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1 Introduction

Recent years have witnessed a growing interest in non-relativistic gravity from different
directions including string theory [1–20], (super)gravity [21–43], group theory [44–53]
and condensed matter physics [54–57]. Although the original attempts were limited to
Newton-Cartan (NC) geometry to propose a geometric formulation for the field equations
of Newtonian gravity [58, 59], it is now evident that one must go beyond the standard
NC-geometry to formulate an action principle for Newtonian gravity, thanks to the recent
work on large-c expansion of the Einstein’s general relativity [60–65]. This expansion also
suggests that one must go beyond the Bargmann algebra as the algebra of the underlying
symmetries of Newtonian gravity which then brings about the question that how does these
new currents couple to matter. This question was answered in the foundational work [66]
by the large-c expansion of the matter fields. However, as the approach of [66] to matter
couplings of non-relativistic theories is based on the metric formulation, it is natural to ask
if we can describe the matter couplings in a gauge theory formulation. This question is
particularly important for the non-relativistic supersymmetric theories where the gauge
theory formulation is essential.
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From a gauge theory perspective, there are essentially two different methodologies to gen-
erate non-relativistic (super)algebras that go beyond the Galilei or Bargmann superalgebra

• Lie Algebra (or Semi-Group) Expansion: the main idea of this methodology is to
start from a smaller algebra and generate larger ones by the consistent truncation of
infinite series expansion of Maurer-Cartan one-forms or the generators corresponding
to the Maurer-Cartan one-forms [67–70]. Examples of bosonic and supersymmetric
models can be found in [33, 34, 39–42, 47–52, 71–73].

• Coadjoint Construction: in the coadjoint construction, one starts with a relativistic
algebra and expands it to a certain order by using Lie algebra or S-expansion.
The resulting algebra is then contracted, or improved by U(1) generators and then
contracted, depending on the non-relativistic algebra under consideration. See [35]
for bosonic examples.

Although formally these methodologies may be applied to any relativistic or non-relativistic
algebra, the most interesting ones arise when they are applied to the Poincaré algebra, either
directly [35] or to its spacetime decomposition [47]. It is, therefore, an important question
whether we can utilize these methods to construct matter multiplets of the extended algebras
that we obtain from various expansions of the Poincaré superalgebra. In particular, given the
fact that non-relativistic supersymmetry is mostly demanded in obtaining non-relativistic
SUSY-QFTs on curved background where the off-shell formulation of the supergravity and
the matter multiplets is essential [74], it would be much desired to use these methodologies
to find off-shell supermultiplets for the non-relativistic extended algebras.

At first sight, this may look like a straightforward task, that is, one can simply take an
off-shell multiplet and consider a series expansion of its fields. However, there are various
subtleties for such a direct application. First of all, both of the expansion procedures that
we described here are based on the gauging of the (super)algebra. This point is one of the
most crucial to these constructions so let us be more precise. Consider an algebra g with a
set of generators {Xi, Yα} where Xi represent the even subset of the generators, which we
denote by V0, while Yα represents the odd subset, V1. Here, the even/odd splitting of the
generators are based on the following rules on the commutation relations [67, 68, 70]

[V0, V0] ⊂ V0 , [V0, V1] ⊂ V1 , [V1, V1] ⊂ V0 . (1.1)

Based on this splitting of the algebra, we may assign a gauge field to each generator, i.e.,

A = AiXi +AαYα , (1.2)

where A = Aµdx
µ. This splitting of the gauge fields can be followed by the expansion

Ai =
N0∑
n=0

λ2nAi(2n) , Aα =
N1∑
n=0

λ2n+1Aα(2n+1) . (1.3)

This sum essentially goes all the way to infinity but we may terminate the sum at g = (N0, N1)
order, where N0 represents the truncation order of even gauge fields while N1 represents
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the truncation of the odd gauge fields. The consistency of this truncation is that either
N0 = N1 + 1 or N0 = N1 must be satisfied. Based on this expansion of the gauge fields, one
can expand the group-theoretical curvatures and read off the structure constants from the
expanded curvatures to establish the larger algebra. This technical note for the expansion
clearly shows that it is a local procedure, hence one would need an off-shell non-relativistic
supergravity to build upon the off-shell local multiplets. On the other hand, the expansion
of the gauge fields that are associated with the Poincaré superalgebra definitely does not
give rise to an off-shell formulation of supergravity, but the superalgebra closes on the
gauge fields up to curvature constraints and field equations. One may also be tempted
to formulate a non-relativistic off-shell supergravity by expanding a relativistic one as
a first step. However, as explained in [23], even the contraction of an off-shell Poincaré
supergravity, which corresponds to the lowest order expansion of fields, is quite non-trivial
as the number of auxiliary fields in a non-relativistic case may not be as many as what one
has in the relativistic case. Furthermore, it is not guaranteed that the expansion of the
composite relativistic expressions, such as the spin connection, does not spoil the covariance
of the covariant objects in the expansion procedure.

Although local off-shell supermultiplets may be inaccessible from an expansion point of
view, it might be possible to obtain rigid off-shell supermultiplets by applying the following
prescription. Consider a field Φ which transforms non-trivially under the action of the
generators of the algebra g that represents either the Poincaré superalgebra itself or its
spacetime decomposition, i.e.

[Dµ,Dν ]Φ = −δ(Rµν(Xi))Φ− δ(Rµν(Yα))Φ . (1.4)

Here, δ(Rµν) means that one calculates the transformation of the field Φ with respect
to all gauge symmetries generated by {Xi, Yα} and replace the relevant transformation
parameters with the group-theoretical curvatures. Although the expansion procedure must
be realized with full local transformation rules, taking the rigid limit on a flat background
indicates that in the end, we need to set the vielbein to eµa = δµ

a (or set the spatial vielbein
eµ
a = δµ

a and temporal vielbein τµ = δ0
µ) and all other fields of the off-shell Poincaré

multiplet to zero. Consequently, we may introduce an auxiliary framework where we start
with the transformation rules of an off-shell, rigid matter multiplet but introduce a vielbein
(or both the spatial and the temporal vielbein in the case of spacetime decomposed algebra)
to relate the flat indices on derivatives to curved indices. The reason for that is because the
Lie algebra expansion is established by the expansion of the gauge fields and curvatures
that carry curved indices. Hence the expansion can only be realized after all flat indices
are converted to curved indices by use of vielbein or inverse vielbein. Note that in the
case of spacetime decompose algebra, this would mean that the use of temporal vielbein
(τµ) or its inverse (τµ) is needed to be used to convert temporal index to a curved index.
Once this step is done, the commutation relation (1.4) determines the expansion character
of the field Φ. We can then expand the fields Φ as well as the curvatures in accordance
with the expansion of the gauge fields (1.3). However, it is important to keep in mind that
we only use the first-order scaling character of the vielbein and the temporal vielbein as
their expansion introduces extra gauge fields which are truncated in the rigid limit. Finally,
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we can set eµa = δµ
a and τµ = δ0

µ and read off the transformation rules of the expanded
fields for each λ-order term in eq. (1.4) to obtain the rigid supersymmetric multiplets of
the expanded algebras.

Before we proceed to the actual construction of the matter multiplets of expanded
superalgebras, let us briefly discuss the difference between the methodology of [66] which is
based on the metric construction, and a procedure that suits a gauge theory construction.
In a metric formulation that is based on a 1/c expansion procedure, all the Galilean building
blocks are expanded in even-powers of 1/c. Hence it is natural to expand fields in even
powers of 1/c along with the transformation parameters to find the local transformation
rules. On the other hand, in gauge theory construction, it is essential that some of the gauge
fields, or generators, are expanded in odd-powers of λ. In this case, the expansion character
of the field is not as clear as in the 1/c expansion. Another question that comes to mind is
whether one can understand the operator structure of the generators in the larger algebra
starting from the smaller algebra as they are related to each other by means of expansion.
This can be achieved by expanding the space-time coordinates based on the expansion
character of the generator that generates translations for that coordinate [75]. In that case,
the original dimension of the spacetime increases thus one needs to develop a dimensional
reduction scheme to find the desired representations of the expanded algebra in the same
number of dimensions that one starts with. For a supersymmetric theory, this increases the
workload tremendously since one now needs to construct the supersymmetric representations
of the expanded superalgebra, which is already a non-Lorentzian algebra with a presumably
arbitrary number of time coordinates due to the expansion of the original time coordinate.
It is also necessary to find a way for the dimensional reduction of this representation to
the spacetime dimension that one starts with. Thus, although tempting in terms of the
operator definitions of the generators, we do not follow this path for the bosonic generators
but directly construct their actions on fields utilizing the expansion of (1.4). This gives the
operator definitions of generators a non-linear matrix character in the sense that the matrix
part of a generator becomes a matrix of operators. For the fermionic generators, however,
it is better to expand the fermionic coordinates of superspace as more fermionic generators
already imply the increasing number of supercharges, thus the fermionic coordinates of
the superspace. This is also the main procedure that determines the expansion character
of the superfield, allowing us to find the supersymmetric representations of the expanded,
larger algebras.

This paper is organized as follows. In section 2, we discuss the basics of the expansion
of an off-shell matter multiplet. As mentioned, the consistency of the truncation for the Lie
algebra expansion requires that either N0 = N1 +1 or N0 = N1 must be satisfied. One of the
main conclusions of this section is that N1 = N0 is the essential truncation condition, at least
for the expansion of the Poincaré or the space-time decomposed Poincaré superalgebra, to
establish an off-shell supersymmetric representation for a larger superalgebra. The following
sections, section 3 and section 4 mainly serve to provide expamples for the procedure
that we describe in section 2. In section 3, we employ the procedure that we described in
section 2 and find the (anti-)chiral multiplet of four-dimensional N = 1 coadjoint Poincaré
superalgebra. In section 4, we discuss the scalar multiplet of three-dimensional N = 2
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non-relativistic superalgebra for g = (1, 0) (which corresponds to the N = 2 extended
Bargmann superalgebra) and g = (1, 1) superalgebra. We provide our comments and
conclusions in section 5.

2 The Lie algebra expansions of matter multiplets

The Lie algebra expansion is a procedure that takes a small Lie algebra and produces larger
ones by expanding the gauge fields that correspond to the generators of the small algebra.
However, in general, we want to consider a theory that contains both the gauge fields AIµ
and the matter fields Φ. The purpose of this section is to describe the procedure that is
necessary for the consistent expansion of the matter fields, especially when they represent
the matter multiplets of a superalgebra. To provide a self-contained treatment, let us briefly
remind the reader about the basics of covariant quantities such as covariant derivatives and
curvatures, which are the fundamental building blocks of the expansion of matter fields
and multiplets. We refer [76] for readers interested in a more detailed discussion on general
gauge theories and covariant quantities.

Consider an algebra g with generators TI . A matter field Φ that transforms non-trivially
under the action of these generators have the following transformation rules

δ(ε)Φ = [εITI ,Φ] , (2.1)

where εI represents the transformation parameters corresponding to generators TI . With
this definition, the closure of the algebra on the field Φ is satisfied, that is, the commutator
of any two sequential action on the field, [δ(ε1), δ(ε2)] generates a third transformation, by
use of the Jacobi identity

[εI1TI , [εJ2TJ ,Φ]]− [εJ2TJ , [εI1TI ,Φ]] = [[εI1TI , εJ2TJ ],Φ] , (2.2)

where the commutator [TI , TJ ] generates the necessary structure constants that relates the
parameters ε1 and ε2 to a third parameter εK3 = fIJ

KεI1ε
J
2 . Note that here, it is assumed

that the closure of the algebra on Φ is off-shell in the sense that no equation of motion
have been used. Next, we associate a gauge field to each of the generators, i.e. Aµ = TIA

I
µ.

Then, the covariant derivative of the matter field Φ is given by

DµΦ = ∂µΦ− δ(Aµ)Φ . (2.3)

Here δ(AIµ) means that one needs to calculate the transformation of the field Φ with respect
to all gauge symmetries generated by TI and replace the relevant transformation parameters
with the gauge fields AIµ. Consequently, the commutator of two covariant derivatives on the
matter field Φ takes the following form

[Dµ,Dν ]Φ = −δ(Rµν)Φ , (2.4)

where the group-theoretical curvature RµνI is defined as

Rµν
I = 2∂[µA

I
ν] + fJK

IAKµ A
J
µ . (2.5)
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These definitions of covariant derivative (2.3) and commutators (2.4) are problematic if
the algebra g is associated with spacetime symmetries. For instance, with the definition
of the covariant derivatives (2.3), the covariant derivative of a scalar field simply vanishes
for a gauge group that includes local translations and if the scalar field carries no internal
symmetry. To evade this problem, the definition of covariant derivative (2.3) is understood as
δ(AIµ) includes all gauge transformations except P -gauge transformations. The compensation
for the exclusion of the P -gauge transformations for the commutation relations, (2.4), is that
we need to impose the vanishing of the curvature of local translations, i.e., Rµνa(P ) = 0.
However, in an expansion procedure, setting Rµνa(P ) = 0 before expanding the gauge fields
and the matter fields would lead us to miss any contribution to the transformation rules
that arise from the expansion of the generators of local translations. Thus, we modify the
structure of (2.4) as

[Dµ,Dν ]Φ = −δ(Rµν)Φ|R(P )=0 , (2.6)

which means that we first perform any necessary calculation on the right-hand side of this
equation and impose the constraint Rµνa(P ) = 0 only at the final stage.

2.1 The general procedure

Let us now consider that the algebra g can be split into the direct sum g = V0⊕V1 where V0
represent the subspace of even generators while V1 represent the subspace of odd generators.
In this case, the generators of this algebra TI can be split as TI = {Xi, Yα} with Xi ∈ V0
and Yα ∈ V1. The transformation rule for a matter field Φ is then given by

δΦ = [εiXi,Φ] + [εαYα,Φ] , (2.7)

where the commutation relations for the generators TI = {Xi, Yα} takes the following form

[Xi, Xj ] = fij
jXk , [Yα, Yβ ] = fαβ

iXi , [Xi, Yα] = fiα
βYβ , (2.8)

due to the splitting of the algebra into even and odd parts with respect to (1.1). In this
case, the Jacobi identity that is necessary for the off-shell closure of the algebra on the field
Φ decomposes as

[εi1Xi, [εj2Xj ,Φ]]− [εj2Xj , [εi1Xi,Φ]] = [[εi1Xi, ε
j
2Xj ],Φ] ,

[εα1Yα, [ε
β
2Yβ ,Φ]]− [εβ2Yβ , [εα1Yα,Φ]] = [[εα1Yα, ε

β
2Yβ ],Φ] ,

[εiXi, [εαYα,Φ]]− [εαYα, [εiXi,Φ]] = [[εiXi, ε
αYα],Φ] . (2.9)

Similarly, the commutator of two covariant derivatives are split into even and odd part as

[Dµ,Dν ]Φ =
(
−δ(Rµνi)Φ− δ(Rµνα)Φ

)
|R(P )=0 . (2.10)

The form of transformation rules (2.7), the Jacobi identities (2.9) and the commutation
relations (2.10) are our starting point to determine the expansion character, therefore the
expansion of the matter field Φ. We may now consider the expansion of the gauge fields

– 6 –



J
H
E
P
0
1
(
2
0
2
2
)
0
8
1

according to (1.3), which gives rise to the following set of commutation relations among the
generators of the larger algebra

[X(2m)
i , X

(2n)
j ] = fij

jX
(2m+2n)
k , [Y (2m+1)

α , Y
(2n+1)
β ] = fαβ

iX
(2m+2n+2)
i ,

[X(2m)
i , Y (2n+1)

α ] = fiα
βY

(2m+2n+1)
β , (2.11)

where we defined the expanded gauge field as

A = Ai(2n)X
(2n)
i +Aα(2n+1)Y

(2n+1)
α . (2.12)

With this expansion of the gauge fields, curvatures and algebra, let us work out the details
of the expansion of the gauge fields and matter fields by providing examples for relativistic
and non-relativistic cases.

2.1.1 Coadjoint construction

In [35], it was shown that three-dimensional non-relativistic gravity models may be obtained
from the contractions of Poincaré, Poincaré ⊕ u(1)2, coadjoint Poincaré or coadjoint Poincaré
⊕ u(1)2 algebra. The models that go beyond the Galilei algebra are associated with the
coadjoint Poincaré algebra which may be obtained by a certain Lie algebra expansion of
the Poincaré algebra itself.

The D-dimensional Poincaré algebra has the following form for its non-vanishing
commutators

[P, J ] ∼ P , [M,M ] ∼M , (2.13)

where Pa represents the generator of translations while Mab is the generator of Lorentz
transformations. This structure of the algebra allows us to classify the generators in two ways

1. Both Pa and Mab are in even class, i.e. V0 = {Pa,Mab}. As the Lie algebra expansion
preserves the structure constants (2.11), we may give the form of the expanded
algebra as

[P, J ] ∼ P , [M,M ] ∼M , [T, J ] ∼ T , [P, S] ∼ T , [J, S] ∼ S , (2.14)

where we made the following identifications

P (0)
a = Pa , P (2)

a = Ta , J
(0)
ab = Jab , J

(2)
ab = Sab . (2.15)

This is the coadjoint Poincaré algebra. This form of expansion has been useful in
finding non-relativistic algebras. When the Poincaré algebra is improved with a
cosmological constant, i.e. [P, P ] ∼ ΛM with Λ being the cosmological constant, such
an expansion yields two additional non-vanishing commutation relations

[P, P ] ∼ ΛM , [P, T ] ∼ ΛS , (2.16)

which gives rise to the coadjoint AdS algebra. This form of the algebra has been
useful in relating Newton-Hooke type algebras to coadjoint AdS algebra. It has
also been an essential element to relate three-dimensional massive gravity models to
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an infinite-dimensional algebra [77]. When this expansion is generalized to include
supersymmetry, the D-dimensional Poincaré superalgebra brings the following two
commutators for the SUSY generators

{Q,Q} ∼ P , [M,Q] ∼ Q , (2.17)

where we ignore possible central charges. In this case, there is no restriction on Q

as the multiplication table (1.1) allows for both even and odd choice of Q. Thus, Q
may be expanded in all powers of λ and the consistent truncation yields an extended
superalgebra.

2. We may also split the generators of the Poincaré algebra as V0 = {Mab} and V1 = {Pa}.
In this case, the first g = (0, 0) order algebra is the Poincaré algebra itself while
g = (1, 1) algebra is the coadjoint Poincaré algebra

[P, J ] ∼ P , [M,M ] ∼M , [T, J ] ∼ T , [P, S] ∼ T , [J, S] ∼ S . (2.18)

Note that in this case, the cosmological commutators are different,

[P, P ] ∼ ΛS . (2.19)

So far, there is no known relation for this form of the expansion to a Newton-Hooke
type of a non-relativsitic algebra. The form of supersymmetry commutators (2.17) is
more subtle then the even/even expansion. As P belongs to odd class of generators,
the {Q,Q} ∼ P anti-commutator implies that the supersymmetry generator must
first be projected into at least two independent parts, say Q±, in a way that only
the opposite projections have a non-vanishing commutator {Q+, Q−} ∼ P . We may
then assign opposite expansion characters to Q+ and Q− to preserve the structure of
supersymmetry, i.e. two sequential SUSY transformations generate translations.

Ignoring the cosmological constant, the relation between the coadjoint Poincaré algebra and
the three-dimensional non-relativistic algebras suggest that it may hold in supersymmetric
settings, in various dimensions, and with higher-order expansions. With these two different
ways to generate larger algebras from super-Poincaré algebra, let us briefly discuss the
character of matter multiplets.

1. Let’s first assume that V0 = {Pa,Mab} in which case the SUSY generator could belong
to both V0 or V1. For instance, for four-dimensional N = 1 supersymmetry, we have

{PLQ,PRQ} ∼ (PLγa)Pa , (2.20)

thus, both {PLQ,PRQ} ∈ V0 or {PLQ,PRQ} ∈ V1 are valid choices. However,
choosing both to be in V1 means that at the lowest order, two sequential SUSY
transformations do not generate translations. Thus, we choose both generators to be
an element of V0. Consequently, all matter fields can be expanded in even powers
of an expansion parameter λ. As all generators, including the SUSY generators, as
well as the matter fields are expanded in even powers, this turns into an identical
procedure presented for 1/c expansion in [66].
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2. Next, let’s assume that V0 = {Pa} and V1 = {Mab}. As mentioned, this would require
one to project the SUSY generator Q into two independent parts and assign opposite
character to different projections to preserve {Q,Q} ∼ P structure. Following the
four-dimensional N = 1 expample, we need to assign opposite expansion character to
PLQ and PRQ, e.g. PLQ ∈ V0 while PRQ ∈ V1. This splitting implies that we must
set N0 = N1 in order to have as many left-projected generators as right-projected
ones. As we will discuss in section 3, setting N1 = N0 + 1 also fails the expansion of
the Jacobi identities (2.9). To see the behavior of the fields, let us consider a complex
scalar Z field that transforms to a left-projected spinor PLχ,

δZ = ε̄PLχ . (2.21)

Then, the contribution of supersymmetry transformation to the commutator of
covariant derivatives is

[Dµ,Dν ]Z ∼ R̄µν(Q)PLχ . (2.22)

Since we choose PLRµν(Q) to be expanded in even powers, then Z and PLχ can both
be even or odd. The expansion character for the remaining fields of the multiplet
can be investigated by applying the same idea to higher order components. For
an anti-chiral multiplet, however, have a complex scalar Z̄ that transforms to a
right-projected spinor

δZ̄ = ε̄PRχ , (2.23)

which implies
[Dµ,Dν ]Z ∼ R̄µν(Q)PRχ . (2.24)

For this case, as choose PRRµν(Q) to be expanded in odd powers, we must chose
opposite expansion characters for Z̄ and PRχ. Once again, the remaining fields of the
multiplet can be investigated by performing a similar analysis for the higher order
components.

2.1.2 Spacetime decomposition

In [47], it was shown that if the generators of the Poincaré algebra is split into space and
time components, then the resulting decomposed algebra can be written as a direct sum of
V0 and V1 where

V0 = {P0,Mab} , V1 = {Pa,Ma0} , (2.25)

where we split the D-dimensional spacetime index A as A = (0, a) where a represents the
(D− 1)-dimensional spatial index. The Lie algebra expansion of this spacetime decomposed
algebra in three and four-dimensions then generate various known non-relativistic algebras.
In order to reflect such a decomposition to supersymmetry generators, one first need to
find projection operator(s) such that the projected SUSY generators give rise to both Pa
and H . Otherwise, we do not have a superalgebra in the sense that the anti-commutator of
two SUSY generators do not lead to diffeomorphisms. Using the same projection operators,
one may then implement a spacetime splitting on any off-shell multiplet of the Poincaré
superalgebra. As the bosonic fields are split into both even and odd classes, the expansion
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of the spacetime decomposed off-shell multiplet follows the same pattern that we discussed
for the coadjoint construction with even/odd splitting.

3 Four-dimensional N = 1 co-adjoint Poincaré superalgebra

In this section, we provide the expansion of the four-dimensional N = 1 off-shell (anti-)chiral
multiplet an example for the coadjoint construction. The four-dimensional super-Poincaré
algebra is given by

[PA ,MBC ] = ηABPC − ηACPB , {PLQ,PRQ} = −1
2PLΓA PA ,

[MAB, PLQ] = −1
2ΓAB PLQ , [MAB, PRQ] = −1

2ΓAB PRQ , (3.1)

as well as

[MAB,MCD] = ηACMDB − ηBCMDA − ηADMCB + ηBDMCA . (3.2)

Here, A is the spacetime index A = 0, 1, 2, 3 and we use ηAB = diag(−,+,+,+). Further-
more, we define

PL = 1
2 (I + Γ?) , PR = 1

2 (I− Γ?) , (3.3)

where Γ? = iΓ0Γ1Γ2Γ3. As mentioned, we can assign all the generators an even expansion
character which is consistent, but it is the same as 1/c-expansion of [66], thus we skip that
possibility here. However, we may also set

V0 = {MAB, PLQ} , V1 = {PA, PRQ} . (3.4)

Following the standard Lie algebra expansion procedure, we may use (2.11), which applies
to both commutators and anti-commutators, and obtain the following non-vanishing (anti-
)commutators for the four-dimensional N = 1 coadjoint Poincaré superalgebra

[PA ,MBC ] = ηABPC − ηACPB , [TA ,MBC ] = ηABTC − ηACTB

[PA , SBC ] = ηABTC − ηACTB , [MAB, PLQ] = −1
2ΓAB PLQ ,

[SAB, PLQ] = −1
2ΓAB PLS , [MAB, PLS] = −1

2ΓABPLS ,

[MAB, PRQ] = −1
2ΓAB PRQ , [MAB, PRS] = −1

2ΓAB PRS ,

[SAB, PRQ] = −1
2ΓABPRS , {PLQ,PRQ} = −1

2PLΓA PA ,

{PLQ,PRS} = −1
2PLΓA TA , {PLS, PRQ} = −1

2PLΓA TA , (3.5)

as well as

[MAB,MCD] = ηACMDB − ηBCMDA − ηADMCB + ηBDMCA ,

[SAB,MCD] = ηACSDB − ηBCSDA − ηADSCB + ηBDSCA . (3.6)
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Note that here we set

P
(1)
A = PA , P

(3)
A = TA , M

(0)
AB = MAB , M

(2)
AB = SAB ,

PLQ
(0) = PLQ , PLQ

(2) = PLS , PRQ
(1) = PRQ , PRQ

(3) = PRS . (3.7)

With these expressions for the generators in hand, it is possible establish a relation between
the three-dimensional N = 2, g = (1, 1) superalgebra and the N = 1 coadjoint Poincaré
superalgebra by means of contraction. For the bosonic part, the necessary contraction has
already been found in [35]. This can, in principle, be generalized to include the [B,F ]
and {F, F} (anti-)commutators of the superalgebra. Once this is achieved, one can take
the contraction of the off-shell multiplets of N = 1 coadjoint Poincaré superalgebra to
produce the multiplets of N = 2, g = (1, 1) superalgebra. In particular, noticing that the
contraction and the Lie algebra expansion coincides at the lowest order, one can simply
take the multiplets of N = 1 space-time decomposed coadjoint Poincaré superalgebra and
consider its lowest order expansion with respect to the classification of the generators to
match with the three-dimensional N = 2, g = (1, 1) superalgebra. Thus, the results of this
section can be regarded as a necessary preliminary step to establish the non-relativistic
matter multiplets and actions. With this note in mind, we now proceed to the expansion of
the off-shell (anti-)chiral multiplets of four-dimensional N = 1 Poincaré superalgebra.

3.1 (Anti-)chiral multiplet

The four-dimensional off-shell rigid N = 1 chiral multiplet has the following transformation
rules

δZ = ξA∂AZ + 1√
2
ε̄PLχ

δPLχ = ξA∂APLχ+ 1
2λ

ABΓABPLχ+ 1√
2

ΓA∂AZPRε+ 1√
2
FPLε

δF = ξA∂AF + 1√
2
ε̄ΓA∂APLχ . (3.8)

Here, ξA is the parameter for translations, λAB for Lorentz transformations and PLε (or PLε)
for left-projected (or right-projected) supersymmetry transformations. The transformation
rules for the anti-chiral multiplet, which is the complex conjugate of the chiral multiplet, is
given by

δZ̄ = ξA∂AZ̄ + 1√
2
ε̄PRχ

δPRχ = ξA∂APRχ+ 1
2λ

ABΓABPRχ+ 1√
2

ΓA∂AZ̄PLε+ 1√
2
F̄PRε

δF̄ = ξA∂AF̄ + 1√
2
ε̄ΓA∂APRχ . (3.9)

Following the steps that we present in section 2.1.1, we need to establish the commutator
of covariant derivatives and use vielbein, or its inverse, to convert the flat indices on the
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derivatives to curved indices. We can then use the leading order scaling or the vielbein,
which, according to the splitting (3.4) is given by

Eµ
A = λeµ

A , EµA = 1
λ
eµA , (3.10)

and establish the expansion character of the fields of the (anti-)chiral multiplet. Here, eµA
is the gauge field associated with the leading order term in the expansion of PA, which we
chose to be the generator of translation in the coadjoint Poincaré superalgebra. Note that
once the expansion is complete, we set eµA = δµ

A and obtain the rigid chiral multiplet of
four-dimensional N = 1 coadjoint Poincaré algebra on flat background.

3.1.1 Expansion of chiral multiplet

Let us start with the transformations of the chiral multiplet (3.8) to see how the new
generators, TA, SAB, PLS and PRS act on the components of a chiral superfield. Converting
the flat indices on derivatives to curved indices, the transformation rules for the chiral
multiplet read

δZ = ξAEµA∂µZ + 1√
2
ε̄PLχ

δPLχ = ξAEµA∂µPLχ+ 1
2λ

ABΓABPLχ+ 1√
2

ΓA∂AZPRε+ 1√
2
FPLε

δF = ξAEµA∂µF + 1√
2
ε̄PR ΓAEµA∂µPLχ . (3.11)

Note that we did not turn the partial-derivative into covariant derivative since in the rigid
limit, all gauge fields except EµA and its inverse are set to zero. In order to expand the
fields, we need to know their expansion character. This can be understood by the structure
of the chiral superfield Φ

Φ = Z + 1√
2
PLθPLχ+ 1

4PLθPLθF , (3.12)

where θ represents the anti-commuting coordinates. Based on the character of the associated
translation generator, PLQ, we may expand PLε as

PLε → PLε+ λ2PLη , (3.13)

where PLη is associated with the new left-projected generator, PLS and represents additional
anti-commuting coordinates due to the increasing number of supercharges. As g = (0, 0)
truncation is the Poincaré superalgebra itself, we do not wish to spoil the zeroth-order
definition of the superfield Φ so that the truncation of extra generators consistently yield a
chiral multiplet. Thus, we expand the fields as

Z =Z1 + λ2Z2 , PLχ = PLχ1 + λ2PLχ2 , F = F1 + λ2F2 , (3.14)

which would lead us to the expansion of the superfield, Φ = Φ0 + λ2Φ2 where

Φ0 = Z1 + 1√
2
PLθPLχ1 + 1

4PLθPLθF1 ,

Φ2 = Z2 + 1√
2
PLζPLχ1 + 1√

2
PLθPLχ2 + 1

2PLθPLζF1 + 1
4PLθPLθF2 . (3.15)
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Here, PLζ is the additional anti-commuting coordinates that arise from the expansion of
PLθ, i.e. PLθ → PLθ + λ2PLζ. Note that Φ2 itself is not a superfield. As we will discuss
momentarily, we may think of Φ0 and Φ2 as entries of a matrix superfield. The new
generators, TA, SAB, PLS and PRS act on these superfields in a way that while they have
the same operator structure as the generators that they originate from, they also have a
matrix character such that they act on the matrix superfield and transform the entries of
Φ2 into the entries of Φ0. To see this in action, let us consider the transformation rules for
the complex scalar field Z, which gives rise to the following the commutator of covariant
derivatives

[Dµ,Dν ]Z =
(
−RµνA(P )EAµ∂µZ − PLRµν(Q)PLχ

)
|R(P )=0 , (3.16)

where we used the four-dimensional identity λ̄PL = PLλ. Expanding the fields as in (3.14),
using the zeroth-order scaling character of the vielbein, EµA = λeµ

a and EµA = 1
λ e

µ
a and

expand the curvatures with respect to their expansion characters (3.4), we obtain

[Dµ,Dν ]Z1 =
(
−RµνA(P )EAµ∂µZ1 −

1√
2
PLRµν(Q)PLχ1

)
|R(P )=0 ,

[Dµ,Dν ]Z2 =
(
−RµνA(P )EAµ∂µZ2 −RµνA(T )EAµ∂µZ1 −

1√
2
PLRµν(Q)PLχ2

− 1√
2
PLRµν(S)PLχ1

)
|R(P )=0 . (3.17)

Imposing the constraint Rµνa(P ) = 0 and setting EµA = δµA, we obtain the transformation
rules for Z1 and Z2 as

δZ1 = ξA∂AZ1 + 1√
2
ε̄PLχ1 ,

δZ2 = ξA∂AZ2 + λAT ∂AZ1 + 1√
2
ε̄PLχ+ 1√

2
η̄PLχ2 . (3.18)

Here, λAT are the transformation parameter for TA-transformations while PLη is the pa-
rameter for PLS-transformations. As evident from these transformation rules, TA has the
same operator character as PA but it is a matrix of the operator ∂A since it turns the
second order complex scalar Z2 to the zeroth-order Z1. We may, therefore, give the new
supersymmetry generator Sα as a differential operator as

Sα = S0
α −

1
4
(
ΓAθ

)
α
TA −

1
4
(
ΓAζ

)
α
PA , (3.19)

where S0
α represents the generators for the shift ζ → ζ − c, i.e.

S0
α = ∂

∂ζ̄
(3.20)

Next, we turn the transformation rules for PLχ, which is given by

δPLχ = ξAEµA∂µPLχ+ 1
2λ

ABΓABPLχ+ 1√
2

ΓAEµA∂µZPRε+ 1√
2
FPLε , (3.21)
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which gives rise to

[Dµ,Dν ]PLχ =
(
−RµνA(P )EµA∂µPLχ−

1
2Rµν

AB(M)ΓABPLχ

− 1√
2

ΓAEµA∂µZPRRµν(Q)− 1√
2
FPLRµν(Q)

)
|R(P )=0 (3.22)

Once again, expanding the fields as in (3.14) and the curvatures with respect to their
expansion characters (3.4), we obtain

[Dµ,Dν ]PLχ1 =
(
−RµνA(P )EµA∂µPLχ1 −

1
2Rµν

AB(M)ΓABPLχ1

− 1√
2

ΓAEµA∂µZ1PRRµν(Q)− 1√
2
F1PLRµν(Q)

)
|R(P )=0 (3.23)

We may follow the same procedure that we implemented for the expansion of Z and use the
zeroth-order scaling character of the vielbein as well as the expansion of the fields (3.14)
and the curvatures with respect to (3.4). This gives rise to the following transformation
rules for the left-projected spinors PLχ1 and PLχ2

δPLχ1 = ξA∂APLψ1 + 1
2λ

ABγABPLχ1 + 1√
2
γA∂AZ1PRε+ 1√

2
F1PLε ,

δPLχ2 = ξA∂APLψ2 + λAT ∂APLψ1 + 1
2λ

ABγABPLψ2 + 1
2σ

ABγABPLψ1

+ 1√
2
γA∂AZ1PRη + 1√

2
γA∂AZ2PRε+ 1√

2
F2PLε+ 1√

2
F1PLη . (3.24)

Note that once again, TA transforms PLχ2 to PLχ1 with the same differential operator form
of PA Similarly, SAB acts on PLχ2 in the same way asMAB but now with a matrix character
that is PLχ2 is transformed to PLχ1. Finally, we may expand the auxiliary complex field F ,
which gives rise to the following transformation rules for the chiral multiplet of the N = 1
coadjoint Poincaré algebra

δZ1 = ξA∂AZ1 + 1√
2
ε̄PLχ1 ,

δZ2 = ξA∂AZ2 + λAT ∂AZ1 + 1√
2
ε̄PLχ2 + 1√

2
η̄PLχ1 ,

δPLχ1 = ξA∂APLχ1 + 1
2λ

ABγABPLχ1 + 1√
2
γA∂AZ1PRε+ 1√

2
F1PLε ,

δPLχ2 = ξA∂APLχ2 + λAT ∂APLχ1 + 1
2λ

ABγABPLχ2 + 1
2σ

ABγABPLχ1

+ 1√
2

ΓA∂AZ1PRη + 1√
2

ΓA∂AZ2PRε+ 1√
2
F2PLε+ 1√

2
F1PLη ,

δF1 = ξA∂AF1 + 1√
2
ε̄ΓA∂APLχ1 ,

δF2 = ξA∂AF2 + λAT ∂AF1 + 1√
2
ε̄ΓA∂APLχ2 + 1√

2
η̄ ΓA∂APLχ1 . (3.25)
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With this result in hand, let us discuss some technical notes and noteworthy properties of
this multiplet. First of all, we have explicitly checked by using GammaMaP [78] that this
multiplet is indeed closed off-shell given that the third parameters that are consistent with
the N = 1 coadjoint Poincaré algebra are given by

{Qα, Qβ} = −1
2(ΓA)αβPA , ⇒ ξA3 = −1

2 ε̄1ΓAε2

{Qα, Sβ} = −1
2(ΓA)αβTA ⇒ λAT3 = −1

2 ε̄ΓAη . (3.26)

Second, this multiplet is not irreducible, that is, as evident from the expansion of the
superfield (3.15), the zeroth-order superfield can be truncated by setting {Z1, PLχ1, F1} to
zero in which case Φ2 becomes identical to the chiral superfield. This is a typical property
of the expansion: a lower-order field do not pick up extra transformation rules from higher-
order generators in an expansion procedure [47, 66]. For instance, the transformation
rules of vielbein or spin-connection do not get modified under the expansion (3.7), see [47]
for non-relativistic examples. Finally, we may take the complex conjugate of this set of
transformation rules, which gives rise to the following anti-chiral multiplet

δZ̄1 = ξA∂AZ̄1 + 1√
2
ε̄PRχ1 ,

δZ̄2 = ξA∂AZ̄2 + λAT ∂AZ̄1 + 1√
2
ε̄PRχ2 + 1√

2
η̄PRχ1 ,

δPRχ1 = ξA∂APRχ1 + 1
2λ

ABγABPRχ1 + 1√
2
γA∂AZ̄1PRε+ 1√

2
F̄1PRε ,

δPRχ2 = ξA∂APRχ2 + λAT ∂APRχ1 + 1
2λ

ABγABPRχ2 + 1
2σ

ABγABPRχ1

+ 1√
2

ΓA∂AZ̄1PLη + 1√
2

ΓA∂AZ̄2PLε+ 1√
2
F̄2PRε+ 1√

2
F̄1PRη ,

δF̄1 = ξA∂AF̄1 + 1√
2
ε̄ΓA∂APRχ1 ,

δF̄2 = ξA∂AF̄2 + λAT ∂AF̄1 + 1√
2
ε̄ΓA∂APRχ2 + 1√

2
η̄ ΓA∂APRχ1 . (3.27)

3.1.2 Expansion of anti-chiral multiplet

The anti-chiral multiplet for N = 1 coadjoint Poincaré algebra can also be obtained by the
direct expansion of the anti-chiral superfield Φ̄

Φ̄ = Z̄ + 1√
2
θ̄PRχ+ 1

4PRθPRθF̄ . (3.28)

As PRε is expanded in odd-powers of λ, i.e. PRε→ λPRε+ λ3PRη, we need to choose the
following expansion character for the components of the anti-chiral multiplet

Z̄ = λZ̄1 + λ3Z̄2 , PRχ = PRχ1 + λ2PRχ2 , F̄ = 1
λ
F̄1 + λF̄2 . (3.29)

Here, it is important to note that F̄ must start with the inverse power of λ, otherwise the
lowest-order superfield is spoiled and one cannot realize the off-shell closure of the algebra
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on the expanded fields. This is an example of a mixed expansion in the sense that some
of the fields are expanded in even powers while others are in odd powers in λ. With this
choice of parametrization, the superfield Φ̄ is expanded as Φ̄ = λΦ̄0 + λ3Φ̄1 where

Φ̄0 = Z̄1 + 1√
2
θ̄PRχ1 + 1

4PRθPRθF̄1 ,

Φ̄1 = Z̄2 + 1√
2
θ̄PRχ2 + 1√

2
ζ̄PRχ1 + 1

4PRθPRζF̄1 + 1
4PRθPRθF̄2 . (3.30)

Indeed, we could have chosen an even character for the superfield by choosing a different
expansion for the fields such as

Z = Z̄1 + λ2Z̄2 , PRχ = λ−1PRχ1 + λPRχ2 , F̄ = λ−2F̄1 + F2 , (3.31)

which also preserves the structure of the lowest-order superfield. Nevertheless, the relative
expansion character remains unchanged, thus, the transformation rules for the expanded
anti-chiral field is independent of the choice such parametrization. We can now repeat the
same procedure that we described for the chiral multiplet. The explicit calculation precisely
give rise to the transformation rules that we found by complex conjugation (3.27).

As we expanded the off-shell transformation rules, it is also possible the off-shell chiral
multiplet action. The free kinetic Lagrangian for the chiral multiplet is given by

L = −∂AZ∂AZ̄ − χ̄PRΓA∂APLχ+ FF̄ . (3.32)

Once again, we can first switch to curved indices by using the vielbein EµA and expand the
fields with respect to (3.14) and (3.31). At the leading order, we have the chiral multiplet
action

L(−2) = −∂AZ1∂
AZ̄1 − χ̄1ΓA∂APLχ1 + F1F̄1 . (3.33)

At next to leading order, we obtain the action principle for the chiral multiplet of N = 1
coadjoint Poincaré algebra

L(0) =−∂AZ1∂
AZ̄2−∂AZ2∂

AZ̄1−χ̄1ΓA∂APLχ2−χ̄2ΓA∂APLχ1+F1F̄2+F2F̄1 . (3.34)

Note that the field equations for Z2, PLχ2, F2 from the variation of L2 are consistent with
the field equations for Z1, PLχ1, F1 from the variation of L1. This is also a typical property
of expanded fields that the higher-order fields arise as Lagrange multiplier to lower-order
field equations [66].

4 Three-dimensional g = (1, 1) N = 2 superalgebra

As a second example, we discuss a non-relativistic algebra presented in [61] in three-
dimensions, its N = 2 supersymmetric extension, and its scalar multiplet. As mentioned,
certain class of non-relativistic algebras can be obtained by a Lie algebra expansion of a
spacetime decomposed Poincaré algebra [47]. The bosonic part of the algebra of [61] in
D-dimensions is one of these algebras that is related to the spacetime decomposition of
the three-dimensional Poincaré algebra. In this section, we shall focus on D = 3 and first
extend the construction of [47] to include N = 2 supersymmetry. Once the expansion is
obtained, we will then follow the prescription for the expansion of the matter multiplets
and obtain the g = (1, 1) scalar multiplet.
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4.1 The expansion of the spacetime decomposed Poincaré superalgebra

The three-dimensional N = 2 Poincaré superalgebra is given by the following non-vanishing
(anti-)commutators

[ĴA, ĴB] = εABC Ĵ
C , [ĴA, P̂B] = εABC P̂

C , [ĴA, Q̂1,2] = −1
2γAQ̂

1,2 ,

{Q̂1
α, Q̂

1
β} = 2(γAC−1)αβP̂A , {Q̂2

α, Q̂
2
β} = 2(γAC−1)αβP̂A . (4.1)

Here P̂A is the generator of translations, ĴA is for the dual Lorentz transformations and Q̂1,2
α

are two-component Majorana spinors and they represent the generators of supersymmetry
transformations. We may decompose the three-dimensional index A as A = (0, a) and define

ĴA = (Ĵ , Ĝa) , P̂A = (Ĥ, P̂a) . (4.2)

Furthermore, if we introduce [49]

Q̂± = 1
2
(
Q1 ± γ0Q

2
)
. (4.3)

The decomposed algebra is given by [49]

[Ĝa, Ĝb] = εabĴ , [Ĵ , Ĝa] = −εabĜb , [Ĵ , P̂a] = −εabP̂ b ,

[Ĝa, P̂b] = εabĤ , [Ĝa, Ĥ] = −εabP̂ b , [Ĵ , Q̂±] = −1
2γ0Q̂

± ,

[Ĝa, Q̂±] = −1
2γaQ̂

∓ , {Q̂+
α , Q̂

+
β } = (γ0C

−1)Ĥ , {Q̂+
α , Q̂

−
β } = −(γaC−1)P̂a ,

{Q̂−α , Q̂−β } = (γ0C
−1)Ĥ . (4.4)

This [B,F ] and {F, F} commutators of this algebra is of the desired form for the Lie algebra
expansion: the susy generators give rise to both spatial translations P̂a and the temporal
translations Ĥ [79]. Hence the anti-commutator of two supersymmetry generators in the
expanded algebra will lead to diffeomorphisms. We, next, split the algebra into even and
odd generators such in accordance with multiplication table (1.1)

V0 = {Ĵ , Ĥ, Q̂+} , V1 = {P̂a, Ĝa, Q̂−} . (4.5)

Note that we may also choose all generators to be an element of V0. Although perfectly valid,
this choice does not lead to the desired algebra, thus we will not discuss that possibility
here. With this characterization of the algebra, the lowest order expansion, g = (0, 0) gives
rise to N = 2 Galilei superalgebra with no central extension [22]

[H,Ga] = −εabP b , [J,Ga] = −εabGb , [J, Pa] = −εabP b ,

[J,Q±] = −1
2γ0Q

± , [Ga, Q+] = −1
2γaQ

− , {Q+
α , Q

+
β } = (γ0C

−1)αβH ,

{Q+
α , Q

−
β } = −(γaC−1)αβPa . (4.6)
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At the next order, g = (1, 0), we obtain the extended Bargmann superalgebra [25, 49]

[H,Ga] = −εabP b , [J,Ga] = −εabGb , [J, Pa] = −εabP b ,

[Ga, Gb] = εabS , [Ga, Pb] = εabM , [J,Q±] = −1
2γ0Q

± ,

[J, F+] = −1
2γ0F

+ , [Ga, Q+] = −1
2γaQ

− , [Ga, Q−] = −1
2γaF

+ ,

[S,Q+] = −1
2γ0F

+ , {Q+
α , Q

+
β } = (γ0C

−1)αβH , {Q+
α , Q

−
β } = −(γaC−1)αβPa ,

{Q−α , Q−β } = (γ0C
−1)αβM , {Q+

α , F
+
β } = (γ0C

−1)αβM . (4.7)

Here, we set

P̂ (1)
a = Pa , Ĝ(1)

a = Ga , Ĥ(0) = H , Ĥ(2) = M , Ĵ (0) = J ,

Ĵ (2) = S , Q̂+(0) = Q+ , Q̂+(2) = F+ , Q̂−(1) = Q− . (4.8)

As we will discuss shortly, this algebra is an example of the consistent truncation with N0 =
N1 + 1. Hence the methodology that we present here does not give rise to supermultiplets
of the extended Bargmann superalgebra.

At order g = (1, 1), we obtain the N = 2 supersymmetric extension of the algebra
of [61], which picks up the following commutation relations in addition to that of (4.7)

[J, Ta] = −εabT b , [S, Pa] = −εabT b , [J,Ba] = −εabBb ,

[M,Ga] = −εabT b , [H,Ba] = −εabT b , [S,Ga] = −εabBb ,

[J, F−] = −1
2γ0F

− , [Ga, F+] = −1
2γaF

− , [Ba, Q+]− 1
2γaF

− ,

[S,Q−] = −1
2γ0F

− , {Q+
α , F

−
β } = −(γaC−1)αβTa , {F+

α , Q
−
β } = −(γaC−1)αβTa , (4.9)

where we set

P̂ (3)
a = Ta , Ĝ(3)

a = Ba , Q̂−(3) = F− . (4.10)

With this algebra in hand, we can proceed to the expansion of three-dimensional N = 2
scalar multiplet.

4.2 The g = (1, 1) scalar multiplet

The scalar multiplet of three-dimensional N = 2 Poincaré superalgebra consists of two real
dynamical scalar fields ϕ1,2, two Majorana spinors χ1,2 and two real auxiliary scalar fields
F1,2. The transformation rules for these fields are given by [24]

δϕ1 = ξA∂Aϕ1 + ε̄1χ1 + ε̄2χ2 ,

δϕ2 = ξA∂Aϕ1 + ε̄1χ2 − ε̄2χ1 ,

δχ1 = ξA∂Aχ1 + 1
4ΛABγABχ1 + 1

4γ
A∂Aϕ1ε1 −

1
4γ

A∂Aϕ2ε2 −
1
4F1ε1 −

1
4F2ε2 ,

δχ2 = ξA∂Aχ2 + 1
4ΛABγABχ2 + 1

4γ
A∂Aϕ1ε2 + 1

4γ
A∂Aϕ2ε1 −

1
4F2ε1 + 1

4F2ε1 ,

δF1 = ξA∂AF1 − ε̄1γA∂Aχ1 + ε̄2γ
A∂Aχ2 ,

δF2 = ξA∂AF2 − ε̄1γA∂Aχ2 − ε̄2γA∂Aχ1 . (4.11)
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Here, ε1 and ε2 are the parameters of the supersymmetry generators, Q̂1 and Q̂2, respectively.
In order to be able to expand this multiplet in accordance with the spacetime decomposed
algebra (4.5), we first split the parameters as

ξA = {ξ0 ≡ ξ , ξa} ΛAB = {Λ0a ≡ λaG ,Λab = εabλJ} (4.12)

and redefine the parameters ε1,2 and the spinors χ1,2 as

ε± = 1
2(ε1 ± γ0ε2) , and χ± = 1

2(χ1 ± γ0χ2) , (4.13)

which gives rise to the following definitions for the transformation rules

δϕ1 = 2ε̄+χ+ + 2ε̄−χ− + ξa∂aϕ1 + ξ∂tϕ1 ,

δϕ2 = 2ε̄+γ0χ+ − 2ε̄−γ0χ− + ξa∂aϕ2 + ξ∂tϕ2 ,

δχ+ = 1
4γ

0∂tϕ1ε+ + 1
4∂tϕ2ε+ + 1

4γ
a∂aϕ1ε− −

1
4γ

0a∂aϕ2ε− −
1
4F1ε− −

1
4F2γ0ε−

+ ξa∂aχ+ + ξ∂tχ+ −
1
2λJγ0χ+ −

1
2λ

a
Gγaχ− ,

δχ− = 1
4γ

0∂tϕ1ε− + 1
4γ

a∂aϕ1ε+ −
1
4∂tϕ2ε− + 1

4γ
0a∂aϕ2ε+ −

1
4F1ε+ + 1

4F2γ0ε+

+ ξa∂aχ− + ξ∂tχ− −
1
2λJγ0χ− −

1
2λ

a
Gγaχ+ ,

δF1 = −2ε̄+γ0∂tχ− − 2ε̄−γ0∂tχ+ − 2ε̄+γa∂aχ+ − 2ε̄−γa∂aχ− + ξa∂aF1 + ξ∂tF1 ,

δF2 = −2ε̄+∂tχ− + 2ε̄−∂tχ+ − 2ε̄+γa0∂aχ+ + 2ε̄−γa0∂aχ− + ξa∂aF2 + ξ∂tF2 , (4.14)

where ∂t represents the time derivative ∂t ≡ ∂0. This multiplet can now be expanded in by
using the commutator structure (2.10) as well as the leading order behavior of the spatial
dreibein εµa and the temporal dreibein τµ, i.e.

eµ
a → λeµ

a , τµ → τµ . (4.15)

Note that both of the dreibein are necessary since a curved index µ is expanded as

Aµ = eµ
aAa + τµA0 , ⇒ Aa = eµaAµ , and A0 = −τµAµ , (4.16)

where we defined the inverse spatial (eµa) and temporal (τµ) dreibein in accordance with
the relations

eµ
aeµb = δab , and τµτµ = −1 . (4.17)

Let us first expand this algebra to g = (1, 0) order to see why such an expansion fails.
Unlike the coadjoint expansion, the lowest order algebra is different than the algebra that
we expand due to the {Q−, Q−} anti-commutator. However, the rest of the algebra stays
intact. Thus, ignoring the Q− transformations, we may still find out the expansion character
of the fields from the transformation rules (4.14). As only the relatives character matters,
we can give the dynamical scalars an even expansion character, say they are expanded as
ϕ1 = φ1 +λ2φ2, and ϕ2 = φ3 +λ2φ4. The Q+ transformation of ϕ1 or ϕ2 fixes the character
of χ+ to be the same as the scalar fields. On the other hand, the Q+ transformation of
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χ−, F1 and F2 indicate that they must have an odd character and their expansion should
start with λ−1-order

ϕ1 = φ1 + λ2φ2 , ϕ2 = φ3 + λ2φ4 , χ+ = ψ1 + λ2ψ2 ,

χ− = 1
λ
ψ3 , F1 = 1

λ
S1 , F2 = 1

λ
S3 . (4.18)

As the expansion is of order g = (1, 0), we expand the even fields for two orders but the
odd ones for one order. In this case, it is sufficient to consider the transformation rules of
φ2, ψ1 and ψ2 to show that the g = (1, 0) expansion is not closed on the extended Bargmann
superalgebra (4.7)

δφ2 = 2ε̄+ψ2 + 2η̄+ψ1 + ξa∂aφ2 + ξ∂tφ2 + ΛM∂tφ1 ,

δψ1 = 1
4γ

0ε+∂tφ1 + 1
4γaε−∂aφ1 −

1
4γ

0aε−∂aφ3 + 1
4S3γ0ε− −

1
4S1ε− + 1

4∂tφ3ε+

− 1
2λ

a
Gγaψ3 −

1
2λγ0ψ1 + ξa∂aψ1 + ξ∂tψ1 ,

δψ2 = 1
4γ

0ε+∂tφ2 + 1
4γ

0η+∂tφ1 + 1
4γ

aε−∂aφ2 −
1
4γ

0aε−∂aφ4 −
1
4S2ε− + 1

4∂tφ4ε+

+ 1
4∂tφ3η+ −

1
2λJγ0ψ2 −

1
2λSγ0ψ1 + ξa∂aψ2 + ξ∂tψ2 + ΛM∂tψ1 . (4.19)

Here, ξa are the parameter for spatial translations, ξ for temporal translations and ΛX for
X-generators with X = {J, S,M,Ga}. Furthermore, ε± correspond to the parameters for
Q± and η+ is for F+. It is evident with these transformation rules that the commutator
{Q−, Q−} ∼ M does not close on the field φ2 since it is inert under Q− transformation,
yet transforms non-trivially under M . Nevertheless, since M is central in the extended
Bargmann superalgebra (4.7), it is tempting to ignore the M transformations of the fields.
In that case, however, the commutator {Q+, F+} ∼M fails to close off-shell on φ2. The
root cause of this problem goes back to the expansion of the Jacobi identites (2.9), in
particular, to the expansion of

[εα1Yα, [ε
β
2Yβ , ϕ1]]− [εβ2Yβ , [εα1Yα, ϕ1]] = [[εα1Yα, ε

β
2Yβ ], ϕ1] . (4.20)

Because of the fact that the structure constants do not get modified in the Lie algebra
expansion, the expansion of the Jacobi identities (2.9) must either be preserved or vanish
identically, that is, if one of the non-zero commutators become zero in the expansion, all
other commutators must follow. In the case of the scalar multiplet, highest order even
fields such as φ2, φ4 and ψ2, have cannot non-trivial Q− transformation because there the
odd fields are not expanded to include O(λ) terms. Thus {Q−, Q−} ∼M is failed on these
fields. This, as a matter of fact, is a typical property of g = (N1 + 1, N1) type of expansion.
The generator of time translations H only appears in the following commutation relations
in spacetime decomposed Poincaré algebra (4.4) has the structure

[Ĝa, Ĥ] = −εabP̂ b , {Q̂+
α , Q̂

+
β } = (γ0C

−1)Ĥ , {Q̂−α , Q̂−β } = (γ0C
−1)Ĥ . (4.21)

The first commutator implies that as long as we consider g = (N1 +1, N1)-type of expansion,
the highest order generator in the expansion of Ĥ is always central in the bosonic part of the
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algebra. On the other hand, this highest order generator also shows up on the right-hand
side in the expansion of the second and the third anti-commutator. In particular, the
anti-commutator of the highest and the lowest generators in the expansion of Q− gives rise
to the highest order generator in the expansion of Ĥ. On the other hand, because of the
λ−1 relative expansion character of the odd-fields, which we found that applies to the vast
majority of matter multiplets including scalar, chiral, vector, real, and linear multiplets,
the highest order even fields are always inert under the hugest order generators in the
expansion of Q− and yet they transform non-trivially under the highest order generator in
the expansion of Ĥ. Consequently, g = (N1 + 1, N1)-type of expansion always fail on the
highest even fields.

Next, we proceed to the scalar multiplet of g = (1, 1) superalgebra. In this case, the
expansion of the fields are realized as

ϕ1 = φ1 + λ2φ2 , ϕ2 = φ3 + λ2φ4 , χ+ = ψ1 + λ2ψ2 ,

χ− = 1
λ
ψ3 + λψ4 , F1 = 1

λ
S1 + λS2 , F2 = 1

λ
S3 + λS4 . (4.22)

The odd fields now pick up the necessary O(λ) terms and the transformation rules are
given by

δφ1 = 2ε̄−ψ3 + 2ε̄+ψ1 + ξa∂aφ1 + ξ∂tφ1 ,

δφ2 = 2η̄−ψ3 + 2ε̄−ψ4 + 2ε̄+ψ2 + 2η̄+ψ1 + ξa∂aφ2 + ξ∂tφ2 + λaT∂aφ1 + ΛM∂tφ1 ,

δφ3 = −2ε̄−γ0ψ3 + 2ε̄+γ0ψ1 + ξa∂aφ3 + ξ∂tφ3 ,

δφ4 = −2η̄−γ0ψ3 − 2ε̄−γ0ψ4 + 2ε̄+γ0ψ2 + 2η̄+γ
0ψ1 + ξa∂aφ4 + ξ∂tφ4

+ λaT∂aφ3 + ΛM∂tφ3 ,

δψ1 = 1
4γ

0ε+∂tφ1 + 1
4γ

aε−∂aφ1 −
1
4γ

0aε−∂aφ3 + 1
4S3γ0ε− −

1
4S1ε− + 1

4∂tφ3ε+

− 1
2λ

a
Gγaψ3 −

1
2λJγ0ψ1 + ξa∂aψ1 + ξ∂tψ1 ,

δψ2 = 1
4S4γ0ε− + 1

4S3γ0η− + 1
4γ

0ε+∂tφ2 + 1
4γ

0η+∂tφ1 + 1
4γ

aε−∂aφ2 + 1
4γ

aη−∂aφ1

− 1
4γ

0aε−∂aφ4 −
1
4γ

0aη−∂aφ3 −
1
4S2ε− −

1
4S1η− + 1

4∂tφ4ε+ + 1
4∂tφ3η+

− 1
2λJγ0ψ2 −

1
2λSγ0ψ1 −

1
2λ

a
Gγaψ4 −

1
2λ

a
Bγaψ3 + ξa∂aψ2 + ξ∂tψ2

+ λaT∂aψ1 + ΛM∂tψ1 ,

δψ3 = 1
4S3γ0ε+ + 1

4γ
aε+∂aφ1 + 1

4γ
0aε+∂aφ3 −

1
4S1ε+ + ξa∂aψ3 + ξ∂tψ3 −

1
2λJγ0ψ3 ,

δψ4 = 1
4S4γ0ε+ + 1

4S3γ0η+ + 1
4γ

0ε−∂tφ1 + 1
4γ

aε+∂aφ2 + 1
4γ

aη+∂aφ1 + 1
4γ

0aε+∂aφ4

+ 1
4γ

0aη+∂aφ3 −
1
4∂tφ3ε− −

1
4S2ε+ −

1
4S1η+ −

1
2λJγ0ψ4

− 1
2λSγ0ψ3 −

1
2λ

a
gγaψ1 + ξa∂aψ4 + ξ∂tψ4 + λaT∂aψ3 + ΛM∂tψ3 ,

δS1 = −2ε̄−γa∂aψ3 − 2ε̄+γ0∂tψ3 − 2ε̄+γa∂aψ1 + ξa∂aS1 + ξ∂tS1 ,
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δS2 = −2ε̄−γ0∂tψ1 − 2ε̄−γa∂aψ4 − 2η̄−γa∂aψ3 − 2ε̄+γ0∂tψ4 − 2ε̄+γa∂aψ2

− 2η̄+γ
0∂tψ3 − 2η̄+γ

a∂aψ1 + ξa∂aS2 + ξ∂tS2 + λaT∂aS1 + ΛM∂tS1 ,

δS3 = −2ε̄+∂tψ3 − 2ε̄−γ0a∂aψ3 + 2ε̄+γ0a∂aψ1 + ξa∂aS3 + ξ∂tS3 ,

δS4 = 2ε̄−∂tψ1 − 2ε̄+∂tψ4 − 2η̄+∂tψ3 − 2ε̄−γ0a∂aψ4 − 2η̄−γ0a∂aψ3

+ 2ε̄+γ0a∂aψ2 + 2η̄+γ
0a∂aψ1 + ξa∂aS4 + ξ∂tS4 + λaT∂aS3 + ΛM∂tS3 . (4.23)

Here, the new parameters ΛaT ,ΛaB, η− are the parameters of T a, Ba and F− transformations,
respectively. We explicitly checked by using GammaMaP [78] that this multiplet is indeed
closed off-shell given that the third parameters of the transformation rules are given by

{Q+
α , Q

+
β } = (γ0C

−1)αβH , ⇒ ξ3 = ε̄2+γ0C
−1ε1+ ,

{Q+
α , Q

−
β } = −(γaC−1)αβPa , ⇒ ξa3 = −ε̄+γaC−1ε− ,

{Q−α , Q−β } = (γ0C
−1)αβM , ⇒ (ΛM )3 = ε̄1−γ0C

−1ε2− ,

{Q+
α , F

+
β } = (γ0C

−1)αβM , ⇒ (ΛM )3 = ε̄+γ0C
−1η+ ,

{Q+
α , F

−
β } = −(γaC−1)αβTa , ⇒ (λT )a3 = −ε̄+γaC−1η− ,

{F+
α , Q

−
β } = −(γaC−1)αβTa , ⇒ (λT )a3 = −η̄+γ

aC−1ε− . (4.24)

Finally, as the action principle for the N = 2 scalar multiplet is given by [80]

L = −∂Aϕ1∂
Aϕ1 − ∂Aϕ2∂

Aϕ2 − 4χ̄1γ
A∂Aχ1 − 4χ̄2γ

A∂Aχ2 + F 2
1 + F 2

2 , (4.25)

we can implement the spacetime decomposition in accordance with (4.13) which gives rise
to the action principle that we can use to expand to find order g = (N0, N0) extended
algebras

L = ∂tϕ1∂tϕ1 − ∂aϕ1∂aϕ1 + ∂tϕ2∂tϕ2 − ∂aϕ2∂aϕ2 − 8χ̄+γ
0∂tχ+

− 8χ̄−γ0∂tχ− − 8χ̄+γ
a∂aχ− − 8χ̄−γa∂aχ+ + F 2

1 + F 2
2 . (4.26)

At order g = (0, 0), we have the same action as one would get from contraction. As we have
real scalar fields, it is necessary to keep in mind that after the contraction, the dynamical
kinetic scalar has no longer a time derivative in the field equations due to the appearence
of the factor 1/c, i.e. Klein-Gordon equation for a real scalar φ field has the following
non-relativistic limit [81]

1
c2
∂

∂t
φ−∇2φ+ m2c2

~2 φ = 0 , c→∞===⇒ −∇2φ+ m2c2

~2 φ = 0 (4.27)

where we keep mc/~ fixed. Thus, the lowest order action, which is invariant under N = 2
Galilei superalgebra, has no time derivative for the scalar fields, and it is given by O(λ−2)
action

L(−2) = −∂aφ1∂aφ1−∂aφ3∂aφ3− 8ψ̄3γ
0∂tψ3− 8ψ̄1γ

a∂aψ3− 8ψ̄3γ
a∂aψ1 +S2

1 +S2
3 . (4.28)
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At order g = (1, 1), the invariant action is therefore given by the O(λ0) term in the expansion

L(0) = ∂tφ1∂tφ1 + ∂tφ3∂tφ3 − ∂aφ1∂aφ2 − ∂aφ3∂aφ4 − 8ψ̄1γ
0∂tψ1 − 8ψ̄3γ

0∂tψ4

− 8ψ̄4γ
0∂tψ3 − 8ψ̄1γ

a∂aψ4 − 8ψ̄2γ
a∂aψ3 − 8ψ̄4γ

a∂aψ1 − 8ψ̄3γ
a∂aψ2

+ S1S2 + S3S4 . (4.29)

As in the case of chiral multiplet for the N = 1 coadjoint Poincaré supersymmetry, the
higher-order fields such as φ2, φ4, ψ2, ψ4, S2 and S4 appear as Lagrange multiplier that
imposes the lowest order field equations given by the field equation of the Lagrangian L(−2).
This point is also relevant to the reducible structure of the multiplets, so let us be more
precise. Consider the variation of the action

δS =
∫

(Lower-order field equation) δ(higher-order field) + . . . , (4.30)

where the ellipses represent the variation of lower-order fields. This structure of the variation
has two important consequences. First, as the lower-order equations are covariant under
lower-order transformations, the higher-order transformation rules in the higher-order fields
must have the same differential structure as their ancestors. The only difference is that
the operators also have a matrix structure, taking the higher-order fields to lower-order
ones. Second, as the lower-order field equations are preserved, one can always consistently
truncate lower-order fields in the multiplet, thus the reducible structure. When this is
done, the higher-order fields become inert under higher-order transformations and become
identical to the lower-order ones.

5 Discussion

In this paper, we present a methodology to generate the matter multiplets of non-relativistic
algebras and coadjoint Poincaré algebra starting from the matter multiplets of the Poincaré
algebra itself, or its spacetime decomposition. The methodology relies on the fact that the
rigid limit of the transformation rules of local, off-shell matter multiplet on a flat background
can be performed by setting all fields of the off-shell supergravity multiplet to zero, except
for the vierbein and temporal vierbein. This fact allows us to develop an auxiliary scheme
that we only use these two fields, or their inverse, in the off-shell local description of the
multiplets to relate the flat indices to curved indices. Once this is achieved, we were able
to expand the commutator of covariant derivatives, [Dµ,Dν ] = −δ(Rµν), to determine
the transformation rules for matter multiplets of larger algebras by using the Lie algebra
expansion procedure.

As one of the key points of our procedure is that the truncation must occur at order
g = (N1, N1), it is not obvious how to use our methodology to find out the matter multiplets
of algebras of order g = (N1+1, N1), such as the extended Bargmann algebra. One candidate
could be that these algebras could appear as the order g = (N1, N1) algebras of some other
smaller algebra(s). For instance, in ref. [33], it was shown that the extended Bargmann
algebra is actually of order g = (1, 1) when the Nappi-Witten algebra is expanded instead of
a spacetime decomposed Poincaré superalgebra. One may hope that such smaller algebras
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can be obtained as a subalgebra of the Poincaré superalgebra in one higher dimension. In the
case of the bosonic part of the three-dimensional Nappi-Witten algebra, it is indeed the case.
However, it is not obvious if the supersymmetric part of the algebra follows. Furthermore,
when the light-cone decomposition is performed, one needs to mix the generators to obtain
the desired commutation relations for the non-relativistic algebra. This would alter the
physical definitions of the generators since they are deformed or completely changed. For
instance, in the case of the non-relativistic conformal extension of the extended Bargmann
superalgebra, which is a non-trivial extension of the Schrödinger supersymmetry [83–85],
the small algebra that one expands have the following definition for rotations [39]

j = 1
6P− + 1

6K+ −
2
3 Ĵ , (5.1)

where O± are the light-cone decomposition of operators, PA is the generators of four-
dimensional translations, KA is for four-dimensional special conformal transformations and
ĴAB is associated with the four-dimensional Lorentz transformations. These identifications
are very different from the spacetime decomposition where the lowest order generators
are associated with their standard differential operator definitions. In the case of light-
cone decomposition, it is no longer obvious if they make any physical sense, or even the
supersymmetry generators mean the usual supersymmetry in the sense that a sequential
application of SUSY operators generates diffeomorphisms.

The multiplets that we present here are reducible by the nature of Lie algebra expansion.
At this stage, we do not know if there can be irreducible ones. Nevertheless, this seems
to be an important next step in understanding the multiplet structure of non-relativistic
supersymmetry. Another natural question is that if we can expand local, off-shell matter
multiplets and actions as we did here for the global ones. As mentioned, this would require a
procedure that can give rise to off-shell non-relativistic supergravity to yield the necessary off-
shell background for the matter multiplets. We hope to address these questions in near future.
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