB. (5.23)

Note that there is no o/ correction due to supersymmetry. In the case of graviton, the
interaction responsible for this amplitude is just the minimal coupling between gravitons
and gluons. For bosonic string, one can also compute the two gluons and one graviton
amplitude from the open-closed string setup. This will be discussed in appendix B and
the amplitude is given by (B.15), which suffers o’ corrections as we expected. Here we will
just focus on the heterotic case (5.23).

Following the same procedure as before, one can derive the celestial OPEs from this
three-point amplitude.

We first derive the celestial OPE between gluon and graviton/dilaton/KR field. So we
take p1,pa out-going and also choose the polarizations as e} = el ek, e2 = ca,(p2), €3 =
€as(p3). Then (5.23) becomes

Ang = 250,1 * P2 A\?)(wiv €a;» 0)5AB . (524)

Substituting into (5.2), and performing the Mellin transformation, we get the celestial OPE
between gluon and graviton/dilaton/KR field

(’)Al,aa(xl)@i%g(@)

28,609 B(Ay — 1, Ay + 1) + 28,09 B(A1, Ag) — 25,6 B(A1, Ay +1) , 4
(x12)2 0A1+A2,6($2) )

(5.25)

a
T12

which agrees with (4.35).
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The celestial OPE corresponding to the fusion of two gluons into one graviton/dilaton/
KR field can be similarly derived. To make the formula more standard, we exchange the
label of 1 and 3 in (5.23). Repeating the same steps above leads us to the following celestial
OPE between two gluons

04, a(@)0% ;(x2)

B o P50 B(AL, Ao+ 1)+ 28,0 B(A1 + 1, Ag) — 2656P B(A; +1, Ay +1)
~ 0 Z12 ($12)2 OAl—l—Ag, c&(xQ) 5

(5.26)

which agrees with the second line of (4.29).

5.4 Celestial OPE in four dimensions

So far, we have derived the celestial OPEs in two different ways. The final formula is a bit
complicated. Now we specialize to 4D as a consistency check of our results. In 4D, it is
very convenient to use the helicity basis for gluon and graviton. They are related to the
previous polarization basis through some linear combinations.

Following (2.20) and (2.21), we define the celestial gluon and graviton operators in the
helicity basis as

Oni(z,2) = \}ﬁ(om(x) Fi0as(x)). (5.27)
Op42(2,2) = %(OA,ll(w) — Op22(%) FiOa 12(2) F Z'OA,21(95)> ; (5.28)

where the coordinates z,z and z are related through (2.18).

Gluon OPE. The general form of celestial gluon OPEs is given in (5.17). Specializing
to 4D and transforming to the helicity basis (5.27), we find that the first line of (5.17)
without o/ reduces

ABC
Og1,+(21721)0g2,+(22722) ~ 1 B(Al —1,Ay — 1)021+A2—1,+(22722) s (529)
4 ABC
OR, _(z1,21)0R, _(22,23) ~ » B(A1 = 1,00 = 1)OX 4n,-1.—(22,22),  (5.30)
and
n ABC
OR, +(21,21)0R, _(22,22) ~ » B(A1+1,A7 = 1)OX, 4 n,—1.4 (22, 22)
fABC
+ 1 B(Al —1,A5 + 1)021+A2—1,—(22722) . (5.31)

These are indeed the celestial OPEs for gluon in Yang-Mills theory [18, 21].
The second line of (5.17) with o’ coefficient arises from the higher derivative interac-
tions. We can similarly transform it into the helicity basis. In particular, we find that only

— 33 —



the following two OPEs have singular terms
=2
_ _ z _
Ogh-&-(zl? Zl)ogg,—&-(z% 22) ~ —a fABciB(Al + 17 AZ + 1)Ogl+A2+17_(22, 22) s (532)

2
_ _ z _
O£177(21721)O£277<22,22) ~ —0/ fABciB(Al + 1, AQ + 1)021+A2+1,+<22722) s (5.33)

while the rest of OPEs are all regular. The two OPEs above with singular terms have
exactly the same structure as that predicted by the general formula of OPE in [15, 22].
The rest of helicity configurations only give rise to regular OPEs, as their corresponding
amplitudes vanish on-shell. Indeed in 4D, the three-point on-shell amplitudes are fully
determined by the helicities due to little group scaling and locality. Each singular OPE
above is in one-to-one correspondence with the on-shell three-point amplitudes of gluons
arising from either YM theory or higher derivative interactions.

Graviton OPE. Similarly, one can transform the celestial graviton OPE in (3.70) into
the helicity basis in 4D. The final result, up to an overall constant, is given by

_ _ z _
On1,+2(21,21)On, 12(22,22) ~ —iB(Al — LAy = 1)Oa,+25,42(22, 22) (5.34)
a/Q 25 B
— TG QB(Al + 3, A9 + 3)OA1+A2+4,—2(227 22) , (5.35)
12
_ _ z _
On,,-2(21,21)On,,—2(22,22) ~ _iB(Al —1,A2 = 1)Op, 11,,-2(22,22) (5.36)
o2 5 )
— — Z2B(A, +3,A0 +3)0n, 1 ngia0(z2,22), (5.37)
16 Z19
_ _ z _
On, +2(21,21)On,,—2(22,22) ~ —iB(Al — 1,824+ 3)0na, 1 7,,-2(22,22) (5.38)
V4 _
— iB(Al + 3, Ay — 1)0A1+A2,+2(227 22) , (539)

where we have only shown the singular terms. The structures of OPEs are again in perfect
agreement with [15, 21, 22]. Here those terms in OPE without o’ correspond to the Einstein
gravity, while the terms with o/? coefficient come from higher derivative interactions of
graviton. Note the o/ pieces in (3.70) are absent in the above formulae because they are
regular. Each singular term in the OPEs above is again in one-to-one correspondence with
the on-shell three-point amplitudes of gravitons.

Mixed OPE for gluon and graviton. Now we consider the mixed OPEs involving
both gluons and gravitons. The general formula is given by (5.25) and (5.26). Specializing
to 4D and writing in the helicity basis, they become

SN
_ _ z _
OA17i2(Zl,ZI)O£27i(ZQ,ZQ) ~ — (ZZ) B(Al - 1, A2)0§1+A2,i(22722) , (540)
A - 712\ ! A _
O an(21,21)04, - (22, 22) ~ <212> B(A; — 1,00 +2)04 a0, +(22,22),  (5.41)
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and

_ _ z
OR, 4 (21,21)08, _(22,22) ~ 5AB£B(A17 A2 +2)0p,+2,,-2
1

z
+OMPZEB(A1 +2,82)0n, 10,42, (5.42)

which are again consistent with [21] and [15, 22].

6 Celestial OPE in N = 2 string and w; ., algebra

In this section, we will further generalize previous OPE discussions to N/ = 2 string the-
ory [25-27]. The N = 2 string theory has four dimensional target spacetime with (2,2)
signature. So we will first discuss the kinematics and celestial variables in (2,2) signature.
Then as before, we can compute the worldsheet OPE and celestial OPE. An interesting
feature is that we can even compute all the SL(2,R) descendants in the OPE,%0 and this
essentially comes from the momentum conservation in (2,2) signature. The soft sector of
such OPE with descendants just gives the w14~ algebra, after rewriting in terms of chiral
modes. Therefore, we give an indirect derivation of wy s from worldsheet in N' = 2 string
theory.

6.1 Kinematics in (2,2) signature

Now we consider the spacetime in (2,2) signature. In this case, it is very convenient to
introduce complex coordinates X! = (X' 4+iX?)/v/2, X% = (X3 +iX*)/V/2 as well as their
complex conjugates. The metric is then

ds? = (dX1)? + (dX?)? — (dX?)? — (dX*)? = dXHdXY = 2dX dX" — 2dX2dX?.

(6.1)
We will write the vector as
A= (A! A% A A7), (6.2)
We will also use the Greek indices p,v,--- = 1,1,2,2, unbarred indices ¢,7,--- = 1,2, and
barred indices 7,j,--- = 1,2. Note we will identify A* = A* = A’. For real vector, A’ is
just the complex conjugate of A’.
The metric 7, is given by
g =ny =10 =1 = (- =5 =07 =07 =0. (6.3)
We introduce the following notation
A-B=B-A=A'B' - A’B?, (6.4)

where A = (A!, A%), B = (B!, B?).

26This is just half of the Lorentz group. More precisely SL(2, R) x SL(2, R) is the double cover of SO(2, 2)
which is the Lorentz group in (2,2) signature.
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Given two vectors A, B, we can define their inner product as
B A=A -B=n,A'B"’=A-B+B-A=A'B' - A’B*> + B'A' - B?A?.  (6.5)

This is real for real vectors A, B.
Given the vector in (6.2), we also define its dual AV as

A= (A" A2 AT A%, AY = (A", A% —A' —A?). (6.6)

Note that A is an imaginary vector as (AY)" = —((AY)))*, if A is a real vector. And we

have the inner product
AY . B=A-B-B-A=A'B' - A’B> - B'A' + B?A?, (6.7)

which is purely imaginary for real vectors A, B. They satisfy A-B = —-A"Y-BY, AV-B =
-BY - A.
We are particularly interested in the null momentum satisfying k - k = 0. It can then
be parametrized as
k=uw k, wr €R. (6.8)

Here the null vector is

A

k(z2) = (1+22+i@z-2), 1-22+iz+2), 1+22—i(z-2), 122~ i(z+72)), (6.9)

where z,z are the coordinates on the celestial torus [36], instead of the celestial sphere. It
is worth emphasizing that the two variables z,z are real and independent, instead of the
complex conjugate of each other.

Then the polarizations are given by

1
er = —%azk =S —izl+iz—1—iz -1 +i2), (6.10)
1
e = —%(%k = J(l—izl+izl—iz —1+i2). (6.11)
They satisfy
e, e =e_-e_=k-k=e, k=e_-k=0, ey-e_=1. (6.12)

For different momenta with k; = k(z;,;), we have the identities

A A

ki . k:j = 421‘]‘ 2ij s ]231 €4 = 21 21‘]‘ N ]25@ CE€_j = 21 Zij (613)

and
E+i €+j =0, Eti-€xj=1. (6.14)

For null momentum in (6.8), (6.9), its dual satisfies

kY = wpk” = wp (20 + 2y +izk), (6.15)
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so up to a gauge transformation and an overall factor, k" is essentially the positive helicity
polarization vector.
We also have?”

I;?i . 127]' = —AZ\-/ . I;?;/ = 421']'22']' y I%lv . ’27]' = —ki;/ : I;?Z == —42(1 + z; zj)il-j . (616)

6.2 Vertex operator in N = 2 string theory

The N = 2 string theory is constructed from the N' = 2 non-linear o-model [25]
S = i/d?zd?e POK(2, %), (6.17)
where 2 are N = 2 chiral superfields
XNZ,2,07,07) = X(Z, 2)+Yi(Z,2)0 +9p(Z2,2)0 +F(Z,2)070~, Z==z-00",
(6.18)

and K(2,2)=2% -2 = 2 21— 222°? is the Kéhler potential for flat metric. More
explicitly in terms of component fields, the action reads

S—l/d2z (0% - 0X + 0X - 0X +4pp - Db, + br - Dop+ F - F). (6.19)
m

Thus we have F = 0 and the following OPEs?®

i

- -_— Pard . - . — Zj
Xi(21,21) X (29, 5) ~ =0 In|z1a|, Wk (20) 0 (22) ~ % Yi(21) 0 (Z2) ~ %
(6.20)

The critical dimension of N' = 2 string is four [25, 37]. In order to have N' = 2
supersymmetry on the world-sheet, the target spacetime should be endowed with a complex
structure, implying that the signature of spacetime can be either (4,0) or (2,2). In the
former (4,0) case, N' = 2 string only has ground state as the physical state in the first-
quantized string, and is thus not interesting. For the latter (2,2) case and in the simplest
version of N/ = 2 string, there is a massless field in the spectrum, and it obeys a non-linear
differential equation. The actual Lorentz group of N' = 2 string is U(1,1) ~ U(1)xSU(1, 1),
instead of SO(2,2) [25]. Note that SU(1, 1) is also isomorphic to SL(2,R).

The vertex operator for the massless field in N = 2 string theory is given by [25]

Vk) = /d2ed2é ik 2 4k 2) (6.21)

- (ik-aé?—il%-aX—k-@ZL %.wL)(ik-éx—iz%-5X—k-q,zGRl%-wR)ei<k"?+’5'X>.
(6.22)

271t is worth mentioning that although kY is essentially the polarization vector, their inner products
are non-vanishing, in contrast to the vanishing inner product of two polarizations with the same helicity
in (6.14). The non-vanishing k) - I%;/ is just due to the gauge transformation (6.15) and (6.13).

ZNote we set o’ =1 here.
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This looks similar to the vertex operator (4.38) in type II string, up to the choice of
polarization. Indeed we can write (6.22) as

V() = (i 02— (6 pu) (ko) ) (k702 = S0 )k ) ) ¥, (629

where k" is the dual of k defined in (6.6). As shown in (6.15), the vector k" is essentially the

positive helicity polarization vector, up to a gauge transformation and an overall rescaling.
Using this vertex operator, the three-point amplitude was computed, while higher point

amplitudes vanish [25]. See the review [27] for other aspects of NV = 2 string theory.

6.3 OPE in N = 2 string theory

We would like to compute the OPE of vertex operators (6.22), or equivalently (6.23). The
steps are similar to the previous computations, and the final result is given in (A.68):

o 1 2 e K
V(k1)V (k2) ~ Z(kzlv kg [P 2e K X (6.24)
. 1
X [ZK3,V 0X — §(K§/'¢L Ks-vp)+ O(ky - k2) + O(ky - k) + 6(212)]
. = 1 _
X [ZK?)V (OX — S (K3 - opr Ka-r) + O (ki ko) + O(ky - k) + ﬁ(m)} ;

where K3 = k1 + ko. It is easy to recognize that we just get ‘7(K3) on the right-hand side.
Taking the collinear limit k; - k2 — 0 and using the identity (3.55), (6.16), we arrive at

2
> > T o2 iks- X (k}/kz) = _
V(kl)V(kQ) ~ 5(5 (212)61 3 LW [V(Kg) + ﬁ(kﬁ . kQ) + 6(212, 2’12)} (625)
1+ 2(z12)% 15 _ _
~ —27r52(2’12)wlw2( 22112222)12(212) {V(Kg) + O(z12, Z12) + ﬁ((zlgzlg)l)} ,

(6.26)

where O(k; - k2) = O((z12z12)') with zj2 and z12 coming together in a product form.
Performing the integration over 21, z9 on the worldsheet, we obtain

= G - 212 5y _ _

V(wl, Z1, Zl)V(WQ, Zy, 22) ~ —27rw1w2(1 + 2122)2 5 [V(w;g, z3, 23) + ﬁ((zlgzlg)l)] 5 (627)
where we used k3 = W3’%(23, z3) is approximately the same as K3 = kj + k2 in the collinear
limit, up to order &((z12z12)') corrections. The coefficient here is a little awkward. This
is because we were using the vertex operators where the polarization has an extra fac-
tor (6.15): kY =~ 2wy (1 + z%)ey, up to gauge transformation. To make the equation nicer
and make contact with the standard convention, we redefine the vertex operators as follows

V(w,z,2) = 2rw?(1 +22)? V(w,2,7) . (6.28)
Then (6.27) takes a nicer form

_ _ +wo)?z _ _
V(wl, Z1, Zl)V(WQ, Z9, 22) ~ —Mzﬁ [V((/Jg, z3, 23) + ﬁ((zlgzlg)l) + 6(212)} . (629)
Wiw2 Z12

— 38 —



In the collinear limit, we can just set z3,z3s — z2,Z2, w3 — w1 + ws as they are close on the
celestial sphere and the energy is additive. Performing the Mellin transformation, we get
the celestial OPE:

VAI (Zl, 21)VA2 (22, 22) e —%B(Al — 1, Ag - 1) VA1+A2 (22, 22) . (630)
This just unsurprisingly reproduces the celestial OPE of two gravitons both with positive
helicity (5.34).

Actually, in the current situation, we can go further. In the previous sections, we
were considering the spacetime in Minkowski signature and correspondingly the celestial
sphere is in Euclidean signature. This is different from the current (2,2) split signature
in a subtle but interesting way. In 4D Minkowski spacetime with (1,3) signature, three
particles satisfying momentum conservation can not become on-shell simultaneously, unless
all momenta are strictly parallel and point along the same direction. This constraint
is relaxed in (2,2) signature. Given two null momenta ki, ks and K3 = k; + ko, the
equation (6.13) tells us K2 = 2k; - ky  z12 Z12. So we can make K3 null by just setting
z19 = 0 or z13 = 0, without forcing the strict alignment of k1 and ko. In particular, in (2, 2)
signature, zio and z15 are independent. We will approach the collinear limit ki - ko — 0
by setting z; — zo, while keeping z15 arbitrary. In particular, using (6.9), the momentum
conservation ks = ki + ko + O(z12) implies

_ _ w _
wgzwl—l-WQ—f-ﬁ(Zm), 23221+ﬁ(212)222+ﬁ(212), 232224-71212-}-@(212).

w1 + we
(6.31)
Now let us reconsider (6.29). Since we are only interested in terms at leading order in zj9,
this means we just need to consider zJ, terms inside the square bracket of (6.29). Therefore
we can just set zz = zo in V(ws,z3,23) and furthermore use the relation in (6.31). As a
result, (6.29) becomes

(w1 +w2)? Z12

_ ~ _ Wy
V(w1,21,21)V(w2,22,22) ~ — {V <w1 +WQ,Z2722+WI ! 212> +ﬁ’(212)}

wiwe  Z12 + w2
(6.32)
x4 sntl
~— Z Hme”w;l(wl +w2)2_n%3”1}(w3, 23,72) + O((z12)?),
n=0"" 12
(6.33)

where we essentially performed a Taylor expansion in the second line. Performing the
Mellin transformation gives

o 1 7n+1

_ _ i _
VAl (lezl)VAQ (ZQ,ZQ) ~ — Z E 2132 0 VA1+A2 (ZQ,ZQ)B(Al +n—1, Ag — 1) , (634)
n=0 """

which is exact to all orders in zj2 but to leading order in zj5. This coincides with the
celestial OPE of two positive helicity gravitons including all the SL(2,R) descendant con-
tributions [13, 15].
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6.4 Descendant in OPE from momentum conservation

In the previous discussions, we derive the celestial OPE for the massless field in N' = 2
string with all SL(2,R) descendant contributions included. In this subsection, we want to
show that this is a general feature and can be easily generalized to all celestial OPEs in
(2,2) signature.

As explained, in (2, 2) signature we can have three momenta conserved and null without
fully pointing along the same direction. In particular we can vary zis,z12 independently.

In the collinear limit, the OPE of two operators has the following general structure
O(w1,21,21)0(wa, 22,22) ~ S(wi,w2,Z12,Z12) [O(w3,23,23) + ﬁ(hﬁu)} , (6.35)

where ws, z3,Z3 parametrize the null momentum ks which is approximately the total mo-
mentum kq + ko, The difference between ki + ko and k3 vanishes in the strict collinear
limit and accounts for the €(z12z12) uncertainty in the bracket. We would like to real-
ize the collinear limit such that z;o — 0 while keeping z12 arbitrary. And in the bracket
of (6.35), we only keep the (z12)? term. This enables us to set z3 — zo at this order. The
momentum conservation in the collinear limit (6.31) further enables us to write ws,z3 in
terms of wy,ws, 71,7 exactly in z direction but at leading order €'((z12)?) in z direction.
As a consequence, (6.35) finally reduces to

_ _ _ _ wr
O(w1,21,71)0(w2,22,22) ~ S(wi, w2, 212,712) {O (M +wo,z2,72 + 1Z12> + ﬁ(zlz)] ,
w1+ w2

(6.36)
where S only depends on zj9,z12 through their differences due to the translational invari-
ance on the celestial sphere/torus. In general we can assume that S(wq,ws,z12,212) has
power law dependence on energy

S(wi,wa,212,Z12) = w?wg(m + w2) T (z12,212) , (6.37)

and thus
S(tw, (1 — t)w, Z12, 212) = ta(l — t)ﬁ wo‘+ﬁ+7T(212, 212) . (6.38)

Performing the Mellin transformation and using the following identity

1
/dwl dwo W1A1—1W2A2—1 = / dt/dw wA1+A2_1tA1_1(1 ft)AQ_1 , t= w1 , wW=witwsy,
Jo w1+ w2
(6.39)
respectively on two sides of (6.36), we obtain

1
OAl (zl,il)OAz(ZQ,ig) ~ /0 dt/dw tA1+a71(1 —t)A2+ﬁ71 UJA1+A2+Q+5+771T(212,212)0((4),ZQ,ZQ —thlg)
1
~ T‘(Zlg7 212)/0 dt 0A1+A2+a+ﬁ+'y(227 22 =+ tilg)tA1+a71(1 — t)A2+ﬁ71

~T(z12,212) ) %5HOA1+A2+a+ﬁ+W(ZQa 23)B(A1+a+n,As+ ).
n=0 '
(6.40)
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So once we work out the primary operators in the OPEs, namely the leading n = 0 term
in the above expansion, then we may read off «, 3,~. The formula above enables us to
include all n > 0 contributions, and thus compute all the SL(2,R) descendants.

Our derivation above essentially relies on the momentum conservation in (2,2) sig-
nature.?? The same type of formula was derived before from the conformal symmetry in

celestial CFT. There the formula for the OPE with SL(2,R) descendants is given by [13, 15]

Oa,.0(21,21)O0p,. 5, (22, 22)
N-M
o A/Os 12
0102 _M+N

Z19

1
/ dt 0A37J3 (22, Zo + tilz) tAl_Jl_M+N_1(1 — t)AZ_JZ_M-HV_l , (6.41)
0

where

A1+ Ay — Aj N_J1+J2—J3
2 ’ 2 '
One easily sees that they are very similar. It is also easy to verify that the descendant

M = (6.42)

contributions in (6.40) are consistent with the general OPE formula with descendants
in [15].

6.5 w14 algebra from OPE

We have now derived the celestial OPE (6.34) including all the SL(2,R) descendants in
N = 2 string theory. Now we focus on the soft sector, namely the set of operators with
special integral dimensions. More specifically, we define the soft current as [13-15]

H'(z,2) = lim(A=1)Oa(z,2),  1=2,1,0,---. (6.43)

The soft currents can be further decomposed into chiral currents [13-15]

i-1 i
Hl(z,2) = i1 n(2) . l=4-2i, (6.44)
el (i—n—11(i+n—1)!
where the range of indices are
. 3 . . .
i=1, 5,2,---, n=1-—142—4¢, ---,1—1. (6.45)

There are thus 2i — 1 chiral currents H¢ (z) which transform under the (2i — 1)-dimensional

representation of SL(2,R). After doing some algebraic manipulations, one can show
that (6.34) gives rise to the following chiral OPEs [14, 15]

. . 2 L
Hi(2) H3o(0) ~ =~ (m(i = 1) = n(j = 1)) H,2.(0). (6.46)

In terms of commutators, they are
(M, i) = —2(m(i = 1) = n(j — 1) M2 (6.47)

Translational symmetries were also used in [28] and [22] to constrain the descendants in OPE purely
from the CCFT perspective.
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This just gives the wyy algebra, or more precisely, the loop algebra of the wedge algebra
of w4 algebra [14].

Therefore, we have derived the wiys algebra in N' = 2 string theory. Note that the
appearance of wi i in N = 2 string is not accidental. At classical level, wy.~, appears
as the symmetry group of self-dual gravity in (2,2) signature [29], where the only degree
of freedom is Kahler potential. The quantization of this theory is just given by the N’ = 2
string [25].

Here we obtain the w4 algebra by first deriving the celestial OPE (6.34) with all
SL(2,R) descendants from worldsheet OPE in N = 2 string theory, and then performing
the mode expansion into chiral currents. However, our construction is indirect. It would
be desirable to construct directly the generators H! from the worldsheet, and then show
that they satisfy the wiio algebra (6.47). Let us add some comments here. One can
indeed perform the Mellin transformation (2.39) directly on the vertex operator (6.23)
and obtain the conformal vertex operator. It contains several terms each with factor
(A + si)(—ilz; . X)"A7% s € 7. Since I'(A + s;) has a pole when A + s; € Z<g, the
definition of soft current in (6.43) indeed gives meaningful result when | = —s;, —s; —1,- - -
The soft currents are then essentially some polynomials of (—zlAc - X). However, the range
of index | seems to not work exactly as we expected. Moreover, it is not clear how to
decompose the resulting soft currents into chiral currents (6.44).3° A detailed and better
understanding is needed to solve these confusions, and we leave the direct construction to
the future.

7 Conclusion and outlook

To summarize, in this paper we provide an approach to deriving celestial OPEs from the
worldsheet in string theory. Our results are corroborated by the collinear factorization of
string amplitudes, and are applicable to general dimensions, corresponding to Einstein-
Yang-Mills theory with possible higher derivative corrections. For N' = 2 string theory,
we also obtain the descendant contributions in the celestial OPE, whose soft sector leads
to the wiyo symmetry. The connection between celestial sphere and string worldsheet
initiated in this paper may finally help us to find the microscopic celestial CFT dual for
string theory. Besides this ambitious goal, various questions about celestial OPEs remain
to be further studied.

First of all, our results of celestial OPEs include the o/ corrections but not the quantum
correction as we were only focusing on the tree level amplitude. It would be interesting to
derive the string loop corrections to the celestial OPEs. The derivation from worldsheet
at loop level seems to be much more complicated; in particular, one needs to take into
account the integration over the moduli space of Riemann surface. Nevertheless, a simpler
approach may be considering the factorization of string amplitudes at loop level and then
performing Mellin transformation.

39Due to the relation (6.9), (6.10), the soft currents are also polynomials in both z and z. However, (6.44)
shows that the soft currents are supposed to be Laurent series in z.
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Even at tree level, it is still not clear how to derive the celestial OPE corresponding
to the fusion of two gluon operators from the open string into a graviton operator from
the closed string. Although we sidestepped this question by going to heterotic string and
obtained the desired celestial OPEs, it is still conceptually very important to derive such
an OPE from the open-closed setup.

Moreover, our derivation in this paper is mostly about the primary operators in the
OPEs, although we discussed the descendants in N' = 2 string theory. It would be very
interesting to understand how to systematically incorporate the descendant contribution
in the OPEs. Since the descendants are fully determined by symmetry, the more basic
question may be how to implement various symmetries on the celestial sphere through
some worldsheet generators.

Furthermore, it would be important to study the vertex operators in the conformal
basis directly. In our current derivation, we first derive the OPEs of worldsheet vertex
operators in momentum space, and then Mellin transform to the conformal basis. Although
the momentum space offers a bridge, it makes the connection between celestial sphere and
worldsheet less transparent. So understanding the vertex operators and their OPEs directly
in conformal basis would be very useful.

Last but not least, the wyo Symmetry seems to be a very interesting outcome in the
study of celestial holography. Although the w14+ symmetry is a nice feature of generic
gravitational theories, it may be also useful to have a more direct and deeper understand-
ing of such an infinite dimensional symmetry in N' = 2 string theory. In this paper we
derived the wi4oo symmetry based on the celestial OPEs with descendants purely from
string theory, but the origin of wiis symmetry is not clear. A direct construction of
W1too generators from the worldsheet would make the symmetry more transparent and
also enables us to discover the implications of such an infinite dimensional symmetry al-
gebra. The study of N/ = 2 string theory and self-dual gravity is particularly interesting,
as the self-duality of these gravitational theories suggests the chirality of the dual celestial
conformal field theory. The chiral nature and the infinite dimensional symmetry bring lots
of simplifications, and may finally enable us to find the CCFT dual of N' = 2 string theory
or self-dual gravity.
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A OPE on the string worldsheet

In this appendix, we give all the details of computing the worldsheet OPEs in various string
theories.
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A.1 OPE in open bosonic string

Let us first consider the OPEs in open bosonic string theory. We will assume that all X*
satisfy the Neumann boundary conditions and the basic OPE is given by?!

XHM(y1) XY (y2) ~ =20 In|y1 — ya] . (A1)

From now on, we will assume y; > y2 and thus the absolute value symbol in (A.1) can be
removed.
Taking derivatives of (A.1), we get

. 1 . . 1
XH(y1) XY (y2) ~ =20/ — XH(y) XY (y2) ~ =2/ —-, (A.2)
Y12 Yia
where X (y) = 9,X (y).

Now, we can compute the OPEs of various composite operators made out of X. The
most important formula in our OPE computations is the following identity in free field
theory

el eB = elAB)  AYE (A.3)
where A, B are collections of annihilation and creations operators of free fields, and : -- - :
denotes the normal order product.

OPE without derivative. In particular, we can take A, B in (A.3) as the free fields
themselves and then obtain

P X (1) L. i X (y2) y%g’p-q . e X (y1)+ig X (y2) . (A.4)
where
s P X () tie X(v2) . . o X (1) gia X(v2) _012!2 : [8n€ip'X]€iq'X(y2) : (A.5)
= yn —ip- n ip- i :
T R — *
g2 . . ,
— (1 typip X+ 52 (=0 %) +ip- X) + ) DR (ys) :
(A.7)
As a result, we have
‘ } / ) 2 . ; :
P X eia Xz) — P14 ypyip - X + %( —(p- X2 ip- X) oo | DN (),
(A.8)

where we have removed the normal ordering symbol for simplicity of notation.??

31Let us also recall the weights of various operators h(05X (y)) = £, h(e’**) = o/k*. Although being
non-primary, X formally has weight 0.

32Rigorously speaking, different orders of operators inside the normal order product usually give different
results. But in our free field OPEs and for the vertex operators under consideration, the difference does
not matter. In particular, : ¢* ¥ X : and : Xe™*X : only differ by 9 X, which is a total derivative and is
thus inessential after integration. For this reason, we will not be rigorous about the ordering of operators.
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By further taking derivatives in (A.4), we similarly get the following OPE
By, eip-X(yl)ay2 P X (y2) _y%S,P‘q—Qei(erq).X

X 2a’p~q(2a’p~q*1)+2ia’y12p‘q(fq~X+2o/p~qp~X)+'~}(yz)-
(A.9)

OPE with one derivative. We are also interested in the OPEs of operators involving
derivatives X. This can be done by using the following trick. We can regard X as arising
from the Taylor expansion of the exponentiation of free fields, namely

XrePX = —z‘aaeip'X“C'X . (A.10)

Since the OPEs of free field exponential operators can be computed using (A.3), we can
thus also easily obtain OPEs of composite operators involving X. This can also be easily
generalized to composite operators with multiplet X or even higher derivatives X, etc.

Using this trick, we can compute the OPE of vertex operators for tachyon and gluon
as follows:

P XTI (2) = —ige e () T (1) 0 (A.11)

The OPE on the right hand side can be evaluated using (A.3)

X (1)l XHEX () (A.12)

— 20 palny12=20/Ep/y12 . i X (y1)+ig- X (y2) pi€ X (v2) (A.13)

_ e2a’p4q1ny12*2a’£'P/y12 . (1 +7ffX(92) +. .,)eip.X(y1)+iq.X(y2) .
=155 p'q(l =20/ p/yr12 +) : (H—if'X(yz) +- ) (1+y12 iP'X(y2)+'")ei(pﬂ)'x(yz) :
) p'qil(—Qalf'P'i‘iyuf‘X‘f“")(1 +yraip- X +- ")6i(p+q)'x(y2)

=yl ! ( —20’¢-p(1+y12 ip- X) +iy12€ - X (y2) + - >€i(p+q)'x(y2)
Then the OPE in (A.11) is given by

ePX (y) XVl X (1) ~ yf‘;'p'q‘l (22' o'p + y12(XY —2a/p"p - X) + - -)ei(pW)'X(y?) )
(A.14)

OPE with two derivatives. Using the same trick, we can compute the vertex operators
of two gluons as follows

. L o o . s , s
XHe® X (y1) XV eI (yy) = P XX (g )l XX ()

—a—cu 7, (A.15)

(=¢=0
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Using the identity (A.3), the OPE on the right-hand-side can be calculated:
i X+iC X (yl)eiq-X+i§~X () (A.16)

— 20/ P alny124+20/ (Ca—E€p) /y12420/ CE/YTs . i X (y1) +ig X (42) i€ X (1) 6 X (32) , (A.17)
:eQQ/p‘qlnynHa’(C~q—€~p)/y12+2a’4~£/yf2 : (1+iC-X(y1)+---) (1+Z’§.X(y2)+...)eipX(yl)-s-iq‘X(yz):
=y 7 (1420/(Cq—€-p) [yr2+20/C- &/ +20" (C-g—Ep)* o+

X: (1+iC-X(y2)+y12iC-X(yg)+---) (1+i§'X(ZJQ)+---)eip'X(yl)”q'X(yz):

2i0/

=y sz? (20/4-5—40/24-615'17) + (C~q£'X(yz)—£~pC-X(yz)) 4o

Y12
% (1 +iy12p-X(y2)+---)ei(f""‘J)'X:(yg)
:yfgfp-qf%i(p-&-q).x [(2@'('5—4QI2C'C]6ZJ) (1+iy12p-X) +2ia'y12 (quX—{pCX) _|_:| (y2)

where the dots represent terms which are quadratic or higher order in &, ¢ or in yi2.
Combining this OPE and (A.15), we then obtain

- XePX (y1)g - XelX (yo) ~ —yig 7T el X [20/ (¢-6—20"C-q¢-p)

200 ya(C g€ X =€ p ¢ X +(C-6-20C-a€p)peX) +o-+ ().

(A.18)
or equivalently

Xueip.X (yl)Xyeiq-X(y2) ~ _y%g/p-q*QEi(p—i-q).X [20/ (np,u _ 20/(]”‘ pu> (Alg)
+2ia’ yiz (g X¥ —p” X4 (" — 20'¢" ¢")p- X ) + - } (42) -
As a consistency check, we can set ( = ip, £ = iq, then (A.18) reduces to (A.9) as expected.

A.2 OPE in closed bosonic string

Now we switch to the closed bosonic string. It has the basic OPE

/

XP(21,21) X" (2, 5) ~ _%nw In |20 (A.20)
It is more convenient to separate X* into the left and right movers:
XM (z,2) = Xi(2) + Xi(2). (A.21)

The two sectors are independent and have the following OPEs

/ /

a _ _ a _ _
X (z1)XT (22) ~ —517’“’ Inzio, Xi(Z21)Xp{(Z2) ~ —577“” Inzip, XP(21)XEk(Z2) ~0.
(A.22)
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In general any vertex operator in closed string theory can be decomposed into the product
of the left and right moving pieces. So to compute the OPE of two vertex operators in
closed string theory, one just needs to compute the OPEs in the left and right moving
sectors independently, and then take their product. In both the left and right moving

sectors, the free OPE (A.22) is almost identical to the open string case (A.1), except for

the reduction of o/ by a factor of 4.33

We are particularly interested in massless fields in closed string, whose vertex operators
are given by

VHE(2,Z) = OXPOXFePX (2, 7). (A.23)
We can decompose it into the left-moving and right-moving parts:

VHE (2, Z) = Vf(z)Vg(z), VH(z) = OX e XL = 9XeiPXL, Vlg(z) = 0XpePXR = X P KR
(A.24)

We would like to compute the OPE of two such vertex operators, namely

OXPOXH X (21, 2)0X OX"eP X (21,21) = VI (21, 21) V" (29, o) (A.25)
= VL'u(Zl)VLV(ZQ) X V}%(El)V}?(ZQ) . (A.26)

As described before, we can compute the OPEs in the left and right moving sectors

independently. The computation of OPE in the left moving sector is exactly the same as
that in the open string case (A.19), and the final result is given by

VI (1) VE (22) = OX 1P XL (21)0XY XL (2) (A.27)

/ /
N _%21%204 p'q_Qei(p+q).XL |:<77;u/ . %a/qp, pu)

1
+1 219 (q“ 0X" —p” OXH + <77”” — io/q” q”) P - 8X) + - ] (z2) .
(A.28)
The right moving OPE is similar. After combining the left and right moving OPEs together,

we get the world-sheet OPE of two vertex operators for massless fields in closed string
theory:

8X”5X‘_‘eip'x(zl,21)8X”5X’76ip'x(22,22) (A29)

/2
(6% ’ .
a'p-q—4 i(p+q)-X
NT|212| p-a—44i(p+a)

1 1
X {(77’“’—20/(]“ p”) +1i 219 <q“ oXV —p¥ OX* + <77‘“’—2 > >
a1, 5 5 - i axy?_ .7 Ay g1 o g 5
x| (" -5t p +iZig | g" OXY —p” OXP + | n — 5 p-0X

h(e™ )

] (22, 22)
k2.

33In particular, the weights of ¢?** are also reduced by 4, namely h(e’**) = = %
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A.3 OPE in heterotic string

Now we consider the OPE in heterotic string. The bosonic fields are the same as that
in (A.21) and (A.22). The new ingredient is the right moving fermions on the worldsheet
which have the following OPE

~ ~ nv
@) () ~ (A.30)
<12
We would like to compute the following right moving OPE:
3 S _ 1 . .
ViV (@) V0 (z) = e Ote YR (7)) (z’é?X” + o'k ww) X (z,) (A.31)
For this purpose, let us first present the following two OPEs
~ - kMap¥ (Z9) — k- (2
Pk D (z) ~ BT V), (A32)

212

and

) _ ) 1o/ peg— ; 1 _ _ )
P XR(2))0X VxR (5,) ~ 22 T (Za'pv — 50'Z12p"P X + 2120X" + - elPra)X (),

2
(A.33)
which can be obtained as in the open string case (A.14).
Then the OPE in (A.31) can be evaluated straightforwardly
o _ 1 SN
PHePXR (7)) (iaX g W”) €1 () (A.34)

e XR (55X 9 XR (5) + %o/qzﬂ(zl)q DU (5) X €PXR(5)ei KR (5,)  (A.35)

- loimae1 [ 1 _ _ ‘ i}
= igprzz P (; P = 50 Z0p"p - OX + 2120XY + - ) ! P+ Xr(z2) (A.36)
1 BV (Zo) — n¥q . (% 1o/, _ . .
+=ad (q ¥ (z) 4 Y (2) + .. > z2 pd (1 + Z10ip - OX + - ) ci(r+a)- X (22)
2 Z12
(A.37)
Loimael - . 1 N . o
— 2122 pq 1€z(p+Q).XR (;a/inpV _ §a/212iwupup . X + 512Z.wMXV 4. (A38)
1 / v 1 IANT17 7 =
Had = Sa gt ) (22) (A.39)
_3a'pa-1 . 1 v v, v 7 =
=z, 1 elPt)Xn (20/ [q“w —pYt =g 1/1] + - ) (Z2) . (A.40)

So the final result for the OPE in (A.31) after contracting with polarization vectors is
- _ 1 S
e Xn(z) (i€ 0X + olq 06 0) ¥4 ) (A41)

N %Zléflqulei(p—i-q)XR(C qEP—E-pC-P— C'§Q'1/~1)(52)-
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A.4 OPE in N = 2 string

For N' = 2 string, we have bosonic fields X* and fermionic fields ¢}, ¢%,. We can agin
decompose X* into left and right movers

XH(2,2) = X (2) + Xp(2), (A.42)
which obey the OPEs [25]
Ry 0 i e\ n
X1 (21) X (22) ~ 5 In(z; — 22), Xp(Z1) X5 (22) ~ —?ln(zl — Z9). (A.43)
The OPEs for fermions are [25]
i (NG 0’ i (= \TT (5 Ul
Yr(21)¢(22) ~ v YRr(Z)YR(Z2) ~ o (A.44)
21 — 29 Z1 — 22

It turns out to be more convenient to consider the four component fields, namely X'*#
and ¢}, ¢k, where = 4,4 =1,2,1,2. Then we have the OPEs
v 7y

Xf ()X (22) ~ =T In(a12) . X(2)XR(22) ~ — - In(z1a) (A.45)
and
7 v n W= V= nH
Y7 (20)Y] (22) ~ P Y (Z1)Vp(22) ~ — (A.46)
12 212

where n*” is given in (6.3).
We would like to compute the OPE of two vertex operators given in (6.23). As before,
we can decompose the vertex operators into the independent left- and right-moving sectors:

V(k,zz) = Vi(k,z)Vg(k, %), (A.47)
Va2 = (02, — S (6" - pu) (k) ) ¥ (A.48)
Vanlh,2) = (ik" 020~ 56" - pr) (e hr) ) 7. (A.49)

They can be further written as

o~

Vi(k,2) = exp ik - 0%, + ik - X (1 _ %(kv ) (k - ¢L)> . (A50)

linear term in kV
and similarly for Vg, where we only keep terms which are linear in the kV.

Then bosonic and fermionic parts in (A.50) can be considered separately. The bosonic
contribution in the left moving OPE can be derived as in the open sting case (A.18):

eik1~XL+ik1V~8XL (Zl)eikQ‘XL“‘ikgv'aXL (22)

g fog— 1 1
= ket Klev kY ko kY k:1>

+%212(k;1v ey k- 0 (20) — K - Ky - 0X (1) — iky - ks + ik ko )
—2h (kY - 0X (1) — i) (kY - 0X(20) — 1)

NPTERN ] gik1-X (1) ik X1 (z2) (A.51)
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where the normal ordering of two operators at different points should be understood in the
same way as in (A.5).
The fermionic contribution in the left moving OPE is

(kY -abr) (k1 - br)(z1) (ks - r) (ke - ¥r)(22) (A.52)
_ R kR R R (453
212
Vo AV
+ ki ke ki 4p(21)ks - (22) : -I-L1 ki ky - p(z1)ks - p(z2) : (A.54)
212 212
. VoLV
SRR k) ) s -k ek () (AS)
2192 z12
+ 1 ky - tpr k1 r(z1)ky L ke Pr(22) 1, (A.56)
where we used
P pre)a Yule) = T pedr(e)g drlz) - (A.57)

Then the OPE of two operators of the form (A.50) is given by

Vi (ki,21)Vi(k A58
L( 1721) L( 2,22) linear in ky and kY ( )
Lkyko—1 1 1
~zfy {%mlﬁv -k (1 - §k1 : k2> (A.59)
+ %klv Ko (KY - 0X(21) + kY - 90X (22)) (A.60)
1 V Y \
gk k(= (kY ko pn)(20) — (R -k pn)(z1)  (A6L)
— kY p(ea)k - h(21) s — kY - (a)ka  (20) ¢ ) (A.62)
1 1
— kR ki (ks (20) s =Ry Ry k()R (2)
(A.63)
+ 6(212) eik1~XL(Z1)+ik2-XL(Z2) 0 (A64)
where we used ky - ko = —ky - ky.

We are interested in the collinear limit ki - ko — 0. In this limit, we also have
kY - kY = —ky - ko — 0 following (6.16). Therefore the 1/z12 term (A.59) and fermion
bilinear term (A.63) can be dropped in the collinear limit.>* The remaining terms can be

34 Actually, the 1 /z12 term is BRST exact and can be dropped even not in the collinear limit. Recall
that k¥ is just the positive helicity polarization vector e+ (6.15), up to an overall rescaling and a gauge
transformation. For e, we have the property that ei(z;,2;) - €+(z;,2;) = 0 (6.14). So if we replace k"
with €4, the term ky - kJ should be absent completely. The appearance of the term ky - ky is due to the
gauge transformation, and thus is BRST exact.
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combined into a very simple form:

o o A.65

L( 1?21) L( 2,Z2) linear in kY and kY ( )
1 lriko—1

~ iki/ - ko 2122k1 ko=l ikitka)-X (400

. 1
iy 4 RY) 02 = (b + KY) - (ko )+ Ok ) + Oara) | ().
(A.67)
The computation of VR(kl,El)VR(kg,ég) is identical and the final result is just given

by (A.65) except for the replacement of z with z. Combining the left and right moving
OPEs together, we get the final OPE

V(k1)V (k) ~ % (kY - ko)? [arg[F1rhe2e s X (A.68)
1
X {ng FOX — §(K3v YL Ks-9r) + Ok - ks) + 0(212)] (A.69)

<[y 02— Sy pn Ky ) + 0 R+ 00| (AT0)

where K3 = k1 + ko.

B OPE and amplitude in open-closed string theory

In this section of appendix, we will discuss the celestial OPEs involving both gluons and
gravitons from the open-closed string setup.

Basic OPE in open-closed string. In the open string case with spacetime filling D-
brane, the fields X*# satisfy the Neumann boundary condition on the boundary, namely

0XH(2,2) = 0X*(z,2) for z=z=yeR. (B.1)

This can be realized by adding a mirror image contribution to the OPE in the closed
string (A.20), namely we now have

/ /
XH(z1,21) X" (22, 22) ~ —%77“” In |z — 22\2 — %77“" In |z — 22\2 . (B.2)

Then it is easy to check that this OPE indeed satisfies the boundary condition in (B.1).
On the boundary of the disk, we have X(y) = X(z = y,z = y) with y € R, and we also
recover the OPE (A.1) in the open string case.

As before, we can decompose X (z,%2) = X1 (2) + Xg(2). Then (B.2) becomes

/ /

! _ _ e} _
X7 (21) X (22) ~ —577“” Inz, Xp(21)XR(22) ~ —577’“’ Inzz, (B.3)

and furthermore .

_ o _
X (21)XE(z2) ~ —577“ In(z1 — z2) . (B.4)
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As a result, we have X (y) = X1(z = y) + Xr(Z = y) and the following OPEs [38]

XMy)Xi(2) ~ =™ In(y —2),  X"(y)XR(2) ~ —/n"In(y—2),  (B5)
X)X (2,2) ~ —a/n" Iny — 2|?. (B.6)

In particular, we also have X (y) = 20X (2)|,=y = 20XR(2)|5=y-

Gluon and graviton mixed amplitude from open-closed string. We want to com-
pute the three-point amplitude of two gluons and one graviton/dilaton/KR field. They
are labelled by their momenta p1,p2,p3 and polarizations (i, (2, €. They satisfy the
momentum conservation and the polarization transversality conditions

p1+p2+p3=0, C1-p1=Cp2=ewph =euwps =0, (B.7)

as well as the on-shell conditions
2 2 9 _ _ _
p1=py;=p3=0, = pL-p2=p2-p3=p3-p1=0. (B.8)

We further assume that the closed string polarization tensor is traceless e, n"" = 0, so we
do not consider dilaton.?

We would like to compute three-point amplitude from the open-closed string setup.
At tree level, this is given by the correlator on the disk, where we insert the open string
vertex operators on the boundary of the disk and closed vertex operators in the interior of
the disk. In particular, our three-point amplitude involves two open and one closed string

fields, and can be computed by

dyi dys d>z

AOOC —
3
Veka

(G- XX (y1) G - XeP2 X (y)en 0XHOXY P X (2, 2)) Tr(t4t7)

(B.9)
where we need to divide the volume of the conformal Killing group, which is PSL(2,R).
In practice we need to fix the PSL(2,R) invariance. Following the prescription in [38], we
can set

Y1=~Y2=-Y, z=1, z= -1, (B.10)

but we also need to take into account the non-trivial Jacobian of the transformation from
the fixed coordinates to the parameters of PSL(2,R). Using the coordinate transformation
Y1 =TG-y, y2 = §+y, 2 = u+iv, Z = u—iv, the integration measure becomes dy; dys d*z =
2dydjjdudv. An infinitesimal PSL(2,R) transformation acts as dz = o + Bz + 722 where
a, 3, are real. The Jacobian between them is [38]

' O(u,v,7)
I, B,7)

35This is to avoid the contraction between the left and right moving pieces of closed string vertex oper-

‘:1+y2, at Jg=u=0, v=1. (B.11)

ators, which turns out to bring divergence and needs to be treated properly. We thank Rodolfo Russo for
discussions on this point.
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Then (B.9) becomes

A = / dy 2(1 4 %) (¢ - XePr X (—y)Co - XeP2 X (y)e,, 0XHIXV P+ X (i, —i)) Tr(t2t5) .
(B.12)

To compute the correlator in the integrand, we rewrite it as
(G Xe ¥ (y1) G- X e (y2) e DX MOX" e (2, 2))
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= e _ <eip1-x+z'cl-X(yl)ez‘pz-chg-x(yQ)eip3<xL+i£<8XL (z)ez‘ps-XR+iééxR( z))
0€,,08,

)

lincar terms in ¢1,Ca,e

(B.13)
where we only keep the terms which are linear in (7, (2 and e, or equivalently terms linear in
(1, and &, € in the correlator. The correlator can be evaluated using the formula (A.3) and
OPE (B.5). The computation is straightforward and can be simplified by using (B.7), (B.8).
After further performing the y integration, we obtain the final result. Up to an overall
constant, the three-point amplitude is given by

Age = 648 (Cl'pz Corep1—Corp1 Grrepr1+Ci-Co proepr—&'Ciop2 Coop1 pl'é"pl) ,  (B.14)

where A -e- B = J(A"BYe,, + A"B"e,,). Using (B.7), (B.8), (B.14) can be further
rewritten as

1
AT = 2 epuCipla o8P () + pfySP7 ()] 647 (B.15)
where ,
o
SPOR(a") = phy 07 + oy n7H + 3y M + ZPTQ Ph P31 - (B.16)

The result is similar to the amplitude for two gluon and one graviton/dilaton/KR field in
the heterotic string case (5.23), except for the symmetrization of closed string polariza-
tion tensor and non-trivial o/ corrections which are absent in the heterotic string due to
supersymmetry. The tensor S(a’) here is essentially T'(2a/) in (5.5), up to the relabeling.
Note that in the purely open and closed string case, we have T'(4¢/) and T'(¢/) in (5.3)
and (5.18), respectively.

Since the closed string polarization tensor is always symmetrized, the massless fields
from closed string can not be Kalb-Ramond 2-form field in order to have a non-vanishing
amplitude.

It is worth mentioning that the result in (B.14) comes from the o2 and /4 order terms
in the correlator (B.13). But actually the leading terms in the correlator (B.13) is of order
a'?, which is non-vanishing and takes the form

o |G EG-E G EG-E
(0% N

EDTE (47

However, after performing the integration over y, this term vanishes. As a result, the
leading interaction between gluon and graviton is indeed the minimal coupling between
them, as it should be.
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Celestial OPE of gluon and graviton. Now we want to compute the worldsheet OPE
between closed string and open string vertex operators. As before, we can decompose
the closed string vertex operator into the left and right moving part, and then use the
formula (A.3) and (B.5). The steps are similar to the previous cases, so we only write
down the final result:3°

ew0X XV P X (2,2)¢ - XX (y) (B.18)
0 PP X (B.19)

y 2i(/p-(q-e-q—q-e-Q)
z—y
+q-eq(-X+qeCpX—pCqgeX—ap(qgeqpX (B.21)

(B.20)

+0(z-2)+0(z-y)+00E-y)| (), (B.22)

where we use the relation X = 20X; = 20Xpr on the boundary. Note that only the
symmetric part of the closed string polarization tensor contributes. We are interested in
the collinear limit p- ¢ — 0. Then the first term (B.20) is supposed to contribute only the
boundary contact terms, so we will ignore it. The second line (B.21) is the one relevant here.

To proceed, we choose polarizations as the bases ¢ = ¢;(q), e"” = e¥(p)e%(p). Then (B.21)
can be rewritten as

€a"q q~5555'X—p-5,;5@'X+(sa-eg—a’p-sgsmq)pf(}+(a<—>&>. (B.23)

The terms in the bracket are very similar to the terms proportional to yi2 in (3.3) once
replacing ¢ — €5, — 5, and o/ — 2a/. Therefore, the simplification of this formula is
also similar to the open string case there. Following the same derivation leading to (3.17),
up to the boundary contact terms, the final result here is given by

€a - q Q'€&€5'65—p'656&-€5+(Ea'é‘g—a/p'é‘gé‘@'q)p'€5]€5-X+(CLH&).
(B.24)

Up to symmetrization and o/ correction, this is similar to the heterotic case (4.31).
In the collinear limit, the factor |z—y|2%792 localizes to a delta-function §2(y—z)/p-q,
as one can see from (3.55). Integrating over y and z, we get the OPE

ima! 1 .
1 ﬂsa-q[q-ea €5 €6— D€ Ea-E5+(€g'EI;*CX’p-EE Ea~q) p~€5}VEA(p+q)+(a<—>a>

ima

1 _
5 caal; (p, ca(p); ¢,5(a); 5(1/) +(aera),

Vaa(p)Vi'(q) ~

~

(B.25)
where I is given in (3.35).

36Note that inside the square bracket, there are also order one terms which are proportional to (z —
y)/(Z —y) or its inverse; these terms vanish after doing z integral on the upper half plane. This is supposed
to be the origin of (B.17), and both of them disappear only after integration.
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Further performing the Mellin transformation, we finally get the celestial OPE between
open and closed string massless fields, up to an overall constant:

Vay,ea(1) VA, 5(2) (B.26)
1,0 B(AL — 1, A0 + 1) + 25,0 B(A1, Ag) — 05,6 B(Ay, Ap + 1 ;
g 72 (A 2+ 1)+ a7, (3612)(2 1,A2) — 27,0 B(A1, Ay )V§1+A27é(m)+<aﬁa>
a a0 .8
—20/%3(A1 +1, 80+ 2)VA 4 a,p2.6(72) - (B.27)

Since we have assumed that the polarization tensor is traceless and furthermore only its
symmetric part contributes, the closed string massless field under our consideration can only
be graviton. We thus need to subtract the trace part in (B.26) following (2.7). This then
gives the gluon and graviton OPE from the open-closed string setup. One can check that
the same result can be obtained from the collinear factorization (5.2) and the three-point
amplitude (B.14) derived before. In particular, the relative coefficients of o/ correction are
also the same. The perfect agreement thus justifies our amplitude and OPE calculations.
Therefore, the celestial OPE can also be obtained from the open-closed string setup. How-
ever, the emergence of closed string field from open string field, namely the fusion of two
gluons into one graviton, is not clear from the OPE perspective.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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