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Abstract: In this paper, we obtain some general results on information retrieval from
the black hole interior, based on the recent progress on quantum extremal surface formula
and entanglement island. We study an AdS black hole coupled to a bath with generic dy-
namics, and ask whether it is possible to retrieve information about a small perturbation
in the interior from the bath system. We show that the one-norm distance between two
reduced states in a bath region A is equal to the same quantity in the bulk quantum field
theory for region AI where I is the entanglement island of A. This is a straightforward
generalization of bulk-boundary correspondence in AdS/CFT. However, we show that a
contradiction arises if we apply this result to a special situation when the bath dynamics
includes a unitary operation that carries a particular measurement to a region A and send
the result to another region W . Physically, the contradiction arises between transferabil-
ity of classical information during the measurement, and non-transferability of quantum
information which determines the entanglement island.

We propose that the resolution of the contradiction is to realize that the state re-
construction formula does not apply to the special situation involving interior-information-
retrieving measurements. This implies that the assumption of smooth replica AdS geometry
with boundary condition set by the flat space bath has to break down when the particular
measurement operator is applied to the bath. Using replica trick, we introduce an explicitly
construction of such operator, which we name as “miracle operators”. From this construc-
tion we see that the smooth replica geometry assumption breaks down because we have to
introduce extra replica wormholes connecting with the “simulated blackholes” introduced
by the miracle operator. We study the implication of miracle operators in understanding
the firewall paradox.
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1 Introduction

Since the discovery of Hawking radiation [1], the black hole information paradox remains an
important open question in physics. The key question in black hole information paradox is
the fate of information carried by objects falling into a black hole. If unitarity of quantum
mechanics is preserved in the presence of gravity, one expects the Hawking radiation cannot
be always thermal, and the entropy of an evaporating black hole has to decrease at late
time, known as the Page curve. [2] An important recent progress towards solving the black
hole information paradox is the discovery of entanglement island [3, 4]. The key idea of
the entanglement island works is to generalize the Hubeny-Rangamani-Takayanagi (HRT)
formula [5, 6] with quantum corrections [7] to the entanglement entropy of a region in the
radiation. In standard holographic duality, the entanglement entropy of a boundary region
A is dual to the area of an extremal surface γA which is homologous to A, with the location
of γA determined by extremizing the generalized entropy |γA|

4GN
+Sbulk(ΣA). Here ΣA is the

region in the bulk with γA and A as its boundary, which is known as the entanglement wedge
of A. Refs. [3, 4] and more recent works have generalized this formula to a coupled system of
a holographic conformal field theory (CFT) and a bath system. Sbulk(ΣA) is generalized to
the entanglement entropy of a region ΣA in the quantum field theory with fixed geometry
background, where ΣA includes the A region itself and possibly an additional region I
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in the holographic bulk. Region I is determined by the same extremization procedure,
which is called an “entanglement island” when it is nontrivial. The entanglement island
formula can be derived using a replica calculation, where different replicas are connected
by a replica wormhole through the island region [8, 9].

For an evaporating black hole coupled with a flat space bath, it was shown that for
a large enough region in the radiation (i.e. the bath), the entanglement island becomes
nontrivial after a time known as the Page time. Taking into account of the entanglement
island, the entanglement entropy of the radiation becomes smaller than the thermal value
in Hawking’s calculation, which correctly resolves the conflict between gravitational cal-
culation and unitarity. Following the entanglement wedge reconstruction in holographic
duality, the island formula also suggests that (small perturbations in) the entanglement
island region of the black hole interior can be reconstructed in the radiation. Retrieval of
information from the entanglement island has been discussed using different methods [8, 10].

In this paper, we want to address the following questions: in general, how difficult is the
information retrieval from the entanglement island? Is it possible to carry a measurement
in the radiation that measures the state of an interior qubit in the entanglement island?
How will measurements in the radiation affects the physics seen by an infalling observer?
We begin by proving a general result on state reconstruction. Similar to the bulk-boundary
correspondence of relative entropy shown in ref. [11], we use replica trick to show that the
“boundary” one-norm distance between two (similar) states in a bath region A is equal to
the “bulk” one-norm distance between corresponding states in the region AI, if A has an
entanglement island I. This is a straightforward generalization of the AdS/CFT results
where boundary region is replaced by a region in the bath, and the entanglement wedge is
replaced by the entanglement island. As a consequence of this general state reconstruction
formula, we show that a region in the bath that is only classically correlated with the rest of
the system can never reconstruct information that is encoded to the system by applying a
unitary in the interior, because the interior is space-like separated from the bath. However,
this leads to a contradiction. If there is a region A with nontrivial entanglement island I,
and another regionW without entanglement island, we can carry a measurement on A that
retrieves the information in the interior region I, and send the measurement result to W .
On the other hand, after the measurement (which is a unitary acting on the bath system),
we show that the state reconstruction formula suggests the state of W still has no corre-
lation with the interior information, which is contradictory with the fact that W knows
the measurement result from A. By contradiction this suggests that the replica wormhole
calculation that leads to the state reconstruction formula cannot apply to both regions
discussed above. We propose that whenever an interior-information-retrieval measurement
occurs in the bath, the state reconstruction formula fails for the state after the measure-
ment. (Note that we always understand “measurement” as a unitary operator applying to
A,W and other parts of the bath, so the problem is not caused by non-unitarity.)

We name such measurement operators as “miracle operators” since they have to change
the gravitational path integral in a nontrivial way. By explicitly constructing miracle oper-
ators using a replica trick, we understand why the original state reconstruction formula fails
when such an operator is inserted. Additional replica wormholes arise not between different
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replicas of the original black hole, but between the original black hole and “simulated black
hole”1 used for defining the miracle operator. Using this explicit construction, we obtain
some new understanding to the firewall paradox [12, 13] in two different setups. We show
that a measurement in the radiation can measure the state of an interior qubit, and an
infalling obsever will see that the entanglement of two qubits across the quantum extremal
surface can be destroyed by such exterior measurements. Furthermore, we construct a
different measurement which applies to the radiation and checks that one of the radiation
qubit is in a particular entangled state with an interior qubit in the entanglement island. In
this setup, an infalling observer will still be able to verify the entanglement of the entangled
pair, which appears to contradict with the expectation in ordinary quantum mechanics.
This is allowed because the entanglement checking operator must come with its own grav-
itational theory and provide additional copies of the universe including the infalling ob-
server. Interestingly, in the replica calculation of this setup, one can see that the success of
entanglement checking is related to the nontrivial homotopy group of the replica manifold.

The remainder of the paper is organized as follows. In section 2 we derive a state recon-
struction formula for the evaporating black hole system based on the results of entanglement
island and replica wormhole. In section 3 we show that there is an apparent paradox caused
by applying the quantum extremal surface formula to general dynamics of the radiation. In
section 4 we discuss the how the paradox is resolved by realizing that some operators can
introduce extra copies of geometry and wormholes connecting with them, which we name
as miracle operators. Section 5 applies the miracle operator to address the firewall paradox
in two different setups. Finally section 6 contains a summary and some further discussion.

2 State reconstruction formula for an evaporating black hole

We begin by an overview of the island formula, from the point of view of replica calcula-
tion. [8, 9] For concreteness we consider a single-sided AdS black hole formed from collapse,
which is coupled with a flat space bath. Taking a subsystem A of the bath, the compu-
tation of tr (ρnA) involves taking n replicas of the entire system, and introducing a cyclic
permutation of the different replicas in region A. The geometry of the system is a union
Bg ∪ Rn, with Rn the flat space with branch covering at the boundary of A, and Bg the
geometry of the AdS black hole. The gravitational path integral is defined for the metric
of Bg, with the boundary condition fixed by Rn.

Zn(A) =
∫
Bg

Dg

∫
Bg∪Rn

Dφe−AEH [g]−AQF T [φ,g] (2.1)

Here φ represents all matter fields. (More precisely, we should introduce n+m replicas and
introduce the twist only in the first n copies, and in the end take m→ −n, as is discussed in
ref. [14]. The m replicas can be omitted if we assume no saddle point will contain wormhole
connecting them with each other or with the first n replicas.) Assuming the path integral
is dominated by a classical saddle point which preserves the replica symmetry Zn, the QFT
contribution is given by the n-th Renyi entropy of the matter fields in a region IA, with I

1We thank Ahmed Almheiri for suggesting this term.
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Figure 1. (a) Illustration of the replica manifold with branch-covering at A and possibly an island
region I. (b) In the analytic continuation to n → 1 limit, illustration of the quantum extremal
surface (2.3) which is the boundary of I.

in the gravitational bulk. The gravitational contribution AEH [gsaddle] can be computed by
taking a quotient Bg/Zn and evaluate the Einstein-Hilbert action. If there is a nontrivial
replica wormhole in region I, the boundary of I becomes a conical singularity with co-
dimension 2 and conical angle 2π

n in the quotient manifold Bg/Zn. In the limit n→ 1, this
leads to the quantum extremal surface formula

− logZn(A) ' AEH [gsaddle] + (n− 1)S(n)
QFT (IA) (2.2)

S(A) ' extI
[ |∂I|

4GN
+ SQFT (IA)

]
(2.3)

with extI referring to extremization over choice of spatial region I. If there are multiple
extremal surfaces, the one with minimal S(A) should be chosen.

The discussion here is entirely parallel with the proof of the HRT formula in ordinary
AdS/CFT [7, 15–17], except that the gravitational theory now has a different boundary
condition set by the radiation. We would like to emphasize that the discussion seems
independent from the detail of dynamics of the radiation. Whether the radiation is a flat
space CFT or a quantum computer, we expect the quantum extremal surface derivation
above to hold, as long as the gravity in the AdS region remains semi-classical.

In addition to the entropy formula, the replica calculation can also tell us more about
how operator reconstruction works. We first clarify some notation. Denote the Hilbert
space of the holographic CFT as HB, and that of the bath as HR (R for “radiation”), the
Hilbert space of the entire system is HQG = HB ⊗HR.2 We will refer to this Hilbert space
as the quantum gravity Hilbert space. A classical saddle point is denoted by M, which
is a manifold that includes the asympotic AdS part and the attached flat space part. For
eachM (with Lorenzian signature) and a given Cauchy surface, the path integral defines a
state of the quantum field theory on that background. We denote the Hilbert space of the
quantum field theory as HQFT . HQG and HQFT are the analog of boundary Hilbert space

2Of course in a more realist system with dynamical gravity everywhere, the Hilbert space does not
factorize. The states ρA, σA defined below should be viewed as “effective” quantum states [14] describing
correlations of quantum field theory degrees of freedom of the radiation qubits. It is unclear how to
rigorously define this if gravity is dynamical in the bath.
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Figure 2. Illustration of two states ρ, σ which are only different by a local unitary UP acting on a
small region P in the island. For example UP can flip the spin of a particle. The QFT states are
defined on a Cauchy surface that includes A and I.

and bulk Hilbert space in AdS/CFT without bath. In the rest of the paper, we will use
bold font Greek letters ρ,σ to denote states in HQFT , and use regular font Greek letters
ρ, σ to denote those in the boundary-and-bath Hilbert space HQG.

Now we consider two states ρ,σ ∈ HQFT . When these two states are close to each
other, such that the energy momentum tensor difference is order O(G0

N ), the back reac-
tion to geometry is small. In the replica calculation, we can compute quantity such as
tr
(
ρn−mA σmA

)
and expect that it is dominated by the same saddle point as tr (ρnA). In this

case one obtains
tr
(
ρn−mA σmA

)
' e−Antr

(
ρn−mAI σm

AI

)
; (2.4)

with An the contribution of the Einstein-Hilbert action at the saddle point manifold. Con-
sequently, we obtain

‖ρA − σA‖2n = tr
[
(ρA − σA)2n

]
' e−A2n ‖ρAI − σAI‖2n (2.5)

for positive integer n. In the analytic continuation to n→ 1/2, A2n vanishes:

A2n ' (2n− 1) |∂I|4GN
(2.6)

Therefore we obtain
‖ρA − σA‖1 = ‖ρAI − σAI‖1

This discussion is a simple generalization of ref. [11] for relative entropy (see also [9, 10]
for related discussions). Alternatively, we could also prove eq. (2.7) using the conclusion of
ref. [11]: since the mapping C : ρAI → ρA preserves the relative entropy between two states
ρ, σ in the code subspace, it is invertable and thus preserves the trace distance between
two states.

This result plays a central role in this paper, so we would like to summarize it in the
following theorem:

Theorem 1 State reconstruction formula. For two states ρ, σ ∈ HQG, assume that
the gravitational path integral in the calculation of tr (ρnA) and tr (σnA) are both dominated
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by the same smooth manifold Mn preserving the cyclic permutation symmetry between
replicas, up to corrections O(GN ), then

‖ρA − σA‖1 = ‖ρAI − σAI‖1 (2.7)

with I the entanglement island of A.

As an example, consider ρ as the state of an evaporating black hole coupled with the
bath, in which a region of the radiation A has an entanglement island I. σ = UPρU †I is
different from ρ by a local unitary acting in a small spacetime region P ∈ I, as is illustrated
in figure 2. Eq. (2.7) tells us that the difference between ρ and σ is preserved in the radiation
region A. For example, if UP rotates the spin of a qubit from z-direction eigenstates up to
down, one can measure the spin z-component operator ZP of this qubit to distinguish ρAI
and σAI . Then eq. (2.7) guarantees that there is a projection operator PA in A such that

|tr (PAρA)− tr (PAσA)| = 1
2 ‖ρA − σA‖1

= 1
2 ‖ρAI − σAI‖1

≥ 1
2 |tr (ZPρAI)− tr (ZPσAI)| (2.8)

Thus eq. (2.7) guarantees that ρA, σA can be distinguished by a measurement in region A,
to the same degree that ρAI and σAI can be distinguished on AI. In the next section,
we will discuss a more explicit setup for extracting such information, which leads to an
apparent contradiction.

3 A paradox in state reconstruction

3.1 A no-go theorem

As we discussed earlier, the island formula (2.3) only requires the geometry of the gravita-
tional system to have small fluctuation, independent from the dynamics of the radiation.
In this subsection, we will consider a special class of radiation system, as is shown in fig-
ure 3. The radiation system R consists of two subsystems R1 and W . R1 is the “ordinary”
radiation system, which is a flat space QFT coupled with the black hole. W is an ancilla
that only couples with R1 by local operations and classical communication (LOCC). The
initial state of R is a direct product state ρ0R1 ⊗ ρ0W . Physically, we can think W as
a model of lab equipment of an observer we use to measure the radiation. We assume
the observer only has access to the radiation system R1 through LOCC, which physically
involves multiple rounds of carrying quantum measurements to R1 and applying unitaries
on it. We include the definition of LOCC in appendix A. This setup is an example of an
incoherent quantum algorithmic measurement (QUALM) defined in ref. [18].

Now we study the entropy of the W subsystem. With the assumption that the island
formula applies, we obtain

S(W ) = extI
[ |∂I|

4GN
+ SQFT (WI)

]
(3.1)
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Figure 3. (a) Illustration of the ancilla W which only couples with the rest of the bath R1 through
LOCC. (b) A quantum circuit representation of the same setup, with black hole B couples with R1
through quantum gates, while R1 and W are coupled only by LOCC.

Empty I = ∅ is always a saddle point, with contribution SQFT (W ). If W has a nontrivial
entanglement island I, the necessary condition is

SQFT (WI) < |∂I|4GN
+ SQFT (WI) < SQFT (W ) (3.2)

However, in the situation we consider, W and the remainder of the system (R and black
hole B) is coupled with LOCC, such that the state remains separable at all time:

ρQFT =
∑
i

piρ
i
QFT (BR)ρiQFT (W ) (3.3)

Therefore for any subsystem I, ρQFT (IW ) is still separable. Consequently, the conditional
entropy is always non-negative (see appendix B):

HQFT (I|W ) ≡ SQFT (WI)− SQFT (W ) ≥ 0 (3.4)

Consequently,W always has a trivial island. We summarize this conclusion in the following
theorem:

Theorem 2 If i) a subsystem W of the radiation only couples with the remainder of the
system (including the radiation and the black hole) through LOCC, and the initial state is
separable between W and its complement, and ii) semiclassical approximation applies to
the entropy calculation of W , then W has no entanglement island.

3.2 An apparent paradox

Theorem 1 and Theorem 2 both seem to be general and are natural consequences of the
island formula, but in the following we will show that there is a contradiction when we try
to apply them to a particular setup.

Consider the setup we discussed earlier in figure 2, with two states ρ and σ = UPρU
†
P

that are only different by a unitary applying to a small region in the island I of a radiation
region A. In addition, we consider an ancilla W that is coupled with A through the
following quantum channel:

CM (ρA ⊗ |0W 〉 〈0W |) = PAρAPA ⊗ |1W 〉 〈1W |+ (IA − PA) ρA (IA − PA)⊗ |0W 〉 〈0W | (3.5)
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Figure 4. Illustration of the particular setup in subsection (3.2) in Penrose diagram (a) and
quantum circuit (b). We consider two states different by an interior unitary UP , as was discussed in
figure 2. In addition, a unitary UM (defined by eq. (3.6) applied to region A and two ancilla qubits
W, W̃ measures A and records the result on W . The green and red horizontal dashed lines indicate
the time t1 before applying UM , and t2 right after applying UM . What is relevant to our discussion
is the application of state reconstruction formula (2.7) for A at time t1 and W at time t2.

Here PA is the particular projection operator that distinguish ρA and σA optimally, such
that tr (PAρA)−tr (PAσA) = 1

2 ‖ρA − σA‖1. The channel CM measures A with the projector
PA, and save a copy of the measurement result on W . CM is an LOCC. We would like to
emphasize that although CM is not a unitary operator, it could be realized by an unitary
in a slightly bigger system. For example if we introduce another qubit W̃ , we can define
the unitary on AWW̃ :

UM = PA ⊗XW ⊗XW̃ + (IA − PA)⊗ IW ⊗ IW̃ (3.6)

with XW and XW̃ the Pauli x operator that flips between |0〉 and |1〉 states. Applying UM
to the state ρA⊗|0W 〉 〈0W |⊗

∣∣0W̃ 〉 〈0W̃ ∣∣ and tracing over W̃ leads to CM (ρA ⊗ |0W 〉 〈0W |).
We would like to emphasize this point to clarify that introducing CM in the discussion does
not imply we have violated unitarity in R, as long as A,W, W̃ are all part of the bath
system R. The setup is illustrated in figure 4.

Now we apply the state reconstruction formula (Theorem 1) to two different regions.

1. For the state before UM is applied, defined at time t1 in figure 4, applying the state
reconstruction formula to region A leads to ‖ρA − σA‖1 = ‖ρAI − σAI‖1, which is
order 1.

2. For the state after UM is applied, defined at time t2 in figure 4, applying the state
reconstruction formula to W leads to

‖ρW − σW ‖1 = ‖ρW − σW ‖1 , (3.7)

since W still has only classical correlation with the rest of the system, and thus has
no entanglement island according to Theorem 2. Furthermore, remember that ρW
and σW are the states of W in QFT, which are obtained by fixing the geometry and
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defining the QFT state on a Cauchy surface by a QFT path integral. Therefore a
unitary UP that is acting in a spacetime region spacelike separated from W will have
trivial effect on the reduced state of W , leading to ρW = σW . Therefore eq. (3.7)
implies ‖ρW − σW ‖1 = 0.

However, the two conclusions above are in direct contradiction, because W has learned
about the measurement result from A, and therefore “inherited” a nontrivial one-norm
distance from that between ρA and σA. To see that, we write down the state of W after
the coupling:

ρW = trA [CM (ρA ⊗ |0W 〉 〈0W |)] = pρ |1W 〉 〈1W |+ (1− pρ) |0W 〉 〈0W | (3.8)
with pρ = tr (PAρA) (3.9)

Similarly, when the state of A before measurement is σA, the state ofW after measurement
is σW = pσ |1W 〉 〈1W |+(1−pσ) |0W 〉 〈0W | of the same form, with pσ = tr(PAσA). Therefore
we have

‖ρW − σW ‖1 = 2 |pρ − pσ| = ‖ρA − σA‖1 (3.10)

Physically, eq. (3.10) tells us that one-norm distance is transferable by classical commu-
nication, because it is a measure of classical information one can learn by an optimal
measurement. This transferability thus suggests ‖ρW − σW ‖1 should be order 1, in direct
conflict with the result of state reconstruction formula applied to W . Therefore we con-
clude that to avoid inconsistency, at least for in one of the two states we discussed (the
state of A at t1 and the state of W at t2), the assumptions of Theorem 1 must fail.

We will discuss more about the interpretation of this apparent paradox in next section.

4 The miracle operators

Let us summarize the problem again. The replica calculation that leads to the QES formula
also predicts eq. (2.7), which tells us that small perturbation in I can be reconstructed in
A. On the other hand, the same formula suggests that an ancilla which only couples to
the black hole and radiation by LOCC cannot probe such small perturbation anywhere
space-like separated from A and the ancilla, because it does not have an entanglement
island (Theorem 2). The only assumption we have used to achieve this paradox is the
assumptions of Theorem 1, that the gravitational path integral is dominated by a smooth
saddle point manifold in the replica calculation of both SA and SW . (Note that we do not
need to assume the saddle point manifold to be the same one for these two calculations. The
paradox remains as long as the manifolds involved are smooth and replica symmetric, even if
we are allowed to consider a large back-reaction caused by UM .) Therefore by contradiction
we have proved that this assumption must fail for at least one of the calculation. If we
assume the SA calculation is correct (which occurs before W got involved), then we have to
conclude that after applying UM , the calculation of tr (ρnW ) is not dominated by any smooth
replica symmetric saddle point manifold. The problem remains if we replace a single saddle
point with a sum over multiple saddle points. Since the contribution of each possible saddle
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Figure 5. Illustration of the replica calculation for (a) tr(ρAÔ)n for a regular operator Ô, (b) tr (ρn
A)

and (c) tr
(
ρAZ

(k)
A

)n

with Z(k)
A defined in eq. (4.3). The illustration shows the case n = 2, k = 1.

The part of Penrose diagram below a Cauchy surface represents the QFT state at that surface,
prepared by the QFT path integral on the given background geometry. The red bridge connecting
different replicas in (b) and (c) is introduced by multiplying ρA with ρA or Z(k)

A . The green bridge
is the replica wormhole. Note that in (c) replica wormhole connects the physical copies (1, 1) and
(2, 1) with simulated copies (1, 2) and (2, 2) in blue, which represent Z(k)

A .

point (for the calculation of W Renyi entropy) with a nontrivial island I is suppressed
by a factor e−∆S with ∆S ∼ O (1/GN ), the contribution remains suppressed even if we
sum over polynomial (in 1/GN ) number of saddle points. In other words, applying the
particular unitary UM to the bath system and computing tr (ρnW ) (which can be interpreted
as measuring the expectation value of a twist operator in the n-replica system) change the
behavior of the gravitational path integral in a way that is much more dramatic than an
ordinary back-reaction. From our discussion one can see that this problem occurs whenever
we are carrying a measurement such as PA, which reveals nontrivial information about the
interior. In the following we will refer to such interior-information-revealing measurement
operators as “miracle operators”, due to their dramatic effect to the spacetime geometry.

To understand what happens when we apply miracle operators, we write down ex-
plicitly the form of the optimal measurement PA. For any two states ρA, σA, if we write
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ρA − σA in the diagonal basis ρA − σA =
∑
n λn |n〉 〈n|, then

PA =
∑
n

1
2 (1 + sgn (λn)) |n〉 〈n| (4.1)

with sgn(λn) = +1, 0,−1 for λn > 0, λn = 0, λn < 0, respectively.3 Therefore we can
introduce the replica trick and express PA as:

2PA − IA = sgn (ρA − σA) = (ρA − σA)2n−1
∣∣∣
n→ 1

2
(4.2)

from which we can see explicitly that PA involves gravitational path integral. Consequently,
the evaluation of PA can involve replica wormholes which connect the interior of the original
black hole and those in PA. The operators reconstructed using Petz map [8] are also
examples of miracle operators. The operator we consider is simpler than the Petz map
case because we focus on a simpler task of distinguishing two particular states.

Using this replica trick, we can see the reason of the contradiction we find in last
section. For this purpose, define

Z
(k)
A = (ρA − σA)2k−1 (4.3)

for integer k, and introduce a W that is coupled to A by the following LOCC channel:

C(k)
M (ρA ⊗ |0W 〉 〈0W |) = X

(k)
A+ρAX

(k)
A+ ⊗ |1W 〉 〈1W |+X

(k)
A−ρAX

(k)
A− ⊗ |0W 〉 〈0W | (4.4)

with X(k)
A± =

√
1
2
(
IA ± Z(k)

A

)
(4.5)

Note that IA ± Z(k)
A is positive, so that the square root operator X(k)

A± is uniquely defined
and Hermitian. This channel carries a positive operator-valued measurement (POVM) to
A and store the result in W . After applying the channel, the state of W is

ρW = p(k)
ρ |1W 〉 〈1W |+

(
1− p(k)

ρ

)
|0W 〉 〈0W | (4.6)

p(k)
ρ = 1

2
(
1 + tr

(
Z

(k)
A ρA

))
(4.7)

Now if we compute tr (ρnW ), we obtain

tr (ρnW ) = 2−n
[(

1 + tr
(
Z

(k)
A ρA

))n
+
(
1− tr

(
Z

(k)
A ρA

))n]
(4.8)

which involves tr
(
Z

(k)
A ρA

)m
= tr

(
(ρA − σA)2k−1 ρA

)m
for m = 0, 1, . . . , n. Each term

in this trace involves 2km copies of the original system. Applying the replica wormhole
calculation to this computation, it is easy to convince ourselves that replica wormhole will
only appear between ρA and Z(k)

A within each trace. We can label the 2km replica by (a, s)
with a = 1, 2, . . . ,m and s = 1, 2, . . . , 2k, with (a, 1) the m copies of ρA, and (a, s), s ≥ 2

3If ρA −σA is not full rank, PA has eigenvalues 0, 1 and 1
2 , so that it is not a projector. Correspondingly

there are three possible measurement results W needs to record. However, when the input state is ρA or
σA, only two measurement results will appear. All our discussion remains valid if we allow a general input
state and define W to have Hilbert space dimension 3.
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the 2k− 1 copies of ρA or σA in the operator Z(k)
A . The replica wormhole will only connect

(a, s) with (a, s+ 1) (with s = 2k+ 1 identified with s = 1). This is illustrated in figure 5.
Compare this calculation with the “ordinary” case, such as the calculation of tr(ρnA), we see
that the dominant saddle point configuration contains wormholes connecting the “physical
geometry” with “simulated geometry” in Z

(k)
A . This is the possibility that was missed in

the derivation of the one norm correspondence in eq. (2.7).
In summary, what we learned from miracle operators is that carrying a particular mea-

surement can not only modify the bulk geometry of the black hole, but even modify the
boundary condition of the geometry. Instead of being a smooth geometry with boundary
condition set by the flat space region, the geometry now contains wormholes that con-
nect the system with the operator being measured. On comparison, if we view tr(ρnA) as
an expectation value of cyclic permutation operator XA in n copies of the system, then
this operator induces replica wormhole between different replicas, but does not change the
boundary condition of the geometry. If we take the point of view that gravity is an ensem-
ble theory [19–33], then we believe that miracle operators differ from ordinary operators by
“knowing” the random parameters in the gravity theory. [34] For example, if we are consid-
ering a Sachdev-Ye-Kitaev (SYK) model [35–38] coupled with bath, the miracle operators
have to depend on the random coupling J in the SYK model. In more general cases, the
natural of the random parameters remain an open question, but results in random tensor
network models [39] suggest that such random parameters exist not only in black hole
systems but also in spacetime geometry without black hole, such as the AdS vacuum [34].

Another point we want to highlight is that such a dramatic effect to spacetime geometry
occurs even if we are only carrying a binary measurement that learns about a single bit of
information in the interior.

5 The firewall

We would like to investigate the implication of our result in understanding the firewall
paradox [12, 13]. The firewall paradox points out that after Page time, a Hawking radiation
mode b is entangled with the earlier radiation, so that if it is also entangled with its partner
behind the horizon b̃, this will violate strong subadditivity (SSA) of entanglement entropy.
The entanglement island result points out that the SSA argument does not apply, since b̃
in the island is not independent from the earlier radiation. In figure 6 (a), if b̃ is in the
entanglement island of A region, and b is outside A region, then it is ok to have b entangled
with b̃ and also entangled with A, since b̃ is actually part of A. However, we would like to
address more concretely whether an infalling observer will see a firewall. We will study two
different setups, illustrated in figure 6 (a) and figure 7 (a). In both cases there is an EPR
pair of modes b, b̃ and b̃ is in the entanglement island of a radiation region A. The difference
is that in the first setup the partner b is outside region A while in the second setup it’s in A.
In both cases, an infalling observer X carries a Bell basis measurement to detect if bb̃ is in
one of the maximally entangled states. The first setup addresses whether a measurement
on A can act on b̃ and destroy the entanglement between b and b̃, i.e. creates a firewall.
The second setup addresses whether an entanglement checking experiment can be applied
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Figure 6. (a) Illustration of a pair of qubits b, b̃, when b̃ ∈ I and b /∈ A. An infalling observer X
carries a binary measurement that checks if bb̃ is in the particular entangled state. (b) Illustration
of the replica geometry that applies operator P ↑↓A which distinguishes the two states with opposite
spin of b̃. The green and red lines represent the trajectory of b and b̃ in the two replicas respectively.
(In general there are n replicas. We draw n = 2 here for simplicity.) Since only one of them crosses
the branchcut line, X will not see the partner b̃ but see the copy of b̃ in a different replica, leading
to failure of entanglement checking.

to A, now including the information of both b and b̃, and whether such an entanglement
checking will create a firewall seen by the infalling observer X. In the following we will
discuss these two setups in two subsections.

5.1 Entanglement breaking measurement

To be concrete, let us assume b and b̃ are local wavepackets of bosons, such as photons.
Denote b̂†σ and ˆ̃b†σ as the creation operators of these two modes respectively, with σ =↑, ↓
two states of spin or other internal states. b̂†, ˆ̃b† are defined in the QFT Hilbert space.
Denote the state without this pair as ρ, then we can create an EPR pair in one of the Bell
basis states:

σ = ∆̂†±ρ∆̂±

∆̂± = 1√
2

(
b̂↑

ˆ̃b↓ ± b̂↑ˆ̃b↓
)

(5.1)

In this subsection we only need one of them, which we will pick as σ−. In next subsection
we will need both.

Now when the system is in state σ−, an infalling observer X brings b into the interior
and check whether bb̃ is in the particular entangled state created by ∆̂−. The measurement
operator is

PX = ∆̂†−∆̂− (5.2)

Without other intervention to the system, PX will return eigenvalue 1 with probability 1.
X records the result of the measurement.

Now we would like to carry a measurement on A that measures the spin z component
of b̃. For that purpose let us consider two other states

σ↑ = ˆ̃b†↑b̂
†
↓ρb̂↓

ˆ̃b↑, σ↓ = ˆ̃b†↓b̂
†
↑ρb̂↑

ˆ̃b↓ (5.3)
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which contains Z eigenstates of b̃ qubit. Then we can define the optimal projection operator
on A defined in eq. (4.2) that distinguishes these two states:

ẐA ≡ 2P ↑↓A − IA = sgn (σ↑,A − σ↓,A) (5.4)

We implement this operator by the replica trick in eq. (4.2):

tr
(
σ−,AẐA

)
= tr

[
σ−,A (σ↑,A − σ↓,A)2n−1

]∣∣∣
n→ 1

2
(5.5)

Every term in the righthand side of this equation involves 2n replicas of the original system,
with a branchcut at A in the same way as in Renyi 2n entropy calculation. In the limit
when the back reaction caused by the modes b̃, b is negligible, the 2n replica geometry
contains the replica wormhole in the same way as in the Renyi entropy calculation, as is
illustrated in figure 6 (b). Therefore in the saddle point geometry, there is a branchcut at
A and I, where different replicas are connected by cyclic permutation. In the first replica
there is an entangled pair of modes, while in the other 2n− 1 replicas there is a pure state
of b̃b. One should remember that the infalling observer X is also part of the system, so it
should also be present in each replica.

Now it is important to remember that the infalling observer is also part of the system,
which should appear in each replica. The question is whether the entanglement checking
measurement PX still succeeds in this replicated geometry. As is illustrated in figure 6 (b),
b̃ goes across the branchcut line in I, but b does not, so that when the infalling observer in
k-th replica brings b in that replica to the interior, it meets with the b̃ mode in the k+1-th
replica. Consequently, none of the infalling observers will see an entangled pair of bb̃. In
other words, the entanglement checking fails for all replica calculation with 2n replicas. The
observer that was originally in replica 1 (the one with an entangled pair) will see a state

ρbb̃ = 1
2Ib ⊗ (|σ〉 〈σ|)b̃ , σ =↑ or ↓ (5.6)

such that
〈P̂X〉 = 1

4 (5.7)

Since this result applies to all replica number 2n, it is reasonable (although not rig-
orous) to suggest that the same holds when taking analytic continuation n → 1/2, which
means the infalling observer will see the bb̃ entanglement destroyed. In this sense the
measurement P ↑↓A creates a firewall at the quantum extremal surface, although it is not a
firewall in the sense of energy. Degrees of freedom across the quantum extremal surface,
as are seen by the infalling observer, are not entangled because they are entangled with
partners in another replica, but this does not require a high energy excitation.

It should be noted that this firewall creation occurs whether or not X jumps in be-
fore or after the measurement on A is carried. This looks nonlocal but does not violate
causality, because the action we take on A is a measurement. In ordinary quantum sys-
tems, it is also allowed that two space-like separated measurements have correlated results.
The calculation above shows that there is a firewall condition on a given output of the
measurement P ↑↓A .
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5.2 Entanglement checking

Instead of measuring the state of b̃, we would like to consider an entanglement checking
measurement applied to the exterior. In the setup of figure 7 (a), we consider a situation
when b has already entered region A. b̃ is in the entanglement island of A, so that it should
be possible to check the entanglement of bb̃ in region A. For example we can apply the
Petz map to the operator PX applied by the infalling observer. Instead of Petz map, we
prefer to make use of the optimal projector construction. For that purpose we consider two
states σ±,QFT with two orthogonal maximally entangled states of bb̃, defined in eq. (5.1).
Then we can define the projection operator P+−

A that distinguishes these two states

F̂A ≡ 2P+−
A − IA = sgn (σ+,A − σ−,A) (5.8)

Now if we take the state σ− and measure F̂A, by construction we obtain

tr
(
σ−,AF̂A

)
= tr

[
σ−,A (σ+,A − σ−,A)2n−1

]∣∣∣
n→ 1

2
= −1 (5.9)

This is because one term in the expansion −tr
(
σ2n
−,A

)
→ −1 when n → 1

2 , and all other
terms are of the form

tr
(
σa+,Aσ

b
−,A . . .

)
' e−Agrav tr

(
σa

+,AIσ
b
−,AI . . .

)
(5.10)

which contains a products of σ+,AI and σ−,AI . Since σ+ and σ− contains two orthogonal
states of the bb̃ pair, we have σ+,AIσ−,AI = 0, so that these terms all vanish. (The gravity
contribution Agrav ' (2n− 1) |∂I|4GN

in the n→ 1
2 limit.)

In parallel with the discussion in previous subsection, we can ask what happens to
infalling observer X which carries the measurement P̂X in eq. (5.2). Different from the
previous setup, now b goes through the branchcut at A and b̃ goes through that at I, so
that they can still meet in the same replica. The observer X in each replica will observe
a maximal entangled state |−〉 since the only nonvanishing term contains σ2n

−,A. Therefore
we would argue that in the analytic continuation to n → 1

2 , the entanglement checking
experiment by observer X is successful with probability 1. It is interesting to note that the
trajectory of b and b̃ together form a noncontractable loop in the replica manifold (i.e. a
nontrivial generator of the first homotopy group). The difference between the two setups
with b outside A (figure 6) and b inside A (figure 7) is topological.

In short, we see that both the exterior and infalling entanglement checking can succeed,
at least in this particular choice of measurements. Roughly speaking, this is possible
because the measurement in A has to create other copies of the universe, including the
infalling observer. Another implicit assumption (which seems physically reasonable) is
that the infalling observer is defined for each replica geometry separately, and there is
no “super-observer” that can take different replicas and apply a joint measurement. Our
result seems to be consistent with the result of A. Almheiri [40] in the final state projection
model [41]. The gravitational calculation clarifies that entanglement checking experiment
in A does not have to apply a projection to many qubits, but can extract only one bit of
information about whether bb̃ is in the particular entangled state |−〉. We realize that the
argument about analytic continuation in this section is not rigorous. More careful analysis
is a task for future work.
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Figure 7. (a) Illustration of a pair of qubits b, b̃ with b̃ ∈ I, b ∈ A. An infalling observer X
measures whether

∣∣bb̃〉 is in a particular maximally entangled states such as |−〉. (b) Illustration of
the replica geometry that applies operator P+−

A (defined in eq. (5.8)) which distinguishes the two
states |+〉 , |−〉 in A. The green and red lines represent the trajectory of b and b̃ in the two replicas
respectively, in the same way as in figure 6. We see that the entanglement checking of X will still
succeed because both b and b̃ are acted by the same cyclic permutation operation.

6 Further discussion and conclusion

In summary, we have shown that there is a paradox if we assume the QES formula applies
to an AdS black hole coupled with a radiation system with arbitrary dynamics. When the
geometry is semiclassical, and the QES formula applies, information about the interior is
not available to any observer who is only coupled with the radiation through LOCC (and
does not have quantum entanglement with the radiation and black hole to start with). On
the other hand, information in the entanglement island of a region A can be reconstructed
in A, which suggests that there must exist miracle operators which induce qualitative
change of bulk geometry when they are applied to A, even if only one bit of information
is obtained in this measurement. We have explicitly constructed such an operator which
distinguishes two given states optimally, and show that in a replica calculation, the large
geometry fluctuation corresponds to replica wormhole connecting the original universe with
new copies of the universe contained in the projection operator itself. This construction
helps us to address some questions in the firewall paradox. We show that a projective
measurement in a radiation region A can break the entanglement between two modes
across the QES surface, i.e. the boundary of the entanglement island. On the other hand,
an entanglement checking measurement that verifies the entanglement between a Hawking
qubit b and the earlier radiation does not affect the entanglement checking measurement
of an infalling observer, at least in the particular setup we consider.

There are many open questions related to this setup. One question is whether the
difference between regular operators and miracle operators is a signature of gravity theory
being an ensemble theory. [8, 19, 20, 23, 42] If gravity is an effective description of an
ensemble average over a family of boundary theories, then it is natural to distinguish
between operators that does and does not depend on random parameters in the boundary
theory. Only the latter will possibly detect the interior. A nontrivial question is whether
wormholes connecting physical systems with simulated systems are still well-defined if there
is no ensemble averaging.
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Another question is whether miracle operators can still be defined when gravity in
the bath is dynamical. For example, in a flat space Schwarzchild black hole, can one
define miracle operators that create simulated copies of spacetime and replica wormholes?
Ref. [14] proposed a generalization of the entropy calculation of a bath region to the
dynamical gravity case, but in that generalization the entropy is a measure of “effective”
uncertainty in the state of low energy degrees of freedom. Roughly speaking, we can view
the effective entropy as the entropy of a “conditional state” of low energy degrees of freedom,
with the condition that a classical background geometry is observed by a family of observers
in the bath region. It is unclear to the author how this discussion will be modified if we
more rigorously taken into account the nonlocality of quantum gravity Hilbert space [43–
46]. For example, we notice that ref. [43] proposed that entanglement islands can only be
rigorously defined in systems with massive gravitons.

Ref. [47] pointed out that in the final state projection proposal [41] there is a problem
with probability interpretation of the measurement carried by an infalling observer, be-
cause of the failure of decoherence between different histories. We have not addressed this
problem in our discussion of infalling observer. For example consider an observer X made
of a large number of spins with the initial state (|↑〉 〈↑|)(⊗M). The measurement process is
a unitary operator

UM = PX ⊗ IX + (I− PX)⊗XX (6.1)

with XX flips all the spins in X. In ordinary quantum measurement, we apply UM to
obtain UMρbb̃ ⊗ (|↑〉 〈↑|)(⊗M) U †M and then trace over any one of the M qubits in X. This
removes the off-diagonal terms and leads to a measurement channel

CM
(
ρbb̃⊗(|↑〉〈↑|)(⊗M)

)
=PXρbb̃PX⊗(|↑〉〈↑|)⊗(M−1)+(I−PX)ρbb̃(I−PX)⊗(|↓〉〈↓|)⊗(M−1)

(6.2)
When X is behind the horizon, it is unclear whether we are still allowed to do the partial
trace. On the other hand, considering that horizon is not a local concept, it is possible that
we are crossing the horizon of a giant black hole now, which should not affect the probabilis-
tic interpretation of the quantum experiments that occur in a physics lab at this moment.
This suggests that we should be able to talk about what an infalling observer sees, in the
same way as an outside observer. A more rigorous formalism is a task for future research.

Another question is how rare are the set of miracle operators. We know the special
constructions discussed here. It will be interesting to have a more precise statement about
how the miracle operators are very rare. In the entanglement checking setup in figure 7, if
we define the optimal operator for two states σ1 and σ2 which are not orthogonal, all terms
in eq. (5.9) are nonzero. This creates a linear superposition of different “branches” in which
infalling observer X can observe different results. This is not immediately contradictory
because the two states are not entirely distinguishable so the observer always has a chance
to mistaken state 1 as state 2. However, it requires a more thorough investigation to
understand whether all observations of the infalling observer are consistent with quantum
mechanics. This question seems to be related to the discussion about state-dependence of
the reconstruction map [48, 49].
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It is interesting to think this setup as an example of quantum algorithmic measurement
(QUALM) [18]. A QUALM is a quantum algorithm that contains a known part controlled
by the experimentalist, and an partially unknown part controlled by nature that contains
some hidden parameters. The purpose of the algorithm is to find out some message about
the unknown parameters. In the black hole problem, as is illustrated in figure 3, the known
part is the coupling between ancilla W and the radiation R, and the dynamics of R itself.
The partially unknown part is the black hole B and its coupling with radiation R. In the
QUALM language, what we have shown is that the task of finding out the information in
an interior qubit is very difficult for an observer with incoherent access to the system, if
the observer does not know the black hole microstate. It is reasonable to guess that the
difficulty (i.e. QUALM complexity of the task) is exponential in 1/GN , since a saddle point
with nontrivial island only has a contribution to the partition function that is exponential
in 1/GN . It is interesting to relate this result to that of ref. [18] and see whether it is
possible to make our result more rigorous in the QUALM framework.
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A Definition of LOCC

In this appendix we give a precise definition of LOCC. For a useful reference, see ref. [50].
(In general LOCC is defined for multiple parties, but here we will only discuss the two
party case.) For two quantum systems A and W , with the Hilbert space HA ⊗ HW , a
one-way LOCC from A to W is a quantum channel of the following form:

CA→W =
M∑
n=1
MA

n ⊗NW
n (A.1)

HereMA
n are completely positive (CP) maps with the additional condition that

∑
nMS

n is
a completely positive and trace-preserving (CPTP) map. In other words, for any density
operator ρ of subsystem A,

∑
nMS

n(ρ) is a density operator with unit trace. NW
n for each

n is a CPTP map. Physically, if we apply CA→W to a product state ρA ⊗ σW , we obtain

CA→W (ρA ⊗ σW ) =
M∑
n=1
MA

n (ρA)⊗NW
n (σW ) (A.2)
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which is a separable state. Define

pn = tr
(
MA

n (ρA)
)

(A.3)

ρ̃An = p−1
n MA

n (ρA) (A.4)

the channel CA→W applies a weak measurement to A and if the measurement output is n,
apply channel NW

n to W .
A r-round LOCC between A andW contains r-round of back-and-forth communication

between these two systems:

C(r)
AW = CrW→A ◦ CrA→W ◦ Cr−1

W→A ◦ C
r−1
A→W ◦ . . . ◦ C

1
W→A ◦ C1

A→W (A.5)

B Positive conditional entropy for separable states

For completeness, we include a proof that the conditional entropy is always positive for
separable states.

For a separable state
ρWI =

∑
i

piρWi ⊗ ρIi (B.1)

we consider an auxiliary state

πW̃ I =
∑
i

pi |i〉 〈i| ⊗ ρIi (B.2)

with |i〉 an orthonormal basis in the W̃ system. The mutual information between W̃ and I is

I(W̃ : I) = S

(∑
i

piρIi

)
−
∑
i

piS (ρIi) (B.3)

Which is also the Holevo information that measures the amount of information that can
be read out from I about the classical message in W̃ . Therefore

I
(
W̃ : I

)
π
≤ SI ≡ S

(∑
i

piρIi

)
(B.4)

Now we can apply a measure-and-prepare channel to map a state in W̃ to that in W :

C
(
σW̃

)
=
∑
i

〈i|σW̃ |i〉 ρWi (B.5)

The channel maps the auxiliary state πW̃ I to ρWI . Since mutual information cannot be
increased by a quantum channel, we obtain that in ρWI

I(W : I)ρ ≤ I
(
W̃ : I

)
π
≤ SI (B.6)

Therefore
S(W ) ≤ S(WI) (B.7)

– 19 –



J
H
E
P
0
1
(
2
0
2
2
)
0
8
5

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199
[Erratum ibid. 46 (1976) 206] [INSPIRE].

[2] D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291
[gr-qc/9305007] [INSPIRE].

[3] G. Penington, Entanglement wedge reconstruction and the information paradox, JHEP 09
(2020) 002 [arXiv:1905.08255] [INSPIRE].

[4] G. Fejős and N. Yamamoto, Functional renormalization group approach to color
superconducting phase transition, JHEP 12 (2019) 069 [arXiv:1908.03535] [INSPIRE].

[5] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,
Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[6] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement
entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[7] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic
entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

[8] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole
interior, arXiv:1911.11977 [INSPIRE].

[9] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica wormholes
and the entropy of Hawking radiation, JHEP 05 (2020) 013 [arXiv:1911.12333] [INSPIRE].

[10] Y. Chen, Pulling out the island with modular flow, JHEP 03 (2020) 033 [arXiv:1912.02210]
[INSPIRE].

[11] D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative
entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

[12] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or
firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

[13] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls,
JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].

[14] X. Dong, X.-L. Qi, Z. Shangnan and Z. Yang, Effective entropy of quantum fields coupled
with gravity, JHEP 10 (2020) 052 [arXiv:2007.02987] [INSPIRE].

[15] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090
[arXiv:1304.4926] [INSPIRE].

[16] X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement,
JHEP 11 (2016) 028 [arXiv:1607.07506] [INSPIRE].

[17] X. Dong and A. Lewkowycz, Entropy, extremality, euclidean variations, and the equations of
motion, JHEP 01 (2018) 081 [arXiv:1705.08453] [INSPIRE].

[18] D. Aharonov, J. Cotler and X.-L. Qi, Quantum algorithmic measurement,
arXiv:2101.04634.

– 20 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF02345020
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C43%2C199%22
https://doi.org/10.1103/PhysRevLett.71.1291
https://arxiv.org/abs/gr-qc/9305007
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C71%2C1291%22
https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1007/JHEP09(2020)002
https://arxiv.org/abs/1905.08255
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2009%2C002%22%20and%20year%3D2020
https://doi.org/10.1007/JHEP12(2019)069
https://arxiv.org/abs/1908.03535
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1912%2C069%22%20and%20year%3D2019
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C96%2C181602%22
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+J%20%22JHEP%2C0707%2C062%22%20and%20year%3D2007
https://doi.org/10.1007/JHEP11(2013)074
https://arxiv.org/abs/1307.2892
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1311%2C074%22%20and%20year%3D2013
https://arxiv.org/abs/1911.11977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11977
https://doi.org/10.1007/JHEP05(2020)013
https://arxiv.org/abs/1911.12333
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2005%2C013%22%20and%20year%3D2020
https://doi.org/10.1007/JHEP03(2020)033
https://arxiv.org/abs/1912.02210
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2003%2C033%22%20and%20year%3D2020
https://doi.org/10.1007/JHEP06(2016)004
https://arxiv.org/abs/1512.06431
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1606%2C004%22%20and%20year%3D2016
https://doi.org/10.1007/JHEP02(2013)062
https://arxiv.org/abs/1207.3123
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1302%2C062%22%20and%20year%3D2013
https://doi.org/10.1007/JHEP09(2013)018
https://arxiv.org/abs/1304.6483
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1309%2C018%22%20and%20year%3D2013
https://doi.org/10.1007/JHEP10(2020)052
https://arxiv.org/abs/2007.02987
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2010%2C052%22%20and%20year%3D2020
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1308%2C090%22%20and%20year%3D2013
https://doi.org/10.1007/JHEP11(2016)028
https://arxiv.org/abs/1607.07506
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1611%2C028%22%20and%20year%3D2016
https://doi.org/10.1007/JHEP01(2018)081
https://arxiv.org/abs/1705.08453
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1801%2C081%22%20and%20year%3D2018
https://arxiv.org/abs/2101.04634


J
H
E
P
0
1
(
2
0
2
2
)
0
8
5

[19] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115
[INSPIRE].

[20] D. Stanford and E. Witten, JT gravity and the ensembles of random matrix theory, Adv.
Theor. Math. Phys. 24 (2020) 1475 [arXiv:1907.03363] [INSPIRE].

[21] P. Saad, Late time correlation functions, baby universes, and ETH in JT gravity,
arXiv:1910.10311 [INSPIRE].

[22] R. Bousso and E. Wildenhain, Gravity/ensemble duality, Phys. Rev. D 102 (2020) 066005
[arXiv:2006.16289] [INSPIRE].

[23] D. Marolf and H. Maxfield, Transcending the ensemble: baby universes, spacetime
wormholes, and the order and disorder of black hole information, JHEP 08 (2020) 044
[arXiv:2002.08950] [INSPIRE].

[24] D. Stanford, More quantum noise from wormholes, arXiv:2008.08570 [INSPIRE].

[25] J. Pollack, M. Rozali, J. Sully and D. Wakeham, Eigenstate thermalization and disorder
averaging in gravity, Phys. Rev. Lett. 125 (2020) 021601 [arXiv:2002.02971] [INSPIRE].

[26] N. Afkhami-Jeddi, H. Cohn, T. Hartman and A. Tajdini, Free partition functions and an
averaged holographic duality, JHEP 01 (2021) 130 [arXiv:2006.04839] [INSPIRE].

[27] A. Maloney and E. Witten, Averaging over Narain moduli space, JHEP 10 (2020) 187
[arXiv:2006.04855] [INSPIRE].

[28] A. Belin and J. de Boer, Random statistics of OPE coefficients and Euclidean wormholes,
Class. Quant. Grav. 38 (2021) 164001 [arXiv:2006.05499] [INSPIRE].

[29] J. Cotler and K. Jensen, AdS3 gravity and random CFT, JHEP 04 (2021) 033
[arXiv:2006.08648] [INSPIRE].

[30] Y. Chen and H.W. Lin, Signatures of global symmetry violation in relative entropies and
replica wormholes, JHEP 03 (2021) 040 [arXiv:2011.06005] [INSPIRE].

[31] P.-S. Hsin, L.V. Iliesiu and Z. Yang, A violation of global symmetries from replica wormholes
and the fate of black hole remnants, Class. Quant. Grav. 38 (2021) 194004
[arXiv:2011.09444] [INSPIRE].

[32] A. Belin, J. De Boer, P. Nayak and J. Sonner, Charged eigenstate thermalization, euclidean
wormholes and global symmetries in quantum gravity, arXiv:2012.07875 [INSPIRE].

[33] A. Milekhin and A. Tajdini, Charge fluctuation entropy of Hawking radiation: a replica-free
way to find large entropy, arXiv:2109.03841 [INSPIRE].

[34] X.-L. Qi, Z. Shangnan and Z. Yang, Holevo information and ensemble theory of gravity,
arXiv:2111.05355 [INSPIRE].

[35] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg
magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

[36] A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk given at
Fundamental physics prize symposium, (2014).

[37] A. Kitaev, A simple model of quantum holography (part 1), talk given at the KITP program:
Entanglement in strongly-correlated quantum matter,
https://online.kitp.ucsb.edu/online/entangled15/kitaev/, University of California, Santa
Barbara, CA, U.S.A., 7 April 2015.

– 21 –

https://arxiv.org/abs/1903.11115
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.11115
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://arxiv.org/abs/1907.03363
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.03363
https://arxiv.org/abs/1910.10311
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.10311
https://doi.org/10.1103/PhysRevD.102.066005
https://arxiv.org/abs/2006.16289
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD102%2C066005%22
https://doi.org/10.1007/JHEP08(2020)044
https://arxiv.org/abs/2002.08950
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2008%2C044%22%20and%20year%3D2020
https://arxiv.org/abs/2008.08570
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.08570
https://doi.org/10.1103/PhysRevLett.125.021601
https://arxiv.org/abs/2002.02971
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.02971
https://doi.org/10.1007/JHEP01(2021)130
https://arxiv.org/abs/2006.04839
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.04839
https://doi.org/10.1007/JHEP10(2020)187
https://arxiv.org/abs/2006.04855
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.04855
https://doi.org/10.1088/1361-6382/ac1082
https://arxiv.org/abs/2006.05499
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.05499
https://doi.org/10.1007/JHEP04(2021)033
https://arxiv.org/abs/2006.08648
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.08648
https://doi.org/10.1007/JHEP03(2021)040
https://arxiv.org/abs/2011.06005
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.06005
https://doi.org/10.1088/1361-6382/ac2134
https://arxiv.org/abs/2011.09444
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.09444
https://arxiv.org/abs/2012.07875
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.07875
https://arxiv.org/abs/2109.03841
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.03841
https://arxiv.org/abs/2111.05355
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2111.05355
https://doi.org/10.1103/PhysRevLett.70.3339
https://arxiv.org/abs/cond-mat/9212030
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C70%2C3339%22
https://online.kitp.ucsb.edu/online/entangled15/kitaev/


J
H
E
P
0
1
(
2
0
2
2
)
0
8
5

[38] A. Kitaev, A simple model of quantum holography (part 2), talk given at the KITP program:
Entanglement in strongly-correlated quantum matter,
https://online.kitp.ucsb.edu/online/entangled15/kitaev2/, University of California, Santa
Barbara, CA, U.S.A., 27 May 2015.

[39] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality
from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

[40] A. Almheiri, Comments on the final state proposal and the gravitational path integral, lecture
at the YITP workshop Recent progress in theoretical physics based on quantum information
theory, http://www2.yukawa.kyoto-u.ac.jp/∼qith2021/Almheiri.pdf, (2021).

[41] G.T. Horowitz and J.M. Maldacena, The black hole final state, JHEP 02 (2004) 008
[hep-th/0310281] [INSPIRE].

[42] J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024]
[INSPIRE].

[43] H. Geng et al., Inconsistency of islands in theories with long-range gravity,
arXiv:2107.03390 [INSPIRE].

[44] H. Geng et al., Information transfer with a gravitating bath, SciPost Phys. 10 (2021) 103
[arXiv:2012.04671] [INSPIRE].

[45] C. Chowdhury, V. Godet, O. Papadoulaki and S. Raju, Holography from the Wheeler-DeWitt
equation, arXiv:2107.14802 [INSPIRE].

[46] C. Chowdhury, O. Papadoulaki and S. Raju, A physical protocol for observers near the
boundary to obtain bulk information in quantum gravity, SciPost Phys. 10 (2021) 106
[arXiv:2008.01740] [INSPIRE].

[47] R. Bousso and D. Stanford, Measurements without probabilities in the final state proposal,
Phys. Rev. D 89 (2014) 044038 [arXiv:1310.7457] [INSPIRE].

[48] K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP 10 (2013) 212
[arXiv:1211.6767] [INSPIRE].

[49] P. Hayden and G. Penington, Learning the alpha-bits of black holes, JHEP 12 (2019) 007
[arXiv:1807.06041] [INSPIRE].

[50] E. Chitambar, D. Leung, L. Mančinska, M. Ozols and A. Winter, Everything you always
wanted to know about LOCC (but were afraid to ask), Commun. Math. Phys. 328 (2014) 303
[arXiv:1210.4583].

– 22 –

https://online.kitp.ucsb.edu/online/entangled15/kitaev2/
https://doi.org/10.1007/JHEP11(2016)009
https://arxiv.org/abs/1601.01694
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1611%2C009%22%20and%20year%3D2016
http://www2.yukawa.kyoto-u.ac.jp/~qith2021/Almheiri.pdf
https://doi.org/10.1088/1126-6708/2004/02/008
https://arxiv.org/abs/hep-th/0310281
https://inspirehep.net/search?p=find+J%20%22JHEP%2C0402%2C008%22%20and%20year%3D2004
https://doi.org/10.1088/1126-6708/2004/02/053
https://arxiv.org/abs/hep-th/0401024
https://inspirehep.net/search?p=find+J%20%22JHEP%2C0402%2C053%22%20and%20year%3D2004
https://arxiv.org/abs/2107.03390
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.03390
https://doi.org/10.21468/SciPostPhys.10.5.103
https://arxiv.org/abs/2012.04671
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.04671
https://arxiv.org/abs/2107.14802
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.14802
https://doi.org/10.21468/SciPostPhys.10.5.106
https://arxiv.org/abs/2008.01740
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.01740
https://doi.org/10.1103/PhysRevD.89.044038
https://arxiv.org/abs/1310.7457
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD89%2C044038%22
https://doi.org/10.1007/JHEP10(2013)212
https://arxiv.org/abs/1211.6767
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1310%2C212%22%20and%20year%3D2013
https://doi.org/10.1007/JHEP12(2019)007
https://arxiv.org/abs/1807.06041
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1912%2C007%22%20and%20year%3D2019
https://doi.org/10.1007/s00220-014-1953-9
https://arxiv.org/abs/1210.4583

	Introduction
	State reconstruction formula for an evaporating black hole
	A paradox in state reconstruction
	A no-go theorem
	An apparent paradox

	The miracle operators
	The firewall
	Entanglement breaking measurement
	Entanglement checking

	Further discussion and conclusion
	Definition of LOCC
	Positive conditional entropy for separable states

