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1 Introduction

Recent years have witnessed enormous progress in computing and understanding analytic
structures of scattering amplitudes in QFT. These developments have greatly pushed the
frontier of perturbative calculations relevant for high energy experiments, and often they
offer deep insights into the theory itself and exhibit surprising connections with mathemat-
ics. An outstanding example is the N = 4 super-Yang-Mills theory (SYM), where one can
perform calculations that were unimaginable before and discover rich mathematical struc-
tures underlying them. For example, positive Grassmannian [1] and the amplituhedron [2]
have provided a new geometric formulation for its planar integrand to all loop orders.

On the other hand, the modern bootstrap program in perturbative QFT aims at com-
puting scattering amplitudes and other physical quantities by directly imposing analytic
structure and physical constraints, without ever needing Feynman diagrams or loop in-
tegrands. Again the perfect laboratory where very impressive perturbative orders have
been achieved is the planar N = 4 SYM amplitudes with n = 6, 7 [3–14] (see [15] for a
review). The key of the bootstrap program is the construction of a function space where
the amplitude lives: for n = 6, 7 (or more generally MHV and NMHV amplitudes with any
n) conjecturally it is the space of generalized polylogarithm functions, which depend on
3(n−5) dual conformal invariant (DCI) cross-ratios, after subtracting infrared divergences
e.g. by normalizing with Bern-Dixon-Smirnov (BDS) ansatz [16]. As another deep connec-
tion between amplitudes and mathematics, it has been realized in [17] that cluster algebras
of Grassmannian G(4, n) are directly relevant for the singularities of n-particle amplitudes,
whose kinematics can be parametrized by momentum twistor [18], or the space of G(4, n)
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mod torus action. More precisely, the so-called A-coordinates of G(4, n) cluster algebras
are related to symbol [19, 20] letters of amplitudes: the 9 letters of six-particle amplitudes
and 42 letters of seven-particle ones are nicely explained by A3 and E6 cluster algebras,
respectively.

Apart from the overall symbol alphabet, more refined restrictions on scattering am-
plitudes and Feynman integrals have proved to be crucial for the bootstrap program to
higher orders for n = 6, 7. The most basic ones include the physical discontinuity [21] and
the double discontinuity structure derived from the Steinmann relations [22, 23], which
have reduced possible first-two-entries to only 6 and 28 weight-two symbols for n = 6, 7,
respectively. Remarkably, the conjectural extended Steinmann (ES) relations, which ba-
sically extend Steinmann relations to higher multiple discontinuities, have been observed
to hold for amplitudes and integrals for n = 6, 7 [8, 9, 12]. These ES relations impose
similar constraints on any two consecutive entries of the symbol as Steinmann relations
on the first two, which have been explicitly checked for n = 6 (double-)pentagon ladders
to arbitrary loops (and some for n = 7) as well as n = 6 amplitudes (up to L = 7) and
n = 7 amplitudes (up to L = 4), which are normalized by BDS-like subtraction [24] and
two-loop n = 8 MHV amplitude with minimal subtraction [25].1 In these cases, the ES
relations can be alternatively formulated as cluster adjacency conditions [10, 29, 30]: only
A coordinates that belong to the same cluster (for A3 and E6 for n = 6, 7 respectively) can
appear adjacently in the symbol. As far as we know, ES relations/cluster adjacency has
remained (mysterious) conjectures, and it is natural to ask if they extend to amplitudes
and integrals for n ≥ 8. It is in particular highly desirable to apply it to finite Feynman
integrals to relatively high orders, as well as finite components of amplitudes, for higher
multiplicities; among other things, such relations can provide powerful constraints on the
function space for higher n just as what they have achieved for n = 6, 7. This is the main
question we hope to address in the paper.

Beyond n = 6, 7, Grassmannian cluster algebras for G(4, n) for n ≥ 8 become infinite,
and a certain truncation is needed to obtain a finite symbol alphabet. As already seen for
one-loop N2MHV, amplitudes with n ≥ 8 generally involve letters that cannot be expressed
as rational functions of Plücker coordinates of the kinematics G(4, n)/T ; more non-trivial
algebraic letters appear in computations based on Q̄ equations [31] for two-loop NMHV
amplitudes for n = 8 and n = 9 [32, 33], requiring extension of Grassmannian cluster
algebras to include algebraic letters. Solutions to both problems have been proposed using
tropical positive Grassmannian [34] and related tools for n = 8 [35–40] and n = 9 [41, 42],
as well as using Yangian invariants or the associated collections of plabic graphs [43–46].

On the other hand, N = 4 SYM has been an extremely fruitful laboratory for the
study of Feynman integrals (cf. [47–52] and references therein).The connections to cluster
algebras extend to individual Feynman integrals as well, e.g. the same A3 and E6 control
n = 6, 7 multi-loop integrals in N = 4 SYM [29, 49]. Cluster algebra structures have also
been discovered for Feynman integrals beyond those in planar N = 4 SYM [53] including

1Interesting constraints similar to extended Steinmann relations have been found for Feynman inte-
grals [26], form factors [27] and even the wave-function of the universe [28].
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a five-particle alphabet which has played an important role in recent two-loop computa-
tions [54–56]. The knowledge of alphabet and more refined information can be used for
bootstrapping Feynman integrals [50, 57] (see also [27]). In [58, 59], we have identified
(truncated) cluster algebras for the alphabets of a class of finite, dual conformal invariant
(DCI) [60, 61] Feynman integrals to high loops, based on recently-proposed Wilson-loop
d log representation [62, 63]. For ladder integrals with possible “chiral pentagons” on one or
both ends (without any square roots), we find a sequence of cluster algebras D2, D3, . . . , D6
for their alphabets, depending on n and the kinematic configurations; for cases with square
root, such as the n = 8 double-penta ladder integrals, we find a truncated affine D4 cluster
algebra which (minimally) contain 25 rational letters and 5 algebraic ones.

In this paper, we would like to use this rich collection of data for a systematic check
of extended Steinmann relations beyond n = 6, 7. Before proceeding, let us briefly list all
finite integrals we use as data in this paper. As the main example, we consider n = 8
double-penta ladder integral, I(L)

dp (1, 4, 5, 8) with four massless corners labelled by 1, 4, 5, 8,
up to L = 4 (whose alphabet contains 25 + 5 letters mentioned above). Its collinear limit
8 → 7 gives n = 7 I

(L)
dp (1, 4, 5, 7) with an alphabet of D4 cluster algebra (16 rational

letters). Simpler examples include penta-box ladder I(L)
pb up to L = 4 (alphabet is D3

cluster algebra) and the well-known box ladder I(L)
b to all loops (alphabet is D2 ∼ A2

1
cluster algebra).

Besides these ladder integrals up to n = 8, we will also use the most general two-
loop double-pentagon integrals computed in [63], which we denote as Idp(i, j, k, l). These
integrals become generic at n = 12 e.g. (i, j, k, l) = (1, 4, 7, 10) (depending on 13 variables)
whose alphabet has 164 rational letters and 5 multiplicative independent algebraic letters
for each of the 16 distinct square roots. For n = 8, we have e.g. Idp(1, 3, 5, 7) (depending
on 9 variables) whose alphabet has 100 rational letters and 2× 5 algebraic ones (with two
different square roots).

Idp(i, j, k, l) =

k

l

j

i

Remarkably, these integrals directly give IR finite components of two-loop NMHV ampli-
tudes to all multiplicities! More precisely, for non-adjacent i, j, k, l, the component χiχjχkχl
of the NMHV amplitude (after stripping off MHV tree)/Wilson loop is simply given by
Idp(i, j, k, l)−Idp(j, k, l, i); they represent the simplest class of NMHV components (while
most generic for large n), which are also free of square roots [64] (as first computed for
n = 8 and for higher n using Q̄ method [32, 33]).

In section 3, we will explicitly check ES relations and find positive answers for all these
finite Feynman integrals (up to L = 4) and two-loop NMHV (finite) amplitudes with n ≥ 8;
note that the latter provides all-multiplicity evidence for ES relations for finite component
amplitudes without the need of any subtraction/normalization. We will also confirm ES
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relations using the three-loop n = 8 MHV amplitudes obtained very recently using Q̄

equations by one of the authors and Chi Zhang [65]. Similar to the BDS-like subtraction
for n = 6, 7 case, we need such normalization for higher-point MHV amplitudes and in
particular for the case when n is a multiple of 4, such as n = 8, the BDS-like subtraction is
not defined and we need e.g. minimal subtraction. Note that for two-loop MHV amplitudes,
cluster adjacency, which is closely related to ES relations, has been checked in [66] using
Sklyanin bracket, which also requires minimal subtraction for n = 8. It is not at all obvious
to us that with the same subtraction, three-loop n = 8 MHV amplitude also satisfies ES
relations!

In all these cases except for Ipb and Idp(1, 4, 5, 7), we need to take into account algebraic
letters, and while most ES relations directly hold for the rational part, naively there is a
violation of ES relations in this part for remaining pairs which appear in cross-ratio of four-
mass kinematics; it is remarkable that by including the algebraic part which also depends
on such four-mass kinematics, the violation is cancelled and we have ES relations for the
full answer. Note that while ES relations can be imposed without explicitly referring to
the alphabet, it is more subtle to extend cluster adjacency to higher n whose alphabet also
contains algebraic letters; for rational ones, the so-called Sklyanin bracket [67] can be used,
and we will see that for all those rational letters which do not violate ES relations, we can
test that cluster adjacency is also satisfied.

In addition to ES relations which apply to all consecutive entries of the symbol, it is
well known that the first two entries in general and last two entries for MHV amplitudes
are not the same as before. As we have mentioned, given the physical discontinuity or
the first entry condition, Steinmann-satisfying first two entries are much more constrained
than subsequent pairs. In section 2, we will list all such (integrable) first-two-entries, which
amounts to having the weight-2 space of Steinmann-satisfying dilogarithm functions. We
list all such weight-2 functions for any n, in terms of Li2 and log log. As extracted from
the box functions, entries of the Li2 part will automatically DCI, while entries of log log
functions are simply x2

ij . We will give the general counting of these first-two-entries to all
n, and check this ansatz by all the data we have, including amplitudes and finite integrals.

In section 4 which has a different flavor than the rest of the paper, we will also provide
a list of all possible last two entries for MHV amplitudes up to 9 points. The reason we
study them is that last entries of MHV amplitudes have been known since [68] which can
be derived from Q̄ equations and have played an important role for the bootstrap program.
It is known again for n = 6, 7 that similar constraints can be derived for last two entries,
again by using Q̄ equations. We will explicitly go through the situations for n ≤ 9 and
get all possible A-coordinates pairs on the last-two-entries. Furthermore, for n = 7 we
reorganize the pairs into manifestly DCI integrable symbols, showing that there are 139
allowed combinations. We will see that numbers of the last-two-entries from Q̄ equations
remain very limited as n grows, leaving stronger constraints on the function space of MHV
amplitudes.
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2 First-two-entries from Steinmann relations

As a warm-up exercise, let us first present our conjecture for all possible first-two-entries of
integrals/amplitudes. The starting point is that physical discontinuities, or the first entries
of the symbol, for any amplitudes/integrals in planar N = 4 SYM, must correspond to
planar variables x2

a,b = 0; this is even true for any planar theory, and what is special about
SYM is the dual conformal symmetry which forces the first entries to be DCI combinations.
Note that out of all the n(n−3)/2 planar variables, which we write as 〈a−1ab−1b〉, n of
them are frozen variables (〈i i+1 i+2 i+3〉 for i = 1, . . . , n), thus we have n(n−5)/2 unfrozen
Plücker variables which correspond to diagonals of n-gon except for the n “shortest” ones.
Since we are interested in variables that are unfrozen, these are all we can have for the
first entry, and equivalently one can construct the same number of DCI combinations e.g.
vi,j := x2

i,jx
2
i+2,j+2/(x2

i,i+2x
2
j,j+2). For example, for n = 6, 7, these correspond to the well

known 3 and 7 first entries, and for n = 8 it is easy to see that we have 12 first entries,
which are given by x2

i,i+3 for i = 1, . . . , 8 and x2
i,i+4 for i = 1, . . . , 4 (or corresponding vi,i+3

and vi,i+4).
What about the first-two-entries? The most important constraint on the first-two-

entries is the Steinmann relations, which says that the double discontinuities taken in
overlapping channels of any amplitude should vanish. A convenient way to proceed is to
start at one loop, where all finite amplitudes/integrals can be expanded in terms of (finite
part of) box integrals. First we note that the only finite box integrals are the four-mass
ones; given four dual points xa, xb, xc, xd with a, b, c, d cyclically ordered and each adjacent
pair at least separated by 2, we have the (normalized) four-mass box integral

Ia,b,c,d(u, v) := Li2(1− z)− Li2(1− z̄) + 1
2 log

(
z

z̄

)
log(v) (2.1)

with u = ua,b,c,d = zz̄ , v = ub,c,d,a = (1− z)(1− z̄) , (2.2)

where ua,b,c,d := x2
a,bx

2
c,d/(x2

a,cx
2
b,d) and similarly for ub,c,d,a. It is straightforward to check

that Ia,b,c,d satisfies Steinmann relations as we will see in the next section. We can also go to
lower-mass cases but they suffer from infra-red (IR) divergences, and certain regularization
is needed. One way to preserve DCI is to introduce the DCI-regulator as in [69], but
we find that the resulting finite part of the lower-mass box integrals violate Steinmann
relations. More precisely, it is possible to write the Li2 part of lower-mass boxes in a
way that respects Steinmann relations, but the log log part does not, thus we will discuss
these two parts separately for them. Our main conjecture is that for finite integrals and
amplitudes to all loops, the first two entries that satisfy Steinmann relations can only be
extracted from such box functions where the log log part need to be treated separately.
In addition to the four-mass box cases, we will encounter the following Li2 functions for
three-mass and two-mass-easy boxes:2

Li2(1− 1/uc,a−1,a,b), Li2(1− 1/uc,a−1,a,c−1) (2.3)
2For two-mass-hard or one-mass boxes, only a constant Li2(1) can appear in this part; as we are listing

first-two-entries at the symbol level, we ignore such constant for now.
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where one can check that indeed Steinmann relations are satisfied: the second-entry that
can enter are just 1−1/uc,a−1,a,b and 1−1/uc,a−1,a,c−1. It is easy to count the total number
of four-mass boxes and such Li2 functions for lower-mass cases: there are

(n
4
)
box functions

and n(n−4) of them are two-mass-hard/one-mass boxes which only give Li2(1), thus we
have n(n−5)(n2 − n − 18)/24 such functions. For example, for n = 6, 7, there are 3 and
14 Li2 functions, which can be chosen to be Li2(1 − 1/u1,3,4,6) and its cyclic images and
Li2(1 − 1/u1,3,4,6), Li2(1 − 1/u1,3,4,7) and their cyclic images. Now for n = 8, we have 2
four-mass boxes, and 36 Li2 functions from lower-mass boxes, which we can choose to be
Li2(1− 1/u) with u in{

u1,3,4,6, u1,3,4,7, u1,3,4,8, u1,4,5,7, u1,4,5,8, u1,5,6,8, u2,4,5,1, u2,4,5,7, u2,4,5,8, u2,5,6,1,

u2,5,6,8, u2,6,7,1, u3,5,6,1, u3,5,6,2, u3,5,6,8, u3,6,7,1, u3,6,7,2, u3,7,8,2, u4,6,7,1, u4,6,7,2,

u4,6,7,3, u4,7,8,2, u4,7,8,3, u5,7,8,2, u5,7,8,3, u5,7,8,4, u5,8,1,3, u6,1,2,4, u6,8,1,3, u6,8,1,4,

u7,1,2,4, u7,1,2,5, u7,2,3,5, u8,2,3,5, u8,2,3,6, u8,3,4,6
}
.

Having fixed all possible Li2 part, we move to the log log part, and it is clear which of
them satisfy Steinmann relations:

log x2
i,j log x2

k,l , (i, j) ∼ (k, l) (2.4)

where (i, j) ∼ (k, l) means that the two diagonals (neither are the shortest ones) do not
cross each other. Naively these do not respect DCI, but as we have mentioned above such
x2
i,j can be converted to cross-ratios (with the help of frozen ones), which need to be done

carefully with respect to Steinmann relations. For example, for n = 6, 7, there are exactly
3 and 14 such log log functions respectively: log2 x2

i,i+3 with i = 1, 2, 3 for n = 6, and
log2 x2

i,i+3 and log x2
i,i+3 log x2

i+3,i+6 with i = 1, . . . , 7 for n = 7. For n = 8, we find 40
log(x) log(y) functions for (x, y) in{

(x2
1,4, x

2
1,4), (x2

1,4, x
2
1,5), (x2

1,4, x
2
1,6), (x2

1,4, x
2
4,8), (x2

1,4, x
2
5,8), (x2

1,4, x
2
4,7), (x2

1,5, x
2
1,5),

(x2
1,5, x

2
1,6), (x2

1,5, x
2
5,8), (x2

1,5, x
2
2,5), (x2

1,6, x
2
1,6), (x2

1,6, x
2
2,5), (x2

1,6, x
2
2,6), (x2

1,6, x
2
3,6),

(x2
3,8, x

2
3,8), (x2

3,8, x
2
4,8), (x2

3,8, x
2
5,8), (x2

3,8, x
2
3,6), (x2

3,8, x
2
3,7), (x2

3,8, x
2
4,7), (x2

4,8, x
2
4,8),

(x2
4,8, x

2
5,8), (x2

4,8, x
2
4,7), (x2

5,8, x
2
5,8), (x2

5,8, x
2
2,5), (x2

2,5, x
2
2,5), (x2

2,5, x
2
2,6), (x2

2,5, x
2
2,7),

(x2
2,6, x

2
2,6), (x2

2,6, x
2
2,7), (x2

2,6, x
2
3,6), (x2

2,7, x
2
2,7), (x2

2,7, x
2
3,6), (x2

2,7, x
2
3,7), (x2

2,7, x
2
4,7),

(x2
3,6, x

2
3,6), (x2

3,6, x
2
3,7), (x2

3,7, x
2
3,7), (x2

3,7, x
2
4,7), (x2

4,7, x
2
4,7)
}
.

For general n, it is straightforward to count that there are n(n−3)(n−4)(n−5)/12 such
log log functions. In total, there are n(n−5)(n2 − n + 5)/8 first-two-entries which can be
derived from box functions and satisfy Steinmann relations, and we conjecture that they are
all we need for finite integrals and Steinmann-respecting amplitudes. For example, we have
checked that in all two-loop n = 8 finite Feynman integrals in figure 1 and Idp(1, 3, 5, 7),
exactly these 78 first-two-entries for n = 8 can appear. Moreover, we have checked first-two
entries of minimally normalized of two-loop and three-loop MHV amplitudes for n = 8,
exactly all 78 first-two-entries appear.
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2
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45

6
7

Figure 1. The box ladder Ib, penta-box ladder Ipb and double-penta ladder Idp(1, 4, 5, 8) for n = 8.

3 Extended-Steinmann relations for integrals and amplitudes

As discussed in the last section, the Steinmann relations restrict first-two entries for ampli-
tudes or Feynman integrals. The extended Steinmann relations are just generalizing these
constraints to any two consecutive entries, thus restricting iterated discontinuity at any
depth. Let us first write these relations as follows: define a linear “discontinuity” map in
the space of symbols

Dk
x=c(a1 ⊗ · · · ⊗ an) := Discx=c(log ak) (a1 ⊗ · · · ⊗ âk ⊗ · · · ⊗ an), (3.1)

where we normalize the discontinuity map that computes the monodromy around x = c

such that Discx=c log(x− c) = 1. Then the extended Steinmann relations for a amplitude
or Feynman integral F of weight w are

Ds
x2

ij=0(Ds
x2

kl
=0(S(F ))) = 0 (3.2)

for any 1 ≤ s ≤ w− 1 and any two overlapping channels x2
ij , x2

kl, i.e. (ij) 6∼ (kl). For s = 1
this reduces to the Steinmann relations (the second D1

x2=0 acting on the second-entry of the
original symbol). Note that for s 6= 1, Ds

x=c of a integrable symbol may not be integrable,
so it’s not well-defined in the space of functions.

If any two letters of F do not share the same branch point, Discx=0(log(y)) = 0 for any
two distinct letters x and y, then Dk

x=0(F ) is given by clipping the k-th entry x off in the
symbol of F (after deleting all terms whose k-th entry is not x), and ES relations simply
become constraints of adjacent letters in the symbol. This is indeed how ES relations
are checked for BDS-like normalized amplitudes for n = 6, 7 (up to L = 7 and L = 4
respectively) as well as certain Feynman integrals (such as n = 6 double-pentagon ladders).
Note that this is always the case when the alphabet contains only rational letters, which
cannot share any branch point since by definition they are multiplicative independent. For
instance, we have also checked the double-penta ladder integrals I(L)

dp (1, 4, 5, 7) with n = 7
and the penta-box ladders I(L)

pb with n = 8 up to L = 4, and find that they indeed satisfy
ES relations in exactly the same way as finite integrals for n = 6, 7.

Extended Steinmann relations with algebraic letters. However, generally ampli-
tudes or Feynman integrals for n ≥ 8 involve square roots, and algebraic letters may share
the same branch point x2

ij = 0, such that extended Steinmann relations cannot be directly
formulated as constraints on which letters can appear next to each other in the symbol. Let
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us illustrate this phenomenon with the simplest case: we consider the Steinmann relations
of (normalized) four-mass box function I2468:

S(I2468) = 1
2

(
u⊗ 1− z̄

1− z + v ⊗ z

z̄

)
,

where
u = x2

24x
2
68

x2
26x

2
48

= zz̄, v = x2
46x

2
82

x2
26x

2
48

= (1− z)(1− z̄). (3.3)

The logarithms of these variables share 4 branch points x2
24, x

2
68, x

2
26, x

2
48 = 0, and only

x2
26, x

2
48 = 0 are two overlapping channels (the two diagonals cross each other), and now

we consider the Steinmann relation for this pair.
Near the branch point x2

48 = 0,

1
zz̄

= u−1 = x2
26x

2
48

x2
24x

2
68
∼ 0 and 1

(1− z)(1− z̄) = v−1 = x2
26x

2
48

x2
46x

2
82
∼ 0,

so z−1, (1−z)−1 ∝ x2
48 or z̄−1, (1− z̄)−1 ∝ x2

48 depending on the region of kinematics. Here
we choose the second one, and then

Discx2
48=0 log

(
z

z̄

)
= 1, Discx2

48=0 log
(1− z̄

1− z

)
= −1.

Therefore, we see that algebraic letters can contribute to the discontinuity of a physical
channel, and we can easily verify the Steinmann relation

D1
x2

48=0D1
x2

26=0S(I2468) = 1
2((−1) · (−1) + (−1) · 1) = 0

and similarly D1
x2

26=0D1
x2

48=0S(I2468) = 0.

A direct generalization of four-mass box is the box-ladder I(L)
b , which is the first

example with square roots for checking extended Steinmann relations. The L-loop box-
ladder function [70, 71] has a well-known expression:

I
(L)
b (α, ᾱ) =

2L∑
j=L

j![− log(αᾱ)]2L−j

L!(j − L)!(2L− j)! [Lij(α)− Lij(ᾱ)] , (3.4)

where α and ᾱ are defined by α = z
z−1 , ᾱ = z̄

z̄−1 . Note the alphabet of S(I(L)
p ) for L ≥ 1

is simply D2:
{α, 1− α, ᾱ, 1− ᾱ},

and the only letter with non-zero discontinuity around the branch point x2
48 = 0 or x2

26 = 0
is 1−α or 1− ᾱ depending on the region of kinematics. Thus we have seen the advantage
of using α, ᾱ variables: the extended Steinmann relations for the box-ladder are simply the
statement that there are no two consecutive 1 − α or 1 − ᾱ in the symbol of I(L)

p (α, ᾱ).
This is quite clear from the expression eq. (3.4) that there is no two consecutive 1 − α in
S(Lij(α)) = −(1 − α) ⊗ α ⊗ · · · ⊗ α and similarly for ᾱ (obviously no contribution from
powers of log(αᾱ)).
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Next we move to the class of integrals with more non-trivial algebraic letters, namely
double-pentagon ladder I(L)

dp (1, 4, 5, 8), which have been computed up to L = 4 with 25
rational letters and 5 independent algebraic letters [59]. First of all, since the algebraic
letters only contain the square root as that of four-mass box I2468, which only involve
one pair of overlapping channels x2

26 and x2
48 as above. For any other pair of overlapping

channels x2
ij and x2

kl, the extended Steinmann relations simply mean that rational letters
〈i−1 i j−1 j〉 and 〈k−1 k, l−1 l〉 are not adjacent in the “rational” part of the symbol of
I

(L)
dp (1, 4, 5, 8). This is indeed the case as we have checked through L = 4.

What we have found is that the only minor violation in the “rational” part involves
rational letters 〈1256〉 and 〈3478〉 in consecutive entries; in fact, they have only appeared
next to each other at second and third entries. This is good news since the “irrational”
part only contains algebraic letters at these two entries [59], which also contribute to
double discontinuities involving this pair. Recall that the 5 algebraic letters are of the
form (z − a)/(z̄ − a) for

a = 0, 1, 〈1234〉〈1568〉
〈1256〉〈1348〉 ,

〈1234〉〈4578〉
〈1245〉〈3478〉 ,

(
1− 〈1578〉〈3456〉
〈1345〉〈5678〉

)−1

with z, z̄ defined as in eq. (3.3). Near the branch point 〈1256〉 ∝ x2
26 ∼ 0, discontinuities

of algebraic letters are given by

Discx2
26=0 log

(
z − a
z̄ − a

)
=

±1, if a−1 6∝ x2
26,

0, if a−1 ∝ x2
26

,

where the choices of ±1 depend on the kinematic region, but they should be the same
on a given region. Similarly, we can calculate Discx2

48=0 log of these algebraic letters.
Remarkably, after taking into account the contribution from “irrational” part, we find that
the double discontinuity (at second and third entry) indeed vanishes, thus I(L)

dp (1, 4, 5, 8)
satisfy the extended Steinmann relations (at least up to L = 4)!

So far we have focused on integrals up to n = 8, but it is straightforward to also check
ES relations for higher-point integrals/amplitudes. The two-loop double-pentagon integrals
Idp(i, j, k, l) are all we need for MHV amplitudes (after regularizing divergences) as well as
those finite components of NMHV amplitudes. Again the “rational” part of Idp(i, j, k, l)
contains certain violation of ES relations at second and third entries, which require con-
tributions from “irrational” part. What we find is that for each of the 16 four-mass-box
square roots (depending on four dual points xa, xb, xc, xd),3 the double discontinuity around
x2
a,c = 0 and x2

b,d = 0 is again cancelled nicely. Thus Idp(i, j, k, l) satisfies ES relations in
exactly the same way.

An immediate consequence of this observation is that for n ≥ 8, all ηiηjηkηl components
of two-loop NMHV amplitudes with non-adjacent i < j < k < l also satisfy ES relations,
since any such component is given by Idp(i, j, k, l) − Idp(j, k, l, i). In fact, these finite
components are absent of algebraic letters, so ES relations for these components is nothing

3For Idp(i, j, k, l), generically we have 16 choices for the dual points (xa, xb, xc, xd) with a = i, i+1,
b = j, j+1, c = k, k+1, d = l, l+1.
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but the absence of adjacent unfrozen letters 〈a−1 a b−1 b〉 and 〈c−1 c d−1 d〉 for (a, b) ∼
(c, d). This is a direct confirmation of ES relations to all multiplicities for finite amplitudes
without any subtraction.

Three-loop MHV amplitudes and cluster adjacency. Given that finite double-
pentagon integrals satisfy ES relations, so do two-loop MHV amplitudes if one can subtract
IR divergences in a suitable way. In [66], cluster adjacency conditions have been checked
for amplitudes with BDS-like subtraction or minimal subtraction when n is a multiple of
four, which imply ES relations when applied to letters of the form 〈i−1ij−1j〉. Here we
move to the three-loop n = 8 MHV amplitude, whose symbol has only been computed very
recently [72] using Q̄ equations and two-loop n = 9 NMHV amplitudes. This was a very
non-trivial calculation: the raw data consists of roughly 109 terms and further simplification
is still underway. The alphabet consists of 204 rational letters and 2×9 algebraic ones, and
quite remarkably it still has the nice feature that algebraic letters only appear at second
and third entries, just as two-loop NMHV amplitudes and ladder integrals.

First we need to convert this result to the one with minimal subtraction:

S(E(3)
8 ) = S

(
R

(3)
8 + F 3

8
6 +R

(2)
8 F8

)
,

where R(L)
8 are L-loop BDS-normalized amplitudes and F8 is defined in the appendix A.

Despite the huge size of the symbol, we can check ES relations exactly as before, and we
find the same phenomenon as in I

(L)
dp and Idp. The rational part of S(E(3)

8 ) naively do
not satisfy the extended Steinmann relations, which are broken at overlapping channels
for each of the two four-mass boxes. We have only found such violation in the second and
third entries, which is nicely in accordance with the position of algebraic letters. Quite
remarkably, once we put these two parts together, the whole S(E(3)

8 ) satisfies the extended
Steinmann relations as in previous examples!

Note that for n = 6, 7 cases, it is remarkable that ES relations turn out to be equiva-
lent to cluster adjacency conditions, which states that any two adjacent letters as cluster
variables of the finite cluster algebra G(4, n) must belong to the same cluster. Given that
all integrals and amplitudes we have checked satisfy ES relations, it is natural to ask if they
also satisfy cluster adjacency conditions. Note that for n ≥ 8, the relation between cluster
adjacency and ES relations is unclear, except that for rational letters the latter follow from
a special case of the former. It has been proven [73] that two unfrozen Mandelstam-type
A-coordinates 〈i−1ij−1j〉 and 〈k−1kl−1l〉 are cluster adjacent if and only if (i, j) ∼ (k, l)
in the n-gon.

However, starting from n = 8, there are two main obstructions for studying cluster
adjacency. First, it is known that not all letters are cluster variables of G(4, n): algebraic
letters or even more complicated functions can appear. Second, G(4, n) for n ≥ 8 is no
longer a finite cluster algebra, which has infinite cluster variables, which makes it difficult
to check whether a rational letter is a cluster variable and whether two cluster variables
belong to a same cluster.
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In [66], Sklyanin bracket [67] was introduced to resolve the second problem. Sklyanin
bracket is a anti-symmetric Poisson bracket of two functions on G(4, n). Suppose we
parametrize G(4, n) by

Z =


1 0 0 0 y1

5 . . . y
1
n

0 1 0 0 y2
5 . . . y

2
n

0 0 1 0 y3
5 . . . y

3
n

0 0 0 1 y4
5 . . . y

4
n

 ,
then the Sklyanin bracket of two coordinates are given by{

yIa, y
J
b

}
= 1

2(sign(J − I)− sign(b− a))yJa yIb , (3.5)

and it is defined for any two functions by

{f(y), g(y)} =
n∑

a,b=5

4∑
I,J=1

∂f

∂yIa

∂g

∂yJb

{
yIa, y

J
b

}
. (3.6)

The main conjecture from [66] is: two A-coordinates a1, a2 exist in the same cluster (thus
cluster adjacent) if and only if their Sklyanin bracket {log a1, log a2} is an integer or a half
integer, i.e. {log a1, log a2} ∈ 1

2Z.
For the first problem, since algebraic letters are no longer cluster A-coordinates or

X -coordinates, we do not know a notion of cluster adjacency concerning them. Therefore,
this check can only be performed for all pairs of rational letters. Before we apply it to
more non-trivial cases, we first use this conjecture to check cluster adjacency conditions
of I(L)

pb , whose DCI alphabet forms a D3 cluster algebra. By expanding the alphabet in
A-coordinates, we find that it becomes the union of{

〈812(67) ∩ (345)〉, 〈6781〉, 〈1467〉, 〈4567〉, 〈8124〉, 〈1234〉, 〈1345〉
}

and {
〈1(28)(34)(67)〉, 〈1(28)(45)(67)〉, 〈4(18)(35)(67)〉, 〈4(12)(35)(67)〉,
〈1267〉, 〈3467〉, 〈1348〉, 〈1458〉, 〈1245〉

}
.

By computing the Sklyanin brackets for all pairs of letters, we find that only the following
15 pairs, which are exclusively contained in the second list, are not in 1

2Z, which means
that they cannot appear next to each other in the symbol of I(L)

pb :

(〈1(28)(34)(67)〉, 〈4(81)(35)(67)〉), (〈1(28)(34)(67)〉, 〈4(12)(35)(67)〉),
(〈1(28)(34)(67)〉, 〈1458〉), (〈1(28)(34)(67)〉, 〈1245〉),
(〈1(28)(45)(67)〉, 〈4(81)(35)(67)〉), (〈1(28)(45)(67)〉, 〈4(12)(35)(67)〉),
(〈1(28)(45)(67)〉, 〈3467〉), (〈4(18)(35)(67)〉, 〈1267〉), (〈4(12)(35)(67)〉, 〈1348〉),
(〈4(12)(35)(67)〉, 〈1458〉), (〈1267〉, 〈1348〉), (〈1267〉, 〈1458〉), (〈3467〉, 〈1458〉),
(〈3467〉, 〈1245〉), (〈1348〉, 〈1245〉) .
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We have checked this is indeed the case up to L = 4. Similar computation shows that the
alphabet of ILdp(1, 4, 5, 7) contains 7 + 16 A-coordinates which are{

〈1234〉, 〈1247〉, 〈1267〉, 〈1345〉, 〈1567〉, 〈3456〉, 〈4567〉
}

and{
〈1(27)(34)(56)〉, 〈4(12)(35)(67)〉, 〈5(12)(34)(67)〉, 〈6(12)(34)(57)〉, 〈7(12)(34)(56)〉,
〈1245〉, 〈1246〉, 〈1256〉, 〈1257〉, 〈1346〉, 〈1347〉, 〈1456〉, 〈1457〉, 〈1467〉, 〈3457〉, 〈3467〉

}
Very nicely, we find again that 54 pairs of letters have Sklyanin brackets that are not in
1
2Z, which only concern the 16 letters in the second list. These are the pairs that cannot
appear next to each other in the symbol S(ILdp(1, 4, 5, 7)), which we have also confirmed
explicitly up to L = 3.

Note that a priori these cluster adjacency conditions based on (conjectural) Sklyanin
bracket are different from the notion of adjacency for any pair of F polynomials in a cluster-
algebra alphabet as studied in [59]. However, we find that for the D4 case, the latter is a
consequence of the former! In other words, any two F polynomials cannot appear to each
other if and only if they appear in a forbidden pair of A coordinates (with Sklyanin bracket
not in 1

2Z).
Next we apply this conjecture to check cluster adjacency conditions of integrals and

amplitudes with algebraic letters. For I(L)
dp (1, 4, 5, 8), there is a pair 〈1256〉 and 〈3478〉 that

appear in the second and third entries, which naively violate cluster adjacency. However,
this must be an artifact of focusing on rational letters only, and the naive violation should
be cancelled by contributions from algebraic letters (though we have not defined adjacency
for the latter) similar to the case for ES relations. The non-trivial observation is that all
other pairs of A-coordinates in consecutive entries of the symbol indeed have brackets in
1
2Z, thus cluster adjacency is respected for them according to the conjecture.

We can proceed and check cluster adjacency conditions for finite integrals and compo-
nent amplitudes, as well as three-loop n = 8 MHV amplitudes with minimal subtraction.
Remarkably, except for the letters corresponding to overlapping channels in four-mass boxes
at entry (2, 3), all other pairs of A-coordinates in consecutive entries have brackets in 1

2Z.
Provided the conjecture [66], we have thus confirmed cluster adjacency conditions for all
cases we considered, except for the obvious violation which should be saved by algebraic
letters. Naively these cluster adjacency conditions seem much stronger than ES relations
but this can change if we impose them for bootstrap; we leave a systematic study of ES rela-
tions/cluster adjacency for octagon bootstrap (including algebraic letters), to future works.

4 Last-two-entries for MHV amplitudes from Q̄ equations

Finally, let us turn to the discussion of the last-two-entries for L loops n-points MHV
amplitude. Unlike extended Steinmann relations which are expected to hold for any (finite)
integrals and amplitudes, a prior we do not expect such universal constraints on the last
entry (let alone last two entries). However, for MHV amplitudes with BDS normalization,
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it has been known since [74] that dual supersymmetry Q̄ restricts the last entry to be of the
form 〈̄ij〉 (n(n−5) unfrozen variables in total), and by studying the r.h.s. of Q̄ equations
for MHV amplitude a bit more carefully, we can fix the last two entries as well.

We will first quickly review basic ingredients of Q̄ formalism [31], which offers an
efficient method to calculate amplitudes of higher loops from the lower-loop ones. Equipped
with the enumeration of all possible last entries (times R invariants) of NMHV [33], it
becomes possible to use Q̄ equations to determine all possible last-two-entries for MHV
amplitudes. To do so, it is important to use the symbol integration algorithm presented
in [31], which computes the symbol of a d log integral of an integrable symbol. This allows
us to convert those “last entry × R invariants” into last-two-entries for MHV amplitude.
This can be done for any n, but we will mostly focus on n = 6, 7, 8, 9, which suffices to
illustrate our method.

As proposed in [31], Q̄ anomaly of the L-loop BDS-normalized S-matrix R(L)
n,k is related

to those of higher n and k but lower L, according to the perturbative expansion of the
Q̄ equation. Since the kernel of Q̄ is trivial for k = 0, 1, after the anomaly Q̄AaR

(L)
n,k is

determined, we can directly replace Q̄Aa by d to get the total derivative dR(L)
n,k , hence the

symbol S(R(L)
n,k). This makes Q̄ equation a powerful tool for computing NMHV (MHV)

amplitudes from N2MHV (NMHV) amplitudes, and even more for determining (all-loop)
last entries. The Q̄ anomaly of MHV amplitudes can be obtained from (n+1)-point NMHV
amplitudes:

R
(L)
n+1,1 =

∑
1≤j<k<l<m≤n

[j k l m n+1]F (L)
j,k,l,m(Z) (4.1)

where F (L)
j,k,l,m(Z) are weight 2L multi-polylog functions. According to the Q̄ equations,

after taking the collinear limit Zn+1 = Zn − εZn−1 + CετZ1 + C ′ε2Z2 with C = 〈n−1n23〉
〈n123〉

and C ′ = 〈n−2n−1n1〉
〈n−2n−121〉 in R

(L)
n+1,1, formally we are performing integrals as

Resε=0

∫
d2|3Zn+1[j k l m n+1]F (ε, τ) (4.2)

which allows us to obtain Q̄ (thus total differential) of n-point MHV amplitudes. General
F (ε, τ) will lead to divergences when taking the residue at ε = 0. However, such divergences
cancel in the combination of r.h.s. of Q̄ equations, and all we need are finite part of F ’s in
the limit ε → 0. (for general L we do not know or need explicit form of these F ’s). The
upshot is [31]:

Resε=0

∫ τ=∞

τ=0
d2|3Zn+1[i j k nn+1]F (ε, τ)

=
∫ ∞

0

(
d log 〈Xij〉

〈Xjk〉
Q̄ log 〈n̄j〉

〈n̄i〉
+ d log 〈Xjk〉

〈Xik〉
Q̄ log 〈n̄k〉

〈n̄i〉

)
F (ε, τ)

∣∣∣∣
ε→0 finite part

(4.3)
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for i, j, k 6= 1, n−1, and similarly

[i j n−1 n n+1]→
∫

d log 〈Xij〉
〈Xn−2n−1〉Q̄ log 〈n̄j〉

〈n̄i〉

[1 i j n n+1]→
∫

d log 〈Xij〉
〈X12〉Q̄ log 〈n̄j〉

〈n̄i〉

[1 i n−1 n n+1]→
∫

d log 〈Xn−2n−1〉
〈X12〉 Q̄ log 〈n̄j〉

〈n̄i〉
(4.4)

with X = n ∧B and ZB = Zn−1 − CτZ1. The integrals vanish for other R invariants.
Practically, these integrations are performed at the symbol level following the algorithm

presented in the appendix of [31]. Last entries of the integrand together with the d log
form fully determine the last-two-entries for the result. Nicely, all last entries for NMHV
amplitudes have been given in [33], which we list in appendix B for completeness. This is
our starting point for computing all possible last-two-entries for MHV amplitudes.

Now we present some details of our calculation for possible last-two-entries of n-
point MHV amplitudes. Following (4.2) and (4.3), only terms proportional to [i j k nn+1]
(1 ≤ i < j < k ≤ n−1) contribute non-trivial results after performing the Grassmannian
integration (d3χ)A and taking the residue at ε = 0. Hence we firstly list all the possible
pairs [i j k nn+1]F (ε, τ) ⊗ w(ε, τ), where [i j k nn+1]w(ε, τ) are NMHV last entries and
F (ε, τ) are arbitrary unknown entries, both after applying the collinear limit. Secondly, we
perform the Grassmannian integration over the Yangian part of these pairs following (4.2)
and (4.3). To take the finite part at ε = 0, we can simply set overall εk factors of w(ε, τ) to
1 and other ε to 0. Finally, we integrate τ on R≥0, obtaining a list of symbols associated
with Q̄ log 〈n̄i〉〈n̄j〉 . We record last-two-entries of this list, which gives an all-loop prediction
for MHV amplitudes.

n = 6. We first take n = 6 MHV as an illustration. There are 10 R-invariants of 7-
point NMHV which give non-trivial contributions. For instance, [13567] is associated
with Q̄ log〈n̄i〉, which are in the first class of NMHV last entries, and a non-trivial
one Q̄ log 〈3(42)(56)(71)〉

〈2345〉〈1367〉 is in the second class. For the latter one, we take [13567] →
d log 〈X45〉

〈X12〉Q̄ log 〈6̄2〉
〈6̄3〉 and parametrize Z7 in collinear limit. 〈3(42)(56)(71)〉

〈2345〉〈1367〉 then factorizes out
an 1/ε factor which is set to 1 while other ε→ 0. Finally, after performing the τ -integration
we get eight possible pairs

{〈1236〉, 〈2346〉, 〈1235〉, 〈2345〉} ⊗ Q̄ log 〈6̄2〉
〈6̄3〉

as last-two-entries for n = 6 MHV amplitudes from this contribution.
Following the same logic and collecting all possible contributions, we find that Q̄

equations in fact leave no constraints for possible last-two-entries of n = 6, i.e. for each
〈̄ij〉 as last entries, all 15 A-coordinates are allowed to appear before it. It will not be that
case for higher n however, and we will see that the Q̄ equation impose stronger constraints
as n increases.
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n = 7. For 7-point MHV amplitudes, there are two independent unfrozen last entries up
to cyclicity, which are chosen as 〈1367〉 and 〈1467〉. Naive computation shows that there
are both 35 possible A-coordinates allowed to appear before them. However, since 〈1367〉
and 〈1467〉 are related by the dihedral symmetry {3 ↔ 4, 2 ↔ 5, 1 ↔ 6}, letters before
them should also preserve such a symmetry. Thus we need to delete all those A-coordinates
before 〈1367〉 that are not dihedral images of those before 〈1467〉 and vice versa, ruling out
10 letters in each list.

Moreover, for 7-point amplitudes we have the canonical choice of the 42 symbol letters
in the DCI form

a11 = 〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉 , a21 = 〈1234〉〈2567〉

〈1267〉〈2345〉 , a31 = 〈1567〉〈2347〉
〈1237〉〈4567〉 ,

a41 = 〈2457〉〈3456〉
〈2345〉〈4567〉 , a51 = 〈1(23)(45)(67)〉

〈1234〉〈1567〉 , a61 = 〈1(34)(56)(72)〉
〈1234〉〈1567〉 , (4.5)

together with all aij from cyclically relabeling ai1 by j−1 times. Each aij contains only
one unfrozen A-coordinates, such that every pair of unfrozen letters is in one-to-one corre-
spondence with a pair like aij ⊗ akl. Hence we can recover DCI by simply replacing each
unfrozen A-coordinates by its corresponding aij . Note that the 14 unfrozen last entries
〈̄ij〉 correspond to {a2i, a3i} for i = 1, . . . , 7.

In this way, we find exactly 25 allowed letters before a22 = 〈1367〉〈2345〉
〈1237〉〈3456〉 , which are

{a11, a12, a15, a16, a17, a2i, a3i, a42, a44, a46, a47, a56, a57}

with i = 1, . . . , 7. Letters before other last entries can be obtained by cyclic rotation
and dihedral symmetries. In total there are 350 DCI pairs and we have checked that our
prediction matches the explicit results of 7-point MHV amplitudes up to L = 3, for both
the BDS-subtracted amplitude [6] and the one after BDS-like subtraction [9]. Note that
our list does not preserve extended Steinmann relations since we are using standard BDS-
subtraction. However,at n = 6, 7 the BDS-like subtraction [24] only reduces the possible
pairs for last-two-entries comparing to BDS-subtraction. Therefore our prediction still
holds for amplitudes with BDS-like subtraction.

Furthermore, we reorganize these 350 weight-2 symbols by applying the integrability
condition, and conclude that there are 139 independent functions. (13× 14)/2 + 14 = 105
of them are of the form log(x) log(y), where x, y ∈ {a2i, a3i}i=1,...,7. And the remaining 34
functions live in 5 cyclic orbits, whose initial seeds can be chosen as{

Li2
(

a31
a25a26

)
,Li2

(
a21

a33a34

)
,Li2(a21a35),Li2(a21a32),Φ

}
where the symbol of the last one reads:4

S(Φ) = −(a31a33)⊗ a25 + a36 ⊗ (a21a23) + a41 ⊗
a31a36

a21a23a26
− a43 ⊗

a31a33
a21a23a25

4The weight-2 function Φ can be easily obtained but we suppress the expression since it is much longer
than the symbol.
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We remark that the length of the last orbit is only 6 (thus there are 7 + 7 + 7 + 7 + 6 = 34
functions in total), since after cyclic rotation 6 times the image turns out to be a linear
combination of the first 6 functions in this orbit. This gives all integrable weight-2 symbols
for the last two entries.

n ≥ 8. It is straightforward to extend the computation to any n, but since the simplifi-
cation of the A-coordinates becomes more and more complicated, the list becomes more
and more intricate as n grows. We will not attempt to find such lists for all multiplicities,
but content ourselves with last-two-entries for n = 8, 9, which are generic enough. Note
that since we do not have a confirmed alphabet beyond n = 6, 7, it is not clear how they
can be organized into DCI letters or how to apply integrability conditions without any
ambiguities.

For n = 8, we have two independent unfrozen last entries 〈1378〉 and 〈1478〉 up to cyclic
shift and dihedral symmetry {3 ↔ 4, 2 ↔ 5, 1 ↔ 6, 7 ↔ 8}; explicit computation shows
that there are 45 unfrozen A-coordinates before 〈1378〉 and 46 before 〈1478〉, which are
recorded in the appendix C. Note that this represents a significant reduction of the weight-2
symbols in the last two entries, as naively there can be order 200 letters for any last entry.
We have checked that our prediction holds for 8-point BDS-subtracted amplitudes up to
L = 3 [72].

For n = 9 there are also 2 independent unfrozen last entries, e.g. 〈1389〉, 〈1489〉 up
to cyclic shift and dihedral symmetries. There are 70 allowed unfrozen letters before
〈1389〉 and 71 before 〈1489〉. As discussed in [41, 42] using the tropical Grassmannian,
naively there can be thousands of rational letters before each last entry. Our computation,
however, drastically reduces this number, showing that the possible pairs are in fact very
limited. Thus we have seen a significant reduction of function space for n > 6 from these
last-two-entry conditions, and the fraction of reduction grows rapidly with n.

5 Conclusion and discussions

In this paper, we have provided further evidence that extended-Steinmann relations hold
for individual (finite) Feynman integrals as well as scattering amplitudes beyond n = 6, 7,
including various ladder integrals up to four loops, two-loop double-pentagons and NMHV
finite components to all multiplicities, as well as three-loop n = 8 MHV amplitudes with
minimal subtraction. In all cases with algebraic letters, the contribution from algebraic
letters is needed for ES relations to hold, and we have also checked cluster adjacency for
rational letters in terms of Sklyanin bracket. For the first two entries, we have also listed
all n(n−5)(n2−n+ 5)/8 dilogarithm functions which satisfy Steinmann relations. Finally,
for MHV amplitudes we have computed all possible last two entries using Q̄ equations,
which provide further constraints on their function space, as summarized in the table 1
above for up to n = 9.

Our result on ES relations provides new evidence for their validity for Feynman inte-
grals and amplitudes beyond n = 6, 7: unlike MHV amplitudes where ES relations only
hold with suitable normalization, individual Feynman integrals and finite components of
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n n = 6 n = 7 n = 8 n = 9
independent (unfrozen) 〈n̄i〉 〈1356〉 〈1367〉 〈1378〉 〈1478〉 〈1389〉 〈1489〉
num. of allowed (unfrozen) letters 9 25 45 46 70 71

Table 1. Numbers of last-two-entries for n ≤ 9 MHV amplitudes.

non-MHV amplitudes do not require any subtraction thus ES relations hold in a “cleaner”
way; on the other hand, it is already non-trivial that ES relations hold for two-loop MHV
amplitudes with minimal subtraction [66], and we find it remarkable that they hold for
three-loop n = 8 amplitudes in the same normalization. Our result has further supported
that ES relations might be a more general property for uniform-transcendental integrals in
planar, massless QFT. It would be highly desirable to understand these relations better,
especially for divergent integrals/amplitudes where subtraction or regularization is needed.
It would be fascinating to see if one could identify some underlying principle responsible
for these remarkable relations.

Another mysterious property of some Feynman integrals and scattering amplitudes (in
and beyond planar N = 4 SYM) is that their symbol alphabet seems to fit into a cluster
algebra (or truncated ones [59] with algebraic letters). In the presence of such cluster al-
gebras, ES relations become closely related to cluster adjacency conditions, and we have
established cluster adjacency conditions using A-coordinates in all these integrals and am-
plitudes, modulo subtlety with algebraic letters. It would be highly desirable to formulate
similar (truncated) cluster adjacency conditions including the algebraic letters, and to un-
derstand connections with ES relations e.g. for n = 8 case. These ES relations/cluster
adjacency can be used as extremely powerful constraints for bootstrap, at least for n = 8
case which seems within reach. The starting point is the space of weight-2 functions we have
constructed, and it would be interesting to continue building ES/adjacency-satisfying space
at higher weights, which can be used for bootstrapping multi-loop amplitudes/integrals for
n = 8.

Last but not least, although we have focused on studying ES relations for multiple
polylogs (MPL) at the symbol level, as constraints on iterative discontinuities they apply
to more general functions such as elliptic MPL. For example, it is clear that the fully massive
double-box integral (finite component of two-loop n = 10 N3MHV amplitudes) [75] satisfies
Steinmann relations, and we leave the study of ES relations for integrals/amplitudes beyond
MPL to future works.
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A Minimally-normalized amplitude

The minimally-normalized (MHV) amplitude En is defined by

En = Rn exp
(Γcusp

4 Fn

)
,

where Rn is the BDS-normalized amplitude, then

En = (1 +R(2)
n g4 +R(3)

n g6 + · · · ) exp
(
(g2 − 2ζ(2)g4 + 22ζ(4)g6 + · · · )Fn

)
= 1 + Fng

2 + g4
(
R(2)
n + F 2

n

2 − 2ζ(2)Fn

)

+ g6
(
R(3)
n + F 3

n

6 − 2ζ(2)F 2
n + (22ζ(4) +R(2)

n )Fn
)

+ · · ·

The function Fn is defined by

Fn =
n∑
i=1

[
f(i) +

⌊
n−3

2

⌋∑
j=2

h(i, j)
]

+
n∑
i=1

g(i, n/2) n even;
0 n odd,

where

f(i) = 3
2ζ(2) + 1

2 log2
(
x2
i−1,i+2
x2
i,i+2

)
− log

(
x2
i,i+2
x2
i,i+3

)
log

(
x2
i+1,i+3
x2
i,i+3

)
,

g (i, k) = 1
2 Li2

(
1−

x2
i−1,i+k−1x

2
i,i+k

x2
i−1,i+kx

2
i,i+k−1

)
+ 1

2 log2
(
x2
i,i+k−1
x2
i,i+k

)
− 1

4 log2
(
x2
i−1,i+k
x2
i,i+k−1

)

− 1
2 log

(
x2
i−1,i+k−1x

2
i,i+k

x2
i−1,i+kx

2
i,i+k−1

)
log

(
x2
i−1,i+k
x2
i,i+k−1

)
,

h(i, j) = Li2

(
1−

x2
i−1,i+jx

2
i,i+j+1

x2
i−1,i+j+1x

2
i,i+j

)
+ log

(
x2
i,i+j+1

x2
i−1,i+j+1

)
log

(
x2
i,i+j+1
x2
i,i+j

)

where log parts break dual conformal symmetry. For our purpose, we write the symbol of
En from that of Rn and Fn as

S(E(1)
n ) = S(Fn), S(E(2)

n ) = S
(
R(2)
n + F 2

n

2

)
, S(E(3)

n ) = S
(
R(3)
n + F 3

n

6 +R(2)
n Fn

)
.

B Last-entries for all-multiplicity NMHV amplitudes

Let us summarize all possible last entries (dressed with Yangian invariants) for n-point
NMHV amplitudes [33], where we have three classes (note the second term on the right
hand side of Q̄ equations also belongs to the first class):

1. (n−4)
(n−1

4
)
−
(n−3

2
)
last entries:

[abcde]Q̄ log 〈n̄i〉
〈n̄i〉

, (B.1)
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2. 3
(n−3

4
)
last entries:

[1 i1 i2 i3 i4] Q̄ log 〈1(n−1n)(i1 i2)(i3 i4)〉
〈n̄i1〉〈1i2i3i4〉

,

[i1 i2 i3 i4 n−1] Q̄ log 〈n−1(n 1)(i1 i2)(i3 i4)〉
〈n̄i1〉〈n−1 i2i3i4〉

(B.2)

[i1 i2 i3 i4 n] Q̄ log 〈n(1n−1)(i1 i2)(i3 i4)〉
〈n̄i1〉〈n i2i3i4〉

where 1 < i1 < i2 < i3 < i4 < n−1, and the abbreviation 〈a(bc)(de)(fg)〉 :=
〈abde〉〈acfg〉 − 〈acde〉〈abfg〉.

3. 2
(n−3

5
)
last entries:

[i1 i2 i3 i4 i5] Q̄ log 〈n̄(i1i2) ∩ (i3i4i5)〉
〈n̄i1〉〈i2i3i4i5〉

, [i1 i2 i3 i4 i5] Q̄ log 〈n̄(i1i2i3) ∩ (i4i5)〉
〈n̄i1〉〈i2i3i4i5〉

, (B.3)

where 1 < i1 < i2 < i3 < i4 < i5 < n−1.

For computing n-point MHV amplitudes using Q̄ equations, we take n → n+1 and plug
these on the r.h.s. of Q̄ equations for MHV.

C Last-two-entries for n = 8 MHV amplitudes

For n = 8, there are two independent unfrozen last entries up to cyclicity and dihedral
symmetries,〈1378〉 and 〈1478〉. We list allowed unfrozen A-coordinates

{〈7(18)(23)(56)〉, 〈7(18)(34)(56)〉, 〈8(12)(34)(67)〉, 〈8(12)(35)(67)〉, 〈23(178) ∩ (456)〉,
〈1235〉, 〈1236〉, 〈1237〉, 〈1248〉, 〈1258〉, 〈1267〉, 〈1268〉, 〈1345〉, 〈1347〉, 〈1348〉,
〈1357〉, 〈1358〉, 〈1367〉, 〈1368〉, 〈1378〉, 〈1456〉, 〈1478〉, 〈1567〉, 〈1568〉, 〈1578〉,
〈2346〉, 〈2347〉, 〈2348〉, 〈2358〉, 〈2368〉, 〈2378〉, 〈2456〉, 〈2567〉, 〈2678〉, 〈3457〉,
〈3458〉, 〈3468〉, 〈3478〉, 〈3567〉, 〈3568〉, 〈3578〉, 〈3678〉, 〈4568〉, 〈4578〉, 〈4678〉}

which can appear before 〈1378〉, and

{〈1(23)(45)(78)〉, 〈1(23)(46)(78)〉, 〈7(18)(24)(56)〉, 〈7(18)(34)(56)〉, 〈8(12)(34)(67)〉,
〈8(12)(45)(67)〉, 〈1235〉, 〈1236〉, 〈1237〉, 〈1247〉, 〈1248〉, 〈1258〉, 〈1267〉, 〈1268〉,
〈1345〉, 〈1347〉, 〈1348〉, 〈1378〉, 〈1456〉, 〈1457〉, 〈1458〉, 〈1467〉, 〈1468〉, 〈1478〉,
〈1567〉, 〈1568〉, 〈1578〉, 〈2346〉, 〈2347〉, 〈2348〉, 〈2378〉, 〈2456〉, 〈2458〉, 〈2468〉, 〈2478〉,
〈2567〉, 〈2678〉, 〈3457〉, 〈3458〉, 〈3468〉, 〈3478〉, 〈3567〉, 〈3678〉, 〈4568〉, 〈4578〉, 〈4678〉}

which can appear before 〈1478〉.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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