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1 Introduction

During the last years, there has been intense activity on the implications of quantum
corrections to the moduli stabilisation problem in string compactifications, in relation to the
possible existence of de Sitter (dS) vacua and realisations of inflationary models. Type IIB
string theory and more generally its geometric F-theory variant, compactified on a Calabi-
Yau (CY) threefold, is of particular interest since it provides a framework for addressing
these issues [1, 2].
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Recently, within this framework, an economical scenario has been proposed for stabil-
ising the Kähler moduli and ensuring a positive cosmological constant [3, 4]. The proposed
mechanism only relies on perturbative in α′ and string loop contributions without resorting
to non-perturbative corrections. A representative geometric set-up consists of (a minimum
of) three magnetised D7 brane stacks mutually orthogonal in the internal six-dimensional
(6d) space. The corresponding magnetic fields are turned on along U(1) directions on their
internal worldvolumes.

The framework takes advantage of an induced four-dimensional (4d) Einstein-Hilbert
(EH) term, localised in the internal space and proportional to its Euler characteristic [5].
This term emanates from the R4 couplings present in the ten-dimensional (10d) string
effective action, when three Riemann tensors multiplied with the wedge product are inte-
grated over the CY space. Graviton emission from the localised EH term into the bulk
towards the distinct D7-brane sources leads to local tadpoles where gravitons propagate
through a co-dimension-two bulk, giving rise to logarithmic dependent corrections on the
size of the bulk, in the large (transverse to the D7-brane) volume limit [4, 6].

These logarithmic contributions break the tree-level no scale structure of the Kähler
potential [7–9] and an F-term dependent on the Kähler moduli is induced in the scalar
potential. On the other hand, magnetic fluxes of U(1) gauge symmetries associated with
the D7 brane stacks provide (positive) D-term contributions to the scalar potential [10].
Both, logarithmic corrections and D-terms are sufficient to stabilise the Kähler moduli and
support a positive cosmological constant [3].

A meticulous examination of the resulting scalar potential shows that cosmological
inflation can be implemented with the internal volume modulus acting as the inflaton
field [11]. It has been found that the horizon exit is just above the inflection point and
the accumulation of the 60 e-folds required to realise inflation happens when the inflaton
field approaches the minimum of the potential. However, this dS minimum generated by
radiative corrections is a false vacuum with a value of the cosmological constant much
larger than the one observed today. A plausible solution to this issue is through hybrid
inflation [12] where a second (waterfall) field ends the inflation phase and settles to a lower
(true) minimum with the right value of the cosmological constant.

In the above geometric setup, possible available candidates for the role of a waterfall
field, are charged matter fields from the D7-branes; they correspond to excitations of open
strings ending on the D7-brane stacks or their intersections. In this paper, we investigate
this possibility and work out an explicit realisation. In general, a charged open string scalar
gets two types of contributions to its mass:

• a positive supersymmetric contribution corresponding to turning on a Wilson line or
introducing a brane separation, which are equivalent by T-duality and described by
an appropriate superpotential.

• A non-supersymmetric contribution due to the presence of the worldvolume mag-
netic fields that can be negative depending on the spin-magnetic field interaction
along the internal wolrdvolume directions. This contribution is described by an ap-
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propriate Fayet-Iliopoulos (FI) term entering the D-auxiliary component of the U(1)
with internal magnetic field.

Thus, the above contributions can differ in their sign and their dependence on the internal
volumes. As a result, tachyonic fields may appear in particular regions of values for the
internal volumes. Selecting appropriate magnetic fluxes and making a judicious choice of
(quantised) Wilson lines and brane positions, we construct first a model with the following
properties:

1. the ratios of the internal worldvolumes along the three D7-brane stacks are fixed in
terms of the (ratios of the) FI parameters depending on the quantised magnetic fluxes.
On the other hand, all complex structure moduli and the string dilaton are assumed
to be fixed at weak coupling by appropriate 3-form fluxes in a supersymmetric way
(i.e. with vanishing F-auxiliary components), leading to a constant flux-dependent
superpotential [13, 14].

2. The total 6d internal volume (which is the only leftover Kähler modulus) can then
be stabilised in the large volume regime by minimising the full scalar potential of
the theory containing the logarithmic corrections in the Kähler potential through the
F-term contribution. All charged open string states have positive squared-masses
in the large volume limit, larger than a certain value near the minimum ensuring
sufficient inflation (around 55 e-folds).

3. There is only one charged open string scalar that becomes tachyonic when the internal
volume becomes less than the above critical value and can thus be identified with
the waterfall field. The condition that there is no other tachyon for all values of the
volume implies within our framework that this state comes necessarily from the same
magnetisedD7-brane identified with its image under the corresponding O7-orientifold
but being separated in the transverse plane.

It turns out that the above model, although it provides an explicit string construc-
tion that implements the waterfall proposal for ending inflation within our perturbative
framework of moduli stabilisation, it does not lead to a sufficiently deep vacuum that can
accommodate the present dark energy. We therefore explose generalisations with more than
one waterfall fields that become tachyonic at nearby points successively (as a rollercoaster),
ending up to a vacuum of an infinitesimal (tuneable) energy.

The paper is organised as follows. In section 2, we give a short review of the mech-
anism of moduli stabilisation (subsection 2.1) and the corresponding model for inflation
(subsection 2.2). In section 3, we perform a general analysis of the open string spectrum
and the tachyons’ appearance in a Z2×Z2 orientifold of type IIB string with three mutual
orthogonal sets of D7-branes. We first review the model (subsection 3.1) and then analyse
the possible tachyonic states upon turning on worldvolume magnetic fields, first in the sim-
plest case of along one internal torus in one of the D7-brane stacks (subsection 3.2), then
in all three stacks (subsection 3.3) and finally along both tori on the worldvolume of all
stacks (subsection 3.4). Next we solve the constraint of having only one possible tachyon
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that can play the role of waterfall field in all cases. In section 4, we analyse the dynamics of
the waterfall field on the metastable dS vacuum and inflation by computing first the scalar
potential (D-term part in subsection 4.1 and F-term part in subsection 4.2) and then the
new vacuum where the waterfall field develops a non-vanishing vacuum expectation value
(VEV) at a saddle point, breaking the corresponding U(1) symmetry in a (global) mini-
mum at a lower energy than the scale of inflation but for a value of the volume modulus
of the same order as the original one (subsection 4.3). However, the vacuum energy can-
not be made sufficiently small to accommodate the present dark energy. In section 5, we
study the global minimum and generalise the model by adding more tachyons at nearby
points around the saddle point, that allow tuning the vacuum energy at an infinitesimally
small value. Finally, section 6 contains our conclusions and outlook. There are also three
appendices containing the expressions of Riemann theta-functions and SO(2) characters
(appendix A), the lattice of momenta and winding modes that we use in section 4 (ap-
pendix B) and the study of tachyons in the case of magnetised D7-branes on their entire
worldvolume (appendix C).

2 A short review of the framework

In this section we review the salient features of previous work [4, 11], focusing mainly on
the mechanism of Kähler moduli stabilisation with perturbative radiative corrections and
the implementation of the hybrid inflationary scenario.

In the framework of type IIB superstring theory, we consider a configuration of three
mutually orthogonal D7-brane stacks and three (four-cycle) Kähler moduli Tk = e−φ10τk +
ibk, with k = 1, 2, 3 and φ10 the dilaton. The total 6d internal volume can be expressed in
string units in terms of Tk [9] and here is simply given by

V = √τ1τ2τ3 , V̂ = e−
3
2φ10V =

√∏
i

1
2(Ti + T̄i) , (2.1)

where τk correspond to the internal worldvolumes of the three D7-brane stacks in string
units. The two basic ingredients we are interested in the following analysis are the su-
perpotential of the moduli fields and the Kähler potential. The tree-level superpotential
induced by 3-form fluxes [15] is Wflux =

∫
G3 ∧Ω(za), where G3 is defined in terms of the

field strengths of the two 2-form gauge potentials (C2 and B2) F3 = dC2, H3 = dB2 and
of the axion-dilaton S = e−φ10 + iC0, through G3 = F3 − iS H3. Ω(za) is the holomorphic
3-form of the CY internal manifold which depends on the complex structure moduli za.

Supersymmetric minimisation conditions fix the moduli S, za (thus the string coupling
gs = 〈eφ〉 and the complex structure of the internal manifold), but the Kähler moduli Tk
remain undetermined. Indeed, the classical Kähler potential is of no-scale type for Tk and
is expressed as

K = −2 ln
[
V̂(Tk)

]
− ln

[
−i
∫

[Ω ∧ Ω̄](za, z̄a)
]
− ln

[
S + S̄

]
, (2.2)

while the superpotential is reduced to a flux-dependent constant W0. Note that once the
complex structure moduli and the dilaton are stabilised, V and V̂ are interchangeable in the
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Kähler potential, as well as τk and Tk. Due to the no-scale structure and the supersymmetry
conditions for za and S, the induced scalar potential is identically zero

Vno-scale = eK

∑
I,J

DIW0KIJ̄DJ̄W0 − 3|W0|2
 ≡ 0, (2.3)

hence it is not possible to stabilise the Kähler moduli at the classical level. As it is well
known, a crucial role in the resolution of this issue is played by the perturbative and
non-perturbative corrections. In the particular geometric configuration considered in the
present work, it has been shown that perturbative quantum corrections which depend
logarithmically on the internal volume suffice to stabilise all Kähler moduli in a dS vac-
uum [3, 4]. Below, we give a brief summary of the main points of the derivation of these
corrections.

2.1 Logarithmic corrections and scalar potential

The 10d effective action of type IIB superstring theory, in addition to the Einstein-Hilbert
(EH) term linear in the scalar curvature R, includes also the leading order gravitational
term which depends on the fourth power of the Riemann tensor R. Such R4-terms are
induced from graviton scattering and do not receive any other perturbative corrections
beyond one-loop [16, 17].

The low energy limit of type IIB theory is described by its effective action obtained
upon compactification to four dimensions M10 → X6 ×M4, where Xn is a n-dimensional
compact manifold and Md the d-dimensional Minkowski spacetime. Under reduction of
the 10-dimensional action, the R4 couplings induce a novel EH term localised in the bulk,
denoted in the following with R(4). The 4d effective action relevant to our discussion takes
the form [5, 18]:

Sgrav = 1
(2π)7α′4

∫
X6×M4

e−2φ10R+ χ

(2π)4α′

∫
M4

(
2ζ(3)e−2φ10 + 4ζ(2)

)
R(4) , (2.4)

where α′ is the string Regge slope and ζ(2) = π2/6. The tree-level term proportional to
ζ(3) is vanishing for orbifolds. The proportionality factor of the R(4) term depends on the
Euler characteristic χ of the compactification manifold given by

χ = 3
4π3

∫
X6

R∧R ∧R · (2.5)

From (2.4) and (2.5) it is readily inferred that the R(4) term exists only in four dimensions
and is localised at points in the internal space where the Euler number is concentrated in
the large volume (decompactification) limit.

It follows that from these points of 4d localised gravity kinetic terms, 10d gravitons
represented by closed strings can be emitted in the bulk towards distinct D-brane and ori-
entifold sources, leading to local tadpoles [6]. In a geometric configuration with D7-brane
stacks (as well as O7-orientifold planes) spanning four out of the six internal dimensions, a
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novel type of radiative corrections emerges. More concretely, by momentum conservation,
gravitons emitted from the localised R(4)-vertices and ending on 7-brane sources propa-
gate effectively in the two dimensions transverse to the 7 branes, acquiring a logarithmic
propagator as a function of the distance. As a result, for generic D7-brane distribution at
the boundaries of the compactified space, ‘far’ away from the localised EH-term, they give
rise to corrections depending logarithmically on the size of the bulk, of the form [4]

4ζ(2)
(2π)3χ

∫
M4

(
1−

3∑
k=1

e2φ10Tk ln(Rk⊥/w)
)
R(4) , (2.6)

where we considered the case of orbifolds, where computations can be done explicitly.
Here, Tk is the (effective) tension of the kth 7-brane stack, Rk⊥ stands for the size of the
two-dimensional space transverse to the corresponding brane stack, and w is the width
of the R(4) localisation, playing the role of an effective ultraviolet cutoff for the graviton
propagator in the bulk [5].

Incorporating the above corrections into the Kähler potential (2.2) we obtain the fol-
lowing Kähler moduli dependence

K(τk) = −2 ln
(
√
τ1τ2τ3 + ξ +

∑
k

γk ln τk
)

= −2 ln (V + ξ + γ lnV) , (2.7)

where in the last equality we assume for simplicity the same tension Tk ≡ T = e−φ10T0 for
all the brane stacks, which amounts to identical γk ≡ γ/2. The parameters ξ and γ are
given by [4, 5]

γ ≡ −1
2gsT0ξ , with ξ = −χ4 ×


π2

3 g
2
s for orbifolds

ζ(3) for smooth CY .
(2.8)

These corrections induce a non-zero F-term effective potential VF. In addition, the effective
potential receives contributions from D-terms associated with (magnetised) U(1) factors of
the D7-brane stacks. The D-term effective potential VD can be minimised to fix the ratios
τi/τj . These ratios are related to moduli orthogonal to the total internal volume modulus.
When the masses of these moduli are large compared to the mass of the total volume, one
can indeed study the resulting effective potential of the total volume after minimisation
over the ratios. We check explicitly this assumption for the model studied hereafter, in
section 4.3.

The sum of F- and D-term contributions constitutes the effective scalar potential Veff
which after minimising the ratios in the large volume limit, can be cast in the form

Veff(V) = VF + VD '
3W2

0
2κ4V3 (2γ(lnV − 4) + ξ) + d

κ4V2 ≡
C

κ4

(
− lnV − 4 + q

V3 − 3σ
2V2

)
,

(2.9)
where the term in the right-hand side proportional to γ is VF, while the term proportional
to d is VD. The constant d is related to D-terms, κ =

√
8πGN is the reduced Planck length,

and we have defined

q ≡ ξ

2γ = − 1
gsT0

, C ≡ −3W0
2γ , σ ≡ 2d

9W0
2γ

= − 2d
3C . (2.10)
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It can be readily shown that within the above procedure, positive square masses are pro-
vided to all the Kähler moduli fields and at the same time a local de Sitter vacuum is
obtained in a narrow region of σ, at weak coupling and large volume for γ and q negative,
implying positive tension and negative Euler number, T0 > 0 and χ < 0.

2.2 Implementation of hybrid inflation

In [11] slow-roll inflation was successfully implemented with the internal volume V playing
the role of the inflaton field. Introducing the canonically normalised inflaton

φ/κ ≡
√

6/(3κ) ln(V), (2.11)

the potential (2.9) reads

V (φ) ' − C
κ4 e

−3
√

3
2φ

(√
3
2φ− 4 + q + 3

2σe
√

3
2φ

)
. (2.12)

The extrema of (2.12) are found to be

φ−/+ = −
√

2
3

(
q − 13

3 +W0/−1
(
−e−x−1

))
, (2.13)

where φ− (φ+) is the local minimum (maximum) with φ− < φ+, and W0/−1 are the two
branches of the Lambert-W function, whilst x is a convenient parameter defined through
the relation

x ≡ q − 16
3 − ln(−σ) ↔ σ = −eq−

16
3 −x. (2.14)

From (2.13) we observe that variation of the parameter q, while keeping x constant, implies
only a common shift of the local extrema. Moreover, a simple inspection of the form of the
potential (2.12) shows that x is the only real parameter of the model, while q shifts the
origin of the field and C rescales the potential.

Note that the value of the volume at the minimum is given by1

V− = exp
(√

3
2φ−

)
= e−q × exp

(13
3 −W0

(
−e−x−1

))
. (2.15)

Thus, for a given value of x, one obtains a large volume for a large (negative) q = −1/(gsT0),
which is reached exponentially fast as long as gs is small. Hence the weak coupling and
large volume limits are related naturally in a simple way. For simplicity, in the following
we take q = 0 emphasising that the parameter q does not change the properties and the
analysis of the inflationary phase, but can be used to reach parametrically large volumes.

It turns out [11] that the critical value xc ' 0.072 gives a Minkowski minimum, i.e.
V (φ−) = 0, the region 0 < x < xc ensures de Sitter minima, the values x > xc yield
anti-de Sitter (AdS) vacua, and the region x < 0 corresponds to the case where the two
branches of the Lambert function join and the potential loses its local extrema. Slow-roll
inflation compatible with observations can be realised for x ' 3.3 × 10−4, while the field

1Please note that there is a typo regarding the sign in front of W0 in equation (56) of [11].
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separation between the two extrema is given by φ+−φ− = 0.042. The inflaton starts rolling
near the maximum with no initial speed, these initial conditions being motivated if one
considers that this maximum is related to a symmetry restoration point. The inflationary
phase corresponds to the inflaton rolling down its potential. An analysis of the slow roll
parameters ε = (V ′/V )2/2 and η = V ′′/V shows that ε � |η| holds in the whole region
of the field space [φ−, φ+] and thus the spectral index of primordial density fluctuation
ns ' 1 + 2η is fixed by η which has to be around −0.02 at the horizon exit φ ≡ φ∗ to agree
with the data.

As the inflaton φ goes down from the maximum to the minimum, the second derivative
V ′′(φ) changes sign and as the slow roll parameter η(φ+) < −0.02, it passes through
the value η(φ∗) = −0.02 before the inflection point. The x parameter of the model is
chosen so that at least 60 e-folds are obtained from this point to the end of inflation. The
required number of N∗ ' 60 e-folds is computed from the horizon exit φ∗ ' φ− + 0.02
at which η(φ∗) = −0.02, to the minimum φ−. The modes exit the horizon just before
the inflection point is reached and most of the e-folds are obtained around the minimum.
Furthermore, it should be emphasised that the corresponding inflaton field displacement
is ∆φ ' 0.02, which is much less than one in Planck units, corresponding to small field
inflation compatible with the validity of the effective field theory.

In the model described above, the dS vacuum energy is constrained by the choice of
the value of the parameter x and for its value of interest for inflation, the potential at the
minimum is practically of the same order given by the inflation scale, V (φ−) ' V (φ∗). This
amount of vacuum energy is way much greater than the observed value today, hence it could
not be the true vacuum of the theory. Indeed, with such a big value, the Universe would
continue expanding and never reach the standard cosmology with radiation and matter
domination eras. As suggested in [11], the introduction of new physics near the minimum
of the potential brings in a natural scenario for the end of the inflation epoch. This relates
the model to the hybrid inflation proposal [12], where a second field Y is added to the
model. This “waterfall” field Y adds another direction to the scalar potential. If falling
towards this direction becomes favorable at a certain point of the inflaton trajectory, this
immediately ends the inflation era and the theory reaches another minimum at a different
energy scale which should coincide with the true vacuum today dominated by the observed
dark energy.

The main features of the hybrid scenario adapted to our model are described by the
following potential

VY (φ, Y ) = V (φ) + 1
2m

2
Y (φ)Y 2 + λ

4 Y
4 , (2.16)

where V (φ) is the inflaton potential (2.12) and the extra terms contain the dependence
in Y together with its coupling to the inflaton φ. Depending on the sign of its effective
squared mass m2

Y (φ), the waterfall field Y stays in two separate phases. When m2
Y > 0,

the minimum in the Y -field direction is at the origin

〈Y 〉 = 0, when m2
Y (φ) > 0 , (2.17)
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and the extra contribution to the scalar potential vanishes

VY (φ, 0) = V (φ) . (2.18)

When the mass of Y becomes tachyonic, a phase transition occurs and the new vacuum is
obtained at a non-vanishing VEV for Y :

〈Y 〉 = ±|mY |√
λ
≡ ±v, when m2

Y (φ) < 0. (2.19)

The value of the potential VY at the minimum of this broken phase is

VY (φ, v) = V (φ)− m4
Y (φ)
4λ . (2.20)

For suitable mY (φ) during the inflationary phase when the field φ rolls down the
potential, the system is in the symmetric phase and the Y field is stabilised with a vanishing
VEV and a large mass. The inflationary phase is then equivalent to the one field inflation
model. Subsequently, ifm2

Y turns negative near the minimum, a phase transition occurs and
the Y field attains its value given in (2.19) at the new minimum. This amounts to a change
of the potential V (φ) near the minimum, by a negative constant Vdown = −m4

Y /(4λ) < 0.
The effect of such a downlift is double: it decreases the value of the cosmological constant
and if the waterfall direction is steep enough, it gives a natural criterion to stop inflation
(ε > 1). In the next sections we will propose a possible implementation of the scenario of
hybrid inflation in a string theory framework by demonstrating how the waterfall field can
be identified with an open string state on D7-branes stacks.

3 Toroidal model of a matter waterfall field

In this section we implement a toy model of toroidal compactification with magnetic fluxes
giving rise to a matter waterfall field, located at an intersection of the D7-branes stacks.
We will consider a Z2×Z2 orbifold on a factorised 6-torus T 6 = T 2×T 2×T 2, for which the
associated Euler characteristic2 is χ = 96. As explained in [4, 5], a large Euler characteristic
is necessary to control the approximations in the computation of the localisation width of
the induced 4d graviton kinetic terms and the logarithmic Kähler quantum corrections γk
and γ of (2.7) and (2.8). The Z2 × Z2 orbifold is therefore a valid and simple candidate
for a specific model.

In the following, we first review toroidal string compactifications in the presence of
magnetised branes and then show how to obtain a waterfall field. The idea is to generate
a tachyonic field, whose mass-squared depends non-trivially on the total internal volume
and becomes negative around the minimum of the scalar potential (2.12).

2For toroidal orbifolds, the Euler characteristic is defined as χ = 1/|P |
∑

g,h∈P χ(g, h) where P is the
point group of the orbifold and χ(g, h) the number of fixed points under both twists g and h, taken zero
when there is a common fixed torus. In the Z2 × Z2 example generated by the basis α = (−,−,+) and
β = (+,−,−) twists, a non-trivial (g, h) pair is either (α, β), (α, αβ) or (β, αβ), and have χ(h, g) = χ(g, h) =
43 = 64. Hence the Euler characteristic is χ = 1/4× 2× 64× 3 = 96, with the factor of 2 coming from the
interchange of g and h in the sum.
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3.1 T 6/ZZZ2 × ZZZ2 with magnetic fields: setup and notations

Toroidal orbifold. We consider for simplicity a factorised 6-torus T 6 = T 2
1 × T 2

2 × T 2
3

with i = 1, 2, 3 indices denoting the (45), (67) and (89) internal directions respectively. To
fix notations we define the i-th torus T 2

i as

T 2
i ≡ R2/2πΛi, Λi = {qRix + rRiy; q, r ∈ Z} , (3.1)

with Rix, Riy two linearly independent vectors of norm Rix, Riy and relative angle αi. The
dual lattice Λ∗i is generated by the dual vectors R∗xi ,R

∗y
i satisfying Rik ·R∗li = δlk. The

torus metric reads
g

(i)
kl = Rik ·Ril = Ai

Re(Ui)

(
1 Im(Ui)

Im(Ui) |Ui|2

)
, (3.2)

and its inverse can be used to raise the indices and express the dual vectors R∗ki = g(i)klRil.
In the above metric we have defined by Ai the unit cell area of the torus T 2

i

Ai ≡
√

det g(i) = vol(2πΛi)
(2π)2 = RixRiy sinαi, with Rix ·Riy = RixRiy cosαi, (3.3)

and by Ui, the torus complex structure modulus

Ui ≡ i
Riy
Rix

e−iαi = 1
Rix

2 (Ai + iRix ·Riy). (3.4)

We now consider the following D7 branes configuration, dual to the configuration
containing D9 and D5 branes as in the toroidal orbifold model on T 6/Z2 × Z2 described
in [19, 20]:

(45) (67) (89)
D71 · × ×
D72 × × ·
D73 × · ×

←−−−−−−−−−−−−−−−−−→
T-duality along (45)

(45) (67) (89)
D91 × × ×
D52 · × ·
D53 · · ×

In the above tables, a cross × represents the D7 worldvolume spanning the corresponding
torus, while a dot · indicates the transverse directions where the D7 brane is localised. In
the following we will introduce magnetic fields and circled crosses ⊗ will represent directions
of a magnetic flux for the worldvolume U(1) gauge fields.

The torus, Klein bottle, annulus and Möbius amplitudes are computed using standard
methods [21–23] and the specific ones for the T 6/Z2 × Z2 model can be found in e.g. [19].
The torus amplitude (without discrete torsion) reads

4T = |Too|2 Λ1Λ2Λ3 + 16
(
|Tog|2 Λ1 + |Tof |2 Λ2 + |Toh|2 Λ3

) ∣∣∣∣ η2

ϑ2
2

∣∣∣∣2
+ 16

(
|Tgo|2 Λ1 + |Tfo|2 Λ2 + |Tho|2 Λ3

) ∣∣∣∣ η2

ϑ2
4

∣∣∣∣2 + 16
(
|Tgg|2 Λ1 + |Tff |2 Λ2 + |Thh|2 Λ3

) ∣∣∣∣ η2

ϑ2
3

∣∣∣∣2
+ 64

(
|Tgh|2 + |Tgf |2 + |Tfg|2 + |Tfh|2 + |Thg|2 + |Thf |2

) ∣∣∣∣ η3

ϑ2ϑ3ϑ4

∣∣∣∣2 , (3.5)
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where ϑi’s are the Riemann theta-functions and η the Dedekind function, depending on
the world-sheet torus modular parameter τ , given in appendix A. The tori lattice sums
Λi are given in appendix B. There is a clash on notations with the defining torus lattice
of (3.1), but this should not cause any problem. The characters Tkj are expressed in terms
of the 16 Z2 ×Z2 characters τkl constructed from quadruple products of the four level-one
SO(2) characters, see appendix A. The Tkj characters used for the T 6/Z2 × Z2 model are
defined in [19, 23]

Tko = τko + τkg + τkh + τkf , Tkg = τko + τkg − τkh − τkf ,
Tkh = τko − τkg + τkh − τkf , Tkf = τko − τkg − τkh + τkf , (3.6)

for k = o, f, h, g.
In our D7-branes setup, the world-sheet involution Ω projection is implemented by

adding the Klein-bottle amplitude K to the half torus 1
2T of equation (3.5), following the

conventions of [23]. The Klein-bottle amplitude reads

8K =
(
W1P2P3 + P1W2P3 + P1P2W3

)
Too + 2× 16

[
P1Tgo + P2Tfo + P3Tho

] ( η

ϑ4

)2
,

(3.7)

where the Klein-bottle lattice sums Pi,Wi are given in appendix B. The open string spec-
trum can be obtained through the annulus and Möbius amplitudes; we describe them in the
following subsections, in the presence of magnetic fields. We then use (x, y, z) arguments
for the Tkj open-string characters referring to the internal oscillator shifts. For instance,
the first character of (A.5) reads

τoo(x, y, z) = V2(0)O2(x)O2(y)O2(z) +O2(0)V2(x)V2(y)V2(z)
−S2(0)S2(x)S2(y)S2(z)− C2(0)C2(x)C2(y)C2(z), (3.8)

and the Tkj(x, y, z) follow the same logic. Of course in the torus amplitude (3.5), Tkj stand
for Tkj(0, 0, 0).

Introducing magnetic fields. We now give a few elements of toroidal compactifications
in the presence of worldvolume magnetic fields, that we use in the following subsections.
We generically denote by H (i)

a a magnetic field introduced on the D7a stack, in the i-th
internal plane, with i = 1, 2 and 3 for (45), (67) and (89) respectively.

Magnetic fields modify the world-sheet action by introducing boundary terms [24, 25].
The solution of the wave equations depends on the charge of the open string. Neutral strings
have standard oscillators while charged ones see their modes shifted by the magnetic field
through the theta function argument

ζ(i)
a = 1

π
Arctan(2πα′qaH (i)

a ) . (3.9)

In the following we choose a normalisation for the U(1) charges at the endpoints of an open
string q = ±1, 0.
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For NN boundary conditions (with N standing for Neumann), this argument appears
through a factor η/ϑ1 (ζ(i)

a τ), replacing the standard P/η2 bosonic oscillators contribution of
a complex (compact) coordinate. The argument in ϑ1 contains in particular the field-theory
Landau levels, replacing the lattice momenta sums. For ND or DN boundary conditions
(with D standing for Dirichlet), it gives an argument to the ϑ4 function appearing in the
η/ϑ4 (ζ(i)

a τ) factors. The dipole strings (with ends of opposite charges, i.e. attached to
the same D-brane) have special quantised zero-modes inducing “boosted” string momenta

m(i)
a /

√
1 +

(
2πα′H (i)

a

)2
[24].

The magnetic fields H (i)
a are quantised through the standard Dirac quantisation on

fluxes
m

∫
T 2
H = 2πn, (3.10)

where m is the wrapping number and n the flux quantum. This leads to the magnetic field
quantisation

2πH (i)
a Ai = k(i)

a , k(i)
a = n(i)

a

m(i)
a
∈ Q , (3.11)

with k(i)
a the ratio of the flux number n(i)

a over the wrapping number m(i)
a of the D7a brane

on the i-th torus T 2
i . We recall that the T 2

i area is 4π2Ai, see (3.3). Note that due to
the Z2 quotient, n(i)

a can take half-integer values. This does not change the allowed values
for k(i)

a .
In the next sections we will extract the open string mass spectrum from the annulus

amplitude. The masses can also be extracted by looking at the different spins of the
internal components of the massless states (without magnetic fields), through the mass
shift formula given in [25]

∆m2 = 1
2α′

∑
i

[
(2ni + 1)

∣∣∣ζ(i)
L + ζ(i)

R

∣∣∣+ 2Σi

(
ζ(i)
L + ζ(i)

R

)]
. (3.12)

The L,R subscripts indicate the string endpoints and have to be replaced by the corre-
sponding brane in the oscillator shift defined in (3.9). The first term in the sum corresponds
to the Landau levels, while the second one corresponds to the magnetic moments for the
internal Σi helicities. Landau levels appear only for NN boundary conditions. This for-
mula, which can be derived from the annulus amplitude, can be understood using the field
theoretical description of magnetised branes.

3.2 One magnetised stack

We first consider a toy model with only one magnetic field. We turn this magnetic field on
the D72 stack and align it with the common U(1). Hence, the whole stack is magnetised
and there is no neutral D72 brane. We choose the magnetisation to be on the third torus T 2

3
(i.e. in the (89) direction). Then, according to the notation introduced in equation (3.11),
we denote the magnetic field by H (3)

2 , and the associated oscillator shift by ζ(3)
2 . The
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configuration is summarised in the following table:

(45) (67) (89)
D71 · × ×
D72 × · ⊗
D73 × × ·

The annulus amplitude is computed using the techniques and conventions of [19, 23, 26].
For our D7-branes model, the different contributions to the annulus amplitude read

8A0=
(
N1

2W1P2P3 +N3
2P1P2W3 +2N2N̄2P1W2P̃3

)
Too(0,0,0)

+2N1N3P2Tfo(0,0,0)
(

η

ϑ4(0)

)2
, (3.13)

8A1=−2iN1N2Tho(0,0,ζ(3)
2 τ) k(3)

2 η

ϑ1(ζ(3)
2 τ)

(
η

ϑ4(0)

)2
+2iN1N̄2Tho(0,0,−ζ(3)

2 τ) k(3)
2 η

ϑ1(−ζ(3)
2 τ)

(
η

ϑ4(0)

)2

+
(
2N3N2P1Tgo(0,0,ζ(3)

2 τ)+2N3N̄2P1Tgo(0,0,−ζ(3)
2 τ)

) η

ϑ4(0)
η

ϑ4(ζ(3)
2 τ)

, (3.14)

8A2=−iN2
2P1W2Too(0,0,2ζ(3)

2 τ) 2k(3)
2 η

ϑ1(2ζ(3)
2 τ)

+iN̄2
2
P1W2Too(0,0,−2ζ(3)

2 τ) 2k(3)
2 η

ϑ1(−2ζ(3)
2 τ)

, (3.15)

where A0,A1,A2 correspond respectively to the neutral, charged ±1 and charged ±2 strings
with respect to the magnetised U(1). In the above expressions, Pi,Wi are the standard
momentum and winding sums defined in appendix B, while P̃3 is the sum over boosted mo-
mentam3/

√
1 + (2πα′H (3)

2 )2 coming along with dipole strings. Note also that for notational
simplicity, the parameter τ is used instead of the direct channel annulus parameter i

2 Imτ .
The Tko characters were introduced in eq. (3.6) and appendix A. Their dependence

in the magnetic fields is explained around eq. (3.8). As explained shortly in section 3.1,
it is easy to trace back the different state contributions to the amplitude: each of ND or
DN mixed boundary conditions contributes by a η/ϑ4 factor (instead of 1/η2 for standard
bosonic coordinates), with oscillator shift ζiτ when a magnetic field is present on the N
boundary, and each NN boundary condition with magnetic fields introduces Landau levels
through a η/ϑ1 factor with oscillator shifts.

We present hereafter the Möbius contributions M0 and M2, corresponding to neutral
and doubly charged strings. In the Möbius amplitude both endpoints have to be identical
hence there is no simply charged contribution:

8M0=−(N1W1P2P3 +N3P1P2W3)T̂oo(0,0,0)+(N1W1 +N3P1)T̂og(0,0,0)
(

2η̂
ϑ̂2(0)

)2

+(N1P2 +N3P2)T̂of (0,0,0)
(

2η̂
ϑ̂2(0)

)2

+(N1P3 +N3W3)T̂oh(0,0,0)
(

2η̂
ϑ̂2(0)

)2

, (3.16)

8M2= iN2P1W2T̂oo(0,0,2ζ(3)
2 τ) 2k(3)

2 η̂

ϑ̂1(2ζ(3)
2 τ)

−iN̄2P1W2T̂oo(0,0,−2ζ(3)
2 τ) 2k(3)

2 η̂

ϑ̂1(−2ζ(3)
2 τ)

, (3.17)

−N2P1 T̂og(0,0,2ζ(3)
2 τ) 2η̂

ϑ̂2(0)
2k(3)

2 η̂

ϑ̂2(2ζ(3)
2 τ)

−N̄2P1 T̂og(0,0,−2ζ(3)
2 τ) 2η̂

ϑ̂2(0)
2k(3)

2 η̂

ϑ̂2(−2ζ(3)
2 τ)
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−N2W2 T̂of (0,0,2ζ(3)
2 τ) 2η̂

ϑ̂2(0)
2k(3)

2 η̂

ϑ̂2(2ζ(3)
2 τ)

−N̄2W2 T̂of (0,0,−2ζ(3)
2 τ) 2η̂

ϑ̂2(0)
2k(3)

2 η̂

ϑ̂2(−2ζ(3)
2 τ)

+iN2 T̂oh(0,0,2ζ(3)
2 τ)

(
2η̂
ϑ̂2(0)

)2
2k(3)

2 η̂

ϑ̂1(2ζ(3)
2 τ)

−iN̄2 T̂oh(0,0,−2ζ(3)
2 τ)

(
2η̂
ϑ̂2(0)

)2
2k(3)

2 η̂

ϑ̂1(−2ζ(3)
2 τ)

.

The Möbius amplitude modifies the unitary groups of the unmagnetised branes to orthog-
onal groups (branes on top of orientifolds). On the other hand, it acts on the magnetised
branes by forming states in the antisymmetric representation. The hatted T̂ij characters
and ϑ̂ functions are related as usual to the choice of a real basis of characters [23].

The different Chan-Paton multiplicities are as follows: N1, N3 for the string endpoints
aligned with the D71, D73 branes and N2, N̄2 for the D72 string endpoints aligned with the
U(1) magnetic field, with charge ±1. N1 and N3 are real because they index orthogonal
groups. These Chan-Paton multiplicities include the wrapping numbers factors so that
they are in fact written as

Na = N ′am
(j)
a m

(k)
a , a 6= j 6= k 6= a, (3.18)

where N ′a is the true number of branes in the a-th stack. Replacing eq. (3.18) in the
amplitudes of eqs. (3.13) to (3.17), one can read the chiral fermion multiplicities through
the “intersection number” defined for each magnetised torus T 2

j as

I (j)
ab = n(j)

a m
(j)
b −m

(j)
a n

(j)
b . (3.19)

This intersection number Iab = ∏
j I

(j)
ab is the index of the Dirac operator of the charged

fermions. Taking a specific example, the total multiplicity of the doubly charged states
between the D72 brane and its orientifold image, described by the amplitude A2 given in
eq. (3.15), can be written as

N2
2 k(3)

2 − N̄
2
2 k

(3)
2 = 2N ′2

2(m(1)
2 m(3)

2 )2k(3)
2 = 2N ′2

2
m(1)

2
2
m(3)

2 n(3)
2 = N ′2

2
m(1)

2
2
I22′ . (3.20)

The N ′2
2m(1)

2
2 is just the Chan-Paton multiplicity for the unmagnetised torus while I22′ is

the chiral fermions multiplicity (which is then modified by the orientifold projection). This
multiplicity can be understood from the field theoretical point of view as the degeneracy
of each Landau level [25].

As usual, the various multiplicities are subject to tadpole cancellation conditions, mod-
ified in general by the presence of 3-form fluxes needed for complex structure moduli sta-
bilisation.

The massless states of the original orbifold model are modified by the magnetic field.
The charged states receive different contributions (according to the internal spins) resulting
to the mass shift (3.12). We show in the following table the smallest mass shifts for each
state (i.e. the new lowest-lying states after magnetic deformation). In the table, the lines
and columns entries represent the two possible string endpoints of each state.

D71 D72 D73

D71 α′m2 = 0 α′m2 = 0 α′m2 = 0
D72 α′m2 = −2|ζ(3)

2 | α′m2 = −|ζ(3)
2 |

D73 α′m2 = 0
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We see that tachyonic states can appear in the spectrum [25, 26]. In order to eliminate
them, we introduce appropriate brane separations and/or Wilson lines. In the annulus
amplitudes of equations (3.13) to (3.15), Wilson lines amount to shifting the momentum
numbers in Pi according to the endpoint charges of the strings. Similarly, brane separations
shift in Wi the windings numbers. We then introduce Wilson lines and separations as
follows:

(45) (67) (89)
D71 · × ×
D72 × · ⊗
D73 × × ·

−−−−−−−−−→

(45) (67) (89)
D71 · × ×
D72 × · ±x2 ⊗
D73 ×A3 × ·

The index A3 indicates a U(1) Wilson line gauge field, that we take again along the diagonal
abelian factor of the D73 stack and turned on within the torus T 2

1 in the (45) internal plan.
The x2 index represents the brane positions of the D72 brane stack (and −x2 for its
orientifold image).

If the Wilson line modulus is projected out by the orbifolding procedure, the model
would generally only allow for discrete Wilson lines that can be expressed in the dual
lattice as

A3 = a3xR∗x1 + a3yR∗y1 , with a3x, a3y ∈ Q . (3.21)

For Z2 orbifolds we typically get a3x/y = 1
2 (if non-vanishing). This Wilson line gives a

mass for the charged fields of the form

α′m2 = α′A3 ·A3 = α′a3ka3lg
(1)kl = α′

A1Re(U1) |a3y + iU1a3x|2 ≡
α′a2

3(U1)
A1

, (3.22)

where the dimensionful area A1, the dimensionless complex structure U1, and the torus
metric g(1) were defined in (3.3), (3.4) and (3.2). In the last equality we separated the
complex structure and Kähler modulus (A1) dependences.

Similarly, the D72 brane position x2 can be expressed as

x2 ≡ xx2 R2x + xy2 R2y with xx2 , x
y
2 ∈ Q, (3.23)

where we assumed again discretisation of the positions at symmetric points of the funda-
mental cell. We recall that Rx

2 and Ry
2 are the torus lattice vectors defined in (3.1). The

displacement x2 of the D72 stack from the origin generates a mass for the strings stretched
between the brane stack and its image with respect to the orientifold plane located at the
origin:

α′m2 = 4x2 · x2
α′

= 4xk2xl2g
(2)
kl

α′
= 4A2
α′Re(U2) |x

x
2 − iU2x

y
2|

2 ≡ y(U2)A2
α′

. (3.24)

In the last equality we isolated again the complex structure modulus dependence from the
Kähler modulus one. For more general toroidal orbifolds, the point group symmetry has
to be compatible with the stabilised complex structure moduli, so that the Wilson line and
brane separation quantisation already incorporates the Ui dependence.
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The new lowest-lying mass states are shown in the table below.

D71 D72 D73

D71 α′m2 = 0 α′m2 = 0 α′m2 = 0
D72 α′m2 = −2|ζ(3)

2 |+
yA2
α′ α′m2 = −|ζ(3)

2 |+
α′a2

3
A1

D73 α′m2 = 0

In the small field approximation (induced by the large volume limit), the oscillator shift
reads

ζ(3)
2 = 1

π
Arctan(2πα′qH (3)

2 ) = 1
π
Arctan

(
α′k(3)

2
A3

)
≈ α′k(3)

2
πA3

. (3.25)

As will be explained in details in section 4.3, the Kähler moduli stabilisation fixes the Ai
ratios and the tori areas are power fractions of the total volume: Ai ≡ α′riV1/3, with
r1r2r3 = 1. Hence, the masses of the lowest-lying states read

α′m2
23 = −|ζ(3)

2 |+
α′a2

3
A1
≈ − |k(3)

2 |
πr3V1/3 + a2

3
r1V1/3 , (3.26)

α′m2
22 = −2|ζ(3)

2 |+
yA2
α′
≈ − 2|k(3)

2 |
πr3V1/3 + yr2V1/3. (3.27)

Thus, when πr3a
2
3 > r1|k(3)

2 | the m2
23 mass is positive for any value of the volume. For

instance, considering a3x = a3y = 1
2 and taking r1 = r3, as will be the case in the following,

the condition to eliminate the tachyon in the intersection of D72 and D73 branes is

4Re(U1)|k(3)
2 | < π|1 + iU1|2. (3.28)

For instance, in square torus this condition is reduced to |k(3)
2 |<π corresponding from (3.11)

to n(3)
2 < πm(3)

2 , i.e to a flux number smaller than the wrapping number. Concerning the
second lowest-lying massive state on the D72 branes, we observe that

m2
22 −−−−→lnV→±∞

±∞, (3.29)

hence, depending on the flux |k(3)
2 | and separation x, m22 turns negative when the volume

falls below a specific value, e.g. V− of (2.15), as required for our waterfall field candidate.

3.3 Magnetic fields on each stack

We now consider the following configuration with magnetic fields on each stack, again
denoted by a circled cross ⊗.

(45) (67) (89)
D71 · ⊗ ×
D72 × · ⊗
D73 ⊗ × ·
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The different contributions to the annulus amplitude A0, A1 and A2 corresponding to the
neutral, single and double charged strings, read

8A0 =
(
N1N̄1W1P̃2P3 +N2N̄2P1W2P̃3 +N3N̄3P̃1P2W3

)
Too(0, 0, 0), (3.30)

4A1 = − i
(
N1N2Tfo(0, ζ(2)

1 τ, ζ(3)
2 τ) + N̄1N2Tfo(0,−ζ(2)

1 τ, ζ(3)
2 τ)

) k(3)
2 η3

ϑ4(0)ϑ4(ζ(2)
1 τ)ϑ1(ζ(3)

2 τ)

+ i
(
N1N̄2Tfo(0, ζ(2)

1 τ,−ζ(3)
2 τ) + N̄1N̄2Tfo(0,−ζ(2)

1 τ,−ζ(3)
2 τ)

) k(3)
2 η3

ϑ4(0)ϑ4(ζ(2)
1 τ)ϑ1(−ζ(3)

2 τ)

− i
(
N1N3Tfo(ζ(1)

3 τ, ζ(2)
1 τ, 0) +N1N̄3Tfo(−ζ(1)

3 τ, ζ(2)
1 τ, 0)

) k(2)
1 η3

ϑ4(ζ(1)
3 τ)ϑ1(ζ(2)

1 τ)ϑ4(0)

+ i
(
N̄1N3Tfo(ζ(1)

3 τ,−ζ(2)
1 τ, 0) + N̄1N̄3Tfo(−ζ(1)

3 τ,−ζ(2)
1 τ, 0)

) k(2)
1 η3

ϑ4(ζ(1)
3 τ)ϑ1(−ζ(2)

1 τ)ϑ4(0)

− i
(
N2N3Tgo(ζ(1)

3 τ, 0, ζ(3)
2 τ) +N2N̄3Tgo(−ζ(1)

3 τ, 0, ζ(3)
2 τ)

) k(1)
3 η3

ϑ4(ζ(1)
3 τ)ϑ4(0)ϑ1(ζ(3)

2 τ)

+ i
(
N̄2N̄3Tgo(−ζ(1)

3 τ, 0,−ζ(3)
2 τ) + N̄2N3Tgo(ζ(1)

3 τ, 0,−ζ(3)
2 τ)

) k(1)
3 η3

ϑ4(ζ(1)
3 τ)ϑ4(0)ϑ1(−ζ(3)

2 τ)
,

(3.31)

8A2 = − iN2
1W1P3Too(0, 2ζ(2)

1 τ, 0) 2k(2)
1 η

ϑ1(2ζ(2)
1 τ)

+ iN̄2
1W1P3Too(0,−2ζ(2)

1 τ, 0) 2k(2)
1 η

ϑ1(−2ζ(2)
1 τ)

− iN2
2P1W2Too(0, 0, 2ζ(3)

2 τ) 2k(3)
2 η

ϑ1(2ζ(3)
2 τ)

+ iN̄2
2P1W2Too(0, 0,−2ζ(3)

2 τ) 2k(3)
2 η

ϑ1(−2ζ(3)
2 τ)

− iN2
3P2W3Too(2ζ(1)

3 τ, 0, 0) 2k(1)
3 η

ϑ1(2ζ(1)
3 τ)

+ iN̄2
3P2P3Too(−2ζ(1)

3 τ, 0, 0) 2k(1)
3 η

ϑ1(−2ζ(1)
3 τ)

. (3.32)

Exactly the same comments as those under eqs. (3.13) to (3.15) apply here. The Möbius
contributions have similar forms as those in eqs. (3.16) and (3.17), and are omitted here
since they play no role in our arguments. They act as for the magnetised brane of sec-
tion 3.2, generating states in antisymmetric representations of the gauge groups. They also
modify the chiral fermion multiplicity described around equation (3.19).

The masses of the lowest-lying states of the spectrum are shown in the following table:

D71 D72 D73

D71 α′m2 = −2|ζ(2)
1 | α′m2 = |ζ(3)

2 | − |ζ
(2)
1 | α′m2 = |ζ(2)

1 | − |ζ
(1)
3 |

D72 α′m2 = −2|ζ(3)
2 | α′m2 = |ζ(1)

3 | − |ζ
(3)
2 |

D73 α′m2 = −2|ζ(1)
3 |

We see that two different kinds of states appear: the D7a–D7a (doubly charged) states,
and the mixed D7a–D7b ones, with a 6= b. The mass of the former can be uplifted as in
the previous subsection and will be explained below. We can use neither Wilson lines nor
brane separations to increase the mixed states masses, since these can be introduced only
in directions without magnetic fields, i.e. along both worldvolumes (for Wilson lines), or
transverse to both stacks (for separations). In the directions along the magnetic field, zero
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modes of gauge potentials are gauge artifacts and thus unphysical. We must then specify
the fields H (i)

a in order to eliminate the tachyons, at least at large volumes. By a simple
inspection of the table above, it follows that the only way to eliminate all three potential
tachyons in the D7a–D7b brane intersections is to choose

|ζ(2)
1 | = |ζ

(3)
2 | = |ζ

(1)
3 |. (3.33)

The corresponding lowest-lying states then become massless.
As mentioned above, to uplift the tachyons on the D7a–D7a sectors, we can introduce

distance separations between branes and their images (in the direction orthogonal to their
worldvolume), or Wilson lines i.e. constant background gauge fields (on the unmagnetised
worldvolume torus), as in section 3.2. We show below a configuration keeping only one
potential tachyonic state that can play the role of the waterfall field:

(45) (67) (89)
D71 · ⊗ ×
D72 × · ⊗
D73 ⊗ × ·

−−−−−−−−−→

(45) (67) (89)
D71 · ⊗ ×A1

D72 × · ±x2 ⊗
D73 ⊗ ×A3 ·

Using the notation of the previous subsection, we introduce (discrete) Wilson lines along
the third torus T 2

3 for the D71 stack and along the second torus T 2
2 for the D73 stack,

while we separate the D72 stack from its orientifold image in its transverse directions. The
masses for the double charge states in the three brane stacks now become:

α′m2
11 = −2|ζ(2)

1 |+
α′a2

1
A3
≈ −2α′|k(2)

1 |
πA2

+ α′a2
1

A3
≈ − 2|k(2)

1 |
πr2V1/3 + a2

1
r3V1/3 , (3.34)

α′m2
22 = −2|ζ(3)

2 |+
yA2
α′
≈ −2α′|k(3)

2 |
πA3

+ yA2
α′

= − 2|k(3)
2 |

πr3V1/3 + yr2V1/3, (3.35)

α′m2
33 = −2|ζ(1)

3 |+
α′a2

3
A2
≈ −2α′|k(1)

3 |
πA1

+ α′a2
3

A2
≈ − 2|k(1)

3 |
πr1V1/3 + a2

3
r2V1/3 . (3.36)

To obtain the second equality of each equation we used large volume expansions for ζ(j)
a as

in eq. (3.25). The Wilson lines and brane position parameters are defined as in eqs. (3.22)
and (3.23). Similarly to the single magnetic field case of section 3.2, by choosing appro-
priately a1, a3 and the values of the magnetic fluxes |k(2)

1 | and |k
(1)
3 |, one can eliminate the

D71–D71 and D73–D73 tachyons. For instance, as explained after eq. (3.27), for ai = 1/2
typical for Z2 orbifolds, this requires flux numbers smaller than wrapping numbers. On
the other hand, the D72–D72 state becomes tachyonic at and below a critical value of the
volume that can be chosen to be around V− (defined in (2.15)), as required for the waterfall
field.

3.4 Magnetic fields on entire worldvolumes

In the previous subsection we saw that in order to eliminate the mixed-state tachyons from
brane intersections we had to impose condition (3.33). We now relax this condition by
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introducing magnetic fields in all worldvolume tori as shown below:

(45) (67) (89)
D71 · ⊗ ⊗
D72 ⊗ · ⊗
D73 ⊗ ⊗ ·

The masses of the potential tachyonic states can be extracted by computing the annulus
amplitude as done before and they are shown in the following table:

D71 D72 D73

D71 α′m2 = −2
∣∣∣ζ(2)

1 + ζ(3)
1

∣∣∣ α′m2 =
∣∣∣ζ(3)

1 ± ζ
(3)
2

∣∣∣− ∣∣∣ζ(2)
1 ± ζ

(1)
2

∣∣∣ α′m2 =
∣∣∣ζ(2)

1 ± ζ
(2)
3

∣∣∣− ∣∣∣ζ(3)
1 ± ζ

(1)
3

∣∣∣
D72 α′m2 = −2

∣∣∣ζ(1)
2 + ζ(3)

2

∣∣∣ α′m2 =
∣∣∣ζ(1)

2 ± ζ
(1)
3

∣∣∣− ∣∣∣ζ(3)
2 ± ζ

(2)
3

∣∣∣
D73 α′m2 = −2

∣∣∣ζ(1)
3 + ζ(2)

3

∣∣∣
where the ± signs in the same equality have to be identical (e.g. if the first ± is a +, the
second is + as well.)

The mixed states D7a–D7b, a 6= b can be eliminated by choosing an appropriate field
configuration, satisfying a system of inequalities defined by the positivity of the correspond-
ing mass expressions in the table:

∣∣∣ζ(3)
1 ± ζ

(3)
2

∣∣∣− ∣∣∣ζ(2)
1 ± ζ

(1)
2

∣∣∣ ≥ 0∣∣∣ζ(2)
1 ± ζ

(2)
3

∣∣∣− ∣∣∣ζ(3)
1 ± ζ

(1)
3

∣∣∣ ≥ 0∣∣∣ζ(1)
2 ± ζ

(1)
3

∣∣∣− ∣∣∣ζ(3)
2 ± ζ

(2)
3

∣∣∣ ≥ 0 .
(3.37)

This system is solved by the following configurations

(A−1) ζ(3)
1 = ζ(1)

2 = ζ(2)
3 , ζ(2)

1 = ζ(3)
2 = ζ(1)

3 ;
2) ζ(3)

1 = ζ(1)
2 = −ζ(2)

3 , ζ(2)
1 = ζ(3)

2 = −ζ(1)
3 ;

3) ζ(3)
1 = −ζ(1)

2 = ζ(2)
3 , ζ(2)

1 = −ζ(3)
2 = ζ(1)

3 ;
4) ζ(3)

1 = −ζ(1)
2 = −ζ(2)

3 , ζ(2)
1 = −ζ(3)

2 = −ζ(1)
3 ;

(B−1) ζ(2)
1 = ζ(3)

1 , ζ(1)
2 = ζ(3)

2 , ζ(1)
3 = ζ(2)

3 ; (3.38)
2) ζ(2)

1 = −ζ(3)
1 , ζ(1)

2 = −ζ(3)
2 , ζ(1)

3 = −ζ(2)
3 ;

for which all inequalities are saturated and the lowest-lying mixed states become massless.
For the solutions (A−i), all the double charged statesD7a–D7a have identical tachyonic

masses equal to α′m2 = −2
∣∣∣ζ(2)

1 + ζ(3)
1

∣∣∣, while for solution (B − 1) they can have different
masses. Solution (B− 2) is the supersymmetry preserving one, with all lowest-lying states
remaining massless. In both (A − i) and (B − 1) cases, the study of tachyonic states and
their elimination through Wilson lines and brane separations is identical to the one of
section 3.3. Nevertheless, we see that we are allowed to have more complex configurations
than with only one magnetic field on each brane.
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4 Effect of waterfall field on the dS vacuum and inflation

We now apply the Kähler moduli stabilisation mechanism described in section 2.1 in our
model of section 3.3 with matter fields living on the magnetised D7 branes, and study the
novelty introduced by the waterfall direction. We first compute the effective field theory
scalar potential for the Kähler moduli and the newly introduced matter fields, and then
describe the new vacuum of the theory.

The scalar potential depends on the total internal volume V = A1A2A3/α
′3 = √τ1τ2τ3

through the F-part described in section 2.1, and on the Kähler moduli τa (or equivalently
on the 2-tori areas Aa in the present case) through the D-part. Moreover, it has a new F-
part depending on the matter fields of the D7-branes. As we are interested in the waterfall
direction, we only keep track of possible tachyonic matter field contributions to the scalar
potential and put the other (massive) matter fields to zero. The canonically normalised
tachyonic field, coming from the D72–D72 state of section 3.3, is denoted ϕ− (and its
charge conjugate ϕ+) in the following. For simplicity, we recall the brane configuration of
section 3.3 in the following table.

(45) (67) (89)
D71 · ⊗ ×A1

D72 × · ±x2 ⊗
D73 ⊗ ×A3 ·

(4.1)

For simplicity we will consider wrapping numbers m(1)
2 = m(3)

2 = 1 and N ′2 = 1 such
that the D72 gauge group is restricted to U(1)2. See eq. (3.18) for the definition of N ′2.
The number of chiral fermions after orientifold projection is denoted by given by n(Ω)

22′ . The
tachyonic state will hence also have multiplicity n(Ω)

22′ , corresponding to the different Landau
states and related to the intersection numbers. In the following we will often refer to “the
tachyon” while describing all the degenerate tachyonic scalars together, because once the
tachyon gets a non-vanishing VEV, a specific direction is fixed for all the Landau states,
producing a massive field and n(Ω)

22′ − 1 Goldstone modes.

4.1 D-term from magnetic fields

The magnetic fields can be described in the effective theory through a D-term scalar po-
tential

VD =
∑
a

g2
U(1)a
2

(
ξa +

∑
n

qna |ϕna |2
)2

+ · · ·

=
∑
a=1,3

g2
U(1)a
2 ξ2

a +
g2

U(1)2

2
(
ξ2 + 2|ϕ+|2 − 2|ϕ−|2 + · · ·

)2
+ · · · (4.2)

In the first line, the sum runs over the n charged scalar fields. As explained above, in
the second line of (4.2) we have only kept the tachyonic field (and its charge conjugate)
contributions, with charges qa = ±2.
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The Fayet-Iliopoulos parameters ξa and gauge couplings g2
U(1)a used in the D-term

scalar potential depend on the Kähler moduli. Indeed, from the D-term (4.2) and from the
string frame expressions (3.9)–(3.12), we can write the magnetic field contribution to the
mass of the matter fields in the configuration of table (4.1) as

m2
H2 ≡ 2g2

U(1)2
ξ2 = 2|ζ(3)

2 |
α′

≈ 2|k(3)
2 |

πα′
α′

A3
≈ 2|k(3)

2 |
π

g2
s

κ2V
α′

A3
. (4.3)

We recall that ζ(3)
2 is given in equation (3.9) and hence the third equality holds in the small

magnetic field (large volume) limit. In order to go to the supergravity frame, we used the
four dimensional Planck constant expression

1
κ2 ≡

1
κ2

4
= Ṽ
κ2

10
= Ṽ
α′g2

s(4π2α′)3 = V
α′g2

s

, (4.4)

where we restored the string units in the total volume Ṽ = (4π2)3α′3V = (4π2)3A1A2A3.
The gauge couplings are expressed in terms of the magnetised D7 brane worldvol-

umes as

1
g2

U(1)a
= |m

(j)
a m

(k)
a |

gsα′
2

∣∣Aj + iα′k(j)
a

∣∣ ∣∣Ak + iα′k(k)
a

∣∣ , with a 6= j 6= k 6= a. (4.5)

In the small magnetic fields (large areas) limit, the couplings (4.5) reduce to

1
g2

U(1)a
≈ |m(j)

a m
(k)
a |
AjAk
gsα′

2 = |m(j)
a m

(k)
a |
V
gs

α′

Aa
, with a 6= j 6= k 6= a. (4.6)

Combining equations (4.3) to (4.5), we deduce the expressions for the moduli dependent
Fayet-Iliopoulos term

ξ2 =
m2
H2

2g2
U(1)2

≈ |m(1)
2 m(3)

2 |
gs|k(3)

2 |
πκ2V

A1
α′
. (4.7)

We obtain similar expressions for ξ1 and ξ3 for the configuraition of (4.1), so that the
D-term part of the scalar potential (4.2) reads

VD ≈
1

κ4V2

(
d1
A3
A2

+ d2
A1
A3

+ d3
A2
A1

)
+m2

H2

(
|ϕ+|2 − |ϕ−|2

)
+ 2g2

U(1)2

(
|ϕ+|2 − |ϕ−|2

)2
,

(4.8)
where we defined the Kähler moduli D-term parameters

da ≡
g2

U(1)a
2 ξ2

a = 1
2g

3
s |m(j)

a m
(k)
a |
(
k(j)
a

π

)2
, with (a, j, k) = (σ(1), σ(2), σ(3)) and σ a 3-cycle.

(4.9)
Note again that the above da correspond to the specific flux configuration of (4.1).

4.2 F-term from brane separation

Appart from the D-term potential, the effective field theory contains a positive mass con-
tribution for the tachyonic scalars of the model described in section 3.3. These scalars

– 21 –



J
H
E
P
0
1
(
2
0
2
2
)
0
1
1

come from strings stretching between the D72 brane stack and its image, and the positive
contribution to their mass is due to the distance separation between the brane and its
orientifold image. It is generated by the VEV of an adjoint scalar coming from strings with
both ends on the D72 stack and preserves supersymmetry, in contrast to the tachyonic
contribution from the magnetic field discussed above.

More precisely, this contribution is described by a trilinear superpotential obtained by
an appropriate N = 1 truncation of an N = 4 supersymmetric theory within the untwisted
orbifold sector:

WC7a
i
3 Tr

(
C7a

1

[
C7a

2 , C7a
3

])
. (4.10)

The C7a
j for j = 1, 2, 3 are the three N = 1 chiral multiplets that are part of an N = 4

vector multiplet living on the D7a brane stack. C7a
a parametrise the brane position in the

transverse plane while C7a
j with j 6= a are the internal components of the 8d gauge fields

along the two planes of the worldvolume of the D7a brane [27, 28]. As explained above,
the couplings of interest are given by equation (4.10), with a = 2. We can then identify
the relevant superpotential in our case from:3

W
C

72
i

= wijkC
72
i C

72
j C

72
k 3 cΦ2Φ+Φ−. (4.11)

Here Φi are the un-normalised fields: Φ2 is the modulus associated with the D72 brane
position x2 of section 3.3, hence C72

2 , while Φ− (and Φ+) is the tachyonic matter field of
interest (and its charge conjugate) assimilated to C72

1 and C72
3 . When Φ2 acquires a non-

vanishing VEV 〈Φ2〉 ∼ x2, the superpotential (4.11) generates a (supersymmetric) mass
for the matter fields Φ+ and Φ−.

The physical mass for the canonically normalised fields ϕi can be computed from the
physical Yukawa couplings derived from the supergravity action [29–31] and expressed as

Wtach = Yijk ϕiϕjϕk, with Yijk = wijk (KīiKjj̄Kkk̄)
− 1

2 e
κ2
2 K. (4.12)

Kīi are the Kähler metrics of the matter fields of interest (assuming no kinetic mixing),
and wijk is the trilinear coupling of the holomorphic superpotential, which in our case
is simply related to c defined in (4.11). In the type IIB string framework, and for the
untwisted fields appearing in (4.10), the Kähler metrics of the matter fields on magnetised
tori read [27, 31–34]

κ2K
C

72
1 C̄

72
1

= πeφ4

(U1 + Ū1)

√
α′A1
A2A3

∣∣∣∣∣m
(3)
2

m(1)
2

∣∣∣∣∣
∣∣∣∣∣A3 + iα′k(3)

2
A1 + iα′k(1)

2

∣∣∣∣∣ , (4.13)

κ2K
C

72
3 C̄

72
3

= πeφ4

(U3 + Ū3)

√
α′A3
A1A2

∣∣∣∣∣m
(1)
2

m(3)
2

∣∣∣∣∣
∣∣∣∣∣A1 + iα′k(1)

2
A3 + iα′k(3)

2

∣∣∣∣∣ , (4.14)

κ2K
C

72
2 C̄

72
2

= πeφ4

α′2(U2 + Ū2)

√
α′A2
A1A3

∣∣∣m(1)
2 m(3)

2

∣∣∣ ∣∣∣A1 + iα′k(1)
2

∣∣∣ ∣∣∣A3 + iα′k(3)
2

∣∣∣ . (4.15)

3In our conventions the superpotential and all un-normalised fields are dimensionless.
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The m(i)
a , n(i)

a integers are related to the quantised magnetic field H (i)
a with k(i)

a given in
equation (3.11). We recall that in the present example we take m(1)

2 = m(3)
2 = 1, as

mentioned under eq. (4.1). The four dimensional dilaton φ4 is related to the ten dimensional
one through the total volume

eφ4 = eφ10V−
1
2 = eφ10α′3/2√

A1A2A3
. (4.16)

The 10d dilaton is part of the axio-dilaton multiplet defined as

S = e−φ10 + iC0, with gs = 〈eφ10〉. (4.17)

In the configuration of (4.1), H (3)
2 is turned on and H (1)

2 vanishes. In the large volume
limit, i.e. when α′k(3)

2 � A3, the magnetic flux is diluted and the Kähler metrics approach
the unmagnetised ones. We will check later that the magnetic fields are indeed small for
our purposes. In that case the Kähler metrics read

κ2K
C

72
1 C̄

72
1

= πeφ4

(U1 + Ū1)

√
α′A3
A1A2

∣∣∣∣∣m
(3)
2

m(1)
2

∣∣∣∣∣ = 1
(U1 + Ū1)(T3 + T̄3)

, (4.18)

κ2K
C

72
3 C̄

72
3

= πeφ4

(U3 + Ū3)

√
α′A1
A2A3

∣∣∣∣∣m
(1)
2

m(3)
2

∣∣∣∣∣ = 1
(U3 + Ū3)(T1 + T̄1)

, (4.19)

κ2K
C

72
2 C̄

72
2

= πeφ4

(U2 + Ū2)

√
A1A2A3

α′3

∣∣∣m(1)
2 m(3)

2

∣∣∣ = 1
(S + S̄)(U2 + Ū2)

, (4.20)

where we used that in the toroidal case the Ti moduli are expressed in terms of the tori
areas through

Ti = e−φ10AjAk
α′2

+ iai , i 6= j 6= k 6= i. (4.21)

In the equalities of eqs. (4.18) to (4.19) we also explicitly took m(1)
2 = m(3)

2 = 1. These
Kähler metrics follow from a Kähler potential of the usual form

κ2K =− ln
[
(S + S̄)(U2 + Ū2)− |C72

2 |
2
]

− ln

(T2 + T̄2)
∏

i,j=1,3

(
|εi2j |(Ti + T̄i)(Uj + Ūj)− |εi2j ||C72

j |
2 + · · ·

) . (4.22)

In the last line, there is an implicit summation on the j index, and εi2j is the standard
fully antisymmetric symbol. In the above Kähler potential we did not include the quantum
corrections of equation (2.7) which are subdominant here.

From equations (4.18) to (4.20) we see that the physical Yukawa couplings (4.12) read

Yijk=κ3wijk

(
1

(S+S̄)(T1 + T̄1)(T3 + T̄3)∏l(Ul+Ūl)

)− 1
2
(

(S+S̄)
∏
l

(Tl+ T̄l)(Ul+Ūl)
)− 1

2

=κ3wijk
1√
T2 + T̄2

=κ3wijk g
1/2
s

√
A2
α′V

. (4.23)
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We have made use of the definitions (4.17), (4.16) and (4.21) to express the various moduli in
terms of the physical quantities. From (4.23) we can extract the internal volume dependence
of the canonically normalised tachyonic fields superpotential (4.11)

Wtach = g1/2
s κ3

√
A2
α′V

ϕ2ϕ+ϕ−, (4.24)

which generates a F-term scalar potential.

Mass term. When ϕ2 gets a non-vanishing VEV 〈ϕ2〉 6= 0, the F-term gives a mass to
the tachyonic fields

VF 3 κ−4∑
i

∣∣∣∣∂Wtach
κ∂ϕi

∣∣∣∣2 = gs∣∣∣m(1)
2 m(3)

2

∣∣∣ |〈ϕ2〉|2
A2
α′V

(
|ϕ+|2 + |ϕ−|2

)
≡ m2

x2

(
|ϕ+|2 + |ϕ−|2

)
.

(4.25)
In the above equation, we defined mx2 as the physical mass coming from the brane posi-
tion x2.

From equation (4.20) we read the Φ2 Kähler metric and deduce the expression for the
canonically normalised field

ϕ2 = κ−1√
(U2 + Ū2)(S + S̄)

Φ2 = κ−1g1/2
s√

U2 + Ū2

Φ2. (4.26)

We recall that Φ2 is the dimensionless complexifyed scalar modulus related to the brane
position on T 2

2 , given by
Φ2 = xx2 − iU2x

y
2. (4.27)

Hence from equations (4.25) to (4.27) we deduce that

m2
x2 = |〈ϕ2〉|2 gs

A2
α′V

= g2
s

κ2V
A2

α′|U2 + Ū2|
|xx2 − iU2x

y
2|

2 ≡ y(U2) g
2
s

κ2V
A2
α′
. (4.28)

Replacing κ2V/g2
s by α′ through (4.4), we find back the string mass formula (3.24) derived

in section 3.3, except for irrelevant powers of 2 which come from the fact that in the
current part we derived the mass term without explicitly applying the orientifold and
orbifold projections. In the following we use the last form of (4.28).

Quartic term. In order to analyse the phase transition of the waterfall field, we need
to keep track of the quartic terms in addition to the mass terms. For the D-term scalar
potential the quartic contributions were already included in the expansion (4.2). The full
F-term scalar potential can be computed through the supergravity formula using the total
superpotential W = W0 +W

C
72
i

containing the flux-dependent constant described above
eq. (2.3) and the C72

i dependent part of eqs. (4.10) and (4.11), together with the total
Kähler potential including the C72

i dependence of (4.22) and the quantum corrections of
eq. (2.7). From this F-term we can extract the quartic contribution of the waterfall field.

Nevertheless, the leading corrections in gs are easily obtained by expanding the Kähler
potential (4.22) with respect to the tachyonic field ϕ− (or rather its non-canonically nor-
malised “parent” C72

1 or C72
3 ), thus neglecting the C72

2 dependence in the logarithm of the
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first line together with the one-loop quantum corrections. The leading quartic contribution
for the tachyonic scalar field potential then simply reads

VF 3
g2
s

(U2 + Ū2)
A2
α′V
|〈Φ2〉|2|ϕ−|4 = y(U2)g

2
s

V
A2
α′
|ϕ−|4 = κ2m2

x2 |ϕ−|
4. (4.29)

Thus, it turns out that the leading quartic contribution comes entirely from the expansion
of the eκ2K factor in the supergravity formula. The dependence on the moduli of this term
is identical to the one of the mass term as it comes from the Kij̄DiWDj̄W part of the
F-term scalar potential, with the derivative taken with respect to the ϕ+ field.

4.3 New vacuum

Summing the D-term and F-term contributions (4.2), (4.25) and (4.29) for the matter fields
with the F-term scalar potential for the volume modulus, which is shown in eq. (2.9), we
obtain the effective scalar potential to minimise in order to obtain the physical vacuum. It
reads

V (Ai, ϕ±) = VF(V) + VF(Ai, ϕ±) + VD(Ai, ϕ±) + · · ·

= VF(V) +m2
x2

(
|ϕ+|2 + |ϕ−|2

)
+ κ2m2

x2 |ϕ−|
4 + · · ·

+
∑
b=1,3

g2
U(1)b
2 ξ2

b +
g2

U(1)2

2
(
ξ2 + 2|ϕ+|2 − 2|ϕ−|2

)2
+ · · · (4.30)

Kähler moduli minimisation. As motivated after eq. (2.8), we first minimise the scalar
potential with respect to ratios of the internal areas moduli Ai, letting free the total volume
V and neglecting for the moment the matter fields. This is similar to what was done in [11],
with nevertheless a slightly different expression for the D-term before the minimisation.
This is why we perform again the minimisation in our precise model. Defining the ratios

u ≡ A3
A2

, v ≡ A1
A3

,
1
uv

= A2
A1

, (4.31)

the D-term part of the scalar potential (4.8) reads

VD(Ai) = VD(V, u, v) = 1
κ4V2

(
d1u+ d2v + d3

uv

)
, (4.32)

where the di parameters are defined in equation (4.9). VD is minimised by

u0 =
(
d2d3
d2

1

) 1
3
, v0 =

(
d1d3
d2

2

) 1
3
, (4.33)

which gives the following tori moduli

A1 = α′
(
d3
d2

) 1
3
V

1
3 , A2 = α′

(
d1
d3

) 1
3
V

1
3 , A3 = α′

(
d2
d1

) 1
3
V

1
3 , (4.34)

while its expression at the minimum becomes:

VD(V) = VD(V, u0, v0) = 3(d1d2d3) 1
3

κ4V2 ≡ d

κ4V2 . (4.35)
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In the last equality we defined

d ≡ 3(d1d2d3)
1
3 = 3

2g
3
s

∣∣∣∣∣m
(3)
1 m(1)

2 m(2)
3

m(2)
1 m(3)

2 m(1)
3

∣∣∣∣∣
1
3
(
n(2)

1 n(3)
2 n(1)

3
π3

) 2
3

, (4.36)

giving back the D-term contribution shown in equation (2.9), but with a specific value of
d related to the parameters of our model, as explained hereafter.

From (4.3), (4.5), (4.9) and (4.28), one finds that the masses and couplings for the
matter fields take the form

m2
H2 = 2

√
2
∣∣∣m(1)

2 m(3)
2

∣∣∣− 1
2
√
gs

κ2

(
d2

1d2
) 1

6

V
4
3

, g2
U(1)2

= gs

V
2
3

(
d1
d3

) 1
3 ∣∣∣m(1)

2 m(3)
2

∣∣∣−1
,

m2
x2 = g2

s

κ2 y(U2)
(
d1
d3

) 1
3 1
V

2
3
· (4.37)

For the configuration of section 3.3, the condition |ζ(2)
1 | = |ζ

(3)
2 | = |ζ

(1)
3 | in (3.33) is necessary

to eliminate the tachyons from different brane intersections. Together with the moduli
stabilisation condition (4.34), this gives the following relations that the fluxes must satisfy

n(3)
2 =

∣∣∣∣∣m
(1)
3 m(2)

3
m(1)

2 m(2)
1

∣∣∣∣∣ n(2)
1 , n(1)

3 =
∣∣∣∣∣m

(1)
3 m(3)

1
m(1)

2 m(3)
2

∣∣∣∣∣ n(2)
1 , (4.38)

leading to the following expression for the D-term parameter introduced in eq. (4.36):

d = 3
2 g

3
s

∣∣∣∣∣m
(1)
3 m(2)

3 m(3)
1

m(1)
2 m(3)

2 m(2)
1

∣∣∣∣∣
(
n(2)

1
π

)2

= 3
2 g

3
s

(
k

π

)2
, with k2 ≡ (n(2)

1 )2
∣∣∣∣∣m

(1)
3 m(2)

3 m(3)
1

m(1)
2 m(3)

2 m(2)
1

∣∣∣∣∣ .
(4.39)

We recall that the wrapping numbers m(j)
a are also subject, together with the brane mul-

tiplicities Na (or N ′a introduced in eq. (3.18)), to tadpole cancellation conditions.4 We
also recall that we have chosen m(1)

2 = m(3)
2 = 1, even if we kept generality in eqs. (4.36)

to (4.39). Note that the model of section 3.4 with more general flux configurations leads
to less constrained flux parameters n(j)

a than those of eq. (4.38).
Before moving to the study of the global minimum of the scalar potential, we come

back to the point discussed under (2.8). As explained there, the ratios of the internal tori
areas correspond to moduli orthogonal to the total internal volume V. One can thus fix
them at their VEVs, while keeping V free, as long as their masses are larger than the volume
modulus mass. In order to compare the different masses, one must consider canonically
normalised fields, which in our setup can be introduced through the following basis

φ =
√

2
3 lnV (4.40)

U = 1
2 ln

(
τ1
τ2

)
= 1

2 ln
(
T1 + T̄1

T2 + T̄2

)
= 1

2 ln
(A2
A1

)
= 1

2 ln
( 1
uv

)
(4.41)

V = 1
2
√

3
ln
(
τ1τ2
τ2

3

)
= 1

2
√

3
ln
(

(T1 + T̄1)(T2 + T̄2)
(T3 + T̄3)2

)
= 1

2
√

3
ln
(
A2

3
A1A2

)
= 1

2
√

3
ln
(
u

v

)
.

(4.42)
4In the absence of 3-form fluxes the tadpole cancellation conditions for them(j)

a simply readN ′
am

(j)
a m(k)

a −
16 = 0, a 6= j 6= k 6= a, for each D7a brane stack.
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The D-term scalar potential (4.32) can be expressed in this basis and the masses m2
φ,

m2
U , m2

V for φ, U and V are extracted from the second derivatives of the Kähler moduli
dependent part of VF + VD. These masses read:

m2
U = m2

V = 2d
κ2 e

−
√

6φ, (4.43)

m2
φ = 6d

κ2 e
−
√

6φ − 9
4
C

κ2 e
−3
√

3
2φ
(
3
√

6φ− 28 + 6q
)
, (4.44)

and we recall that q, C were introduced in eq. (2.10). As summarized in section 2.2, the
study of [11] shows that inflation occurs for a certain value of the parameter x, related
to d through eqs. (2.10) and (2.14), and takes place for φ ∈ [φ−;φ+]. We checked that
in this region we indeed have m2

φ � m2
U ,m

2
V (by at least a factor of ∼ 25), so that the

minimisation procedure is consistent.

Global minimum and waterfall direction. After stabilisation of the transverse mod-
uli ratios (u, v or U , V ), the left-over parameters of the total scalar potential (4.30) can
be replaced using equations (4.37). In the simple case under consideration, with fluxes as
in (4.38), the mass and coupling of eq. (4.37) read

m2
H2 = 2 g2

s

κ2V
4
3

k

π

∣∣∣∣∣ 1∏
a 6=jm

(j)
a

∣∣∣∣∣
1
6

, g2
U(1)2

= gs

V
2
3

∣∣∣∣∣ 1∏
a 6=jm

(j)
a

∣∣∣∣∣
1
3

,

m2
x2 = g2

s

κ2V
2
3
y(U2)

∣∣∣∣∣ m(1)
2

2
m(3)

2
2

m(2)
1 m(3)

1 m(1)
3 m(2)

3

∣∣∣∣∣
1
3

. (4.45)

Neglecting the massive ϕ+ field and expressing the volume modulus dependent contribution
VF(V) + VD(V) through (2.9), the scalar potential (4.30) is written as

V (V, ϕ−) = C

κ4

(
− lnV − 4 + q

V3 − 3σ
2V2

)
+ 1

2m
2
Y (V)|ϕ−|2 + λ(V)

4 |ϕ−|4, (4.46)

taking the same form as eq. (2.16), with ϕ− playing the role of the waterfall field Y . Its
mass and coupling read

1
2m

2
Y (V) = (m2

x2 −m
2
H2) = g2

s y(U2)
κ2V

2
3

∣∣∣∣∣ 1
m(2)

1 m(3)
1 m(1)

3 m(2)
3

∣∣∣∣∣
1
3
(

1−
(Vc2
V

) 2
3
)
, (4.47)

λ(V) = 4
(
2g2

U(1)2
+ κ2m2

x2

)
= 4gs
V

2
3

∣∣∣∣∣ 1∏
a 6=jm

(j)
a

∣∣∣∣∣
1
3 (

2 + gs y(U2)
)
. (4.48)

In eq. (4.47) we explicitly took m(1)
2 = m(3)

2 = 1 and defined the critical volume Vc2 at
which ϕ− becomes tachyonic, i.e. for V < Vc2,

Vc2 ≡
( 2k
πy(U2)

) 3
2 ∣∣∣m(2)

1 m(3)
1 m(1)

3 m(2)
3

∣∣∣ 14 . (4.49)

As expected, Vc2 depends on the fluxes through k defined in eq. (4.39) and on the
D72 brane position through y(U2) defined through (4.28). We also remark from eq. (4.48)
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that the main contribution to the quartic coupling λ comes from the D-term part of the
potential, since the F-term contribution is suppressed by a power of gs.

When the mass term m2
Y of eq. (4.47) becomes negative, the waterfall field Y (our

tachyonic field ϕ−) rolls down its potential to the new vacuum at 〈ϕ−〉 = 〈Y 〉 = ±v2.
From eqs. (2.20) and (4.46) we see that the value of the potential at this new vacuum is

V (V, v2) = VF(V) + VD(V)− m4
Y

4λ (V)

= C

κ4

(
− lnV − 4 + q

V3 − 3σ
2V2

)
− C2

κ4V
2
3

(
1−

(Vc2
V

) 2
3
)2

. (4.50)

We recall here the expressions of various parameters introduced before

q = ξ

2γ , σ = 2d
9W0

2γ
, C = −3W0

2γ > 0, y(U2) = |x
x
2 − iU2x

y
2|

2

|U2 + Ū2|
, d = 3

2g
3
s

(
k

π

)2
,

(4.51)
and define C2, the coefficient of the tachyonic contribution to the vacuum energy through

C2 ≡ −
g3
sy

2(U2)
4
(
2 + gs y(U2)

) ∣∣∣∣∣ 1
m(2)

1 m(3)
1 m(1)

3 m(2)
3

∣∣∣∣∣
1
3

. (4.52)

We observe that C2 and Vc2 are not independent, their are related by

C2 = β2
d

3V
4
3
c2

, β2 ≡
2

2 + gsy(U2) ∈ [0, 1], (4.53)

where the parameter β2 expresses the relative contributions to the quartic coupling from
the F-term versus the D-term. From (4.28) we see that as y(U2) > 0, β2 lies between 0
and 1. For β2 = 1 the D-term dominates whereas for β2 = 0 the F-term dominates. It is
clear from (4.53) that the tachyonic contribution becomes maximal (in absolute value) for
β2 = 1, when the quartic coupling is dominated by the D-term.

Let us discuss now the physics of the waterfall direction. As explained in section 2.2, the
waterfall field can generate the desired scenario for the end of inflation. It has to become
tachyonic when the volume modulus V (identified to the inflaton φ through eq. (2.11))
reaches the bottom of its potential VF(V)+VD(V). This situation corresponds to Vc2 ≈ V−,
where V− is the value of the volume at its minimum, expressed by (2.15). From eq. (4.49)
we see that the value Vc2 depends on y(U2), k and a ratio of flux and wrapping numbers,
hence it is easy to choose Vc2 near V−.

We see from the scalar potential expression (4.50) that once C and d are determined
by the inflationary phase, and Vc2 fixed to V−, the coefficient C2 is the only parameter to
tune the minimum. From the relation of eq. (4.53) we see that in fact, only β2 can be used
for fixed C and d. As β2 depends only on the product gsy(U2), we express Vc2 in terms of
d, gs and gsy(U2) using eqs. (4.49) and (4.39). It reads:

Vc2 = 4
√

2
3

√
π

(y(U2)gs)
3
2
g
− 3

2
s d

∣∣∣∣∣m
(2)
1

n(2)
1

∣∣∣∣∣
1
2

. (4.54)
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Hence, in principle, we can first fix the product gsy(U2) to have the desired β2 and tune
the minimum, then choose the values of gs and of the ratio of the flux/wrapping numbers
on the second torus to tune the critical volume.

Example of numerical values. We give now an explicit example of parameters sup-
porting the above discussion. In the inflationary scenario [11] discussed in section 2.2, the
values of x and C are fixed by observational constraints to

x ≈ 3.3× 10−4, C = e−3q × 7.81× 10−4 ≡ e−3qC0. (4.55)

From eqs. (2.10), (2.14) and (2.15) we extract for q = 0 the values of V−, the minimum of
the modulus part of the potential, and the d magnetic flux parameter

V− ≈ 201.9, d ≈ 5.65× 10−6. (4.56)

We compute numerically the global minimum of the potential given in (4.50) and see that
in order to have an almost vanishing value at the minimum, we need to tune the tachyonic
coefficient to C2 ≈ 5.136× 10−9, which through equation (4.53) would impose the value

βΛ=0 = 5.136× 10−9 3V−
4
3

d
≈ 3.228. (4.57)

Nevertheless, as β2 ∈ [0, 1], we see that we cannot tune the vacuum energy to zero in the
simple model of the current section. We come back to this point in detail in the next
section. From eq. (4.53) we see that the largest value β2 ≈ 1 is obtained for small gsy(U2)
and taking for instance gsy(U2) ≈ 10−2 in equation (4.54) we obtain

Vc2 ≈ V− ≈ 201.9 = 1.89× 10−2g
− 3

2
s

∣∣∣∣∣m
(2)
1

n(2)
1

∣∣∣∣∣
1
2

, (4.58)

which has to be satisfied together with the relations on d and β2 given by eqs. (4.39)
and (4.53)

β2 = 2
2 + gsy(U2) ≈ 1, d = 3

2 g
3
s

∣∣∣∣∣m
(1)
3 m(2)

3 m(3)
1

m(2)
1

∣∣∣∣∣
(
n(2)

1
π

)2

≈ 5.65× 10−6. (4.59)

We recall that we consider the case m(1)
2 = m(3)

2 = 1. The following parameters

gs = 2.596× 10−3, n(2)
1 = 1, m(2)

1 = 2,
m(3)

1 = 10, m(1)
3 = 17, m(2)

3 = 25, y(U2) = 3.85, (4.60)

give the desired values for d, Vc2 and β2 ≈ 1. Of course, there is an infinite set of other
choices of parameters giving the same values. We show in the left panel of figure 1 the
value of the potential at the global minimum (including the waterfall), located at V0 ≈ 160.
However, as explained above, this value is not vanishing. The next section tackles this point
in details.
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Figure 1. Value V (V, v2) of the global minimum of the scalar potential as a function of the internal
volume, for the parameters of (4.60).

On the other hand, the right panel of figure 1 shows that the tachyonic field gives
indeed a “warterfall” direction. Falling in this direction leads to an increase of the slow-
roll parameters marking the end of the inflationary phase. A precise computation of the
slow-roll parameters along the inflaton trajectory is necessary to extract the extra number
of e-folds until the end of inflation and compare it to the case without waterfall field [11].
This number depends on V− − Vc2 and is model dependent.

Validity of our approximations. Before the end of this section, we stress the fact
that with the parameters (4.60), the volume modulus is large and the flux numbers k(i)

a

small, so that the large volume approximations of e.g. eqs. (4.3) and (4.6) hold. We also
want to check that the vacuum expectation value v2 of the waterfall field stays small (in κ
units), so that the quartic expansion of (4.2) holds. From eqs. (2.19) and (4.47) this VEV
is expressed as

〈ϕ−〉 = 〈Y 〉 = ±v2 = ±|mY |√
λ

= ± 1√
2κ

√
gsy(U2)

2 + gsy(U2)

∣∣∣∣∣1−
(Vc2
V

) 2
3
∣∣∣∣∣

1
2

. (4.61)

It follows that 〈ϕ−〉 is entirely determined by gsy(U2) and Vc2. With the parameters
of (4.60) and the volume modulus Vc2 > V0 & 160, which is the range of figure 1, one finds
a VEV v2 satisfying 0 ≤ κ|v2| <∼ 0.4√g ≈ 0.02. The quartic expansion (4.2) is thus indeed
sufficient.

5 Lowering the global minimum

We have seen in section 4.3 that in our type IIB framework with three orthogonal D7
branes, a waterfall field can be implemented through a doubly charged state stretching
between e.g. the D72 brane and its orientifold image. The mass of such a state depends on
the internal volume (our inflaton) and we showed that under a certain critical volume this
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state becomes tachyonic, generating a waterfall direction typical of hybrid inflation models
described in section 2.2.

The first motivation for the introduction of such a waterfall direction was that it is
responsible for the end of inflation. The second motivation was that the waterfall field,
through its negative contribution to the scalar potential, lowers the value of the global
minimum and can in principle tune the cosmological constant to the almost vanishing
value observed today. Nevertheless, as we explained near the end of section 4.3, due to the
relation (4.53) we are not able to choose independently the position Vc2 and the depth of
the waterfall related to C2. The remaining freedom in the choice of the waterfall depth
lies in the β2 coefficient, whose value βΛ=0 ≈ 3.228, needed to tune the vacuum energy to
zero, cannot be reached in our example where β2 ≤ 1. In this section we investigate how
to modify the model in order to bypass the constraint imposed by eq. (4.53) and lower the
global minimum.

We first verify in section 5.1 that in the field theoretical description, where we can
choose freely the mass and coupling parameters while keeping their volume dependence,
the tuning of the global minimum is indeed possible. In section 5.2 we come back to the
simple case studied in the previous section. We show that the natural tentative to tune
the vacuum through the use of the parameter q, not constrained by the inflationary phase,
does not work. We also study if the contributions of the γ, ξ quantum corrections to the
tachyonic mass and coupling, gives extra freedom and helps to evade relation (4.53). We
show that, as these quantum corrections stay small, they don’t play an important role.
We hence examine in section 5.3 if adding more tachyons, coming from the two other
D7-brane stacks, allows to tune the vacuum energy to zero. We find that even if these
additional tachyons lower indeed the global minimum, their contribution still determined
by d, constrained by the inflationary phase, is not sufficient to tune the vacuum energy to
zero. Nevertheless in section 5.4, we show that adding a forth magnetised stack, parallel
to an already present one, adds additional tachyonic contributions to the scalar potential,
allowing to tune the vacuum energy.

5.1 Field theoretical description

We first look at the possibility to tune the vacuum energy of the model with arbitrary
parameters, i.e. in the field theoretical description. We thus take arbitrary values for the
mass and quartic parameters of the F-terms and D-terms, but keep the volume dependences
as in the string theory setup of the previous sections. The scalar potential is written as

V (V,ϕ−)= C

κ4

(
− lnV−4+q

V3 − 3σ
2V2

)
+ 1

2
(
m2

F(V)−m2
D(V)

)
ϕ2
−+ 1

4
(
λF(V)+λD(V)

)
ϕ4
−

= C

κ4

(
− lnV−4+q

V3 − 3σ
2V2

)
+ 1

2

(
µ0

F

V
2
3
− µ

0
D

V
4
3

)
ϕ2
−+ 1

4
(λ0

F +λ0
D)

V
2
3

ϕ4
− . (5.1)

As described in the previous sections on a particular example, for V < Vc2 the matter
field becomes tachyonic and gets a non-vanishing VEV v 6= 0. The scalar potential gets
a contribution −m4/4λ(V) when ϕ− sits at its VEV and the dependence of the global
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minimum in the volume then reads

V (V, v) = C

κ4

(
− lnV − 4 + q

V3 − 3σ
2V2

)
− µ0

F
2

4(λ0
F + λ0

D)
1
V

2
3

(
1−

(Vc2
V

) 2
3
)2

, (5.2)

with V2/3
c2 = µ0

D/µ
0
F. The D-term parameter µ0

D is related to the flux parameter d and thus
to x, relevant during the inflationary phase. We see from eq. (5.2) that in the field theoreti-
cal description, one can tune µ0

D, Vc = (µ0
D/µ

0
F)3/2 and the coefficient C2 = µ0

F
2
/4(λ0

F + λ0
D)

independently. This was not the case in the simple configuration described in section 4.3
due to relation (4.53) between C2, d and Vc2, which translates the fact that in our string
theory setup, the µ0

D, µ
0
F, λ

0
D and λ0

F parameters cannot be chosen independently.
In the next subsections we will investigate if more complex configurations can allow

the tuning of the scalar potential at the global minimum within our string theory setup.

5.2 Simple case studied previously

Dependence on the q parameter. We now come back on the discussion on the tuning
of the global minimum in the configuration discussed since the beginning of section 4, i.e.
with the flux configuration (4.1). The value of the scalar potential at the global minimum
was expressed in (4.50). We first examine if the use of the parameter q could liberate the
constraint on the waterfall depth C2 (which is related to Vc2 ≈ V−), by shifting V− arbi-
trarily. From eqs. (2.10), (2.14) and (2.15) we express the following parameters dependence
in q and x:

V− = e−q exp
(13

3 −W0
(
−e−x−1

))
, σ = −eq−

16
3 −x, d = −3

2Cσ, C ≡ −3W0
2γ.

(5.3)

We recall again that the parameters x and C determine the inflationary phase [11] and are
fixed from the observations to

x ≈ 3.3× 10−4, C = e−3q × 7.81× 10−4 ≡ e−3qC0. (5.4)

From the definition (5.3) and constraints (5.4), it seems that the q parameter could indeed
help to tune the vacuum energy, by shifting the value of V−, and thus the tachyonic
contribution’s coefficient C2 defined in eq. (4.53). Applying the constraint on the waterfall
position Vc2 ≈ V−, the C2 dependence on q reads

C2 = β2
d

3V
4
3
c

≈ β2
d

3V
4
3
−

= −β2Cσ

2V
4
3
−

= β2
C0
2 e−

2
3 q × e−

16
3 −x(

exp
(

13
3 −W0 (−e−x−1)

)) 4
3
. (5.5)

Replacing C2 from (5.5), it follows that the scalar potential of (4.50) is nevertheless scale
invariant with respect to q. It can indeed be expressed as

V (V, v) = C0
κ4

4− lnV
V3 + d0

κ4V2

1− β2
3

(
1−

( V
V−

) 2
3
)2 , (5.6)
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in terms of the q-dependent variables

V = eq V, V− = eq V− = exp
(13

3 −W0
(
−e−x−1

))
, d0 ≡

3
2C0e

− 16
3 −x = e2qd , (5.7)

which absorb the explicit q-dependence of V . Hence, V (V, v) only depends on x, C0, both
fixed by the inflationary phase, and β2. As mentioned already, it is clear that the greater
β2 is, the lower the global minimum is. Hence the value β2 = 1 gives the lowest minimum,
which is then totally fixed by x and C0.

We conclude that in the simple case studied in the previous section, the value of the
vacuum at the global minimum is totally fixed by the constraints on the inflationary phase
and the waterfall scenario implementation, and that neither the q nor β2 parameters can
help to lower it.

Influence of γ corrections to the squared mass and quartic term. In the previous
sections we neglected the contributions to the F-term squared mass and quartic terms
for ϕ− coming from γ and ξ factors. We now examine if these corrections could add
supplementary freedom allowing us to choose independently the mass and quartic coupling
of the tachyonic field. As explained in the field theory description of section 5.1, in this
way one could tune the vacuum energy.

The aforementioned corrections can be read from the F-term supergravity formula
through the expansion in the ϕ− (or C72

2 ) variable of the Kähler potential. The first
corrections (in the gs and γ expansion) to the mass and quartic contributions read

1
2m

2
γ = κ−2 6gsW2

0γ

(U1 + Ū1)2(U2 + Ū2)(U3 + Ū3)2
lnV − 2 + q

V3 = −2κ−2C0
gs

f(Ui)
lnV− 2

V3 , (5.8)

1
4λγ = 2gsW2

0γ

(U1 + Ū1)2(U2 + Ū2)(U3 + Ū3)2
5 lnV − 9 + 5q

V3 = −2
3C0

gs
f(Ui)

5 lnV− 9
V3 , (5.9)

with f(Ui) = (U1 + Ū1)2(U2 + Ū2)(U3 + Ū3)2 and V introduced in eq. (5.7). Recall that
−C > 0, so that these parameters are indeed positive. The mass and quartic terms of
eq. (4.47) and (4.48) associated with these additional contributions now read:

1
2m
′
Y

2(V) = (m2
x2 −m

2
H2 + 1

2m
2
γ)

= g2
s x2(U2)
κ2V

2
3

(
1

m(2)
1 m(3)

1 m(1)
3 m(2)

3

) 1
3
(

1−
(Vc2
V

) 2
3
)
− 2Cgs
f(Ui)

lnV − 2 + q

κ2V3 , (5.10)

1
4λ
′(V) =

(
2g2

U(1)2
+ κ2m2

x2 + 1
4λ

2
γ

)

= gs

V
2
3

(
1∏

a 6=jm
(j)
a

) 1
3 (

2 + gs y(U2)
)
− 2

3C
gs

f(Ui)
5 lnV − 9 + 5q

V3 . (5.11)

The new critical volume cannot be computed analytically now. Nevertheless the γ cor-
rection is suppressed by a factor V7/3 and stays small for the values considered previously
at large volume. Indeed, from eqs. (5.10) and (5.11) we see that the coefficients in front
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of the previous contributions and γ corrections scale as g2
sy(U2) against gsC for the mass,

and gs against Cgs for the quartic coupling λ, so that it is not possible to balance the huge
volume suppression V7/3 of the γ corrections.

We also remark that the corrections of eqs. (5.8) and (5.9) are effectively independent
of the q parameter since they only depend on V, as the other contributions.

5.3 Additional tachyons from other D7-brane stacks

We now study the possibility of having several tachyons similar to the one described pre-
viously. We start with the addition of a second tachyon, generating a second waterfall
direction. As the position of the second waterfall is only constrained to be at volumes
V < Vc2 ≈ V−, we expect to have more freedom on the height of this second waterfall
scalar potential contribution. We consider the following configuration:

(45) (67) (89)
D71 · ⊗ ×A1

D72 × · ±x2 ⊗
D73 ⊗ × ·±x3

(5.12)

The D73 brane tachyon is not eliminated by a Wilson line anymore. We introduce a
position x3 for the brane on the third torus T 2

3 , eliminating the tachyon at large volumes,
exactly as the one from the D72 brane. The mass of the string state is indeed of the form

α′m33 = −2|k(1)
3 |α′

πA1
+ z(U3)A3

α′
, (5.13)

where the function z(U3) plays a role similar to y(U2) in the previous sections and is directly
related to the brane position x3. As for the tachyon studied previously, we describe the
new effective theory of the second tachyon ψ− through its masses mx3 and mH3 , generated
respectively by an F-term and a D-term, and the corresponding quartic couplings. Their
expressions are similar to those of eqs. (4.47) and (4.48) for the D72–D72 tachyon ϕ−,
replacing the fluxes and tori areas by the respective ones for the D73–D73 state. The
corresponding parameters for this D73–D73 state are denoted with a 3 subscript. For
instance, Vc3 is the critical volume of this second tachyon, corresponding to the position of
the second waterfall.

For Vc3 < Vc2, the study of the first phase transition does not change with respect to
the single tachyon configuration. Indeed for Vc3 < V ≤ Vc2, the second tachyon sits at its
vanishing VEV 〈ψ−〉 = 0 and does not contribute to the potential. Then, when V ≤ Vc3
the second tachyonic field gets a non-vanishing VEV v3 6= 0 and its contribution to the
scalar potential reads

V (V, v3) = −m
4
Z

λZ
(V) = − C3

κ4V
2
3

(
1−

(Vc3
V

) 2
3
)2

, (5.14)

with

Vc3≡
( 2k
πz(U3)

) 3
2
∣∣∣∣∣m

(2)
1 m(3)

1 m(1)
2 m(3)

2

m(1)
3

5
m(2)

3
5

∣∣∣∣∣
1
4

, C3 =β3
d

3V
4
3
c3

, β3 = 2
2 + gsz(U3)|m(1)

3 m(2)
3 |
∈ [0, 1].

(5.15)
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For V < Vc3 ≤ Vc2, the dependence of the global minimum of the scalar potential hence
reads

V (V, v2, v3) = C

κ4

(
− lnV − 4 + q

V3 − 3σ
2V2

)
−
∑
a=2,3

Ca

κ4V
2
3

(
1−

(Vca
V

) 2
3
)2

. (5.16)

A short comment is in order on the way the global minimum is determined when
several tachyons appear. The mass and coupling of ϕ− expressed in eqs. (4.47) and (4.48)
and the similar ones for ψ− are the “bare” ones. As the ‘first’ tachyon gets a VEV before
the second one, contributions should appear due to interaction terms. These interaction
terms come from the supergravity formula for the scalar potential through the expansion
of the Kähler potential. Namely, corrections to the F-term mass and quartic coupling of
ψ− due to the VEV of the ϕ− field are of the form:

m2
x3,corrections ∼ κ2(m2

x3 +m2
x2)〈ϕ−〉2 + κ4m2

x3〈ϕ−〉
4 + · · · (5.17)

λcorrections ∼ κ2m2
x3,corrections = κ4(m2

x3 +m2
x2)〈ϕ−〉2 + κ4m2

x3〈ϕ−〉
4 + · · · (5.18)

As long as 〈ϕ−〉 stays small (compared to κ) these corrections are negligible in front of the
“bare” parameters and only shift the values of C3 or Vc3 by a small amount. Conversely,
once ψ− gets a non-vanishing VEV, corrections to the first tachyon parameters also appear
but are negligible and only shift lightly the values of C2 or Vc2.

We now turn back to the study of the global minimum. We see through (5.15) that
the amplitude C3 of the tachyonic contribution and its critical volume Vc3 are directly
related. To get a large tachyonic contribution, we need to increase C3, implying a smaller
critical volume Vc3. Nevertheless, at small volumes the moduli part (the first contribution)
of the scalar potential (5.16) dominates because it increases as 1/V3, against 1/V2 for the
tachyonic contributions. Hence if Vc3 is small, the tachyonic contribution only appears
at small volumes and cannot compensate the moduli part. In fact, it turns out that the
largest contribution to the scalar potential from the second tachyon is for Vc3 ≈ Vc2 and
hence C3 ≈ C2. We see from figure 2 that the second tachyon (green curves) contribution
indeed lowers the value of the global minimum but is not sufficient to tune the vacuum
energy to zero.

We are thus naturally led to consider adding a third tachyon on the last brane D71.
The treatment is identical to the one for the first two and its contribution is described by
a critical volume Vc1 related to the corresponding coefficient C1. When V < Vc1 ≤ Vc3 ≤
Vc2, all three tachyons sit at their respective non-vanishing VEV. The value of the global
minimum of the scalar potential is then as in eq. (5.16) but with a sum over the three
tachyons:

V (V, v1, v2, v3) = C

κ4

(
− lnV − 4 + q

V3 − 3σ
2V2

)
−

∑
a=1,2,3

Ca

κ4V
2
3

(
1−

(Vca
V

) 2
3
)2

. (5.19)

From figure 2 we see that the third tachyon is not sufficient yet to lower the global
minimum to zero. In fact, this is understandable by the fact that when Vc1 ≈ Vc2 ≈ Vc3,
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Figure 2. Value of the global minimum of the effective scalar potential as a function of V, without
(blue), with one (orange), two (green) or three (red) tachyons. The parameters are such that
Vc2 = V−, Vc3 = 0.99V− and Vc1 = 0.98V−.

the value of the global minimum expressed as in (5.16) (but with the sum on a = 1, 2, 3
tachyons) is almost similar to the one with only one tachyon, but with an effective tachyonic
contribution coefficient equal to C1 + C2 + C3 instead of C2. As the Ci are also related to
the Vci the only parameter to tune is β1 + β2 + β3 ≤ 3, which is always smaller than the
desired value βΛ=0

2 ≈ 3.228 introduced in (4.57). One can also wonder if having magnetic
fluxes on the entire worldvolumes would allow to relax the relation between the Vci and
the Ci in order to go above this bound, but we show in appendix C that a configuration
as in section 3.4 does not help.

It is now clear, as can be understood from the above discussion, that the addition of a
fourth tachyon would allow for an effective β = ∑

i tachyons βi that could be higher that the
value βΛ=0 ≈ 3.228, allowing to tune the vacuum energy to zero. In the next subsection
we implement this idea in an example with a fourth D7-brane stack, parallel to one of the
stacks previously studied.

5.4 Adding a fourth magnetised stack

As explained in the previous subsection, a fourth tachyon seems necessary to tune the
vacuum energy of the minimum. One way to achieve this is by adding a fourth D7 brane
stack, parallel to one of the one already present, say D72. We thus consider the following
configuration

(45) (67) (89)
D71 ·±x1 ⊗ ×
D72a × · ±x2a ⊗
D72b × · ±x2b ⊗
D73 ⊗ × ·±x3

(5.20)
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The two D72i branes can be studied exactly as before. The D72i–D71, D72i–D73, D72i–
D72i states are hence identical to the ones studied in section 3.3. The necessary condition
to eliminate the mixed-state tachyons is similar to (3.33):

|ζ(2)
1 | = |ζ

(3)
2a | = ζ(3)

2b | = |ζ
(1)
3 |. (5.21)

The new ingredient comes from the D72a–D72b states. The magnetic fields produce the
following mass for the lowest-lying states

α′m2 = −|ζ(3)
2a | − |ζ

(3)
2a | = −2|ζ(3)

2a |, (5.22)

where in the last equality we used equation (5.21). The D72a–D72b states also receive
contributions from their relative distance, i.e. from the separation in the second torus T 2

2
due to the different brane localisations x2a and x2b. We recall that

x2i ≡ xx2i R2x + xy2i R2y with xx2i, x
y
2i ∈ Q, i = a, b. (5.23)

The mass contribution is then similar to the one of (3.24), with x2 replaced by x2ab =
x2a − x2b. It reads

α′m2 = x2ab · x2ab
α′

= xk2abx
l
2abg

(2)
kl

α′
= 4A2
α′Re(U2)

∣∣xx2ab − iU2x
y
2ab
∣∣2 ≡ yab(U2)A2

α′
. (5.24)

The total D72a–D72b lowest-lying state mass then is

α′m2
22 = −2|ζ(3)

2a |+
yabA2
α′

≈ −2α′|k(3)
2a |

πA3
+ yabA2

α′
. (5.25)

In the effective theory, the new mass contributions come from a D- and F-term, as in the
previous cases. The second brane orthogonal to the T 2

2 torus give additional contributions
to the D-term scalar potential obtained from the previous formula (4.2), where we recall
that the sum runs over the different U(1) factors:

VD =
∑
a

g2
U(1)a
2

(
ξa +

∑
n

qna |ϕna |2
)2

+ · · ·

=
g2

U(1)2a

2
(
ξ2a− 2|ϕ2a−|2− |ϕ2ab−|2 + · · ·

)2
+
g2

U(1)2b

2
(
ξ2b− 2|ϕ2b−|2− |ϕ2ab−|2 + · · ·

)2

+
∑
a=1,3

g2
U(1)a
2

(
ξa− 2|ϕa−|2 + · · ·

)2
+ · · · (5.26)

with the FI terms ξi expressed from the fluxes as in eq. (4.7). The additional D72b brane
adds a contribution to the d2 term, defined in (4.9), which now reads

d2 =
g2

U(1)2a

2 ξ2
2a +

g2
U(1)2b

2 ξ2
2b = g2

U(1)2a
ξ2

2a. (5.27)

In the last equality we used the flux condition (5.21) and the fact that for unit wrapping
numbers g2

U(1)2a
= g2

U(1)2b
since the two stacks are parallel, as can be seen from equa-

tion (4.6). The D-term contributions to the masses and quartic couplings of the ϕ2a,−,
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ϕ2b,− and ϕ2ab,− fields can be expressed by expanding the scalar potential (5.26). The
masses have the same expressions while there is a factor of 2 difference between the quartic
couplings of the doubly charged states and the bi-charged D72a–D72b state.

The F-term contributions to the mass and quartic couplings can be derived as in the
previous subsections, see eq. (4.28) and around, and read

m2
x2i = yi(U2) g

2
s

κ2V
A2
α′
, i = a, b, m2

x2ab = yab(U2) g
2
s

κ2V
A2
α′
,

λx2i = 4κ2m2
x2i , λx2ab ∼ 4κ2m2

x2ab , (5.28)

where we recall that yab was defined in eq. (5.24) using x2ab = x2a − x2b and yi(U2)
are of course defined with respect to the respective brane positions x2i. There are some
subtleties for the low-energy derivation of the mass and quartic couplings for the D72a–
D72b tachyon, because it does not appear in the same way as the D72i–D72i tachyons in the
Kähler potential and has a different superpotential expression. Nevertheless, as expected
from the string mass formula, we obtain the dependences as in (5.28).

The minimisation procedure follows as in the case with the three tachyons of section 5.3.
In the present case, there are four tachyons coming from the doubly charged states between
each stack and its image, and a fifth one from the D72a–D72b sector. The value of the scalar
potential at the minimum hence reads

V (V, vi) = C

κ4

(
− lnV − 4 + q

V3 − 3σ
2V2

)
−

5∑
i=1

Ci

κ4V
2
3

(
1−

(Vci
V

) 2
3
)2

, (5.29)

where the sum runs over the five tachyons mentioned above, hence i = 1, 2a, 2b, 2ab, 3.
The critical volumes and tachyonic contribution amplitudes can be computed as before
and read

Vc1
2
3 ≡ 2|k(2)

1 |
w(U1)π

(
d2

d1

) 1
3

, Vc2i
2
3 ≡ 2|k(3)

2a |
yi(U2)π

(
d3

d2

) 1
3

, i = a, b, ab, Vc3
2
3 ≡ 2|k(1)

3 |
z(U3)π

(
d1

d3

) 1
3

,

Ci = βi
d

3V
4
3

ci

, i = 1, 2ab, 3, Ci = 1
2βi

d

3V
4
3

ci

, i = 2a, 2b, (5.30)

βi = 2
2 + gsfi

, i = 1, 2a, 2b, 3 with (f1, f2a, f2b, f3) = (w, ya, yb, z), β2ab = 1
1 + gsyab

.

There is a small subtlety coming from the addition of a second parallel brane D72b, which
modifies the d2 parameter as in eq. (5.27), and is responsible for the factor 1

2 in C2a, C2b.
This factor is not present in C2ab, because of the factor 2 between the D-term quartic
couplings mentioned under eq. (5.27). As in the case with three tachyons discussed un-
der (5.19), we look at the maximum value of the tachyonic amplitude, reached for almost
equal Vc,i ≈ V− and saturated value for βi = 1:

C1 + C2a + C2b + C2ab + C3 ≈ 4 d

3V
4
3
−

> βΛ=0 d

3V
4
3
−

. (5.31)

Hence the value βΛ=0 introduced in eq. (4.57) can be reached with the current configuration,
i.e. through the addition of the fourth brane D72b, and the value of the global minimum of
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Figure 3. Value V (V, vi) of the global minimum of the scalar potential as a function of the internal
volume, for the parameters (5.32). We show (left panel) the almost vanishing value of the global
minimum and focus (right panel) on the waterfall zone near V− ≈ 201.9.

the potential can be tuned to almost zero. With the saturated bound of equation (5.31),
the sum of the tachyonic contributions to the global minimum is greater than the moduli
contribution and an AdS vacuum is obtained. There are several options to tune the global
minimum: one can either lower the βi parameters or choose smaller tachyonic critical
volumes (except for the first waterfall field responsible for the end of inflation).

Taking for simplicity only unit wrapping numbers, the choice of parameters

gs = 8.025× 10−3 n(2)
1 = 12, m(j)

i = 1, x(U1) = 0.185,
z(U3) = 0.189, ya(U2) = 0.0881, yb(U2) = 0.098, yab(U2) = 0.09, (5.32)

gives the following values for d, the critical volumes and the βi coefficients:

d =5.65× 10−6, βi ≈ 1, i = 1, 2a, 2b, 2ab, 3, Vc2a = 201.9 ≈ V−, (5.33)
Vc1 = 187.6, Vc2b = 172.1, Vc2ab = 195.5, Vc3 = 181.7.

Figure 3 shows the value of the global minimum of the scalar potential as a function of the
internal volume for the parameters of (5.32). We see that with this choice the cosmological
constant can indeed be tuned to an almost vanishing positive value.

6 Conclusion

In this work we have shown that the essential principles of hybrid inflation can be naturally
implemented in the context of a mechanism of moduli stabilisation providing a metastable
de Sitter vacuum within type IIB flux compactifications, using only perturbative quantum
corrections. Identifying the inflaton field with the internal volume modulus, it is found
that slow-roll inflation can be readily implemented, however, the minimum of the potential
corresponds to a false vacuum with an unacceptably large cosmological constant, of the
order of the inflation scale. This is where hybrid inflation can come into rescue by intro-
ducing an extra steep ‘waterfall’ direction from a saddle point near the previous minimum,
down to a new vacuum that can accommodate the present amount of dark energy.

– 39 –



J
H
E
P
0
1
(
2
0
2
2
)
0
1
1

In this paper, this issue is naturally resolved within our framework by considering
the case where the role of the waterfall field is realised by an appropriate open string
excitation located on the three D7-brane stacks. Indeed charged states on the branes and
their intersections receive a tachyonic contribution due to the coupling of the magnetic field
with the internal spin and a positive (supersymmetric) contribution whenWilson lines along
the branes worldvolume are turned on, or branes separation in the transverse directions.
We have shown that for appropriate magnetic fluxes and brane separations, the minimum
of the potential occurs at a critical value of the internal volume where charged tachyonic
states appear playing the role of the waterfall field. Inflation is realised with 60 e-folds
accumulated as the inflaton rolls towards the minimum, while the variation of the inflaton
field is small compared to the Planck scale as in small field inflation models, consistently
with the validity of the effective field theory and swampland distance conjecture. Moreover,
the magnetic fluxes generate the appropriate coupling with the waterfall fields which is
necessary to realise the transition to the true vacuum. In conclusion, the main features of
the proposed framework described above tally with the general principles of hybrid inflation,
establishing a firm ground for the implementation of this scenario in string theory.
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A Theta functions and so(2) characters

The Jacobi theta functions are introduced as

ϑ
[
α
β

]
(z|τ) =

∑
n

q
1
2 (n+α)2

e2πi(n+α)(z+β)

= e2πiα(z+β)q
α2
2
∞∏
n=1

(1− qn)(1 + qn+α− 1
2 e2πi(z+β))(1 + qn−α−

1
2 e−2πi(z+β)).

(A.1)

From them we define the four theta functions

ϑ1(z|τ) ≡ ϑ
[

1/2
1/2

]
(z|τ), ϑ2(z|τ) ≡ ϑ

[
1/2
0

]
(z|τ),

ϑ3(z|τ) ≡ ϑ
[

0
0

]
(z|τ), ϑ4(z|τ) ≡ ϑ

[
0

1/2

]
(z|τ), (A.2)

used in the superstring amplitudes we consider in this work. The four level-one so(2)
characters read

O2(z) = ϑ3(z|τ) + ϑ4(z|τ)
2η , V2(z) = ϑ3(z|τ)− ϑ4(z|τ)

2η ,

S2(z) = ϑ2(z|τ)− ϑ1(z|τ)
2η , C2(z) = ϑ2(z|τ) + ϑ1(z|τ)

2η , (A.3)
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with the Dedekind function defined by

η(τ) = q
1
24

∞∏
n=1

(1− qn) . (A.4)

The space-time characters used in Z2×Z2 toroidal orbifolds are constructed from the so(2)
characters (A.3) and read:

τoo = V2O2O2O2 +O2V2V2V2 − S2S2S2S2 − C2C2C2C2

τog = O2V2O2O2 + V2O2V2V2 − C2C2S2S2 − S2S2C2C2

τoh = O2O2O2V2 + V2V2V2O2 − C2S2S2C2 − S2C2C2S2

τof = O2O2V2O2 + V2V2O2V2 − C2S2C2S2 − S2C2S2C2

τgo = V2O2S2C2 +O2V2C2S2 − S2S2V2O2 − C2C2O2V2

τgg = O2V2S2C2 + V2O2C2S2 − S2S2O2V2 − C2C2V2O2

τgh = O2O2S2S2 + V2V2C2C2 − C2S2V2V2 − S2C2O2O2

τgf = O2O2C2C2 + V2V2S2S2 − S2C2V2V2 − C2S2O2O2

τho = V2S2C2O2 +O2C2S2V2 − C2O2V2C2 − S2V2O2S2

τhg = O2C2C2O2 + V2S2S2V2 − C2O2O2S2 − S2V2V2C2

τhh = O2S2C2V2 + V2C2S2O2 − S2O2V2S2 − C2V2O2C2

τhf = O2S2S2O2 + V2C2C2V2 − C2V2V2S2 − S2O2O2C2

τfo = V2S2O2C2 +O2C2V2S2 − S2V2S2O2 − C2O2C2V2

τfg = O2C2O2C2 + V2S2V2S2 − C2O2S2O2 − S2V2C2V2

τfh = O2S2O2S2 + V2C2V2C2 − C2V2S2V2 − S2O2C2O2

τff = O2S2V2C2 + V2C2O2S2 − C2V2C2O2 − S2O2S2V2

(A.5)

The Tkj characters used in the T 6/Z2 × Z2 model of section 3 are [19, 23]

Tko = τko + τkg + τkh + τkf , Tkg = τko + τkg − τkh − τkf ,
Tkh = τko − τkg + τkh − τkf , Tkf = τko − τkg − τkh + τkf , (A.6)

for k = o, f, h, g.

B Momenta and windings sums

In absence of B-field background, the T 2
i torus momenta, lying on the dual lattice Λ∗i

defined under equation (3.1), read

pi = mkR∗ki , mk ∈ Z. (B.1)

Defining the T 2
i torus windings, lying on the lattice Λi, through

Li = nlRil nl ∈ Z, (B.2)
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we introduce left and right momenta

piL,R =
(
mk ± g

(i)
kl n

l
)

R∗ki . (B.3)

The T 2
i torus partition function is then defined by

Λi =
∑
m,n

q
α′
4 piL·piL q̄

α′
4 piR·piR

|η(τ)|4 . (B.4)

The Klein-bottle windings and momenta sums read

Wi =
∑
n

q
1

2α′ Li·Li

η(2iImτ)2 , Pi =
∑
n

e−2π`α′pi·pi

η(i`)2 , (B.5)

and the annulus ones are

Wi =
∑
n

e−2π` 1
4α′ Li·Li

η(i`)2 , Pi =
∑
m

q
α′
2 pi·pi

η(iImτ/2)2 , (B.6)

with ` being the modulus of the double cover of either the Klein bottle or the annulus [23].

C Tachyons from magnetic fields on the entire D7-branes worldvolumes

In this appendix we study the tachyons generated by a configuration with three D7-brane
stacks with magnetic fields on the entire worldvolumes. This is motivated because we
saw in section 5.3 that eqs. (4.53) and (5.15) fix the relation between the critical volumes
and the amplitudes through the flux parameter d. This parameter plays a crucial role in
the inflationary phase and is fixed by observations. In the simple flux configuration of
section 5.3, all fluxes were taken equal, hence d1 = d2 = d3. One may wonder if allowing
for different da would relax relations between the tachyonic contribution scalings and the
critical volumes, by introducing da in the relations similar to eqs. (4.53) and (5.15).

According to the study of section 3.4, it is possible to have different doubly charged
states masses (and hence different da) by putting magnetic fields on the entire brane world-
volumes, as shown in the following table.

(45) (67) (89)
D71 ·±x1 ⊗ ⊗
D72 ⊗ · ±x2 ⊗
D73 ⊗ ⊗ ·±x3

We recall that the magnetic fields are subject to conditions (A − i) or (B − i) of
equation (3.38) to eliminate the mixed states tachyons. In order to have the possibility for
different (non-vanishing) da, we choose the configuration of fluxes in condition (B − 1) of
equation (3.38) that we recall here for simplicity

(B − 1) ζ(2)
1 = ζ(3)

1 , ζ(1)
2 = ζ(3)

2 , ζ(1)
3 = ζ(2)

3 . (C.1)

– 42 –



J
H
E
P
0
1
(
2
0
2
2
)
0
1
1

An important point is that when magnetic fields are plugged on the entire worldvol-
umes, one cannot use Wilson lines Ai anymore to eliminate the tachyons from the dou-
bly charged states. The only way is to use brane separations xi, which indeed eliminate
tachyons at large volumes but lead to tachyons under a certain critical volume. This was
phenomenon was described in details in the previous subsections. In the present case, we
thus have to consider one tachyon for each doubly charged D7i–D7i state. As before, the
tachyonic masses contributions generated by the magnetic fluxes and brane separation at
the string level read

α′m2
11 = −2

∣∣∣ζ(2)
1 + ζ(3)

1

∣∣∣+ wA1
α′

=
(B−1)

−4
∣∣∣ζ(2)

1

∣∣∣+ wA1
α′
≈ −4|k(2)

1 |α′

πA2
+ wA1

α′
,

α′m2
22 = −2

∣∣∣ζ(1)
2 + ζ(3)

2

∣∣∣+ yA2
α′

=
(B−1)

−4
∣∣∣ζ(1)

2

∣∣∣+ yA2
α′
≈ −4|k(1)

2 |α′

πA1
+ yA2

α′
, (C.2)

α′m2
33 = −2

∣∣∣ζ(1)
3 + ζ(2)

3

∣∣∣+ zA3
α′

=
(B−1)

−4
∣∣∣ζ(1)

3

∣∣∣+ zA3
α′
≈ −4|k(1)

3 |α′

πA1
+ zA3

α′
.

In the low energy effective theory this corresponds to da parameters of the form

da = 1
2g

3
s |m(j)

a m
(k)
a |
(2k(j)

a

π

)2
, a 6= j 6= k 6= a. (C.3)

Remember that the moduli stabilisation conditions depend on these da and are given
by (4.34). Together with (C.1) these conditions allow to express e.g. n(3)

1 , n(1)
2 and n(2)

3 with
respect to n(2)

1 , n(3)
2 , n(1)

3 and the m(j)
a , hence leaving only three independent flux numbers

together with the wrapping numbers.
After some straightforward manipulations we check that when the volume is inferior

to all the critical volumes, i.e. when for any value of a, V < Vc,a, the scalar potential reads

V (V, v1, v2, v3) = C

κ4

(
− lnV − 4 + q

V3 − 3σ
2V2

)
−

3∑
a=1

Ca

κ4V
2
3

(
1−

(Vca
V

) 2
3
)2

(C.4)

with again

Vc1
2
3 ≡ 4|k(2)

1 |
w(U1)π

(
d2

d1

) 1
3

, Vc2
2
3 ≡ 4|k(1)

2 |
y(U2)π

(
d2

d1

) 1
3

, Vc3
2
3 ≡ 4|k(1)

3 |
z(U3)π

(
d1

d3

) 1
3

,

Ca = βa
d

3Vca
, βa = 2

2 + gsfa(Ua)|m(j)
a m(k)

a |
∈ [0, 1], (f1, f2, f3) = (w, y, z). (C.5)

Hence we see that even with different da as in the current configuration, the relations (C.5)
between the critical volumes and the amplitudes of the tachyonic contributions only imply
d = 3(d1d2d3) 1

3 , as in the simpler case with only one magnetic field per brane. The potential
is thus identical to the one with three tachyons (red curve) of figure 2.
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