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1 Introduction

The Kosower-Maybee-O’Connell (KMOC) formalism [1–3] is a first principle approach
to extract the classical limit, understood as the limit ~ → 0, from on-shell scattering
amplitudes. It is based on the construction of certain observables which are well-defined
at the quantum and classical levels. They can be defined by considering the expectation
value of certain operators O evaluated at the beginning and at the end of the scattering
event. Considering the two-to-two classical scattering the observable associated with the
operator O is given by

〈∆O〉 = 〈Ψ|S†OS |Ψ〉 − 〈Ψ|O |Ψ〉 , (1.1)

where S = 1 + iT . The “in” states |Ψ〉 are two-particle coherent states for momentum and
color, whose function is to give the notion of point particles with a sharply-defined position,
momenta, and color. To make this notion precise, the restoration of ~’s on couplings and
color factors as well as the distinction between momenta p and wavenumber p̄ for certain
particles play an important role.

Employing unitarity, the observables can be written as

〈∆O〉 = i 〈Ψ| [O, T ] |Ψ〉+ 〈Ψ|T †[O, T ] |Ψ〉 , (1.2)

which can be used to derive general expressions for these observables in terms of amplitudes.
In this paper we will consider the color charge operator Ca1 and the momentum operator Pµ1
of one of the particles, but of course the other particle can be chosen as well. The observ-
ables associated to these operators are called the color impulse ∆ca1 and the momentum
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impulse ∆pµ1 . The KMOC formalism has been applied to the study of waveforms [4], soft
theorems [5], radiative gravitational observables at two-loops [6, 7] and adapted to study
the classical limit of thermal currents [8].

On the other hand, the classical limit can also be described in the language of effective
field theory (EFT). This idea was pioneered in ref. [9], which proposed the application of the
well-established scattering-amplitudes toolkit to the derivation of gravitational potentials.
Later, an EFT of non-relativistic scalar fields was developed [10], and used to translate a
one-loop scattering amplitude into the O(G2) canonical Hamiltonian, which is equivalent
to the results of Westpfahl [11]. This approach was later implemented to obtain novel
results at O(G3) order [12–14].

Besides making use of the KMOC formalism or non-relativistic EFTs, various ap-
proaches have been developed to extract the dynamics of compact objects from scattering
data. These include making use of the Lippman-Schwinger equation [15, 16], a heavy
black hole effective theory and its generalizations [17–20], developing a boundary-to-bound
(B2B) dictionary [21, 22], implementing a post-Minkowskian EFT [23–25] and a world-
line QFT [26]. More recently the conservative binary potential at O(G4) was obtained by
means of an amplitude-action relation that allows the calculation of physical observables
directly from the scattering amplitude [27].

The techniques mentioned above have been extended in multiple directions in recent
years, including the computation of observables in supergravity [28–30] and other general-
izations of general relativity [31, 32], the study of three-body dynamics [33], incorporating
the radiation emitted by the binary into their analysis [34–39], and considering tidal de-
formations [40–46] and spin effects [47–63] of the astrophysical objects.

A further relation between amplitudes and classical observables is given through the
eikonal phase, which is obtained as the Fourier transform to impact parameter space of the
scattering amplitude [64]. In turn, one can derive the scattering angle through differentia-
tion of the eikonal phase. This subject has seen renewed interest [29, 30, 65–74] and a recent
calculation in ref. [56] showed a surprising structure for the expression of the observables
in terms of the eikonal phase. This formula was the first example of such a relation for
arbitrary orientations of the spins.1 This striking observation potentially implies that all
physical observables are obtainable via simple manipulations of the scattering amplitude.

While most of the attention has been given to gravitational theories, Yang-Mills theory
shares many important physical features with gravity, like non-linearity and a gauge struc-
ture. Furthermore, the double copy relates scattering amplitudes in both theories.2 The
connection has showed to be deeper than this, holding in a classical worldline setting [78–
88], and extending to exact maps [89, 90].3 Then, since perturbation theory in Yang-Mills
is far simpler than in standard approaches of gravity, one may study Yang-Mills as a toy
model for gravitational dynamics or as a building block that could be double copied to
gravity. One may also note that, as already pointed out in ref. [3], the dynamics of the

1Before this, there was evidence for such a relation in the special kinematic configuration where the spins
of the particles are parallel to the angular momentum of the system [50, 75, 76].

2The double copy has been reviewed thoroughly in ref. [77].
3The classical double copy has also made contact with fluid dynamics, as shown in refs. [91, 92].
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color degrees of freedom in Yang-Mills, is in many respects analogous to spin (though ac-
tually simpler). This analogy with spin will be evidenced in a generalization of the formula
of ref. [56], now describing the dynamics of color charges.

The proliferation of approaches to extract classical information from quantum scat-
tering amplitudes motivates us to strive for an understanding of the relations between
them. The goal of this paper is to use Yang-Mills theory as a toy model to study the
connection between three such approaches. Namely, the KMOC formalism, the Hamilto-
nian approach to classical dynamics, and a formula directly relating the eikonal phase with
classical observables.

The remainder of this paper is structured as follows: in section 2 we compute color
and momentum impulse at NLO (Next-to-Leading Order) using the integrands obtained
in ref. [3]. Then, In section 3, we develop the Hamiltonian approach to classical dynamics.
First, we show the necessary full-theory amplitudes and use a matching procedure to an
EFT to obtain the desired two-body Hamiltonian. Then we use the derived Hamiltonian
to compute scattering observables, and check their match both to the KMOC approach of
section 2, as well as to the conjecture of ref. [56], which directly relates these observables
to the eikonal phase, and holds (almost unalteredly) when we include color effects. We
present our concluding remarks in section 4.

2 KMOC approach to color observables

In this section we introduce the KMOC approach for color and introduce our notation and
conventions. The classical scattering of two color-charged scalar particles of masses m1
and m2 can be modeled by the action

S =
∫

d̂4x

[ ∑
i=1,2

(
(Dµϕi)†(Dµϕi)−

m2
i

~2 ϕ
†
iϕi

)
− 1

4F
a
µνF

aµν

]
, (2.1)

where Dµ = ∂µ + igAaµT
a
R and d̂nx = (dnx)/(2π)n. The generators TRa of the Lie algebra

of SU(N) are in some representation R. The color charge operators, obtained from the
Noether procedure, satisfy the usual Lie algebra modified by a factor of ~

[Ca,Cb] = i~fabcCc, (2.2)

emphasizing that Ca corresponds to an operator and

〈pi|Ca|pj〉 ≡ (Ca) ji = ~(T aR) ji . (2.3)

So the color factors (Ca) ji are simply rescalings of the usual generators (T aR) ji . The classical
color charges are then defined by

ca ≡ 〈ψ|Ca |ψ〉 , (2.4)

where the states |ψ〉 are coherent states for SU(N), whose explicit form will not be relevant
for our purposes.4 These states ensure the correct behavior of color charges in the classical

4When considering the classical limit of multi-particle states, the full state is a tensor product of coherent
states for the kinematics and coherent states for color. SU(N) coherent states can be constructed using
Schwinger bosons. For the kinematic part, these states can be understood as coherent states for a “first-
quantized” particle for the restricted Poincaré group. See ref. [3] for details.
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limit, namely

〈ψ|Ca |ψ〉 = finite, (2.5)
〈ψ|CaCb |ψ〉 = cacb + negligible, (2.6)

which is guaranteed by choosing the dimension of the representation R to be large. The
factors of ~ in eq. (2.2) produce a nontrivial interplay between color factors and kinematics
in the classical limit. However ultimately classical quantities do not have any factors of ~
as it should be. Thus, for the purposes of this paper we will quote the integrands derived
in ref. [3] dropping the bar notation for wavenumbers. We will also employ the notation
∆O(L) to indicate the L-loop contribution to the observable such that the full result is
given by

∆O = ∆O(0) + ∆O(1) + . . . . (2.7)

We also introduce the following notation for the Dirac-delta

δ̂(x) = 2πδ(x), δ̂′(x) = i

(x− iε)2 −
i

(x+ iε)2 . (2.8)

2.1 Leading order

Let us briefly review the LO calculation of ref. [3] in order to introduce some notation. We
define the integral

I ≡
∫

d̂4q
δ̂(q · u1)δ̂(q · u2)

q2 e−iq·b, (2.9)

where pµi = miu
µ
i and bµ is the impact parameter. Recalling that bµ is spacelike we also

define |b| ≡
√
−b2. The classical four velocities ui are normalized to u2

i = 1. The divergent
integral I can be regulated using a cut-off regulator5 L

I = 1
4π
√
σ2 − 1

log
(
|b|2

L2

)
, (2.10)

where σ is the standard Lorentz factor σ = u1 · u2. The LO momentum impulse can then
be written as

∆p(0),µ
1 = −g2σc1 · c2

∂I
∂bµ

, (2.11)

where c1 · c2 ≡ ca1ca2. So the momentum impulse is given by

∆p(0),µ
1 = −2α c1 · c2

σ√
σ2 − 1

bµ

b2 , (2.12)

where α ≡ g2/(4π). Similarly the color impulse at leading order reads

∆c(0),a
1 = g2σfabccb1c

c
2I = α fabccb1c

c
2

σ√
σ2 − 1

log
(
|b|2

L2

)
. (2.13)

The divergence of the color impulse is the familiar divergence due to the long-range nature
of 1/r2 forces in four-dimensions.

5To obtain this result we have set up a differential equation for I instead of explicitly including a
regulator L on the integration region. I satisfies bµ∂I /∂bµ = 1/(2π

√
σ2 − 1).
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2.2 Next-to-Leading-Order

The NLO momentum impulse can be obtained from the QED one computed in ref. [1] using
the charge to color replacements Q1Q2 → c1 · c2 and e→ g. That this replacement works
follows from the color-decomposition of the QCD amplitude and ~-counting as detailed
in [3]. The result reads

∆pµ,(1)
1 = i

g4(c1 · c2)2

2

∫
d̂4` d̂4q

δ̂(u1 · q)δ̂(u2 · q)
`2(`− q)2 e−iq·b

[
qµ
{
δ̂(u2 · `)
m1

+ δ̂(u1 · `)
m2

+ (u1 · u2)2` · (`− q)
(

δ̂(u1 · `)
m2(u2 · `− iε)2 + δ̂(u2 · `)

m1(u1 · `+ iε)2

)}
− i(u1 · u2)2`µ` · (`− q)

(
δ̂′(u1 · `)δ̂(u2 · `)

m1
− δ̂(u1 · `)δ̂′(u2 · `)

m2

)]
.

(2.14)

On the other hand the NLO color impulse is given by

∆ca,(1)
1 = g4

∫
d̂4q d̂4` δ̂(u1 · q)δ̂(u2 · q)e−iq·b

1
`2(`− q)2

×
{
δ̂(u1 · `)

[
facdcc1c

d
2(c1 · c2)
m2

[
1 + (u1 · u2)2` · (`− q)

( 1
(u2 · `− iε)2

+ iδ̂′(u2 · `)
)]
− facdfdbecb1cc1ce2

(u1 · u2)2

2 δ̂(u2 · `)
]

+ δ̂(u2 · `)
[
facdcc1c

d
2(c1 · c2)
m1

[
1 + (u1 · u2)2` · (`− q)

( 1
(u1 · `+ iε)2

− iδ̂′(u1 · `)
)]

+ facdfdbece1c
b
2c
c
2
(u1 · u2)2

2 δ̂(u1 · `)
]}

.

(2.15)

Inspecting eqs. (2.14) and (2.15) it is easy to see that the color and momentum impulses
can be expressed in terms of the following “master integrals”

Ii4[α, β, γ] =
∫

d̂4q δ̂(u1 · q)δ̂(u2 · q)e−iq·b
∫

d̂4`
δ̂(ui · `)

[`2]α[(`− q)2]β [(` · uj + (−1)iiε)]γ , j 6= i

(2.16)

I [α, β] =
∫

d̂4q δ̂(u1 · q)δ̂(u2 · q)e−iq·b
∫

d̂4`
δ̂(u1 · `)δ̂(u2 · `)
[`2]α[(`− q)2]β , (2.17)

where the vector dependence on the momentum transfer qµ can be recovered by taking
derivatives w.r.t. the impact parameter bµ. Notice that we have excluded from the mas-
ter integrals those involving δ̂′(x) since they can be reduced to the above cases using
the identity ∫

d̂x x δ̂′(x)f(x2) = −
∫

d̂x δ̂(x)f(x2). (2.18)

Following arguments by Kälin-Porto [23], the integrals below vanish due to the presence of
a double pole on a convergent integral6

Ii4[1, 1, 2] = Ii4[0, 1, 2] = Ii4[1, 0, 2] = 0, i = 1, 2, (2.19)
6This result can also be shown by first using the Dirac-delta constraint and then IBP identities. As

emphasized by Kälin-Porto these integrals do contribute in d > 4 [69].
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and therefore only Ii4[1, 1, 0] contributes to the observables. In the following we then simply
write Ii4[1, 1, 0] ≡ Ii4 and for later purpose we write I [1, 1] ≡ I . We also have that

I [1, 0] = I [0, 1] = 0 (2.20)

since their loop integrals reduce to massless tadpole integrals. Now let us move on with
the reductions of integrals of the form

Iµ =
∫

d̂4` `µ` · (`− q) δ̂
′(u1 · `)δ̂(u2 · `)
`2(`− q)2 , (2.21)

which appear in eq. (2.14) and its mirror obtained by 1 ↔ 2. In contrast to the above
vanishing integrals, the presence of the numerator makes this integral nonzero. Let us also
recall that they are still integrated over the momentum transfer q and therefore in the
integral reduction we can set to zero any term proportional to eq. (2.19) or (2.20). We find
convenient to perform a simple Passarino-Veltman reduction on eq. (2.21) so we can write

Iµ = K1u
µ
1 +K2u

µ
2 +K3q

µ, (2.22)

where setting up a system of equations the resulting coefficients are

K1 = 1
1− σ2u1 · I, K2 = − σ

1− σ2u1 · I, K3 = 1
q2 q · I, (2.23)

where we have used the delta constraints δ̂(q · u1) and δ̂(q · u2) on which the integral is
supported. The result thus depends only on two integrals, namely u1 · I and q · I. After
cancellations, the product q · I leads to

q · I = 1
4

∫
d̂4`

[2q2

`2
− (q2)2

`2(`− q)2

]
δ̂′(u1 · `)δ̂(u2 · `), (2.24)

which can be set to zero using the defintion of δ̂′(x) and after integration over q using
eq. (2.19). Therefore we can express eq. (2.21) only in terms of the integral

u1 · I =
∫

d̂4` u1 · ` ` · (`− q) δ̂
′(u1 · `)δ̂(u2 · `)
`2(`− q)2

= −
∫

d̂4` ` · (`− q) δ̂(u1 · `)δ̂(u2 · `)
`2(`− q)2 .

(2.25)

Without loss of generality, the second equality can be checked by choosing a frame where
u1 = (1, 0, 0, 0) and u2 = (σ, 0, 0, σβ) and β is defined from the condition σ2 − σ2β2 = 1.
We can further reduce this integral ignoring vanishing terms (i.e., terms which have the
form (2.20)) thus obtaining

u1 · I = 1
2q

2
∫

d̂4`
δ̂(u1 · `)δ̂(u2 · `)

`2(`− q)2 . (2.26)

The result for Iµ then reads

Iµ = 1
2q

2
( 1

1− σ2u
µ
1 −

σ

1− σ2u
µ
2

)∫
d̂4`

δ̂(u1 · `)δ̂(u2 · `)
`2(`− q)2 , (2.27)
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which implies that we can express our results only in terms of the integrals (2.16)–(2.17)
as claimed. Therefore, excluding all vanishing contributions, the impulses in terms of the
master integrals can be written as

∆pµ,(1)
1 = g4(c1 · c2)2

2

{
− ∂

∂bµ

[
I1
4
m2

+
I2
4
m1

]

−
[

σ2

2(1− σ2)

(
uµ1
m1
− σuµ2
m1

)
− (1↔ 2)

]
∂

∂bν

∂

∂bν
I

}
(2.28)

and

∆ca,(1)
1 = g4

{
facdcc1c

d
2(c1 · c2)

(
I1
4
m2

+
I2
4
m1

)
+σ2

2
(
facdfdbece1c

b
2c
c
2 −facdfdbecb1cc1ce2

)
I

}
.

(2.29)
Let us now consider the integration of the master integrals. The triangle one is well-

known (see e.g., ref. [93]) and we simply quote the result

I1
4 =

∫
d̂4q

∫
d̂4` δ̂(u1 · q)δ̂(u2 · q)e−iq·b

δ̂(u1 · `)
`2(`− q)2 = 1

16π
1

σβ|b|
. (2.30)

The loop integral inside I [1, 1] can be computed using dimensional regularization [94],
leading to ∫

d̂D` δ̂(u1 · `)δ̂(u2 · `)
`2(`− q)2 = 1

2πσβq2

[1
ε
− log

(
−q2

)]
, (2.31)

where D = 4− 2ε. The usual factor µ2ε depending on an arbitrary scale µ and eεγE have
been used to ensure the correct (integer) mass dimension of the integral and to avoid the
proliferation of the Euler-Mascheroni constant γE , respectively. The divergent term leads
to a contact term that can be discarded in the classical limit.7 Therefore, keeping only the
finite part we have

∂

∂bν

∂

∂bν
I = 1

2πσβ

∫
d̂4q δ̂(u1 · q)δ̂(u2 · q)e−iq·b log

(
−q2

)
= 1

2π2σ2β2
1
b2 . (2.32)

It will also be convenient to use a cut-off regularization to evaluate the divergent integral
I . Exchanging the integration orders and introducing the change of variables Q = −`+q
we have

I =
∫

d̂4`
δ̂(u1 · `)δ̂(u2 · `)

`2
e−i`·b

∫
d̂4Q δ̂(u1 ·Q)δ̂(u2 ·Q)e−iQ·b 1

Q2 , (2.33)

which leads to the product of two integrals of the form (2.9). Hence the result is simply

I = I2 = 1
16π2σ2β2 log2

(
|b|2

L2

)
. (2.34)

7Notice that the factor of q2 in the denominator cancels after taking derivatives with respect to the
impact parameter, so the singular term leads to δ2(b) which we can set to zero because we assume b 6= 0.
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For later purposes we will express the color impulse in terms of the cut-off regulated integral.
Our full integrated result for the NLO momentum impulse then reads

∆pµ,(1)
1 = (c1 · c2)2 2πα2

m1m2

{
− 1

4
√
σ2 − 1

(m1 +m2) b
µ

|b|3

− 1
π

1
b2

σ2

(σ2 − 1)2 [(m2 + σm1)uµ1 − (m1 + σm2)uµ2 ]
}
, (2.35)

and for the NLO color impulse

∆ca,(1)
1 =α2

{
π
facdcc1c

d
2(c1 · c2)√

σ2 − 1|b|

( 1
m1

+ 1
m2

)

+ 1
2

σ2

(σ2 − 1) log2
(
|b|2

L2

)[
facdfdbece1c

b
2c
c
2 − facdfdbecb1cc1ce2

]}
. (2.36)

3 Hamiltonian approach to color dynamics

In this section we will compute the position-space Hamiltonian H that describes the clas-
sical dynamics of the two-to-two scattering of SU(N)-colored objects with masses m1 and
m2 and color charges c1 and c2. The classical dynamics described by such a Hamiltonian
must be consistent with Wong’s equations [95] and its perturbative solutions and by exten-
sion to observables in the KMOC formalism. Let r and p be the relative distance between
the particles and the momentum vector in the center of mass frame, respectively. We are
interested in a perturbative expansion of the Hamiltonian

H ≡ H(r,p, Ci) =
√

p2 +m2
1 +

√
p2 +m2

2 + V (r2,p2, Ci) + . . . , (3.1)

where the potential is an expansion up to the second power in the coupling constant α and
the color structures Ci are all possible functions of the color charges that can appear in the
amplitude. These charges are understood in the sense of Wong, i.e., as the classical limit
of a quantum operator in a large representation of the gauge group so they can be treated
as c-numbers.

3.1 Classical perturbation theory

Consider the general problem of an arbitrary Hamiltonian H describing the interaction
of two particles with color charges c1 and c2 in their center of mass frame. While, as
usual, r and p are canonically-conjugate to each other, color charges do not have a natural
canonical conjugate. To derive the equations of motion we use the fact that they satisfy
the relation [96, 97]

{cai , cbj} = δij f
abccci , i, j = 1, 2 , (3.2)

where {A,B} is the Poisson bracket of A and B. The equations of motion are then

ṙ = ∂H

∂p
, ṗ = −∂H

∂r
, ċai = fabccbi

∂H

∂cci
, i = 1, 2 . (3.3)

– 8 –
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In the color equation of motion, no summation over i is implied on the right-hand side. For
the purpose of finding the impulse ∆p we find it convenient to use Cartesian coordinates.
One can solve the equations of motion for coordinates, momenta, and colors as a function
of time.

There are conservation laws that aid the construction of classical solutions. These
fix the energy and the total angular momentum in terms of their asymptotic values. For
example for the energy we have

E ≡ H(r∞,p∞, c1, c2) =
√

p2
∞ +m2

1 +
√

p2
∞ +m2

2 , (3.4)

where p∞ = p∞ez is the incoming momentum at infinity. We take the orbital angular
momentum at infinity to be

L ≡ b× p∞ = b p∞ey , (3.5)

where b = −bex and b is the impact parameter. We solve the equations of motion pertur-
batively in the coupling constant, i.e. we search for a solution for coordinates, momenta,
and colors of the form

r(t) = r0(t) + αr1(t) + α2r2(t) + . . . ,

p(t) = p0(t) + αp1(t) + α2p2(t) + . . . , (3.6)

cai (t) = cai,0(t) + αcai,1(t) + α2cai,2(t) + . . . .

Replacing them in the equations of motion (3.3) leads to iterative relations between the
time derivative of the n-th term in the expansions above and all the lower-order terms.
The O(α0) terms describe the motion of a free color-charged particle in flat space, i.e.
a straight line fixed by the initial momentum, the impact parameter, and initial color
charge. The first-order differential equations for the higher-order terms can be integrated;
the relevant boundary conditions are that rn≥1, pn≥1 and cai,n≥1 vanish at t = −T , where T
is a large time cutoff. It is necessary to introduce such a cutoff due to the same logarithmic
divergence identified in eqs. (2.13) and (2.36). Comparing the result of integrating the
color equation of motion to eq. (2.13) it can be shown that the cutoffs L and T are related
by L = 2βT , where β is defined in section 2.2. The contribution of each order in α to an
observable O, such as the linear or color impulse, is then

∆O(n) =
∫ T

−T
dt dO(n)

dt = O(n)(t = T )−O(n)(t = −T ) , (3.7)

with the complete result being their sum weighted with the appropriate powers of α.

3.2 Hamiltonian from effective field theory

The perturbative classical problem can be solved straightforwardly once the Hamiltonian is
obtained. We then proceed to compute it following the EFT approach adapted to this case.
In order to apply this approach we will decompose the amplitudes in some color basis and
neglect contributions of higher orders in ~ using eq. (2.2). Our amplitude expressions will
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Figure 1. The one-loop scalar box integrals I� (a) and I./ (b) and the corresponding triangle
integrals I4 (c) and I5 (d). The bottom (top) solid line corresponds to a massive propagator of
mass m1 (m2). The dashed lines denote massless propagators.

be directly written in terms of classical color factors, i.e., we consider that the expectation
value with respect to coherent states has already been taken8.

3.2.1 Full theory amplitudes from unitarity

Let us first show the two-to-two scattering amplitudes between color-charged particles
needed to construct the Hamiltonian. The information to determine the O(α) Hamiltonian
is contained in the tree-level amplitude. We take the incoming momenta of the color-
charged particles to be −p1 and −p2 and their outgoing momenta to be p3 and p4. The
amplitude is given by

Atree =− 4πα
q2 λ1C

( )
+ . . . , (3.8)

where we omit terms that do not contribute to the classical limit in the ellipsis, along with
pieces proportional to q2, since they cancel the propagator and do not yield long-range
contributions. The color structure is given by

C
( )

= c1 · c2 , (3.9)

and the coefficient λ1 takes the explicit form

λ1 = −4m1m2σ , (3.10)

where we use the kinematic variable

σ = p1 · p2
m1m2

. (3.11)

In order to construct the O(α2) Hamiltonian we further need the corresponding one-
loop amplitude. It was shown in ref. [3] that classically, the 1-loop scalar YM amplitude
has a basis of only one color factor, and moreover depends on the same topologies as in
electrodynamics, so it’s given by

A1-loop = C
( )

A1-loop, QED + . . . , (3.12)

8This essentially amounts to the replacement Ci → ci which is implemented in ref. [3] by the double
bracket notation.

– 10 –



J
H
E
P
0
1
(
2
0
2
2
)
0
4
5

1 1 114 4 4 4

5 5 5 56 6 6 6

Figure 2. The Compton-amplitude Feynman diagrams. The straight line corresponds to the
massive color-charged particle. The wiggly lines correspond to gluons.

(a)

1

(b) (c) (d)

1 1 14

2 3

4 4 4

3 3 32 2 2

5 65 65 65 6

Figure 3. Appropriate residues of the two-particle cut (a) give the triple cuts (b) and (c), and
the quadruple cut (d). The straight lines corresponds to the color-charged particles and the wiggly
lines to the exchanged gluons. All exposed lines are taken on-shell.

in terms of the one-loop QED amplitude. The color structure is given by

C
( )

= (c1 · c2)2 . (3.13)

We could express the latter one-loop amplitude as a linear combination of scalar box,
triangle, bubble and tadpole integrals, but refs. [10, 13] showed that the bubble and tadpole
integrals do not contribute to the classical limit. Dropping these pieces we write

iA1-loop, QED = d� I� + d./ I./ + c4 I4 + c5 I5 , (3.14)

where the coefficients d�, d./, c4 and c5 are rational functions of external momenta. The
integrals I�, I./, I4 and I5 are shown in figure 1. The triangle integrals take the form [10]

I4,5 = − i

32m1,2

1√
−q2 + · · · . (3.15)

The box contributions do not contain any novel O(α2) information. They correspond to
infrared-divergent pieces that cancel out when we equate the full-theory and EFT am-
plitudes [10, 13]. In this sense, the explicit values for the box coefficients serve only as
a consistency check of our calculation and we do not show them. Instead, we give the
result for

iA4+5 ≡ (c4 I4 + c5 I5) C
( )

. (3.16)

As detailed in ref. [56], we use the generalized-unitarity method to obtain the integral
coefficients of eq. (3.14). We start by calculating the Compton amplitude for the color-
charged particle, using Feynman rules. Subsequently, we construct the two-particle cut.
The residues of the two-particle cut on the matter poles give the triple cuts, and localizing
both matter poles gives the quadruple cut. We obtain the triangle and box coefficients
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from the triple and quadruple cuts respectively. Our result reads

A4+5 = 2π2α2√
−q2λ2C

( )
+ . . . , (3.17)

where the coefficient is given by

λ2 = 2m, (3.18)

and m = m1 + m2. In preparation for the matching procedure in the following section,
we specialize our expressions to the center-of-mass frame. In this frame, the independent
four-momenta read

p1 = −(E1,p) , p2 = −(E2,−p) , q = (0, q) , p · q = q2/2 . (3.19)

Using the above expressions, our amplitudes take the form

Atree

4E1E2
= 4πα

q2 Λ1C
( )

,
A4+5

4E1E2
= 2π2α2

|q|
Λ2C

( )
. (3.20)

The coefficients Λi are given in terms of the λi of eqs. (3.10) and (3.18) by

Λ1 = − νσ
γ2ξ

, Λ2 = 1
2mγ2ξ

, (3.21)

where in addition to the definition in eq. (3.11) we use

ν = m1m2
m2 γ = E

m
, E = E1 + E2 , ξ = E1E2

E2 . (3.22)

3.2.2 Construction of the EFT amplitudes

With the full theory amplitudes in hand, we now turn our attention to the task of translat-
ing the scattering amplitudes of color-charged fields to a two-body conservative Hamilto-
nian. We do this by matching the scattering amplitude computed above to the two-to-two
amplitude of an EFT of the positive-energy modes of fields. Ref. [10] developed this match-
ing procedure for higher orders in the coupling constants and all orders in velocity, and
we adapt it here to describe the color-charged fields ξ1 and ξ2. We follow closely the con-
struction for classical spin in ref. [56]. The action of the effective field theory (supressing
representation indices) for ξ1 and ξ2 is given by

S =
∫

d̂D−1k
∑
a=1,2

ξ†a(−k)
(
i∂t −

√
k2 +m2

a

)
ξa(k) (3.23)

−
∫

d̂D−1k

∫
d̂D−1k′ ξ†1(k′)ξ†2(−k′) V̂ (k′,k, Ĉi) ξ1(k)ξ2(−k) ,

where the interaction potential V̂ (k′,k, Ĉi) is a function of the incoming and outgoing
momenta k and k′ and the color-structure operators Ĉi. We consider kinematics in the
center-of-mass frame. As on the full theory side, one could construct the color asymptotic
states of ξi using SU(N) coherent states (analogous to the spin coherent states of [56])
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so color operators satisy the defining properties eqs. (2.5)–(2.6). We obtain the classical
color charge vector as the expectation value of the color operator with respect to these
on-shell states.

We build the most general potential containing only long-range classical contributions.
This will be in terms of color operators, whose expectation values with respect to SU(N)
coherent states are in correspondence with the classical color structures in the full theory
amplitude, eq. (3.20). We use the following ansatz for the potential operator

V̂ (k′,k, Ĉi) =4πα
q̂2 d1

(
p̂2
)
Ĉ
( )

+ 2π2α2

|q̂|
d2
(
p̂2
)
Ĉ
( )

+O(α3) , (3.24)

where p̂2 ≡ (k2 + k′2)/2.
We now evaluate the EFT two-to-two scattering amplitude. To this end we use the

Feynman rules derived from the EFT action (eq. (3.23)),

(E, k )
= i I

E −
√

k2 +m2 + iε
,

−k ′

k

−k

k ′

= −iV̂ (k′,k, Ĉi) .

(3.25)
Using these rules we compute the amplitude up to O(α2) directly evaluating the rele-

vant Feynman diagrams, omitting terms that do not contribute to long range interactions.
The color factors must be treated as operators, and thus their ordering is important. After
carrying out the energy integration, we obtain an expression for the amplitude

ÂEFT =− V̂ (p′,p, Ĉi)−
∫

d̂D−1k
V̂ (p′,k, Ĉi) V̂ (k,p, Ĉi)

E1 + E2 −
√

k2 +m2
1 −

√
k2 +m2

2

. (3.26)

We now contract the amplitude ÂEFT with coherent states, resulting in the operators V̂
and Ĉ being replaced by their expectation values (hence dropping the hats). At O(α) the
EFT amplitude receives a contribution only from the first term of eq. (3.26). The result is

AEFT
O(α) = −4πα

q2 d1C
( )

, (3.27)

which is a c-number. On the other hand, the EFT amplitude at O(α2) receives contribu-
tions from both terms in eq. (3.26) and can be written as

AEFT
O(α2) = 2π2α2

|q|
Λ2 C

( )
+ (4πα)2 Λiter C

( )2 ∫
d̂D−1`

2ξE
`2(` + q)2(`2 + 2p · `) ,

(3.28)

where ` = k−p and we only keep terms that are relevant in the classical limit. Anticipating
the matching, we write the amplitude in terms of Λ2, which is given directly in terms of
the momentum-space potential coefficient by

Λ2 = −d2 + 1− 3ξ
2ξE d2

1 + ξE∂p2d2
1 . (3.29)
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The second term in eq. (3.28) is infrared divergent and we have explicitly verified that
it cancels out when we equate the full-theory and EFT amplitudes. The potential takes
the form

V (r2,p2, Ci) = α

|r|
d1(p2)C

( )
+
(
α

|r|

)2
d2(p2)C

( )
+O(α3) . (3.30)

We obtain the position-space Hamiltonian by taking the Fourier transform of the
momentum-space9 Hamiltonian with respect to the momentum transfer q, which is the
conjugate of the separation between the particles r. We determine the momentum-space
coefficient di in terms of the amplitudes coefficients Λi by a matching procedure, i.e. by
demanding that the EFT amplitude matches the full-theory one,

AEFT
O(α) = Atree

4E1E2
, AEFT

O(α2) = A
1-loop

4E1E2
, (3.31)

where the factors of the energy account for the non-relativistic normalization of the
EFT amplitude. Using eq. (3.21) we relate Λi to λi, which are explicitly shown in
eqs. (3.10) and (3.18). Putting everything together, we obtain expressions for the position-
space coefficients

d1 = − νσ
γ2ξ

, (3.32)

d2 = 1
mξ

(
1

2γ2 −
νσ

ξγ3 + (1− ξ)ν2σ2

2ξ2γ5

)
. (3.33)

This finishes the computation of the effective Hamiltonian. The classical equations of
motion can now be solved iteratively using the eqs. (3.3), (3.6) and the definition of the
observables (3.7). Following this procedure we have found agreement with the results of
section 2.

3.3 Observables from the eikonal phase

The conservative Hamiltonian we obtained in previous sections enables the calculation of
physical observables for a scattering of compact objects interacting through gluon exchange.
Ref. [56] conjectured a formula that expresses physical observables in terms of derivatives
of the eikonal phase for the spinning case. In this section we extend that analysis.

Let us start by obtaining the eikonal phase via a Fourier transform of our amplitudes.
Then, following ref. [56] we can solve Hamilton’s equations for the impulse and color impulse
and relate them to derivatives of the eikonal phase. The eikonal phase χ = χ1 +χ2 +O(α3)
is given by

χ1 = 1
4m1m2

√
σ2 − 1

∫
d̂2q e−iq·bAtree(q) ,

χ2 = 1
4m1m2

√
σ2 − 1

∫
d̂2q e−iq·bA4+5(q) . (3.34)

9The position-space coefficients are trivially related to the momentum-space coefficients. This is unlike
the case for spinning particles, where a set of linear relations was established between them.
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Using our amplitudes expressed in the center-of-mass frame (see eq. (3.20)) we find

χ1 = −ξEα
|p|

Λ1

(
ln b2

L2

)
C
( )

, (3.35)

χ2 = πξEα2

|p|
Λ2
|b|
C
( )

, (3.36)

where in the first order eikonal phase we include a cutoff regulator L as we did in section 2.
In the case without color, the integration is regulated via dimensional regularization, and
the divergence is ignored, because the derivative of the eikonal phase is always taken and
they don’t contribute. This is no longer the case here.

We may now use the eikonal phase to obtain classical observables. Generalizing the
conjecture of ref. [56] to the color-charged case, the observables in question are the impulse
∆p and color impulse ∆cai , where

p(t =∞) = p + ∆p , p(t = −∞) = p ,

cai (t =∞) = cai + ∆cai , cai (t = −∞) = cai . (3.37)

Inspired by the gravitational spinning case let us decompose the impulse as

∆p = ∆p‖
p

|p|
+ ∆p⊥ , (3.38)

where ∆p‖ can be obtained from the on-shell condition (p+∆p)2 = p2. Therefore, ignoring
the mixing of spin and orbital angular momentum — which is absent in our case since the
particle is spinless — the impulse and color impulse through O(α2) satisfy

∆p⊥ = −{p⊥, χ} −
1
2 {χ, {p⊥, χ}} ,

∆ca1 = −{ca1, χ} −
1
2 {χ, {c

a
1, χ}} , (3.39)

where in eq. (3.39) we use the definitions

{p⊥, g} ≡ −
∂g

∂b
, {ca1, g} ≡ fabc

∂g

∂cb1
cc1 . (3.40)

The second term in the linear impulse doesn’t contribute because the tree color structure
commutes with itself but we leave it there to keep the suggestive structure. It is then
straightforward to show that the linear impulse will be reproduced here, the same way it
was for the spinless QED case, simply by taking a replacement of electric for color charges.
We have compared both the impulse and the color impulse, to the solution of the equations
of motion, and the integrated result of the NLO color impulse finding full agreement.

Our calculation extends the conjecture of ref. [56] to the domain of color. We may
note that in this setting the momentum and the color are separately conserved. This is
unlike the case for spinning particles, where only the sum J = L + S is conserved. Due
to the mixing of spin and orbital angular momentum, it was possible to define the object
DSL (f, g) ≡ −S1 ·

(
∂f
∂S1
× ∂g

∂Lb

)
(where S1 is the spin vector and Lb ≡ b × p). Such

an object was necessary to add terms of the form DSL (χ, {o, χ}) and {o,DSL (χ, χ)}. In
consequence, the form of eq. (3.39) is indeed simpler than its spin counterpart.
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4 Conclusions

In this paper we have used the KMOC formalism and a matching procedure with a non-
relativistic EFT to evaluate classical Yang-Mills observables. Using these approaches we
have found that the eikonal phase conjecture of ref. [56] to the case of color is realized at
NLO. On the KMOC side we have used the integrands already computed in ref. [3] and
performed a direct integration, while on the EFT side we have used unitarity adapting the
formalism by Cheung-Rothstein-Solon [10] to the case of color charges.

The integration of the color and momentum impulses follows from a simple integral
reduction and techniques successfully applied in gravity, e.g., in ref. [23]. We have found
that, as in the case of gravity, the integrals related only with the box and crossed box
vanish. However those related with the cut box contribute as expected. In order to expose
the exponentiation of the NLO color impulse we have used a cut-off regulator as in ref. [3]
to evaluate cut-box integrals.

Once the color decomposition has been performed and the classical relevant parts
identified the matching procedure follows essentially the QED case. The Hamiltonian
thus constructed was used to solve the equations of motion and obtain the classical linear
impulse and color impulse by direct integration. The results were in complete agreement
to the evaluation using KMOC integrands. Finally, the eikonal phase construction matches
the result of the KMOC and of equations of motion in a rather elegant way giving more
evidence of the observation ref. [56] that all physical observables are obtainable via simple
manipulations of the scattering amplitude.

For the case of impulses it is also worth mentioning that the intricacies due to the
mixing of color and kinematics in the KMOC calculation are absent in the rather straight-
forward construction based on unitarity and EFT. However, for the construction of the
EFT it was crucial to employ coherent states to obtain the classical limit, so this aspect is
common to both approaches as is the use of the Lie algebra of the rescaled color factors.
Obtaining higher order corrections in the KMOC formalism for Yang-Mills observables
would be perhaps more efficient using unitarity from the beginning as done in refs. [6, 7]
(for the gravitational case), benefiting from advances in relativistic integration.

Our results provide evidence in favor of the eikonal phase conjecture of ref. [56], and
so they call for the calculation of the 2-loop color impulse as a toy example towards the
gravitational spin. Besides being a toy model for gravitational dynamics, the classical limit
of Yang-Mills theory is useful to describe non-equilibrium plasma through kinetic theory,
where color is treated as a continuous classical variable. In ref. [8] solutions of kinetic
equations were interpreted as classical limits of certain off-shell currents so it would be
interesting to explore a Hamiltonian perspective to this problem.
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