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1 Introduction

Electroweak boson production in association with photons and jets plays a key role in the
physics program of hadron colliders such as the Large Hadron Collider (LHC). It provides a
window into understanding the electroweak symmetry breaking mechanism and constitutes
a prominent irreducible background in new-physics searches. Our ability to correctly inter-
pret the experimental data relies to a large extent on the availability of precise theoretical
predictions for this class of processes. Generally the knowledge of the next-to-next-to-
leading order (NNLO) in the perturbative expansion in the strong coupling constant is
highly desirable in order to harness the wealth of data to be collected. To access the im-
portant W/Zbb̄ and W/Zγγ production processes, as well as W/Z + multijet associated
production, the calculation of 2 → 3 NNLO corrections is required. The latter repre-
sents a major challenge and remains on the forefront of modern computational methods’
capabilities.

The remarkable progress in the computation of massless two-loop five-particle scat-
tering amplitudes in the last few years [1–20] has recently culminated in the first NNLO
theoretical predictions for 2→ 3 processes [21–25]. This success was enabled by the avail-
ability of analytic results for the required two-loop Feynman integrals [1, 3, 10, 26–31].
In particular, it was crucial to express the latter in terms of judicious bases of transcen-
dental functions [27, 31]. On the one hand, these bases make the analytic structure of
scattering amplitudes manifest, enable the analytic cancellation of ultraviolet and infrared
divergences, and facilitate the derivation of compact representations. On the other hand,
they are amenable for efficient and stable numerical evaluation suitable for phenomenologi-
cal applications [31]. In this paper, we construct a similar basis of transcendental functions
for the planar two-loop five-particle scattering amplitudes with a single external massive
particle.

The planar one-mass two-loop five-point Feynman integrals are currently the subject
of extensive study. The four-point integrals with two external masses were computed
in refs. [32–34]. As for the genuine five-point Feynman integrals, bases of independent
integrals — alias master integrals — satisfying systems of canonical differential equations
(DEs) [35] have been constructed in ref. [36]. Their numerical evaluation was achieved
by solving the DEs in terms of generalized power series expansions [36–38]. Expressions
for the master integrals in terms of multiple polylogarithms (MPLs) [39–41] have been
derived in refs. [26, 42, 43]. In ref. [44], a basis for the subset of transcendental functions
contributing to completely color ordered amplitudes has been constructed. Similarly to
ref. [36], their numerical evaluation was performed through series expansion of their DEs.
These developments have led to the first analytic calculations of two-loop five-particle
amplitudes with an external massive leg, for the production of a W and a Higgs bosons
associated with a pair of bottom quarks [44, 45], as well as of the two-loop four-point form
factor of a length-3 half-BPS operator in planar N = 4 sYM [46]. First results for the
non-planar integrals have also been reported recently [47–49].

In this paper we construct a basis of transcendental functions that is sufficient to ex-
press any planar two-loop corrections for scattering cross sections involving four massless
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and one massive particle. We call the functions in this basis one-mass pentagon func-
tions. We follow the approach of ref. [31]. We start from the canonical DEs of ref. [36]
and generalize them to all permutations of the external massless legs. We compute the
initial values for the DEs using the expressions of the master integrals in terms of MPLs
from refs. [42, 43]. We write the solutions order by order in the dimensional regulariza-
tion parameter ε in terms of iterated integrals [50] with logarithmic kernels. The solutions
are pure functions of uniform transcendental weight [35, 51] and satisfy a shuffle algebra,
which we use to linearize and eliminate all algebraic relations in the space of functions
generated by the DEs. The algebraic independence and closure over momenta permuta-
tions of the one-mass pentagon functions is very advantageous for the modern workflow to
compute scattering amplitudes analytically, which is based on the application of finite field
arithmetic and functional reconstruction [52, 53]. Indeed, writing all permutations of the
Feynman integrals in terms of the same basis of transcendental functions gives access to
simplifications of the rational coefficients that would otherwise be missed. We find explicit
representations of the basis functions up to weight two in terms of logarithms and dilog-
arithms, and up to weight four in terms of one-dimensional integrals. All the expressions
are branch-cut free within the physical scattering region of the massive-particle production
channels. We thus demonstrate that the constructive algorithm of ref. [31] can be straight-
forwardly generalized beyond the purely massless kinematics. The numerical evaluation of
the weight three and four pentagon functions on the other hand is significantly more chal-
lenging compared to their massless counterpart. This is due to the non-trivial geometry
of the phase space, which we study in detail, and to the presence of non-linear spurious
singularities in the one-dimensional integral representations. Nevertheless, we design an
algorithm for the numerical evaluation that is fast and stable across the whole phase space
of the 2→ 3 massive-particle production channels. We achieve performance comparable to
that of the massless pentagon functions from ref. [31], and provide a public implementation
which meets the demanding requirements of phenomenological applications.

Compared to a more traditional approach of attempting to express the master integrals
in terms of MPLs, our method is rather insensitive to the presence of square roots in
the symbol alphabet. Even in cases where the canonical “ε d log”-form of DEs can be
obtained, it can be difficult, if not impossible, to find MPL solutions if the symbol alphabet
contains non-rationalizable square roots [42, 54–57]. Very importantly, even when these
attempts did succeed, it was frequently observed that the numerical evaluation in the
physical scattering regions is very challenging [26, 27, 42, 58]. In addition, contrary to
naïve expectations, the physical properties may even be more obscured due to the presence
of spurious branch cuts, which are instead absent in the iterated integral representation.
Our approach elegantly bypasses these issues, and therefore can be a useful alternative for
cases when the integration of the DEs in terms of MPLs is impractical or impossible.

The rest of the paper is structured as follows. We begin in section 2 by presenting our
notation, discussing the kinematics, and defining the 2→ 3 physical scattering regions. In
section 3 we define the planar families of five-particle integrals with one external massive leg
up to two loops, and discuss how to express the master integrals in terms of Chen’s iterated
integrals through the canonical DEs they satisfy. In section 4 we discuss the construction
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of our function basis. First, in section 4.1 we use the properties of Chen’s iterated integrals
to construct systematically a basis of algebraically independent functions to express all
permutations of the master integrals up to the order in ε required for two-loop corrections
to cross sections. Then, in section 4.2 we design explicit expressions for the basis functions
which are well suited for their numerical evaluation, and show that they are well defined
in the chosen physical scattering region. We discuss the implementation in a C++ library
of routines for the numerical evaluation of our function basis in section 5. We draw our
conclusions in section 6. We also include a number of appendices, where we discuss in detail
the physical phase-space geometry and the positivity properties of the symbol alphabet.

2 Scattering kinematics

In this section we discuss the scattering kinematics and introduce certain quantities which
will play an important role in the rest of the paper. We consider the scattering of five
particles, four massless and one massive. We take their momenta pi to be outgoing, and
the momentum conservation reads

5∑
i=1

pi = 0 . (2.1)

Following the notation of refs. [36, 48], we assume that momentum p1 is massive, while the
others are massless,

p2
1 6= 0 , p2

i = 0 ∀i ∈ {2, 3, 4, 5} . (2.2)

We parametrize the scattering kinematics by six Mandelstam invariants,

X =
(
p2

1, s12, s23, s34, s45, s51
)
, sij = (pi + pj)2 , (2.3)

and the sign of the imaginary part of the parity-odd invariant

tr5 := 4 i εµνρσpµ1pν2p
ρ
3p
σ
4 , (2.4)

where εµνρσ is the fully antisymmetric Levi-Civita symbol. The square of tr5 is algebraically
related to the Mandelstam invariants in eq. (2.3) through the Gram determinant of four
external momenta1 as

tr2
5 = ∆5 := 16G(p1, p2, p3, p4) , (2.5)

with
∆5 =

(
s12(s15 − s23)− s15s45 + s34(s23 + s45 − p2

1)
)2

+ 4s23s34s45(s12 + s15 − s34 − p2
1) .

(2.6)

We emphasize that, despite the relation in eq. (2.5), the sign of Im tr5 is required to
fully specify a point in the scattering phase space. The sign of Im tr5 is changed under

1See the definition in appendix A.
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parity conjugation or permutations of external momenta, whereas
√

∆5 stays unchanged.
Therefore one should be careful to distinguish these objects.

The other three Gram determinants that give rise to square roots which are relevant
for the analytic structure of the five-particle one-mass scattering amplitudes are

∆(1)
3 := −4G (p1, p2 + p3) = λ

(
p2

1, s23, s45
)
, (2.7)

∆(2)
3 := −4G (p1, p2 + p4) = λ

(
p2

1, s24, s35
)
, (2.8)

∆(3)
3 := −4G (p1, p3 + p4) = λ

(
p2

1, s25, s34
)
, (2.9)

where λ denotes the Källen function,

λ(a, b, c) := a2 + b2 + c2 − 2ab− 2ac− 2bc . (2.10)

The set {∆(1)
3 ,∆(2)

3 ,∆(3)
3 } is closed under the permutations of external massless momenta

S4, namely the ∆(i)
3 ’s transform into each other under the action of σ ∈ S4. In this paper

we denote by

σ = (σ2σ3σ4σ5) , σi ∈ {2, 3, 4, 5} , (2.11)

the permutation σ ∈ S4 such that σ(i) = σi. The action of σ on the external massless
momenta is given by

σ : (p1, p2, p3, p4, p5)→
(
p1, pσ(2), pσ(3), pσ(4), pσ(5)

)
, (2.12)

and the permutation σ of a generic function f of the external kinematics — e.g. a Feynman
integral or a scattering amplitude — is given by

(σ ◦ f) (sij , tr5) = f
(
sσ(i)σ(j), σ ◦ tr5

)
. (2.13)

From the definition (2.4) it follows that

σ ◦ tr5 = sign(σ) tr5 , (2.14)

where sign(σ) is the signature of the permutation σ.
The Feynman integrals are multi-valued functions of the kinematics with a very intri-

cate analytic structure. It is therefore fundamental to specify the domain of the kinematic
variables X. We consider the physical scattering regions associated with the production of
one massive and two massless particles,

i j → 1 k l , (2.15)

where i, j, k, l take distinct values in {2, 3, 4, 5}. These regions are relevant for instance for
the production of a massive vector boson in association with two jets at a hadron collider.
Without loss of generality we assume that the incoming momenta are p4 and p5, i.e. we
focus on the s45 channel. The s45 channel is defined by requiring that the momenta {pi}5i=1
correspond to physical configurations of the scattering process 45→ 123, i.e. they are real
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and are associated with real scattering angles and positive energies. These constraints
translate into the following inequalities for the scalar products of the momenta,

p4 · p5 > 0 , p1 · p2 > 0 , p1 · p3 > 0 , p2 · p3 > 0 ,
p4 · p1 < 0 , p4 · p2 < 0 , p4 · p3 < 0 , p5 · p1 < 0 , p5 · p2 < 0 , p5 · p2 < 0 ,

(2.16)

as well as the following Gram-determinant inequalities [59–61],

G(p1) > 0 , G(pi) = 0, ∀i 6= 1 , (2.17a)
G(pi, pj) < 0 , G(pi, pj , pk) > 0 , G(pi, pj , pk, pl) < 0 , (2.17b)

where i, j, k, l take distinct values in {1, 2, 3, 4, 5}. We give a thorough discussion of the role
of the Gram determinants in appendix A. Here we content ourselves with noting that the
only non-vanishing Gram determinant involving only one momentum is G(p1) = p2

1, which
we assume to be positive, and that all the Gram determinants involving four momenta
are proportional to ∆5. The negativity of ∆5 can be understood as a consequence of the
reality of the momenta, which implies that tr5 is purely imaginary (see eq. (2.4)) and hence,
through eq. (2.5), that ∆5 < 0. Putting together all the inequalities above and simplifying
them (see appendix A) gives the following definition of the s45 scattering channel 45→ 123,
which we label by P45:2

P45 =
{
X
∣∣ p2

1 > 0 , p2
2 = 0 , p2

3 = 0 , p2
4 = 0 , p2

5 = 0 , ∆5 < 0 ,
s12 > p2

1 , s13 > p2
1 , s23 > 0 , s45 > p2

1 ,

s24 < 0 , s34 < 0 , s25 < 0 , s35 < 0 , s14 < 0 , s15 < 0
}
.

(2.18)

In other words, given a set of Mandelstam invariants (2.3) satisfying the inequalities (2.18),
there is a corresponding configuration of particle momenta describing the scattering process
45→ 123.3 Moreover, since tr5 is purely imaginary for real momenta, the scattering region
P45 is separated into two halves, corresponding to Im tr5 > 0 and Im tr5 < 0,

P+
45 =

{
X ∈ P45

∣∣ Im tr5 > 0
}
, P−45 =

{
X ∈ P45

∣∣ Im tr5 < 0
}
. (2.19)

Each of the halves is a connected region in the momentum space [59]. The two halves are
mapped onto each other by a parity transformation.

Apart from the massive-particle production channels (2.15), other possible physical
channels are the decay into four particles (1→ 2345) and three-particle production with a
single massive particle in the initial state (1j → klm where j, k, l, m take distinct values
in {2, 3, 4, 5}). Here we focus on the case of massive-particle production, which is the most
important for the hadron-collider phenomenology.

2Strictly speaking, the inequalities in eq. (2.17) exclude certain subvarieties of the physical phase space
where the external momenta conspire to span a vector space of dimension lower than four. The points in
these subvarieties correspond to loci of some Gram determinants vanishing, hence a subset of the boundary
of P45 corresponds to valid (degenerate) scattering configurations. Since these subvarieties have measure
zero in the phase space, for the purpose of this paper we can ignore them.

3It is understood that the particles have positive energies in a physical scattering process, and that the
momentum configuration is unique up to an orthochronous Lorentz transformation.
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3 Integral families and differential equations

The modern approach to computing scattering amplitudes analytically relies on the fact
that they can be expressed in terms of linear combinations of scalar Feynman integrals. The
latter are then grouped into families based on their propagator structure. The advantages
are that within each family only a finite number of integrals are linearly independent —
typically much fewer than the Feynman diagrams contributing to the amplitudes — and
that it is possible to express the amplitudes in terms of them algorithmically. These linearly
independent integrals, called master integrals in the literature, constitute the basis of the
linear span of all the integrals in the family. Crucially, the master integrals satisfy a system
of first-order differential equations (DEs) [35, 62–65], which constitutes a powerful tool to
compute them analytically. In this section we discuss the planar Feynman integral families
relevant for the scattering of one massive and four massless particles at one and two loops
with internal massless propagators. We closely follow ref. [36] and lift their results to all S4
permutations of the external massless particles. We begin by defining the integral families.
Then we discuss the DEs satisfied by the master integral bases proposed in ref. [36], and
show how they can be solved in terms of Chen’s iterated integrals [50]. We finish the section
by discussing how we computed the initial values necessary to fix uniquely the solution of
the DEs. The resulting expression of the master integrals in terms of iterated integrals
is then the starting point of the construction of the function basis, which we discuss in
section 4.

3.1 Integral families

The Feynman integrals appearing in planar five-particle amplitudes with a single massive
external leg up to two-loop order belong to the families shown in figure 1 and permutations
thereof. We adopt the definitions of ref. [36]. There is a single one-loop pentagon family,
which we label by 1L, and three two-loop pentabox families, which we label by mzz, zmz
and zzz depending on the location of the massive leg, as shown in figure 1. We consider
each family in the S4 permutations of the external massless particles. The divergences in
the integrals are regulated in dimensional regularization with D = 4 − 2ε. The one-loop
one-mass pentagon integrals are defined as

G1L,σ[~a] = eεγE
(
µ2
)ε ∫ dD`1

iπ
D
2

1
5∏
j=1

D
aj
1L,σ,j

, (3.1a)

while the integrals of the two-loop one-mass pentabox families are given by

Gτ,σ[~a] = e2εγE
(
µ2
)2ε ∫ ( 2∏

i=1

dD`i
iπ

D
2

) 11∏
j=9

D
−aj
τ,σ,j

8∏
j=1

D
aj
τ,σ,j

, τ ∈ {mzz, zmz, zzz} . (3.1b)

Here γE is the Euler-Mascheroni constant, µ is the regularization scale, σ is a permutation
label, and a list of integers ~a encodes the propagator exponents. In this paper we set µ = 1,
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4
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2

ℓ1

(a) 1L

1

2

3

5

4

ℓ2 ℓ1

(b) mzz

5

1

2

4

3

ℓ2 ℓ1

(c) zmz

2

3

4

1

5

ℓ2 ℓ1

(d) zzz

Figure 1. Representative diagrams for the planar five-particle integral families with a single
external massive leg at one and two loops. The arrows denote momentum flow. The thick line
represents the massive external leg.

which is equivalent to considering dimensionless ratios of the Mandelstam invariants in
eq. (2.3) to µ2. The definitions of the inverse propagators Dτ,σ are gathered in table 1.
The last three propagators of the two-loop families are irreducible scalar products, i.e.
auxiliary propagators introduced in order to express the numerators. Therefore we assume
that {aj}11

j=9 are non-positive integers.
The two-loop scattering amplitudes also contain Feynman integrals which factorize into

the product of two one-loop integrals of the pentagon family 1L. Some of these “one-loop
squared” integrals are linearly independent from the two-loop pentaboxes. They constitute
an additional family shown in figure 2, which we dub 1L2. One can express the integrals
from this family in terms of transcendental functions by multiplying the expressions of the
one-loop integrals which constitute them. Since we are interested in constructing a set of
algebraically independent functions, we can omit the one-loop squared integrals from our
considerations in section 4.

The linear span of all scalar integrals Gτ,σ[~a] in a given family τ and orientation of
the external legs σ, for any (allowed) set of indices ~a, has a finite-dimensional basis. Any
scalar integral Gτ,σ[~a] can thus be expressed as a Q (ε,X)-linear combination of the master
integrals, namely a linear combination with coefficients which are rational functions of
the Mandelstam invariants and the dimensional regulator ε. This is typically achieved by
solving linear systems of integration-by-parts identities (IBPs) [66–68]. The choice of the
master integrals is to a large extent arbitrary and can be exploited to simplify selected
aspects of their computation. In this paper, we take advantage of the integrals which
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j D1L,σ,j Dmzz,σ,j Dzmz,σ,j Dzzz,σ,j

1 (`1)2 (`1)2 (`1)2 (`1)2

2 (`1 + p1)2 (`1 + p1)2 (`1 + pσ5)2 (`1 + pσ2)2

3 (`1 + p1 + pσ2)2 (`1 + p1 + pσ2)2 (`1 + p1 + pσ5)2 (`1 + pσ2 + pσ3)2

4 (`1 − pσ4 − pσ5)2 (`1 − pσ4 − pσ5)2 (`1 − pσ3 − pσ4)2 (`1 − p1 − pσ5)2

5 (`1 − pσ5)2 (`2)2 (`2)2 (`2)2

6 (`2 − pσ4 − pσ5)2 (`2 − pσ3 − pσ4)2 (`2 − p1 − pσ5)2

7 (`2 − pσ5)2 (`2 − pσ4)2 (`2 − p1)2

8 (`1 − `2)2 (`1 − `2)2 (`1 − `2)2

9 (`1 − pσ5)2 (`2 + pσ5)2 (`1 − p1)2

10 (`2 + p1)2 (`2 + p1 + pσ5)2 (`2 + pσ2)2

11 (`2 + p1 + pσ2)2 (`1 − pσ4)2 (`2 + pσ2 + pσ3)2

Table 1. Inverse propagators of the one-loop pentagon (1L) and of the two-loop pentabox families
(mzz, zmz and zzz) for all permutations σ = (σ2σ3σ4σ5) of the external massless legs. The repre-
sentative diagrams are shown in figure 1 for the standard ordering of the external legs, σid = (2345).

5

1

2

4

3

Figure 2. One-loop squared integral family (1L2) appearing in the computation of two-loop five-
particle amplitudes with a single external massive leg.

satisfy the mathematical property known as transcendental purity [35, 51]. We denote by
~gτ,σ the vector of pure master integrals for the family τ in the permutation σ. The pure
master integrals ~gτ,σ are expressed as linear combinations of scalar Feynman integrals,

~gτ,σ =
∑
~a

~Tτ,σ[~a]Gτ,σ[~a] , (3.2)

where the coefficients ~Tτ,σ[~a] are rational functions of the X and ε. The pure master integral
bases for the families in figure 1 have been constructed in ref. [36] for the orientation
σid = (2345). We obtain the other orientations by permutations according to eq. (2.13).

There are relations also among the integrals belonging to different families and in
different permutations. We identified the relations in the Q-linear spans⋃

σ∈S4

~g1L,σ ,
⋃

τ ∈
{

mzz, zmz, zzz, 1L2},
σ ∈ S4

~gτ,σ , (3.3)
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Loop order Master
integrals, σid

Master
integrals, S4

1 13 56
2 167 1361
2∗ 142 1244

Table 2. Number of independent one- and two-loop master integrals in the unions of integral
families {1L} and

{
mzz, zmz, zzz, 1L2} respectively. The second column corresponds to the integrals

in the standard permutation σid, and the third column corresponds to the complete permutation
orbit. The last row shows the number of non-factorizable two-loop master integrals in each case.

of the one- and two-loop integrals respectively by analyzing their Symanzik polynomials
(see e.g. ref. [69]). The resulting numbers of linearly independent master integrals are
shown in table 2, where for comparison we also show the number of master integrals in one
orientation. We observe that the dimensions of the linear spans in eq. (3.3) can be likewise
calculated by counting the number of nonequivalent scalar integral graphs, which suggests
that all of the relations from the Symanzik-polynomial identifications follow from graph
isomorphisms. We give the mappings among the pure master integrals in the ancillary file
master_integral_mappings.m [70].

3.2 Permutations and physical channels

The master integrals of the families shown in figures 1 and 2 appear in the scattering
amplitudes in various permutations of the external massless legs. Following refs. [10, 31, 44],
we aim to express all permutations of the master integrals in terms of a common basis
of special functions which are well-defined and can be evaluated numerically in a whole
physical scattering region. Without loss of generality we chose the latter to be the s45
channel. We show that considering all S4 permutations of the master-integral families
allows us to relate any massive-particle production channel (2.15) to 45 → 123. Let us
consider a phase-space point X of the physical channel σ4σ5 → 1σ2σ3 for some permutation
σ = (σ2σ3σ4σ5) ∈ S4,

X ∈ Pσ4σ5 = σ ◦ P45 . (3.4)

In order to evaluate the master integrals ~gτ,σ̄ of the family τ in the orientation σ̄ at a point
X ∈ Pσ4σ5 , we first map X to a phase-space point X ′ ∈ P45 using the inverse permutation,

X ′ := σ−1 ◦X ∈ P45 . (3.5)

Then, we evaluate the same master integrals in the composed permutation σσ̄ at the
corresponding point X ′ in the s45 channel, as shown by the following chain of equalities:

~gτ,σ̄ (X) = ~gτ,σ̄
(
σ ◦X ′

)
= ~gτ,σσ̄

(
X ′
)
. (3.6)

This is to be contrasted with an alternative approach often adopted in the literature,
which consists in considering the master integrals for a fixed ordering of the external legs

– 10 –
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and analytically continuing them to the other scattering regions. The permutations of the
master integrals in this case are performed only at the evaluation stage,

~gτ,σ (X) = ~gτ,σid (σ ◦X) . (3.7)

This however means that the integrals have to be evaluated a number of times equal
to the number of required permutations for each desired phase-space point. Moreover,
all the analytic simplifications which stem from cancellations among integrals in different
permutations of the external legs are missed. This not only makes the expressions for the
amplitudes more obscure, but also prevents from subtracting the ultraviolet and infrared
poles analytically, and introduces numerical cancellations which may affect the numerical
stability of the evaluations.

3.3 Canonical differential equations

The master integrals satisfy a system of first-order differential equations (DEs) [62–65].
If the master integrals are pure, their DEs take a particularly simple canonical form [35]
where only logarithmic differential forms contribute. In this work we employ the canonical
DEs for ~gτ,σid that were constructed in ref. [36],

d~gτ,σid(X) = ε dÃτ,σid(X)~gτ,σid(X) ,

dÃτ,σid(X) =
∑
i∈AD4

a(i)
τ,σid d logWi(X) , (3.8)

where a(i)
τ,σ are matrices of rational numbers, andWi are algebraic functions of the kinematic

variables called letters of the alphabet AD4 . Here the integrals are normalized such that
their expansion around ε = 0 starts with ε0,

~gτ,σ(X) =
∑
w≥0

εw ~g (w)
τ,σ (X) , (3.9)

so that their fourth order in ε is the highest required for the computation of two-loop scat-
tering amplitudes up to order ε0. The alphabet AD4 is closed under the cyclic permutations
of the external massless legs,

D4 = {(2345) , (5432)} . (3.10)

We are interested in a basis of transcendental functions sufficient to represent any
planar two-loop five-point one-mass scattering amplitude through transcendental weight
four. We thus consider the master integrals in all orientations and construct an S4-closure
AS4 of the cyclic alphabet AD4 by choosing a basis in the linear span of the permutation
orbits σ ◦ d logWi, for any i ∈ AD4 and σ ∈ S4. We then straightforwardly generalize the
canonical DEs (3.8) to all permutations σ ∈ S4 of the integral families,

d~gτ,σ(X) = ε dÃτ,σ(X)~gτ,σ(X) ,

dÃτ,σ(X) =
∑
i∈AS4

a(i)
τ,σ d logWi(X) . (3.11)
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The alphabet AS4 is a subset of the non-planar alphabet recently established in ref. [48],
and for convenience we adopt the notation of the latter. We summarize here the embedding
of AD4 and AS4 into the non-planar alphabet of ref. [48]. We explicitly spell out the
expressions of the letters involved in our work in appendix C and in the ancillary file
alphabet.m [70]. The cyclic alphabet contains 58 letters, which can be separated into
two sets,

AD4 = Arel
D4 ∪ Airrel

D4 , (3.12)

of 49 relevant letters (those that appear in the solution of the DEs truncated at order ε4),

Arel
D4 = { 1, 2, 5, . . . , 16, 18, 19, 21, 22, 24, 25, 27, . . . , 31, 33, 34, 45, 46, 57, 70, 93,

118, 120, 121, 123, 124, 126, 129, 130, . . . , 134, 136, 137, 186, 195, 198} ,
(3.13)

and 9 irrelevant ones,

Airrel
D4 = {32, 94, 117, 127, 135, 138, 161, 188, 197} . (3.14)

The permutation closure AS4 contains 156 letters, which again can be split into two sets,

AS4 = Arel
S4 ∪ Airrel

S4 , (3.15)

of 108 relevant letters,

Arel
S4 = {1, . . . , 57, 70, . . . , 93, 118, . . . 137, 186, 187, 188, 195, . . . , 198} , (3.16)

and 48 irrelevant letters,4

Airrel
S4 = {94, . . . , 117, 138, . . . , 161} . (3.17)

3.4 Solution of the DEs in terms of iterated integrals

The canonical DEs eq. (3.8) can be solved straightforwardly order-by-order in the ε-
expansion (3.9) in terms of Chen’s iterated integrals [50] (see also [71]) as

~g (w)
τ,σ (X) =

w∑
w′=0

∑
i1,...,iw′∈ASrel

4

a(i1)
τ,σ · a(i2)

τ,σ · · · a
(iw′ )
τ,σ · ~g (w−w′)

τ,σ (X0)
[
Wi1 , . . . ,Wiw′

]
X0

(X) ,

(3.18)

where ~g (w)
τ,σ (X0) are the values of the master integrals at an arbitrary initial point X0,

which we discuss in section 3.5. The iterated integrals [Wi1 , . . . ,Win ] over d log kernels are
defined as

[Wi1 , . . . ,Win ]X0
(X) :=

∫ 1

0
dt ∂t log(Win(γ(t)))

[
Wi1 , . . . ,Win−1

]
X0

(γ(t)) ,

[]X0
(X) := 1,

(3.19)

4Let us note that Arel
D4 ⊂ Arel

S4 , but the irrelevant letters A
irrel
D4 are distributed among both Arel

S4 and Airrel
S4 .
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where γ is a path in the space of the kinematic variables connecting the initial point
γ(0) = X0 and γ(1) = X. The number of iterations n corresponds to the transcendental
weight. We consider the initial point X0 as fixed and treat the iterated integrals as functions
of the endpoint X.5 The iterated integrals form a shuffle algebra with the product

[Wa1 , . . . ,Wam ]X0
(X) [Wb1 , . . . ,Wbm ]X0

(X) =
∑
~c∈~a�~b

[
Wc1 , . . . ,Wcm+n

]
X0

(X) , (3.20)

where ~a = {a1, . . . , am} and similarly for ~b and ~c, and ~a�~b denotes all possible ways to
shuffle ~a and ~b. The shuffle product allows us to linearize the relations between products
of transcendental functions of different weights, and therefore to systematically identify
all functional relations through linear algebra. This equips us with a powerful tool in the
construction of a function basis which we discuss in section 4.1.

The components ~g (w)
τ,σ of the ε-expansion of the pure master integrals are graded by the

transcendental weight w. This grading is manifest in eq. (3.18) and is compatible with the
shuffle product in eq. (3.20). In other words, ~g (w)

τ,σ and the iterated integrals can be assigned
a Z≥0 charge. Further gradings can be associated with changing signs of the square roots
of the problem:

√
∆5 (or equivalently tr5) and

√
∆(i)

3 with i = 1, 2, 3. The pure master
integrals which are normalized by one of these square roots are odd with respect to that
square root, while the others are even. We can thus assign a Z2 = {+,−} = {even, odd}
charge to each pure master integral for each of the four square roots. One can easily verify
that the d log forms in eq. (3.18) can also be assigned the same charges (see appendix C).
Thus, it follows from eqs. (3.18) and (3.20) that the shuffle algebra of the iterated integrals
with logarithmic integral kernels drawn from the alphabet AS4 is graded by Z≥0 × (Z2)4.
This grading constitutes a useful organizing principle in the construction of the function
basis discussed in section 4.1.

We stress that the choice of signs of the square roots is arbitrary and does not change
within P+

45. In this paper we choose√
∆(i)

3 > 0 , Im
√

∆5 > 0 . (3.21)

The results for the opposite sign of each of the square roots can be obtained by flipping
the sign of corresponding negatively-charged integrals.

3.5 Initial values for the differential equations

In order to construct the DE solutions (3.18) up to transcendental weight w we need to
determine the initial values ~g (w)

τ,σ (X0). Since our aim is to find a function basis in the
space of solutions, we have to take the algebraic relations between the initial values into

5The (Q-linear combinations of) iterated integrals considered in this work are homotopy functionals,
i.e. they are invariant under continuous deformations of the integration path γ. While this is in general
not true for the separate iterated integrals shown in eq. (3.19), it does hold for the combinations given in
eq. (3.18), since the latter arise as the solution of DEs which satisfy integrability conditions. We assume
that the same path γ is used for all iterated integrals, and that it lies entirely in the analyticity region of
the integrals P+

45. The considered iterated integrals therefore do not depend on the specific choice of γ.
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account. Our approach to this end is the following. We evaluate the master integrals at an
initial point with sufficiently large accuracy, and use the PSLQ algorithm [72] to identify
integer relations among them. This allows us to extract a generating set κ of algebraically
independent transcendental constants over Q, and to express the initial values ~g (w)

τ,σ (X0) as
graded polynomials Q[κ].

We choose an initial point X0 ∈ P+
45,

X0 :=
(
p2

1 = 1 , s12 = 3 , s23 = 2 , s34 = −2 , s45 = 7 , s15 = −2
)
, (3.22)

which satisfies the following requirements:

1. X0 introduces a minimal number of distinct prime factors.

2. X0 is invariant under the automorphisms of P45,

Σ (P45) = {(2345) , (2354) , (3245) , (3254)} . (3.23)

In other words, it is invariant under the exchanges of momenta 2↔ 3 and 4↔ 5.

3. The four letters which have indefinite sign inside P45 and depend linearly on the
Mandelstam invariants vanish at X0 (see appendix D).

In order to understand the first two requirements we recall that the master integrals con-
sidered in this work can be expressed in terms of multiple polylogarithms whose arguments
are rational/algebraic functions of the external kinematics [42, 43]. It is natural to expect
that many of these arguments coincide if the phase-space point is degenerate. Choosing
an initial point which is as symmetric as possible therefore reduces the number of distinct
multiple polylogarithms in the initial values. Minimising the number of distinct prime
factors in the initial point — and hence in the rational arguments — further simplifies the
arguments of the polylogarithms evaluated there. These requirements therefore decrease
the number of algebraically-independent initial values and thus facilitate the discovery of
the relations through the PSLQ algorithm. We will make use of the last two properties in
sections 4.2 and 5, where we construct an explicit representation of our function basis and
design an algorithm for their numerical evaluation.

The next step consists in obtaining high-precision values of the master integrals at
the initial point X0 (3.22). We employ the analytic expressions in terms of Goncharov
polylogarithms (GPLs) [39–41] constructed in refs. [42, 43]. We use GiNaC [73, 74] to
evaluate numerically the GPLs with 3000-digit accuracy. We evaluate the permuted master
integrals ~gτ,σ at X = X0 by evaluating the expressions of refs. [42, 43] for the standard
ordering σid of the external legs at permuted points, X = σ ◦X0, as shown in eq. (3.7).

The explicit GPL expressions of refs. [42, 43] are given in an Euclidean region, while
we are interested in the values of the Feynman integrals in the physical scattering regions.
We perform the analytic continuation by adding a small positive imaginary part to the
values of the independent Mandelstam invariants at the initial point X0 as

X
(η)
0 :=

(
p

2 (0)
1 + i c1η , s

(0)
12 + i c2η , s

(0)
23 + i c3η , s

(0)
34 + i c4η , s

(0)
45 + i c5η , s

(0)
15 + i c6η

)
,

(3.24)
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where the superscript (0) denotes the values at the initial point X0 (3.22), η is an infinites-
imal positive parameter, and the ci’s are positive rational numbers. We choose the ci’s
randomly so that all scalar products sij (including the non-adjacent ones) have a positive
imaginary part and all square roots in the alphabet are evaluated on the chosen branch
(see eq. (3.21)).

An additional complication we need to take care of is that some of the GPLs are
divergent at X0 (and permutations thereof). Since the master integrals have no singularity
in P+

45, these divergences are spurious and must cancel out. We handle this by using the
parameter η in eq. (3.24) as regulator and compute the limit η → 0+ of the divergent GPLs
analytically using PolyLogTools [75]. The cancellation of divergences at all permutations
of X0 is a consistency check of our GPL-evaluation routine. We further checked our results
by evaluating all permutations of the master integrals also with the generalized power series
expansion method [37]. We used the initial values provided in ref. [36] and integrated
the canonical DEs with the Mathematica package DiffExp [38] at 15-digit accuracy. We
evaluated the permuted master integrals by permuting the canonical DEs as discussed in
section 3.3, rather than permuting the initial point as done for the GPLs. This way we
verified also the consistency of the two approaches. We found full agreement.

We construct the generating set κ(w) at weight w recursively starting from weight 0
where κ(0) ≡ {1}. We consider the Q-linear span C(w)

0 of the initial values at weight w,
~g

(w)
τ,σ (X0), and weight-graded products of the lower-weight constants κ(w′) with w′ < w.
We employ an adapted version of the program PSLQM3 from the MPFUN2020 package [76],
which implements the three-level multipair PSLQ algorithm [77, 78] to search for integer
relations using the initial values evaluated to 2000 digits. We then confirm the identified
relations at the 3000-digit precision level. We then use these relations to construct a basis
in C(w)

0 , preferring the lower-weight products. The remaining basis elements of C(w)
0 are

then deemed irreducible and assigned to κ(w). Note that we require the generating set
κ to be real, while the initial values C(w)

0 are complex. For the purpose of constructing
the former, we view the complex initial values as Z2 = {Re, Im}-graded algebra which
induces the corresponding grading onto the polynomial ring Q[κ]. The number of linearly
independent constants in C(w)

0 and the number of irreducible constants at each weight are
shown in table 3. The former characterizes the complexity of the integer relation finding
problem. In practice, we slightly reduce this complexity by looking for relations only
within subspaces of C(w)

0 that are odd or even under the changes of square roots’ signs (see
section 3.4). We give the generating set κ of transcendental constants in the ancillary file
transcendental_constants.m [70].

We conclude this section with some remarks. First, we should stress that our numerical
analysis cannot guarantee that the enumerated transcendental constants do not satisfy any
additional algebraic relations over Q. However, as we explain in section 4.1, this would
not jeopardize our function basis. Second, we emphasize that, while finding the relations
among the transcendental constants is essential for the construction of the function basis,
we do not need to know the constants in the generating set analytically. Furthermore,
as we discuss in section 4.1, it is possible to absorb the transcendental constants into the
definition of the basis functions such that only iπ and ζ3 explicitly appear in the expressions
for the master integrals in term of these functions.
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Linear span
(⊕ products) Irreducible

Weight Re Im Re Im
1 4∗ 1 4∗ 1
2 12 4 5 0
3 67 23 23 7
4 305 135 90 40

Table 3. Number of independent transcendental constants at each weight. The second column
shows the dimensions of the linear spans of constants together with (weight-graded) products of
lower-weight constants. The third columns shows the number of irreducible constants.
∗ Only three real constants appear at weight one, but we add an extra constant to resolve reducible higher-
weight constants.

4 Function basis

In this section we present a basis of special functions in terms of which we can express
all the planar two-loop five-particle amplitudes with one external off-shell leg up to order
ε0. We dub these functions one-mass pentagon functions, and we denote them by {f (w)

i },
where w is the transcendental weight and i is a label. We begin by discussing our strategy
for constructing function bases using their iterated-integral representations in section 4.1.
Then, we present the expressions for the functions of the basis which are well suited for
efficient numerical evaluation in section 4.2.

4.1 Construction of the basis using Chen’s iterated integrals

The starting point are the canonical DEs (3.11) for the master integrals of the planar
families shown in figure 1, each considered in all the S4 permutations of the external
massless legs. We solve the DEs in terms of iterated integrals up to order ε4, or equivalently
up to transcendental weight four, with the base point given by eq. (3.22). The components
of the ε expansion of the master integrals are not linearly independent, and the properties
of the iterated integrals expose in a manifest way all the functional identities. Our aim is
to identify a minimal set of linearly independent components, and to express any solution
of the DEs as a polynomial in them. This minimal set constitutes the basis of one-mass
pentagon functions, {f (w)

i }. We refer the interested reader to ref. [31] for a thorough
discussion of this procedure, and give here just a brief outline. Since the functional relations
are uniform in the transcendental weight, we proceed recursively weight by weight. At
each weight w, we find a basis of the linear space spanned by the weight-w master integral
components over Q. The dimensions of these bases are shown in the second column of
table 4. Comparing to the third column in table 2, we observe that at each weight the
number of linearly independent integrals is less than the one implied by the topological
identifications. Next, we use the shuffle algebra (3.20) obeyed by iterated integrals to
remove the reducible functions, i.e. those functions which can be expressed as products of
lower-weight functions. Assuming that the lower-weight pentagon functions are already
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Weight Linearly
independent Irreducible Irreducible,

cyclic
1 11 11 6
2 86 25 8
3 483 145 31
4 1187 675 113

Table 4. Counting of the master integral components at each transcendental weight. The second
column corresponds to the number of the Q-linearly independent components. The third column
shows the number of irreducible components, i.e. the number of functions in the basis. The fourth
column shows the number of functions sufficient to express the master integrals in the cyclic per-
mutations D4 (3.10) only.

found, {f (w′)
i } with 0 < w′ < w, we form all their products having weight w, i.e.

f
(w1)
i1

f
(w2)
i2

. . . f
(wk)
ik

(4.1)

such that w1+w2+. . .+wk = w, with 1 ≤ wi < w for i = 1, . . . , k and 1 ≤ k ≤ w. This way
we can mod out the products from the weight-w basis. Repeating this procedure weight
by weight up to weight four gives a basis algebraically independent functions {f (w)

i }, which
we call the one-mass pentagon functions. Their number is shown in the third column of
table 4.

The iterated-integral representation of the master integrals in eq. (3.18) involves the
initial values ~g(w)

τ,σ (X0). Thus, for our strategy to succeed, the relations between these
transcendental constants have to be taken into account. We identified these relations in
section 3.5 with a PSLQ-based analysis. As a result, it is in principle possible that cer-
tain algebraic relations were overlooked. Even if it were the case, the pentagon function
classification of this section would not be affected. Indeed, the linear and algebraic inde-
pendence of the functions persists upon the symbol projection [79–81], which is obtained
by putting to zero all the non-rational constants in the iterated integral representation.
In other words, the number of pentagon functions coincides with the number of linearly
independent and irreducible symbols, and is therefore minimal.

The one-mass pentagon functions inherit the Z≥0×(Z2)4 grading from the pure master
integrals (see section 3.4). Since the pure master integral normalizations involve at most
one square root, the sets of functions with negative charge with respect to each square root
are disjoint. The number of basis functions with negative Z2 charge with respect to each
of the square roots is shown in table 5. The charges of all one-mass pentagon functions are
provided in the ancillary file pfuncs_charges.m [70].

The procedure described above to construct a basis out of the pure master integral
components leaves a lot of freedom in choosing the basis elements {f (w)

i }. We profit from
this freedom to construct a basis which fulfills several additional constraints.

First, it is convenient to reduce as much as possible the amount of transcendental
constants in the ε-components of the pure master integrals written as polynomials over Q
of the pentagon functions. We absorb the majority of those constants in the definition of
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Weight tr5

√
∆(1)

3

√
∆(2)

3

√
∆(3)

3

1 0 0 0 0
2 0 1 (1) 1 (0) 1 (0)
3 12 (1) 5 (3) 5 (0) 5 (0)
4 87 (8) 18 (9) 18 (0) 18 (1)

Table 5. Number of one-mass pentagon-functions with negative Z2 charge with respect to each
of the square roots. In parentheses are the corresponding numbers for the cyclic subset specified
in eq. (4.3).

the one-mass pentagon functions. The only leftover transcendental constants are powers
of iπ and ζ3. For example, at weight two we have

g(2)
τ,σ ∈

〈
{f (2)
i }

25
i=1, {f

(1)
i f

(1)
j }

11
i,j=1, { iπf (1)

i }
11
i=1, π

2
〉
Q
, (4.2)

where by 〈A〉Q we denote the linear span of the set of pentagon functions and constants
A over Q. As a consequence, and in contrast with the basis of functions defined for the
massless case in ref. [31], no constant in our basis has a non-trivial charge with respect to
changing the signs of the square roots. We observe that, while the weight-four components
of the master integrals contain products of all weight-one and two pentagon functions, only
a subset of the weight-three ones — {f (3)

i }120
i=4 — appear.

The second useful constraint is the separation of the minimal subset of functions rel-
evant for the cyclic permutations of the integral families. If one is interested in fully
color-ordered scattering amplitudes, it suffices to consider only the permutations of the
master integrals which preserve the cyclic ordering of the particles, namely σ ∈ D4 (3.10).
It is therefore meaningful to separate a minimal subset of the one-mass pentagon functions
which contribute in the two permutations D4. We call them cyclic pentagon functions.
They are counted in the fourth column of table 4. Only the 49 relevant letters of the
cyclic alphabet Arel

D4
(3.13) contribute in the iterated integral expressions of these master

integrals. Explicitly, the cyclic pentagon functions are{
f

(1)
i

}6

i=1
∪
{
f

(2)
i

}
i=3,...,7,16,17,23

∪
{
f

(3)
i

}31

i=1
∪
{
f

(4)
i

}113

i=1
. (4.3)

The expressions of the master integrals ~gτ,σ in the cyclic permutations σ ∈ D4 thus involve
only these functions.

The third property we made manifest stems from the observations made in the com-
putations of the two-loop amplitudes in refs. [44, 45, 82]. Of the 49 letters of the cyclic
alphabet Arel

D4
(3.13), the following six,

Z := {W18, W25, W34, W45, W46, W57} , (4.4)

drop out from the amplitudes truncated at order ε0, despite being present in the expressions
of the two-loop master integrals. In the same works it was also observed that the letter
W198 =

√
∆5, which is present in the amplitudes, drops out from the properly defined finite
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remainders. This is reminiscent of the behavior of the letter
√

∆5 of the massless pentagon
alphabet [83], which has been observed to drop out from several massless two-loop five-
particle finite remainders. This phenomenon is expected to be a general feature, and the
first steps towards an explanation have been taken in the context of cluster algebras [84].
Based on the experience with the massless scattering, it is thus natural to conjecture that
W198 drops out of the finite remainders for any one-mass five-particle scattering process up
to two loops. To make this explicit, we further refine the cyclic pentagon functions (4.3)
by confining the letters Z ∪ {

√
∆5} to a minimal subset of them. This way, expressing

the known two-loop five-particle amplitudes with one external massive leg [44, 45, 82] in
terms of our cyclic pentagon function basis (4.3), we avoid the spurious appearance of the
letters Z altogether. Similarly, the finite remainders are free from the pentagon functions
involving the letter

√
∆5. In addition to analytic simplifications, this has the benefit of

making the numerical evaluation more efficient, as we avoid evaluating functions involving
spurious integration kernels which would otherwise lead to numerical cancellations.

We provide the expressions of the independent master integrals in terms of one-mass
pentagon functions in the ancillary file mi2pfuncs.m [70]. The other master integrals can
be obtained through the mappings in master_integral_mappings.m (see section 3.1).
We spell out the one-mass pentagon functions in terms of Chen’s iterated integrals and
transcendental constants in pfuncs_iterated_integrals.m.

The one-mass pentagon functions are by construction closed under permutations of
the external massless legs. In other words, any permutation σ ∈ S4 of a pentagon function
can be expressed in terms of (graded) polynomials in the pentagon functions,

(
σ ◦ f (w)

i

)
(X) ∈ Q

[{
f

(w′)
j (X)

}
w′,j

]
. (4.5)

This allows to evaluate the pentagon functions in any physical 2→ 3 scattering region with
production of a massive particle following the same procedure discussed in section 3.2 for
the master integrals. We provide all S4 permutations of the one-mass pentagon functions
in the folder pfuncs_permutations/ of the ancillary files [70].

4.2 Explicit representations

In the previous section we discussed how we identified a minimal set of irreducible iterated
integrals which is sufficient to write down the ε-expansion of any pure master integral
up to transcendental weight four. For this purpose it was crucial to express the master
integrals, and thus the functions in the basis, in terms of Chen’s iterated integrals. In
this section we present expressions for the basis functions which are well suited for their
numerical evaluation. We give them in the ancillary file pfuncs_expressions.m [70].
Following refs. [27, 31] we provide expressions in terms of logarithms and dilogarithms up
to transcendental weight two, and one-fold integral representations for the weight-three
and four functions, as first suggested in ref. [85]. We constructed the expressions in terms
of logarithms and dilogarithms using the strategy proposed in ref. [80] (see also ref. [31]).
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4.2.1 Weight-one pentagon functions

We choose the 11 weight-one pentagon functions as follows,

f
(1)
1 = log

(
p2

1
)
, f

(1)
2 = log(−s34) , f

(1)
3 = log(s12) ,

f
(1)
4 = log(−s15) , f

(1)
5 = log(s23) , f

(1)
6 = log(s45) ,

f
(1)
7 = log(−s25) , f

(1)
8 = log(−s24) , f

(1)
9 = log(−s35) ,

f
(1)
10 = log(s13) , f

(1)
11 = log(−s14) .

(4.6)

It is easy to see that they are well-defined in the physical region P45 (2.18), namely they
have no branch cut within it. As mentioned in section 4.1, all the transcendental constants
which depend on the arbitrary base point (3.22) are absorbed inside the iterated integral
representation, e.g.

f
(1)
2 (X) = log(−s34) = [W9]X0 + log(2) , (4.7)

such that only iπ appears explicitly at weight one in the expressions of the pure master
integrals in terms of pentagon functions.

4.2.2 Weight-two pentagon functions

From the analysis of the iterated integral solution of the canonical DEs for the master
integrals we have identified 25 irreducible weight-2 functions. In order to present them in
a more compact way, we introduce the following short-hand notations,

L(a, b) := Li2
(

1− a

b

)
,

M(a, b) := Li2
(
a

b

)
+ log

(
−a
b

)
log

(
1− a

b

)
+ iπ log

(
1− a

b

)
.

(4.8)

The functions L(a, b) and M(a, b) are well-defined and single-valued for a, b > 0 and for
a < 0, b > 0, respectively. We choose the first 16 weight-two functions so that their iterated
integral representation involves only alphabet letters which are linear in the Mandelstam
invariants,

f
(2)
1 = L(s13, p

2
1) , f

(2)
2 = M(s14, p

2
1) , f

(2)
3 = L(s12, p

2
1) ,

f
(2)
4 = M(s15, p

2
1) , f

(2)
5 = L(s12, s45) , f

(2)
6 = M(s34, s12) ,

f
(2)
7 = M(s15, s23) , f

(2)
8 = L(s13, s45) , f

(2)
9 = M(s35, s12) ,

f
(2)
10 = M(s25, s13) , f

(2)
11 = M(s24, s13) , f

(2)
12 = M(s14, s23) ,

f
(2)
13 = L(s24, s15) , f

(2)
14 = L(s25, s14) , f

(2)
15 = L(s35, s14) ,

f
(2)
16 = L(s34, s15) .

(4.9)

All these functions are well-defined in the physical scattering region P45 (2.18).
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Then we have 6 weight-two functions whose iterated integral representation also in-
volves alphabet letters which are quadratic in the Mandelstam invariants,

f
(2)
17 = Li2

(
1− s12s15

p2
1s34

)
, f

(2)
18 = Li2

(
1− s12s14

p2
1s35

)
,

f
(2)
19 = Li2

(
1− s13s15

p2
1s24

)
, f

(2)
20 = Li2

(
1− s13s14

p2
1s25

)
,

f
(2)
21 = Li2

(
1− s12s13

p2
1s45

)
, f

(2)
22 = Li2

(
1− s14s15

p2
1s23

)
− 2 iπ log

(
s14s15
p2

1s23
− 1

)
.

(4.10)

The first 5 of these functions are well-defined in the physical region P45, since the dilog-
arithm arguments cannot cross the branch cut within P45. In order to see that f (2)

22 is
well-defined as well we need to verify that the argument of the logarithm is positive in-
side P45. Indeed we find that s14s15 − p2

1s23 = W33, which in appendix D we prove to be
positive in P45.

We choose the remaining 3 weight-two functions to be given by the so-called three-
mass triangles, i.e. they correspond (up to an algebraic prefactor) to the finite part of the
one-loop triangle integrals with three-external off-shell legs (see e.g. ref. [86]). In order to
write them down explicitly, we introduce the three-mass-triangle function,

Tri(ρ)(a, b, c) := 2 Li2

(
1− 2a

a− b+ c−
√
λ(a, b, c)

)
+ 2 Li2

(
1− 2a

a+ b− c−
√
λ(a, b, c)

)

+ 1
2 log2

(
−1 + 2a

a+ b− c+
√
λ(a, b, c)

)
+ 1

2 log2
(
−ρ+ 2aρ

a+ b− c−
√
λ(a, b, c)

)

+ 1
2 log2

(
a− b+ c−

√
λ(a, b, c)

a+ b− c−
√
λ(a, b, c)

)
− 1

2 log2
(
ρ
a− b+ c+

√
λ(a, b, c)

a+ b− c+
√
λ(a, b, c)

)
+ π2

3

+ iπδρ,−1 log
(
a− b+ c+

√
λ(a, b, c)

−a+ b− c+
√
λ(a, b, c)

)
+ iπδρ,−1 log

(
−a+ b+ c+

√
λ(a, b, c)

a− b− c+
√
λ(a, b, c)

)
,

(4.11)
where ρ = ±1 and the Källen function λ is defined in eq. (2.10). In terms of this auxiliary
function the last 3 weight-two pentagon functions are given by

f
(2)
23 = Tri(+1)(s45, s23, p

2
1) ,

f
(2)
24 = Tri(−1)(s34, s25, p

2
1) ,

f
(2)
25 = Tri(−1)(s24, s35, p

2
1) .

(4.12)

Each of these three functions has a negative charge with respect to changing the sign of the
three-mass triangle square root

√
∆(i)

3 with the same arguments in eq. (2.9). Indeed, these
are the three functions with non-trivial charge at transcendental weight two in table 5. In
appendix D we show that the functions in eq. (4.12) are well-defined in P45.

Finally, let us recall that 8 weight-two pentagon functions, {f (2)
i }i=3,...,7,16,17,23, belong

to the cyclic subset listed in eq. (4.3). In other words, only this subset appears in the
permutations D4 of the master integrals. These weight-two functions do not involve the
letters in Z (4.4) nor W198 =

√
∆5.
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4.2.3 Weight-three pentagon functions

At transcendental weights three and four we construct a representation of the pentagon
functions in terms of one-dimensional integrals, which can be efficiently evaluated numeri-
cally [31]. The starting point is their expression in terms of Chen’s iterated integrals, which
for the 145 weight-three functions is given schematically by

f
(3)
i (X) =

∑
j1,j2,j3

τ
(0)
i,j1,j2,j3

[Wj1 ,Wj2 ,Wj3 ]X0(X) +
∑
j1,j2

τ
(1)
i,j1,j2

[Wj1 ,Wj2 ]X0(X)

+
∑
j1

τ
(2)
i,j1

[Wj1 ]X0(X) + τ
(3)
i , (4.13)

where τ (w)
I for any set of indices I denotes weight-w transcendental constants, and τ

(0)
I

are rational numbers. It is worth noting that the iterated integrals do not involve the
letter W198 =

√
∆5, and the letters in the set Z (4.4) are absent in the cyclic pentagon

functions, {f (3)
i }31

i=1 (4.3). The criteria discussed in section 4.1 therefore do not forbid
any weight-three pentagon function to appear in the amplitudes and finite remainders.
Invoking the weight-one and two pentagon functions defined previously we can implement
the two inner integrations in the three-fold integral in the first term on the right-hand side
of eq. (4.13), and the inner integration in the second term. As a result, the weight-three
pentagon functions take the following one-fold integral form,

f
(3)
i (X) =

∑
j,k

ci,j,k

∫ 1

0
dt ∂t log (Wj(t)) h(2)

k (t) + τ
(3)
i , (4.14)

where ci,j,k are rational numbers, τ (3)
i are transcendental weight-three constants, and

h
(2)
k (X) are weight-two functions. The latter are polynomial in iπ and the weight-one

and two pentagon functions,

h
(2)
k ∈

〈
{f (2)
i }

25
i=1, {f

(1)
i f

(1)
j }

11
i,j=1, { iπf (1)

j }
11
j=1, π

2
〉
Q
. (4.15)

The integration in eq. (4.14) is pulled back to the interval [0, 1] by an arbitrary contour
γ, which connects the base point X0 = γ(0) to an arbitrary point X = γ(1) ∈ P+

45. To
simplify the expression we used the short-hand notations

h
(2)
k (t) := h

(2)
k (X = γ(t)) , Wj(t) := Wj (X = γ(t)) . (4.16)

The construction of the explicit contour γ is discussed in detail in section 5. For the
purposes of this section it suffices to know that it lies entirely within the physical region
P+

45. For the sake of completeness, let us note that not all 108 letters (3.16) appear in the
logarithmic integration kernel in eq. (4.14): the letter W198 =

√
∆5 and 24 of the 54 letters

which are quadratic in the Mandelstam invariants are absent.
Prior to attempting the numerical evaluation of the one-dimensional integrations in

eq. (4.14) we need to verify that the integrations are well-defined for a path inside the
physical region P+

45. The functions h(2)
k (X) are polynomials in the pentagon functions of

weights one and two, and thus they do not have singularities nor branch cuts anywhere
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in P+
45. We only need to inquire about possible singularities of the algebraic functions

∂t log (Wj(t)), which are located at Wj(X) = 0. In appendix D we show that 20 letters
can vanish inside P+

45. We call them spurious letters. There are 4 spurious letters which
are linear in the Mandelstam invariants,

S` = {W16, W17, W19, W20} , (4.17)

while 16 are quadratic,

Sq = {W35, W36, W38, W39, W40, W41, W43, W44,

W72, W74, W78, W80, W82, W84, W88, W90} .
(4.18)

We denote the set of all spurious letters by S,

S = S` ∪ Sq . (4.19)

While the linear spurious letters S` vanish at the base point X0 = γ(0),

W
∣∣∣
X=X0

= 0 ∀W ∈ S` , (4.20)

none of the quadratic spurious letters Sq vanishes at the base point. Moreover, the weight-
two functions h(2)

k (X) which in eq. (4.14) accompany the logarithms of the spurious letters,
logWj(t) with Wj ∈ S, vanish on the locus where the corresponding letter vanishes, {X :
Wj(X) = 0}. The latter is straightforward to verify since the h(2)

k (X) which accompany
the d logs of spurious letters in the expressions of the weight-three functions do not involve
the complicated three-mass-triangle pentagon functions. We can thus conclude that the
logarithmic integration kernels in the weight-three one-fold integrals (4.14) may have at
most a simple pole singularity,

∂t log(Wj(t)) = O
( 1
t− t0

)
, (4.21)

in the neighbourhood of t = t0 such that Wj(t0) = 0, and that such simple poles are
suppressed by the vanishing of the corresponding weight-two functions h(2)

k ,

h
(2)
k (t) = O(t− t0) . (4.22)

For the linear spurious letters Wj ∈ S` the spurious singularity is at the base point t0 = 0,
while the quadratic spurious lettersWj ∈ Sq produce spurious singularities for t0 ∈ (0, 1]. It
is convenient to confine the weight-three functions with spurious singularities in a minimal
set of 2 cyclic and 14 non-cyclic pentagon functions. This classification can be summarised
schematically as

{
f

(3)
i

}145

i=1
:

cyclic︷ ︸︸ ︷
1, . . . , 29, 30, 31︸ ︷︷ ︸

S

,

noncyclic︷ ︸︸ ︷
32, . . . , 114, 115, . . . , 128︸ ︷︷ ︸

S

, 129, . . . , 145 . (4.23)

We address the problem of the numerical evaluation in section 5.
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4.2.4 Weight-four pentagon functions

The 675 weight-four pentagon functions are given in terms of iterated integrals by

f
(4)
i (X) =

∑
j1,j2,j3,j4

τ
(0)
i,j1,j2,j3,j4

[Wj1 ,Wj2 ,Wj3 ,Wj4 ]X0(X)

+
∑

j1,j2,j3

τ
(1)
i,j1,j2,j3

[Wj1 ,Wj2 ,Wj3 ]X0(X)

+
∑
j1,j2

τ
(2)
i,j1,j2

[Wj1 ,Wj2 ]X0(X) +
∑
j1

τ
(3)
i,j1

[Wj1 ]X0(X) + τ
(4)
i ,

(4.24)

where τ (w)
I for any set of indices I denotes a weight-w constant. The first 113 functions

are cyclic, namely only the subset {f (4)
i }113

i=1 is needed to express the cyclic permutations
D4 (3.10) of the planar master topologies. Starting with transcendental weight four the
letters in Z (4.4) and W198 =

√
∆5 begin to play a role in our choice of the pentagon

functions. Among the cyclic pentagon functions, the letters Z are present only in the
subset {f (4)

i }112
i=107, while the letterW198 =

√
∆5 is present in f (4)

113 alone. Due to this choice,
we expect the finite remainders of color ordered amplitudes to require only {f (4)

i }106
i=1 out

of the 675 weight-four pentagon functions, as is the case for the results already available
in the literature [44, 45, 82]. Beyond the cyclic sector, the letter W198 =

√
∆5 is also

present in the pentagon functions {f (4)
i }675

i=665. We therefore expect that these 11 weight-four
functions, together with the cyclic function f (4)

113, are not required in the finite remainders.
Of course, since we want to be able to evaluate all the master integrals and not only the
finite remainders, we consider all the 675 weight-four pentagon functions in what follows.

We now proceed to constructing a one-fold integral representation for the weight-four
pentagon functions. Instead of expanding the weight-four pentagon functions in terms
of iterated integrals as in eq. (4.24), we represent them as one-fold d log integrals of the
weight-three pentagon functions,

f
(4)
i (X) =

∑
j,k

ci,j,k

∫ 1

0
dt ∂t log(Wj(t)) f (3)

k (t) + τ
(4)
i , (4.25)

where the weight-three pentagon functions f (3)
k and the alphabet letters are pulled back to

[0, 1] by the integration contour γ ∈ P45,

f
(3)
k (t) := f

(3)
k (X = γ(t)) , Wj(t) := Wj (X = γ(t)) . (4.26)

By substituting the weight-three pentagon functions f (3)
k with their one-fold integral rep-

resentations (4.14) in eq. (4.25) we rewrite the weight-four functions as two-dimensional
integrals over a triangular domain, {(t, s) : 0 ≤ t ≤ 1, 0 ≤ s ≤ t},

f
(4)
i (X) =

∑
j

∫ 1

0
dt ∂t log(Wj(t))

∑
k,l

ci,j,k,l

∫ t

0
ds ∂s log(Wk(s))h

(2)
l (s) + τ

(3)
i,j

+ τ
(4)
i .

(4.27)
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In order to obtain a one-fold integral representation, we swap the order of the integrations
in eq. (4.27) [85]. This way one of the integrations becomes trivial,

Lj(s) :=
∫ 1

s
dt ∂t log(Wj(t)) , (4.28)

and we obtain the desired expression in terms of one-fold integrals,

f
(4)
i (X) =

∑
j,k,l

ci,j,k,l

∫ 1

0
ds ∂s log(Wk(s))Lj(s)h

(2)
l (s) +

∑
j

τ
(3)
i,j Lj(0) + τ

(4)
i . (4.29)

We rely on this representation of the weight-four pentagon functions for their numerical
evaluation. In this view, we need to verify that the integrations in eq. (4.29) are well-
defined. As argued for the analogous expression of the weight-three pentagon functions
given by eq. (4.14), the only possible pole singularities originate from the algebraic factors
∂s log(Wk(s)). The spurious letters, Wk ∈ S, may in fact vanish on the integration path
γ. The weight-four pentagon functions however inherit the pole cancellation mechanism
from the weight-three ones, see eqs. (4.21) and (4.22). There is an additional complication
with respect to the weight-three case. Despite the pole singularity suppression, there
are integrable logarithmic singularities, which arise from those terms in eq. (4.29) with
Wj ∈ S, so that Lj(s) provides a logarithmic singularity.6 We discuss the treatment of
these integrable singularities in view of the numerical integration in section 5.

The last piece of the weight-four pentagon functions which needs to be discussed are
the logarithmic factors Lj defined by eq. (4.28). In appendix D we study the behavior
of the alphabet letters in the physical region P+

45. If the letter Wj is real-valued and has
constant sign along the path γ, then

Lj(s) = log
(
Wj(X)
Wj(γ(s))

)
. (4.30)

The complex-valued letters, {Wj}137
j=130 ∪ {Wj}188

j=186, also do not pose any problem. They
take values on the unit circle for any X ∈ P+

45 (see appendix D.4). We can define their
phases ϕj(X),

log(Wj(X)) = iϕj(X) , (4.31)

to be continuous functions ranging in the interval (0, 2π),

0 < ϕj(X) < 2π , (4.32)

so that the integration in eq. (4.28) is also trivial,

Lj(s) = iϕj(X)− iϕj(γ(s)) . (4.33)

6In principle the factors of ∂s log(Wk(s)) and Lj(s) in eq. (4.29) may contain distinct spurious letters,
i.e. Wk, Wj ∈ S with k 6= j. However, we encounter such terms only with j = k.
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Finally, we argue that for the spurious letters Wj ∈ S, which are all real-valued, we can
choose

Lj(s) = log
∣∣∣∣∣ Wj(X)
Wj(γ(s))

∣∣∣∣∣ . (4.34)

Indeed, if a spurious letterWj(t) takes opposite signs at t = 1 and t = s, Lj(s) gets a branch
contribution which depends on the prescription for the integration contour deformation.
However, the branch contribution cancels out among the first and second term on the
right hand side of eq. (4.29). The weight-three pentagon function f

(3)
k (t) accompanying

∂t log(Wj(t)) in eq. (4.25) with spurious Wj ∈ S vanishes at t = t0 for each t0 such that
Wj(t0) = 0, i.e.

τ
(3)
i,j +

∑
k,l

ci,j,k,l

∫ t0

0
ds ∂s log(Wk(s))h

(2)
l (s) = 0 , (4.35)

thus suppressing the pole singularity originating from ∂t log(Wj(t)). This ensures the can-
cellation of the branch cuts of Lj(s) in eq. (4.29), which can then be completely ignored.
Note that the factors of Lj(0) in eq. (4.29) corresponding to the linear spurious letters
Wj ∈ S`, which vanish at the base point X0, are absent in the weight-four pentagon func-
tions. The remaining letters do not vanish at the base point, so that the corresponding
Lj(0)’s are well-defined.

So far we tacitly assumed that the weight-four pentagon functions f (4)
i (X) are evalu-

ated at a phase-space point X = γ(1) which is not in a zero locus of the spurious letters.
This special case however deserves some care, as Lj(s) is divergent if Wj(X) = 0. In fact,
this singularity cancels out from the pentagon functions, which are not singular on any of
the spurious surfaces {X : Wj(X) = 0, Wj ∈ S}. In order to show this, let us assume
that the spurious letter Wj vanishes on the path γ(t) at t = 1 + ε with |ε| � 1, so that
|Wj(1)| � 1. In other words, we assume that the integration along γ ends in the proximity
of a spurious singularity. Using eq. (4.35) with t0 = 1 + ε and eq. (4.34), we can rewrite
the contributions to the right-hand side of eq. (4.29) with j : Wj ∈ S as

∑
j:Wj∈S

{
− τ (3)

i,j log |Wj(X0)| −
∑
k,l

ci,j,k,l

1∫
0

ds ∂s log(Wk(s)) log |Wj(s)|h(2)
l (s)

− log |Wj(X)|
∑
k,l

ci,j,k,l

1+ε∫
1

ds ∂s log(Wk(s))h
(2)
l (s)

}
,

(4.36)

where each term is manifestly finite as ε → 0. Indeed, the second term contains an
integrable logarithmic singularity, and the last term vanishes at ε → 0. The remaining
contributions to the right-hand side of eq. (4.29) with j : Wj /∈ S are clearly finite as well.
As a result, the weight-four pentagon functions f (4)

i (X) are finite also when evaluated at
a phase-space point X where any of the spurious letters vanishes.

From the considerations above it follows that all the weight-four pentagon functions
are well-defined in the entire physical scattering region P+

45. Some of them have bounded
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and explicitly finite integrands. Others, which involve d log’s of spurious letters S in their
one-fold integral representation (4.29), demand additional work in view of the numerical
integration. For this reason we isolate the latter in a minimal subset, as done already
at transcendental weight three. This separation, on top of splitting the functions into
cyclic and non-cyclic sectors, and isolating the letters Z (4.4) and W198 =

√
∆5, gives the

following classification of the weight-four pentagon functions {f (4)
i }675

i=1,

cyclic︷ ︸︸ ︷
1, . . . , 67, 68, . . . , 106︸ ︷︷ ︸

S

, 107, . . . , 112︸ ︷︷ ︸
Z

, 113︸︷︷︸
S,
√

∆5

,

non-cyclic︷ ︸︸ ︷
114, . . . , 441, 442, . . . , 664︸ ︷︷ ︸

S

, 665, . . . , 672︸ ︷︷ ︸√
∆5

, 673, . . . , 675︸ ︷︷ ︸
S,
√

∆5

.

Now that we have expressions for all the one-mass pentagon functions that are well-
defined throughout the physical region P+

45 we can move on to discussing their implemen-
tation in a C++ library which allows for their fast and stable numerical evaluation. This is
the topic of the next section.

5 Numerical evaluation

We implement the numerical evaluation of the one-mass pentagon functions in the C++
library PentagonFunctions++ [87], which already provides the numerical evaluation of the
massless pentagon functions from ref. [31].

The main idea of our approach follows the one from ref. [31]. We implement the eval-
uation of the weight-one and two functions through their explicit representations given in
sections 4.2.1 and 4.2.2. For the weight-three and four functions we employ the one-fold
integral representations derived in sections 4.2.3 and 4.2.4. The one-fold integrals are com-
puted numerically with the tanh-sinh quadrature [88], which guarantees fast convergence
for the integrands that are analytic and bounded everywhere inside the integration do-
main, with the exception of the endpoints where integrable divergences can occur [88, 89].
In PentagonFunctions++ we use an adapted implementation of the tanh-sinh quadrature
from Boost C++ [90], and we generate optimized code for the integrands with FORM [91, 92].
We implement numerical evaluation in three fixed-precision floating-point types: double,
quadruple, and octuple, approximately corresponding to significands of 16, 32, and 64 dec-
imal digits respectively. The last two floating-point types are available in qdlib [93]. We
refer for more details to ref. [31].

In this section, we discuss the practical implications for our implementation of the
two features of the one-mass five-particle phase space which are new with respect to the
fully massless case. The first new feature is the fact that the phase space P45, as an open
subset of the affine space with coordinates (2.3), is not starshaped, i.e. there is no phase-
space point from which all other points are reachable by straight lines fully within P45 (see
appendix B for details). The second new feature is the existence of spurious singularities
associated with the quadratic letters Sq that can occur anywhere along the integration
path, as opposed to only at the initial point.
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5.1 Integration path

As we show in appendix B, some points X ∈ P+
45 cannot be reached from X0 by a line

segment γ ∈ P+
45. Therefore, instead of line segments, we consider integration paths γ

which are polygonal chains, i.e. connected series of line segments. Given a set of points
{A1, A2, . . . , An} in the affine space, we denote by [A1, A2, . . . , An] the polygonal chain with
vertices A1, A2, . . . , An. To avoid explicit analytic continuation and crossing of physical
singularities we require that γ lies entirely within the physical phase space P+

45.
We begin by noticing that a line segment γj(t) : [0, 1]→ [X0, X] lies within P+

45 if and
only if it does not intersect the variety ∆5 = 0, namely if the pull back ∆5|γj(t) 6= 0 for
t ∈ [0, 1]. Therefore, using Sturm’s theorem to count the number of roots of the quartic
equation ∆5|γj(t) = 0, we can determine if any given line is inside P+

45 or not. We can then
construct a two-chain γ = [X0, X ′, X] with the following algorithm.

Algorithm 1 Monte Carlo algorithm for the construction of a polygonal chain within P+
45.

1. Generate a random point X ′ ∈ P+
45 by the RAMBO algorithm [94].

2. Reject the point and go to 1 if any of the following is true:

(a) any of the spurious linear letters S` change their sign on [X ′, X];

(b) X ′ is close to the region boundary or to subvarieties of vanishing S`;7

3. If both line segments [X0, X ′] and [X ′, X] lie within P+
45, accept X ′ and terminate,

else go to 1.

Here step 2 is designed to avoid potential numerical instabilities arising from the path
unnecessarily entering near-singular configurations, as well as to avoid unnecessary crossing
of spurious singularities. Some care should be taken when the coefficients of the ∆5(t)
polynomial become small and the number of roots cannot be reliably calculated from
Sturm’s theorem in step 3. In these cases we reject the point and try another one.

This simple strategy allows us to quickly check thousands of points and find a suitable
polygonal two-chain. In principle, more line segments may be required and the presented
algorithm can be straightforwardly extended. However, in practice we observe that two
connected line segments are sufficient provided the base point X0 is given by (3.22), and
rarely more than 100 attempts are needed to find a suitable point X ′. We thus conjecture
that any point of P+

45 can be reached from X0 by at most two connected line segments.
If PentagonFunctions++ ever encounters a point for which this is not the case, an error
message is generated and the evaluation is aborted. We observe that, from a sample of
O
(
106) randomly generated points, only a small fraction (few percents) is not visible from

X0. We can view this as a statistical measure of non-starshapedness of the physical region.

7The closeness is determined by a technical cutoff on the absolute values of the relevant letters.
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5.2 Spurious singularities

In sections 4.2.3 and 4.2.4 we demonstrated that all integrands of the one-fold integrals
in eqs. (4.14) and (4.29) are either finite or have integrable divergences on subvarieties
where any of the spurious letters Wi ∈ S is vanishing. Hence we showed that the inte-
grals involving spurious divergences are well-defined from the mathematical point of view.
Nevertheless, their numerical evaluation does require special treatment to ensure adequate
numerical stability.

Whenever one of the quadratic spurious letters Wi ∈ Sq has opposite signs at the
base point X0 and at the evaluation point X, the integration path γ(t) has to cross the
spurious singularity Wi = 0 for some t0 ∈ [0, 1]. The corresponding one-form d logWi then
has a simple pole at t0, which is compensated by the corresponding multiplier h(X) which
vanishes at t = t0 (see section 4.2.3). This commonly causes significant loss of precision
due to numerical cancellations. We address this problem by evaluating the contribution
proportional to d logWi in the neighborhood where Wi is small as

(h(X) d logWi)|γj(t) =
(
h1(t) + h2(t)Wi(t) +O

(
W 2
i

))
dWi|γj(t) , (5.1)

where h1, h2 are the first non-vanishing coefficients of the series expansion of h(X) in Wi.
Therefore the spurious poles are always canceled analytically. We choose the threshold for
when to switch into the series expansion such that the O

(
W 2
i

)
corrections are estimated

to be smaller than the roundoff error at given precision.
At weight three the coefficients h1, h2 are explicitly finite by construction. At

weight four they can contain logarithmic singularities of the form log |Wi| originating from
eq. (4.34). These singularities are integrable. Nevertheless, they violate the assumptions
of the tanh-sinh quadrature if they are encountered anywhere except at the endpoints.
If left unattended, they spoil the expected double-exponential convergence rate and the
associated error estimates. To avoid this issue, we further subdivide the integration chain
at the locations of the spurious singularities such that they stand at the endpoints by con-
struction. We do this on-demand for each pentagon function individually. As in the case of
linear spurious singularities at X0, we must additionally ensure that, close to the spurious
singularity, the vanishing letters are evaluated in a numerically stable manner, and that
the rounding errors do not cause the integrand to be evaluated exactly at the singularity.
We accomplish this by evaluating the letters that can vanish along a line segment γj as

Wi|γj(t) = c
(1)
i;γj (t− t0) + c

(2)
i;γj (t− t0)2 , (5.2)

where t0 is a solution of Wi|γj(t) = 0, and the coefficients c(k)
i;γj are computed explicitly from

the letter’s derivatives. If a letter Wi ∈ Sq vanishes more than once along the same line
segment, we construct multiple representations of the form (5.2) for each of the singularity
locations tk. Then for any t ∈ γj we select the representation which corresponds to the
singularity that is the closest, i.e. such that |t− tk| is minimized.

The same considerations apply also to the case of linear spurious singularities Wi ∈ S`
except that their location is always fixed to t0 = 0 by construction. The representation in
eq. (5.1) remains unchanged, while in eq. (5.2) the coefficients c(2)

i;γj = 0.
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Finally, let us note that the same considerations apply to the case when the point X
itself is close to the zero locus Wi = 0. As far as floating-point evaluations are concerned,
no extra precautions are needed in this case, as long as Wi(X) 6= 0 exactly. Indeed, the
remaining spurious divergence is only logarithmic, hence it does not become large even for
Wi as small as machine epsilon. If a specifically fine tuned phase-space point is of interest,
we refer to the representation in eq. (4.36).

5.3 Performance

To characterize the performance of our implementation we sample all one mass pentagon
functions on points from a physical phase-space distribution that is representative of the
expected phenomenological applications. For the purpose of demonstration, we construct a
phase-space distribution by requiring optimal Monte Carlo integration of the leading order
pp→ eν̄ejj production cross section at

√
s = 13TeV with Sherpa 2.2 [95]. We define the

phase space by requiring two anti-kT jets with R = 0.4 [96], and we apply rather loose cuts,

plT > 20GeV , pjT > 25GeV , MW > 20GeV , |ηe| < 2.5 ,
∣∣∣ηj∣∣∣ < 3 , (5.3)

where plT and pjT are the transverse momenta of the leptons and jets respectively, MW is
the dilepton invariant mass, and ηe, ηj are the pseudo-rapidities of the electron and jets
respectively. The renormalization scale is chosen to be half the scalar sum of the transverse
momenta of all final-state particles.

We evaluate all pentagon functions in double and quadruple precision on 105 phase-
space points from this distribution. We characterize the accuracy of the double-precision
evaluation f̂ (w)

i;double(X) of a pentagon function on a kinematical point X by the logarithmic
relative error rw,i,

rw,i(X) = − log10

∣∣∣∣∣∣ f̂
(w)
i;double(X)

f̂
(w)
i;quad(X)

− 1

∣∣∣∣∣∣ , (5.4)

where f̂ (w)
i;quad(X) is the numerical evaluation of the same function in quadruple precision.

For convenience we will refer to this quantity as correct digits. We define the smallest num-
ber of correct digits (i.e. worst precision) among all pentagon functions at the kinematical
point X as

R(X) = min
w,i

[rw,i(X)] , w, i ∈ {all functions up to weight four}. (5.5)

We display the distribution of R(X) over the phase space as well as the average evaluation
time in figure 3. We observe excellent precision in the bulk of the phase space. A few
of the phase-space points in the tail with low number of correct digits can be associated
to the fact that the evaluation of tr5 on those points becomes ill-conditioned. Comparing
to the case of the massless pentagon functions in [31], the evaluation time is even lower
despite the more complex phase space and the larger number of functions. We attribute
this to the implementation details of the C++ library. This fact does however demonstrate
that the overhead from integrating over multiple line segments is indeed negligible.
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Figure 3. Distribution of logarithmic relative error of the one-mass pentagon functions (see
eq. (5.5)) sampled on 105 kinematical points from a typical physical phase space (solid orange line).
The cumulative distribution is displayed by the dashed line. The average evaluation time of all
one-mass pentagon functions in double precision on a single thread is estimated in a run where
kinematical points are evaluated in parallel on a server with Intel(R) Xeon(R) Silver 4216 CPU
@ 2.10GHz.

Precision Correct digits Timing (s)
double 12 0.19

quadruple 28 159
octuple 60 1695

Table 6. Evaluation times of all one-mass pentagon functions on a typical phase-space point. The
evaluations are performed on a single thread of Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz.

To characterize the scaling of our method with precision, we show in table 6 the timings
of evaluation of all one-mass pentagon functions in double, quadruple, and octuple precision
on a typical phase-space point. The number of correct digits is calculated by comparing
with the results obtained from DiffExp as described in section 3.5.

The termination condition for the numerical one-fold integration for the benchmarks
in this section is chosen as specified by the default settings of PentagonFunctions++: it is
picked in such a way that the precision of the integration result is only limited by rounding
errors in the integrand and the condition number which characterizes the sensitivity of
the evaluation result to small perturbations in the input. One can therefore adjust this
threshold to improve average evaluation time if lower precision in the bulk is sufficient for
the desired applications. For example, it might be useful if quadruple precision is necessary
only to overcome rounding errors in the integrand, while the target precision is still that
of double precision.
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Finally, let us emphasize that in this section we considered the complete set of one-
mass pentagon functions sufficient to express any two-loop five-point scattering amplitude
with four massless and one massive external momenta. It is however expected that not all
of the functions contribute in particular applications. For instance, it has been observed
that the functions involving certain subsets of letters drop out from suitably defined finite
quantities [44, 45, 84]. Moreover, some scattering processes require only the subset of
pentagon functions corresponding to the cyclic permutations (see e.g. [44]). Both of these
properties are manifest in our function basis. Hence, the results presented in this section
can be considered as the worst-case scenario analysis.

5.4 Validation

We validated our results against three sources: the function basis of ref. [44], the benchmark
values for the pure master integrals in ref. [36], and the numerical evaluation of the master
integrals using DiffExp.

We verified that the basis functions of ref. [44], which cover only the cyclic permutations
D4 of the planar integral families, can be expressed as (graded) polynomials in our cyclic
one-mass pentagon functions, meaning that there is full compatibility between the two
bases. We made use of this relation to cross-check the numerical values of the cyclic
one-mass pentagon functions obtained with PentagonFunctions++ against those of the
functions of ref. [44] in several kinematic points, including some in 2→ 3 physical scattering
regions different from P45. We evaluated the one-mass pentagon functions at the latter
points in double precision as discussed in section 3.2, using the analytic permutations of
the pentagon functions provided in the ancillary files [70]. We found full agreement.

Reference [36] provides the numerical values of the pure master integrals of the planar
families in the standard orientation of the external legs in six kinematic points, one for each
distinct 2 → 3 physical scattering region with the massive particle in the final state. We
reproduced these values through the one-mass pentagon functions evaluated with octuple
precision and crossed to the scattering regions different from P45 as discussed in section 3.2.

Finally, we used DiffExp to evaluate numerically all master integrals at several kine-
matic points in P45, including some close to spurious singularities. We used the benchmark
values of ref. [36] as initial values. We evaluated the pure master integrals of the permuted
families by permuting the evaluation point as in eq. (3.7) and flipping the sign of the parity-
odd integrals for the odd-signature permutations. We then matched the expressions of the
pure master integrals in terms of the one-mass pentagon functions with their numerical val-
ues, and solved the ensuing system of equations to get the values of the pentagon functions.
The fact that this system of equations admits a unique solution confirms the correctness
of the expressions of the integrals in terms of pentagon functions. We then cross-checked
the resulting values against the evaluations done with PentagonFunctions++ in octuple
precision, finding full agreement to the expected accuracy.

5.5 Usage

The library PentagonFunctions++ can be used either as a C++ library or through its
Mathematica interface implemented by the package PentagonFunctions‘. We give here
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only a brief demonstration and refer to the documentation supplied together with the
library distribution [87].

The library accepts as input the kinematical point given by the six Mandelstam
invariants in eq. (2.3). The latter are assumed to be in ratios to the regularization
scale, see eq. (3.1). The pentagon functions are evaluated in their analyticity region
P+

45 defined in eq. (2.19), which means that Im tr5 > 0 by construction. Function val-
ues for parity-conjugated points with Im tr5 < 0 can be obtained by manually changing
the sign of the parity-odd functions, which we list explicitly in the supplementary file
pfuncs_charges.m [70].

The interface of the library is designed in such a way that for each needed pen-
tagon function the user must first obtain a callable function object or evaluator. In the
C++ interface the evaluator of numerical type T is obtained by creating an instance of
FunID<KinType::m1> type, and invoking its template method get_evaluator<T>(). For
example, with the code

1 FunID<KinType : : m1> fID ( 3 , 1 4 ) ;
2 auto f o b j = fID . get_evaluator<double>();
3
4 auto r e s u l t = f ob j (X) ;

one obtains a double-precision evaluator fobj for the function f (3)
14 . In line 4 the function

is evaluated on a point X specified as in eq. (2.3). It is worth noting that the created eval-
uators are completely independent of each other and will each evaluate only the requested
pentagon functions. This means, for instance, that the user can choose to evaluate only a
needed subset of pentagon functions.

Similarly, in the Mathematica interface this can be achieved with

1 eva lua to r = Star tEva luatorProce s s [ "m1" , {F [ 3 , 1 4 ] } , " P r e c i s i o n " −> " double " ] ;
2
3 r e s u l t = EvaluateFunct ions [ eva luator , X ] ;

Here the second argument is a list of required functions, and the last argument can be
used to select the required precision. In the Mathematica interface the functions are
evaluated in parallel using all available threads. In line 3 the evaluation result is returned
as replacement rules.

In both interfaces m1 is used as an identification for the set of one-mass pentagon
functions introduced in this paper,8 and the evaluator objects can be used for evaluations
on any number of subsequent phase-space points. For more details we refer to the examples
provided with the library distribution.

6 Conclusions

We constructed a basis of transcendental functions which allows to express any planar
one- and two-loop five-particle Feynman integral with a single external massive leg up

8The massless pentagon functions from ref. [31] can be accessed by using m0 instead.
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to transcendental weight four. This is sufficient for the computation of the planar two-
loop corrections to cross sections. We call the functions in our basis one-mass pentagon
functions. Our results are valid throughout the entire physical phase space for any 2→ 3
scattering process with production of a massive particle. We achieved this by constructing
expressions for the one-mass pentagon functions which are well-defined in a particular
2 → 3 channel, and by providing the expressions of the master integrals in terms of our
function basis for all permutations of the external massless legs. We expressed the one-mass
pentagon functions in terms of logarithms and dilogarithms up to transcendental weight
two. For the weight three and four functions, instead, we constructed a one-fold integral
representation which is well suited for the numerical integration. We presented a public C++
library [87] which allows to evaluate numerically the one-mass pentagon functions in a stable
and fast way. The supplemental material can be obtained from the git repository [70].

The results presented in this paper open the door for broad phenomenological appli-
cations, and constitute a crucial step forward towards the computation of NNLO QCD
predictions for several processes which feature prominently in the LHC physics program,
such as the production of a Higgs or an electroweak vector boson in association with two
jets. Indeed, the one-mass pentagon functions have already been instrumental in the recent
calculation of the planar two-loop amplitudes for four partons and an electroweak vector
boson [82], and we envisage that they will facilitate calculations of other processes with
similar scattering kinematics in the near future.

More broadly, we expect that the approach we adopted in this paper will help to
tackle many further problems in the future. In primis, we envisage that it will be possible
to classify the non-planar one-mass pentagon functions in a completely analogous way, once
the canonical DEs for all the non-planar integral families are available (see refs. [47, 48] for
progress in this direction). Similarly, the expressions for the one-mass pentagon functions
may be generalized to the 1→ 4 decay region, which would for instance enable a two-loop
description of e+e− → 4j at lepton colliders. More generally, our approach can be useful
in other multi-scale applications, in particular those where rationalizing all square roots is
very difficult or even impossible.
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A Gram determinants and the physical region

In this section we discuss in detail the properties of the Gram determinants which are
relevant to define the physical scattering region and to determine the signs of the letters
of the alphabet. Our discussion essentially follows refs. [59–61], specializing to the case of
massless particles. We begin by defining the Gram determinant of two sets of momenta,

G(qi1 , . . . , qin ; qj1 , . . . , qjn) = det G(qi1 , . . . , qin ; qj1 , . . . , qjn) , (A.1)

where G is the Gram matrix,

G(qi1 , . . . , qin ; qj1 , . . . , qjn) =


qi1 · qj1 · · · qi1 · qjn

... . . . ...
qin · qj1 · · · qin · qjn

 . (A.2)

We call the number of momenta in the two sets, n in eq. (A.1), the order of the Gram
determinant. The Gram determinant is invariant under the exchange of the two sets of
momenta, which corresponds to a transposition of the Gram matrix. We further introduce
a short-hand notation for the Gram determinants of the external momenta {pi}5i=1,

Gj1...jni1...in
= G(pi1 , . . . , pin ; pj1 , . . . , pjn) , (A.3)

Gi1...in = Gi1...ini1...in
. (A.4)

The Gram determinant vanishes if the momenta in any of the two sets are linearly depen-
dent, and is invariant under shifts of any of the momenta by any linear combination of the
other momenta in its argument. As a result, when considering four-dimensional external
momenta, the Gram determinants with order n ≥ 5 vanish. Moreover, the order-n Gram
determinant is invariant under any permutation σ ∈ Sn of the momenta in its argument,

Gj1...jni1...in
= G

jσ(1)...jσ(n)
iσ(1)...iσ(n)

. (A.5)

Finally, Sylvester’s determinant identity implies a number of relations among Gram deter-
minants with different orders which will be useful in the following discussion,

GiGijk = GijGik −
(
Gijik

)2
, (A.6)

GklGijkl = GiklGjkl −
(
Gjklikl

)2
, (A.7)

(Gi)2Gijkl = det

Gij G
ij
ik G

ij
il

Gijik Gik G
ik
il

Gijil G
ik
il Gil

 . (A.8)

Now that we have stated the main properties of the Gram determinants we can move
on to discussing how they constrain the physical region for five-particle scattering [59–61].
In particular, we prove the constraints given by eq. (2.17). Let us consider the Gram
determinants Gi1...in , with n = 1, . . . , 4 and distinct indices i1, . . . , in. The corresponding
Gram matrix G(pi1 , . . . , pin) is symmetric and thus has n real eigenvalues. Clearly if any of
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the eigenvalues is equal to zero, the determinant Gi1...in also vanishes. We can prove that
the Gram matrix G(pi1 , . . . , pin) is either identically zero — which is of no interest — or it
has exactly one positive and n − 1 non-positive eigenvalues. Since the Gram determinant
Gi1,...,in is the product of all eigenvalues of the corresponding Gram matrix, this property
straightforwardly implies the constraints given by eq. (2.17), which we rewrite here for the
convenience of the readers,

G(p1) > 0 , G(pi, pj) < 0 , G(pi, pj , pk) > 0 , G(pi, pj , pk, pl) < 0 . (A.9)

We begin by proving that the Gram matrix G(pi1 , . . . , pin) cannot have more than
one positive eigenvalue. If it had two positive eigenvalues, the corresponding eigenvectors
would be real linear combinations of pi1 , . . . , pin with the following properties: linear in-
dependence, orthogonality, and time-likeness. This is impossible in the (1, 3) Minkowski
space-time metric. Therefore either all n eigenvalues of G(pi1 , . . . , pin) are non-positive, or
one eigenvalue is positive and n− 1 are non-positive.

Secondly, we prove that the Gram matrix G(pi1 , . . . , pin) has at least one positive eigen-
value or it vanishes identically. This follows from physical constraints on the kinematics.
In particular, we assume that the momentum p1 is time-like, p2

1 > 0. The sum of the
eigenvalues of G(pi1 , . . . , pin) equals its trace, i.e.

∑n
k=1 p

2
ik
. Then either ik = 1 for some

k, in which case the trace of the Gram matrix evaluates to p2
1 and is thus positive, or no

index is equal to 1, in which case the trace vanishes. The sum of the eigenvalues is thus
non-negative. As a result, either all the eigenvalues are zero or at least one eigenvalue is
positive. Since the Gram matrix G(pi1 , . . . , pin) can have at most one positive eigenvalue,
this implies that it has exactly one positive and n − 1 non-positive eigenvalues, or that it
vanishes. q.e.d.

The study of the positivity of the alphabet letters in appendix D makes use of another
useful identity,

G(p1, pi + αpj + βpk) < 0 , ∀α, β ∈ R , (A.10)

with distinct indices i, j, k taken from {2, 3, 4, 5}. This relation holds in the physical scat-
tering regions, i.e. where the Gram-determinant constraints (A.9) are satisfied. We prove
this by showing that G(p1, pi + αpj + βpk) is a non-positive polynomial in α and β,

G(p1, pi + αpj + βpk) = α2G1j + 2αβG1k + β2G1k + 2αG1i
1j + 2βG1i

1k +G1i . (A.11)

Using the identity (A.6) we see that the determinant of the Hessian matrix of this polyno-
mial is non-negative,

G1jG1k −
(
G1j

1k

)2
= G1G1jk > 0 . (A.12)

This, together with the physical constraint that G1j < 0, implies that the polynomial has a
global maximum where the first derivatives in α and β vanish. With the help of (A.6) and
(A.8), we rewrite the maximum in terms of the Gram determinants so that it is explicitly
non-positive,

max
α,β

G(p1, pi + αpj + βpk) = G1G1ijk
G1jk

< 0 , (A.13)

which implies the inequality (A.10). q.e.d.
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In order to understand the implications of the Gram-determinant constraints (A.9) in
terms of the scalar invariants it is useful to spell out the various Gram determinants. We
begin with the order-one Gram determinants. Only one of them is non-vanishing, whereas
the other four vanish identically,

G1 = p2
1 > 0 , Gj = 0 ∀j = 2, 3, 4, 5 . (A.14)

Higher order Gram determinants vanish only in degenerate configurations of the momenta
corresponding to the boundaries of the physical region defined by eq. (2.16) (see also
footnote 2). The order-two Gram determinants are given by

Gij = −(pi · pj)2 < 0 ∀i, j = 1, . . . , 5 , i 6= j . (A.15)

Clearly the Gij ’s, for distinct i and j, can vanish only where pi · pj = 0, which indeed
defines the boundary of the physical regions. The order-three Gram determinants have
different expressions depending on whether one of the indices is equal to 1,

Gijk = 1
4sijsiksjk , (A.16)

G1ij = sij
4
(
(s1i − p2

1)(s1j − p2
1)− p2

1sij
)
, (A.17)

where i, j, k take distinct values in {2, 3, 4, 5}. In order to show that the order-three Gram
determinants vanish only on the boundaries of the physical regions we make use of eq. (A.7).
Setting Gikl = 0 in eq. (A.7) in fact implies that

GklGijkl = −
(
Gjklikl

)2
. (A.18)

Because of the Gram-determinant constraints (A.9) in the physical scattering regions, the
left-hand side is non-negative, while the right-hand side is non-positive. Hence, both sides
of the equation vanish. The vanishing of the order-three Gram determinant Gikl = 0 thus
implies that either Gkl = 0 or Gijkl = 0. Both cases correspond to boundaries of the
physical regions. We have already proven this above for the order-two Gram determinants
and we discuss it presently for the order-four ones. The latter are all proportional to
∆5 = tr2

5,

Gijkl = ∆5
16 , (A.19)

which clearly can only vanish at the boundary ∆5 = 0 of the physical region (see also
footnote 2).

Finally, let us establish the inequalities in eq. (2.18), which define the s45 scattering
region in terms of the Mandelstam invariants sij and p2

1. We begin by rewriting the physical
constraints on the scalar products (2.16) in terms of the Mandelstam variables,

s12 > p2
1 , s13 > p2

1 , s23 > 0 , s45 > 0 , s24 < 0 ,
s34 < 0 , s25 < 0 , s35 < 0 , s14 < p2

1 , s15 < p2
1 .

(A.20)
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We see that the latter are less strict than the constraints given in eq. (2.18). However, in
view of (A.20),

s45 = s12 + s23 + (s13 − p2
1) > p2

1 . (A.21)

Then we consider the following order-three Gram determinant,

0 < 4G145 = −s45
[
s23(p2

1 − s15) + s2
15 + s15(s45 − p2

1)
]

= −s45
[
s23(p2

1 − s14) + s2
14 + s14(s45 − p2

1)
]
.

(A.22)

Its positivity, together with the constraints (A.20) and (A.21), implies that

s14 < 0 , s15 < 0 . (A.23)

Finally, completing the constraints (A.20) with those given in eqs. (A.21) and (A.23) gives
the stricter inequalities (2.18).

B Shape of the physical phase space

In this appendix we discuss the convexity properties of the physical phase space P45. The
latter is an open subset of the affine space with coordinates

(
p2

1, s12, s23, s34, s45, s15
)
carved

out by the inequalities (2.18).
Given two points x, y in some affine space A, we say that y is visible from x (or vice

versa) if the line segment connecting x and y lies in A. First of all, we note that one
can easily find two points within P45 which are not visible from each other, i.e. P45 is not
convex. A more refined question about the geometry of P45, which has important practical
implications, is whether it is starshaped. A set A is called starshaped if it contains a point
x ∈ A such that all points in A are visible from x. The point x is then called a star center
of A. We refer to ref. [98] for a detailed overview of properties of starshaped sets.

We are going to prove that P45 is not starshaped. We will assume that P45 is starshaped
and show that this assumption leads to a contradiction. The domain P45 owes its non-
trivial geometry to the quartic constraint ∆5 < 0. The remaining constraints in eq. (2.18)
are in fact linear, so if they are satisfied at points X1 and X2 then they are also satisfied
along the line segment connecting X1 and X2. For this reason we will focus on the quartic
constraint ∆5 < 0 hereafter.

Let us assume that P45 is starshaped and let the point X0 ∈ P45 be a star center.
Since the inequalities defining P45 are homogeneous, we parametrize X0 without loss of
generality as

X0 :=
(
p

2 (0)
1 = 1, s(0)

12 , s
(0)
23 , s

(0)
34 , s

(0)
45 , s

(0)
15

)
. (B.1)

We constrain X0 by requiring that certain points of P45 are visible from it.
Let us first consider the one-parameter family of phase-space points

X
(z)
Regge :=

(
p2

1 = 1, s12 = 2, s23 = 3, s34 = −1, s45 = z, s15 = −1
)
. (B.2)
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One can easily check that the inequalities (2.18) are satisfied for z � 1. Physically, the
asymptotics z � 1 is the Regge limit with high energies s13 ∼ s45 ∼ z. We connect X0
and X(z)

Regge by a line segment γz(t) parameterized with 0 ≤ t ≤ 1. Along the line segment
the leading term of ∆5 for z � 1 is

∆5(γz(t)) = t2(1− t)2
(
s

(0)
15 − s

(0)
34

)2
z2 +O(z) . (B.3)

The requirement that X(z)
Regge is visible from X0 implies the negativity of ∆5(γz(t)) for all

t ∈ [0, 1]. Consequently, the leading term in the z-expansion (B.3) has to vanish, giving
the following constraint on X0,

s
(0)
15 = s

(0)
34 . (B.4)

In order to obtain more constraints on X0 we consider those permutations of the
one-parameter family (B.2) which are automorphisms of the domain P45, namely the per-
mutations in the set Σ (P45) (3.23). Since ∆5 is invariant under all S4 permutations, we
automatically obtain three more constraints on X0:

s
(0)
14 = s

(0)
35 , s

(0)
15 = s

(0)
24 , s

(0)
14 = s

(0)
25 , (B.5)

where we tacitly imply that s(0)
ij denotes a linear function of the five independent parameters

from (B.1). Interestingly, the constraints in eqs. (B.4) and (B.5) imply that, if P45 is
starshaped, its star centers are in the locus where all linear spurious letters S` (4.17)
vanish.

Combining together the four constraints on X0 we restrict it to the following one-
parameter family,

X0 = (p2
1 = 1, s12 = a+ 2, s23 = a+1, s34 = −a−1, s45 = 3a+ 4, s15 = −a−1) , (B.6)

with a > 0. Note that the base point X0 (3.22) we use in our implementation of the
one-mass pentagon functions is exactly of this form with a = 1.

Finally we present another one-parameter family of phase-space points X(z)
col ∈ P45

which is not visible from X0 for any a > 0 at z � 1,

X
(z)
col =

(
p2

1 = 8, s12 = 10, s23 = z, s34 = −1, s45 = 12, s15 = −2
)
. (B.7)

This asymptotics corresponds physically to the collinear limit p2||p3. We connect X0 and
X

(z)
col by a line segment γz(t) = (1− t)X0 + tX

(z)
col . One can then verify that the quadratic

constraint ∆5 < 0 cannot be satisfied for all t ∈ [0, 1] for z � 1. We do this by showing
that, for z � 1 and for any a > 0, the sign of ∆5(γz(t)) changes at some value of t ∈ (0, 1).
For this purpose we find it convenient to pull back ∆5 to [0,+∞) by the map t = u

1+u with
u ≥ 0,

∆5

(
γz

(
u

1 + u

))
= − (1 + a)

(1 + u)4 (4 + 3a+ 12u)
(
(1 + a− 2u)2 − (a+ 1)

)
+O(z) . (B.8)

Clearly, the sign of the leading term of this expansion changes as u varies along the positive
axis for any value of a. In other words, ∆5 cannot be negative along the entire line for any
choice of a > 0, and X(z)

col is not visible from any X0 of the form (B.6). Therefore we can
conclude that P45 is not starshaped.
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Square root Odd letters√
∆(1)

3 W118 ,W123 ,W124 ,W129 ,W186√
∆(2)

3 W119 ,W122 ,W125 ,W128 ,W187√
∆(3)

3 W120 ,W121 ,W126 ,W127 ,W188

tr5 W130 , . . . ,W137 ,W186 ,W187 ,W188

Table 7. Relevant letters which depend on the sign of the square roots of the problem. On each
row the letters in the right column are odd with respect to changing the sign of the square root in
the left column. We recall that tr5 is related to

√
∆5 through eq. (2.5).

C Permutation closure of the planar alphabet

In this appendix we spell out the expressions of the relevant letters Arel
S4

listed in eq. (3.16).
Following ref. [48], we present them grouped into orbits of the permutation group S4
starting from a generating set of letters. The generating letters may be invariant under
certain permutations, so that only a subset of S4 is required to generate the full orbit. We
give in the ancillary file alphabet_permutation_orbits.m [70] the subsets of permutations
which, starting from the generating letters shown here, give the letters in the corresponding
orbits in the correct ordering.

We also highlight the behavior of each letter with respect to changing the sign of one
of the square roots. We recall that a letter Wi is called odd with respect to a square root√
δ if d logWi changes sign when changing the sign of

√
δ, namely if Wi goes to its inverse

1/Wi. The letters with non-trivial behavior with respect to changing the sign of the square
roots are listed in table 7.

The purely rational relevant letters are given by9

W1 = p2
1 ,

{W2, . . . ,W5} = S4 ◦ (s12) ,
{W6, . . . ,W11} = S4 ◦ (s23) ,

{W12, . . . ,W15} = S4 ◦
(
s12 − p2

1
)
,

{W16, . . . ,W27} = S4 ◦ (s15 − s34) ,

{W28, . . . ,W33} = S4 ◦
(
s12s15 − p2

1s34
)
,

{W34, . . . ,W45} = S4 ◦
(
s12s23 + p2

1s45 − s12s45
)
,

{W46, . . . ,W57} = S4 ◦
(
s15s45 + p2

1s23 − p2
1s15

)
,

{W70, . . . ,W93} = S4 ◦
(
s12s15 − s12s23 − p2

1s34
)
,

(C.1)

where S4 ◦ x denotes the S4-orbit of x, namely the set {σ ◦ x |σ ∈ S4}.
9The letters {W19, . . . ,W24} require also a factor of −1 on top of the permutation of the generating

letter.
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The letters with non-trivial behaviour with respect to changing the sign of one of the
three-mass-triangle square roots but independent of tr5 are

{W118, . . . ,W123} = S4 ◦

p2
1 − s23 + s45 +

√
∆(1)

3

p2
1 − s23 + s45 −

√
∆(1)

3

 ,

{W124, . . . ,W129} = S4 ◦

s13 − s12 −
√

∆(1)
3

s13 − s12 +
√

∆(1)
3

 .

(C.2)

In particular, the letters {W118,W123,W124,W129}, {W119,W122,W125,W128} and
{W120,W121,W126,W127} are odd with respect to

√
∆(1)

3 ,
√

∆(2)
3 and

√
∆(3)

3 , respectively.
The parity-odd letters — namely those whose d log changes sign when changing the

sign of tr510 — which are free from the three-mass-triangle square roots are

{W130, . . . ,W137} = S4 ◦
(
a− tr5
a+ tr5

)
, (C.3)

with

a = s12s23 + s23s34 − s34s45 + s45s15 − s12s15 + p2
1s34 . (C.4)

There are three parity-odd letters which also depend on one of the three-mass-triangle
square roots,

W186 = Ω−−Ω++

Ω−+Ω+− ,

W187 = σ ◦W186 with σ = (2435) ,

W188 = σ ◦
( 1
W186

)
with σ = (2543) ,

(C.5)

where

Ω±± = s12s15 − s12s23 − s15s45 ± s34

√
∆(1)

3 ± tr5 . (C.6)

The letters W186, W187 and W188 are all odd with respect to tr5, and are odd with respect
to
√

∆(1)
3 ,

√
∆(2)

3 and
√

∆(3)
3 , respectively. The definition of W188 in eq. (C.5) requires an

inverse because we are using tr5 rather than
√

∆5 (see also footnote 10).

10In ref. [48] the letters are defined in terms of
√

∆5, rather than tr5, and are thus even under parity.
We adopt their definition of the letters but replace

√
∆5 with tr5, to match the conventions used in the

computation of the planar integral families [36]. Since
√

∆5 is invariant under any permutation of the
massless legs whereas tr5 changes sign with an odd-signature permutation, the sets of permutations used
here may differ from those of ref. [48].
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The last four relevant letters are given by the four square roots of the problem,

W195 =
√

∆(1)
3 ,

W196 =
√

∆(2)
3 ,

W197 =
√

∆(3)
3 ,

W198 = tr5 .

(C.7)

We stress that these letters are even with respect to changing the sign of any square root.

D Positivity of the alphabet in the physical scattering region 45 → 123

The one-mass pentagon functions are expressed as iterated integrals with integration kernels
given by the logarithms of the alphabet letters (see section 3.4). The representation in
terms of iterated integrals highlights that the pentagon functions may have singularities
only on the loci where any of the involved letters vanishes or diverges. Therefore we need to
inquire about the positivity of the alphabet letters in the region P45, i.e. whether they have
definite sign in the region P45. This has important implications for the construction of the
explicit representation of the pentagon functions in section 4.2. In this appendix we study
systematically the positivity of the 108 relevant letters of the alphabet listed in eq. (3.16).
We show that 20 of them do not have fixed sign in P45. We call the latter spurious letters.
Out of them, 4 are linear in the Mandelstam invariants,

S` = {W16, W17, W19, W20} , (D.1)

and 16 are quadratic,

Sq = {W35, W36, W38, W39, W40, W41, W43, W44,

W72, W74, W78, W80, W82, W84, W88, W90} .
(D.2)

We denote by S the set of all spurious letters,

S = S` ∪ Sq ⊂ Arel
S4 . (D.3)

We prove this by rewriting the letters in such a way that their positivity properties in P45
become obvious consequences of the inequalities (2.18). For the sake of presentation we
split the alphabet into several subsets of letters having similar structure, to each of which
we devote a subsection. Finally, in subsection D.5 we show that the three-mass triangle
functions defined in eq. (4.12) have no branch cuts within P45.
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D.1 Linear letters

The first 27 letters, {Wi}27
i=1, are linear in the Mandelstam variables (2.3). By rewriting

them as

W1 = p2
1 , W2 = s12 , W3 = s13 ,

W4 = s14 , W5 = s15 , W6 = s23 ,

W7 = s24 , W8 = s25 , W9 = s34 ,

W10 = s35 , W11 = s45 , W12 = s12 − p2
1 ,

W13 = s13 − p2
1 , W14 = s14 − p2

1 , W15 = s15 − p2
1 ,

W16 = s23 + s24 , W17 = s23 + s25 , W18 = s24 + s25 ,

W19 = −s23 − s34 , W20 = −s23 − s25 , W21 = (s13 − p2
1) + s23 ,

W22 = −s24 − s34 , W23 = (s14 − p2
1) + s34 , W24 = (s14 − p2

1) + s24 ,

W25 = s25 + s35 , W26 = (p2
1 − s15)− s35 , W27 = (p2

1 − s15)− s25 ,

(D.4)

we can immediately deduce their positivity properties in P45 from the defining inequali-
ties (2.18). Only the inequalities which are linear in the Mandelstam invariants are required.
The positivity properties of the linear letters are summarized as follows:

W1, W2, W3, W6, W11, W12, W13, W21, W22, W23, W26, W27 > 0

W4, W5, W7, W8, W9, W10, W14, W15, W18, W24, W25 < 0

W16, W17, W19, W20 ≷ 0

(D.5)

D.2 Quadratic letters

54 letters, {Wi}57
i=28∪{Wi}93

i=70, are quadratic in the Mandelstam variables (2.3). For 11 of
them we find a representation which makes their positivity a manifest consequence of the
linear inequalities (2.18) among Mandelstam invariants,

W49 = s35(s13 + p2
1) + p2

1(s15 − p2
1) ,

W51 = s34(s13 + p2
1) + p2

1(s14 − p2
1) ,

W53 = s25(s12 + p2
1) + p2

1(s15 − p2
1) ,

W55 = s24(s12 + p2
1) + p2

1(s14 − p2
1) ,

W56 = s23(s13 + p2
1) + p2

1(s12 − p2
1) ,

W57 = s23(s12 + p2
1) + p2

1(s13 − p2
1) ,

W70 = s12s24 + s34(s12 − p2
1) ,

W71 = s12s25 + s35(s12 − p2
1) ,

W76 = s13s34 + s24(s13 − p2
1) ,

W77 = s13s35 + s25(s13 − p2
1) ,

W93 = s15s35 + s34(s15 − p2
1) ,

(D.6)

i.e. both terms in each of the previous sums are simultaneously either positive or negative.
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In order to establish the positivity of the remaining quadratic letters, the linear in-
equalities in eq. (2.18) are not sufficient. We have to appeal to the Gram determinant
inequalities. We thus express the letters in terms of order-3 Gram determinants, G1ij , and
profit from their positivity in P45, namely G1ij > 0 for i, j = 2, . . . , 5 and i 6= j. In this
way we can straightforwardly establish that the following quadratic letters do not change
sign in P45,

W28 = 4G125
s25

, W29 = 4G124
s24

, W30 = 4G123
s23

,

W31 = 4G135
s35

, W32 = 4G134
s34

, W33 = 4G145
s45

,

W34 = 4G124
s24

+ 4G125
s25

, W37 = 4G134
s34

+ 4G135
s35

,

W42 = 4G124
s24

+ 4G134
s34

, W45 = 4G125
s25

+ 4G135
s35

.

(D.7)

We recall that G1ij/sij is a quadratic polynomial in the Mandelstam invariants, as can be
seen explicitly in eq. (A.17). Similarly, we observe that both terms in the following sums
are of the same sign,

W46 = −4G145
s45

+ s15(s23 − s15) , W47 = −4G145
s45

+ s14(s23 − s14) ,

W73 = −4G125
s25

+ s35(p2
1 − s12) , W75 = −4G124

s24
+ s34(p2

1 − s12) ,

W79 = −4G135
s35

+ s25(p2
1 − s13) , W81 = −4G134

s34
+ s24(p2

1 − s13) ,

W83 = −4G145
s45

+ s35(p2
1 − s14) , W85 = −4G145

s45
+ s25(p2

1 − s14) ,

W86 = −4G124
s24

+ s23(p2
1 − s14) , W87 = −4G134

s34
+ s23(p2

1 − s14) ,

W89 = −4G145
s45

+ s34(p2
1 − s15) , W91 = −4G145

s45
+ s24(p2

1 − s15) ,

W92 = −4G125
s25

+ s23(p2
1 − s15) .

(D.8)

Finally, we have to employ more intricate identities to highlight the positivity of the fol-
lowing quadratic letters,

W48 = p2
1(s23 + s34)2 + 4G135

s13 − p2
1

, W50 = p2
1(s23 + s35)2 + 4G134

s13 − p2
1

,

W52 = p2
1(s15 − s34)2 + 4G125

s12 − p2
1

, W54 = p2
1(s23 + s25)2 + 4G124

s12 − p2
1

.

(D.9)

Let us recall that the letters in the previous equation are polynomial in the Mandelstam
variables: the denominators factor out once the numerators are expressed in terms of
Mandelstam variables.
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We summarize the positivity properties of the quadratic letters given by eqs. (D.6)
to (D.9) as follows:

W30, W33, W48, W50, W52, W54, W56, W57,

W73, W75, W79, W81, W86, W87, W92, W93
> 0

W28, W29, W31, W32, W34, W37, W42, W45, W46, W47, W49,

W51, W53, W55, W70, W71, W76, W77, W83, W85, W89, W91
< 0

W35, W36, W38, W39, W40, W41, W43, W44,

W72, W74, W78, W80, W82, W84, W88, W90
≷ 0

(D.10)

D.3 Three-mass square-root letters

The letters W195, W196, W197 are the three-mass triangle square roots,
√

∆(i)
3 with i =

1, 2, 3. They are given by order-2 Gram determinants (2.9), and thus they are positive in
P45 due to the proposition in eq. (A.10),

W195, W196, W197 > 0 . (D.11)

Among the square-root letters, the letters {Wi}129
i=118 contain only the square roots

of three-mass-triangle type. We observe that they are neither singular nor vanish in the
physical region P45, and their signs are summarized as follows:

W118, W123, W125, W126, W127, W128 > 0

W119, W120, W121, W122, W124, W129 < 0
(D.12)

In order to show this, let us consider two prototypical examples.
The letter W118,

W118 =
s12 + s13 +

√
∆(1)

3

s12 + s13 −
√

∆(1)
3

, (D.13)

could become singular or vanish only at (s12 + s13)2 = ∆(1)
3 . The latter constraint is

equivalent to p2
1 s45 = 0, which is impossible inside the region P45. Therefore, W118 cannot

change sign in P45.
The second example is given by the letter W126,

W126 =
s12 − s15 +

√
∆(3)

3

s12 − s15 −
√

∆(3)
3

. (D.14)

The latter vanishes or becomes singular only at (s12 − s15)2 = ∆(3)
3 , which is equivalent to

s12s15 = p2
1s34. Resolving the previous relation in one of the Mandelstam variables, e.g.

p2
1 = s12s15/s34, and eliminating this variable from ∆5, we observe that ∆5 turns into a

perfect square,

∆5
∣∣∣
p2

1= s12s15
s34

= (s12s23 − s23s34 − s15s45 + s34s45)2 , (D.15)
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which cannot be negative, in contradiction with the quadratic constraint ∆5 < 0
in eq. (2.18).

For the remaining algebraic letters involving only the three-mass triangle square roots,
one of the two arguments above is applicable.

D.4 Parity-odd letters and
√

∆5

The remaining relevant letters that we need to consider, {Wi}137
i=130 ∪ {Wi}188

i=186 ∪ {W198},
all contain

√
∆5 in their expression. Since ∆5 < 0 in P45,

√
∆5 is non-vanishing and purely

imaginary in the physical region. Thus, W198 =
√

∆5 is purely imaginary, while the other
eleven letters take complex values on the unit circle. The latter are parity-odd because the
sign of the corresponding d log’s changes under the action of space-time parity P ,

P : d logWi → −d logWi for i = 130, . . . , 137, 186, 187, 188 . (D.16)

Moreover, these letters cannot be equal to 1, as that would imply ∆5 = 0. In summary,
for the parity-odd letters we have that

|Wi| = 1 and Wi 6= 1 for i = 130, . . . , 137, 186, 187, 188 . (D.17)

D.5 Three-mass triangles

In eq. (4.12) we defined three weight-two pentagon functions corresponding, up to an
overall algebraic factor, to the finite part of the three-mass triangle Feynman integrals.
Their explicit expressions (4.12) rely on the representation (4.11) of the three-mass triangle
function. Here we show that they are well defined, namely real analytic, in the physical
channel P45.

The following inequalities,

s45 − s23 + p2
1 ±

√
∆(1)

3 > 0 , s45 + s23 − p2
1 ±

√
∆(1)

3 > 0 , (D.18)

imply that the arguments of the logarithms and dilogarithms in the expression for f (2)
23

do not cross any branch cuts. The strict inequalities (D.18) turn into equalities at the
boundaries p2

1s45 = 0 and s23s45 = 0 of P45, respectively. Similarly, the inequalities

±(p2
1 + s34 − s25) +

√
∆(3)

3 > 0 ,

±(p2
1 + s25 − s34) +

√
∆(3)

3 > 0 ,

p2
1 − s25 − s34 ±

√
∆(3)

3 > 0 ,

(D.19)

guarantee absence of branch cuts in P45 for f (2)
24 . The same holds true for f (2)

25 , thanks to

±(p2
1 + s24 − s35) +

√
∆(2)

3 > 0 ,

±(p2
1 − s24 + s35) +

√
∆(2)

3 > 0 ,

p2
1 − s24 − s35 ±

√
∆(2)

3 > 0 .

(D.20)
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